50 research outputs found

    3D PersonVLAD: Learning Deep Global Representations for Video-based Person Re-identification

    Full text link
    In this paper, we introduce a global video representation to video-based person re-identification (re-ID) that aggregates local 3D features across the entire video extent. Most of the existing methods rely on 2D convolutional networks (ConvNets) to extract frame-wise deep features which are pooled temporally to generate the video-level representations. However, 2D ConvNets lose temporal input information immediately after the convolution, and a separate temporal pooling is limited in capturing human motion in shorter sequences. To this end, we present a \textit{global} video representation (3D PersonVLAD), complementary to 3D ConvNets as a novel layer to capture the appearance and motion dynamics in full-length videos. However, encoding each video frame in its entirety and computing an aggregate global representation across all frames is tremendously challenging due to occlusions and misalignments. To resolve this, our proposed network is further augmented with 3D part alignment module to learn local features through soft-attention module. These attended features are statistically aggregated to yield identity-discriminative representations. Our global 3D features are demonstrated to achieve state-of-the-art results on three benchmark datasets: MARS \cite{MARS}, iLIDS-VID \cite{VideoRanking}, and PRID 2011Comment: Accepted to appear at IEEE Transactions on Neural Networks and Learning System

    Understanding Complex Human Behaviour in Images and Videos.

    Full text link
    Understanding human motions and activities in images and videos is an important problem in many application domains, including surveillance, robotics, video indexing, and sports analysis. Although much progress has been made in classifying single person's activities in simple videos, little efforts have been made toward the interpretation of behaviors of multiple people in natural videos. In this thesis, I will present my research endeavor toward the understanding of behaviors of multiple people in natural images and videos. I identify four major challenges in this problem: i) identifying individual properties of people in videos, ii) modeling and recognizing the behavior of multiple people, iii) understanding human activities in multiple levels of resolutions and iv) learning characteristic patterns of interactions between people or people and surrounding environment. I discuss how we solve these challenging problems using various computer vision and machine learning technologies. I conclude with final remarks, observations, and possible future research directions.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99956/1/wgchoi_1.pd

    Um estudo comparativo das abordagens de detecção e reconhecimento de texto para cenários de computação restrita

    Get PDF
    Orientadores: Ricardo da Silva Torres, Allan da Silva PintoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Textos são elementos fundamentais para uma efetiva comunicação em nosso cotidiano. A mobilidade de pessoas e veículos em ambientes urbanos e a busca por um produto de interesse em uma prateleira de supermercado são exemplos de atividades em que o entendimento dos elementos textuais presentes no ambiente são essenciais para a execução da tarefa. Recentemente, diversos avanços na área de visão computacional têm sido reportados na literatura, com o desenvolvimento de algoritmos e métodos que objetivam reconhecer objetos e textos em cenas. Entretanto, a detecção e reconhecimento de textos são problemas considerados em aberto devido a diversos fatores que atuam como fontes de variabilidades durante a geração e captura de textos em cenas, o que podem impactar as taxas de detecção e reconhecimento de maneira significativa. Exemplo destes fatores incluem diferentes formas dos elementos textuais (e.g., circular ou em linha curva), estilos e tamanhos da fonte, textura, cor, variação de brilho e contraste, entre outros. Além disso, os recentes métodos considerados estado-da-arte, baseados em aprendizagem profunda, demandam altos custos de processamento computacional, o que dificulta a utilização de tais métodos em cenários de computação restritiva. Esta dissertação apresenta um estudo comparativo de técnicas de detecção e reconhecimento de texto, considerando tanto os métodos baseados em aprendizado profundo quanto os métodos que utilizam algoritmos clássicos de aprendizado de máquina. Esta dissertação também apresenta um método de fusão de caixas delimitadoras, baseado em programação genética (GP), desenvolvido para atuar tanto como uma etapa de pós-processamento, posterior a etapa de detecção, quanto para explorar a complementariedade dos algoritmos de detecção de texto investigados nesta dissertação. De acordo com o estudo comparativo apresentado neste trabalho, os métodos baseados em aprendizagem profunda são mais eficazes e menos eficientes, em comparação com os métodos clássicos da literatura e considerando as métricas adotadas. Além disso, o algoritmo de fusão proposto foi capaz de aprender informações complementares entre os métodos investigados nesta dissertação, o que resultou em uma melhora das taxas de precisão e revocação. Os experimentos foram conduzidos considerando os problemas de detecção de textos horizontais, verticais e de orientação arbitráriaAbstract: Texts are fundamental elements for effective communication in our daily lives. The mobility of people and vehicles in urban environments and the search for a product of interest on a supermarket shelf are examples of activities in which the understanding of the textual elements present in the environment is essential to succeed in such tasks. Recently, several advances in computer vision have been reported in the literature, with the development of algorithms and methods that aim to recognize objects and texts in scenes. However, text detection and recognition are still open problems due to several factors that act as sources of variability during scene text generation and capture, which can significantly impact detection and recognition rates of current algorithms. Examples of these factors include different shapes of textual elements (e.g., circular or curved), font styles and sizes, texture, color, brightness and contrast variation, among others. Besides, recent state-of-the-art methods based on deep learning demand high computational processing costs, which difficult their use in restricted computing scenarios. This dissertation presents a comparative study of text detection and recognition techniques, considering methods based on deep learning and methods that use classical machine learning algorithms. This dissertation also presents an algorithm for fusing bounding boxes, based on genetic programming (GP), developed to act as a post-processing step for a single text detector and to explore the complementarity of text detection algorithms investigated in this dissertation. According to the comparative study presented in this work, the methods based on deep learning are more effective and less efficient, in comparison to classic methods for text detection investigated in this work, considering the adopted metrics. Furthermore, the proposed GP-based fusion algorithm was able to learn complementary information from the methods investigated in this dissertation, which resulted in an improvement of precision and recall rates. The experiments were conducted considering text detection problems involving horizontal, vertical and arbitrary orientationsMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE

