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Identification of malicious nodes in peer-to-peer
streaming: a belief propagation based technique

Rossano Gaeta and Marco Grangetto

Abstract—Peer-to-peer streaming has witnessed a great success thanks to the possibility of aggregating resources from all
participants. Nevertheless, performance of the entire system may be highly degraded due to the presence of malicious peers that
share bogus data on purpose. In this paper we propose to use a statistical inference technique, namely Belief Propagation, to estimate
the probability of peers being malicious. The detection algorithm is run by a set of trusted monitor nodes that receives notification
messages (checks) from peers whenever they obtain a chunk of data; these checks contain the list of the chunk uploaders and a
flag to mark the chunk as polluted or clean. Peers are able to detect if the received chunk is polluted or not but, since multi-party
download is employed, they are not capable to identify the source(s) of bogus blocks. This problem definition allows us to define a
factor graph of peers and checks on which an incremental version of the Belief Propagation algorithm is run by the monitor nodes
to infer the probability of each peer being a malicious one. We evaluate the accuracy, robustness, and complexity of our technique
by running a real peer-to-peer application on PlanetLab. We show that the proposed approach is very accurate and robust against
malicious nodes misbehaving (different pollution intensity, presence of fake checks, churning, and total un-cooperation from malicious
nodes), increasing number and colluding behavior of malicious nodes.

Index Terms—peer-to-peer, pollution attack, malicious node identification, streaming, belief propagation, statistical inference, Planet-
Lab.

✦

1 INTRODUCTION
Peer-to-peer streaming architectures represent a mature
area of research with several successful examples to date
[1], [2]. Nevertheless, these systems have an important
Achilles’ heel: they are vulnerable to attacks carried out
by peers that spread bogus data over the entire overlay
network. These actions are commonly known as pollution
attacks [3], [4] and the attackers are termed as malicious
nodes. There are basically three tasks that a peer-to-peer
streaming architecture should implement to get rid of
malicious nodes: polluted content detection, malicious
node identification, and removal/isolation. The first task
can be carried out by each peer; since many peer-to-
peer streaming architecture organize the content to be
streamed in independently playable media units (usually
denoted as chunks) each peer upon reconstruction of a
chunk can check its state (valid or polluted) by veri-
fying if the specific formats of the streamed media are
matched. The second task is necessary to limit the origin
of the polluted data to avoid continuous degradation of
the architecture performance. The third step is the final
result of the whole process where malicious nodes are
made innocuous to restore acceptable streaming quality.

Among the three operations we briefly outlined the
second one is by far the most complex. Complexity
arises because peers usually collect blocks of a chunk
from several of their neighbors (the chunk uploaders).
Techniques to verify on the fly the state of a single block
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[5], [6], [7], [8], [9], [10], [11] or to correct a polluted block
[12], [13], [14] have been proposed but their effectiveness
is hampered by substantial computational costs, commu-
nication overhead due to pre-distribution of verification
information, and the amount of corrupted information.

A viable solution to solve the problem of identification
of malicious nodes in peer-to-peer streaming is peer
monitoring. In this context peers are required to collect
information on the state of the chunks they obtain from
their neighbors and to rely on a monitoring infrastruc-
ture that is able to feed peers back with information
on malicious nodes identities. Upon reception of the
suspects identity each peer is able to disconnect from
the sources of polluted data.

Our contribution
In this paper we propose a technique to identify mali-
cious nodes in a peer-to-peer streaming architecture; we
employ a set of NM trusted monitoring nodes collecting
reports (that we denote as checks) sent by peers that have
downloaded blocks of a given chunk from a set of other
peers. Each peer is assigned to only one monitor node
for all the time it joins the application. The resulting
architecture is thus a two-level hierarchy reminiscent of
many peer-to-peer applications, e.g., [15], [16], allowing
the whole system to scale to large sizes.

We recast the problem of identifying the malicious
peers from a given number of checks as an inference prob-
lem [17]. The goal of the inference is the estimation of
the hidden state of the peers, i.e. being malicious or not,
given a set of observations corresponding to the checks.
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Each check can be interpreted as an accusation raised
against a set of uploaders by a witness. Checks and
uploaders are used by monitor nodes to build a bipartite
graph (called the factor graph) on which an incremental
version of the Belief Propagation (BP) algorithm [18] is run
to compute the probability of a peer being malicious.
BP is an iterative algorithm based on the exchange of
probability messages (the belief ) along the edges of the
factor graph.

We evaluate the accuracy and the cost of our technique
by conducting experiments on a real peer-to-peer live
streaming architecture that we developed and deployed
over the Planetlab network. We consider a wide range of
malicious node misbehavior as well as their colluding at-
tack: we observed that our technique is very accurate in
identifying malicious nodes in all settings and it is very
quick to determine the identity of actual misbehaving
nodes.

Please note that the technique we propose is general
and is not tailored to a particular class of peer-to-peer
streaming architecture; it can be applied to any system
where data units are obtained by peers through a multi-
part download of smaller blocks. It can be applied
to both coded and uncoded systems provided that a
mechanism to detect corruption of data units is available.
Actually, it could be applied to file sharing systems as
well.

The paper is organized as follows: Sect. 2 discusses
previous work that is related to ours, Sect. 4 describes the
formalization of the malicious node identification and
presents the detailed solution, Sect. 5 discusses the per-
formance results of the BP based technique, and Sect. 6
discusses the key finding of this paper and outlines
directions for future research.

2 RELATED WORK

Defending peer-to-peer streaming systems from pollu-
tion attacks has been the subject of numerous research
activity. In the area of network coding several efforts
have been devoted to devise on-the-fly verification tech-
niques carried out by participants [5], [6], [7], [8], [9],
[10], [11]. The major drawback of these elegant methods
is the high computational costs for verification and
the communication overhead due to pre-distribution
of verification information. Error correction is another
approach to deal with pollution attacks in network cod-
ing based peer-to-peer streaming [12], [13], [14]; these
methods introduce coding redundancy to allow receivers
to correct errors but their effectiveness depends on the
amount of corrupted information.

