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Abstract 
 

Approaches to the Design of Machine Learning System  

 

Kyounghoon Kim 

Department of Electrical Engineering and Computer Science 
The Graduate School  

Seoul National University 

Machine learning has been paid attention because intelligence such as 
recognition, decision making, and recommendation is a helpful utility in industrial, 
medical, transportation, entertainment systems, and others that human need to 
interact with. As machine learning techniques are extensively applied to various 
areas, the needs for more robust algorithms and more efficient hardware have 
been increased. In order to develop an efficient machine learning system, we have 
researched from high-level algorithm down to low-level hardware logic; the main 
focus of our work is on ensemble machine learning and stochastic computing 
(SC). 

The first work is to combine multiple components, i.e., multiple feature 
extractors (FE) and multiple classifiers in the aspect of pattern recognition. 
Ensemble of multiple components is one of challenging approaches for 
constructing a more accurate classifier [3]. It can handle difficult problems where 
a single classifier easily makes a wrong decision due to lack of training or 
parameter optimization [4]. Combining the decisions of participating classifiers 
statistically reduces the risk of wrong decision. We suggest a hierarchical 
ensemble framework of multiple feature extractors and multiple classifiers 
(MFMC). 

The second work is to construct efficient hardware building blocks for machine 
learning in order to reduce system complexity and generate high area- and 
energy-efficient logic, where we exploit the property of machine learning systems 
that does not require accurate computations. We select stochastic computing (SC), 
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which is an alternative paradigm to conventional binary arithmetic computing [5]. 
SC can boost efficiency in terms of area, power, and error tolerance [6], while 
relaxing the accuracy of computation.  

The third work is to combine both machine learning and stochastic computing, 
where we select deep learning. This work presents an efficient DNN design with 
stochastic computing. Observing that directly adopting stochastic computing to 
DNN has some challenges including random error fluctuation, range limitation, 
and overhead in accumulation, we address these problems by removing near-zero 
weights, applying weight-scaling, and integrating the activation function with the 
accumulator. The approach allows an easy implementation of early decision 
termination with a fixed hardware design by exploiting the progressive precision 
characteristics of stochastic computing, which was not easy with existing 
approaches. Experimental results show that our approach outperforms the 
conventional binary logic in terms of gate area, latency, and power consumption. 
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1. Introduction 

1.1 Hierarchical Ensemble Learning Framework 

Classification systems can be classified into three categories according to the 
number of FEs and classifiers as shown in Fig. 1: a single FE and a single classifier 
(a), multiple classifiers sharing the same feature vector (b), and multiple FEs as well 
as multiple classifiers (c) which we call MFMC. 

As illustrated in Fig. 1 (d), the proposed ensemble system consists of three steps 
for MFMC: constructing all possible FE-classifier pairs, building a set of local 
combinations from the set of pairs using reinforcement machine learning, and 
making a final decision by constructing a global combination based on Bayesian 
network. In the first step, each FE generates a feature set in a vector format from an 
input image. The feature vectors from an FE are used by each classifier pairing with 
the FE for training and testing, which is identical to conventional approach for 
creating individual recognizers. In the following steps, hierarchical approach is 
adopted in order to reduce the complexity due to the exponential number of possible 
combinations. Thus, in the second step, a limited number of FE-classifier pairs are 
combined to make a group (there can be many different combinations and each 
combination generates its own group), and weights for the pairs in the group are 
adjusted according to their effectiveness by using reinforcement learning. Then, in 
the last step, for a final decision, the groups are merged into a single decision 
structure called Bayesian network. Experimental results show that the proposed 
approach gives accuracy higher than any other existing approaches. 

1.2  Hardware Building Block for Machine Learning By 
Using Stochastic Computing 

For applications such as machine learning that tolerate a certain level of 
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(d) 

Fig. 1. Example of machine learning system regarding the number of components. ‘f’ 

stands for a feature extractor; ‘c’ stands for a classifier. (a) Traditional single feature 

extractor (FE) and single classifier. (b) Single FE and multiple classifiers represented 

by AdaBoost. (c) Multiple feature extractors and multiple classifiers (MFMC). (d) 

Proposed hierarchical ensemble of MFMC by using local and global combinations. 
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inaccuracy, stochastic computing (SC) can be a good alternative to conventional 

binary arithmetic. SC uses the probability of 1’s in a (pseudo) random bit stream to 

represent a number as shown in Fig. 2 (a), and allows for an extremely efficient 
implementation of complex functions (such as multiplication and exponentiation), 
typically with a few logic gates. (b) shows a complex arithmetic operation using a 
small number of gates. 

Given expressions such as kernels in machine learning, it is very important to 
generate efficient SC circuits. Thus, we present a SC logic synthesis scheme. As 
illustrated in Fig. 2, the overall process for the proposed method consists of three 
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parts: i) generating iSC kernels, i.e., implementable SC kernels, ii) finding 
relationship between iSC kernels, and iii) synthesizing SC logic from the original 
input expression using the iSC kernels and their relationships.  

The basic idea is to decompose the input expression into iSC kernels, each of 
which can be implemented using the SC gates. If some decomposition is derived 
from the original expression, it is accepted as a solution. There can be many 
different solutions, and for the exploration, the algorithm tries to divide the given 
polynomial expression by each iSC kernel. The algorithm pre-examines the 

 

Fig. 2. Stochastic computing (SC) and the proposed algorithm for SC logic synthesis. 

(a) Stochastic number representation and the multiplication of SC numbers. (b) SC 

logic example with operations representing y= abd+abe+cd−abcd−abde. (c) Overall 

process for the proposed SC logic synthesis algorithm.   
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relationships between iSC kernels and exploits them during the search. In the final 
step, an SC logic network is synthesized for the original expression by using the iSC 
kernels and the relationships represented as a graph. 

Since SC is based on random numbers, a randomizer and a de-generation are very 
important components. In case of stochastic number generator (SNG) as a 
randomizer, instead of generating new 0s and 1s, the proposed SNG shuffles 1s in 
the existing bit stream by using a random source. The basic idea of the proposed 
SNG is to evenly distribute 1s over the entire bit stream, which is named as 
low-discrepancy (LD). Fig. 3(a) shows the outline of the proposed SNG, which 
consists of three parts: even-distribution (ED) encoding, inter-group randomizer, 
and intra-group randomizer. 

In case of de-randomizer, we propose an approximate parallel counter (PC) as 
shown in Fig. 3. (b), which consists of two parts: an approximation unit (AU) and a 
conventional accurate PC. The approximate PC exploiting an AU is shown in (b). 

 

Fig. 3. Overview of the proposed randomizer and de-randomizer for SC. (a) The 

proposed stochastic number generator (SNG) consists of three parts such as 

even-distribution (ED) encoding, inter-group, and intra-group randomizer with 

linear feedback shift register (LFSR) input. (b) The proposed de-randomizer using 

an approximate unit (AU), converting 16-bit stochastic number (SN) into 4-bit 

binary number (BN).    
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The input weight of AU is 20 while the output weight becomes 2l, where l is the 
number of layers. 

1.2.1 Dynamic energy-accuracy trade-off using stochastic computing in 

deep neural networks 

Since bringing to break-through in terms of classification accuracy, deep neural 

 

(a) Training procedures    (b) Testing with the SC neuron 

 

(c) Early decision termination 

Fig. 4. Overview of the proposed procedures and main idea for deep neural networks 

(DNNs). (a) Training procedure for DNN using SC with 32-bit floating-point 

computation. (b) SC neurons are operated with SC exploiting the suggested solutions 

in testing phase. (c) Early decision termination by using progressive precision of SC.  
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networks (DNNs) have been recently paid great attention. This work presents a 
method of implementing a DNN using stochastic computing (SC), Based on the 
observation that directly adopting stochastic computing to DNN has some 
challenges such as random error fluctuation, range limitation from -1 to 1, and 
overhead in accumulating many products of inputs and synaptic weights, we 
address these problems by removing near-zero weights, applying weight-scaling, 
and using state machine based activation function integrated with the accumulator. 
We also suggest the early decision termination (EDT) which is very useful in terms 
of energy and decision speed because most of test inputs are far from decision 
boundary. The experimental results demonstrate that the accuracy of DNN using SC 
meets that of conventional floating-point system and the gains in terms of area, 
power, critical path delay, and energy is meaningful compared with conventional 
fixed-point arithmetic. 
  

６ 

 



 

2. A Design Framework for Hierarchical 

Ensemble of Multiple Feature Extractors 

and Multiple Classifiers 

2.1 Introduction 

Ensemble of multiple classifiers is one of promising approaches for constructing 
a more accurate classifier. It can handle difficult problems where a single classifier 
easily makes a wrong decision due to lack of training or parameter optimization. 
Combining the decisions of participating classifiers statistically reduces the risk of 
wrong decision. In addition, such an ensemble system can generate a sensible 
solution in a special environment, where several classifiers should be trained with 
different training datasets due to temporal or spatial constraints. It can also solve 
instability problems that frequently occur in a single classifier like neural networks 
with different initial conditions. Another benefit comes from a fact that no single 
classifier solution can tackle all problems according to the no free lunch theorem 
(NFL) [3] [4] [7]. Due to these advantages, classifier ensemble has been an active 
research area in the literature of machine learning and pattern recognition [8] [9] 
[10]. According to these researches, an ensemble system generates more stable and 
accurate results compared to conventional single classifier systems. 

Considering multiple feature extractors (FEs) and classifiers used for constructing 
an ensemble system, classification systems can be classified into three categories 
according to the number of FEs and classifiers as shown in Fig. 1. Conventional 
classification systems use a single FE and a single classifier as shown in Fig. 1(a). 
There are systems that use multiple classifiers sharing the same feature vector 
generated by an FE as shown in Fig. 1(b). AdaBoost is a well-known machine 
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learning algorithm that supports this model [11]. There have been various 
researches to extend the concept of AdaBoost for better performance [12] [13]. The 
third category shown in Fig. 1(c) has been introduced [14] [15] [16]; it uses multiple 
FEs as well as multiple classifiers and thus we call it MFMC.  

One of most representative applications of classifier ensemble is pedestrian 
detection, which is a key problem in transportation, surveillance, robotics, 
entertainment systems, and other systems that need to recognize and interact with 
human [17] [18] [19] [20]. In pedestrian detection, vision based approach is the 
most effective and popular way. However, it is still quite challenging due to large 
variations in many aspects such as human clothing, pose, size, background, weather, 
and illumination. In order to overcome the difficulty, many studies have been 
conducted in many different ways [21]. However, the achieved accuracy is still 
insufficient to be used for real applications including advanced driver assistance 
system (ADAS), thus leaving room for improvement as mentioned by Dollar et al. 
[22]. Especially, in case that a pedestrian is far from the camera or under partial 
occlusion, the accuracy degrades dramatically. In order to improve the accuracy or 
detection rate, many studies have tried to find more effective extractors and 
classifiers such as those in [23] [24] [25] [26] [27] and [28]. The researches have 

 

Fig. 5. Example of detection system regarding the number of components. ‘f’ stands 

for a feature extractor; ‘c’ stands for a classifier. (a) Traditional single feature 

extractor and single classifier. (b) Single feature extractor and multiple classifiers 

represented by AdaBoost. (c) Multiple feature extractors and multiple classifiers 

(MFMC).   
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focused on finding good features as well as good classifiers. Meanwhile, utilizing 
combination(s) of multiple FEs and classifiers has also been studied; it has a strong 
advantage compared to single FE, single classifier counterparts. 

In this paper, we focus on MFMC since it provides results superior to both single 
classifier and multiple classifiers with single FE as shown in the previous researches 
[14] [15] [16] [29]. Contrary to the previous studies that try to find a manually 
optimized fixed combination of existing FEs and classifiers, we try to optimize 
automatically the FEs and classifiers as well as their combinations. In particular, we 
suggest a novel ensemble framework that can manage the complexity generated 
from MFMC by using a hierarchical method that integrates reinforcement machine 
learning and Bayesian network modeling. This paper is organized as follows. 
Section 2.2 gives a brief overview of the related work. Section 2.3 presents the 
proposed hierarchical ensemble framework for MFMC. Section 2.4 shows 
experimental results and Section 2.5 concludes the paper. 

2.2 Related work 

Many ensemble methods have been proposed for a past few decades in the 
literature of pattern recognition and machine learning. The methods for combining 

multiple classifiers include weighted majority vote (WMV), naïve Bayes 

combination (NB) [9], behavior knowledge space (BKS) [30], Wernecke [31], and 
SVD combination [32]. Moreno-Seco et al. [33] suggested extensions to weighted 
majority vote such as rescaled weighted vote (RSWV), best-worst weighted vote 
(BWWV), and quadratic best-worst weighted vote (QBWWV). One of other 
distinguishing approaches is based on genetic algorithm (GA) [34] [35] which use 
GA to find a better combination without exhaustive search. One study [36] 
presented an ensemble method with a trained fuser using weights of classifiers, 
where the optimization problem and solver are proposed. Fuzzy combiner is also 
used in order to aggregate multiple instances of a classifier for multi-class 
classification [37]. There are also probabilistic models with posterior estimators [38] 
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[39].  

However, most of existing ensemble schemes to combine decisions do not 
consider multiple FEs but consider multiple classifiers with a single FE. For MFMC, 
only a few ensemble methods were presented. Chen et al. [40] proposed three 

general methods—linear combination, winner-take-all, and evidential reasoning—to 

combine multiple classifiers with different features. They applied them to 
text-independent speaker identification, where the linear combination with different 
features (LCDF) outperformed the other two methods. LCDF performs linear 
combination of the decisions from multiple classifiers, where the learning algorithm 
uses maximum likelihood estimation with the expectation maximization (EM) 
algorithm. Zenobi et al. [41] presented ensemble of classifiers with different feature 
subsets considering their diversity. To find the best members of the ensemble, they 
suggested a hill-climbing algorithm based on the relationship between ensemble 
accuracy and ambiguity.  

There have been a few studies on MFMC in the context of pedestrian detection. 
Ludwig et al. [14] employed both histogram of oriented gradients (HOG) and 
covariance matrices (COV) consisting of pixel coordination, derivatives, magnitude, 
and gradient as FEs. They adopted neural networks (NN) and support vector 
machines (SVM) as classifiers. They also suggested using an ensemble method 

called ‘Training of Fusion Algorithm (TFA)’. Oliveira et al. [15] used HOG and 

local receptive fields (LRF) provided by convolutional neural networks (CNN) as 
FEs, in which NN and SVM were also employed as classifiers. The work in [16] 
used HOG and HOF (histogram of optical flow) as FEs and SVM and MPLBoost 
extended from AdaBoost as classifiers. Those approaches rely on manual 
optimization of the combinations of MFMC and thus make it hard to have many 
FEs and classifiers (only two or three of them are allowed). However, our 
observation is that the FEs and classifiers are complementary with one another, 
which makes it necessary to combine many of them in order to realize a high 
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accuracy system. Thus the scalability of an ensemble system is important. Moreover, 
whenever a new FE or a classifier is added, the entire process of finding the best 
combination will be repeated and thus automating the optimization process is 
crucial. The aim of this paper is to construct a framework to overcome the 
limitations of the previous approaches to MFMC. We investigate this challenging 
problem and suggest efficient methodologies including experiments for the 
application of pedestrian detection. 

In case of ensemble schemes based on weak-learners (or simple prediction rules) 
such as bagging [42], boosting [43], and error correcting output codes (ECOC) [44] 
[45] [46], a large number of the weak-learners commonly participate in the 
ensemble (i.e., the number of weak-learners can be several thousands), where even 
a single feature vector can have its own classifier. They focus on selecting better 
ones among many weak-learners or reformulating the dimensionality such as 
principal components analysis (PCA) and linear discriminant analysis (LDA). 
Whereas, in our approach, we focus on finding the best combination among 
multiple FEs and classifiers. We use a relatively small number of relatively strong 
learners; simultaneously using a small number of different FEs (e.g., HOG [28], 
CENTRIST [47], HAAR [48]) and classifiers (e.g., SVM, KNN, and decision tree 
[49]) can effectively increase the accuracy in practical applications such as 
pedestrian detection. In the experimental section, we compare the performance of 
our scheme to that of AdaBoost, a representative ensemble scheme based on 
weak-learners. 

The objective of our work is not to find just the best performed combination of a 
few FEs and classifiers for pedestrian detection as the work done in [14] [15] [16], 
but to suggest a general framework for designing an ensemble system like the ones 
in [9] [40] [33]. Note, however, that our approach allows arbitrary numbers of FEs 
as well as classifiers, whereas the approaches in [11] are limited to systems with a 
single FE (although they have multiple classifiers), which are much easier to 
optimize. 
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2.3 Proposed hierarchical ensemble system 

As illustrated in Fig. 6, the proposed ensemble system consists of three steps: 
constructing all possible FE-classifier pairs, building a set of local combinations 
from the set of pairs using reinforcement machine learning, and making a final 
decision by constructing a global combination based on Bayesian network. In the 
first step, each FE generates a feature set in a vector format from an input image. 
The feature vectors from an FE are used by each classifier pairing with the FE for 
training and testing, which is identical to conventional approach for creating 
individual recognizers. In the following steps, hierarchical manners are adopted in 
order to reduce the complexity due to the exponential number of possible 
combinations. Thus, in the second step, a limited number of FE-classifier pairs are 
combined to make a group (there can be many different combinations and each 
combination generates its own group), and weights for the pairs in the group are 
adjusted according to their effectiveness by using reinforcement learning. Then, in 
the last step, for a final decision, the groups are merged into a single decision 
structure called Bayesian network. 

2.3.1 Local Mapping Block and Global Mapping Block 

One of the challenges in ensemble systems for pedestrian detection is that the 

 

Fig. 6. Overview of the design framework for hierarchical ensemble of MFMC.   
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system complexity increases exponentially as an FE or a classifier is added. For 
instance, Fig. 7 (a) shows a combination composed of four FEs and five classifiers 
in which all the FEs are fully connected with all the classifiers (it can be modeled as 
a fully connected bipartite graph). If we consider all different combinations of 
connections between the FEs and the classifiers, the total number of combinations is 

2|𝐹𝐹||𝐶𝐶|, where |F| is the number of FEs and |C| is the number of classifiers; therefore, 
the system has 1,048,576 combinations. Thus finding the best combination looks 
like an intractable problem. Our suggested scheme is invented for tackling that 
complexity, satisfying automatic adjustment for ensemble of MFMC. 

Since the complexity of MFMC is exponential with respect to the number of 
possible connections between FEs and classifiers, we consider only a small number 
(two) of FEs and a small number (two) of classifiers at a time for scalability of the 
system. For this, we combine each pair of FEs with each pair of classifiers to make 
a cluster named as a local mapping block (LMB). Thus within an LMB, we have 

 

Fig. 7. Constructing GMB from LMBs. (a) 4x5 ensemble of MFMC. (b) Euler trail for 

a complete graph containing odd number vertexes. (c) Euler path for a graph having 

even number vertexes where additional edges are inserted in order to build an Euler 

trail. (d) GMB consisting of LMBs, where redundant blocks show up due to additional 

edges.          
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only 2x2=4 possible connections and 22x2=16 combinations.1 The LMBs become 
basic building blocks and merge together into a global mapping block (GMB) 
represented in a two-dimensional space. Fig. 7(d) depicts a GMB for the FEs and 
classifiers in Fig. 7(a). Each small block represents an LMB for two FEs and two 
classifiers. For example, the small block on the top left corner represent an LMB 
with FEs A and B and classifiers 1 and 2.2 The LMBs in the figure show all 
different combinations of all different pairs of FEs and classifiers. 

To consider all different pairings of classifiers (FEs), we use a complete graph 
model. Fig. 7(b) (Fig. 7(c)) shows the graph model for the classifiers (FEs) in Fig. 
7(a). In Fig. 7(b), for example, each edge represents a different pair of classifiers 
and any pair is represented by its own edge. To consider all different combinations 
of pairings as was done in Fig. 7(d), we construct an Euler trail by visiting every 
edge in the complete graph model. The order of vertices (or nodes) thus obtained is 
used for constructing the GMB as shown in Fig. 7(d). However, if the number of 
odd vertices (vertices with odd degree) is greater than two, no single Euler trail can 
cover all the edges in the graph. In order to make an Euler trail in that case, our 
scheme inserts additional edges between odd vertices until the number of odd 
vertices becomes two (c). Note that the additional edges are used to construct 
redundant blocks in that GMB, which can be ignored in real computations. Since 
the number of additional edges is at most (N-2)/2, the length of the Euler trail is at 
most N(N-1)/2 + (N-2)/2. Hence, the complexity of the proposed scheme (i.e., GMB 

size) becomes 𝑂𝑂(|𝐹𝐹|2 ∗ |𝐶𝐶|2); significant improvement is achieved compared to 

the original combinatorial complexity, 𝑂𝑂(2|𝐹𝐹||𝐶𝐶|). 

1 Thus, if we use only 0 or 1 as the weights for the 2x2=4 classifier instances, we 
need to consider only those 16 combinations. In reality, however, since we consider 
real values for the weights, there can be infinite number of different ensembles to be 
considered. 

2 Note that this LMB has two feature extractors and two classifiers, and thus can 
have up to 2x2=4 classifier instances: A-1, A-2, B-1, and B-2. 
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Fig. 8. Different ways of combining FEs and classifiers to make an LMB and using it 

as the building block for making a GMB.  (a) An  LMB contains only one FE and 

one classifier. Although it reduces the complexity,  it cannot consider the interaction 

between FEs or between classifiers. (b) An  LMB contains two FEs and two 

classifiers, which is the proposed scheme. (c) Three FEs and three classifers belong to 

an LMB. (d) An LMB has all the relations for |F| FEs and |C| classifiers; and thus 

there is only one LMB in the GMB.     
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2.3.2 Complexity comparison according to composition of LMB 

 Any two different FEs may have some relationship so that the two should be 
considered together in an LMB for more efficient object recognition. The same is 
true for any pair of classifiers. The relationship is represented by an edge between 
every pair of vertexes in the complete graph models shown in Fig. 3(b) and (c). If 
considering three FEs (or classifiers) together is preferred, then the three FEs (or 
classifiers) are put into an LMB. The triplet corresponds to a clique of size three in 
the graph model. If we consider only the LMBs with f FEs (or c classifiers), then we 
can find all the LMBs by finding all the cliques of size f (or c) in the graph model of 
size |F| (or |C|). The number of cliques consisting of f (c) vertexes within a complete 

graph having |F| (|C|) vertexes is �|𝐹𝐹|
𝑓𝑓 �. Then the number of LMBs in a GMB is 

�|𝐹𝐹|
𝑓𝑓 � × �|𝐶𝐶|

𝑐𝑐 �, while the number of combinations in an LMB becomes 2𝑓𝑓×𝑐𝑐 when 
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TABLE I 

COMPLEXITY OF A GMB ACCORDING TO LMB COMPOSITIONS 

Construction of an LMB The number of 
combinations in an 

LMB 

The size of a GMB 
when |F|=10 and  |C|=10 

The number 
of FEs  

The number 
of classifiers 

1 1 2 (=21x1) 100 (= �10
1 � �10

1 � )  a 

2 2 16 (=22x2) 2,025 (=�10
2 � �

10
2 �)  b 

3 3 512 (=23x3) 14,400 

4 4 65,536 (=24x4) 44,100 

5 5 33,554,432 (=25x5) 63,504 (= �10
5 � �10

5 �))   c 

10 10 210×10  d 1 

a All the relations between FEs and classifiers are ignored. 

b The proposed scheme considering all couples of relations between FEs and 
classifiers. 

c The maximum size of a GMB, when |F|=10 and  |C|=10. 

d The ideal case representing all combinations; it is intractable.     

considering Boolean weights (i.e., 0 or 1). If we consider 𝑊𝑊 discrete weights, 

𝑊𝑊𝑓𝑓×𝑐𝑐 combinations exist in an LMB. Since our point is to investigate complexity 
of an LMB with respect to both f and c rather than the number of quantization steps 
of weights, hereafter, we assume Boolean weights for the discussion of complexity. 

Fig. 8 shows the GMB structure varying with different compositions in terms of 
the number of FEs and classifiers within an LMB. Fig. 8(a) depicts a GMB 
consisting of LMBs, each of which has only one FE and one classifier. The GMB 
comprises |𝐹𝐹| × |𝐶𝐶|  LMBs, where the synergistic effect of multiple FEs (or 
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multiple classifiers) is not considered. If the number of FEs and classifiers in an 

LMB increases, the complexity of the LMB grows to 2𝑓𝑓×𝑐𝑐 (finding the optimum 
among 2𝑓𝑓×𝑐𝑐 combinations). Fig. 8(a) has 21x1 combinations, while the number of 
combinations of (b), (c), and (d) become 22x2, 23x3, and 2|F|x|C|, respectively. Note that 
(d) corresponds to the original full combination problem, where the GMB has only 
a single LMB. A general formula for the number of LMBs in a GMB is given by the 
number of cliques within two complete graphs, one for FEs and the other for 
classifiers. The number of cliques for the FEs is given by 

�|𝐹𝐹|
𝑓𝑓 � = |𝐹𝐹|!

