

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Approaches to the Design of Machine
Learning System

기계학습 시스템 설계를 위한 방법

DECEMBER 2015

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Kyounghoon Kim

Approaches to the Design of Machine Learning System

기계학습 시스템 설계를 위한 방법

지도교수 최 기 영

이 논문을 공학박사학위논문으로 제출함

2015 년 12 월

서울대학교 대학원

전기∙컴퓨터 공학부

김 경 훈

김경훈의 박사학위논문을 인준함

2015 년 12 월

Approaches to the Design of Machine Learning System
Platform

CPU/GPU 이종 병렬 플랫폼을 위한

위 원 장 : ________김태환________ (인)

부위원장 : ________최기영________ (인)

위 원 : ________이혁재________ (인)

위 원 : ________유승주________ (인)

위 원 : ________이종은________ (인)

Abstract

Approaches to the Design of Machine Learning System

Kyounghoon Kim

Department of Electrical Engineering and Computer Science
The Graduate School

Seoul National University

Machine learning has been paid attention because intelligence such as
recognition, decision making, and recommendation is a helpful utility in industrial,
medical, transportation, entertainment systems, and others that human need to
interact with. As machine learning techniques are extensively applied to various
areas, the needs for more robust algorithms and more efficient hardware have
been increased. In order to develop an efficient machine learning system, we have
researched from high-level algorithm down to low-level hardware logic; the main
focus of our work is on ensemble machine learning and stochastic computing
(SC).

The first work is to combine multiple components, i.e., multiple feature
extractors (FE) and multiple classifiers in the aspect of pattern recognition.
Ensemble of multiple components is one of challenging approaches for
constructing a more accurate classifier [3]. It can handle difficult problems where
a single classifier easily makes a wrong decision due to lack of training or
parameter optimization [4]. Combining the decisions of participating classifiers
statistically reduces the risk of wrong decision. We suggest a hierarchical
ensemble framework of multiple feature extractors and multiple classifiers
(MFMC).

The second work is to construct efficient hardware building blocks for machine
learning in order to reduce system complexity and generate high area- and
energy-efficient logic, where we exploit the property of machine learning systems
that does not require accurate computations. We select stochastic computing (SC),

i

which is an alternative paradigm to conventional binary arithmetic computing [5].
SC can boost efficiency in terms of area, power, and error tolerance [6], while
relaxing the accuracy of computation.

The third work is to combine both machine learning and stochastic computing,
where we select deep learning. This work presents an efficient DNN design with
stochastic computing. Observing that directly adopting stochastic computing to
DNN has some challenges including random error fluctuation, range limitation,
and overhead in accumulation, we address these problems by removing near-zero
weights, applying weight-scaling, and integrating the activation function with the
accumulator. The approach allows an easy implementation of early decision
termination with a fixed hardware design by exploiting the progressive precision
characteristics of stochastic computing, which was not easy with existing
approaches. Experimental results show that our approach outperforms the
conventional binary logic in terms of gate area, latency, and power consumption.

keywords : Machine learning, Stochastic computing, Ensemble learning,
Deep learning, Deep neural networks.

student number : 2012-30193

ii

Contents

Contents iii

List of Figures viii

List of Tables xviii

1. Introduction ... １

1.1 Hierarchical Ensemble Learning Framework １

1.2 Hardware Building Block for Machine Learning By Using
Stochastic Computing ... １

1.2.1 Dynamic energy-accuracy trade-off using stochastic
computing in deep neural networks ... ５

2. A Design Framework for Hierarchical Ensemble of Multiple

Feature Extractors and Multiple Classifiers ... ７

2.1 Introduction ... ７

2.2 Related work .. ９

iii

2.3 Proposed hierarchical ensemble system １２

2.3.1 Local Mapping Block and Global Mapping Block １２

2.3.2 Complexity comparison according to composition of
LMB １５

2.3.3 Motivation for differentiating local and global
mappings １７

2.3.4 Reinforcement learning for LMB １９

2.3.5 Construction of Bayesian network from GMB ２４

2.4 Experimental results .. ３２

2.4.1 Measure of effectiveness for WMV and RL ３３

2.4.2 Pedestrian detection dataset ３５

2.4.3 Comparison between GMB and AdaBoost ４１

2.4.4 UCI Multiple Features dataset ４２

2.4.5 LMB selection .. ４４

2.4.6 Discussion ... ４５

2.5 Conclusion ... ４６

3. Synthesis of Efficient Stochastic Logic for Many-Variable

Expressions ４９

3.1 Introduction ... ４９

3.2 Related Work ... ５２

3.3 SC Logic Synthesis for Multivariate Expressions ５４

iv

3.3.1 Probabilistic Logic .. ５５

3.3.2 Definitions .. ５８

3.3.3 Overview of the Proposed Method ６０

3.3.4 Direct Synthesis VS. Kernel-based Synthesis ６０

3.3.5 SC Kernel ... ６３

3.3.6 Prime SC Kernel ... ６５

3.3.7 iSC Kernel .. ６８

3.3.8 Relationship Between iSC Kernels ７０

3.3.9 Hybrid Scheme ... ７５

3.3.10 Cost Function .. ７６

3.3.11 SC Synthesis Algorithm ... ７８

3.4 Experimental Results ... ８２

3.4.1 Performance of SC Logic Synthesis Algorithm ８３

3.4.2 Quality of Synthesis Results ８４

3.4.3 Comparison of Accuracy .. ８９

3.5 Conclusion ... ９０

4. An Energy-Efficient Random Number Generator for

Stochastic Circuits ... ９１

4.1 Introduction ... ９１

4.2 II. Background ... ９２

v

4.2.1 Preliminaries ... ９２

4.2.2 Shortcomings of Conventional Approaches ９３

4.3 III. Proposed Stochastic Number Generator ９６

4.3.1 Overview of the Proposed SNG ９６

4.3.2 Even-distribution Encoding ９６

4.3.3 Inter-group Randomization ９８

4.3.4 Proposed Building Block for Bit Shuffling １００

4.3.5 Intra-group Randomization １０２

4.4 Experimental Results ... １０３

4.4.1 Accuracy of Generated Stochastic Bit Stream ... １０４

4.4.2 Area, Delay, Power, Energy and SCC Average .. １０４

4.4.3 Energy Efficiency When Operated under Maximal
Precision １０５

4.5 Conclusion ... １０６

5. Approximate De-randomizer for Stochastic Circuits １０７

5.1 Introduction ... １０７

5.2 Proposed Approximate Parallel Counter １０８

5.2.1 Analysis for Gate Count in 1-layer Approximate PC１０９

5.2.2 Analysis for Error in 1-layer Approximate PC ... １１０

5.3 Experimental Results ... １１１

5.4 Conclusion ... １１２

vi

6. Dynamic Energy-Accuracy Trade-off Using Stochastic

Computing in Deep Neural Networks.. １１３

6.1 Introduction ... １１３

6.2 Background ... １１５

6.4 DNN Using Stochastic Circuit .. １１７

6.4.1 Overview of the Proposed DNN using SC １１７

6.4.2 Removing Near-Zero Weights １１９

6.4.3 Applying Weight Scaling １２０

6.4.4 Activation Function with Accumulation １２１

6.5 Early Decision Termination ... １２５

6.5.1 Moving Average Tracking Output Trends １２６

6.6 Experimental Results ... １２７

6.6.1 Accuracy of DNN Using SC １２８

6.6.2 Effectiveness of Early Decision Termination １２９

6.6.3 Comparison of Synthesis Results １３０

6.7 Conclusion ... １３２

7. Conclusion ... １３４

Bibliography １３６

vii

List of Figures

Fig. 1. Example of machine learning system regarding the number of components. ‘f’

stands for a feature extractor; ‘c’ stands for a classifier. (a) Traditional

single feature extractor (FE) and single classifier. (b) Single FE and
multiple classifiers represented by AdaBoost. (c) Multiple feature
extractors and multiple classifiers (MFMC). (d) Proposed hierarchical
ensemble of MFMC by using local and global combinations. ２

Fig. 2. Stochastic computing (SC) and the proposed algorithm for SC logic
synthesis. (a) Stochastic number representation and the multiplication of SC
numbers. (b) SC logic example with operations representing y=
abd+abe+cd−abcd−abde. (c) Overall process for the proposed SC logic
synthesis algorithm. ... ３

Fig. 3. Overview of the proposed randomizer and de-randomizer for SC. (a) The
proposed stochastic number generator (SNG) consists of three parts such as
even-distribution (ED) encoding, inter-group, and intra-group randomizer with
linear feedback shift register (LFSR) input. (b) The proposed de-randomizer
using an approximate unit (AU), converting 16-bit stochastic number (SN) into
4-bit binary number (BN). ... ４

Fig. 4. Overview of the proposed procedures and main idea for deep neural

viii

networks (DNNs). (a) Training procedure for DNN using SC with 32-bit
floating-point computation. (b) SC neurons are operated with SC exploiting the
suggested solutions in testing phase. (c) Early decision termination by using
progressive precision of SC. .. ５