Three papers are more closely related to our work:
• the work by Wang et al. [19] proposes a detection

scheme where each peer is able to detect receipt of
corrupted blocks by checking the adherence of the
decoded chunk to the specific formats of the video
stream. Peers detecting polluted chunks send alert
messages to the video server and the tracker. Upon

receipt of an alert the server computes a checksum
of the original chunk and disseminates it to all peers
in the overlay. The checksum is used by peers to
identify which uploader actually sent a corrupted
block. Peers report their suspects to the server and a
true polluters cannot lie (the authors develop a non
repudiation protocol to ensure that peers cannot lie
when reporting suspects to the servers). Sequence
numbers are used to tag alerts to deal with cycles
in the overlay.
The scheme is effective in quickly identify malicious
nodes. Nevertheless, it is complex and relies on
the existence of effective and efficient solutions to
the broadcast authentication problem. Furthermore,
it is not clear how the technique performance is
affected if malicious nodes corrupt the checksum
originated by the server and/or the results of the
detection. The analysis has been conducted only
through simulation with stable nodes; the maximum
number of malicious nodes is 50, i.e., about 3% of
the smallest overlay considered in the paper (1600
nodes).

• the work by Li and Lui [20] presents a distributed
detection algorithm and analyzes its performance.
The technique is based on simple intersection opera-
tions performed by peers: each peer starts with a set
of suspects that is equal to the entire neighborhood
that is shrunk as long as chunks are downloaded
from a random subset of uploaders independently
chosen from the entire set of neighbors. The scheme
allows malicious nodes to send corrupted blocks
using a pollution probability. The technique is an-
alyzed when the number of malicious nodes in the
neighborhood is known in advance and an approxi-
mation is proposed when this quantity is unknown.
The technique is attractive thanks to its simplicity
and fully distributed nature. Performance deterio-
rates when multiple polluter may exist and it is not
clear how good performance is when peers churn.
Furthermore, the entire set of results is obtained
under the assumption that each chunk is obtained
by a randomly chosen subset of uploaders and it is
not known how the technique would perform if this
assumption is relaxed.

• the work by Jin et al [21] proposed a monitoring
architecture to build and maintain a reputation sys-
tem that peers use to select neighbors. The focus of
the paper is on reputation computation, storage and
load balancing among monitoring nodes. The results
show that the system is able to detect malicious
nodes up to a certain degree of lies. Nevertheless,
the technique relies on the assumption that each
peer is able to compute the amount of corrupted
blocks received by each uploader during a moni-
toring period. This capability is not available in the
system we consider and it is the main motivation
for building our BP based identification technique.
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3 SYSTEM DESCRIPTION
In this paper we consider a peer-to-peer streaming
system composed of N peers. The streamed content
is organized in chunks encoding independently repro-
ducible audio/video units. Chunks are identified by
a progressive number assigned by the content server;
they are further partitioned in blocks that represent the
smallest data unit that can be transferred between two
peers. Peers organize in an overlay network and blocks
are exchanged among neighbor peers. As soon as a
peer has collected all blocks that allow a chunk to be
reconstructed the peer is able to feed its local player
with the obtained data and it shares the newly obtained
chunk with its neighbors in the overlay network. The
architecture we consider is completed by a rendez-vous
point, i.e., a tracker. The task of the tracker is to provide
joining peers with the address of a random subset of
participants in order to start following the protocol to
obtain the streamed content. The tracker also assigns
peers an overlay-wide unique identifier based on their IP
address and the port number used for communication.
Peers are allowed to churn, i.e., to alternate between con-
nection and disconnection periods; nevertheless, peers
retain their unique identifier over successive connections
to the overlay.

3.1 Attack model and proposed enriched architec-
ture
The system comprises NP malicious peers: these peers
join the swarm and follow the application level protocol
for overlay organization and data exchange but they
can deliberately modify the payload of blocks that are
forwarded to their neighbors. The effect of this nasty
action is to invalidate chunk reconstruction of the re-
ceiving peers thus preventing them from reproducing
the original content.

The architecture also comprises a set of NM trusted
monitor nodes. The tracker assigns each peer to only one
monitor node based on the chosen overlay-wide unique
identifier: if we assume that the peer identifier is an
integer ip the tracker assigns it to the monitor whose
identifier is equal to ip mod NM . It follows that a peer
can only report its checks to the same monitor node for
the whole duration of the video stream. The resulting
architecture is thus a two-level hierarchy reminiscent of
many peer-to-peer applications, e.g., [15], [16], allowing
the whole system to scale to large sizes. We do not pro-
pose a specific mechanism to let monitor nodes exchange
information: monitor nodes may either organize into a
higher level unstructured overlay or refer to a common
trusted central authority node.

As soon as a peer reconstructs a chunk it is assumed
that it is able to detect if the chunk is polluted or not.
If the chunk is polluted it is not shared with the peer
neighbors and a positive check is sent to the monitor
assigned by the tracker. On the other hand, a negative
check is sent to the monitor upon reconstructing a valid

chunk. A check contains the list of peer identifiers that
uploaded blocks of that chunk and a binary flag to
indicate a positive or negative outcome.

Malicious peers may misbehave in several ways:
• they can modify the payload of a block: on each block

transmission a coin is flipped and with probability
ppoll (that we denote as the pollution intensity) the
content of the block is randomly modified before
transmission;

• they can lie when sending checks to the monitor
node: we let each malicious node flip a coin and
with probability plie the value of the check is in-
verted and with probability 1 − plie the check is
faithfully reported;

• they can avoid sending checks to their monitor;
• they can churn by alternating between connection

and disconnection periods.
Since peers retain their overlay-wide unique identifier
through several joins and departures we do not consider
the case of a sybil attack where malicious nodes exploit
several identities to pursue their goals.