𝑓𝑓!(|𝐹𝐹|−𝑓𝑓)!
= |𝐹𝐹|(|𝐹𝐹|−1)⋯(|𝐹𝐹|−𝑓𝑓+1)

𝑓𝑓(𝑓𝑓−1)⋯1
 = |𝐹𝐹|

𝑓𝑓
|𝐹𝐹|−1
𝑓𝑓−1

⋯ |𝐹𝐹|−𝑓𝑓+1
1

≤ |𝐹𝐹|𝑓𝑓 . (1) 

The number of cliques for the classifiers can be obtained similarly. Therefore, the 
complexity of a GMB is O�|𝐹𝐹|𝑓𝑓|𝐶𝐶|𝑐𝑐�. For f=c=2 as suggested in this paper (see Fig. 
8(b)), an LMB has 16 (=22x2) possible combinations and the GMB has complexity 

of O(|𝐹𝐹|2|𝐶𝐶|2) in terms of the number of LMBs included in the GMB. When both 
numbers of FEs and classifiers in an LMB are three3 as shown in Fig. 8(c), an LMB 

has 512 (=23x3) combinations, while the GMB has O(|𝐹𝐹|3|𝐶𝐶|3) complexity. Thus, 
assigning small values to f and c renders a polynomial complexity of the problem. 
As either f or c grows, however, the number of possible combinations for an LMB 

increases exponentially (2𝑓𝑓×𝑐𝑐). The size of a GMB also tends to grow as f or c 

grows toward �|𝐹𝐹|
2
� or �|𝐶𝐶|

2
�, respectively, as shown in Table I. Note that the 

suggested 2x2 combination considers all the pairs of FEs and classifiers. 

2.3.3 Motivation for differentiating local and global mappings 

3 For simplicity, we assume here that the number of FEs and that of classifiers in 
an LMB are the same. However, they do not necessarily have to be the same. For 
instance, two FEs and four classifiers are acceptable. 
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Fig. 9. Two directions for combining multiple classifiers. Weighted majority vote takes 

the vertical direction, while regression and generalization takes the horizental 

direction. Two methods can generate diffierent results even for identical inputs.   
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Fig. 5 illustrates two directions of utilizing the evaluation results of classifiers for 
making a decision and shows that the final results can be different depending on the 
direction. The example has five data inputs in the evaluation set and two data inputs 
in the test set; four classifiers participate in the ensemble system. According to the 
figure, the four classifiers give the evaluation results of <0, 0, 0, 0>, <1, 0, 0, 0>, <0, 
0, 1, 1>, <1, 1, 0, 0>, and <1, 1, 1, 1> for the five evaluation data with labels 0, 0, 1, 
1, 1, respectively. Thus, the accuracies of the classifiers are 0.60, 0.80, 0.80, and 
0.80, which are calculated by the number of correct decisions over the number of 
total data. Using the weighted majority vote (WMV) with the optimal value 
log ( 𝑎𝑎𝑎𝑎𝑎𝑎.

1−𝑎𝑎𝑎𝑎𝑎𝑎.
), the ensemble decision for test data Te1 (based on the individual results 

of the classifiers) is ‘1’, which is correct. In the same way, the ensemble decision by 

WMV for test data Te2 is ‘0’. However, the individual results <1, 1, 0, 0> of the 
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classifiers are the same as those for Tr4 in the evaluation set, and thus the desirable 

ensemble decision is not ‘0’ but ‘1’, as made by the regression and generalization 

(RG) method. WMV takes the vertical direction for calculating the accuracy (or 
priority) of each classifier and thus does not consider characteristics of each data 
input. On the contrary, RG takes the horizontal direction to combine all the 
decisions made by the classifiers for each data input. An interesting question is 
which direction provides higher performance. Instinctively, if a decision system is 
mixed with weak classifiers as well as strong classifiers, WMV is more beneficial 
than RG, because it restrains a weak classifier from confusing the decision making 
process by assigning a low priority to the weak classifier. On the other hand, if a 
decision system consists of enough strong classifiers, RG can be more efficient, 
since it considers mutual relationships between classifiers for a specific data input 
as shown in Fig. 5. For such a reason, the two directions have their own advantage. 

Our hierarchical framework considers all the directions for the combination of 
classifiers. Since an LMB can be comprised of weak and strong classifiers, it is 
suitable for the vertical direction method such as WMV. On the other hand, GMB is 
suitable for the horizontal direction because the LMBs generated by the first-level 
ensemble of classifiers are in general stronger than the original classifiers. 

2.3.4 Reinforcement learning for LMB 

One of the most popular methods for combining classifiers is WMV which gives 
more weight to classifiers having higher accuracy. Given the accuracy of each 

classifier, the optimal weight is determined by 𝑤𝑤𝑖𝑖 ∝ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

, where wi is the 

weight value of classifier instance i and pi is the accuracy obtained by evaluating the 
classifier using a training set [9].  However, this is correct only under the condition 
that all classifiers have no dependency on others, that is only when the original 
posterior probability  
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𝑃𝑃(𝑫𝑫|ℎ𝑘𝑘) = 𝑃𝑃�𝐷𝐷𝑚𝑚1�ℎ𝑘𝑘�𝑃𝑃�𝐷𝐷𝑚𝑚2�𝐷𝐷𝑚𝑚1,ℎ𝑘𝑘� 

 …𝑃𝑃(𝐷𝐷𝑚𝑚𝐿𝐿|𝐷𝐷𝑚𝑚1, … ,𝐷𝐷𝑚𝑚𝐿𝐿−1,ℎ𝑘𝑘) (2) 

can be treated as  

𝑃𝑃(𝑫𝑫|ℎ𝑘𝑘) = ∏ 𝑃𝑃(𝐷𝐷𝑚𝑚𝑖𝑖|ℎ𝑘𝑘)𝐿𝐿
𝑖𝑖 ,  (3) 

where L is the number of classifiers, D is the event where the decision vector 
from the L classifiers is (𝑚𝑚1,𝑚𝑚2 , … ,𝑚𝑚𝐿𝐿), 𝐷𝐷𝑚𝑚𝑖𝑖 is the event where the decision by 

the i-th classifier is mi, and hk is the event where the input is in class k. In practice, 
the assumption is not satisfied. The experimental results in Section 2.4 show that the 
assumption of independent classifiers is wrong and the bias caused by it adversely 
affect the final decisions.  

In order to overcome the limitation of the original WMV, we utilize 
Reinforcement learning (RL) to compute real weight based on trial-and-error. RL 
was invented for tackling problems with an environment that is unknown or cannot 
be modeled. It solves such problems by communicating with the environment 
through interactions [50]. The RL task commonly consists of five components: An 
agent, set S of states, set A of actions, rewards, and an environment. In order to get 
the best reward, an agent explores the space of environment with two strategies: 
exploitation and exploration. While the former is to follow an existing policy4 to 
get the best reward, the latter is to search for a new policy in order not to trap into a 
local optimum (known as exploration and exploitation trade-off). At time step t, the 
agent makes a decision to take action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴(𝑠𝑠𝑡𝑡)  at state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆  of the 
environment. The environment gives a reward 𝑟𝑟𝑡𝑡+1 to the agent that updates the 
current state value and moves to new state 𝑠𝑠𝑡𝑡+1. The objective of the RL task is to 

4 Mapping states to actions is called policy π. An agent picks an action a under 

policy π in current state s. 
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maximize the expected value of return 𝑅𝑅𝑡𝑡 , 

𝑅𝑅𝑡𝑡 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑟𝑟𝑡𝑡+2 + 𝛾𝛾2𝑟𝑟𝑡𝑡+3 + ⋯ = �γ𝑘𝑘𝑟𝑟𝑡𝑡+𝑘𝑘+1

∞

𝑘𝑘=0

,                                            (4) 

where 𝛾𝛾, 0 ≤ 𝛾𝛾 ≤ 1 is a discount factor.  

RL performs learning on what to do in the current state in order to maximize the 
final return value. In WMV, for example, suppose the weights of two classifiers, A 
and B, are wA and wB, respectively. RL can give an answer to a question on which 
classifier should increase or decrease its weight in order to achieve the maximum 

accuracy, given wA, and wB (i.e., the current state). Let us assume that v(wA) = α, β, 

and γ  (α > β and α <  γ) at wA = 0.3, 0.4, and 0.9, respectively, where v(wA) is 

the return value function of weight wA. The action to be taken at wA = 0.3 is to 

increase wA to 0.4, even though v(0.3) is greater than v(0.4) (i.e., α > β), because 

further increase of wA to 0.9 will achieve the maximum return value γ. In this case, 

the future value v(0.9) affects the current decision (to increase the weight). The 
objective of RL is to move rapidly towards the optimal state while updating the 
values for actions so that it can search of the solution space more efficiently. 

Let wRL =  (w1
*, w2

*, …, wL
*) denote the vector of weights induced by RL for 

WMV of multiple classifiers considering the dependency in (2), and w0 denote the 

original optimal vector of weights obtained by 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

. Then the accuracy of  

𝑃𝑃(𝑫𝑫|ℎ𝑘𝑘) with given wRL is greater than or equal to the accuracy of 𝑃𝑃(𝑫𝑫|ℎ𝑘𝑘) with 
given w0. The reason is that the weights of classifiers are generated by RL 
considering the dependency among classifiers, because RL reflects the environment 
including dependency. In the experimental section, with UCI dataset [51], we show 
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the effectiveness of RL for adjusting weight values of classifiers, which is not 
possible with conventional WMV.RL is adopted to get weights of 2x2 classifiers in 
an LMB to compute the best weights considering dependency among classifiers. A 
challenge of using RL in calculating weights for classifiers in an LMB is that the 
number of states is infinite, because the value of weights is continuous. To cope 
with the challenge, function approximation was introduced in [50], where training 

task updates parameter vector 𝜃𝜃 representing the function; the state action value 
𝑄𝑄𝑡𝑡 depends on a parameter vector 𝜃𝜃𝑡𝑡���⃗  at time t. Especially, tile-coding method as a 
kind of gradient-descent approach and eligibility tracing were adopted in order to 
boost up training speed. For tile-coding, a continuous space is managed by tiling 
which splits the space of state into several partitions called tiles [52]. We first 
formulate the problem of calculating weights of classifiers for the LMB in the RL as 
follows:S: Considering that each LMB has four classifier instances, we define the 

total state space as 𝑆𝑆 = 𝑤𝑤1 × 𝑤𝑤2 × 𝑤𝑤3 × 𝑤𝑤4 with constraint ∑ 𝑤𝑤𝑖𝑖4
𝑖𝑖 = 1, where 𝑤𝑤𝑖𝑖 

is the weight of classifier instance i. Initial weights are set to the optimal weights 
under the independence condition in order to have an efficient convergence in the 
training phase. A: There are eight actions for four classifier instances within an 
LMB per state. Each classifier has two actions: increasing and decreasing the 
weight of the current state, where an amount of changing the weight is calculated 
from gradient of current state. The weights are then normalized according to the 

constraint ∑ 𝑤𝑤𝑖𝑖4
𝑖𝑖 = 1. In order to explore the state space of weights of four 

classifiers during the action selection, we use ε-greedy action selection method at 

time t as follows:  

𝑎𝑎𝑡𝑡 = �argmax𝑎𝑎𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎) with probability 1 − 𝜀𝜀
random action with probability 𝜀𝜀  
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Reward at a state: Reward value corresponding to an action at a state, which 
utilizes the accuracy of an LMB, is calculated as the amount of the increase in the 

REINFORCEMENT-LEARNING-FOR-WEIGHT-OF-LMB 

1: Initialize 𝜃𝜃 and 𝑒𝑒 = 0 
2: 

s { 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

|𝑝𝑝𝑖𝑖∀𝑐𝑐𝑖𝑖} , where pi is  accuracy of classifier ci 

3: For all 𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠) 
4:     𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) set of features of tile coding in 𝑠𝑠, 𝑎𝑎 
5:     𝑄𝑄(𝑠𝑠,𝑎𝑎) ∑ 𝜃𝜃𝑖𝑖 × 𝑏𝑏𝑖𝑖(𝑠𝑠,𝑎𝑎)𝑛𝑛

𝑖𝑖=1 , where n is the number of tilings 
6: Repeat (for each step): 
7:     With probability 1-𝜀𝜀: 
8:         𝑎𝑎  argmax𝑎𝑎𝑄𝑄(𝑠𝑠,𝑎𝑎) 
9:         𝑒𝑒 𝜆𝜆𝑒𝑒 
10:     else 
11:         𝑎𝑎  a random action ∈ 𝐴𝐴(𝑠𝑠) 
12:         𝑒𝑒 0 
13:     For all {𝑖𝑖|𝑏𝑏𝑖𝑖(𝑠𝑠,𝑎𝑎) = 1}: 
14:         𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖 + 1 
15:     Set next state 𝑠́𝑠, with the action 𝑎𝑎 
16:     For all 𝑎𝑎 ∈ 𝐴𝐴(𝑠́𝑠): 
17:         𝑏𝑏�⃗ (𝑠́𝑠,𝑎𝑎) set of features of tile coding in 𝑠́𝑠, 𝑎𝑎 
18:         𝑄𝑄(𝑠́𝑠,𝑎𝑎) ∑ 𝜃𝜃𝑖𝑖 × 𝑏𝑏𝑖𝑖(𝑠́𝑠,𝑎𝑎)𝑛𝑛

𝑖𝑖=1  
19:     Calculate a reward computed by a difference of accuracy  

           for an LMB between state 𝑠𝑠, 𝑠́𝑠 
20:     𝜃𝜃 𝜃𝜃 + 𝛼𝛼(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑄𝑄(𝑠𝑠,𝑎𝑎) + max𝑎𝑎𝑄𝑄(𝑠́𝑠,𝑎𝑎))𝑒𝑒 
21:     𝑠𝑠 𝑠́𝑠 
22: Until 𝜃𝜃 converges. 

Fig. 10. Psedo-code of the reinforcement learning algorithm for calculating weights 

for an LMB.      
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sum of number of true positives and number of true negatives divided by the 
number of samples. 

Fig. 10 is a pseudo-code of RL for computing weights in LMBs, where the RL 

task has only one episode that is terminated when 𝜃𝜃 converges. In line 2, initial 
state is induced from 𝑝𝑝𝑖𝑖 for efficient and fast training, which is an optimal weight 
under the assumption that all the classifiers are independent. The set of features of 

tile coding 𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) is generated at the current state and for all the actions, where 
𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) contains binary values (1 or 0) about all the tiles; if a tile fits into the state, 
the value of 𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) for the tile is one; otherwise, the value is zero. State action 
values 𝑄𝑄(𝑠𝑠,𝑎𝑎) are computed by taking the sum of products of 𝜃𝜃 and 𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) in 
lines 3 to 5, which is repeated in lines 16 to 18. In lines 7 to 12, the state space is 

exploited and explored with ε-greedy action selection and eligibility trace 𝑒𝑒 is 

executed. The values of eligibility trace used in the step are updated in lines 13 and 
14. After choosing next state with the selected action and calculating the state action 
value with respect to the next state, the reward is computed by taking the difference 
of accuracy between the current state and the next state in lines 15 to 19. Finally, the 

parameter vector 𝜃𝜃 is modified in line 20, which is followed by updating the 
current state; the task is repeated until  𝜃𝜃 converges. 

2.3.5 Construction of Bayesian network from GMB 

Once the weights of the FE-classifier pairs in the LMBs are adjusted using RL as 
explained in Section 2.3.4, each LMB can make its own decision based on WMV. 
Then the decisions from all the LMBs in the GMB are used to make a final decision. 
We consider each LMB as a strong classifier since it has been constructed by the 
first-level ensemble of classifiers, which is supported by the experimental results in 
Section 2.4.  

Although the LMBs are considered as stronger classifiers, they are still dependent 
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on one another and thus the second-level ensemble is constructed by adopting RG 
approach to consider horizontal direction of combination of classifiers (i.e., LMBs) 
as mentioned in Section 2.3.3. For this, we adopt Bayesian network (BN) that can 
be used to make a final decision considering the dependencies among LMBs. The 
dependencies are represented by the conditional probabilities of the first-level 
decisions made by the FE-classifier pairs. Since BN gives the posterior probability 
for a given occurrence of events, it can be used as a classifier [53]. The reason for 
selecting BN is that not only can it infer the class of an arbitrary input with a 
generalization method, but also it can consider the dependencies of LMBs. BN is a 
graph model with nodes and arcs for representing conditional probabilities among 
random variables. Each node represents a random variable with a conditional 
probability function and each arc represents a dependency between two random 
variables. 

To formulate the dependency between LMBs within a GMB, let 

𝐹𝐹 = {𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, … ,𝑓𝑓𝑀𝑀} denote a set of FEs where M is the number of FEs, and 
𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, … , 𝑐𝑐𝑁𝑁}  denote a set of classifiers, where N is the number of 
classifiers; the total number of pairwise connections between FEs and classifiers 
becomes 𝑀𝑀 × 𝑁𝑁. Suppose complete graphs composed of F and C are 𝐺𝐺𝑓𝑓 and 𝐺𝐺𝑐𝑐 
respectively as mentioned in Section 2.3.1, and the sets of edges for 𝐺𝐺𝑓𝑓 and 𝐺𝐺𝑐𝑐 are 
𝐸𝐸𝑓𝑓 and 𝐸𝐸𝑐𝑐, respectively. Then the total number of LMBs becomes 𝐸𝐸𝑓𝑓 × 𝐸𝐸𝑐𝑐. An 
LMB is defined as a tuple < 𝑓𝑓𝑖𝑖𝑐𝑐𝑘𝑘,𝑓𝑓𝑖𝑖𝑐𝑐𝑙𝑙 ,𝑓𝑓𝑗𝑗𝑐𝑐𝑘𝑘 ,𝑓𝑓𝑗𝑗𝑐𝑐𝑙𝑙 >, representing 2x2 combination 
containing two FEs and two classifiers, where 𝑓𝑓𝑖𝑖,𝑓𝑓𝑗𝑗  ∈ 𝐹𝐹and 𝑐𝑐𝑘𝑘 , 𝑐𝑐𝑙𝑙 ∈ 𝐶𝐶; (𝑓𝑓𝑖𝑖,𝑓𝑓𝑗𝑗)  ∈
𝐸𝐸𝑓𝑓and (𝑐𝑐𝑘𝑘 , 𝑐𝑐𝑙𝑙) ∈ 𝐸𝐸𝑐𝑐  are edges in the complete graphs. 

Assuming that the set of classes is 𝐻𝐻 = {ℎ1,ℎ2,ℎ3, … , ℎ𝐿𝐿}, the classification 
problem using GMB is to find a class of maximum probability as follows,  

 𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = argmaxℎ𝑙𝑙𝑃𝑃�ℎ𝑙𝑙�𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾� 

= argmaxℎ𝑙𝑙
𝑃𝑃(ℎ𝑙𝑙) ∙ 𝑃𝑃�𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾�ℎ𝑙𝑙�

𝑃𝑃�𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾�
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Fig. 11. Construction of  Bayesian networks. (a) The system consists of  three 

feature extractors and two classifiers. (b) GMB is created by LMBs for the system. (c) 

Bayesian network is composed of 1) class node denoted as hl, 2) FC nodes denoted as 

fick, which correspond to FE-classifier pairs, and 3) decisions of LMBs denoted as 

DLMBk .              
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≅ argmaxℎ𝑙𝑙𝑃𝑃�𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾�ℎ𝑙𝑙�, (5) 

where 𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 is a decision from an LMBk. Because the prior probability 𝑝𝑝(ℎ𝑙𝑙) 

is unknown in the testing and joint probability 𝑃𝑃(𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾) is 

constant, they are removed. 

There are two key tasks to perform to construct a BN. One is building a BN 
structure to represent the data model and the other is finding conditional probability 
functions of nodes. Building the BN structure is to find pairs of nodes having a 
significant dependency and let the network structure satisfy the properties required 
to solve given problems. The problem of finding an optimal structure of a BN has 
an exponential complexity, since the total number of possible combinations for the 
BN is  

𝑓𝑓(𝑛𝑛) = ∑ (−1)(𝑖𝑖+1) 𝑛𝑛!
(𝑛𝑛−1)!𝑖𝑖!

2𝑖𝑖(𝑛𝑛−1)𝑓𝑓(𝑛𝑛 − 1)𝑛𝑛
𝑖𝑖=1 , (6) 

where n is the number of nodes [54]. For example, 3,781,503 possible graph 
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structures can be generated for a network having only six nodes.  

In order to tackle the difficulty, in our solution, constructing a BN structure has 
two steps: building an initial skeleton network with prior information and refining 
the structure iteratively using a score function that represents how well the structure 
fits. The initial BN consists of three kinds of nodes: nodes for representing classes, 
nodes for classifier instances (FE-classifier pairs), and nodes for decisions of LMBs 
such as 𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘. After preparing an initial BN, the structure is refined based on 

dependencies between FE-classifier pairs. Fig. 11 shows an example of building a 
BN structure, where a system is composed of three basic FEs and two basic 
classifiers (a). The system first builds three LMBs: LMB0 with <f1c1, f1c2, f2c1, f2c2>, 
LMB1 with <f2c1, f2c2, f3c1, f3c2>, and LMB2 with < f3c1, f3c2, f1c1, f1c2> (b). The 
initial skeleton network structure is generated as shown with solid arrows (directed 
edges) in (c). Each solid edge represents direct influence from the predecessor to the 
successor. The edges are fixed in the network, because they are expected to have 
strong relationships between nodes.  

The number of nodes in a BN generated for a GMB is |𝐹𝐹||𝐶𝐶| + �|𝐹𝐹|
2 � �|𝐶𝐶|

2 � + 1, 

where the three terms respectively account for the number of nodes corresponding 
to ficks (called FC nodes), the number of LMBs, and the node for class h. Once the 
initial skeleton network is constructed, the edges to be added are only between FC 
nodes and thus the number of nodes to be considered reduces to |𝐹𝐹||𝐶𝐶|. 5 This is 

meaningful because the second term for LMBs, �|𝐹𝐹|
2 � �|𝐶𝐶|

2 � , dominates the 

complexity for building a BN when both |F| and |C| are large. For example, the 

5 The FC nodes representing ficks construct a BN as a subset of the entire BN for 
a GMB, and thus they still have a constraint that no cycle exists. Since hl has only 
outgoing edges and DLMBs have only incoming edges as shown in Fig. 10 (c), no 
cycle containing either hl or DLMBs can be made by adding an edge between ficks (a 
cycle containing only ficks can still happen). 
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number of nodes is reduced from 19 to 9, given that |F| and |C| are three; it is 
reduced from 53 to 16 when |F|=|C|=4; the gain from this method is further 
magnified beyond four. Thus the complexity of the problem of building connections 
between nodes is also reduced. For the case of |F|=|C|=3, the number of possible 
ways to construct a BN is diminished from about 3.3x1065 (19 nodes) to 1.2x1015 (9 
nodes) as calculated by (6). Nevertheless, the problem is still intractable and thus 
requires an efficient heuristic method. There have been many heuristic algorithms 
for building a BN including Markov chain Monte Carlo (MCMC), variational 

inference, K2, Chow–Liu trees methods, and their extensions [55] [56] [57] [58]. 

However, most of the algorithms treat each node in the BN with same priority. On 
the other hand, we pay attention to difference characteristics of different FC nodes; 
the FC nodes sharing the same FE and/or classifier tend to have higher dependency 
on each other. In addition, some FC nodes have higher accuracy than others and 
thus have higher priority. Finally, the BN that we propose can be constructed from 
an initial skeleton network, which we can also exploit. 

Thus, to devise our own heuristic method, we consider meaningful relationships 
among FC nodes. Each dotted line in Fig. 7(c) illustrates the relationship between 
two FC nodes. As mentioned above, two FC nodes possibly have strong association 
with each other when they share either the same FE or the same classifier. For 
instance, since f1c1 and f1c2 share the same FE, the two FC nodes have a high chance 
of getting an edge between them when building the BN. However, if they have a 
weak dependency having little effect on the performance of the system, the edge is 
removed. This is done through learning for which there are two well-known 
algorithms: score-based approach and constraint-based approach. The score-based 
approach defines a scoring function for the BN structures to represent the fitness for 
the given case and attempts to find a structure that maximizes the score. The 
constraint-based approach exploits constraint conditions such as independency 
between two nodes. We use the score-based method since it shows better 
performance in general and the complexity can be controlled for applications having 
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Fig. 12. Accuracy comparison between feature extractors (HOG, HAAR, CENT, LBP) 

and classifiers (SVM, KNN) in DaimlerChrysler dataset. It depicts that feature 

extractors are more significant than classifiers.               

HOG HAAR CENT LBP
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

 

 
SVM
KNN

confined BN structures6 like GMBs. One of the most effective scoring functions is 
Bayesian information criterion (BIC) score [59], which can reflect not only the 
fitness of the structure but also the complexity of the structure. 

In order to decrease the complexity of building an optimal (or near-optimal) BN 
structure for the GMB, we consider accuracy of FC nodes first, followed by FEs 
and then classifiers instead of considering them at the same time.7 Between FEs 
and classifiers, we consider FEs first since they have greater influence on the 
accuracy than classifiers as shown in Fig. 12. 

6 The BN for a GMB consists of distinct components, the types of which are 
confined to hypothesis (class), FE-classifier pairs, and LMBs. Thus it is easy to 
construct a set of candidate BNs and select the one with the highest score.  