    Predictive Model of Driver\u27s Eye Fixation for Maneuver Prediction in the Design of Advanced Driving Assistance Systems

    Get PDF
    Over the last few years, Advanced Driver Assistance Systems (ADAS) have been shown to significantly reduce the number of vehicle accidents. Accord- ing to the National Highway Traffic Safety Administration (NHTSA), driver errors contribute to 94% of road collisions. This research aims to develop a predictive model of driver eye fixation by analyzing the driver eye and head information (cephalo-ocular) for maneuver prediction in an Advanced Driving Assistance System (ADAS). Several ADASs have been developed to help drivers to perform driving tasks in complex environments and many studies were conducted on improving automated systems. Some research has relied on the fact that the driver plays a crucial role in most driving scenarios, recognizing the driver’s role as the central element in ADASs. The way in which a driver monitors the surrounding environment is at least partially descriptive of the driver’s situation awareness. This thesis’s primary goal is the quantitative and qualitative analysis of driver behavior to determine the relationship between driver intent and actions. The RoadLab initiative provided an instrumented vehicle equipped with an on-board diagnostic system, an eye-gaze tracker, and a stereo vision system for the extraction of relevant features from the driver, the vehicle, and the environment. Several driver behavioral features are investigated to determine whether there is a relevant relation between the driver’s eye fixations and the prediction of driving maneuvers

    Mapping in urban environment for autonomous vehicle

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Image-based human pose estimation

    Get PDF

    Human-vehicle collaborative driving to improve transportation safety

    Get PDF
    This dissertation proposes a collaborative driving framework which is based on the assessments of both internal and external risks involved in vehicle driving. The internal risk analysis includes driver drowsiness detection, driver distraction detection, and driver intention recognition which help us better understand the human driver's behavior. Steering wheel data and facial expression are used to detect the drowsiness. Images from a camera observing the driver are used to detect various types of driver distraction by using the deep learning approach. Hidden Markov Models (HMM) is implemented to recognize the driver's intention using the vehicle's laneposition, control and state data. For the external risk analysis, the co-pilot utilizes a Collision Avoidance System (CAS) to estimate the collision probability between the ego vehicle and other vehicles. Based on these two risk analyses, a novel collaborative driving scheme is proposed by fusing the control inputs from the human driver and the co-pilot to obtain the final control input for the vehicle under different circumstances. The proposed collaborative driving framework is validated in an Intelligent Transportation System (ITS) testbed which enables both autonomous and manual driving capabilities