4 BELIEF PROPAGATION FORMULATION
The problem of identifying the malicious peers from a
given number of checks, i.e. reports sent by peers that
have downloaded blocks of a given chunk from a set
of other peers, can be recast as an inference problem.
The goal of the inference is the estimation of the hidden
state of the peers, i.e. being malicious or not, given a
set of observations corresponding to the checks. Each
check can be interpreted as an accusation raised against
a set of uploaders by a witness. In this paper we adopt
the Belief Propagation (BP) algorithm [22], [17], [18], [23],
that has been used to solve, at least approximatively, a
number of inference problems in many different fields,
e.g., iterative channel decoding [24], Bayesian networks
[22] and computer vision [25] to mention a few.

Uploaders and checks can be graphically represented
by a factor graph (U , C, E) that is a bipartite graph,
consisting of the uploaders i ∈ U (the variable nodes in
the BP literature), checks I ∈ C (the factor nodes in the
BP literature), and undirected edges {i, I} ∈ E between
i and I if and only if check I depends on uploader i.
In the following we will refer to the set of uploaders
involved in check I as UI and the set of checks that peer
i contributes as an uploader as Ci. An example of factor
graph with four uploaders (circle nodes) and two checks
(square nodes) is show in Fig. 1. Each uploader i can be
in one of two states xi = 1 or xi = 0, depending on
whether uploader i is or is not a malicious peer. Each
check can report one of two observations cI = 0 or
cI = 1 in case of negative or positive pollution detection,
respectively. Coming back to the example of Fig. 1 the
filled circle is used to represent a polluter that in turn
causes a positive check (filled square).

The BP algorithm can be used to estimate from the
factor graph the so called variable marginals (P (xi))i∈U ,
i.e. the probability of peer i being malicious.
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Fig. 1: Example of factor graph.

BP is an iterative algorithm based on the exchange
of probability messages, the belief, along the edges of
the bipartite graph. In our setting it is convenient to
distinguish between two class of messages: message
from uploader i to check I , mx

iI , that is meant to be
the probability that uploader i is in state x, given the
information collected via checks other than check I
(Ci\I); message from check I to uploader i, mx

Ii is defined
as the probability of check I having value cI if uploader i
is considered in state x and all the other uploaders states
have a separable distribution given by the probabilities
{mx

i′I : i′ ∈ UI \ i}. In our scenario we implement the BP
algorithm iterating a few times the so called check pass,
corresponding to the computation of all messages from
checks to uploaders, followed by the node pass, where
messages from uploaders to checks are computed and
propagated.

The messages are initialized to the values m0
iI = m1

iI =
0.5, i.e. all peers are equally likely to be malicious in the
first run. Then, the probabilities mx

Ii are estimated using:

mx
Ii =

∑

{xi′ :i
′∈UI\i}

P (cI |xi = x, {x′
i : i

′ ∈ UI \ i})
∏

i′∈UI\i

m
x′
i

i′I

(1)
Equation (1) depends on the probability of observing a
certain check value cI , given the states of the uploaders
of such check. We can compute the probability of ob-
serving a negative check cI = 0, given a set of uploaders
{xi : i = 1, . . . , k} as:

P (cI = 0|{xi : i = 1, . . . , k}) =
∏

xi ̸=0

(1− ppoll)
uiI (2)

where uiI represents the number of packets of the chunk
corresponding to the I-th check uploaded by peer i
and ppoll is the pollution intensity. Previous equation
represents the probability that all the uploaders that are
supposed to be polluters (xi ̸= 0) do not pollute any of
the uiI uploaded blocks.

In general, the actual pollution intensity of the mali-
cious nodes is not known by the monitor nodes. There-
fore, we simplify Equation 2 by setting ppoll = 1. It
follows that, when ppoll = 1, a check is negative if and

only if all the uploaders are not malicious:

P (cI = 0|{xi : i = 1, . . . , k}) =
{

1, if xi = 0, ∀i
0, otherwise (3)

Analogously, a check is positive as soon as at least one
of the uploaders is a malicious node. Therefore we get:

P (cI = 1|{xi : i = 1, . . . , k}) =
{

0, if xi = 0, ∀i
1, otherwise (4)

Plugging the last two expressions into Equation 1 we
simplify it as shown in Equation 5 for the four possible
combinations of cI and x.

mx
Ii =

⎧
⎪⎪⎨

⎪⎪⎩

∏
i′∈UI\i m

0
i′I if cI = 0, x = 0

0 if cI = 0, x = 1
1−

∏
i′∈UI\i m

0
i′I if cI = 1, x = 0

1 otherwise

(5)

In other words, given a certain check state cI , Equation
5 allows one to compute two messages m0

Ii and m1
Ii at

the cost of |UI | − 1 multiplications, where operator | · |
evaluates the cardinality of a set. Since messages are
associated to each edge of the bipartite graph we can
conclude that the overall check pass takes on average
|E|(zU − 1), zU being the average number of upload-
ers per check. It is worth pointing out that a brute
force implementation of Equation 1 would require the
summation over all the possible state configurations of
|UI | − 1 uploaders, that is a well known combinatorial
computational issue in BP implementations, especially
for distributions with many states [18], [23].

The next step is constituted by the updating of the
probabilities mx

iI , using information from previous com-
putation in the checks, according to (6):

mx
iI =

∏

I′∈Ci\I

mx
iI′ (6)

This computation is performed on every edge from an
uploader to its checks and it constitutes the so called
node pass. The overall computational cost amounts to
|E|(zC − 1) multiplications, where zC is the average
number of checks per node.

After few iterations of check and node passes, the
marginal P (xi = x) can be estimated as follows:

P (xi = x) =
∏

I′∈Ci

mx
iI′ (7)

This last step exhibits a computational cost of |E|zC
multiplications.