7 The reason why we consider FEs and classifiers is that nodes having the same 
FE or the same classifier tend to have higher dependency with each other compared 
with nodes having different FEs and classifiers. 
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The algorithm for building the BN is illustrated in Fig. 13. After the solid edges 
for the initial skeleton network are built in line 1 and 2, the dotted edges are 
constructed in lines 3 to 13. All the FC nodes are sorted by accuracy in descending 
order in line 3, and then picked up in order in line 4 (Nodei). Within the nested loops 

STRUCTURING-OF-BAYESIAN-NETWORK-FOR-GMB 

1: Connect class node hl and every basic FE-classifier node ficj (FC node) 
with an edge. 

2: For each FC node, connect it with edges to DLMBs that use the node. 

3: SortedListOfFcNodes  sort all the FC nodes by accuracy in 
descending order 

4: For each Nodei in SortedListOfFcNodes for i from 1 to |F||C|-1 

5:     For each Nodej in SortedListOfFcNodes for j from i+1 to |F||C| 
        If Nodej shares an FE with  Nodei  

6:             Calculate BIC score with an edge from Nodei to   
                    Nodej if the edge does not form a cycle  

7:             Calculate BIC score with an edge from Nodej to  
                    Nodei if the edge does not form a cycle 

8:             Calculate BIC score without edge insertion  

9:             Select the best one among the above three cases 

10:     For each Nodej in SortedListOfFcNodes for j from i+1 to |F||C| 
        If Nodej uses the same classifier type as Nodei 

11:             Repeat the lines from 6 to 9 

12:     For each Nodej in SortedListOfFcNodes for j from i+1 to |F||C| 
        If Nodej does not satisfy the condition in 5 or 10 

13:             Repeat the lines from 6 to 9 

Fig. 13. Learning algorithm of Bayesian network for GMB.       
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in line 5, nodes (Nodej) sharing the same FE with Nodei are selected and edges are 
added to connect Nodei and Nodej. Then, in line 10, nodes using the same classifier 
type are selected. Finally, in line 12, the remaining nodes are selected. For example, 
if HOG-SVM is examined in line 4, HOG-KNN sharing the same FE (HOG) and 
HAAR-SVM using the same classifier type (SVM) are selected in line 5 and 10, 
respectively, whereas HAAR-KNN that has nothing in common is selected last in 
line 12. The nodes are processed in descending order of accuracy, since more 
accurate nodes should have higher chance to participate in building edges. In short, 
investigation of relations between FC nodes is performed by accuracy first, then FE 
sharing, and then classifier types. Each FC node, Nodei, in line 4 is connected to 
another FC node, Nodej, located below Nodei in SortedListOfFcNodes and evaluated. 
The BIC score-based method is used for the evaluation. From line 6 to 9, the 
algorithm selects the best one among forward, backward, and null edges (note that 
the forward or backward edge should not generate any cycle, because a BN does not 
allow a cycle in it). Calculating BIC scores with the forward, backward, and null 
edges in lines from 6 to 9 is repeated in line 11 and 13 in the same manner. The 
complexity of examining a cycle in a BN  in line  6, 7, 11, and 13 was reported to 
be 𝑂𝑂(|𝑉𝑉|) with incremental method, where |V| is the number of vertexes (nodes) 
[60]. Because the number of nodes in our case is |F||C| and the pairwise comparison 

has complexity of O((|𝐹𝐹||𝐶𝐶|−1)∙|𝐹𝐹||𝐶𝐶|
2

), the complexity of building a BN is bounded 

by 𝑂𝑂(|𝐹𝐹|3|𝐶𝐶|3).8 

8 A recent study on incrementally examining a cycle in a directed acyclic graph 
(DAG) suggested more efficient algorithm, which is bounded by 𝑂𝑂(√𝐸𝐸) for sparse 
graphs and 𝑂𝑂(𝑉𝑉2.5/𝐸𝐸) for dense graphs [61], which means that the complexity of 
our proposed method in building a BN can be lower than 𝑂𝑂(|𝐹𝐹|3|𝐶𝐶|3). 
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2.4 Experimental results 

We took pedestrian detection and recognition of handwritten numerals in the UCI 
dataset [51] as the applications used for evaluating the proposed schemes (both 
GMB and LMB). We compared them with existing ensemble schemes proposed in 
[14], [40], [33] and AdaBoost as well as basic FE-classifier pairs. As the 
performance metric for the comparison, we used receiver operating characteristics 
(ROC) curves for two class classification and used accuracy and error rate for 
multiple classes classification problems.  

 

Fig. 14. Accuracy of individual classifiers (SVM, AdaBoost, and decision tree), 

ensemble using optimal WMV weight not considering dependency, and RL weight for 

Banknote Authentication in UCI dataset. For the illustration, the plane 

wS+wA+wD=1 (the sum of weights should be one) is projected into xy-plane, where 

wS, wA and wD are the weights of SVM, AdaBoost, and decision tree, respectivly; 

z-axis represents the accuracy.            
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2.4.1 Measure of effectiveness for WMV and RL 

In order to see the effectiveness of using RL for deciding weights of classifiers, 
we compared the WMV using RL with the original WMV. Hereafter, we call 'the 

TABLE II 

COMPARISON OF ACCURACY OF THREE CLASSIFIERS, 

WMV, AND RL ENSEMBLE FOR UCI DATASET *   

Dataset SVM AdaBoost 
Decision 

tree 
WMV 

Ensemble 
RL 

Ensemble 

Banknote 
Authenticat

ion 
0.9611 0.9343 0.9465 0.9781 0.9878 

QSAR 
Biodegradat

ion 
0.5365 0.7333 0.6540 0.7333 0.7778 

Breast 
Cancer 

Wisconsin 
0.9234 0.9330 0.9474 0.9522 0.9657 

Musk 
(Version 2) 

0.9889 0.9384 0.8236 0.9949 0.9949 

Madelon 0.5643 0.5242 0.7579 0.7579 0.7579 
Gamma 

Telescope 
0.7166 0.8266 0.7262 0.7443 a 0.8266 

Gisette 0.9583 0.9322 0.8794 0.9472 b 0.9711 

* The accuracy is measured in evaluation dataset.      

a,b The accuracy of WMV ensemble is even lower than that of a single 
component classifier in some cases.   
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Fig. 15. Examples of DaimlerChrysler Pedestrian dataset. The upper ones are 

pedestrian samples while the lower ones are non-pedestrian samples.                  

WMV using RL' simply 'RL' and call 'the original WMV' simply 'WMV' for 
convenience. WMV does not consider dependency among classifiers when deciding 
weights as mentioned in Section 2.3.4, while RL explores the space of weights 
considering the dependency in a trial-and-error manner. TABLE II shows the 
accuracy measured for seven datasets from UCI Machine Learning Repository [51] 
for WMV and RL using five-fold cross validation, where the accuracy is measured 
in evaluation dataset (rows).9 The table also shows the accuracy of three individual 
classifiers including SVM, AdaBoost, and decision tree.  

In case of Banknote authentication, QSAR biodegradation, Breast cancer and 
Wisconsin dataset, RL is superior to WMV. An interesting result is shown in 
Gamma telescope and Gisette dataset; the accuracy of WMV ensemble is lower than 
even that of a single component classifier such as AdaBoost and SVM. In Madelon 
and Gamma telescope, some single classifiers show the same accuracy as the 
ensemble schemes, which means that ensemble of classifiers is not effective in the 

9 Because an overfitted classifier is given a higher priority in training dataset, 
investigating the accuracy of each classifier with training data cannot precisely 
estimate the performance of the classifier. Thus, all the accuracy values were 
measured in evaluation dataset. 
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Fig. 16. Screenshot of an experimental application of hierarchical ensemble of MFMC 

to pedestrian detection using DaimlerChrysler dataset, which is developed based on 

OpenCV with the C++ language.           

datasets. RL ensemble always outperforms original WMV ensemble and single 
classifiers in all cases. Fig. 14 illustrates the resulting weights space of SVM, 
AdaBoost, decision tree, and their ensembles (WMV and RL) for Banknote 
authentication dataset, which illustrates accuracy values for varying combinations 
of classifier weights. RL shows the best ensemble accuracy of 0.9878, which is 
higher than that of WMV (0.9781), SVM (0.9611), AdaBoost (0.9343), and decision 
tree 0.9465).  

2.4.2 Pedestrian detection dataset 

The experiments use DaimlerChrysler Pedestrian dataset [62], which is composed 
of 49,000 18x36-resolution images; 29,400 images are used for training and 19,600 
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Fig. 17. Experimental system in the paper. (a) The system consists of full connections 

between feature extractors and classifiers: HOG, CENT, HAAR as feature extractors 

and SVM, DTREE, KNN as classifiers. (b) GMB is comprised of nine LMBs, each of 

which has 2x2 combinations.            

HOG SVM

DTREE

KNNHAAR

HOG

HAAR

HOG
SVM DTREE KNN SVM

LMB00 LMB01 LMB02

LMB10 LMB 11 LMB12

LMB20 LMB21 LMB22

(a) (b)

CENT
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images are used for testing. The training set contains 14,400 samples for pedestrians 
and 15,000 samples for non-pedestrians, while the test set has 9,600 and 10,000 
samples respectively. For evaluation of the classifiers, a bagging method is adopted; 
after 80% of the samples in the training set have been used for training, the 
classifiers are evaluated with the entire training set, and then the results are 
examined with the test set. Fig. 15 depicts examples of DaimlerChrysler Pedestrian 
dataset. 

The objective of this work is to show that how the proposed hierarchical 
ensemble scheme can improve the performance compared with baseline ensemble 
systems. Therefore, we choose well-known FEs and classifiers. As shown in Fig. 17, 
HOG [28], CENTRIST [47], HAAR [48] are used as FEs and SVM, KNN, DTREE 
[49] are used as classifiers which have been popular for pedestrian detection 
systems. The three feature extractors are complementary to each other as follows. 
HOG uses histograms to count occurrences of gradient orientation for local 
positions of an image, where local information is well represented; it has been used 
in many human detection applications [63] [64] [65]. Because CENTRIST focuses 
on contours such as human body outline, human detection researches have utilized 
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Fig. 18. Mutual information for all pairs of nine classifiers. Dependency between 

classifiers actually exists.  

it [66] [67] [68]. In case of HAAR, rectangular windows detect the pixel intensities 
of corresponding image regions; it concentrates on block information; many human 
detection studies have used HAAR based on this reasoning [69] [70] [71]. 
Meanwhile, GMB is divided into nine LMBs, each of which is created by 
combining two FEs and two classifiers. For instance, LMB00 is comprised of HOG 
and CENTRIST as features, and SVM and DTREE as classifiers, resulting in four 
combinations: <HOG, SVM>, <HOG, DTREE>, <CENTRIST, SVM>, and 
<CENTRIST, DTREE>. HOG was implemented with 2x2 blocks, each block 
containing 3x3 pixels, and block stride of 3 pixels. In case of HAAR,  we used two 
wavelets, one for 4x4 pixels and the other for 8x8 pixels, as was done by [62]. 
There is no such specific parameter used for the case of CENTRIST, which is one of 
the characteristics of CENTRIST. Since the size of feature vectors for HOG, HAAR 
and CENTRIST are quite large (972, 7038 and 656, respectively), we used a linear 
kernel in the case of SVM to increase simulation speed. 

The entire system was implemented in the C++ language, based on OpenCV [72] 
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Fig. 19. Performance comparison between the proposed framework and the other 

schemes.       
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vision library. Fig. 16 shows a screenshot of experimental examples in which thick 
bounding boxes depict missing detections. Small boxes in the left bottom corner 
represent pedestrian cases, while non-pedestrian cases have no such marking. 

Mutual information (MI) 𝐼𝐼�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� given by ∑ 𝑃𝑃(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗 𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝑃𝑃�𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗�
𝑃𝑃(𝑥𝑥𝑖𝑖)𝑃𝑃�𝑥𝑥𝑗𝑗�

) can 

be used to measure a mutual dependence of two random variables, where 𝑥𝑥𝑖𝑖 and 
𝑥𝑥𝑗𝑗  are the variables. 𝑝𝑝(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) is a joint probability and 𝑝𝑝(𝑥𝑥𝑖𝑖) and 𝑝𝑝(𝑥𝑥𝑗𝑗) are 
marginal probabilities of 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗, respectively. The value of mutual information 

is zero if two variables are independent. Fig. 18 shows that the values of mutual 
information for all classifier instances; it depicts that no classifier instance is 
independent of others. It justifies the superiority of the proposed RL compared to 
the original WMV.  

As shown in Fig. 19, all the ensemble methods including GMB, LCDF [40], TFA 
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TABLE III    

RESULTS OF ENSEMBLE METHODS  FOR PEDESTRIAN DETECTION  

Ensemble 
Method 

Hit rate 

FAR  0.1 
FAR  
0.2 

GMB 0.947 0.977 
LCDF 0.928 0.966 
TFA 0.912 0.951 
QBWWV 0.911 0.948 
BWWV 0.906 0.951 
RSWV 0.899 0.946 
WMV 0.886 0.939 

 
[14], QBWWV [33], BWWV, RSWV, and WMV outperform all the pairs of a single 
FE and a single classifier such as HOG-SVM, HOG-KNN, HAAR-SVM, etc. In the 
case of TFA, the weight values of classifiers are generated from the training matrixes 
obtained by likelihood probabilities.  

The figure shows that GMB using BN is superior to all other methods. The hit rate 
(HR)10 of GMB achieves 0.947 at 0.1 false alarm rate (FAR)11 while those of LCDF, 
TFA, QBWWV, BWWV, RSWV, and WMV are respectively 0.928, 0.912, 0.911, 
0.906, 0.899, and 0.886. Table II summarizes the performance results. The hit rate of 
GMB is 0.947 at 0.1 FAR whereas the hit rate of WMV is 0.886. Considering that 
the hit rate is close to the maximum hit rate of 1.000, the improvement in miss rate 

10 Hit rate is the ratio of the number of correct detections of pedestrians (i.e., 
number of true positives) over the total number of pedestrians (i.e., number of true 
positives + number of false negatives). 

11 False alarm rate is the ratio of the number of incorrect decisions for 
non-pedestrians (i.e., number of false positives) over the total number of 
non-pedestrians (i.e., number of false positives + number of true negatives). 
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Fig. 20. ROC curves of all the LMBs. Construction of the LMBs is identical to that in 

Fig. 17.     
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(false negative) by about 50% (from 0.114 down to 0.053) is quite significant. 
Meanwhile, the main drawback of EM approach used in LCDF is that the accuracy 
depends on the initialization and usually converges to some local maximum of the 
likelihood. In the experiment, we tried many times with different initial values and 
took the best result. 

Fig. 20 depicts ROC curves of each LMB in the GMB with 3x3 LMBs. Every 
LMB gives higher accuracy compared to any simple FE-classifier pair, which 
means that an LMB can work as a classifier stronger than basic classifiers. Each 
chart in the figure compares an LMB using the proposed reinforcement learning 
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                        (a)                               (b) 

Fig. 21. Performance comparison between GMB and AdaBoost. (a) Error rate of 

AdaBoost according to the number of classifiers; the parentheses represent the used 

feature set(s). (b) ROC curve, where the points of AdaBoost depict 10, 20, 30, 40, and 

50 classifiers, respectively.        
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(RL) and another one using the weighted majority vote (WMV) and shows that RL 
outperforms WMV in most cases, which is due to the fact that WMV ignores all 
dependencies of MFMC. In case of LMB21, however, WMV shows slightly better 
HR (e.g., higher by 0.015 at 0.1 FAR). One possible reason is that the 
implementation of RL is not perfect since the states are based on quantized weights. 

2.4.3 Comparison between GMB and AdaBoost 

For an experiment with AdaBoost, we selected four cases: three cases using a 
single feature set of HOG, HAAR, and CENTRIST, respectively and the one using 
all the feature sets simultaneously. We prepared 50 weak classifiers for each case.  
Fig. 21 depicts the performance comparison between AdaBoost and GMB; Fig. 21 
(a) shows error rate of AdaBoost according to the number of classifiers, where error 
rate decreases as the number of participating classifiers increases. However, the 
enhancement saturates when 50 classifiers join into the algorithm. AdaBoost using 
all the feature sets, named as ADA(HOG, HAAR, CENT) in the graph, achieves the 
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                   (a)                                (b) 

Fig. 22. GMB composition for UCI Multiple Feature dataset, where five FEs and five 

classifiers are used. (a) MFMC combination between FEs and classifiers. (b) GMB 

consists of 10x10 LMBs.        
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best performance. On the other hand, when compared to GMB, it is inferior as 
shown in Fig. 21 (b), where the numbers of weak classifiers in AdaBoost are 10, 20, 
30, 40, and 50, respectively. 

2.4.4 UCI Multiple Features dataset 

In order to investigate multiclass cases, we experimented with UCI Multiple 
Features dataset [51] which consists of features for handwritten numerals from zero 
to nine (i.e., ten classes) with 2000 patterns per feature set; the resolution of source 
image is 15x16 pixels. We used five feature sets generated from character shapes as 
follows (numbers in parentheses indicate the size of each feature vector): 

 FAC: profile correlations (216) 

 FOU: Fourier coefficients (76) 

 KAR: Karhunen-Love coefficients (64) 

 MOR: morphological features (6) 
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Fig. 23. Experimental result for UCI Multiple Features dataset for single classifiers 

and ensemble methods.    
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 ZER: Zernike moments (47) 

For multiclass classification, we utilized five classifiers including decision tree 
(DT), k-nearest neighbors (KNN), artificial neural networks (ANN), random forest 
(RF), and gradient boost tree (GBT). Thus, there are 25 pairs between FEs and 
classifiers as illustrated in Fig. 22 (a); the entire system for GMB has 10x10 LMBs 
as shown in Fig. 22 (b). We measured the average accuracy with the 10-fold cross 
validation, where two-, three-, and five-folds are used for training, evaluation, and 
test set, respectively.  

The experimental results with Multiple Features dataset are shown in Fig. 23. The 
first group (light gray) contains the single FE and classifier pairs sorted by its 
accuracy which is distributed from 0.472 to 0.904. The second group (dark gray) 
contains the ensembles of classifiers as mentioned in Section 4.2. The difference 
from the pedestrian detection is the use of AdaBoost.MH [73] (ADAMH) for the 
multiclass problem instead of the original AdaBoost classifier. Because LCDF based 
on the EM algorithm is sensitive to initial values, we choose the best one among 
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TABLE IV    

RESULTS OF ENSEMBLE METHODS FOR UCI MULTIPLE FEATURE DATASET   

Ensemble 
Method 

Accuracy 

Average 
Standard 
deviation 

GMB 0.977 0.006 
LCDF 0.955 0.017 

ADAMH 0.936 0.008 
TFA 0.936 0.012 

QBWWV 0.937 0.009 
BWWV 0.943 0.005 
RSWV 0.943 0.006 
WMV 0.942 0.005 

 
many trials. The classifier ZER-ANN is removed when ensemble is constructed 
because its accuracy is under 0.5. As a result, all the ensemble schemes outperform 
all single classifiers. In particular, GMB is more efficient than other ensembles in 
terms of accuracy as shown in TABLE IV. 

2.4.5 LMB selection 

Considering the disadvantage of GMB in complexity, we tried to select 
automatically a subset of LMBs while maintaining the same level of accuracy as the 
original version using all the LMBs. The best (optimal) LMB selection can be 

generated by exhaustive search having complexity of �|𝐿𝐿𝐿𝐿𝐿𝐿|
𝐾𝐾 �, where |LMB| is the 

number of LMBs belonging to GMB and K is  the number of selected LMBs. In 
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order to avoid exhaustive search, we adopted O(K)12 scheme which selects LMBs 
in descending order of their individual accuracy. Fig. 24 (a) shows how GMB error 
changes according to the number of selected LMBs. The first 46 LMBs cover 
almost all the accuracy (error rate of 0.024) of the original GMB. The 46 LMBs 
finally selected are displayed in Fig. 24 (b) with gray color in GMB plane. While all 
the FEs are used in the selected LMBs, FE relations between MOR (D) and ZER(E) 
are not important in terms of GMB error;  <ZER(E) , FOU(B)> and <FOU(B), 
MOR(D)>  do not affect the GMB performance. In other words, although none of 
the five FEs can be removed in order to cover the original GMB performance, GMB 
complexity can be reduced by eliminating 54 weak LMBs colored white in Fig. 24 
(b). On the other hand, most relations between classifiers are significant to the GMB 
performance. 

2.4.6 Discussion 

The hierarchical ensemble scheme proposed in this paper maximally utilizes two 
ensemble directions when classifiers are gathered into ensemble as illustrated in 
Section 2.3.3 and Fig. 9. At the same time, it provides a way to efficiently solving 
the combinatorial problem of mapping multiple FEs to multiple classifiers as 
mentioned in Section 2.3.1 and 2.3.2. By using this hierarchical ensemble of LMB 
and GMB, we increase scalability of MFMC with polynomial complexity. LMB is 
designed to operate in vertical direction based on WMV optimized by using 
reinforcement learning while GMB is constructed for horizontal direction as 
Bayesian networks. TABLE V shows which ensemble scheme takes which 
direction(s) when combining its components. WMV, RSWV, BWWV, QBWWV 
and AdaBoost, which are based on weight assignments to their components, use the 
vertical direction, while LCDF and TFA, which are based on generalization and 

12 If considered a sorting problem, the complexity becomes O(KlogK) when 
using quick sort. 
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                        (a)                                  (b) 

Fig. 24. LMB selection while closely maintaining the accuracy of the original GMB 

containing all the LMBs. (a) GMB error decreases as the number of LMBs increases, 

but beyond 46 LMBs the decrease saturates. (b) The selected 46 LMBs with gray 

color.       
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regression, utilize the horizontal direction; our scheme takes into account both 
directions simultaneously. If many classifiers exist in an ensemble but they make 
same decisions, there may not be any performance improvement over single 
classifiers. For the same reason, the diversity among classifiers becomes a key to 
enhance accuracy of the ensemble system. Intuitively, ensemble diversity will 
increase only under the condition that the participating components (MFMC) use 
different methods (horizontal and vertical decisions) as shown in Fig. 19 and Fig. 23. 
In addition, the previous weight-based (vertical) methods such as WMV ignoring 
dependency between classifiers can be enhanced through RL as shown in TABLE 
II.  

The proposed method using two directions simultaneously inevitably increases 
complexity of  the optimization problem. According to our calculation, however, 

the asymptotic upper bound of the complexity is 𝑂𝑂(|𝐹𝐹|3|𝐶𝐶|3) as mentioned in 
Section 2.3.5. We can further reduce the practical complexity of GMB by using LMB 
selection as shown in the experimental section. 

2.5 Conclusion 

４６ 

 



 

TABLE V  

COMPARISON OF ENSEMBLE METHODS ACCORDING TO THE DIRECTIONS DISCUSSED IN 

SECTION 2.3.3   

Ensemble 
Method 

Ensemble direction 

Vertical Horizontal 

GMB Yes Yes 
LCDF No Yes 

AdaBoost Yes No 
TFA No Yes 

QBWWV Yes No 
BWWV Yes No 
RSWV Yes No 
WMV Yes No 

 This paper presents a hierarchical ensemble framework using multiple feature 
extractors and multiple classifiers (MFMC). Whereas the previous studies have 
concentrated on manually finding the best combination of a small number of 
existing FEs and classifiers, this paper proposes a systematic and automatic 
optimization framework for arbitrary numbers of FEs and classifiers that can also 
easily integrate newly developed FEs and classifiers. To manage the complexity of 
the optimization problem, which increases exponentially as new FEs or classifiers 
join the combination, this paper proposes to reformulate the problem in a 
hierarchical manner. In the proposed scheme, the problems are divided into a set of 
LMBs optimized by reinforcement machine learning, and then final decision is 
induced on GMB by constructing a Bayesian network. The results show that the 
hierarchical ensemble framework outperforms the previous approaches such as 
WMV, RSWV, BWWV, QBWWV, TFA, AdaBoost, and LCDF. 

Although the proposed ensemble framework increases the accuracy, utilizing 
many features and classifiers inevitably requires more computation slowing down 
the system. As a way of mitigating the problem, we consider hardware supports 
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such as many-core and/or GP-GPU. In case of critical detection systems such as 
ADAS, medical service, automatic navigation, and security system, the most 
important metric is not the hardware cost but the accuracy of the system. Actually, 
ensemble of classifiers such WMV, AdaBoost were invented by the same motivation. 
Thus the next step of our research is to design a proper hardware architecture that 
supports ensemble of various vision processing tasks including Bayesian network 
manipulations. 
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3. Synthesis of Efficient Stochastic Logic 

for Many-Variable Expressions 

3.1 Introduction 

Stochastic computing (SC) is an alternative to conventional binary arithmetic 
computing, which computes bit values with probability for applications that tolerate 

a certain level of inaccuracy. SC uses occurrence probability of 1’s in a (pseudo) 

random bit stream to represent a number, and allows for an extremely efficient 
implementation of complex functions (such as multiplication and exponentiation), 
typically with a few logic gates. For example, a conventional multiplier such as 
the one shown in Fig. 25 (c) can be replaced by a single AND gate such as 
the one in Fig. 25 (a). In addition, SC has advantages such as bit-level parall
elism and error tolerance. Due to these features of SC, orders of magnitude 
improvement in terms of area, power, and error resilience has been reported by 
previous researches applying SC to neural networks [1], image processing [2], electr
onic filters [3], and error tolerant systems [4]. Thanks to the equal positional 
weight of the bits in a bit stream for a value, the precision in SC can be tu
ned by varying the number of bits for a value without hardware modification, 
which is known as progressive precision [5]. Because of massive bit-level pa
rallelism from inherent independency between bits, critical path delay of SC l
ogic is very small compared to conventional binary arithmetic logic, which m
akes a design more efficient in terms of clock frequency and power consump
tion. Moreover, SC logic can be implemented in a serial or (partially) paralle
l manner as shown in Fig. 25 (a) and (b), where the former can operate mul
tiplication on the input bit streams with a single AND gate by scarifying 
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performance (increased number of clock cycles), while the latter takes a half of the 
clock cycles with two AND gates (i.e., two parallel units). SC is also tolerant to 
errors arising from bit-flips, which is recently focused  on by emerging 
technologies such as better-than-worst-case (BTWC) design (considering process 
variation, aging degradation, and supply voltage clock frequency scaling) [6] and 
nanometric design (implementing with carbon nanotubes, silicon nanowires, 
graphene, and molecular electronics, which inevitably generates errors) [7].  