Fig. 5. Example of detection system regarding the number of components. ‘f’ stands

for a feature extractor; ‘c’ stands for a classifier. (a) Traditional single feature

extractor and single classifier. (b) Single feature extractor and multiple
classifiers represented by AdaBoost. (c) Multiple feature extractors and
multiple classifiers (MFMC). ... ８

Fig. 6. Overview of the design framework for hierarchical ensemble of MFMC. ... １
２

Fig. 7. Constructing GMB from LMBs. (a) 4x5 ensemble of MFMC. (b) Euler trail
for a complete graph containing odd number vertexes. (c) Euler path for a
graph having even number vertexes where additional edges are inserted in
order to build an Euler trail. (d) GMB consisting of LMBs, where redundant
blocks show up due to additional edges. .. １３

Fig. 8. Different ways of combining FEs and classifiers to make an LMB and using
it as the building block for making a GMB. (a) An LMB contains only one
FE and one classifier. Although it reduces the complexity, it cannot consider
the interaction between FEs or between classifiers. (b) An LMB contains two
FEs and two classifiers, which is the proposed scheme. (c) Three FEs and three
classifers belong to an LMB. (d) An LMB has all the relations for |F| FEs and
|C| classifiers; and thus there is only one LMB in the GMB. １５

Fig. 9. Two directions for combining multiple classifiers. Weighted majority vote
takes the vertical direction, while regression and generalization takes the
horizental direction. Two methods can generate diffierent results even for

ix

identical inputs. .. １８

Fig. 10. Psedo-code of the reinforcement learning algorithm for calculating weights

for an LMB. ... ２３

Fig. 11. Construction of Bayesian networks. (a) The system consists of three
feature extractors and two classifiers. (b) GMB is created by LMBs for the
system. (c) Bayesian network is composed of 1) class node denoted as hl, 2)
FC nodes denoted as fick, which correspond to FE-classifier pairs, and 3)
decisions of LMBs denoted as DLMBk ２６

Fig. 12. Accuracy comparison between feature extractors (HOG, HAAR, CENT,
LBP) and classifiers (SVM, KNN) in DaimlerChrysler dataset. It depicts that
feature extractors are more significant than classifiers. ２９

Fig. 13. Learning algorithm of Bayesian network for GMB. ３０

Fig. 14. Accuracy of individual classifiers (SVM, AdaBoost, and decision tree),
ensemble using optimal WMV weight not considering dependency, and RL
weight for Banknote Authentication in UCI dataset. For the illustration, the
plane wS+wA+wD=1 (the sum of weights should be one) is projected into
xy-plane, where wS, wA and wD are the weights of SVM, AdaBoost, and
decision tree, respectivly; z-axis represents the accuracy. ３２

Fig. 15. Examples of DaimlerChrysler Pedestrian dataset. The upper ones are

pedestrian samples while the lower ones are non-pedestrian samples. ３４

Fig. 16. Screenshot of an experimental application of hierarchical ensemble of
MFMC to pedestrian detection using DaimlerChrysler dataset, which is
developed based on OpenCV with the C++ language. ３５

Fig. 17. Experimental system in the paper. (a) The system consists of full
connections between feature extractors and classifiers: HOG, CENT, HAAR as
feature extractors and SVM, DTREE, KNN as classifiers. (b) GMB is
comprised of nine LMBs, each of which has 2x2 combinations. ３６

x

Fig. 18. Mutual information for all pairs of nine classifiers. Dependency between

classifiers actually exists. ... ３７

Fig. 19. Performance comparison between the proposed framework and the other

schemes. ... ３８

Fig. 20. ROC curves of all the LMBs. Construction of the LMBs is identical to that
in Fig. 17. ... ４０

Fig. 21. Performance comparison between GMB and AdaBoost. (a) Error rate of
AdaBoost according to the number of classifiers; the parentheses represent the
used feature set(s). (b) ROC curve, where the points of AdaBoost depict 10, 20,
30, 40, and 50 classifiers, respectively. .. ４１

Fig. 22. GMB composition for UCI Multiple Feature dataset, where five FEs and
five classifiers are used. (a) MFMC combination between FEs and classifiers.
(b) GMB consists of 10x10 LMBs. .. ４２

Fig. 23. Experimental result for UCI Multiple Features dataset for single classifiers

and ensemble methods. .. ４３

Fig. 24. LMB selection while closely maintaining the accuracy of the original GMB
containing all the LMBs. (a) GMB error decreases as the number of LMBs
increases, but beyond 46 LMBs the decrease saturates. (b) The selected 46
LMBs with gray color. ... ４６

Fig. 25. Example of stochastic logic. (a) Multiplication with a single AND gate. (b)
Partially parallel version for multiplication with two AND gates. (c) Three-bit
multiplication using half adders and full adders with conventional binary radix
encoding. (d) SC logic example with operations representing y=
abd+abe+cd−abcd−abde, where simple Boolean gates are mapped to
compound arithmetic operations. ... ５０

Fig. 26. SC gates and their arithmetic operations in unipolar encoding. ５５

xi

Fig. 27. Overview of the proposed SC logic synthesis with many variables. (a) The
proposed scheme begins with a basic block (BB) and its data flow graph
(DFG). (b) Example of correlation. (c) Method to solve the correlation problem
by using different random sources and a D flip-flop. (d) Swapping the wire can
remove the correlation in the parallel version. ... ５６

Fig. 28. Overall process for the proposed algorithm. .. ５９

Fig. 29. Examples of direct synthesis. (a) ac+bd+ad+bc, where scale factor is 4.
(b) b+c−ab−ac+ad; the scale factor is 8. It is implemented with bipolar
encoding because of scaled subtraction. .. ６１

Fig. 30. SC kernels for expression t in Example 2. (a) SOP expression for t and the

synthesis result T. (b) Schematic diagram for T. (c) DAG for SC-kernel. ... ６６

Fig. 31. Decomposition of three-input OR gate. All the gates contain (1-P)
expression. (a) Two-input OR gate. (b) Three-input OR gate. (c) The
decomposed three-input OR gate contains (1-P) form such as (1-a) and (1-k).
 ... ６７

Fig. 32. Finding iSC kernels from prime SC kernels for Example 3. (a) SOP form
of expression z. (b) SC logic for expression z. (c) DAG of prime SC kernels
derived by expression z. (d) Final DAG of iSC kernels derived from (c). ... ６８

Fig. 33. Relationship between two iSC kernels. (a) The procedure to find the
relationships between them. (b) An example of iSC kernel relationship graph
for Fig. 30... ７３

Fig. 34. Examples of relationships between iSC kernels in Fig. 30. A3 exists in P

of A4, M of A2, and N of A1; A4 exists in M of A2 and N of A1. ７４

Fig. 35. Example of hybrid scheme combining both kernel-based and direct
synthesis. (a) Expression of Fig. 29b and their SC logic. (b) Schematic diagram
for the example in unipolar encoding. ... ７５

xii

Fig. 36. Pseudo-code of the top-level function for the proposed algorithm...... ７７

Fig. 37. Pseudo-code for Kernel-Based-Synthesis function. ７８

Fig. 38. Pseudo-code for Containing-Search function. ７９

Fig. 39. SC logic synthesis example for Fig. 30. The result is a different candidate
compared with Fig. 30b. (a) Synthesis steps according to each iSC kernel. (b)
Schematic diagram for the result. .. ８１

Fig. 40. Comparison of the proposed algorithm with exhaustive search. ８２

Fig. 41. Area and error values of candidate solutions for TI used to calculate the

cost function (19). .. ８３

Fig. 42. Comparison of TI implementations. (a) SC logic generated by the proposed
algorithm. (b) SC logic expression of (a). (c) Data flow of conventional
arithmetic operations optimized with CSE. (d) Arithmetic expressions for the
nodes in (c). .. ８４

Fig. 43. Result images for TI in volume rendering. .. ８５

Fig. 44. Performance comparisons for TI in volume rendering between SC and
conventional binary representation. (a) Area (b) Critical path delay (c) Power
(d) Area and delay product ... ８７

Fig. 45. Performance comparisons for Dot product. (a)Area (b) Critical path delay

(c) Power (d) Area and delay product. ... ８７

Fig. 46. Accuracy comparison between FIX and SC logic. (a)SNR for dot product.