We recall that the probabilities estimates given by
Equations (5), (6) and (7) are not guaranteed to be nor-
malized; in the practical implementation we use proper
normalization constants to avoid numerical issues as
suggested in [17].

To conclude, the BP algorithm initializes the values of
miI , then keeps iterating using Equations (5) (message
from checks to nodes) and (6) (messages from nodes to
checks). A reliable estimate of P (xi = x) is computed
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after a certain number of iterations according to Equation
(7). The reader interested in the algorithmic details is
referred to Appendix A, describing a simple numerical
example.

4.1 Incremental BP estimation
In the previous description of the BP we have assumed
that the factor graph (U , C, E) is known in advance and
kept fixed for all the iterations. In practice this assump-
tion is not met in the scenario we consider. Nonetheless,
the proposed algorithm can be implemented using an
incremental (or sliding window) approach as follows.

A monitor nodes keeps receiving checks from the
peers it is assigned and it is allowed to run the BP every
T seconds considering only the checks received in a time
window of the past w seconds. At time t, depending on
the checks stored during a time window w, an updated
factor graph (U , C, E)t,w is obtained by removing the
old checks and adding the new ones; then, the corre-
sponding estimates Pt,w(xi = x) are computed through
BP. It is worth pointing out that the belief values are
initialized only once, as soon as a peer shows up as an
uploader for the first time. In particular, the probabilities
mx

iI are initialized to 0.5 when a previously unknown
peer identifier is met for the first time. Then, the factor
graph is updated dynamically without reinitializing the
probability estimates of the peers that participates to
multiple computation windows.

After every BP algorithm run a list of suspect peers is
obtained by setting a threshold on the pollution proba-
bility Pt,w(xi = 1) ≥ η. A monitor node keeps a counter
for each peer i: the peers in the list of suspects after
the BP run have their counter increased by 1. Finally,
a suspects ranking over peers is defined by sorting their
counters in decreasing order. As an example, the first
peer in the suspects ranking at time t is the uploader
that more often has been included in the list of suspects
after all the BP runs performed up to time t.

5 EXPERIMENTAL RESULTS
In this section we present results on the accuracy and
effectiveness of the proposed technique. We first describe
the test-bed and evaluation methodology we used in
Sect. 5.1 and subsequently we present results for differ-
ent types of peers misbehaving in Sect. 5.3.

5.1 The experimental testbed
We evaluated the performance of our detection tech-
nique by conducting experiments on our rateless codes
based peer-to-peer live streaming architecture called
ToroVerde Streaming (TVS) [26]. As already mentioned
in Sect. 1, the proposed identification mechanism is
quite general and it is not constraint to a particular
P2P application; nevertheless we believe that providing
experimental evidence of its effectiveness within a real
prototype represents an added value. TVS is mesh based

architecture and exploits the following main idea: the
content is organized in chunks composed by k packets
and instead of transmitting the original data packets, LT
coded packets [27] are encoded and forwarded by the
peers. Coding has the following property: the original
chunk can be obtained by any peer able to collect any
set of k · (1 + ϵ) coded packets (ϵ is known as the
code overhead). LT encoded packets are produced only
by peers that have already received the original chunk
and consists in simple binary XOR operations among a
random set of d original data packets, provided that d
is selected according to the Robust Soliton Distribution
[27]. A coded packet conveys the XORed payloads of
the corresponding original packets as well as a header
signaling the indexes of the combined packets. Decoding
is carried out by solving a system of linear equations by
a special purpose on the fly algorithm proposed in [28].
This decoder exhibits a very limited overhead, e.g. less
than 4% in our settings.

We developed a full prototype that has been tested
over the Planetlab network in [26]. In the present study
we added to the prototype the class of malicious nodes
that, on each transmission opportunity, flip a coin and
with probability ppoll the content of a coded packet is
randomly modified before insertion in the peer output
queue.

LT coding of chunks, besides simplifying the content
delivery mechanism, can be exploited to detect polluted
data without an external verification tool. In fact, given
a chunk, all the received coded blocks are required
to belong to the same vector subspace defined by all
the possible linear combinations of the original k data
packets. A malicious node that wants to prevent the LT
decoding of the chunk will modify the coded packet (or
equivalently the corresponding header used to signal the
indexes of the XORed original packets) so as that the
polluted packet does not represent a valid combination
of the original data. A receiver is able to detect such
condition as soon as an inconsistence is found in the
solution of the underlying system of linear equations. In
our prototype, this has been achieved running the LT
decoder proposed in [28], that is an incremental version
of the standard Gaussian Elimination technique for the
solution of the system of coding equations. Given the
sub-optimality of the coding approach (overhead ϵ > 0),
some redundant coded packets are always received.
Every redundant packet is recognized as linearly depen-
dent on the previously received ones using only the orig-
inal packet indexes signaled in the packet header; if this
is the case the coded packet payload must be obtained by
XORing a subset of the already received packets. If this
constraint does not apply the whole chunk is recognized
as polluted. Unfortunately the receiver is not able to
identify the malicious blocks but only that at least one
of them as been maliciously manipulated. When a peer
detects a polluted chunk it does not insert it in the set
of chunks that can be provided to its neighbors so as to
limit the propagation of corrupted information.



SUBMITTED TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

TABLE 1: Upload bandwidth distribution for TVS ex-
periments (resource index=1.2).

Percentage Upload bandwidth
0.46 128 Kbps
0.39 384 Kbps
0.15 1 Mbps

TABLE 2: TVS parameters for detection experiments.

Parameter Value
k 120

c = δ 0.01
packets size 1330 bytes

Nmax 30
Nmin 10
E [5, 20]

startup chunks 5
start buffering 2
end buffering 5

Please note that each peers caches the identity received
by the tracker upon its very first joining to the swarm
and it subsequently uses that identifier if churning is
allowed. This is to restrict our analysis to the case of
non-sibyl attacks where peers keep on changing their
identifier to escape control and detection activities.