As mentioned above, SC requires very small logic area compared to conventional 
binary logic since it uses very small building blocks for arithmetic operations. One 
Boolean gate in SC as the one in Fig. 25(a) has the same function as a conventional 
arithmetic logic block implemented with many gates as shown in Fig. 25(c). 
However, SC has a critical problem that it requires 2K bits to represent only K bit 
conventional binary numbers. For example, let us assume two K x K bits multipliers, 

 

Fig. 25.  Example of stochastic logic. (a) Multiplication with a single AND gate. (b) 

Partially parallel version for multiplication with two AND gates. (c) Three-bit 

multiplication using half adders and full adders with conventional binary radix 

encoding. (d) SC logic example with operations representing y= abd+abe+cd−abcd−

abde, where simple Boolean gates are mapped to compound arithmetic operations.  
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one with fully parallel SC logic 13  and the other with conventional binary 
arithmetic logic like the one in Fig. 25 (c). Let us also assume that the complexity 
(or area cost) of an AND gate is A while the complexity of a full adder is F. Then 
the complexity is given by  

CSC = O(A2K ) (1) 

and  

CBIN = O(FK2) (2) 

for SC logic and binary logic, respectively. Since A is much less than F, SC logic 
is smaller than binary logic in case of small K. However, the gain decreases fast as 
K (i.e., precision) increases because the complexity of SC logic increases 
exponentially whereas the complexity of binary logic increases only quadratically. 
Thus, considering arithmetic operation such as multiplication, SC logic has a benefit 
when the precision is not high. 

What makes SC more effective in implementing arithmetic logic is that only a 
single SC gate can implement a compound arithmetic function. For instance, an OR 
gate and a multiplexer (MUX) implement expressions such as y=a+b−2ab, y=(1−
c)a+cb, respectively; a MUX, for example, performs one subtraction, two 
multiplications, and one addition. Fig. 26 shows traditional logic gates and the 
corresponding arithmetic expressions implemented by using them as SC logic 
elements, which we call SC gates. Such SC logic can implement a complex 
expression when the gates are connected together. Fig. 25 (d) shows that the 
combination of two ANDs, an OR, and a MUX implements in SC logic a relatively 
complex arithmetic expression,  

13 Fully parallel SC logic takes one clock cycle working with 2K gates while fully 
serial SC logic takes 2K clock cycles with one gate. The two versions of SC logic 
consumes about the same energy, but the serial version consumes much lower static 
power.  Partially parallel versions are in between the two. 
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y = abd+abe+cd−abcd−abde, (3) 

which, in binary logic, implements a function given by 

Y = MUX(AND(A, B), MUX(AND(C, D), OR(D, E))). (4) 

As shown above, a complex conventional binary logic implementation of an 
arithmetic function can be replaced by a very simple SC logic implementation. 
However, it is difficult to find such an SC logic that efficiently implements a given 
arithmetic expression, which has prevented usage of SC logic. Moreover, because 
SC logic has limited capabilities, which are stemming from their probabilistic 
characteristics, an arbitrary arithmetic expression cannot be simply converted into 
an equivalent SC logic. In this paper, we present an automatic logic synthesis 
approach that can find a suitable SC logic from a given arithmetic expression in an 
application. We try to solve the SC logic synthesis problem inspired by the 
traditional multi-level logic optimization techniques [8] and their extensions [9, 10]. 
They are based on exhaustive search among lots of candidates and thus require 
many sophisticated algorithms to avoid excessive runtime. For the SC logic 
synthesis, however, our algorithm investigates the structure of a given expression 
and effectively explores only a limited set of candidates. More specifically, our 
scheme prunes the useless search space by using common forms of SC logic. 
Experimental results demonstrate that our technique can generate SC logic circuits 
that outperform the conventional binary logic circuits in terms of area, critical path 
delay, and power consumption. 

This paper is organized as follows. Section 3.2 gives a brief overview of the 
related work. Section 3.3 describes the proposed logic synthesis schemes for SC. 
Section 3.4 shows experimental results, and finally, Section V concludes the paper 
with some remarks. 

3.2 Related Work 

There have been abundant previous researches on SC. Unipolar and bipolar 
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encoding, and some basic stochastic operations were introduced early in the 60’s 

[11]. Much later, Brown and Card [1] extended the set of stochastic operations 
introducing important special functions based on state machines. Although 
stochastic computing had been applied to implementing neural networks even in the 

90’s [12], recent emphasis on approximate computing applications rekindled the 

interest in SC [13]. From the synthesis point of view, [14] and [15] set an important 
milestone by introducing general methods of designing univariate functions using 
combinational and sequential circuits, respectively. Another study [16] suggested 
transform approach for Boolean operation into SC operation in spectral domain. [17] 
used a regularized polynomial form called binary combination polynomial for 
synthesizing a given expression. Because those approaches use basis functions to 
express a polynomial, the SC logic obtained by those schemes is in the form of sum 
of basis terms like sum of product terms in two-level logic. In particular, as 
variables are added into an expression, the complexity exponentially grows, because 
basis functions should represent all combinations of variables. 

There have been many researches investigating error estimation and propagation 
for a given multi-level SC logic circuit [7, 18, 19, 20, 21]. The main concern of 
those researches is to analyze variance propagation and the effect of correlation 
between input bit streams in SC logic. [22] proposed a programmable processor that 
took advantage of stochastic functional units in the aspect of computer architecture. 
Many researchers worked on practical applications such as image processing [2] [13] 
[23], low-density parity-check (LDPC) [25] [26] [27] [28] [29], median filter [30], 
FIR filter [31], Viterbi decoder [32], Turbo-decoder [33], DCT [34], MIMO detector 
[35], and neural networks [36]. Those researches proposed only a dedicated solution 
for a specific application.  

The methods proposed in [14] [16] [17] can synthesize SC logic circuits for 
univariate polynomials or polynomials with only a few variables. Although 
polynomials with a few variables are also an important class of computation, there 
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are applications that use functions with multiple input signals (i.e., many variables). 
For example, trilinear interpolation of volume rendering in computer graphics has 
11 variables and 27 terms in its sum-of-products form. For this problem instance, 
the previous approach [17] needs to generate 2,048 (=211) bases in the worst case, 
and moreover, perform stochastic addition of at most 2,048 terms, which not only 
incurs quite significant an overhead, but also considerable loss in the precision of 
the computation. For such many-variable expressions, the ability to handle multiple 
input signals at once can lead to a more efficient SC logic, as demonstrated in our 
experiments. To the best of our knowledge, this is the first work that applies the 
ideas of multi-level logic synthesis to the SC synthesis problem.  

3.3 SC Logic Synthesis for Multivariate Expressions 

The heart of our multi-level SC logic synthesis is to find a logic network 
comprised of basic SC operations corresponding to the SC gates shown in Fig. 26 
for a given conventional expressions consisting of basic arithmetic operations. In 
addition, some special SC logic circuits such as division or integration [1] [11]  
and other optimized modules (e.g.,  LDPC [25] and polynomials [14] [16] [17]), 
which we call SC macro-circuits, can be integrated as sub-circuits into the final SC 
logic circuit for the entire expression during our synthesis process. We do not break 
a macro-circuit, but use it as a whole as if it were a variable in the expression. A 
macro circuit can be a sequential circuit, and thus the final SC circuit may include 
sequential logic as well as combinational logic. In this paper, we consider the 
problem of synthesizing stochastic logic for an arbitrary multivariate expression. As 
shown in Fig. 27 (a), from a given algorithm, the design flow generates basic blocks 
(BBs) and the corresponding data flow graphs (DFGs). Then for each of the BBs 
(and DFGs), it generates an arithmetic expression in the form of sum-of-products 
(SOP) possibly including the SC macro-circuits. Then our scheme proposed in this 
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paper starts from the SOP form. 14  

3.3.1 Probabilistic Logic 

In unipolar encoding, real number x in the range of [0 1] is represented by a 
binary random variable X, whose probability of being 1 (sometimes called signal 
probability) equals pX. That is, x = pX =P(X=1), which is obtained by dividing the 
number of 1s by the total number of bits in the bit stream. Given two independent 
random variables A and B (representing two real numbers a and b), the output Y of 
the AND operation on A and B has the signal probability expressed by pY = pA˄B = 

pA × pB = ab, meaning that a two-input AND gate implements the product of two 
stochastic numbers in unipolar encoding as shown in Fig. 25(a). In case of two-input 
OR gate with input A and B or input pair <AB>, because the inputs <01>, <10>, and 
<11> makes the output 1, the probabilistic value of the output becomes the 
probability sum of the input pairs, P(A=0, B=1) + P(A=1, B=0) + P(A=1, B=1) = (1

14 Since bipolar encoding representing the range of [-1 1] has the same 
mechanism to unipolar encoding [0 1], this paper consider unipolar encoding in 
most cases for simplicity. 

 

Fig. 26.  SC gates and their arithmetic operations in unipolar encoding.      
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−a)b+a(1−b)+ab = a+b−ab. Fig. 26 shows the basic SC gates and the functions 
they implement in unipolar encoding, assuming that the inputs are independent. 
Note that simple additions such as a+b cannot be implemented by a simple SC logic 
circuit because they may result in values greater than one; scaled additions such as 
0.5(a+b) can be accomplished by a MUX, which can implement (1−c)a+cb with c 
set to 0.5. 

Because stochastic logic works in a probabilistic manner, it inherently has 
non-deterministic errors in contrast to conventional binary radix logic. Regarding 
bias and variance, they represent respectively the bias from mean value p for a 
signal in the stochastic logic and the range of errors from the mean. Because 
converting a given expression into an SC circuit by using the arithmetic expressions 

 

Fig. 27. Overview of the proposed SC logic synthesis with many variables. (a) The 

proposed scheme begins with a basic block (BB) and its data flow graph (DFG). (b) 

Example of correlation. (c) Method to solve the correlation problem by using 

different random sources and a D flip-flop. (d) Swapping the wire can remove the 

correlation in the parallel version.       
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of Fig. 26 generates expressions equivalent to the original expression, the bias of the 
stochastic circuit is zero in our approach; for example, (4) represents (3) without 
bias. In case of variance, some studies suggest the probability models from a simple 
one [11] (considering the error of Bernoulli sequence no matter how the SC circuit 
is large) to a complex one [18] (considering propagation of the variance through 
gates). Another type of error is due to correlation between bit-streams.  

Two correlation cases are shown in Fig. 27 (b); in case of α type, the statement 

b=a*a is implemented by B = AND(A, A) = A, which is not A*A. In order to resolve 
the problem, we can use different random sources A1 and A2 (i.e., AND(A1, A2) = 

A1*A2) as shown in Fig. 27 (c). In case of β type in (b), because the same signal B 

branches and reconverges at node e, the input signals of e may be correlated. This 
type of correlation can be reduced by using D flip-flops as shown in (c) [1] [11] [20] 
[22]. In the parallel version, the correlation can be reduced by swapping the wires as 
shown in (d). Meanwhile, methods such as probabilistic transfer matrix (PTM) [24] 
and SC correlation (SCC) [19] can be used in order to find and measure the 
correlation [20]. 

We assume some conditions in this paper as follows, 

The input is an expression with a finite number of real variables and real 
coefficients.  

The expression can be converted into an SOP form, 

ZSOP = ∑ ∏ 𝐿𝐿𝑖𝑖,𝑗𝑗𝑗𝑗𝑖𝑖 , (5) 

where Li,j is a literal or an SC macro-circuit. 

The inputs and the outputs are within [0 1] range by using linear scaling such that 

(V − Vmin) / (Vmax − Vmin), where V is a current value and Vmin and Vmax are the 
minimum and maximum values, respectively. 
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Different variables A and B are independent. 

Two variables A0 and A1 representing the same input variable A can be made 
independent by using different random sources such as Fig. 27 (c). 

Note that ZSOP is an expression possibly containing an SC macro-circuit as a 
variable; we focus on SC logic synthesis for a multivariate expression having many 
variables, which is different from [14] [16] [17]. 

3.3.2 Definitions 

The following terms are from multi-level logic minimization [8]. A literal is 
either a variable or a constant. A cube is a product of literals. An expression is called 
a kernel if, when written in SOP form, there is no literal (other than 1) dividing all 
the cubes simultaneously, aka cube-free. A kernel of a given expression can be 
obtained by dividing the given expression by some cube, in which case the cube is 
called a co-kernel. Kernels have levels; a level-0 kernel has no inner kernels, and a 
level-n kernel contains one or more level-(n−1) kernels. For example, in the 
following expression,  

TABLE VI  

KERNEL, CO-KERNEL, AND SC KERNEL OF EXPRESSION (6)     

Kernel Co-Kernel Level SC Kernel 

1 – a bef 0 Yes 
1 – e acdf, abf 0 Yes 
b – cd aef 0 No 
1 – a – e + ae = 1 – a – e(1– a) bf 1 Yes 
be + cd– b– cde = cd– cde– b(1– e) af 1 No 
ab – b – acd = – b + a(b – cd) ef 1 No 
– ab – be + abe + acd – acde f 2 No 
abef + acdf + b – abf – acdef – bef 1 3 No 
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x = abef + acdf + b − abf − acdef − bef 

= b + f(acd − ab + e(−acd − b(1 − a))) (6) 

a, b, c, d, e, f, and 1 are literals; abef and acdf are cubes; the first line of an 
expression x is an SOP form while the second line is a factored form. The SOP form 
has six variables and 20 literals while the factored form has 14 literals. Table VI 
lists kernels, co-kernels, and levels of expression (6).  

We define SC logic network as a set of SC gates with a set of interconnections 
among them. We say that a conventional expression can be implemented by an SC 
logic network, if it is possible to convert the expression into an SC logic network by 
using only the SC gates shown in Fig. 26. When an expression D divides another 

expression E, i.e., E=Q∙D+R, we call D a divisor of E. We call D a factor when D 

evenly divides E, i.e., there is no remainder (R=0). In this paper, we adopt the 
division method used in [8]; the complexity of the division is only O(nlogn), where 
n is the number of product terms. More terms are defined in the following sections 

 

Fig. 28.  Overall process for the proposed algorithm.      
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as necessary. 

3.3.3 Overview of the Proposed Method 

As illustrated in Fig. 2, the overall process for the proposed method consists of 
three parts: i) generating iSC kernels, i.e., implementable SC kernels (Sections 3.3.5, 
3.3.6, and 3.3.7), ii) finding relationship between iSC kernels (Section 3.3.8), and iii) 
synthesizing SC logic from the original input expression (Section 3.3.9, 3.3.10, and 
3.3.11). The basic idea is to decompose the input expression into iSC kernels, each 
of which can be implemented using the SC gates. Refer to Sections 3.3.5 and 3.3.7 
for the definition of SC kernel and iSC kernel.  

If some decomposition is derived from the original expression, it is accepted as a 
solution. There can be many different solutions, and for the exploration, the 
algorithm tries to divide the given expression by each iSC kernel. Depending on the 
result of the division, the algorithm constructs a partial solution and calls itself 
recursively on the quotient and the remainder. Since the quotients and the 
remainders are simpler than the dividends, the algorithm must terminate after finite 
iterations. The search space is combinatorial and defined by the number of iSC 
kernels and the number of ways of combining them. To speed up the search, the 
algorithm pre-examines the relationships between iSC kernels and exploits them 
during the search. In the final step, the SC logic network is synthesized for the 
original expression by using iSC kernels and the relationship graph. 

Our scheme supports expressions with degrees higher than two (e.g., x3 is 
supported). Note that the dependency problem in high degree terms can be 
mitigated by using the isolation scheme [20] (see Section 3.3.10). 

3.3.4 Direct Synthesis VS. Kernel-based Synthesis 

Our first method, called direct synthesis, arranges the input expression in an 
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arithmetic (not logical) SOP form, which is then mapped to SC logic in a 
straightforward way. This method can handle any multivariate expression, but may 
incur some loss in precision. Given Fig. 29, the definition of direct synthesis is  
implementing each product term using an AND gate (or XNOR in bipolar encoding), 
and then combining the outputs of the AND gates using a MUX (i.e., scaled 
addition or scaled subtraction); Fig. 29 shows examples, where y =  ac+bd+ad+bc 
is implemented with y = 4{ 0.5(0.5(ac+bd) + 0.5(ad+bc)) } in unipolar encoding 
while y = (b+c−ab−ac+ad) is implemented with y=8{ 0.5(0.5(0.5(b+c)−
0.5(ab+ac)) + 0.5(0.5(0.5ad))) } in bipolar encoding.  

Direct synthesis can also be performed on a factored form of the same expression, 
which reduces the number of gates and literals. In this case, the original expression 
(ac+bd+ad+bc) is algebraically divided by (a+b) or (c+d) to obtain a factored form 
(a+b)(c+d). 15 

15 The factored form is implemented by using the conventional multilevel logic 
optimization technique. 

 

Fig. 29.  Examples of direct synthesis. (a) ac+bd+ad+bc, where scale factor is 4.  (b) 

b+c−ab−ac+ad; the scale factor is 8. It is implemented with bipolar encoding because 

of scaled subtraction.    

Y

A

y=ac+bd+ad+bc
  =4{0.5(0.5(ac+bd)+0.5(ad+bc))}

B

D

C

0.5

0.5

0.5

(a) (b)

0
1

0
1

0
1

YA

B

D

C
0.5

0.5

0.5

0
1

0
1

0.25

0
1

0.5

0
1

=8{0.5( 0.5( 0.5(b+c)-0.5(ab+ac))
      + 0.5(0.5(0.5ad)) ) }

y=b + c - ab - ac + ad

６１ 

 

                                                      



 

Such a use of MUX requires scaling as well as a new constant input for the MUX 
control (i.e., 0.5 in Fig. 29). Thus in order to recover the original function, the 
output of the MUX needs to be scaled back up (e.g., using coefficient 8 in Fig. 29). 
However, not only is it complex, slow, and expensive, but also it introduces loss of 
precision. For an expression with N variables, there can be up to 2N product terms in 
the worst case, which implies that the data can be scaled by up to N levels (one level 
corresponds to 2X scaling) resulting in the corresponding precision loss. This 
problem can seriously degrade the accuracy even for expressions with a small 
number of terms, which exists in all similar previous approaches [17]. 

In this paper, we try to avoid scaled addition as much as possible. Our approach is 
to search the design space created by the combinations of basic SC gates to find a 
match while suppressing the use of MUXs as much as possible. The key then is 
speeding up the search, for which we use techniques from multi-level logic 
minimization. This method is a very elaborate scheme that explores many possible 
combinations of basic logic elements to find the most compact SC logic matching 

TABLE VII  

SC-LOGIC REPRESENTATION FOR TWO-INPUT GATES     

Gate SC Operation (1−P) Representation 
(1−P)M+P’N  
Format 

MUX (1−S0)S1+S0S2 (1−S0)S1+S0S2 (1−P)M+PN 
INV 1−S0 (1−S0) (1−P) 
NAND 1−S0S1 (1−S0S1) (1−P) 
OR S0 +S1−S0S1 (1−S0)S1+S0 (1−P)M+P 

NOR 1−S0 −S1+S0S1 −{(1−S0)S1+S0 − 1} * (1−P)M+P’ 
XOR S0 +S1−2S0S1 (1−2S0)S1+S0 (1−P)M+P’ 
XNOR 1−S0 -S1+2S0S1 −{(1−2S0)S1+S0 − 1} (1−P)M+P’ 
AND S0S1 N/A N/A 

 * NOR gate can also be represented by (1− S0)(1-S1) or (1− P)M form; the two versions are identical in terms 

of complexity in SC logic synthesis process.     
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the input expression. To avoid excessive runtime, we consider only possible 
structures of SC logic that can be generated from the original expression, which 
allows us to explore only a limited set of candidates. It is inspired by conventional 
multi-level logic optimization [8, 9, 10]. We call this method kernel-based synthesis, 
since it tries to generate SC logic that is minimized using the concept of kernels. For 
example, the SC logic in Fig. 25(d) is the result of kernel-based synthesis for the 
expression in (3), which has a gain compared to that of direct synthesis in terms of 
area, critical path delay, and accuracy. 16 The problem is how to find an optimal SC 
logic network from a given expression, which is explained in the following sections. 

3.3.5 SC Kernel 

In the traditional multi-level logic synthesis, kernels are extracted to select good 
divisor candidates for algebraic division, since the kernels can divide the original 
expression. Most schemes used in conventional multi-level logic optimization 
including the one in [8] try to find a good division result through exhaustive search 
using divisors obtained from kernels [10]. However, the complexity is prohibitively 
high, since even a reasonably sized expression can generate many kernels and thus a 
huge number of divisors. In addition, every subset of cubes in a kernel can be a 
divisor for the given expression. For example, if an expression generates N kernels 
and the number of cubes in the i-th kernel is Ki, the number of candidate divisors is 
∑ (2𝐾𝐾𝑖𝑖 − 1)𝑁𝑁
𝑖𝑖=1  in the worst case. Thus, the number of ways of decomposing the 

given expression becomes {∑ (2𝑁𝑁𝑖𝑖 − 1)}!𝑁𝑁
𝑖𝑖=1 , which is obviously intractable. 

However, in our SC logic synthesis, we prune a large number of candidates that are 
not suitable for SC logic networks. Thus, we can find candidates rapidly even with a 
simple search. This contrasts to the conventional multi-level logic synthesis. 

16 More compact SC logic network is in general more accurate due to limited 
error propagation. 
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The question to be answered is how to find good divisors to decompose a given 
expression into sub-expressions that are eventually transformed into SC gates. For 
this, we define SC kernel as an expression that has one constant term no less than 1 
and at least one product term with negative coefficient. 17 Simply speaking, it has a 
(1−P) form, where P is a sub-expression or other than a constant. The reason for 

considering the (1−P) form is that, due to the probabilistic bound “1”, most SC 

gates in Fig. 26 can be represented by a (1−P) form or an expression containing a 
(1−P) form except for multiplication xy (i.e., AND gate) as shown in Table VII. SC 
kernels can be obtained by dividing the original SOP by cubes in the same manner 
as finding kernels in multilevel logic. Identifying SC kernels among the kernels of 
an expression is straightforward as exemplified in Table VI. An expression without 
any SC kernel (e.g., dot product expression has no SC kernel in it) is synthesized by 
the direct synthesis method. 

All the SC gate representations shown in Table VII except for multiplication (i.e., 

17 A constant no less than 1 is allowed. For instance, (2-R) becomes 2(1-0.5R), 
where (1-0.5R) is a normal (1-P) form, and 2 is a scale factor of the expression. 

TABLE VIII     

SC KERNEL AND PRIME SC KERNEL OF EXPRESSION T IN EXAMPLE 2  

SC Kernel Prime SC Kernel 

1+bchi+bcm+hm−bc−bchm−hi−m No 
1+abc−a−bc No 
1+bch−bc−h No 
1+hm−hi−m Yes 
1−a Yes 
1−bc Yes 
1−h Yes 
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AND gate) can be expressed as (1−P)M+P’N, where P, M, and N are 

sub-expressions  and P’ is a modification of P. The modification means that P’ has 

the same expression as P but with a different coefficient and/or constant term 

subtracted. For example, in case of NOR, P is S0 while P’ is (S0−1). P’ can be 

recognized within linear time (i.e., O(n), n is the number of terms in a 

sub-expression); thus, finding P’ is very fast. We call the expression (1−P)M+P’N a 

common SC form based on (1−P). For example, a MUX is represented by a 
common SC form (1−P)M+PN; INV and NAND by (1−P); OR by (1−P)M+P; 

NOR, XOR, and XNOR by (1−P)M+P’. Thus, if we find a sub-expression 

transformed to a common SC form, it can be mapped to an SC gate.  

Example 1. Given the expression in (3), y can be divided by (1−ab), which is in 
the form of (1−P). i.e., y = (1−ab)cd+ab(d+e−de). Since this is a MUX form (1−

P)M+PN, It can be converted into SC logic such as Mux(ab, cd, d+e−de). □ 

In case of three or more inputs, the gates can be hierarchically decomposed into a 
set of two-input gates; it should contain a (1−P) form for each two-input gate. For 
example, Fig. 31 shows that three-input OR gate is decomposed into two two-input 
OR gates, each containg an SC kernel. 