    기계학습 시스템 설계를 위한 방법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 최기영.Machine learning has been paid attention because intelligence such as recognition, decision making, and recommendation is a helpful utility in industrial, medical, transportation, entertainment systems, and others that human need to interact with. As machine learning techniques are extensively applied to various areas, the needs for more robust algorithms and more efficient hardware have been increased. In order to develop an efficient machine learning system, we have researched from high-level algorithm down to low-level hardware logicthe main focus of our work is on ensemble machine learning and stochastic computing (SC). The first work is to combine multiple components, i.e., multiple feature extractors (FE) and multiple classifiers in the aspect of pattern recognition. Ensemble of multiple components is one of challenging approaches for constructing a more accurate classifier. It can handle difficult problems where a single classifier easily makes a wrong decision due to lack of training or parameter optimization. Combining the decisions of participating classifiers statistically reduces the risk of wrong decision. We suggest a hierarchical ensemble framework of multiple feature extractors and multiple classifiers (MFMC). The second work is to construct efficient hardware building blocks for machine learning in order to reduce system complexity and generate high area- and energy-efficient logic, where we exploit the property of machine learning systems that does not require accurate computations. We select stochastic computing (SC), which is an alternative paradigm to conventional binary arithmetic computing. SC can boost efficiency in terms of area, power, and error tolerance, while relaxing the accuracy of computation. The third work is to combine both machine learning and stochastic computing, where we select deep learning. This work presents an efficient DNN design with stochastic computing. Observing that directly adopting stochastic computing to DNN has some challenges including random error fluctuation, range limitation, and overhead in accumulation, we address these problems by removing near-zero weights, applying weight-scaling, and integrating the activation function with the accumulator. The approach allows an easy implementation of early decision termination with a fixed hardware design by exploiting the progressive precision characteristics of stochastic computing, which was not easy with existing approaches. Experimental results show that our approach outperforms the conventional binary logic in terms of gate area, latency, and power consumption.1. Introduction 1 1.1 Hierarchical Ensemble Learning Framework 1 1.2 Hardware Building Block for Machine Learning By Using Stochastic Computing 1 1.2.1 Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks 5 2. A Design Framework for Hierarchical Ensemble of Multiple Feature Extractors and Multiple Classifiers 7 2.1 Introduction 7 2.2 Related work 9 2.3 Proposed hierarchical ensemble system 12 2.3.1 Local Mapping Block and Global Mapping Block 12 2.3.2 Complexity comparison according to composition of LMB 15 2.3.3 Motivation for differentiating local and global mappings17 2.3.4 Reinforcement learning for LMB 19 2.3.5 Construction of Bayesian network from GMB 24 2.4 Experimental results 32 2.4.1 Measure of effectiveness for WMV and RL 33 2.4.2 Pedestrian detection dataset 35 2.4.3 Comparison between GMB and AdaBoost 41 2.4.4 UCI Multiple Features dataset 42 2.4.5 LMB selection 44 2.4.6 Discussion 45 2.5 Conclusion 46 3. Synthesis of Efficient Stochastic Logic for Many-Variable Expressions 49 3.1 Introduction 49 3.2 Related Work 52 3.3 SC Logic Synthesis for Multivariate Expressions 54 3.3.1 Probabilistic Logic 55 3.3.2 Definitions 58 3.3.3 Overview of the Proposed Method 60 3.3.4 Direct Synthesis VS. Kernel-based Synthesis 60 3.3.5 SC Kernel 63 3.3.6 Prime SC Kernel 65 3.3.7 iSC Kernel 68 3.3.8 Relationship Between iSC Kernels 70 3.3.9 Hybrid Scheme 75 3.3.10 Cost Function 76 3.3.11 SC Synthesis Algorithm 78 3.4 Experimental Results 82 3.4.1 Performance of SC Logic Synthesis Algorithm 83 3.4.2 Quality of Synthesis Results 84 3.4.3 Comparison of Accuracy 89 3.5 Conclusion 90 4. An Energy-Efficient Random Number Generator for Stochastic Circuits 91 4.1 Introduction 91 4.2 II. Background 92 4.2.1 Preliminaries 92 4.2.2 Shortcomings of Conventional Approaches 93 4.3 III. Proposed Stochastic Number Generator 96 4.3.1 Overview of the Proposed SNG 96 4.3.2 Even-distribution Encoding 96 4.3.3 Inter-group Randomization 98 4.3.4 Proposed Building Block for Bit Shuffling 100 4.3.5 Intra-group Randomization 102 4.4 Experimental Results 103 4.4.1 Accuracy of Generated Stochastic Bit Stream 104 4.4.2 Area, Delay, Power, Energy and SCC Average 104 4.4.3 Energy Efficiency When Operated under Maximal Precision 105 4.5 Conclusion 106 5. Approximate De-randomizer for Stochastic Circuits 107 5.1 Introduction 107 5.2 Proposed Approximate Parallel Counter 108 5.2.1 Analysis for Gate Count in 1-layer Approximate PC 109 5.2.2 Analysis for Error in 1-layer Approximate PC 110 5.3 Experimental Results 111 5.4 Conclusion 112 6. Dynamic Energy-Accuracy Trade-off Using Stochastic Computing in Deep Neural Networks 113 6.1 Introduction 113 6.2 Background 115 6.4 DNN Using Stochastic Circuit 117 6.4.1 Overview of the Proposed DNN using SC 117 6.4.2 Removing Near-Zero Weights 119 6.4.3 Applying Weight Scaling 120 6.4.4 Activation Function with Accumulation 121 6.5 Early Decision Termination 125 6.5.1 Moving Average Tracking Output Trends 126 6.6 Experimental Results 127 6.6.1 Accuracy of DNN Using SC 128 6.6.2 Effectiveness of Early Decision Termination 129 6.6.3 Comparison of Synthesis Results 130 6.7 Conclusion 132 7. Conclusion 134 Bibliography 136 요약(국문초록) 144Docto

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems
    corecore