5.2 The evaluation methodology
Since the aim of the following analysis is to assess
the accuracy, robustness, and reactivity of the proposed
technique we conduct experiment on a system with
only one monitor node. Of course, for scalability, load
balancing, and resilience reasons a set of monitor nodes
should be deployed in case of a much larger systems.

Our reference scenario is composed of a set of N =
1800 peers and NP = 90 malicious nodes (they are 5%
of well behaving nodes). We conducted NEXP = 50
independent trials for each scenario we considered and
computed for all performance indexes the 95% confi-
dence intervals (CI); each trial lasts for 1800s. In order
to adopt a realistic churn model that is based on prior
measurement studies we partition the N peers in two
subsets: 20% are stable, i.e., they join the overlay network
and stay connected until the end of the experiment,
while the remaining 80% join the swarm, stay connected
for an average active period equal to 120s and perma-
nently depart. Arrival of a new node (a node with a
new identifier) is triggered by a permanent departure
after an average delay equal to 20s. The 20−80 partition
is intended to represent session duration whose distri-
bution exhibits a heavy tail. We consider two activity
models for the NP malicious nodes: either they all join
the swarm after 120s from the start of the experiment
and stay connected until the end or they churn by al-
ternating between active and idle periods; these periods
are both exponentially distributed with average equal to
Ton = 120s and Toff = 20s. During this period peers
join the system and start exchanging coded packets to
decode video chunks.

Upon decoding of a chunk a peer logs a check contain-
ing a time stamp relative to the start of the experiment
(each experiment starts at time 0), the chunk identifier,
the number and identities (uniquely assigned by the
tracker upon joining the swarm) of the uploaders of that
chunk as well as the number of coded packets received
by each of them. Finally, the check contains a flag to
indicate the state of the decoded chunk (polluted or
clean). Malicious nodes may lie when logging a check:
with probability plie the value of the check is inverted
and with probability 1 − plie the check is faithfully
reported. All logs are then collected at the end of each
experiment, merged, and sorted for increasing values of
the time stamp so to emulate an approximate ordering of
global arrival at the monitor node. An analysis software
implementing the technique described in Sect. 4 is run
on the resulting factor graph to compute the suspects
ranking at each time t. The BP algorithm is run with 3
iterations and the after every BP run the list of suspect
peers is obtained by setting the threshold on the pollu-
tion probability η = 0.99.

To evaluate the performance of our detection tech-
nique we defined two indexes:

• the hit ratio at time t (denoted as h(t)) that is a
measure of accuracy. For the i-th trial we define
an accuracy function ai(t) that is time dependent:
ai(t) = x if x peers in the top N i

AP positions
of the suspects ranking are true malicious nodes.
Here 0 ≤ N i

AP ≤ NP denotes the number of
active malicious nodes in the i-th trial; indeed, some
malicious nodes can be victims of other malicious
nodes and hence may not be able to send other
peers any corrupted block (or simply they are not
able to decode any chunk and hence do not spread
corrupted information). The last observation is re-
lated to our assumption that the malicious nodes
are allowed to modify the packets in their output
queue but for no reason they can modify the P2P
sharing protocol; therefore, when a malicious node
collects a chunk that has been compromised by
other malicious nodes, has no mean to forward
packets of such chunk. The hit ratio at time t is then

defined as h(t) =

∑NEXP
i=1

ai(t)

Ni
AP

NEXP
.

• the minimum time to remove x suspects (denoted as
TSR(x)) that is a measure of reactivity. For the i-th
trial we first define a rank function ri(t) that is time
dependent. We consider ri(t) = x if the top x peers
in the suspects ranking are all true malicious nodes at
time t (0 ≤ r(t) ≤ N i

AP ). This definition requires not
only the detection technique to identify x malicious
nodes but these nodes must be the top x elements
in the suspects ranking. If the detection technique at
time t has identified N i

AP − 1 out of N i
AP malicious

nodes (ai(t) = N i
AP − 1) but the top peer in the

suspect ranking is not a true malicious node then
ri(t) = 0. Indeed, this is a much more restrictive
definition of true positiveness with respect to ai(t).
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Fig. 2: h(t) as a function of time for different values of
plie.

If we denote as tfi the arrival time to the monitor
node of the first positive check1 and as tri(x) =
mint{t : ri(t) ≥ x} the minimum time to identify at
least x true malicious nodes in the top x positions
of the suspect ranking, then we define TSR(x) =
∑NEXP

i=1 tri(x)−tf
i

NEXP
.

The TVS application has been run to stream a 300 kbps
bitrate video using a 2.1 Mbps server with upload band-
width distribution summarized in Tab. 1 and yielding a
resource index equal to 1.2, i.e., there is 20% average
extra bandwidth with respect to the video bitrate. Tab. 2
reports the main parameters of TVS: we refer the reader
to [26] for a detailed description of their precise meaning.

5.3 Single monitor performance
In this section a set of experimental results, worked out
using a system with a single monitor (NM = 1), are
presented and discussed. The goal is twofold: from the
one hand this study allowed us to optimally select sev-
eral system parameters, from the other hand the single
monitor case serves as a benchmark for the performance
of the general case presented in Sect. 5.4. The technique
we propose requires the use of two parameters: the
analysis window size (w) and the analysis time interval
(T ), that are both expressed in seconds. Appendix B
presents an extensive evaluation of the impact of several
parameters on the performance of our technique. Follow-
ing this analysis all subsequent results will be obtained
for w = 10 s, and T = 2.5 s.

5.3.1 Effect of lying
In this set of experiments malicious nodes are allowed
to send fake checks to a monitor node. The check value
is inverted with probability plie and faithfully reported

1. Time tfi represents the time instant when the monitor node
realizes that the pollution attack has begun; as a consequence, we
measure reactivity relative to the beginning of the attack.
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Fig. 3: h(t) as a function of time for increasing number
of malicious nodes.