3.3.6 Prime SC Kernel 

A lower-level (child) SC kernel can be generated by dividing an upper-level 
(parent) SC kernel by a cube. The lower-level SC kernel can be further divided to 
generate even lower-level SC kernels. This process is repeated until no more SC 
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kernels are generated. In this way, all possible SC kernels can be generated to form 
a DAG (Direct Acyclic Graph), where each node represents an SC kernel and each 
directed edge represents a link from a parent SC kernel to its child SC kernel.  

If an SC kernel y can be formed by a product of some (or all) of its children x1, 
x2, ..., xk (i.e., y is fully factored by the children), then the decompositions obtained 
by using y as a divisor are included in the set of decompositions obtained by using 
those children, and thus the synthesis process does not need to consider y. If an SC 
kernel cannot be formed by a simple product of its children, then the SC kernel is 
called a prime SC kernel.  

Example 2. Consider the following expression (same as the one in Fig. 30 (a)). 

t = abc + abcghm + abchij + abcjm + abck + aghi + agm + ahjm + aj + k − 
abcghi − abcgm − abchjm − abcj − aghm − ahij − ajm − ak − bck,  

where the expression has nine variables, 75 literals, and 19 terms in the SOP form. 
Table VIII lists all the SC kernels extracted from the expression. The SC kernels 
form a DAG as shown in Fig. 30 (c). Some SC kernels (represented with gray ovals) 
are fully factored by its children and such SC kernels are excluded from the DAG 
(see Lemma 1). Excluding non-prime SC-kernels helps reduce the search space. The 
white ovals in Fig. 30 (c) represent prime SC kernels, which cannot be fully 

factored by their children. □ 

 

Fig. 30.  SC kernels for expression t in Example 2. (a) SOP expression for t and the 

synthesis result T. (b) Schematic diagram for T. (c) DAG for SC-kernel.       
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Lemma 1. (Prime SC kernel) A compound (non-prime) SC kernel, which is 
fully factored (i.e., no remainder) by prime SC kernels, can be ignored during the 
SC logic synthesis, since the space searched by using the prime SC kernels covers 
the space searched by using the compound SC kernel. 

Proof. Consider an expression E that can be divided by a compound SC kernel 
H=∏ Li

𝑛𝑛
𝑖𝑖=1 , where Li's are prime SC kernels and n is the number of prime SC 

kernels. Then 

E = QH+R, (7)  

where Q is the quotient and R is the remainder.  

Each Li can also divide E since it is a kernel. Thus 

E = Q1L1+R1 = (Q2L2+R2)L1+R1  

= Q2L1L2+(R2L1+R1)=… 

=Qn ∏ Li+∑ {Ri ∏ Lj-1
i
j=1 }n

i=1
n
i=1   

= QH+R (8) 

where L0 is 1. We see in (8) that various decompositions are possible by using 
only prime SC kernels (Li's) and one of them is actually the same as that obtained in 
(7) by the compound SC kernel. Thus, compound SC kernels can be removed from 

 

Fig. 31.  Decomposition of three-input OR gate. All the gates contain (1-P) 

expression. (a) Two-input OR gate. (b) Three-input OR gate. (c) The decomposed 

three-input OR gate contains (1-P) form such as (1-a) and (1-k).     
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consideration in the process of design space exploration. □ 

3.3.7 iSC Kernel 

Not all prime SC kernels generated from an expression can be implemented as an 

SC logic network. For example, (1−c+gk) can be a prime SC kernel of an 
expression but is not implementable. We define iSC kernel as a prime SC kernel that 
can be implemented with one or more SC gates in Table VII. Thus we find an iSC 
kernel of the (1−P) form in a given expression to construct a common SC form, (1

−P)M+P’N, where each of P, M, and N can also have a common SC form in a 

recursive manner. We call an iSC kernel (1-P) a level-0 iSC kernel, if P is a single 

cube. If P has one or more iSC kernels and the highest level of the kernels is λ, then 

the level of the iSC kernel (1-P) is λ+1. For example, (1–a) and (1–bc) are level-0 

iSC kernels, while (1+ac–bc−a) = 1−{(1−c)a+cb} = 1−Mux(c, a, b) = Inv(Mux(c, 

a, b)) is a level-1 iSC kernel. Note that an iSC kernel generated from a leaf SC 

 

Fig. 32.  Finding iSC kernels from prime SC kernels for Example 3. (a) SOP form of 

expression z. (b) SC logic for expression z. (c) DAG of prime SC kernels derived by 

expression z. (d) Final DAG of iSC kernels derived from (c).       
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= 1 - {(1 - ( cqw + qv - cqv ))s + (cqw + qv - cqv )k}

iSC Kernel

(d)

C1

C2

D1
D2

C3

C4

D3
D4

D5

S

Z

Q

C

V
W

C

G
K

kqv

s

qv

0
1

0
1

1
0
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kernel is always level-0 since a leaf node has no child. 

The idea is to generate iSC kernels from prime SC kernels. We do this 
hierarchically starting from the leaf nodes in the SC kernel DAG. First we accept a 

leaf node as a level-0 iSC kernel if and only if it takes (1 – single cube) form. If a 

leaf node is not in this form, then it cannot be a level-0 iSC node as shown in the 
following lemma. 

Lemma 2. (Level-0 iSC kernel) A leaf SC kernel is an iSC kernel, if and only if 
it takes the (1−single cube) form. 

Proof. The 'if' part is trivial; if a leaf SC kernel takes the (1-single cube) form, 
then it can be implemented with an INV or a NAND gate in Table VII and thus it is 
an iSC kernel. To show the 'only if' part, let's assume that a leaf SC kernel is a 
level-0 iSC kernel but does not take the (1−single cube) form. That is, the leaf SC 
kernel is assumed to have (1−sum of multiple cubes) form. Note that the sum of 
multiple cubes does not have another (1-P) form since it is from a leaf SC kernel 
(no child), and thus it cannot be implemented with the gates in Table VII. Therefore, 

the leaf SC kernel cannot be an iSC kernel, which is a conflict □ 

For example, in Fig. 30(c), A1=(1−a), A2=(1−bc), and A3=(1−h) are all level-0 
iSC kernels. If an SC kernel is not an iSC kernel, we can make it an iSC kernel by 
dropping some terms.  

Example 3. Consider the following expression.  

z =c + cckqv + ccqsw + cgkkqw + cgkqsv + cqsv + gkkqv + gks − cckqw − 
ccqsv − cgkkqv − cgkqsw − ckqv − cs − gkqsv,  
where the expression has seven variables, 68 literals, and 15 terms in SOP form. 

None of the prime SC kernels of the expression z are iSC kernels as shown in Fig. 
32 (c). We first consider only level-0 prime SC kernels including C1 and C2. Node 
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C1=(1+gk−c) is not an iSC kernel since P=(c−gk) is not a single cube. If we 
remove gk, it becomes implementable like node D1=(1−c). Since it still divides the 
original expression18, it is a level-0 iSC kernel of the expression. In case of node 

C2=(1+gk−c−gs), we obtain node D1=(1–c) and node D2=(1−gs) by removing 

terms gk and gs and terms gk and c, respectively. 

Traversing toward the predecessor nodes, we identify higher level iSC kernels by 
dropping terms that cannot be included in the common SC form. For example, by 
dividing node C3 with level-0 iSC kernel D1, we obtain C3=1−{(1−c)qv + cqw + 
gkqv − gkqw}. If the terms gkqv and gkqw are removed19, node D3 is obtained as 
an iSC kernel because (1−c)qv + cqw is a common SC form. Similarly, level-2 
node C4 is divided by D3 resulting in 1 − {(1 − (cqw + qv − cqv))s + (cqw + 
qv − cqv)k + gkkqv + gkqsw − gkkqw − gkqsv}, and the terms gkkqv, gkqsw, 

gkkqw, and gkqsv can be removed to obtain kernel D5. □ 

3.3.8 Relationship Between iSC Kernels 

Once iSC kernels are generated, we can proceed to our synthesis algorithm. 
However, for effective pruning of the search space, we exploit the relationship 
between iSC kernels. For example, consider casting the expression t in Fig. 30 into 

the common SC form based on A1=(1−a) to obtain t=(1−P)M+P’N. It is done by 

using iSC kernel A1=(1−a)=(1−P) as the divisor. If we know a priori from the 
relationship between nodes A1 and A3=(1−h) that the common SC form based on 

18 Any subset (sub-expression) of a kernel divides the original expression. 
19 The terms to be removed can be selected easily through pattern matching with 

the (1− P)M+P’N form. 
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A3 does not exist in the M part of the (1−P)M+P’N form based on A1 (we call this 

"M of A1" for brevity), then we can prune useless trials of casting t into the form of 

t=(1−a){(1−h)B + h∙C}+ a∙D, where B, C, and D are sub-expressions, since such a 

casting is not possible.  

We define five relationships between two iSC kernels as follows, all based on the 

common SC form, W=(1−P)M+P’N. 

M-containing: If W has the following pattern 

W = (1−P0){(1−P1)A+B}+P0C +F (9.1) 

= (1−P1){(1−P0)A+P0D}+ (1−P0)B+P0E+F (9.2) 

where A≠0, B, and C=(1−P1)D+E are sub-expressions, and F can be either 0 or 

an arbitrary remaining subexpression. That is, if M of (1−P0) contains (1−P1), and 
C (i.e., N of (1−P0)) is either 0 or a sub-expression containing (1−P1), then we say 
that (1−P0) is M-containing (1−P1).  

MO-containing: If W has the following pattern 

W = (1−P0){(1−P1)A+B}+P0C+F (10.1) 

= (1−P1){(1−P0)A}+ (1−P0)B+P0C+F, (10.2) 

where A≠0, B, and C≠0 are sub-expressions, and F can be either 0 or an arbitrary 

remaining subexpression. That is, if only M of (1−P0) contains (1−P1) but C (i.e., 
N of (1−P0)) does not contain (1−P1), then we say that (1−P0) is MO-containing (1
−P1).  

NO-containing: If W has the following pattern 
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W = (1−P0){A} + P0{(1−P1)B+C}+F (11.1) 

= (1−P1){P0B} + P0C+(1−P0)A+F, (11.2) 

where A≠0, B≠0, and C are sub-expressions, and F can be either 0 or an arbitrary 

remaining subexpression. That is, if only N of (1−P0) contains (1−P1), then we say 
that (1−P0) is NO-containing (1−P1). 

Unrelated: If W has the following pattern 

W = (1−P0)A + (1−P1)B +F, (12) 

where A≠0, B≠0 are sub-expressions, and F can be either 0 or an arbitrary 

remaining subexpression. Then we say that (1−P0) and (1−P1) are unrelated. 

P-containing: If W has the following pattern 

W = (1−P0)A + B, P0=(1−P1)C+F, (13) 

TABLE IX    

DETERMINING NON-P-CONTAINING RELATION A     

Numerator QX QY  RX 

Denominator Y 1−X 1−X Y 

M-Containing D  − 
D b D b 

N c − 

MO-Containing  D − D N 

NO-Containing  N D − D 

Unrelated N N − D 
a D: divides with or without remainder, –: don't care,  
N: cannot divide (including the case of zero dividend). 

b C≠0, c C=0 in (9.1). 
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where A≠0, B, C≠0 are sub-expressions, and F can be either 0 or an arbitrary 

remaining subexpression. Then we say that (1−P0) is P-containing (1−P1). 

Note in (9.1) and (9.2) that (1−P1) is also M-containing or MO-containing (1−
P0). In (10.1) for the MO-containing relationship, A and C should not be zero. If 
C=0, it becomes the M-containing relationship. In the same manner, in (11.1) for the 
NO-containing relationship, A and B should not be zero and the relationship is also 
unidirectional. The unrelated case defined in (12), where A and B should not be zero, 
is not implementable with the SC gates. In our example of Fig. 30, A1 is 
NO-containing A3 and A4. A2 is MO-containing A3 and A4, and A4 is P-containing 
A3. Fig. 34 shows two examples of cascaded relationships.  

To find the relationship between two iSC kernels X=(1−P0) and Y=(1−P1), we 
first check to see if X is a predecessor of Y in the iSC kernel DAG, hence Y can 
divide X but Y is not a factor of X. If yes, then X is P-containing Y (e.g., A4 is 

 

Fig. 33.  Relationship between two iSC kernels. (a) The procedure to find the 

relationships between them. (b) An example of iSC kernel relationship graph for Fig. 

30.     

(1 - a)

(1 - bc)

(1 + hlm - hi - lm)

(1 - h)
P-Containing

NO-Containing

MO-Containing

M-Containing

Start Node

A1

A2

A3

A4
(a)

(b)

P-Containing
Check in DAG

(QX / Y)
in Table IV

‘D’

P-Containing

MO-Containing

Yes
Start

(RX / (1-X))
‘D’

M-Containing

‘N’

‘N’

UnrelatedNO-Containing

{RX / (1-X)} / Y
‘D’‘N’

(RX / Y)

(QY / (1-X))
‘N’‘D’

‘D’
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P-containing A3 in Fig. 30). If X and Y are not in a P-containing relationship, we 
divide the original expression W by X and Y to obtain the quotients and remainders 
as follows: 

QX ≡ W / X,  RX ≡ W % X , 

QY ≡ W / Y,   RY ≡ W % Y. (14) 

If QX is divided by Y, then X is M-containing or MO-containing Y. In this case, if 

RX is not divided by (1−X) or if it is divided by both (1−X) and Y, then X is 
M-containing Y; otherwise, X is MO-containing Y. Table IX shows how we 
determine the relationship between X and Y. Fig. 33 (a) illustrates the process of 
finding the relationship between iSC kernels.  

Let us take the example in Fig. 30 (c). Given X = (1−a), Y = (1 + hlm − hi − 
lm), and the original expression t, we examine QX = t/(1−a) as well as QY and RX 
according to Fig. 33 (a), to find that (1−a) is NO-containing (1 + hlm − hi − lm). 
This process is applied to every pair of iSC kernels and then we can get a 
relationship graph for Fig. 30 (b) as shown in Fig. 33 (b). Note that the relationship 

 

Fig. 34.  Examples of relationships between iSC kernels in Fig. 30. A3 exists in P of 

A4, M of A2, and N of A1; A4 exists in M of A2 and N of A1.         

A1 P M N

A2 P M N

A4 P M N

A3 P M N

A2 P M N

A1 P M N

A4 P M N

A3 P M N

(a) (b)
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between any pair of iSC kernels can be identified by at most four divisions (for the 
case of NO-containing and Unrelated). Actually, RY does not need to be calculated at 
all accoding to Table IX.  

3.3.9 Hybrid Scheme 

Our kernel-based logic synthesis approach is not applicable to some expressions. 
A good example is dot product such as (ab+cd), which does not even have any SC 
kernel. During SC logic synthesis, if a part of an expression is identified as not 
implementable with the kernel-based synthesis, then direct synthesis scheme (see 
Section 3.3.4) is invoked to generate SC logic for that part of computation. In Fig. 
35, for example, the expression of Fig. 29 (b), (b+c−ab−ac+ad), can be 
implemented by MUX(a, b+c, d), where a is the control input to the MUX. 
However, since (b+c) is not implemented by the kernel-based synthesis, we use 
direct synthesis to obtain 0.5(b+c) and thus we have MUX(A, MUX(0.5, B, C), 

0.5D) for Y, where the precision loss (i.e., scale factor) becomes 2× only (in case of 
full direct synthesis, the precision loss becomes 8×). 

 

Fig. 35.  Example of hybrid scheme combining both kernel-based and direct 

synthesis. (a) Expression of Fig. 29b and their SC logic. (b) Schematic diagram for the 

example in unipolar encoding.      

y = b+c-ab-ac+ad
=(1-a)(b+c)+ad
=2{(1-a)0.5(b+c)+0.5ad}

0.5

B
C

0.5
D

A

Direct synthesis

Kernel-based synthesis

Y

(a) (b)

Y = Mux(A, Mux(0.5, B, C), 0.5D)

0
1

0
1
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3.3.10 Cost Function 

There can be many candidate solutions (SC logic networks) generated during the 
SC logic synthesis process, and among them we try to select the minimum cost 
solution x* given by 

x* =  argmin𝑥𝑥∈𝑆𝑆Ctotal(x),  (15) 

where S is the set of candidate solutions. We define the total cost Ctotal(x) of 
solution x as 

Ctotal(x) = (1−α)Carea(x) + αCerror(x), (16) 

where Carea(x) is the area of the SC logic network, Cerror(x) is the amount of error 

generated from it, and α is for weight distribution between them. The area can be 

measured by the number of literals Nliteral in an SC logic network as mentioned in 
[8]. For example, the SC logic network in (4) has six literals. Meanwhile, we define 
two types of error Cerror and Cerror_iso as follows: 

Cerror(x) = ((1−β)Var(x) + βCorr(x))∙{Scale(x)}2 (17) 

Cerror_iso(x) = Var(x)∙{Scale(x)}2, (18) 

where Var(x) stands for variance of the output of the SC logic network, Corr(x) 
represents correlation between input streams to SC gates and can be measured using 

PTM and SCC [19][20][24], and Scale(x) is a scale factor; β is for weight 

distribution. Cerror(x) includes these three components while Cerror_iso(x) removes the 
correlation from Cerror(x).  
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In case of Cerror_iso(x), we assume that input streams to each gate are independent 
of each other (i.e., using different random sources) and thus Corr(x) can be 
neglected as shown in Fig. 27 (c). Even if there exists some correlation between the 
streams, the effect of Corr(x) can be significantly reduced by using the isolation 
scheme mentioned in [20], which allows us to ignore the term. The isolation scheme 
needs an additional D flip-flop in serial SC logic such as that in Fig. 25 (a). However, 
in parallel SC logic such as that in Fig. 25 (b), the overhead of additional D flip-flop 
can be avoided by just swapping one input with the other input, as shown in Fig. 27 
(d). 

Measuring Var(x) has been studied in [7] [11] [18] [21]; we select the approach in 
[18] because it accurately models the propagation of variance through multiple 
levels of SC logic. Considering that the variance of Bernoulli sequence is 
maximized at 0.5, we use 0.5 as input values for the worst case. Scale(x) is 
generated from direct synthesis as mentioned in Section 3.3.4 and 3.3.9. For 

instance, Scale(x) is the total scale factor such as ‘2’ in Fig. 35. Since the variance of 

a random variable K scaled by a is a2 times the variance of K (i.e., Var(aK) = 
a2Var(K)), we take the square of Scale(x). Eventually, we define the total cost 
functions as, 

Ctotal(x) = (1−α)Nliteral(x) +  

SC-LOGIC-SYNTHESIS (E) 

1: SF set of start nodes in the iSC kernel relationship graph  
2: LE NIL, LE is a set of solutions for E  
3: for each F ∈ SF 
4:     LE + KERNEL-BASED-SYNTHESIS (E, F) 
5: R  argmin𝑋𝑋∈𝐿𝐿𝐸𝐸 (Ctotal(X)) 

6: return R 

Fig. 36.  Pseudo-code of the top-level function for the proposed algorithm.   
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α∙((1−β)Var(x) + β Corr(x)) ∙ {Scale(x)}2, (19) 

Ctotal_iso(x) = (1−α) Nliteral(x) + α∙Var(x)∙{Scale(x)}2. (20) 

3.3.11 SC Synthesis Algorithm 

 KERNEL-BASED-SYNTHESIS (E, F) 

1: LE NIL, LE is a set of solutions for E 
2: LS NIL, LS is a set of solutions for sub-expressions of E 
3: P0  1-F, F is an iSC kernel 
4: (Q0, R0)  DIVIDE(E, 1−P0) 
5: (Q1, R1)  DIVIDE(R0, P0) 
6: LS  CONTAINING-SEARCH (P0, Q0, Q1)  
7: if (Q0 does not exist): then E is not an SC logic network 
8:     LE  DIRECT-SYNTHESIS(LS) 
9: else if (both Q1 and R1 exist): then E is not an SC logic network 
10:     LE  DIRECT-SYNTHESIS(LS) 
11: else if (Q0 is 1) and (R0 does not exist): then E has (1−P) form 
12:     LE  INV-NAND-AND-GATE(LS) 
13: else if (Q0 exists) and (Q1 is 1): then E has (1−P)M +P form 
14:     LE  OR-NOR-XOR-XNOR-AND-GATE(LS) 
15: else if (both Q0 and Q1 exist): then E has (1−P)M +PN form 
16:     LE  MUX-AND-GATE(LS) 
17: else: this means that E is not an SC logic network 
18:     LE  DIRECT-SYNTHESIS(LS) 
19: return LE  

Fig. 37.  Pseudo-code for Kernel-Based-Synthesis function.                 
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The overall procedure for synthesizing SC logic is illustrated from Fig. 36 to Fig. 
38. Given a multivariate expression E, the SC-LOGIC-SYNTHESIS function in Fig. 
36 first computes iSC kernels and their relations (Line 1). Then for each start node, 
it calls the KERNEL-BASED-SYNTHESIS function to search for a solution (Line 
4). A start node is an iSC kernel that has at least one outgoing edge in the iSC 
relationship graph (Fig. 33 (b)). The KERNEL-BASED-SYNTHESIS function in 
Fig. 37 first divides the input expression by the iSC kernel passed as the 2nd 

CONTAINING-SEARCH (P, M, N ) 

 // P, M, and N represent common SC form, (1−P)M+P’N. 
1: LE NIL, LE is a set of solutions for (P, M, N) 
2:  (LP , LM , LN)NIL, a set of solutions for P, M, and N, respectively 

3: 
NFset of (1− P) and successors of (1− P) in the iSC kernel  
         relationship graph 

4: for each F ∈ NF 
5:     if ((1− P) is P-Containing F) 
6:         LP + KERNEL-BASED-SYNTHESIS (P, F) 
7:     if ((1− P) is MO-Containing F) and (M exists) 
8:         LM + KERNEL-BASED-SYNTHESIS (M, F) 
9:     else if ((1− P) is NO-Containing F) and (N exists) 
10:         LN + KERNEL-BASED-SYNTHESIS (N, F) 
11:     else if ((1− P) is M-Containing F) and (M exists) 
12:         LM + KERNEL-BASED-SYNTHESIS (M, F) 
13:         if (N exists) 
14:             LN + KERNEL-BASED-SYNTHESIS (N, F) 
15:     else: this means that F is not an SC logic network 
16:         LE + DIRECT-SYNTHESIS(P, M, N) 
17: LE + GET-ALL-COMBINATION(LP , LM , LN) 
18: return LE 

Fig. 38.  Pseudo-code for Containing-Search function.                      
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parameter (Line 4) and its 1’s complement (Line 5). Then it calls the 

CONTAINING-SEARCH function with P0, Q0, and Q1 (Line 6), which represent a 
common SC form E = (1−P0)Q0+P0Q1. The CONTAINING-SEARCH function 
returns a set LS of all combinations of possible implementations of P0, Q0, and Q1. 
Then from Line 7 to Line 18 in Fig. 37, depending on the result of the divisions, a 
partial solution is formed for each combination in LS (Lines 12, 14, and 16) or 
defaults to direct synthesis (Lines 8, 10, and 18). For example, in Line 13, if the first 
quotient Q0 exists and the second quotient Q1 is 1, the given sub-expression can be 
decomposed into simpler expressions including M and N using OR, NOR, XOR and 
AND gates. 

The CONTAINING-SEARCH function of Fig. 38 first gathers the current node 
and all the successors (iSC kernels) of the current node in the relationship graph 
(e.g., Fig. 33 (b)) (Line 3). For each of the successor nodes, 
KERNEL-BASED-SYNTHESIS is recursively called according to their containing 
types, and the search continues. 

For example, Fig. 39 shows the process for SC logic synthesis generating one 
candidate of the SC logic network for Fig. 30. Given the expression t, the 
SC-LOGIC-SYNTHESIS function calls KERNEL-BASED-SYNTHESIS with iSC 
kernel A1=(1−a) among the start nodes (Fig. 33 (b)). S1 in Fig. 39 (a) illustrates 
that the expression t is divided by (1−a) iSC kernel in Line 16 of 
KERNEL-BASED-SYNTHESIS, which is matched to a MUX, because the divided 
expression has the MUX form (1−P)M+PN in Table VII. CONTAINING-SEARCH 
in S2 selects the next iSC kernel (1−bc) which (1−a) is M-containing. Thus, both 
M- and N-part of the expression are divided by (1−bc) in S3 and S4, respectively. 
Because S3 has the form of (1−bc)k, it can be synthesized as AND(INV(AND(b,c)), 
k). The form generated in S4 is matched to an OR gate because it has the (1−
P)M+P form of Table VII. Meanwhile, since (1−bc) is MO-containing (1−hlm−hi
−lm), we divide the M-part by (1−hlm−hi−lm) in S6, which is synthesized as a 
MUX. Finally, utilizing that (1−hlm−hi−lm) is P-containing (1−h) in S7, we 
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obtain the last result in S8. This example shows only one candidate solution.  

Note that the result of Fig. 39 (b) is different from the result of Fig. 30 (b) 

 

Fig. 39.  SC logic synthesis example for Fig. 30. The result is a different candidate 

compared with Fig. 30b. (a) Synthesis steps according to each iSC kernel. (b) 

Schematic diagram for the result.        