(b)SNR for TI in volume rendering. .. ８９

Fig. 47. Stochastic arithmetic operation and conventional stochastic number
generator (SNG). (a) Multiplication of two stochastic numbers (SNs) and the
output stream. (b) SNG with an LFSR. (c) An example of 7-bits LFSR. ９２

Fig. 48. Strategy for the proposed SNG. (a) Example of ideal SNG case, where

xiii

one stochastic bit is generated by using one store unit (i.e., D-flip/flop). (b)
Partitioning of stochastic bit-stream. ... ９３

Fig. 49. SN generation for 0.75 with progressive precision (PP) in 210 bits SC
circuit. (a) Distribution of SN values. (b) Multiplication of two SNs generated
with PP using an AND gate. ... ９４

Fig. 50. Overview of the proposed SNG. (a) SNG with BN input and SN output,
where v groups are generated and each group has w bit-width. (b) The
proposed SNG consists of three parts such as even-distribution (ED) encoding,
inter-group, and intra-group randomizer with LFSR input. ９５

Fig. 51. Even-distribution (ED) encoding, where white space means zero. (a) ED
code represents decimal number 204 with seven groups (column) and four
digits (row) per group when b is 3. (b) Example of ED code with 15 groups
when b is 1. .. ９７

Fig. 52. Inter-group randomization, where the group index is from Fig. 51a. (a)
Shuffling circuit for inter-group randomization. (b) Final signal G is a
scrambled one and the value 2/7 matches with the number of BGs. (c)
Shuffling of groups according to the value of G. (d) Method to actually

generate the output signal, where ‘~G’ means negation of G. (e) Example of

logic for output signal A3. .. ９９

Fig. 53. Analysis of randomness after swapping signals. (a) Overview of
randomizing network. (b) Swapping logic. (c) Definition of equal probability
(EP) set. (d) Probability for input signals to be passed onto output signals. (e)
Constructing an EP set by using a swapper. (f) Constructing an EP set of output
signals from two different EP sets of input signals. (g) A case that output
signals do not belong to an EP set. ... １０１

Fig. 54. Logic for intra-group randomization consisting of randomizing network and

an LFSR. The input signals is from inter-group randomization. １０３

xiv

Fig. 55. Accuracy after generating SN value 0.6 and multiplying them while using

PP. .. １０４

Fig. 56. Comparison of area, critical path delay, power, energy, and SCC average
value to generate a 210-bit stream for conventional SNG, SNG sharing two
LFSRs [1], and the proposed SNG. For fair comparison, all cases are
implemented in parallel manner. The length of LFSRs in two previous
approaches is 10 while the number of bits in a group of the proposed SNG is
32. .. １０５

Fig. 57. Energy to generate 25 bits. Conv-5 and Conv-10 represent that the length
of LFSR in the conventional SNG are 5 and 10, respectively. Shared-5 and
Shared-10 mean the shared SNGs. ... １０６

Fig. 58. Stochastic numbers (SNs) and conventional counters, where the numbers in
brackets represent the bit index of binary numbers (BNs). (a) Multiplication of
two SNs. (b) Accumulative serial counter. (c) Accumulative parallel counter
(APC). (d) Example of a parallel counter (PC) converting 15 bits SN into 4 bits
BN. ... １０８

Fig. 59. The proposed parallel counter (PC). (a) Overview of the PC. (b) 2-layer
approximate unit (AU). (c) The proposed PC using 1-layer AU, converting
16-bit SN into 4-bit BN. (d) Example of 1s distribution in 1-layer AU. (e)
Output and error for all inputs in AND and OR gate. １１０

Fig. 60. Theoretical analysis of the proposed scheme. (a) The number of gates for
the conventional PC and the proposed PC with 1-layer AU. (b) The mean and
standard deviation of number of errors for 1-layer PC with 1024 input bits. .. １
１１

Fig. 61. Experimental results of the proposed approximate PC compared with the
conventional PC in 1024-bit stream. (a) Area. (b) Critical path delay. (c) Power.
(d) PMF when 512 1s among 1024 bits. (e) PMF when 128 1s. １１２

xv

Figure 62. Deep neural network (DNN) using stochastic computing. (a) Stochastic
multiplication in unipolar encoding with the range [0 1]. (b) Bipolar stochastic
multiplication with [−1 1] range. (c) DNN layers with weight vector Wk in
layer k. .. １１４

Figure 63. Random error problem occurs when applying SC to DNN. (a) Random
error of XNOR gate in 1024-bit stream as absolute value. (b) 20000 weights
distribution in 200x100 networks (left Y-axis) and error multiplying by zero
(right Y-axis). ... １１６

Figure 64. Overview of the proposed procedures and main idea. (a) Training
procedure for DNN using SC with 32-bit floating-point computation. (b) SC
neurons are operated with SC exploiting the suggested solutions in testing
phase. (c) Early decision termination by using progressive precision of SC. .. １
１７

Figure 65. The distribution of weights after removing near-zero weights and

weight-scaling. ... １１９

Figure 66. A stochastic neuron and the mechanism of state-machine based activate
function. (a) A single neuron using SC. (b) state-machine having two states in
an up/down counter. (c) Using binomial distribution for the logistic function. (d)
The proposed activate function. (e) Binomial distribution with many states. (f)
state-machine having 40 states. .. １２１

Figure 67. The result comparison between the proposed hyperbolic tangent Btanh()
and the original tanh(). (a) The number of states is two and 80 for 100
bit-streams. (b) 20 and 200 states for 200 bit-streams. １２３

Figure 68. Pseudo-code for the proposed Btanh(). ... １２４

Figure 69. The intermediate procedures of early decision termination. Ground truths

are 4 and 8, respectively. .. １２６

Figure 70. Comparison misclassification error. MNIST test data error in 32-bit

xvi

floating point is 2.23%. The proposed method is 2.41% while the previous
work [11] is 18.2% in 210-bit stream. ... １２８

Figure 71. Experimental result for early decision termination (EDT) where one EDT
step use 32 stochastic bits. (a) Applying EDT to 1024 bits. (b) The last step of
EDT is set to the 16th step (i.e., 16x32=512 bits). (c) Normalized energy
reduction between using and not using EDT and test error according to the last
EDP step. .. １２９

Figure 72. Synthesis results. All cases are compared with 9-bit fixed-point (9-bit
FIX). In case of area, critical path delay, and power, 32- and 64-bit parallel SC
circuits are used. In case of energy, SC circuit executes 29(=512) bits. ... １３２

Figure 73. Iso-area performance comparison. Energy and latency for each case are
compared under same area. The values for SC circuits using MTJ-SNG are
estimated according to [2]. Fixed-point computes with 9-bit width while all SC
circuits compute 29(=512) bits. .. １３２

xvii

List of Tables

TABLE I ... １６

TABLE II ... ３３

TABLE III .. ３９

TABLE IV .. ４４

TABLE V ... ４７

Table VI.. ５８

Table VII .. ６２

Table VIII ... ６４

Table IX ... ７２

Table X ... ８２

Table XI ... ８８

xviii

1. Introduction

1.1 Hierarchical Ensemble Learning Framework

Classification systems can be classified into three categories according to the
number of FEs and classifiers as shown in Fig. 1: a single FE and a single classifier
(a), multiple classifiers sharing the same feature vector (b), and multiple FEs as well
as multiple classifiers (c) which we call MFMC.

As illustrated in Fig. 1 (d), the proposed ensemble system consists of three steps
for MFMC: constructing all possible FE-classifier pairs, building a set of local
combinations from the set of pairs using reinforcement machine learning, and
making a final decision by constructing a global combination based on Bayesian
network. In the first step, each FE generates a feature set in a vector format from an
input image. The feature vectors from an FE are used by each classifier pairing with
the FE for training and testing, which is identical to conventional approach for
creating individual recognizers. In the following steps, hierarchical approach is
adopted in order to reduce the complexity due to the exponential number of possible
combinations. Thus, in the second step, a limited number of FE-classifier pairs are
combined to make a group (there can be many different combinations and each
combination generates its own group), and weights for the pairs in the group are
adjusted according to their effectiveness by using reinforcement learning. Then, in
the last step, for a final decision, the groups are merged into a single decision
structure called Bayesian network. Experimental results show that the proposed
approach gives accuracy higher than any other existing approaches.

1.2 Hardware Building Block for Machine Learning By
Using Stochastic Computing

For applications such as machine learning that tolerate a certain level of

１

(d)

Fig. 1. Example of machine learning system regarding the number of components. ‘f’

stands for a feature extractor; ‘c’ stands for a classifier. (a) Traditional single feature

extractor (FE) and single classifier. (b) Single FE and multiple classifiers represented

by AdaBoost. (c) Multiple feature extractors and multiple classifiers (MFMC). (d)

Proposed hierarchical ensemble of MFMC by using local and global combinations.

(a) (b) (c)

f c f

c1

c2

c3

c4

f1
c1
c2

c3

c4
f3

f2

f1 c1

c2

c3

c|C|

f3

f2

...

f|F|

...

Feature extractors Classifiers

Individual Recognizer

Bayesian network
machine learning

Global Combination

<f1,f2,c1,c2>

Reinforcement
machine learning

<f2,f3,c1,c2>

Reinforcement
machine learning

Local Combination

<f|F|-1,f|F|,c|C|-1,c|C|>

Reinforcement
machine learning ...