TABLE 3: Reaction times for increasing number of
malicious nodes.

NP TSR(1) (CI)
90 20.6 ([14.1, 27.1])
180 12.9 ([8.8, 17.0])
270 12.7 ([8.7, 16.7])

with probability 1 − plie. In Fig. 2 we show h(t) as a
function of time for plie = 0, 0.5, 1; in all cases ppoll = 1. It
can be noted that the detection technique still succeeds in
identifying all malicious nodes. Lies only affect TSR(1):
TSR(1) increases from 6.9s, CI [4.7, 9.1] for plie = 0 to
15.9s, CI [10.9, 21.0] for plie = 1 (in the case plie = 0.5 we
obtain TSR(1) = 8.7, CI [1.8, 15.7]).

5.3.2 Effect of increasing the number of malicious nodes
All previous results have been obtained in the reference
scenario comprising NP = 90 malicious nodes. An
interesting and important step to assess the accuracy
of our technique is to evaluate its performance as the
number of malicious nodes increases. To this end, Fig. 3
depicts h(t) as a function of time for NP up to 270,
i.e., 15% of honest nodes. It can be noted that accuracy
is high in all cases; the only difference is on the time
to identify most of the malicious nodes. Furthermore,
reactivity improves as the number of malicious nodes
increases as summarized in Tab. 3.

We also conducted further evaluations to assess the
impact of malicious nodes that do not comply to the pro-
tocol and of their upload bandwidth on the performance
of our technique in Appendix C. We also evaluated the
performance of our technique for different values of
the polluting intensity ppoll and for churning malicious
nodes that alternate between active and idle periods.

5.4 Accuracy with multiple monitor nodes
In this section we present accuracy results in the general
case when more than one monitor node is employed
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to achieve scalability and load balancing. Regardless of
the mechanisms used by the monitor nodes to share the
collected information, we assume that they are able to
merge the respective suspect rankings obtaining a single
global ranking. This is achieved by summing the coun-
ters of all monitors for each peer i. The global suspect
ranking is computed by sorting the peers’ counters in
decreasing order. Since each monitor runs BP estimation
on a local version of the factor graph it is important
to guarantee that the obtained global ranking is still
accurate, thus proving that the proposed approach scales
effectively to large overlays. In Fig. 4 we show the global
h(t) in the case NM = 4 for the scenario considered
to obtain Fig. 9 with T = 2.5s and w = NM · 10s =
40s to compensate for a reduction by a factor NM of
the number of checks to process. It can be noted that
both single monitor and multiple monitor configurations
yield comparable highly accurate performance.

5.5 Robustness to colluding attacks
In all previous analysis malicious nodes tried to es-
cape identification by introducing noise in the shape
of fake checks, i.e., a check whose value is inverted
with probability plie. In this section we consider a more
sophisticated strategy; in particular, we devise a two-
pronged attack where malicious nodes upon decoding a
chunk:

• send a positive check to their monitor node if the set
of uploaders does not contain any other malicious
node (a disparage action towards honest nodes);

• send a negative check if at least one of the uploaders
is another malicious node (a protective action for
other malicious nodes).

Fig. 5 compares the accuracy achieved in this case
against that of the reference scenario. It can be noted that
accuracy is very high even in presence of two-pronged
attack. Reactivity is only slightly affected: TSR(1) =
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Fig. 4: h(t) as a function of time for one and four
monitors nodes.

TABLE 4: Reaction times in case of a colluding attack
for increasing number of malicious nodes.

NP TSR(1) (CI)
90 23.3 ([15.9, 30.6])
180 23.7 ([16.2, 31.2])
270 25.9 ([17.7, 34.1])

23.3, CI [15.9, 30.6], in the colluding attack while we
obtain TSR(1) = 20.6, CI [14.1, 27.1] in the reference
scenario.

We also performed an evaluation of the accuracy of
our technique in a system with an increasing number of
malicious nodes. To this end, Fig. 6 shows that accuracy
is high for all considered settings. Furthermore, reactiv-
ity slightly increases as the number of malicious nodes
increases as summarized in Tab. 4.

5.6 Computational, communication, and memory
costs
In this section we analyze the communication, computa-
tional, and memory costs of implementing our solution
to identify malicious nodes at each monitor node.

5.6.1 Communication cost
The solution we propose is based on sending checks
to a monitor node. If we assume that identifiers are
32 bits long then the average size of the payload of a
check message is equal to 32zU + 1 bits where zU is the
average number of uploaders for a check (see Sect. 4) and
one bit is necessary to indicate the status of the check
(positive or negative). On the other hand, for each peer
the chunk reception rate cannot exceed the generation
rate at the video server. From Tab. 2 we can compute
the duration of a chunk as Tchunk = (1330·120·8)

300000 = 4.256s.
It follows that the rate of production of checks to send to
the monitor node is upper bounded by 1

Tchunk
checks/s.
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Fig. 5: h(t) as a function of time in case of a colluding
attack.
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If we have N + NP peers that refer to the same mon-
itor node then the number of checks per time unit is
upper bounded by N+NP

Tchunk
. Please note that this is an

upper bound since only 20% of the N honest nodes
stays connected for the whole video duration while the
remaining 80% disconnects (and reconnects as a new
peer) after an average connection time equal to 120s.
We can then compute an upper bound on the incoming
communication bandwidth required at a monitor node
in our system as N+NP

Tchunk
· (32zU+1)

1000 = 50.1 kbit/s where we
used zU = 3.5 in our computation (the average number
of uploaders in all our experiment was equal to 3.27
as shown in Tab. 5), N = 1800, and NP = 90. This
is in accordance with the average measured effective
bandwidth that is equal to 9.1 Kbit/s. The required
bandwidth is lower than the theoretical upper bound
also because when malicious nodes pollute data the
system throughput reduces, i.e., the number of decoded
chunks decreases, hence the generation rate of checks
decreases accordingly.