< KERNEL-BASED-SYNTHESIS >
Expression: t
iSC kernel: (1 − a)
Divide: (1 − a)(k − bck) + a(bc + bcghm + bchij + bcjm + ghi + gm + hjm
             + j − bcghi − bcgm − bchjm − bcj − ghm − hij − jm)
Gate: MUX (Line 16)

< KERNEL-BASED-SYNTHESIS >
Expression: (k − bck)
iSC kernel: (1 − bc)
Divide: (1 − bc)k
Gate: INV and AND (Line 12)

< KERNEL-BASED-SYNTHESIS >
Expression: (bc + bcghm + bchij + bcjm + ghi + gm + hjm + j
                   − bcghi − bcgm − bchjm − bcj − ghm − hij − jm)
iSC kernel: (1 − bc)
Divide: (1 − bc)(ghi + gm + hjm + j − ghm − hij − jm) + bc
Gate: OR (Line 14)

< KERNEL-BASED-SYNTHESIS >
Expression: hi + m − hm
iSC kernel: (1 − h)
Divide: (1 − h)m + hi
Gate: MUX (Line 16)

< CONTAINING-SEARCH >

(1 − a) (1 − bc)
M-Containing (Line 11)

< CONTAINING-SEARCH >

(1 + hlm − hi − lm)(1 − bc)
MO-Containing (Line 7)

< KERNEL-BASED-SYNTHESIS >
Expression: (ghi + gm + hjm + j − ghm − hij − jm)
iSC kernel: (1 + hlm − hi − lm)
Divide: (1 + hm − hi − m)j + (hi + m − hm)g
Gate: MUX (Line 16)

< CONTAINING-SEARCH >

(1 + hlm − hi − lm)

P-Containing (Line 5)
(1 − h)
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although both the input expression t and iSC kernels are identical. Different usage 
of iSC kernels during SC logic synthesis generates different SC logic networks; 
many candidates are actually generated. Using the cost function stated in Section 
3.3.10, we finally select the best one among the candidates.  

3.4 Experimental Results  

In this section, we present experimental results for the performance of the 
proposed algorithm itself. We also present experimental results for the quality of the 
synthesis results including area, critical path delay, power consumption, as well as 
accuracy.20  

20 As mentioned in Section 3.2, because all previsous approaches focus on 

 

Fig. 40.  Comparison of the proposed algorithm with exhaustive search.         

TABLE X  

INPUT PARAMETER FOR FIG. 40    

Parameter A B C D E F G H I J 

# of cubes 5 6 7 8 9 9 9 9 9 9 
# of kernels 5 6 8 8 10 11 12 13 15 15 
# of cubes in 
max kernel 

5 6 7 8 9 9 9 9 9 9 

# of variables 5 5 5 5 7 8 8 9 9 10 
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3.4.1 Performance of SC Logic Synthesis Algorithm 

To evaluate the performance of our algorithm, we use a synthetic input 
expression. The synthesis algorithm is written in C++ language and compiled with 
Microsoft visual studio compiler. The host machine is Intel Core i7-2600K 
operating at 3.40GHz clock frequency. Fig. 40 compares the runtime of the 
proposed algorithm with that of exhaustive search. We vary the complexity of the 
synthetic input expression by modifying parameters including the number of cubes, 
kernels, and variables as shown in Table X. As the parameter values get bigger as 
shown in Table X, the runtime of the exhaustive search increases exponentially, 
while our proposed algorithm finds all possible candidates for SC logic networks 
much faster. The reason is that our approach can efficiently explore the design space 
by using iSC kernels and their relationship.  

polynomials including a small number of variables, the efficiency dramatically 
decreases in case of many variables. Thus, we do not compare  them directly. 

 

Fig. 41.  Area and error values of candidate solutions for TI used to calculate the cost 

function (19).      
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3.4.2 Quality of Synthesis Results 

We experiment with four different applications. The first one is trilinear 
interpolation (TI) in volume rendering [38]. Volume rendering is commonly used in 
3D data visualization and TI is a function mainly executed in volume rendering. It is 
found by using Intel Parallel Studio that the function occupies 72.3% of the entire 
execution time of volume rendering. It is fully mapped to an SC logic network that 
can be synthesized with only kernel-based synthesis method. The expression q for 
TI in SOP form is as follows, 

q = xyzv1 + xyzv2 + xyzv4 + xyzv7 + xyv0 + xyv3 + xzv0 + xzv5 + xv1 + yzv0 + 

yzv6 + yv2 + zv4 + v0 − xyzv0 − xyzv3 − xyzv5 − xyzv6 − xyv1 − xyv2 − 
xzv1 − xzv4 − xv0 − yzv2 − yzv4 − yv0 − zv0, (21) 

where x, y, and z are fractional values for current coordination and v0~7 are voxel 
values; it has 11 variables, 27 terms, and 81 literals. 

Fig. 41 depicts the cost value Ctotal(x) of each TI candidate x as defined in (19). 

 

        (a)                          (b)                        (c)                (d)  

Fig. 42. Comparison of TI implementations. (a) SC logic generated by the proposed 

algorithm. (b) SC logic expression of (a). (c) Data flow of conventional arithmetic 

operations optimized with CSE. (d) Arithmetic expressions for the nodes in (c).        
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The horizontal axis represents the area cost modeled by the number of literals, 
Nliteral(x), while the vertical axis represents the error cost modeled by 

Var(x)∙{Scale(x)}2.  

Fig. 42 (a) and (b) present the best implementation in SC logic candidates 
generated by the proposed algorithm for TI, which uses only seven MUXes. We 
compare the result with a conventional binary implementation. In order to optimize 
the binary logic, we take the common sub-expression elimination (CSE) technique 
used in compilation and high level synthesis. The CSE is a method to enhance 
synthesis efficiency by eliminating common sub-expressions in the original 
expression [74]. Fig. 42 (d) shows the expressions optimized by CSE, where 
common sub-expressions such as R0~R2 and A~F are extracted. The data flow of 
conventional arithmetic operations optimized using CSE for TI is illustrated in Fig. 
42 (c), where three subtractions, 20 multiplications, and seven additions should be 
used for binary logic implementation. SC logic is obviously more efficient than the 

 

                      (a) Reference image   (b) FIX (8 bit)   (c) SC (256 bit) 

 

                      (d) FIX (5 bit)   (e) Expansion of (d)   (f) Expansion of (d) 

 

                     (g) SC (32 bit)   (h) Expansion of (g)   (i) Expansion of (g)   

Fig. 43.  Result images for TI in volume rendering.   
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conventional binary logic in case of TI. Fig. 43 (b)~(i) shows the resulting images 
of volume rendering using the above implementations for different precision levels. 
Compared with the reference image (a) generated by 32 bit floating point 
implementation, both 5 bit fixed point implementation (FIX) and 32 bit SC logic 
implementation (SC) have precision loss as shown in (d) and (g); in particular, grid 
noise is seen in 5 bit FIX in (e) and (f), while dot noise is seen in 32 bit SC in (h) 
and (i). In case of 8 bit FIX and 256 bit SC the quality is almost same as that of the 
reference image as shown in (b) and (c) (also, refer to the SNR values in Fig. 46 
(b)).  

Since direct synthesis has lowest efficiency as explained in Section 3.3.4, dot 
product application can be used to see the lower bound of the gain obtained by our 
approach. It has no algebraic divisor and thus has no SC kernel. In the experiment, 
the dot product application has 32 terms and 64 variables as follows, 

𝑧𝑧 = ∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖32
𝑖𝑖=1 , (22) 

where xi's and yi's are all different variables. 

The runtimes of our proposed algorithm for TI and dot product are 25.06 and 5.35 
seconds respectively.  

To compare the SC logic network generated by our algorithm with conventional 
binary logic implementation, we measure the gate area, critical path delay, and 
power dissipation of the four applications. They are implemented as combinational 
logic in TSMC 45nm technology library with Synopsys Design Compiler using 
Verilog HDL. We choose fixed point implementation (FIX) as the counterpart of SC 
logic implementation (SC), and for a fair comparison, we compare 5 bits of FIX 
with 32 bits of SC and 8 bits of FIX with 256 bits of SC.  

As mentioned in Section I, SC logic can be implemented in a serial or parallel 
manner; it is also possible to mix them. If an SC logic network needs N bit streams, 
the serial implementation spends N clock cycles, while the fully parallel version 
with N duplications takes only one clock cycle. There is a trade-off between area 
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and delay. Thus, in order to measure the quality of serial, parallel, and mixed 
implementations, we use the area-delay product, which always gives us same metric 
regardless of parallelism for SC logic networks. 

The performance results for the applications are shown in Fig. 44 and Fig. 45, 
where SC logic networks synthesized by the proposed algorithm (SC_PROP) are 
compared to FIX with CSE (FIX_CSE). SC_PROP outperforms FIX_CSE in every 
metric in TI. More specifically, our design is 25.92X faster on average compared to 
FIX_CSE, while taking only 42.23% of area and 50.20% of power. Speed gain of 
the SC logic network is due to the fact that critical path delay of one bit-line is 

 

          (a)               (b)                (c)               (d)  

Fig. 44.  Performance comparisons for TI in volume rendering between SC and 

conventional binary representation. (a) Area  (b) Critical path delay (c) Power                                 

(d) Area and delay product  

 

          (a)               (b)               (c)               (d) 

Fig. 45.  Performance comparisons for Dot product. (a)Area (b) Critical path delay                                   

(c) Power (d) Area and delay product.  
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significantly less (the path delay in TI is only for three MUXes) and all the bit-lanes 
of SC logic are completely independent of each other, thus enabling fully parallel 
operations. Serial implementation would increase the latency due to multiple clock 
cycles, but decrease the area and power instead. 

In case of dot product, which allows direct synthesis method only, although 
SC_PROP is 6.77X faster on average compared with FIX_CSE, the area and power 
are increased by 1.89X and 1.26X respectively. This shows that direct synthesis 
version has no advantage compared to kernel-based synthesis and hybrid version. In 
terms of area-delay product, SC logic outperforms conventional binary logic in all 
the cases. 

Energy dissipation is shown in Table XI. We obtain 55.50X energy reduction on 
average in volume rendering, while energy consumption in dot product is reduced 
by 5.31X on average. 21 

21 In order for SC to be connected to conventional binary representation, 
randomizer and de-randomizer circuits are needed. However, it was not included in 
this work. If input data are generated from analog logic such as sensors [2], or a 
system is entirely operated in SC, the needs for randomizers are diminished. Also, 
there are researches on reducing the overhead of randomizers [40]. 

TABLE XI  

ENERGY DISSIPATION (FJ)     

Application Case 5,32 bit 6,64bit 7,128bit 8,256bit 
SNR (dB) 
8,256 bit 

Volume 
rendering 
(Best case) 

FIX_CSE 78.13 163.03 293.36 445.21 11.46 
SC_PROP 1.11 2.73 5.60 11.34 11.55 

Ratio 70.64 59.72 52.39 39.26  

Dot product 
(Worst case) 

FIX_CSE 223.86 398.32 640.68 927.42 15.68 
SC_PROP 31.65 63.45 128.85 319.39 10.57 

Ratio 7.07 6.28 4.97 2.90  
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3.4.3 Comparison of Accuracy 

As stated in Section I, SC logic with 2K bit stream and conventional binary logic 
with K bit-width represent precision of 2-K. However, due to probabilistic 
characteristics, SC inevitably has random errors for arithmetic operations, which 
degrades system accuracy. The result for dot product in Fig. 46 (a) shows that the 
SNR of FIX_CSE is better than that of SC_PROP as we have expected. In case of 
TI, however, we can make a more efficient structure than conventional binary logic 
as shown in Fig. 42 (a) and (c), and thus the SNR of SC logic can be higher than 
that of conventional binary logic as shown in Fig. 46 (b). For example, a MUX 
performs one subtraction, two multiplications, and one addition as mentioned in 
Section I (i.e., y=(1−c)a+cb), and thus four operations are simultaneously executed 
in SC, whereas the fixed point circuit has precision loss in each operation. 

In both of (a) and (b), as the bit-width increases, the SNR growth of SC logic is 
slower than that of conventional binary logic. The reason is as follows. The bit 
stream of length N at the output of SC logic can be modeled as a Bernoulli sequence 
[1] [11], and the standard deviation of the Bernoulli sequence is known to be 

 

                      (a) Dot product               (b) TI in volume rendering 

Fig. 46.  Accuracy comparison between FIX and SC logic. (a)SNR for dot product. 

(b)SNR for TI in volume rendering.    
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inversely proportional to √𝑁𝑁, which means that the accuracy increases slowly as N 
increases. 

3.5 Conclusion 

Stochastic computing (SC) is a promising design technology in terms of gate area, 
power, and error tolerance. However, synthesizing an SC logic network needs to 
search very large design space and requires a considerable amount of computation. 
In this paper, we proposed an approach to efficiently synthesizing SC logic for 
general arithmetic expressions even containing many variables. For this, we first 
define the concept of common form that can be implemented with logic gates and 
find basic building blocks called iSC kernels used for constructing SC logic 
networks. The design space can be pruned by using relationships between the iSC 
kernels. We applied the approach to real applications and demonstrated its 
effectiveness by generating SC logic that outperforms conventional binary logic. 
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4. An Energy-Efficient Random Number 

Generator for Stochastic Circuits 

4.1  Introduction 

The emerging classes of applications such as machine learning, computer vision, 
and computer graphics,  have inherent resilience to errors and/or inaccuracy [75]. 
Nevertheless, the conventional computing performs accurate computations even for 
the applications that allow some level of inaccuracy. In such applications, stochastic 
computing (SC) achieves high efficiency in terms of silicon area and power 
consumption while having high error tolerance and massive parallelism, which is 
mainly due to its probabilistic nature implemented with conventional CMOS digital 
logic [5]. It is an attractive approach these days since the conventional binary 
approach is tardy in enhancing the efficiency. Due to the good characteristics 
compared with convention approach, SC has been studied for applications such as 
neural networks [76], low-density parity-check (LDPC) [77], median filters [78], 
image processing [79], and other applications allowing some errors. 

In contrast to the conventional binary representation, SC uses random bit streams 
called stochastic numbers (SNs). For this reason, given conventional binary 
numbers (BNs), SC requires a circuit that converts the BNs to SNs; the circuit is 
called a stochastic number generator (SNG). However, an SNG spends a large 
amount of resource compared with the pure SC circuit in terms of area and power 
[80] [81] [1]. This degrades the advantage of SC in hardware cost and restricts the 
usability of SC. 

Although there have been some studies for generating random bit streams in 
different domains [82] [83] [84], most of them focus on improving accuracy by 
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enhancing randomness, while ignoring the hardware overhead. There has been a 
recent effort [1] in reducing hardware area by sharing a linear feedback shift 
register (LFSR) between two SNGs. However, simply sharing an LFSR among 
SNGs leads to accuracy degradation due to correlation of stochastic bits. This 
degradation rapidly increases as an LFSR is shared by more SNGs. In this paper, we 
suggest a much more efficient way of implementing SNGs, which generates 
asymptotically one stochastic bit per store unit, i.e., D-type flip-flop (D-F/F), in 
LFSR at a time. Moreover, it also enhances the accuracy of SC logic compared with 
previous approaches. 

4.2 II. Background 

4.2.1 Preliminaries 

In the range of [0 1] (or [-1 1] in bipolar form), SC takes the signal probability of 
a bit stream as its real value; it is represented by the number of 1s over the length of 

  

Fig. 47. Stochastic arithmetic operation and conventional stochastic number 

generator (SNG). (a) Multiplication of two stochastic numbers (SNs) and the output 

stream. (b) SNG with an LFSR. (c) An example of 7-bits LFSR.     
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the bit stream. In the example of Fig. 47 (a), the eight-bit input stream B contains 
four 1s and thus represents a real number 4/8. The figure also shows arithmetic 
multiplication with an AND gate in which the output probability is derived by 
P(Y=1) = P(A=1&B=1) = 3/8. In order to calculate arithmetic operations such as (a), 
SC requires random bit streams generated by SNGs, which can be implemented 
with a comparator and an LFSR consisting of D-F/Fs and XOR gates as shown in (b) 
and (c). 

4.2.2 Shortcomings of Conventional Approaches 

Conventional approaches activate the entire SNG circuit including the LFSR and 
the comparator in order to generate only a single stochastic bit. This means that the 
SNG circuit should be activated n times for one n-bit SN. The overhead increases as 
the required precision increases. We define the efficiency of an SNG as the number 
of bits it generates at a time, since it is related with the performance and energy 
consumption. Fig. 48 (a) shows a case that 2k-bit SN stream is generated at a time 
by an SNG with a 2k-bit LFSR, where the expected SN value is d/2k , i.e., d among 
2k bits are 1s. It is obtained by scrambling 2k input bits without the comparator 
shown in Fig. 47 (b). However, simultaneously scrambling 2k (=t) bits may lead to 
high overhead in area and power consumption. Thus, we suggest to partition the bits 

 

Fig. 48.  Strategy for the proposed SNG. (a) Example of ideal SNG case, where one 

stochastic bit is generated by using one store unit (i.e., D-flip/flop). (b) Partitioning of 

stochastic bit-stream.   
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into groups as shown in Fig. 48 (b), where each group has w bits (w < t) and the 
SNG circuit processes one group at a time. 

The second shortcoming of the conventional SNG in Fig. 1 (b) is in progressive 
precision (PP) which is known to be one of advantages of SC compared with 
conventional binary representation.22 Suppose that the SNG circuit can generate a 
bit stream with N=210-1 bits (i.e., the bit width of LFSR is 10), thus has a precision 
of 1/N. Consider using the circuit to generate an SN with a value 0.75. It can 
accurately generate an SN that has the expected value 0.75 because each of the N 
different numbers generated by the LFSR appears once during the period of 
generating the N numbers. However, if we take only 25 bits with PP, for example, 
the value may not accurately represent 0.75. A substring of the original N bit stream 
cannot exactly represent the statistics of the entire period of the original stream. Fig. 
49 (a) shows the distribution of SN values generated as substrings of an N bit stream, 
where the precision varies between 1/25 and 1/N and the expected value is 0.75. Fig. 

22 Precision in SC can be easily changed by adjusting the length of the bit streams without 
hardware modification, whereas the precision of conventional binary logic circuit cannot be changed 
with fixed hardware. 

 

               (a)                       (b) 

Fig. 49.  SN generation for 0.75 with progressive precision (PP) in 210 bits SC 

circuit. (a) Distribution of SN values. (b) Multiplication of two SNs generated with 

PP using an AND gate.       
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49 (b) depicts the distribution of SN value after multiplication of two SNs by using 
an AND gate; the error becomes bigger as the bit width becomes smaller. 

Instead of using a substring of a long bit stream, the shorter bit streams generated 
in groups as shown in Fig. 2 (b) can be used for PP (e.g., one group of w bits can be 
used for precision of 1/w or two groups can be used for precision of 1/2w). When 
we partition the entire bit stream into multiple groups as shown in Fig. 2 (b), it is 
important to evenly distribute 1s over the groups to reduce the variance. If we can 
do this, then the partitioning technique in Fig. 48 (b) can be a solution to the 
aforementioned problem of PP.  

Another problem is that an SNG for higher precision (e.g., 10 bits) is activated 
for lower precision (e.g., 5 bits) when we use PP, which leads to overhead in terms 
of power and delay. In our approach, since the circuit is not constructed for the 
entire precision, but for a group precision, the problem of overhead is also solved. 

 

Fig. 50.  Overview of the proposed SNG. (a) SNG with BN input and SN output, 

where v groups are generated and each group has w bit-width. (b) The proposed 

SNG consists of three parts such as even-distribution (ED) encoding, inter-group, 

and intra-group randomizer with LFSR input.        
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4.3 III. Proposed Stochastic Number Generator 

4.3.1 Overview of the Proposed SNG 

Instead of generating new 0s and 1s, the proposed SNG shuffles 1s in the existing 
bit stream by using a random source. The basic idea of the proposed SNG is to 
evenly distribute 1s over the entire bit stream, which is named as low-discrepancy 
(LD); the usability of LD is mentioned in [6].  

Fig. 49. shows the outline of the proposed SNG in (a), which consists of three 
parts as shown in (b): even-distribution (ED) encoding, inter-group randomizer, and 
intra-group randomizer. ED encoding makes 1s evenly distributed within all groups; 
inter-group randomizer shuffles the order of groups; intra-group randomizer 
scrambles bits within a group. All steps are implemented by combinational logic 
(except for two LFSRs), which makes the proposed SNG more efficient in terms of 
area and power. 

4.3.2 Even-distribution Encoding 

The objective of even-distribution (ED) encoding is to construct v groups, where 
the difference of the number of 1s between groups should be less than or equal to b. 
In other words, 

max𝑖𝑖∈𝑣𝑣 gi − min𝑖𝑖∈𝑣𝑣 gi ≤ 𝑏𝑏 (1) 

where gi is the number of 1s for the i-th group. Fig. 51 (a) and (b) respectively 
shows two examples of ED encoding when b is set to 3 and 1, where each column 
represents a group and each row represents a digit in a group. Each digit has a 

weight of 2𝑗𝑗𝑏𝑏, where j is the index of the digit within the group with j=0 for the 
least significant digit (note that it is different from the conventional radix number 
having weight of rj, where r is the radix and j is the index of the digit). Thus, the 
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total weight of each group becomes ∑ 2𝑗𝑗𝑏𝑏𝑘𝑘
𝑗𝑗=0 , where k is the index of the most 

significant digit in a group. For example, Group 1 in (a) has 1100 (36 = 24x1 + 
12x1 + 6x0 + 3x0) while Group 3 is has 1011 (33 = 24x1 + 12x0 + 6x1 + 3x1); the 
difference of the two groups is 3, which is bounded by b.  

Given a decimal number L that is to be generated by the SNG, ED code is 

generated by finding the pivot position ‘α’23 from L as shown in Fig. 51. The upper 

side of α should be all zeros or all ones; we call the digits as saturation digits. The 

left side of α should be all ones whereas the right side of α should be all zeros 

23 α is adopted for an easy explanation on how to generate ED code. 

 

Fig. 51.  Even-distribution (ED) encoding, where white space means zero. (a) ED 

code represents decimal number 204 with seven groups (column) and four digits 

(row) per group when b is 3. (b) Example of ED code with 15 groups when b is 1.     
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(white space means zero in the illustration). The lower left side should be all zeros, 
whereas the remaining lower space should be all ones. Following the rule, the 
difference of all groups is limited within b because 2𝑘𝑘𝑏𝑏 − ∑ 2𝑗𝑗𝑏𝑏𝑘𝑘−1

𝑗𝑗=0 = 𝑏𝑏, where k 

is the digit (row) index of α (the rows above α can be ignored because they have the 

same values). ED code is a tuple of the saturation digits, the digit index, and the 

group (column) index of α in order.  

For example, ED codes of the decimal number 237 and 76 are 1-10-010 and 
01-01-0001 in (a) and (b), respectively. The length of saturation digits in ED code is 

various according to the row index of α; for example, it becomes zero, one, two, 

and three when the row index is 11, 10, 01, and 00, respectively. It is possible to use 
a fixed length encoding for the saturation digit by taking R − 1 bits, where R is the 
number of rows. 

The granularity of ED encoding is b, which means that the error due to encoding 

of a decimal number is at most �𝑏𝑏 2� �. Note that the encoding error is zero when b is 

one such as Fig. 5 (b). Since using larger b reduces the number of ED code digits, 
we can achieve efficiency in terms of digit storage and other logic area while 
sacrificing accuracy. The conversion from a decimal number to ED code can be 
conducted on- or off-line. The circuit to convert a conventional binary number into 
an ED code is implemented by using combinational logic with a very small number 
of gates (it is omitted due to space limitation). 

4.3.3 Inter-group Randomization 

９８ 

 



 

After allocating 1s to the groups through ED encoding, the sequence of the 
groups is scrambled in inter-group randomization step. For example, in Fig. 51 (a), 
the order of seven groups is shuffled to increase randomness, by using the column 
index. We adopt the technique used in [85] to scramble bits by using LFSR as 
follows.  

  

Fig. 52. Inter-group randomization, where the group index is from Fig. 51a. (a) 

Shuffling circuit for inter-group randomization. (b) Final signal G is a scrambled one 

and the value 2/7 matches with the number of BGs. (c) Shuffling of groups according 

to the value of G. (d) Method to actually generate the output signal, where ‘~G’ 

means negation of G. (e) Example of logic for output signal A3.     