...

f1c1 f1c2 f3c1

DecisionNDecision0

Class

f2c2f2c1

inaccuracy, stochastic computing (SC) can be a good alternative to conventional

binary arithmetic. SC uses the probability of 1’s in a (pseudo) random bit stream to

represent a number as shown in Fig. 2 (a), and allows for an extremely efficient
implementation of complex functions (such as multiplication and exponentiation),
typically with a few logic gates. (b) shows a complex arithmetic operation using a
small number of gates.

Given expressions such as kernels in machine learning, it is very important to
generate efficient SC circuits. Thus, we present a SC logic synthesis scheme. As
illustrated in Fig. 2, the overall process for the proposed method consists of three

２

parts: i) generating iSC kernels, i.e., implementable SC kernels, ii) finding
relationship between iSC kernels, and iii) synthesizing SC logic from the original
input expression using the iSC kernels and their relationships.

The basic idea is to decompose the input expression into iSC kernels, each of
which can be implemented using the SC gates. If some decomposition is derived
from the original expression, it is accepted as a solution. There can be many
different solutions, and for the exploration, the algorithm tries to divide the given
polynomial expression by each iSC kernel. The algorithm pre-examines the

Fig. 2. Stochastic computing (SC) and the proposed algorithm for SC logic synthesis.

(a) Stochastic number representation and the multiplication of SC numbers. (b) SC

logic example with operations representing y= abd+abe+cd−abcd−abde. (c) Overall

process for the proposed SC logic synthesis algorithm.

SC kernel
(III.E) (III.F)

Prime
SC kernel iSC kernel

Relationship
graph

(III.G)

KERNEL
-BASED

SC logic synthesis
(III.K)

Finding dependency
between iSC kernels

(III.H)

SC logic

Generating iSC kernel

Examining relationship
between iSC kernels

Generating SC logic
using hybrid scheme

Sum of
product

form
Expression

Kernel
(III.B)

DIRECT
SC logic
synthesis

(III.I)

A
B

Y

1,1,0,1,1,1,1,0 (6/8)

1,0,1,1,0,0,1,0 (4/8)

1,0,0,1,0,0,1,0 (3/8)
(a)

A
B
C

D Y

E
y = (1-ab)cd + ab(d+e-de)
 = abd+abe+cd-abcd-abde

P(Y=1)=y

(b)

(c)

３

relationships between iSC kernels and exploits them during the search. In the final
step, an SC logic network is synthesized for the original expression by using the iSC
kernels and the relationships represented as a graph.

Since SC is based on random numbers, a randomizer and a de-generation are very
important components. In case of stochastic number generator (SNG) as a
randomizer, instead of generating new 0s and 1s, the proposed SNG shuffles 1s in
the existing bit stream by using a random source. The basic idea of the proposed
SNG is to evenly distribute 1s over the entire bit stream, which is named as
low-discrepancy (LD). Fig. 3(a) shows the outline of the proposed SNG, which
consists of three parts: even-distribution (ED) encoding, inter-group randomizer,
and intra-group randomizer.

In case of de-randomizer, we propose an approximate parallel counter (PC) as
shown in Fig. 3. (b), which consists of two parts: an approximation unit (AU) and a
conventional accurate PC. The approximate PC exploiting an AU is shown in (b).

Fig. 3. Overview of the proposed randomizer and de-randomizer for SC. (a) The

proposed stochastic number generator (SNG) consists of three parts such as

even-distribution (ED) encoding, inter-group, and intra-group randomizer with

linear feedback shift register (LFSR) input. (b) The proposed de-randomizer using

an approximate unit (AU), converting 16-bit stochastic number (SN) into 4-bit

binary number (BN).

(a)

Even-
distribution
encoding

Inter-group
randomizer

Intra-group
randomizerValue n

LFSRLFSR

(BN) (SN)

w

On- or Off-line
conversion

from BN to ED code

1
0...

1

1
1...

0

...
0
1...

0

shuffle groups

0
1...

0

shuffle
bits

23

22

21

21

[2][1]

[1]

[1]

(b)

(BN)

４

The input weight of AU is 20 while the output weight becomes 2l, where l is the
number of layers.

1.2.1 Dynamic energy-accuracy trade-off using stochastic computing in

deep neural networks

Since bringing to break-through in terms of classification accuracy, deep neural

(a) Training procedures (b) Testing with the SC neuron

(c) Early decision termination

Fig. 4. Overview of the proposed procedures and main idea for deep neural networks

(DNNs). (a) Training procedure for DNN using SC with 32-bit floating-point

computation. (b) SC neurons are operated with SC exploiting the suggested solutions

in testing phase. (c) Early decision termination by using progressive precision of SC.

x1

x2

x3

xn

...

Ʃ

w1

w2

w3

wn

Accumulation
Activate
function

Multiplication

Multiplication without
near-zero weights

Weights-scaling

Activate function
with an accumulator

StartInitial-training

Removing
near-zero weights

Weight-moving
into [-1 1] range

Re-training

Meet the required
accuracy?

End
YesNo

Apporoximate
Counter

Accuracy simulation
with SC manner

5 10 15 20 25 30
value of k [=1/(32*k) precision]

0

0.1

0.2

0.3

0.4

fra
ct

io
n

of
 te

st
 d

at
a

Easy input
to classify

Hard input
to classify

Early decision termination

５

networks (DNNs) have been recently paid great attention. This work presents a
method of implementing a DNN using stochastic computing (SC), Based on the
observation that directly adopting stochastic computing to DNN has some
challenges such as random error fluctuation, range limitation from -1 to 1, and
overhead in accumulating many products of inputs and synaptic weights, we
address these problems by removing near-zero weights, applying weight-scaling,
and using state machine based activation function integrated with the accumulator.
We also suggest the early decision termination (EDT) which is very useful in terms
of energy and decision speed because most of test inputs are far from decision
boundary. The experimental results demonstrate that the accuracy of DNN using SC
meets that of conventional floating-point system and the gains in terms of area,
power, critical path delay, and energy is meaningful compared with conventional
fixed-point arithmetic.

６

2. A Design Framework for Hierarchical

Ensemble of Multiple Feature Extractors

and Multiple Classifiers

2.1 Introduction

Ensemble of multiple classifiers is one of promising approaches for constructing
a more accurate classifier. It can handle difficult problems where a single classifier
easily makes a wrong decision due to lack of training or parameter optimization.
Combining the decisions of participating classifiers statistically reduces the risk of
wrong decision. In addition, such an ensemble system can generate a sensible
solution in a special environment, where several classifiers should be trained with
different training datasets due to temporal or spatial constraints. It can also solve
instability problems that frequently occur in a single classifier like neural networks
with different initial conditions. Another benefit comes from a fact that no single
classifier solution can tackle all problems according to the no free lunch theorem
(NFL) [3] [4] [7]. Due to these advantages, classifier ensemble has been an active
research area in the literature of machine learning and pattern recognition [8] [9]
[10]. According to these researches, an ensemble system generates more stable and
accurate results compared to conventional single classifier systems.

Considering multiple feature extractors (FEs) and classifiers used for constructing
an ensemble system, classification systems can be classified into three categories
according to the number of FEs and classifiers as shown in Fig. 1. Conventional
classification systems use a single FE and a single classifier as shown in Fig. 1(a).
There are systems that use multiple classifiers sharing the same feature vector
generated by an FE as shown in Fig. 1(b). AdaBoost is a well-known machine

７

learning algorithm that supports this model [11]. There have been various
researches to extend the concept of AdaBoost for better performance [12] [13]. The
third category shown in Fig. 1(c) has been introduced [14] [15] [16]; it uses multiple
FEs as well as multiple classifiers and thus we call it MFMC.

One of most representative applications of classifier ensemble is pedestrian
detection, which is a key problem in transportation, surveillance, robotics,
entertainment systems, and other systems that need to recognize and interact with
human [17] [18] [19] [20]. In pedestrian detection, vision based approach is the
most effective and popular way. However, it is still quite challenging due to large
variations in many aspects such as human clothing, pose, size, background, weather,
and illumination. In order to overcome the difficulty, many studies have been
conducted in many different ways [21]. However, the achieved accuracy is still
insufficient to be used for real applications including advanced driver assistance
system (ADAS), thus leaving room for improvement as mentioned by Dollar et al.
[22]. Especially, in case that a pedestrian is far from the camera or under partial
occlusion, the accuracy degrades dramatically. In order to improve the accuracy or
detection rate, many studies have tried to find more effective extractors and
classifiers such as those in [23] [24] [25] [26] [27] and [28]. The researches have

Fig. 5. Example of detection system regarding the number of components. ‘f’ stands

for a feature extractor; ‘c’ stands for a classifier. (a) Traditional single feature

extractor and single classifier. (b) Single feature extractor and multiple classifiers

represented by AdaBoost. (c) Multiple feature extractors and multiple classifiers

(MFMC).