We conclude that the communication cost of our tech-
nique is low and does not represent the limiting factor.
As an example, a monitor node allowing only 1 Mbit/s
for receiving checks from its peers would support up to
1000
50.1 · 1890 = 37, 724 total peers (207, 692 if the measured
bandwidth is used in the computation instead of the
upper bound).

5.6.2 Memory cost
The size of the factor graph is a key element to eval-
uate the complexity and memory requirements of our
technique. We measured the average number of checks,
nodes, and arcs of the factor graph (U , C, E) in the
reference scenario in all NEXP experiments. We obtained
the results summarized in Tab. 5; it can be noted that
the memory requirements of our technique are low for
both average and maximum number of components of
the factor graph. For completeness, we also summarize
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Fig. 6: h(t) as a function of time in case of a colluding
attack for increasing number of malicious nodes.

TABLE 5: Average and maximum sizes for checks,
nodes, and arcs of the factor graph.

Average Maximum
nodes 1000.6 1795
checks 881.6 2476

arcs 2872.4 15700
nodes per check 3.27 9.14
checks per node 2.73 12.41

TABLE 6: Average and maximum sizes for checks,
nodes, and arcs of the factor graphs in the multiple
monitor scenario.

Average Maximum
nodes 1060.3 1728
checks 874.3 2271

arcs 2853.4 9327
nodes per check 3.34 9.33
checks per node 2.57 10.71

in Tab. 6 the results for the multiple monitor scenario
presented in Sect. 5.4; it can be noted that very similar
results are obtained in this case.

5.6.3 Computational cost
The measurements of the average number of arcs (|E|),
nodes per check (zU ) and check per nodes (zC) shown
in Tab. 5 can be used to better understand the compu-
tational cost of the BP algorithm. Indeed, in Sect. 4 we
have shown that 3 BP iterations takes 3(|E|(zU − 1) +
|E|(zC − 1)) + |E|zC multiplications. Our measurements
show that zU , zC ≪ |E| and therefore we can conclude
that the BP complexity if of the order O(|E|).

For completeness we also measured the average CPU
time required for every BP run in the reference scenario
for all the NEXP experiments: our C++ implementation
takes on average about 85 ms on an Intel(R) Core i5
2.80GHz CPU. Please note that such values are two orders
of magnitude smaller than the time between any two BP
runs, i.e., T .

6 CONCLUSION
In this paper we have shown that it is possible to
recast the identification of malicious nodes attempting to
pollute a P2P application as a problem of statistical infer-
ence. The proposed technique exploits the well known
BP algorithm to iteratively estimate the probability of
peers being malicious. To allow the system to scale to a
large size, the current proposal is based on the use of a
set of trusted monitor nodes that collect from the peers
reports about the integrity of the downloaded chunks of
data, the checks.

The technique has been validated in the framework of
a complete P2P video streaming application using the
Planetlab infrastructure. Promising results in terms of
accuracy, robustness and reactivity have been reported
in the presence of several misbehavior of the malicious
nodes, namely different pollution intensity and band-
width, fake reporting, churning and un-cooperation.
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The experimental results show that is possible to
identify all the polluters in a reliable way provided that
enough checks are collected. The proposed identification
technique has turned out to correctly detect up to 15% of
polluters also in the case when malicious peers pollute
the packets very seldom, periodically stay on idle, and
send fake reports to the monitor to interfere with the
estimation process. Furthermore, very good results have
been obtained in the case of a sophisticated threat model
where malicious nodes both disparage honest nodes and
protect each other. The reactivity of the identification
process has been shown to be a few seconds in the most
favorable settings and no higher than 25s in any setting.

Clearly, these values also depend on the actual P2P
application and in particular on the amount of checks
that can be generated per unit of time. This latter in
turn varies according to the P2P protocol parameters,
e.g. chunk size. Therefore a joint optimization of quality
of service offered by the P2P platform and a reduction
of the polluter identification delay can be pursued.

Future works will tackle the design of a fully dis-
tributed detection mechanism where all the peers in the
overlay can exchange checks and autonomously esti-
mates suspect uploaders. The distributed version of our
algorithm will allow each peer to rule out the malicious
uploaders thus limiting the intensity of the pollution.
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APPENDIX A

In the following we clarify the algorithmic steps per-
formed by the BP algorithm on a simple numerical
example. To this end let us consider the simple factor
graph with 4 uploaders (nodes) and 2 checks shown in
Fig. 1 of the main paper.

The BP algorithm consists in the iterative evaluation
of the so called check pass according to Equation (5),
that computes messages from checks to nodes, followed
by the node pass given by Equation (6), that updates
messages in the opposite direction.

When an uplader i is added for the first time to the
factor graph the messages towards its checks are set
to m0

iI = m1
iI = 0.5; this amounts at assuming no

prior knowledge on the uploader state, i.e. polluter or
not. In Fig. 7 the check pass computations performed
at the first iteration to update messages from the first
check (a positive check) towards the rightmost uploader
(shaded node) are graphically shown. The two incoming
messages are set to m0

iI = m1
iI = 0.5 and are used to

compute m0
Ii = 0.75 and m1

Ii = 1.0 (messages directed
to the rightmost node) using Equation (5). Since (5) does
not guarantee m0

Ii+m1
Ii = 1, the values are renormalized

to 0.43 and 0.57, respectively.
Fig. 8 shows the values of all messages m1

Ii towards
the nodes after the first check pass. Such incoming mes-
sages can be used to compute the node pass according
to Equation (6) multiplying all the incoming messages
except the one corresponding to the check that one is
updating. Analogously, the Equation (7) can be used
to estimate the probability of every uploader being a
polluter P (xi = 1); the estimate is evaluated multiplying
all the messages m1

Ii entering a node. In Fig. 8 the
values of P (xi = 1), obtained after the first iteration,
are shown above each uploader. It can be noted that in
this simple example the polluter gets a probability 0.57
of being malicious after the first iteration whereas the
other uploaders are not likely to be malicious. In our
implementation 3 iterations of check and node passes are
performed to obtain a reliable estimation of P (xi = 1).