Clock Q0 Q1 Q2 R0 R1 R2 G
1 0 0 1 0 0 1 0
2 1 0 0 1 0 0 0
3 0 1 0 0 1 0 1
4 1 0 1 0 0 1 0
5 1 1 0 0 1 0 1
6 1 1 1 0 0 1 0
7 0 1 1 0 0 1 0

Value 4/7 4/7 4/7 1/7 2/7 4/7 2/7

0 1 0Group index

2 3 0 4 1 5 6
G 0 0 1 0 1 0 0 Weig. Signal
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1 1 12 A2

1 1 1 1 1 6 A1
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Although we try to keep balance among the groups, some groups have a bigger 
value than the others (e.g., groups 1 and 2 in Fig. 51 (a) are bigger than other 
groups). Let us define the groups having bigger value as BGs. The objective of 
inter-group randomization is to shuffle the BGs with other groups. Fig. 52 (a) shows 
a circuit of inter-group randomization for the example in Fig. 51 (a), where LFSR is 
used as a random source. In the example, the values of bit streams R0, R1, and R2 

become 1/7, 2/7, and 4/7, respectively. We combine the input column index of α 

with R0, R1, and R2 using AND and OR gates to generate a new placement of the 
columns as illustrated in column G of Fig. 52 (b). BGs are placed where G is one 
while the other groups are placed where G is zero as shown in Fig. 52 (c). Signals 
A0, A1, A2, and A3 representing the digits in each group are passed into intra-group 
randomizer in order to scramble all the bits within a group. The output signals from 
inter-group randomization are actually generated by using saturation bit, row index 

of α, and G; Fig. 52 (d) shows how each signal is constructed. It can be simply 

implemented by using a multiplexer with row digit as control input; the logic for 
signal A3 is shown in Fig. 52 (e). Note that the entire circuit for inter-group 
randomization is also implemented by using combinational logic except for the 
LFSR.  

4.3.4 Proposed Building Block for Bit Shuffling 

The signals from inter-group randomization such as A0, A1, A2, and A3 in Fig. 52 

are scrambled by using a randomizing network as shown in Fig. 53 (a), where W’ is 

a set of shuffled signals obtained from W. We suggest a building block consisting of 
two multiplexers as shown in Fig. 53 (b). It swaps two input signals (M and N) into 
outputs (X and Y) according to the selecting signal S having signal probability of 

‘0.5’; we call it a swapper and use the symbol in (d) instead of (b). 
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Definition 1. (Equal probability set) An equal probability (EP) set is a set of signals that 

have the same signal probability. □ 

Let PM denote P(M=1), i.e., the signal probability of M. As shown in Fig. 53 (c), suppose 

two input signals M and N have the same signal probability α (i.e., PM = PN = α). Then the 

set T containing M and N is an EP set. In this case, we use PT to denote the signal 

probability of a signal in T. Thus PT = α. 

Lemma 1. (Two input signals and swapper) Even though the signal probabilities of two 

input signals are different, the output signals of the swapper belong to an EP set. 

 

Fig. 53. Analysis of randomness after swapping signals. (a) Overview of randomizing 

network. (b) Swapping logic. (c) Definition of equal probability (EP) set. (d) 

Probability for input signals to be passed onto output signals. (e) Constructing an EP 

set by using a swapper. (f) Constructing an EP set of output signals from two 

different EP sets of input signals. (g) A case that output signals do not belong to an 

EP set.     
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Proof. If two signals M and N with different signal probabilities (i.e., PM=α and PN=β) 

pass through a swapper, the output signals X and Y have the same signal probability PX = 

PY = (α+β)/2 and thus, belong to an EP set. □ 

Lemma 2. (Two EP sets and swapper) Two EP sets having f signals can be merged into 

one EP set having 2f signals by using f swappers, where each swapper takes two input 

signals, one from each input EP set.. 

Proof. As shown in Fig. 53 (f), if two sets Q and R with PQ=α and PR=β pass through a 

swapper, the output set T becomes an EP set with PT=(α+β)/2 because of Lemma 1. Since f 

pairs are processed at the same time, f swappers are used.  □ 

Fig. 53 (g) shows that output signals do not belong to an EP set because one input 

set is not an EP set (i.e., PM≠PN).  

4.3.5 Intra-group Randomization 

The signals generated by the inter-group randomization are scrambled by using 
the intra-group randomization, where the randomizing network mentioned in the 
previous section is used. Fig. 54 shows the entire intra-group randomization circuit 
consisting of three-step randomizing network and an LFSR. In Step 3, A2 is 
swapped with the result from Step 2; in Step 2, A1 is swapped with the result from 
Step 1. In Step 1, however, there is no previous step and thus A0 is swapped with a 
dummy signal. Because the size of A0 is b (=20b), b-bits are provided for the dummy 
signal. Since we are adding these dummy bits in this stage, the number L used in the 
even-distribution encoding stage (see Section III.B) should be adjusted as follows. 

�if L≥(b∙v), then L←(L-b∙v), S←1
otherwise, L←L, S←0                 

 (2) 

where v is the number of groups and S is the global saturation bit to be used to 
set the dummy bits. If S is 1, then all the dummy bits are set to 1. Otherwise, they 
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are set to 0. 

In case of Step 1, since two input signal sets are EP sets, the output signal set is 
also an EP set from Lemma 2; In Step 2, because two four-bit signal sets are EP sets, 
the output eight-bit signal set is also an EP set; the same applies to the following 
steps. Thus, the final output signals of the entire circuit belong to an EP set. Note 
that the gate delay is proportional to the number of steps because the swapper 
within a step operates in a parallel manner, which means that the critical path delay 
is relatively short. 

We use a D-F/F of an LFSR as the random source with 0.5 probability as used in 
[86]. Galois LFSR [87] is adopted in order to reduce dependency between two 
adjacent D-F/Fs. Regarding the scalability, the number of swappers, i.e., the number 
of D-F/Fs in an LFSR is identical to the number of bits generated from a group, 
which means that one store unit (i.e., D-F/F) effectively generates one random bit at 
a time; it is different from conventional approaches as mentioned in Section II.B. 

4.4  Experimental Results 

 

Fig. 54. Logic for intra-group randomization consisting of randomizing network and 

an LFSR. The input signals is from inter-group randomization. 
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In this section, we compare three SNGs: the conventional SNG as shown in Fig. 
47 (b), the previous work [1] sharing LFSRs, and the proposed SNG. The length of 
LFSRs in the conventional SNG and the shared SNG [1] is 10; in the proposed SNG, 
a group has 32 bits. They are implemented in TSMC 45nm technology library with 
Synopsys Design Compiler using Verilog HDL.  

4.4.1 Accuracy of Generated Stochastic Bit Stream 

Fig. 55 (a) and (d) shows the accuracy of bit streams generated from the 
conventional SNG and the proposed SNG, respectively, in terms of mean, standard 
deviation, max, and min value; In the case, the expected value is 0.6. The accuracy 
of the shared SNG [1] is identical to (a) because it simply shares an LFSR between 
two SNGs. In particular, when exploiting PP (e.g., using 25 bits in 210 period), the 
proposed SNG generates almost exact values whereas the values from the 
conventional SNG severely deviate. In case of multiplication of the stochastic bits 
by using an AND gate, the proposed SNG ((e)) shows better result than the others 
((b) and (c)). 

4.4.2 Area, Delay, Power, Energy and SCC Average 

 

(a) Conventional SNG  (b) Conv. SNG (Mul.) (c) Shared SNG (Mul.)  (d) Proposed SNG       

(e) Prop. SNG (Mul.)  

Fig. 55.  Accuracy after generating SN value 0.6 and multiplying them while using 

PP.       
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As shown in Fig. 56, compared with the conventional SNG, the proposed SNG 
decreases area ((a)), power ((c)), and energy ((d)) by 85.7%, 88.6%, and 86.3%, 
respectively, where all SNGs are implemented in parallel manner for fair 
comparison (i.e., generating 210 bits every clock cycle). Compared to the shared 
SNG [1], the proposed SNG decreases the same metrics by 78.9%, 74.4%, and 
72.1%, respectively. However, the critical path delay ((b)) of the proposed SNG 
increases by 20% and 9% compared to the conventional and shared SNG, 
respectively. In terms of correlation, we use average of SCC [1] [88] which has 
smaller value when two SN bit streams are less correlated. The values for the 
conventional, shared, and proposed SNG are 0.074, 0.157, and 0.110, respectively, 
which means that the proposed SNG is between the two previous approaches in 
terms of correlation. 

4.4.3 Energy Efficiency When Operated under Maximal Precision 

Considering that the maximal precision is fixed and that each application has a 
desired precision in many cases, a system is operated in lower precision compared 
to maximal precision. Fig. 57 shows the energy consumption when generating bit 

 

    (a) Area   (b) Critical path delay   (c) Power       (d) Energy     (e) SCC average 

Fig. 56.  Comparison of area, critical path delay, power, energy, and SCC average 

value to generate a 210-bit stream for conventional SNG, SNG sharing two LFSRs 

[1], and the proposed SNG. For fair comparison, all cases are implemented in 

parallel manner. The length of LFSRs in two previous approaches is 10 while the 

number of bits in a group of the proposed SNG is 32.          
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streams with desired precision of 1/25, while the maximum precisions are 1/25 and 
1/210, respectively. Conv-5 and Conv-10 mean that the length of the LFSR in the 
conventional SNG is 5 and 10, respectively. The figure shows that the proposed 
SNG is more energy-efficient. It is because the entire LFSR is activated for one 
stochastic bit in the previous approaches. However, in the proposed SNG, 25 bits are 
simultaneously generated as shown in Fig. 54, while maintaining the accuracy 
regardless of the maximal precision. 

4.5  Conclusion 

Stochastic computing is one of promising approaches since it requires small 
hardware footprint and low energy, and provides high error tolerance. However, it 
requires random bit streams generated by stochastic number generators (SNGs), 
which incurs area and energy overhead. In this paper, we proposed an area- and 
energy-efficient SNG even enhancing accuracy in progressive precision (PP). 
Experimental results show that our SNG outperforms the existing approaches in 
terms of area, power, energy, and accuracy. 

  

 

Fig. 57.  Energy to generate 25 bits. Conv-5 and Conv-10 represent that the length 

of LFSR in the conventional SNG are 5 and 10, respectively. Shared-5 and Shared-10 

mean the shared SNGs.     
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5. Approximate De-randomizer for 

Stochastic Circuits 

5.1 Introduction 

Stochastic computing (SC) is an alternative paradigm to conventional binary 
arithmetic computing [5]. SC can boost efficiency in terms of area, power, and error 
tolerance while relaxing the accuracy of computation in emerging applications such 
as machine learning, computer vision, and computer graphics. Numbers in SC are 

represented by the probability of 1’s occurrence in a random bit stream. For 

example, in Fig. 47 (a), since the occurrences of 1’s in the three 8-bit streams at A, B, 

and Y are 6, 4, and 3, respectively, the corresponding stochastic numbers (SNs) are 
P(A=1)=6/8, P(B=1)=4/8, and P(C=1)=3/8.  The single AND gate performs 
multiplication (i.e., 6/8 x 4/8 = 3/8).  

For an efficient conversion between binary numbers (BNs) and SNs, there have 
been researches on converting from BNs to SNs (aka randomization) and vice versa 
(aka de-randomization). In this paper, we focus on the conversion from SNs to BNs. 
Converting an SN into a BN requires counting the number of 1s in the random bit 
stream. Fig. 47 (b) and (c) show a serial counter and an accumulative parallel 
counter (APC) [89] [90], respectively, where flip-flops are used with some other 
logic for accumulation. 24 The parallel counter (PC) in an APC uses full adders (FA) 
in order to generate 20~2m-1 weighted bits (i.e., a BN) from a stream of 20 weighted 

24 In this paper, we consider only APC because the serial counter consumes large amounts of energy. 

１０７ 

 

                                                      



 

input bits (i.e., an SN), where m is the number of bits of the BN. Fig. 47 (d) shows 
an example of PC generating 4 bits BN from 15 bits SN. 

Considering that SNs are based on the probabilistic nature of random bit streams 
and thus the accuracy is already compromised during SC, there is no reason to stick 
to accurate conversion using the conventional PC. Note that using the conventional 
PC may lead to lots of inefficiency in the aspect of entire workload, since the length 
of bit streams in SN is much longer than that in BN; only k bits in BN becomes 2k 
bits in SN. 

In this paper, we suggest an approximate PC exploiting two properties of SN: 1) 
inaccuracy due to randomness and 2) long bit stream. The proposed PC can be 
implemented with a smaller circuit compared with the conventional accurate PC, 
where the inaccuracy problem can be alleviated due to the long bit stream. 

5.2 Proposed Approximate Parallel Counter 

 

Fig. 58. Stochastic numbers (SNs) and conventional counters, where the numbers in 

brackets represent the bit index of binary numbers (BNs). (a) Multiplication of two 

SNs. (b) Accumulative serial counter. (c) Accumulative parallel counter (APC). (d) 

Example of a parallel counter (PC) converting 15 bits SN into 4 bits BN.    
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The proposed approximate PC is shown in Fig. 59 (a), which consists of two 
parts: an approximation unit (AU) and a conventional accurate PC. The former is 
implemented by simple gates such as AND and/or OR gate; Fig. 59 (b) shows a 
2-layer AU. The approximate PC exploiting a 1-layer AU is shown in (c). The input 
weight of AU is 20 while the output weight becomes 2l, where l is the number of 
layers.25 (e) shows errors for 1-layer AU using AND or OR gate. Note that AND 
gates generate negative errors while OR gates generate positive errors.  

5.2.1 Analysis for Gate Count in 1-layer Approximate PC 

In order to see how much area reduction can be obtained by the proposed 
approach, we calculate the number of FAs in Fig. 47 (d) and Fig. 59 (c). Suppose 
that N-input bits become v-output binary bits (N=2v−1) and f(v) is the number of 
FAs. In case of the conventional PC (i.e., Fig. 47 (d)), when v increases by one, the 

number of FAs increases by two times plus v−1. Thus, f(v) = 2∙f(v−1)+v−1 = 2v−v

−1, where f(2)=1 (i.e., one FA is needed to generate two-digit binary numbers). The 
number of gates in the conventional PC is given by 

Gconv(N) = {(N+1) − log2
N+1 − 1} ∙ 5, (1) 

considering that v = log2
N+1 and FA consists of five gates. The proposed PC with 

1-layer AU, as shown in Fig. 59 (c), uses f(v−1) FAs for v-output bits and N/2 
additional AND or OR gates, where N=2v.26 Thus, the number of gates in the 
proposed PC is, 

25 Due to space limitation, we explain only 1-layer AU in this paper. 
26 In this case, we use N=2v instead of N=2v− 1, since it fits better with the use of two input gates. The 

generated BN cannot represent the maximum value of SN, but the error is small and thus can be ignored. 
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Gprop-1(N) = {N/2 − log2
N} ∙ 5 + N/2, (2)  

Fig. 60 (a) shows the number of gates for (1) and (2), where the proposed PC 
using 1-layer AU reduces gate count by about 40% compared to the conventional 
PC. 

5.2.2 Analysis for Error in 1-layer Approximate PC 

In order to analyze the effect of approximation and error, we define e as the 
output error in number of 1s and T1(N,k,e) as the probability mass function (PMF), 
where N is the length of the given bit stream and k is the number of 1s in the input. 

In other words, given k 1s in the N-bit stream, T1(∙) shows the probability of error e 

generated by the proposed approximate PC in Fig. 59 (c). The PMF is given by 

 

Fig. 59. The proposed parallel counter (PC). (a) Overview of the PC. (b) 2-layer 

approximate unit (AU). (c) The proposed PC using 1-layer AU, converting 16-bit SN 

into 4-bit BN. (d) Example of 1s distribution in 1-layer AU. (e) Output and error for 

all inputs in AND and OR gate.   
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,𝑒𝑒=𝑞𝑞−𝑟𝑟 (3) 

where S is the number of output bits (slots) of the AU (S=N/2), and d is the 

number of slots containing two 1s at the inputs (d=(k−e)/2), and q is the positive 
error of OR gates while r is the negative error of AND gates. Fig. 59 (d) shows five 
1s in the 8-bit input stream. Note that q+r is the number of errors and is the same as 
the number of slots containing one 1-bit and that the cumulative error e is q−r. 

Fig. 60 (b) shows a theoretical result for the error PMF of T1(.), given 1024-bit 

streams. The mean of error values of T1(.) is zero and the maximum standard 

deviation of the errors is only 11.3 (about 1.1%). This means that there is no bias, 
and that the error is within only 1.1% for about 70% among all trials (within 2.2% 
for 95%). 

5.3 Experimental Results 

We compare the conventional PC and the proposed PC with heterogeneous 
1-layer AU, given 1024-bit streams. They are implemented in TSMC 45nm 
technology library with Synopsys Design Compiler using Verilog HDL. As shown 
in Fig. 61, the proposed PC decreases area ((a)), critical path delay ((b)), and power 

 

                              (a)                           (b) 

Fig. 60. Theoretical analysis of the proposed scheme. (a) The number of gates for the 

conventional PC and the proposed PC with 1-layer AU. (b) The mean and standard 

deviation of number of errors for 1-layer PC with 1024 input bits.     
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((c)) by 38.3%, 7.6%, and 49.4%, respectively. (d) and (e) show the errors of 
1024-bit streams containing 512 and 128 1s, where the means of errors are almost 
zero and the standard deviations are 11.32 and 9.40, respectively. The results match 
well with the theoretical analysis results. 

5.4 Conclusion 

Although de-randomizer is a very important component for stochastic circuits, it 
has not been paid attention in the literature of stochastic computing (SC). 
Considering that SC is based on inaccurate computation, using a conventional 
accurate parallel counter (PC) in SC leads to inefficiency. We have proposed an 
approximate PC, which outperforms the conventional PC in terms of area, delay, 
and power, with no bias and small standard deviation of errors. 

  

 

                    (a) Area           (b) Critical path delay         (c) Power 

 

                    (d) PMF (512 1s)                                (e) PMF (128 1s) 

Fig. 61. Experimental results of the proposed approximate PC compared with the 

conventional PC in 1024-bit stream. (a) Area. (b) Critical path delay. (c) Power. (d) 

PMF when 512 1s among 1024 bits. (e) PMF when 128 1s.    
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6. Dynamic Energy-Accuracy Trade-off 

Using Stochastic Computing in Deep 

Neural Networks 

6.1  Introduction 

Deep neural networks (DNNs) dramatically improve the accuracy of machine 
learning applications such as object detection [91] and speech recognition [92] that 
need the intelligence of human. However, compared with other machine learning 
techniques such as support vector machine (SVM), decision tree, and k-nearest 
neighbor (KNN), DNNs typically require a lot more computations due to many 
layers and many neurons comprising the network. Moreover, the industrial and 
academic needs tend to increase the size and complicate the topology of DNNs [93]. 
Because of this, using high performance computers with accelerators such as GPUs 
and/or clustering a bunch of machines is regarded as a practical solution to 
implementing DNNs [94]. Considering, however, that machine learning has also 
been rapidly adopted in mobile and embedded systems such as self-driving car [95] 
and patient data analysis [96] with limited resources, researchers have paid great 
attention to finding possible ways of efficiently executing DNNs including 
minimizing the required precision [97] and reducing the size of network [98]. 

In contrast to those studies based on conventional binary arithmetic computing, a 
different type of computing such as stochastic computing (SC) can be an attractive 
solution. SC uses the probability of 1s in a random bit stream to represent a number. 
For example, six 1s in an eight-bit stream in unipolar encoding represent 6/8 as 
shown in Figure 62 (a). SC can implement a circuit with smaller hardware footprint, 
lower power, and shorter critical path delay compared with conventional binary 
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logic. It also has advantages in error tolerance and bit-level parallelism. Considering 
that the majority operations of s DNN is multiplication, SC has great advantage in 
implementing a DNN because a single AND gate in SC can execute multiplication 
as shown in Figure 62 (a) with the unipolar encoding having range [0 1].  

However, compared with conventional binary arithmetic, SC has some limitations 

such as small operational range [−1 1] in bipolar encoding (or [0 1] in unipolar 
encoding), random error fluctuation, and inefficiency of accumulation. In this paper, 
we present how we can alleviate the problems that we encounter with when 
designing a DNN using SC.  

Neural network exploiting SC was first introduced in the noticeable research of 
[99], where a state-machine based approach was used for implementing an 
activation function. However, it was not a DNN but a two-layer autoencoder. 
Although a research for hardware implementation of SC for deep belief network 
was studied recently [100], only the multiplication part was implemented with SC.  

 

Figure 62. Deep neural network (DNN) using stochastic computing. (a) Stochastic 

multiplication in unipolar encoding with the range [0 1]. (b) Bipolar stochastic 

multiplication with [−1 1] range. (c) DNN layers with weight vector Wk in layer k. 
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6.2 Background 

Because DNN commonly requires negative numbers as well as positive numbers, 
we use bipolar encoding in this paper. Bipolar stochastic number can be calculated 

from unipolar number as pbipolar = 2*punipolar − 1. For example, as shown in Figure 62 

(b), because nine 1s in a 12-bit stream is 9/12 in unipolar, it is 3/6 in bipolar 
encoding. An XNOR gate can be used in bipolar encoding to perform multiplication 

such as (3/6) × (− 2/6) = (− 1/6). 

A DNN consists of neurons executing multiplication, accumulation, and 
activation function. Sigmoid or hyperbolic tangent is a typical form of the activation 
function. In Figure 62 (c), the operation of the jth neuron in layer k (i.e., 𝒙𝒙𝑗𝑗𝑘𝑘) can be 

defined as follows, 

𝒙𝒙𝑗𝑗𝑘𝑘 = 𝑎𝑎𝑎𝑎 �∑ 𝑾𝑾𝑖𝑖𝑖𝑖
𝑘𝑘 𝒙𝒙𝑖𝑖𝑘𝑘−1𝑛𝑛𝑘𝑘−1

𝑖𝑖=0 �, (1) 

where 𝑾𝑾𝑖𝑖𝑖𝑖
𝑘𝑘  is a synaptic weight between 𝒙𝒙𝑖𝑖𝑘𝑘−1 and 𝒙𝒙𝑗𝑗𝑘𝑘 in layer k; 𝑛𝑛𝑘𝑘 is the 

number of neurons in layer k; af() is the activate function. 

6.3 Challenges to Apply SC to DNN 

When adopting SC to DNNs, some obstacles should be solved in order to reach 
the accuracy level achieved by conventional floating-point or fixed point arithmetic. 
We found that directly applying SC to DNN lead to severe accuracy degradation 
which is not acceptable in common cases. It happens when synaptic weights are 
initialized to random numbers with a normal distribution around zero (mean is zero 
and standard deviation is given by m−1/2 where m is the number of inputs to a 
neuron) as recommended in [101]. In addition, the weights are close to zero due to 
L1-, L2-regularization which gives penalties to non-zero parameters in order to 
prevent overfitting [102]. As a result, synaptic weights are aggregated near zero. 
However, as shown in Figure 63 (a), the XNOR(X, Y) operation representing 
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multiplication in bipolar encoding generates large random errors near the zero 
values of X and Y. Unfortunately, because many synaptic weights exist near zero, 
accumulating the products of synaptic weights and inputs increases the error to an 
acceptable level in our investigation. Figure 63 (b) shows the distribution of 20000 
synaptic weights concentrated near zero (dashed line and left Y-axis) and the error 
of the sum of the products27 (solid line and right Y-axis). In terms of signal-to-noise 
ratio (SNR), the results get worse, because the signal values (i.e., the products) tend 
to be small for near-zero weights.  

The second problem in applying SC to DNN is the accumulation of many 
products. In SC, accumulation can be implemented with a multiplexer (MUX) 
known as scaled addition or an OR gate known as saturated addition. The former 
sacrifices the precision due to scaling down (or taking average of inputs) while the 
latter is too sensitive to the correlation of inputs. Another problem is that SC has 

27 To calculate the error of the sum of products at each weight value, the products 
were obtained by multiplying all the weights for the same value with 0 input. This is 
to show the tendency of errors appearing at the output of the accumulator. 

 
      (a) Error of XNOR gate     (b) Error of near-zero weights 

Figure 63. Random error problem occurs when applying SC to DNN. (a) Random 

error of XNOR gate in 1024-bit stream as absolute value. (b) 20000 weights 

distribution in 200x100 networks (left Y-axis) and error multiplying by zero (right 

Y-axis).       
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range limitation from −1 to 1 in bipolar encoding. Thus arithmetic operations in 
SC can be easily saturated if special care is not taken. 

6.4 DNN Using Stochastic Circuit 

6.4.1 Overview of the Proposed DNN using SC 

To use a DNN, we first need to train it (training phase) using training data and 
then test it with new test inputs (testing phase). We apply SC to testing phase 

 
   (a) Training procedures    (b) Testing with the SC neuron 

 

   (c) Early decision termination 

Figure 64. Overview of the proposed procedures and main idea. (a) Training 

procedure for DNN using SC with 32-bit floating-point computation. (b) SC neurons 

are operated with SC exploiting the suggested solutions in testing phase. (c) Early 

decision termination by using progressive precision of SC.       

x1

x2

x3

xn

...

Ʃ

w1

w2

w3

wn

Accumulation
Activate
function

Multiplication

Multiplication without
near-zero weights

Weights-scaling

Activate function
with an accumulator

StartInitial-training

Removing
near-zero weights

Weight-moving
into [-1 1] range

Re-training

Meet the required
accuracy?

End
YesNo

Apporoximate
Counter

Accuracy simulation
with SC manner

5 10 15 20 25 30
value of k [=1/(32*k) precision]

0

0.1

0.2

0.3

0.4

fra
ct

io
n 

of
 te

st
 d

at
a

Easy input
to classify

Hard input
to classify

Early decision termination

１１７ 

 



 

because DNN is mostly operated in testing phase once it is trained in a 
high-performance system such as a super-computer. Figure 64 shows the proposed 
training procedure that supports our approach of using SC for DNN. The training 
performed in a 32-bit floating-point system consists of initial-training, removing 
near-zero weights, incremental weight-moving into [−1 1] range, and re-training as 
shown in Figure 3 (a); accuracy simulation is conducted in SC after the re-training. 
The two training steps, initial- and re-training, are identical to the conventional 
DNN training method using back-propagation algorithm [103]. There are typically 
many near-zero weights because weights have a tendency to become zero due to 
regularization as mentioned in Section 6.3. And we find that the technique to 
remove such near-zero weights is very effective. 