(a) (b) (c)

f c f

c1

c2

c3

c4

f1
c1
c2

c3

c4
f3

f2

８

focused on finding good features as well as good classifiers. Meanwhile, utilizing
combination(s) of multiple FEs and classifiers has also been studied; it has a strong
advantage compared to single FE, single classifier counterparts.

In this paper, we focus on MFMC since it provides results superior to both single
classifier and multiple classifiers with single FE as shown in the previous researches
[14] [15] [16] [29]. Contrary to the previous studies that try to find a manually
optimized fixed combination of existing FEs and classifiers, we try to optimize
automatically the FEs and classifiers as well as their combinations. In particular, we
suggest a novel ensemble framework that can manage the complexity generated
from MFMC by using a hierarchical method that integrates reinforcement machine
learning and Bayesian network modeling. This paper is organized as follows.
Section 2.2 gives a brief overview of the related work. Section 2.3 presents the
proposed hierarchical ensemble framework for MFMC. Section 2.4 shows
experimental results and Section 2.5 concludes the paper.

2.2 Related work

Many ensemble methods have been proposed for a past few decades in the
literature of pattern recognition and machine learning. The methods for combining

multiple classifiers include weighted majority vote (WMV), naïve Bayes

combination (NB) [9], behavior knowledge space (BKS) [30], Wernecke [31], and
SVD combination [32]. Moreno-Seco et al. [33] suggested extensions to weighted
majority vote such as rescaled weighted vote (RSWV), best-worst weighted vote
(BWWV), and quadratic best-worst weighted vote (QBWWV). One of other
distinguishing approaches is based on genetic algorithm (GA) [34] [35] which use
GA to find a better combination without exhaustive search. One study [36]
presented an ensemble method with a trained fuser using weights of classifiers,
where the optimization problem and solver are proposed. Fuzzy combiner is also
used in order to aggregate multiple instances of a classifier for multi-class
classification [37]. There are also probabilistic models with posterior estimators [38]

９

[39].

However, most of existing ensemble schemes to combine decisions do not
consider multiple FEs but consider multiple classifiers with a single FE. For MFMC,
only a few ensemble methods were presented. Chen et al. [40] proposed three

general methods—linear combination, winner-take-all, and evidential reasoning—to

combine multiple classifiers with different features. They applied them to
text-independent speaker identification, where the linear combination with different
features (LCDF) outperformed the other two methods. LCDF performs linear
combination of the decisions from multiple classifiers, where the learning algorithm
uses maximum likelihood estimation with the expectation maximization (EM)
algorithm. Zenobi et al. [41] presented ensemble of classifiers with different feature
subsets considering their diversity. To find the best members of the ensemble, they
suggested a hill-climbing algorithm based on the relationship between ensemble
accuracy and ambiguity.

There have been a few studies on MFMC in the context of pedestrian detection.
Ludwig et al. [14] employed both histogram of oriented gradients (HOG) and
covariance matrices (COV) consisting of pixel coordination, derivatives, magnitude,
and gradient as FEs. They adopted neural networks (NN) and support vector
machines (SVM) as classifiers. They also suggested using an ensemble method

called ‘Training of Fusion Algorithm (TFA)’. Oliveira et al. [15] used HOG and

local receptive fields (LRF) provided by convolutional neural networks (CNN) as
FEs, in which NN and SVM were also employed as classifiers. The work in [16]
used HOG and HOF (histogram of optical flow) as FEs and SVM and MPLBoost
extended from AdaBoost as classifiers. Those approaches rely on manual
optimization of the combinations of MFMC and thus make it hard to have many
FEs and classifiers (only two or three of them are allowed). However, our
observation is that the FEs and classifiers are complementary with one another,
which makes it necessary to combine many of them in order to realize a high

１０

accuracy system. Thus the scalability of an ensemble system is important. Moreover,
whenever a new FE or a classifier is added, the entire process of finding the best
combination will be repeated and thus automating the optimization process is
crucial. The aim of this paper is to construct a framework to overcome the
limitations of the previous approaches to MFMC. We investigate this challenging
problem and suggest efficient methodologies including experiments for the
application of pedestrian detection.

In case of ensemble schemes based on weak-learners (or simple prediction rules)
such as bagging [42], boosting [43], and error correcting output codes (ECOC) [44]
[45] [46], a large number of the weak-learners commonly participate in the
ensemble (i.e., the number of weak-learners can be several thousands), where even
a single feature vector can have its own classifier. They focus on selecting better
ones among many weak-learners or reformulating the dimensionality such as
principal components analysis (PCA) and linear discriminant analysis (LDA).
Whereas, in our approach, we focus on finding the best combination among
multiple FEs and classifiers. We use a relatively small number of relatively strong
learners; simultaneously using a small number of different FEs (e.g., HOG [28],
CENTRIST [47], HAAR [48]) and classifiers (e.g., SVM, KNN, and decision tree
[49]) can effectively increase the accuracy in practical applications such as
pedestrian detection. In the experimental section, we compare the performance of
our scheme to that of AdaBoost, a representative ensemble scheme based on
weak-learners.

The objective of our work is not to find just the best performed combination of a
few FEs and classifiers for pedestrian detection as the work done in [14] [15] [16],
but to suggest a general framework for designing an ensemble system like the ones
in [9] [40] [33]. Note, however, that our approach allows arbitrary numbers of FEs
as well as classifiers, whereas the approaches in [11] are limited to systems with a
single FE (although they have multiple classifiers), which are much easier to
optimize.

１１

2.3 Proposed hierarchical ensemble system

As illustrated in Fig. 6, the proposed ensemble system consists of three steps:
constructing all possible FE-classifier pairs, building a set of local combinations
from the set of pairs using reinforcement machine learning, and making a final
decision by constructing a global combination based on Bayesian network. In the
first step, each FE generates a feature set in a vector format from an input image.
The feature vectors from an FE are used by each classifier pairing with the FE for
training and testing, which is identical to conventional approach for creating
individual recognizers. In the following steps, hierarchical manners are adopted in
order to reduce the complexity due to the exponential number of possible
combinations. Thus, in the second step, a limited number of FE-classifier pairs are
combined to make a group (there can be many different combinations and each
combination generates its own group), and weights for the pairs in the group are
adjusted according to their effectiveness by using reinforcement learning. Then, in
the last step, for a final decision, the groups are merged into a single decision
structure called Bayesian network.

2.3.1 Local Mapping Block and Global Mapping Block

One of the challenges in ensemble systems for pedestrian detection is that the

Fig. 6. Overview of the design framework for hierarchical ensemble of MFMC.

f1 c1

c2

c3

c|C|

f3

f2

...

f|F|

...

Feature extractors Classifiers

Individual Recognizer

Bayesian network
machine learning

Global Combination

<f1,f2,c1,c2>

Reinforcement
machine learning

<f2,f3,c1,c2>

Reinforcement
machine learning

Local Combination

<f|F|-1,f|F|,c|C|-1,c|C|>

Reinforcement
machine learning ...

...

...

f1c1 f1c2 f3c1

DecisionNDecision1Decision0

Class

f2c2f2c1 f|F|c|C|f3c2

１２

system complexity increases exponentially as an FE or a classifier is added. For
instance, Fig. 7 (a) shows a combination composed of four FEs and five classifiers
in which all the FEs are fully connected with all the classifiers (it can be modeled as
a fully connected bipartite graph). If we consider all different combinations of
connections between the FEs and the classifiers, the total number of combinations is

2|𝐹𝐹||𝐶𝐶|, where |F| is the number of FEs and |C| is the number of classifiers; therefore,
the system has 1,048,576 combinations. Thus finding the best combination looks
like an intractable problem. Our suggested scheme is invented for tackling that
complexity, satisfying automatic adjustment for ensemble of MFMC.

Since the complexity of MFMC is exponential with respect to the number of
possible connections between FEs and classifiers, we consider only a small number
(two) of FEs and a small number (two) of classifiers at a time for scalability of the
system. For this, we combine each pair of FEs with each pair of classifiers to make
a cluster named as a local mapping block (LMB). Thus within an LMB, we have

Fig. 7. Constructing GMB from LMBs. (a) 4x5 ensemble of MFMC. (b) Euler trail for

a complete graph containing odd number vertexes. (c) Euler path for a graph having

even number vertexes where additional edges are inserted in order to build an Euler

trail. (d) GMB consisting of LMBs, where redundant blocks show up due to additional

edges.

A
B

C
D

1
2
3
4
5

A
B
C
D
A

B

C
D

1 2 3 4 5 1 3 5 2 4 1

Redundant blocks

A

B C

D

A B C D A BC D

1

2

3 4

5

1 2 3 4 5 1 3 5 2 4 1
(a) (c)(b) (d)

Additional edge

LMB

LMB

Euler trail Euler trail

１３

only 2x2=4 possible connections and 22x2=16 combinations.1 The LMBs become
basic building blocks and merge together into a global mapping block (GMB)
represented in a two-dimensional space. Fig. 7(d) depicts a GMB for the FEs and
classifiers in Fig. 7(a). Each small block represents an LMB for two FEs and two
classifiers. For example, the small block on the top left corner represent an LMB
with FEs A and B and classifiers 1 and 2.2 The LMBs in the figure show all
different combinations of all different pairs of FEs and classifiers.