IU

0m 1m= = 0.5
0m
1m

=

= 1.0 (0.57)
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Uploaders
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Fig. 7: Check pass computation example
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Fig. 8: Node pass computation example
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Fig. 10: h(t) as a function of time for T = 2.5s and w =
10s for different system sizes.

APPENDIX B
The technique we propose requires the use of two pa-
rameters: the analysis window size (w) and the analysis
time interval (T ), that are both expressed in seconds.
The first step is then to explore the performance of the
detection technique for different combinations of these
two parameters. To this end, we considered a system
with N = 1800 churning peers and NP = 90 stable (they
do not churn) malicious peers; furthermore, we analyzed
the performance of the detection technique for all nine
combinations of ppoll = {0.1, 0.5, 1} and plie = {0, 0.5, 1}.
Since reactivity is an important quality factor for the
detection technique we considered only two short time
intervals: T = {2.5s, 5s}.

Fig. 9 (left graph) depicts the technique hit ratio h as
a function of time for the configuration with ppoll = 0.5,
plie = 0.5, and T = 5s (all 18 configurations provided
similar results so we selected a representative scenario).
It can be noted that too small or too large values for w
yield the worst performance for both values of T . Indeed,
small window sizes do not allow the factor graph to
include enough checks to accurately infer the peer status;
on the other hand, large values of w increase the number
of loops in the factor graph which in turn impact on the
accuracy of the probability estimates yielded by the BP
algorithm [29].
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Fig. 9: h(t) as a function of time for ppoll = 0.5, plie = 0.5, T = 5s (left) and for w = 10s (right) in the scenario with
N = 1800.

We observed that values of w in the range [10, 40]
show comparable accuracy and reaction times; in turn
the value of w determines the number of checks (and
consequently the size) of the factor graph to be used
in any BP computation window. Since, as shown in
Sect. 4, the complexity of BP depends linearly on the
number of edges in the factor graph, it follows that
a small value of w is to be preferred. According to
this reasoning we selected w = 10s for all the follow-
ing analysis. Fig. 9 (right graph) shows that a shorter
time interval between successive runs of the detection
algorithm yields the same accuracy while decreasing
the time to safely remove the first identified malicious
node (TSR(1) = 23.4s, CI [16.0, 30.8] for T = 5s and
TSR(1) = 20.6, CI [14.1, 27.1] for T = 2.5s).

Furthermore, Fig. 10 shows h(t) as a function of time
for different system sizes in the case w = 10s and
T = 2.5s. It can be noted that the accuracy is similar
for smaller systems. Following this analysis all results
will be obtained for w = 10 s, and T = 2.5 s.

APPENDIX C
C.0.1 Effect of polluting intensity
We consider the robustness of the detection technique
against different levels of polluting intensity ppoll. Fig. 11
shows h(t) as a function of time in the case when mali-
cious nodes never lie. It can be noted that the detection
technique is able to detect all active malicious nodes
that do not lie regardless of the pollution intensity. As a
further evidence of the robustness of the technique we
observe that we obtain TSR(1) = 6.9s, CI [4.7, 9.1] and
TSR(1) = 6.5s, CI [4.4, 8.6] for ppoll = 1 and ppoll = 0.1,
respectively.

C.0.2 Effect of churning
In all previous experiments malicious peers always
joined the overlay network and stayed connected until
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Fig. 11: h(t) as a function of time for different polluting
intensities.

the end of the experiment. We evaluate the performance
of the detection technique when malicious peers alter-
nate frequent join to and leave from the overlay using the
same average activity and silent period of normal peers.
We consider malicious peers with the highest pollution
and lies intensity (ppoll = plie = 1) that represent the
toughest settings in our experimentation. In Fig. 12 we
show h(t). Please note that, despite the very challenging
settings, our detection technique is able to identify all
the active malicious peers: churning does not bring any
advantage to malicious nodes. Reactivity is still very
good: TSR(1) is 15.9s, CI [10.9, 21.0] for stable malicious
nodes while it takes 18.2s, CI [12.5, 24.0] when malicious
nodes churn.

C.0.3 Effect of un-cooperation
Another type of misbehaving we consider is when ma-
licious nodes do not comply to the protocol and never
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Fig. 12: h(t) as a function of time for churning malicious
peers.
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Fig. 13: h(t) as a function of time for un-cooperating
churning malicious peers.

send a check to a monitor node. In this case the task
of the detection technique is even easier since no lies
can deceive the monitor node. Indeed, Fig. 13 shows
a comparison between these two cases when malicious
nodes churn and pollution intensity is ppoll = 1 (co-
operating malicious nodes always lie). It can be noted
that a monitor node is able to detect all malicious nodes
in less time. Furthermore, we obtain TSR(1) = 8.7s,
CI [6.0, 11.5] for un-cooperating malicious nodes and
TSR(1) = 18.2s, CI [12.5, 24.0] in the other case.

C.0.4 Effect of malicious nodes upload bandwidth
We also consider the impact of the upload bandwidth
that malicious nodes use during their attack. To this end
we consider the scenario

where churning stealth malicious nodes always lie, i.e.,
ppoll = 0.1 and plie = 1, for two values of the mali-
cious nodes upload bandwidth: 300 kbps and 1 Mbps.
Fig. 14 shows that higher upload bandwidth translates
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Fig. 14: h(t) as a function of time for churning, always
lying, stealth malicious peers.

into slightly higher value of the hit ratio. As far as the
computation of TSR(1) is concerned small differences
can be observed: TSR(1) = 27.0s, CI [18.5, 35.6] for 300
kbps and TSR(1) = 22.5s, CI [15.4, 29.6] for 1 Mbps.