In the testing phase, as shown in Figure 64, four methods are applied: 1) 
multiplications are done without near-zero weights to minimize random errors, 2) 
weights are scaled to improve signal intensity (i.e., SNR), 3) activation functions 
are implemented with an accumulator, and 4) approximate counters are used to 
reduce the size of hardware circuit. 

SC can adjust the computation precision without hardware modification. This 
cannot be realized in other computing systems. For example, an SC system can use 
32 and 1024 bits (or any bit-length) for 1/32 and 1/1024 precision, respectively, 
whereas 10-bit fixed-point system is fixed to 1/1024 precision only. By using this 
property of SC for the operation at low-precision, we can reduce 
energy-consumption. Fortunately, in most time, a large fraction of input data can be 
easily classified because many classification problems are far from decision 
boundaries [104]. We investigate MNIST dataset for handwritten digit images [105], 
as shown in Figure 64 (c), where classifying 78.1% of input data needs 1/128 
precision while classifying 93.3% needs 1/256 precision. Thus, we suggest early 
decision termination (EDT) to finish the computation for easily classified inputs in 
an early stage with low precision (i.e., a relatively small number of bits). 
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6.4.2 Removing Near-Zero Weights 

Because the existence of near-zero weights is a main source of generating errors 
when using SC for a DNN as mentioned in Section 6.3, we propose to remove 
near-zero weights in the training phase. In the literature of machine learning, 
discarding zero weights is recently suggested in order to reduce the size of network 
[102]. On the other hand, we remove near-zero weights to reduce random 
fluctuation errors. Re-training is necessarily required because we find that the 
accuracy after pruning near-zero weights severely decreases and recovers after 
re-training. We remove near-zero weights under the threshold proportional to 
standard deviation of weights in a layer as follows, 

𝑇𝑇ℎ𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒−𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑾𝑾𝑘𝑘� ∙ (𝛼𝛼 + 𝛽𝛽 ∙ 𝑖𝑖), (2) 

where 𝑾𝑾𝑘𝑘 is all synaptic weights in a layer k; 𝛼𝛼 and 𝛽𝛽 are parameters decided 
empirically; i represents the number of iterations in Figure 64 (a). Thus, as i 
increases, more near-zero weights are removed. In our case, 𝛼𝛼 and 𝛽𝛽 are set to 0.2 
and 0.01, respectively; re-training epoch is ten. The distribution of weights after 
removing near-zero weights is shown as black solid line in Figure 65. 

 

Figure 65. The distribution of weights after removing near-zero weights and 
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6.4.3 Applying Weight Scaling 

In order to minimize random fluctuation error and maximize SNR, we propose 
weight scaling technique. As shown in Figure 63 (a), error increases as the weight 
becomes close to zero and decreases as it becomes close to 1 or −1 while signals 

are changed in the opposite way. Thus, in (1), if we scale up the weights 𝑾𝑾𝑘𝑘 
before the multiplication and then scale back down the result after accumulation, the 

SNR can be improved. Suppose that the weights 𝑾𝑾𝑘𝑘  are limited to a range 

[−1
𝑠𝑠

   1
𝑠𝑠
] where s > 1, (1) can be rewritten as follows, 

𝒙𝒙𝑗𝑗𝑘𝑘 = 𝑎𝑎𝑎𝑎 �1
𝑠𝑠
∙ ∑ 𝑠𝑠 ∙ 𝑾𝑾𝑖𝑖𝑖𝑖

𝑘𝑘 𝒙𝒙𝑖𝑖𝑘𝑘−1𝑛𝑛𝑘𝑘−1
𝑖𝑖=0 � (3) 

Because 𝑠𝑠 ∙ 𝑾𝑾𝑘𝑘 > 𝑾𝑾𝑘𝑘, the signal level increases whereas the error decreases. 
For example, if 𝑾𝑾𝑘𝑘 are (0.10, −0.15, 0.20), i.e., limited to [−0.2 0.2], then the 
weights can be scaled up five times (s=5) to become (0.50, −0.75, 1.00). The red 
dotted line in Figure 65 shows the advantages of the proposed weight-scaling 
technique. Note that the number of near-zero weights also decreases because they 
become far from zero center. The overhead of scaling is negligible because the 
scaling operation can be applied to synaptic weights in binary format only once 
after finishing the training phase. 

The problem of this method is that it needs a scaled activation function as 
follows, 

𝒙𝒙𝑗𝑗𝑘𝑘 = 𝑎𝑎𝑎𝑎 �1
𝑠𝑠
𝑡𝑡�, where 𝑡𝑡 = ∑ 𝑠𝑠 ∙ 𝑾𝑾𝑖𝑖𝑖𝑖

𝑘𝑘 𝒙𝒙𝑖𝑖𝑘𝑘−1𝑛𝑛𝑘𝑘−1
𝑖𝑖=0 . (4) 

In the next section, we suggest a scaled active function. 
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6.4.4 Activation Function with Accumulation 

 

Figure 66. A stochastic neuron and the mechanism of state-machine based activate 

function. (a) A single neuron using SC. (b) state-machine having two states in an 

up/down counter. (c) Using binomial distribution for the logistic function. (d) The 

proposed activate function. (e) Binomial distribution with many states. (f) 

state-machine having 40 states.      
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We present a state-machine based hyperbolic tangent activation function (i.e., 
tanh()) to solve the accumulation problem mentioned in Section 6.3 and provide 

the scaled functionality tanh �1
𝑠𝑠
𝑡𝑡�  for weight-scaling. State-machine based 

hyperbolic tangent was introduced in [76] and [106] for a single bit stream and 
multiple bit streams, respectively. The hyperbolic tangent activation functions 

proposed in the previous work only support tanh(vt), where v ≥ 2 and a natural 

number; whereas, our tanh�1
𝑠𝑠
𝑡𝑡� supports a small coefficient (i.e., 1/s < 1) as well as 

multiple bit streams. As shown in Figure 66 (a), given n bit-streams with m bit 
length generated by the n multiplications of inputs (xi's) and weights (wi's), we count 
the number of 1s in each column by using a parallel counter. The counted value is 
used by the following saturated up/down counter as the amount of increase or 
decrease. The resulting binary value of the up/down counter is regarded as its state. 
Given r states in the up/down counter, one half of the r states generates 0 bit while 
the other half generates 1 bit; the generated bits approximate outputs of tanh() in 
the form of stochastic number. 

6.4.4.1 Proposed Stochastic Hyperbolic Tangent 

Given n input bit-streams with average probability pavg for any bit to be 1, the 
probability Pone of having b 1s in a column of the input bit-streams becomes 
binomial distribution as follows, 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑛𝑛𝑏𝑏� �𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�
𝑏𝑏(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎)𝑛𝑛−𝑏𝑏 . (5) 

Because cumulative distribution function (CDF) of binomial distribution mimic 
the logistic function, we construct tanh() by using CDF of (5). In case of two state 
up/down counter shown in Figure 66 (b), CDF of binomial distribution shown in 
Figure 5 (c) for pavg = 0.00 follows tanh(0.13t) shown in Figure 5 (d). Note that state 
S1 and S0 in Figure 5 (b) generates 1s and 0s, respectively. As the number of states 
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increases as shown in (f), it becomes a bounded random walk problem [107] and the 
results are affected by the variation of walking. From this property, we find the 

relationship between tanh�1
𝑠𝑠
𝑡𝑡� and the proposed Btanh(n, r, t) as follows, 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ(𝑛𝑛, 𝑟𝑟, 𝑡𝑡) ≅ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �1
𝑠𝑠
𝑡𝑡�, (6) 

1
𝑠𝑠

= 1−𝑞𝑞
2(𝑛𝑛−1)

(𝑟𝑟′ − 2𝑛𝑛) + 1, and 𝑞𝑞 = 1.835(2𝑛𝑛)−0.5552 (7) 

𝑟𝑟′ = 2(1−𝑠𝑠)(𝑛𝑛−1)
𝑠𝑠(1−𝑞𝑞)

+ 2𝑛𝑛 (8) 

𝑟𝑟 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑜𝑜𝑜𝑜_𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟′) (9) 

where n is the number of bit-streams and r is the number of states and multiple of 
two. Figure 67 shows that both the proposed Btanh() and the corresponding tanh() 
are almost identical to each other. Figure 68 shows the algorithm for Btanh(). In 
Line 1, the maximum state is set to R−1; the state index starts from 0 and the 

 
        (a)                  (b)  

Figure 67. The result comparison between the proposed hyperbolic tangent Btanh() 

and the original tanh(). (a) The number of states is two and 80 for 100 bit-streams. 

(b) 20 and 200 states for 200 bit-streams.         
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number of states is R. The offset V jumping between states is calculated as bipolar 
encoding in Line 5; it is zero if the number of 1s in a column is a half of N. Note 

that the SC simulation step uses Btanh(n, r, t) representing tanh�1
𝑠𝑠
𝑡𝑡� while intial- 

and re-training steps in Figure 64 (a) use tanh(𝑎𝑎𝑥𝑥), where t =sax; s and a are real 
numbers. 

6.4.4.2 Using Approximate Counter 

In the stochastic neuron shown in Figure 66 (a), the biggest component in terms 

BTANH (N, R, T) 

 

// N is the number of bit-stream as shown in Figure 66 (a). 
// M is the length of bit-stream. 
// R is the number of states in up/down counter. 
// T is the bipolar SC input, MxN size, where −N ≤ T ≤ N. 
// Ti is the number of 1s bits in ith column of input streams. 

Output: Yi is the ith stochastic output bit for Btan() 
1: Smax = R − 1  //max state  
2:  Shalf = R/2      //half state 
3: S  Shalf        //current state  
4: for i = 1 to M 
5:     V = Count(Ti) * 2 − N    //bipolar 1s counting 
6:     S  S + V 
7:     if S > Smax  then  S   Smax 
8:     if S < 0  then  S  0 
9:     if S > Shalf  
10:         Yi  1 
11:     else 
12:         Yi  0 

Figure 68. Pseudo-code for the proposed Btanh().         
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of area and power is the parallel counter. Since SC calculates in an inaccurate 
manner anyway, we do not need to stick to a conventional accurate parallel. [108] 
presents an approximate parallel counter with very small error and no bias. We 
reduce the area and power by using the same approach. 

6.5 Early Decision Termination 

Because the bits fed in at different times are independent of each other in 
stochastic bit-streams, the precision can be adjusted without hardware modification; 
it is known as progressive precision [5]. It is a salient advantage of SC over 
conventional logic using binary arithmetic. As mentioned in Section 6.4.1, early 
decision termination (EDT) is useful in terms of energy consumption and decision 
speed. Our current implementation has 32 bits as the precision granularity. That is, it 
processes 32 bits to make a decision, and if it fails, it continues processing the next 
32 bits.  
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6.5.1 Moving Average Tracking Output Trends 

As shown in the first row of Figure 6928, we find that the outputs of the last layer 
from SC circuit severely fluctuate as EDT steps proceed, where every EDT step 
processes 32 stochastic bits. In order to monitor the trend of decisions as a time 
series, the following moving average is used as a low-pass filter, 

28 The example uses MNIST handwritten image dataset, where the number of 
classes is ten from zero to nine. 

 
      (a)                 (b) 

Figure 69. The intermediate procedures of early decision termination. Ground truths 

are 4 and 8, respectively.     
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MVc,i = α  Yc,i + (1− α)  MVc,(i−1)  (10) 

where c is the class; Yc,i is the output of the last layer for class c in EDT step i and 

MVc,1=Yc,1 and α is empirically set to 0.1. As shown in the second row of Figure 69, 

the result of moving average better shows the trend. We find two important 
components for EDT: 1) output value of the last layer and 2) the gradient of current 
step. Using the former is natural because the largest output value is selected in 
general classification domain. The latter can be an indicator to notify the possibility 
of changing the current decision in the future. For example, class 7 and 8 are 
swapped in the moving average of Figure 69 (b) (the second row), which can be 
informed early by examining the gradient (the third row). Thus, the objective value 
of individual class c in ith EDT step is defined as follows, 

Oc,i = MVc,i + β  Gradc,i  (11) 

where Gradc,i is the gradient value of class c in ith step; β is a weight factor. 

Finally, by using softmax functions, the objective values of individual classes are 
normalized depending on the categorical probability, which is commonly used in 
multiclass classification problems. 

SMc,i = 𝑒𝑒𝑂𝑂𝑐𝑐,𝑖𝑖

∑ 𝑒𝑒𝑂𝑂𝑘𝑘,𝑖𝑖𝑘𝑘
 (12) 

As shown in the fourth row of Figure 69, the normalized value represents the 
current status of a class candidate with absolute value. For example, because class 4 
dominates other classes in case of Figure 69 (a), it can be selected as the final 
decision in early EDT step.  

6.6 Experimental Results 
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For the experiment, we use MNIST handwritten digit image dataset [105] 
consisting of 60000 training data and 10000 testing data with 28x28 grayscale 
image and 10 classes. The networks in this experiments have two hidden layers with 
a 784-100-200-10 configuration. 

6.6.1 Accuracy of DNN Using SC 

The accuracy of DNN is a very important metric, because usability of DNN 
totally depends on it. We compare our proposed method with the previous methods 
using SC [100], and a 32-bit floating-point system. As shown in Figure 70 (a), 
misclassification error of test data in MNIST dataset in 32-bits floating-point is 
2.23%, while test error for our proposed DNN using SC is 2.41% with 210-bit 
stream. Considering that the previous work [100] using SC and floating-point are 
18.2% and 5.8%, respectively, Our work dramatically improves in terms of accuracy. 
Because fixed-point arithmetic generally has bigger error compared with 

 
    (a)  

 
    (b) 

Figure 70. Comparison misclassification error. MNIST test data error in 32-bit 

floating point is 2.23%. The proposed method is 2.41% while the previous work [11] is 

18.2% in 210-bit stream.       
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floating-point arithmetic and the proposed approach is almost similar to 
floating-point result, we conclude that the improvement is significant. Figure 70 (b) 
shows test error in the proposed method when using progressive precision 
mentioned in Section 6.5, where each step uses 32-bit parallel stochastic circuit. 
Note that the difference of test error between the 15th step and the 32th step is about 
1% error, which means that reducing energy as well as improving decision speed is 
possible with sacrificing only 1% error rate.  

6.6.2 Effectiveness of Early Decision Termination 

Early decision termination (EDT) exploits progressive precision of SC, which can 

 

Figure 71. Experimental result for early decision termination (EDT) where one EDT 

step use 32 stochastic bits. (a) Applying EDT to 1024 bits. (b) The last step of EDT is 

set to the 16th step (i.e., 16x32=512 bits). (c) Normalized energy reduction between 

using and not using EDT and test error according to the last EDP step.       
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adjust the required precision without hardware modification. In our experiment for 
EDT, the baseline SC circuit uses 1024 stochastic bit-stream; since one EDT step 
uses 32 bits, 32 EDT steps are identical to the baseline SC circuit (i.e., 32x32=1024). 
EDT can reduce energy and improve decision speed. Figure 71 (a) shows that the 
tests are finished earlier compared to the baseline SC circuit. For example, 63% 
among 10000 tests are finished before the 10th step (i.e., 320 bits); compared with 
the baseline SC with 2.41% error, EDT decreases energy by 65.2% with 2.63% 
error as shown in (a). If we move the last EDT step to earlier ones, we can save 
more energy as shown in (b). By setting the last EDT step to 16, energy decreases 
by 69% while sacrificing accuracy by 1.53%, compared with the baseline SC circuit. 
(c) shows this trade-off relationship between the last EDT step, test error, and 
normalized energy reduction using EDT compared with not using EDT. 

6.6.3 Comparison of Synthesis Results 

We synthesize one SC neuron with 200 inputs, which is compared with 9-bit 
fixed point (FIX) because SC circuit using 512(=29) bits shows reasonable test error 
rate 0.031. Stochastic bits for each synaptic weight are generated with stochastic 
number generators (SNG) proposed in [109], where linear feedback shift registers 
(LFSRs) are shared among parallel SC circuits without generating correlation. They 
are implemented as combinational logic in TSMC 45nm technology library with 
Synopsys Design Compiler using Verilog HDL. The fixed-point is implemented 
with 3-stage pipelines. The recent work [2] reports that spintronic SNG using 
magnetic tunneling junctions (MTJs) improves energy efficiency about seven times 
compared with CMOS SNG. Thus, we also add the estimated value for MTJ-SNG.  

Figure 72 shows the synthesis results in terms of area, critical path delay, power, 
and energy, where the delay of the fixed-point circuit is multiplied by three due to 
3-stage pipeline. SC circuit can be implemented with a serial unit up to 512 parallel 
units, and we select 32- and 64- parallel SC circuit for area, critical path delay and 
power investigation. Note that the area and power increase in proportion to the 
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parallelism while critical path delay does not vary. As a result, we find that SNG 
overhead is very significant; it takes 41.50%, 59.58%, and 75.76% of SC circuit 
(SC w/ SNG) in terms of area, power, and critical path delay. However, regardless 
of the parallelism of SC circuit, energy consumption is identical in all cases. 
Compared with 9-bit width fixed-point, SC with SNG increases energy by 3.0 times 
while SC without SNG decreases energy by 70.0%; we also estimate SNG with 
MTJ-SNG decreasing energy by 30.0% from the result of [2]. Due to EDT, energy 
decrease by about 34% compared to basic SC in all cases. Figure 73 shows iso-area 
performance where all circuits are set to the area of 9-bit fixed-point which is 72104 
um2. In case of latency with EDT29, SC without SNG is 4.61 times faster while SC 
with SNG is 1.53 times slower compared with 9-bit fixed-point. It is because the 
two cases have 120x and 70x parallelisms, respectively, under iso-area and the 
critical path delay of the former is 4.125 shorter than that of the latter. 

29 The latency is the time to calculate a 9-bit binary number in a fixed-point 
arithmetic and to calculate a 512-bit stream in SC. 
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6.7 Conclusion 

In this paper, we address the problems in directly adopting stochastic computing 
to DNN by removing near-zero weights, applying weight-scaling, and using state 
machine based activation function integrated with the accumulator. We also suggest 
the early decision termination which is very useful in terms of energy and decision 
speed. The experimental results demonstrate that the accuracy of DNN using SC is 

 

Figure 72. Synthesis results.  All cases are compared with 9-bit fixed-point (9-bit 

FIX). In case of area, critical path delay, and power, 32- and 64-bit parallel SC circuits 

are used. In case of energy, SC circuit executes 29(=512) bits.     

 

Figure 73. Iso-area performance comparison. Energy and latency for each case are 

compared under same area. The values for SC circuits using MTJ-SNG are estimated 

according to [2]. Fixed-point computes with 9-bit width while all SC circuits compute 
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close to that of the conventional floating-point system while reducing the area, 
power, critical path delay, and energy. 
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7. Conclusion 

Since machine learning is a very promising domain to assist humans with 
intelligence, it has been paid attention in many various application areas. We present 
schemes for machine learning from high-level algorithms down to low-level 
hardware building blocks, which include hierarchical ensemble learning framework 
and stochastic computing logic synthesis. They are combined in the domain of deep 
learning. The result shows that the synergistic effect of them will lead to a very 
efficient machine learning system.  

It is well known that ensemble of classifiers can achieve higher accuracy 
compared to a single classifier system. This paper pays attention to ensemble 
systems consisting of multiple feature extractors and multiple classifiers (MFMC). 
However, MFMC increases the system complexity dramatically, leading to a highly 
complex combinatorial optimization problem. In order to overcome the complexity 
while exploiting the diversity of MFMC, we suggest in this paper a hierarchical 
ensemble of MFMC and its optimizing framework. By constructing local groups of 
feature extractors and classifiers and then combining them as a global group, the 
approach achieves a better scalability. Both reinforcement machine learning and 
Bayesian networks are adopted to enhance the accuracy. We apply the proposed 
method to vision based pedestrian detection and recognition of handwritten 
numerals. Experimental results show that the proposed framework outperforms the 
previous ensemble methods in terms of accuracy. 

Stochastic Computing (SC) is a very promising technique to boost logic 
efficiency in terms of area, power, and error tolerance when the accuracy of 
computation can be relaxed. One of the challenges with SC, however, is how to find 
optimal SC operations from conventional expressions based on binary arithmetic. 
This work presents a novel approach to automatically synthesizing a network of SC 
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operations from a set of given conventional arithmetic expressions possibly 
including many variables. It first generates building blocks called iSC kernels from 
the given conventional expression and then synthesizes an SC logic network by 
using the relationship between iSC kernels. Experimental results obtained by 
applying our proposed algorithm to a set of applications demonstrate that our 
technique generates SC logic that outperforms the conventional binary logic in 
terms of area, critical path delay, and power consumption. 

Deep neural networks (DNNs) have been recently paid great attention because 
they achieve a noticeable performance improvement in term of accuracy in 
supervised learning over other machine learning techniques. However, DNNs 
consisting of many neurons require lots of computations leading to considerable 
power consumption, which is an obstacle to the wide usage of DNNs in embedded 
systems or mobile devices. This paper presents a method of implementing a DNN 
using stochastic computing, where multiplications-the majority operations-can be 
implemented with a single XNOR gate in bipolar format. Based on the observation 
that directly adopting stochastic computing to DNN has some challenges such as 
random error fluctuation, range limitation from -1 to 1, and overhead in 
accumulating many products of inputs and synaptic weights, we address these 
problems by removing near-zero weights, applying weight-scaling, and using state 
machine based activation function integrated with the accumulator. The approach 
allows an easy implementation of early decision termination without hardware 
modification for a given classification problem by efficiently exploiting the 
progressive precision characteristics of stochastic computing, which was not easy 
with existing approaches. We find that the early decision termination is very useful 
in terms of energy and decision speed because most of test inputs are far from 
decision boundary. Our experimental results demonstrate that our technique 
outperforms the conventional binary fixed logic in terms of gate area, latency, and 
power consumption. 
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요약(국문초록) 

 

머신러닝(machine learning)은 인지컴퓨팅의 분야로 최근에 산업, 의학, 

교통, 엔터테인먼트 등 사람과 상호작용이 필요한 많은 분야에서 뛰어난 

성능을 입증 받아 주목을 받고 있다. 효율적인 머신러닝 시스템을 구현하

기 위하여 본 논문은 상위레벨의 알고리즘으로 부터 하위레벨의 하드웨

어 회로에 까지 다양한 계층의 연구를 포함하고 있다. 

상위레벨의 알고리즘 연구는 혼성모델(ensemble model)을 활용한 학습방

법에 대한 것이다. 혼성모델은 다수의 특징 추출기(feature extractor)와 분

류기(classifier)를 동시에 사용하는 것으로, 이러한 요소들을 결합하여 단

일 모델에서 발생하는 문제점과 파라미터 최적화 문제점을 해결하여 정

확도 측면의 향상시킨다. 본 연구에서 다수의 특징 추출기와 분류기를 사

용하는 계층적인 혼성 프레임웍(hierarchical ensemble learning framework)을 

제안하여 정확도 측면에 향상을 보여 주었다. 

머신러닝 시스템은 일반적으로 부정확한 계산을 허용하고 데이터의 중

복성이 존재한다고 알려져 있다. 머신러닝 효율성을 극대화하기 위하여, 

이러한 성질을 효율적으로 활용할 수 있는 확률 컴퓨팅(stochastic 

computing)을 도입하여, 회로 면적 및 에너지 효율을 높일 수 있는 방법

을 제안하였다. 확률 컴퓨팅은 기존에 고정소수점 연산에 비하여 정확도

를 희생하면서 면적, 속도, 에너지 등을 향상시킬 수 있는 컴퓨팅 방법이

다. 이것을 활용하여 임의의 연산에 대한 회로를 합성할 수 있는 방법을 

제안하였다. 

최근 머신러닝 분야에서 훌륭한 성능으로 주목을 받고 있는 분야가 딥

러닝 (deep learning)이다. 딥러닝은 많은 뉴런(neuron)과 레이어(layer)를 활

용하여 기존의 머신러닝 시스템의 정확도 문제점을 해결하고 있다. 본 연

구는 기존 딥러닝에 확률 컴퓨팅을 접목하여 향상을 꾀하였다. 하지만 기
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존의 확률 컴퓨팅을 딥러닝에 그대로 적용하는 데는 랜덤 에러, 수치의 

제한, 가산기의 문제 등이 존재한다. 본 연구에서는 이러한 문제를 해결

할 수 있는 방법을 제안하여 딥러닝 효율성을 높였다. 또한 대부분의 데

이터들이 결정경계(decision boundary)에서 멀리 떨어져 있는 것을 이용하

여 이른 결정 종료(early decision termination) 방법을 제안하였다. 이를 기

반으로 합성회로의 면적, 속도, 파워 등의 향상을 실험 결과로 보여주었

다. 

 

주요어 : 머신러닝, 기계학습, 확률컴퓨팅, 혼성 학습, 딥러닝, 

딥신경망 
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