To consider all different pairings of classifiers (FEs), we use a complete graph
model. Fig. 7(b) (Fig. 7(c)) shows the graph model for the classifiers (FEs) in Fig.
7(a). In Fig. 7(b), for example, each edge represents a different pair of classifiers
and any pair is represented by its own edge. To consider all different combinations
of pairings as was done in Fig. 7(d), we construct an Euler trail by visiting every
edge in the complete graph model. The order of vertices (or nodes) thus obtained is
used for constructing the GMB as shown in Fig. 7(d). However, if the number of
odd vertices (vertices with odd degree) is greater than two, no single Euler trail can
cover all the edges in the graph. In order to make an Euler trail in that case, our
scheme inserts additional edges between odd vertices until the number of odd
vertices becomes two (c). Note that the additional edges are used to construct
redundant blocks in that GMB, which can be ignored in real computations. Since
the number of additional edges is at most (N-2)/2, the length of the Euler trail is at
most N(N-1)/2 + (N-2)/2. Hence, the complexity of the proposed scheme (i.e., GMB

size) becomes 𝑂𝑂(|𝐹𝐹|2 ∗ |𝐶𝐶|2); significant improvement is achieved compared to

the original combinatorial complexity, 𝑂𝑂(2|𝐹𝐹||𝐶𝐶|).

1 Thus, if we use only 0 or 1 as the weights for the 2x2=4 classifier instances, we
need to consider only those 16 combinations. In reality, however, since we consider
real values for the weights, there can be infinite number of different ensembles to be
considered.

2 Note that this LMB has two feature extractors and two classifiers, and thus can
have up to 2x2=4 classifier instances: A-1, A-2, B-1, and B-2.

１４

Fig. 8. Different ways of combining FEs and classifiers to make an LMB and using it

as the building block for making a GMB. (a) An LMB contains only one FE and

one classifier. Although it reduces the complexity, it cannot consider the interaction

between FEs or between classifiers. (b) An LMB contains two FEs and two

classifiers, which is the proposed scheme. (c) Three FEs and three classifers belong to

an LMB. (d) An LMB has all the relations for |F| FEs and |C| classifiers; and thus

there is only one LMB in the GMB.

of combinations = 22x2

f1

f2

f|F|-1

f|F|

c1 c2 c|C|-1 c|C|

of combinations = 2

|F|
1()

|C|
1()

of combinations = 23x3
of combinations = 2|F|x|C|

(a) (c)(b) (d)

f1 f2

f2 f3

f|F|-2 f|F|-1

f|F|-1 f|F|

c1 c2

c2 c3

c|C|-2 c|C|-1

c|C|-1 c|C|

|F|
2() |F|

3()

...

...

...
...

...

...
...

...

...

f1 f2 f3

f2 f3 f4

f|F|-3 f|F|-2

f|F|-2 f|F|-1

f|F|-1

f|F|

c1

c2

c3

c2

c3

c4

c|C|-1

c|C|

c|C|-2

c|C|-1

c|C|-2c|C|-3

|C|
2() |C|

3()

|F|
|F|() f1 f2 ...f|F|-1 f|F|

...

c1

c2

c|C|-1

c|C|

|C|
|C|()

2.3.2 Complexity comparison according to composition of LMB

 Any two different FEs may have some relationship so that the two should be
considered together in an LMB for more efficient object recognition. The same is
true for any pair of classifiers. The relationship is represented by an edge between
every pair of vertexes in the complete graph models shown in Fig. 3(b) and (c). If
considering three FEs (or classifiers) together is preferred, then the three FEs (or
classifiers) are put into an LMB. The triplet corresponds to a clique of size three in
the graph model. If we consider only the LMBs with f FEs (or c classifiers), then we
can find all the LMBs by finding all the cliques of size f (or c) in the graph model of
size |F| (or |C|). The number of cliques consisting of f (c) vertexes within a complete

graph having |F| (|C|) vertexes is �|𝐹𝐹|
𝑓𝑓 �. Then the number of LMBs in a GMB is

�|𝐹𝐹|
𝑓𝑓 � × �|𝐶𝐶|

𝑐𝑐 �, while the number of combinations in an LMB becomes 2𝑓𝑓×𝑐𝑐 when

１５

TABLE I

COMPLEXITY OF A GMB ACCORDING TO LMB COMPOSITIONS

Construction of an LMB The number of
combinations in an

LMB

The size of a GMB
when |F|=10 and |C|=10

The number
of FEs

The number
of classifiers

1 1 2 (=21x1) 100 (= �10
1 � �10

1 �) a

2 2 16 (=22x2) 2,025 (=�10
2 � �

10
2 �) b

3 3 512 (=23x3) 14,400

4 4 65,536 (=24x4) 44,100

5 5 33,554,432 (=25x5) 63,504 (= �10
5 � �10

5 �)) c

10 10 210×10 d 1

a All the relations between FEs and classifiers are ignored.

b The proposed scheme considering all couples of relations between FEs and
classifiers.

c The maximum size of a GMB, when |F|=10 and |C|=10.

d The ideal case representing all combinations; it is intractable.

considering Boolean weights (i.e., 0 or 1). If we consider 𝑊𝑊 discrete weights,

𝑊𝑊𝑓𝑓×𝑐𝑐 combinations exist in an LMB. Since our point is to investigate complexity
of an LMB with respect to both f and c rather than the number of quantization steps
of weights, hereafter, we assume Boolean weights for the discussion of complexity.

Fig. 8 shows the GMB structure varying with different compositions in terms of
the number of FEs and classifiers within an LMB. Fig. 8(a) depicts a GMB
consisting of LMBs, each of which has only one FE and one classifier. The GMB
comprises |𝐹𝐹| × |𝐶𝐶| LMBs, where the synergistic effect of multiple FEs (or

１６

multiple classifiers) is not considered. If the number of FEs and classifiers in an

LMB increases, the complexity of the LMB grows to 2𝑓𝑓×𝑐𝑐 (finding the optimum
among 2𝑓𝑓×𝑐𝑐 combinations). Fig. 8(a) has 21x1 combinations, while the number of
combinations of (b), (c), and (d) become 22x2, 23x3, and 2|F|x|C|, respectively. Note that
(d) corresponds to the original full combination problem, where the GMB has only
a single LMB. A general formula for the number of LMBs in a GMB is given by the
number of cliques within two complete graphs, one for FEs and the other for
classifiers. The number of cliques for the FEs is given by

�|𝐹𝐹|
𝑓𝑓 � = |𝐹𝐹|!

𝑓𝑓!(|𝐹𝐹|−𝑓𝑓)!
= |𝐹𝐹|(|𝐹𝐹|−1)⋯(|𝐹𝐹|−𝑓𝑓+1)

𝑓𝑓(𝑓𝑓−1)⋯1
 = |𝐹𝐹|

𝑓𝑓
|𝐹𝐹|−1
𝑓𝑓−1

⋯ |𝐹𝐹|−𝑓𝑓+1
1

≤ |𝐹𝐹|𝑓𝑓 . (1)

The number of cliques for the classifiers can be obtained similarly. Therefore, the
complexity of a GMB is O�|𝐹𝐹|𝑓𝑓|𝐶𝐶|𝑐𝑐�. For f=c=2 as suggested in this paper (see Fig.
8(b)), an LMB has 16 (=22x2) possible combinations and the GMB has complexity

of O(|𝐹𝐹|2|𝐶𝐶|2) in terms of the number of LMBs included in the GMB. When both
numbers of FEs and classifiers in an LMB are three3 as shown in Fig. 8(c), an LMB

has 512 (=23x3) combinations, while the GMB has O(|𝐹𝐹|3|𝐶𝐶|3) complexity. Thus,
assigning small values to f and c renders a polynomial complexity of the problem.
As either f or c grows, however, the number of possible combinations for an LMB

increases exponentially (2𝑓𝑓×𝑐𝑐). The size of a GMB also tends to grow as f or c

grows toward �|𝐹𝐹|
2
� or �|𝐶𝐶|

2
�, respectively, as shown in Table I. Note that the

suggested 2x2 combination considers all the pairs of FEs and classifiers.

2.3.3 Motivation for differentiating local and global mappings

3 For simplicity, we assume here that the number of FEs and that of classifiers in
an LMB are the same. However, they do not necessarily have to be the same. For
instance, two FEs and four classifiers are acceptable.

１７

Fig. 9. Two directions for combining multiple classifiers. Weighted majority vote takes

the vertical direction, while regression and generalization takes the horizental

direction. Two methods can generate diffierent results even for identical inputs.

C1 C2 C3 C4
Data Label

Classifier

Tr1

Tr2

Tr3

Tr4

0
0

0 0 0 0
Ev

al
ua

tio
n

se
t

1 0 0 0
0 0 1 1
1 1 0 0

1
1

Tr5 1 1 1 1 1
Accuracy 0.60 0.80 0.80 0.80
log()acc.

1-acc. 0.18 0.60 0.60 0.60

01 1 0 0

10 0 1 1Te1

Te2Te
st

 se
t

Regression
& generalization
(RG)

Decision
by WMV

1

1 1

1

Decision
by RG

Fig. 5 illustrates two directions of utilizing the evaluation results of classifiers for
making a decision and shows that the final results can be different depending on the
direction. The example has five data inputs in the evaluation set and two data inputs
in the test set; four classifiers participate in the ensemble system. According to the
figure, the four classifiers give the evaluation results of <0, 0, 0, 0>, <1, 0, 0, 0>, <0,
0, 1, 1>, <1, 1, 0, 0>, and <1, 1, 1, 1> for the five evaluation data with labels 0, 0, 1,
1, 1, respectively. Thus, the accuracies of the classifiers are 0.60, 0.80, 0.80, and
0.80, which are calculated by the number of correct decisions over the number of
total data. Using the weighted majority vote (WMV) with the optimal value
log (𝑎𝑎𝑎𝑎𝑎𝑎.

1−𝑎𝑎𝑎𝑎𝑎𝑎.
), the ensemble decision for test data Te1 (based on the individual results

of the classifiers) is ‘1’, which is correct. In the same way, the ensemble decision by

WMV for test data Te2 is ‘0’. However, the individual results <1, 1, 0, 0> of the

１８

classifiers are the same as those for Tr4 in the evaluation set, and thus the desirable

ensemble decision is not ‘0’ but ‘1’, as made by the regression and generalization

(RG) method. WMV takes the vertical direction for calculating the accuracy (or
priority) of each classifier and thus does not consider characteristics of each data
input. On the contrary, RG takes the horizontal direction to combine all the
decisions made by the classifiers for each data input. An interesting question is
which direction provides higher performance. Instinctively, if a decision system is
mixed with weak classifiers as well as strong classifiers, WMV is more beneficial
than RG, because it restrains a weak classifier from confusing the decision making
process by assigning a low priority to the weak classifier. On the other hand, if a
decision system consists of enough strong classifiers, RG can be more efficient,
since it considers mutual relationships between classifiers for a specific data input
as shown in Fig. 5. For such a reason, the two directions have their own advantage.

Our hierarchical framework considers all the directions for the combination of
classifiers. Since an LMB can be comprised of weak and strong classifiers, it is
suitable for the vertical direction method such as WMV. On the other hand, GMB is
suitable for the horizontal direction because the LMBs generated by the first-level
ensemble of classifiers are in general stronger than the original classifiers.

2.3.4 Reinforcement learning for LMB

One of the most popular methods for combining classifiers is WMV which gives
more weight to classifiers having higher accuracy. Given the accuracy of each

classifier, the optimal weight is determined by 𝑤𝑤𝑖𝑖 ∝ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

, where wi is the

weight value of classifier instance i and pi is the accuracy obtained by evaluating the
classifier using a training set [9]. However, this is correct only under the condition
that all classifiers have no dependency on others, that is only when the original
posterior probability

１９

𝑃𝑃(𝑫𝑫|ℎ𝑘𝑘) = 𝑃𝑃�𝐷𝐷𝑚𝑚1�ℎ𝑘𝑘�𝑃𝑃�𝐷𝐷𝑚𝑚2�𝐷𝐷𝑚𝑚1,ℎ𝑘𝑘�

 …𝑃𝑃(𝐷𝐷𝑚𝑚𝐿𝐿|𝐷𝐷𝑚𝑚1, … ,𝐷𝐷𝑚𝑚𝐿𝐿−1,ℎ𝑘𝑘) (2)

can be treated as

𝑃𝑃(𝑫𝑫|ℎ𝑘𝑘) = ∏ 𝑃𝑃(𝐷𝐷𝑚𝑚𝑖𝑖|ℎ𝑘𝑘)𝐿𝐿
𝑖𝑖 , (3)

where L is the number of classifiers, D is the event where the decision vector
from the L classifiers is (𝑚𝑚1,𝑚𝑚2 , … ,𝑚𝑚𝐿𝐿), 𝐷𝐷𝑚𝑚𝑖𝑖 is the event where the decision by

the i-th classifier is mi, and hk is the event where the input is in class k. In practice,
the assumption is not satisfied. The experimental results in Section 2.4 show that the
assumption of independent classifiers is wrong and the bias caused by it adversely
affect the final decisions.

In order to overcome the limitation of the original WMV, we utilize
Reinforcement learning (RL) to compute real weight based on trial-and-error. RL
was invented for tackling problems with an environment that is unknown or cannot
be modeled. It solves such problems by communicating with the environment
through interactions [50]. The RL task commonly consists of five components: An
agent, set S of states, set A of actions, rewards, and an environment. In order to get
the best reward, an agent explores the space of environment with two strategies:
exploitation and exploration. While the former is to follow an existing policy4 to
get the best reward, the latter is to search for a new policy in order not to trap into a
local optimum (known as exploration and exploitation trade-off). At time step t, the
agent makes a decision to take action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴(𝑠𝑠𝑡𝑡) at state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆 of the
environment. The environment gives a reward 𝑟𝑟𝑡𝑡+1 to the agent that updates the
current state value and moves to new state 𝑠𝑠𝑡𝑡+1. The objective of the RL task is to

4 Mapping states to actions is called policy π. An agent picks an action a under

policy π in current state s.

２０

maximize the expected value of return 𝑅𝑅𝑡𝑡 ,

𝑅𝑅𝑡𝑡 = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑟𝑟𝑡𝑡+2 + 𝛾𝛾2𝑟𝑟𝑡𝑡+3 + ⋯ = �γ𝑘𝑘𝑟𝑟𝑡𝑡+𝑘𝑘+1

∞

𝑘𝑘=0

, (4)

where 𝛾𝛾, 0 ≤ 𝛾𝛾 ≤ 1 is a discount factor.

RL performs learning on what to do in the current state in order to maximize the
final return value. In WMV, for example, suppose the weights of two classifiers, A
and B, are wA and wB, respectively. RL can give an answer to a question on which
classifier should increase or decrease its weight in order to achieve the maximum

accuracy, given wA, and wB (i.e., the current state). Let us assume that v(wA) = α, β,

and γ (α > β and α < γ) at wA = 0.3, 0.4, and 0.9, respectively, where v(wA) is

the return value function of weight wA. The action to be taken at wA = 0.3 is to

increase wA to 0.4, even though v(0.3) is greater than v(0.4) (i.e., α > β), because

further increase of wA to 0.9 will achieve the maximum return value γ. In this case,

the future value v(0.9) affects the current decision (to increase the weight). The
objective of RL is to move rapidly towards the optimal state while updating the
values for actions so that it can search of the solution space more efficiently.

Let wRL = (w1
*, w2

*, …, wL
*) denote the vector of weights induced by RL for

WMV of multiple classifiers considering the dependency in (2), and w0 denote the

original optimal vector of weights obtained by 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

. Then the accuracy of

𝑃𝑃(𝑫𝑫|ℎ𝑘𝑘) with given wRL is greater than or equal to the accuracy of 𝑃𝑃(𝑫𝑫|ℎ𝑘𝑘) with
given w0. The reason is that the weights of classifiers are generated by RL
considering the dependency among classifiers, because RL reflects the environment
including dependency. In the experimental section, with UCI dataset [51], we show

２１

the effectiveness of RL for adjusting weight values of classifiers, which is not
possible with conventional WMV.RL is adopted to get weights of 2x2 classifiers in
an LMB to compute the best weights considering dependency among classifiers. A
challenge of using RL in calculating weights for classifiers in an LMB is that the
number of states is infinite, because the value of weights is continuous. To cope
with the challenge, function approximation was introduced in [50], where training

task updates parameter vector 𝜃𝜃 representing the function; the state action value
𝑄𝑄𝑡𝑡 depends on a parameter vector 𝜃𝜃𝑡𝑡���⃗ at time t. Especially, tile-coding method as a
kind of gradient-descent approach and eligibility tracing were adopted in order to
boost up training speed. For tile-coding, a continuous space is managed by tiling
which splits the space of state into several partitions called tiles [52]. We first
formulate the problem of calculating weights of classifiers for the LMB in the RL as
follows:S: Considering that each LMB has four classifier instances, we define the

total state space as 𝑆𝑆 = 𝑤𝑤1 × 𝑤𝑤2 × 𝑤𝑤3 × 𝑤𝑤4 with constraint ∑ 𝑤𝑤𝑖𝑖4
𝑖𝑖 = 1, where 𝑤𝑤𝑖𝑖

is the weight of classifier instance i. Initial weights are set to the optimal weights
under the independence condition in order to have an efficient convergence in the
training phase. A: There are eight actions for four classifier instances within an
LMB per state. Each classifier has two actions: increasing and decreasing the
weight of the current state, where an amount of changing the weight is calculated
from gradient of current state. The weights are then normalized according to the

constraint ∑ 𝑤𝑤𝑖𝑖4
𝑖𝑖 = 1. In order to explore the state space of weights of four

classifiers during the action selection, we use ε-greedy action selection method at

time t as follows:

𝑎𝑎𝑡𝑡 = �argmax𝑎𝑎𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎) with probability 1 − 𝜀𝜀
random action with probability 𝜀𝜀

２２

Reward at a state: Reward value corresponding to an action at a state, which
utilizes the accuracy of an LMB, is calculated as the amount of the increase in the

REINFORCEMENT-LEARNING-FOR-WEIGHT-OF-LMB

1: Initialize 𝜃𝜃 and 𝑒𝑒 = 0
2:

s { 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

|𝑝𝑝𝑖𝑖∀𝑐𝑐𝑖𝑖} , where pi is accuracy of classifier ci

3: For all 𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠)
4: 𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) set of features of tile coding in 𝑠𝑠, 𝑎𝑎
5: 𝑄𝑄(𝑠𝑠,𝑎𝑎) ∑ 𝜃𝜃𝑖𝑖 × 𝑏𝑏𝑖𝑖(𝑠𝑠,𝑎𝑎)𝑛𝑛

𝑖𝑖=1 , where n is the number of tilings
6: Repeat (for each step):
7: With probability 1-𝜀𝜀:
8: 𝑎𝑎  argmax𝑎𝑎𝑄𝑄(𝑠𝑠,𝑎𝑎)
9: 𝑒𝑒 𝜆𝜆𝑒𝑒
10: else
11: 𝑎𝑎  a random action ∈ 𝐴𝐴(𝑠𝑠)
12: 𝑒𝑒 0
13: For all {𝑖𝑖|𝑏𝑏𝑖𝑖(𝑠𝑠,𝑎𝑎) = 1}:
14: 𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖 + 1
15: Set next state 𝑠́𝑠, with the action 𝑎𝑎
16: For all 𝑎𝑎 ∈ 𝐴𝐴(𝑠́𝑠):
17: 𝑏𝑏�⃗ (𝑠́𝑠,𝑎𝑎) set of features of tile coding in 𝑠́𝑠, 𝑎𝑎
18: 𝑄𝑄(𝑠́𝑠,𝑎𝑎) ∑ 𝜃𝜃𝑖𝑖 × 𝑏𝑏𝑖𝑖(𝑠́𝑠,𝑎𝑎)𝑛𝑛

𝑖𝑖=1
19: Calculate a reward computed by a difference of accuracy

 for an LMB between state 𝑠𝑠, 𝑠́𝑠
20: 𝜃𝜃 𝜃𝜃 + 𝛼𝛼(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑄𝑄(𝑠𝑠,𝑎𝑎) + max𝑎𝑎𝑄𝑄(𝑠́𝑠,𝑎𝑎))𝑒𝑒
21: 𝑠𝑠 𝑠́𝑠
22: Until 𝜃𝜃 converges.

Fig. 10. Psedo-code of the reinforcement learning algorithm for calculating weights

for an LMB.

２３

sum of number of true positives and number of true negatives divided by the
number of samples.

Fig. 10 is a pseudo-code of RL for computing weights in LMBs, where the RL

task has only one episode that is terminated when 𝜃𝜃 converges. In line 2, initial
state is induced from 𝑝𝑝𝑖𝑖 for efficient and fast training, which is an optimal weight
under the assumption that all the classifiers are independent. The set of features of

tile coding 𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) is generated at the current state and for all the actions, where
𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) contains binary values (1 or 0) about all the tiles; if a tile fits into the state,
the value of 𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) for the tile is one; otherwise, the value is zero. State action
values 𝑄𝑄(𝑠𝑠,𝑎𝑎) are computed by taking the sum of products of 𝜃𝜃 and 𝑏𝑏�⃗ (𝑠𝑠,𝑎𝑎) in
lines 3 to 5, which is repeated in lines 16 to 18. In lines 7 to 12, the state space is

exploited and explored with ε-greedy action selection and eligibility trace 𝑒𝑒 is

executed. The values of eligibility trace used in the step are updated in lines 13 and
14. After choosing next state with the selected action and calculating the state action
value with respect to the next state, the reward is computed by taking the difference
of accuracy between the current state and the next state in lines 15 to 19. Finally, the

parameter vector 𝜃𝜃 is modified in line 20, which is followed by updating the
current state; the task is repeated until 𝜃𝜃 converges.

2.3.5 Construction of Bayesian network from GMB

Once the weights of the FE-classifier pairs in the LMBs are adjusted using RL as
explained in Section 2.3.4, each LMB can make its own decision based on WMV.
Then the decisions from all the LMBs in the GMB are used to make a final decision.
We consider each LMB as a strong classifier since it has been constructed by the
first-level ensemble of classifiers, which is supported by the experimental results in
Section 2.4.

Although the LMBs are considered as stronger classifiers, they are still dependent

２４

on one another and thus the second-level ensemble is constructed by adopting RG
approach to consider horizontal direction of combination of classifiers (i.e., LMBs)
as mentioned in Section 2.3.3. For this, we adopt Bayesian network (BN) that can
be used to make a final decision considering the dependencies among LMBs. The
dependencies are represented by the conditional probabilities of the first-level
decisions made by the FE-classifier pairs. Since BN gives the posterior probability
for a given occurrence of events, it can be used as a classifier [53]. The reason for
selecting BN is that not only can it infer the class of an arbitrary input with a
generalization method, but also it can consider the dependencies of LMBs. BN is a
graph model with nodes and arcs for representing conditional probabilities among
random variables. Each node represents a random variable with a conditional
probability function and each arc represents a dependency between two random
variables.

To formulate the dependency between LMBs within a GMB, let

𝐹𝐹 = {𝑓𝑓1,𝑓𝑓2,𝑓𝑓3, … ,𝑓𝑓𝑀𝑀} denote a set of FEs where M is the number of FEs, and
𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, … , 𝑐𝑐𝑁𝑁} denote a set of classifiers, where N is the number of
classifiers; the total number of pairwise connections between FEs and classifiers
becomes 𝑀𝑀 × 𝑁𝑁. Suppose complete graphs composed of F and C are 𝐺𝐺𝑓𝑓 and 𝐺𝐺𝑐𝑐
respectively as mentioned in Section 2.3.1, and the sets of edges for 𝐺𝐺𝑓𝑓 and 𝐺𝐺𝑐𝑐 are
𝐸𝐸𝑓𝑓 and 𝐸𝐸𝑐𝑐, respectively. Then the total number of LMBs becomes 𝐸𝐸𝑓𝑓 × 𝐸𝐸𝑐𝑐. An
LMB is defined as a tuple < 𝑓𝑓𝑖𝑖𝑐𝑐𝑘𝑘,𝑓𝑓𝑖𝑖𝑐𝑐𝑙𝑙 ,𝑓𝑓𝑗𝑗𝑐𝑐𝑘𝑘 ,𝑓𝑓𝑗𝑗𝑐𝑐𝑙𝑙 >, representing 2x2 combination
containing two FEs and two classifiers, where 𝑓𝑓𝑖𝑖,𝑓𝑓𝑗𝑗 ∈ 𝐹𝐹and 𝑐𝑐𝑘𝑘 , 𝑐𝑐𝑙𝑙 ∈ 𝐶𝐶; (𝑓𝑓𝑖𝑖,𝑓𝑓𝑗𝑗) ∈
𝐸𝐸𝑓𝑓and (𝑐𝑐𝑘𝑘 , 𝑐𝑐𝑙𝑙) ∈ 𝐸𝐸𝑐𝑐 are edges in the complete graphs.

Assuming that the set of classes is 𝐻𝐻 = {ℎ1,ℎ2,ℎ3, … , ℎ𝐿𝐿}, the classification
problem using GMB is to find a class of maximum probability as follows,

 𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = argmaxℎ𝑙𝑙𝑃𝑃�ℎ𝑙𝑙�𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾�

= argmaxℎ𝑙𝑙
𝑃𝑃(ℎ𝑙𝑙) ∙ 𝑃𝑃�𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾�ℎ𝑙𝑙�

𝑃𝑃�𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾�

２５

Fig. 11. Construction of Bayesian networks. (a) The system consists of three

feature extractors and two classifiers. (b) GMB is created by LMBs for the system. (c)

Bayesian network is composed of 1) class node denoted as hl, 2) FC nodes denoted as

fick, which correspond to FE-classifier pairs, and 3) decisions of LMBs denoted as

DLMBk .

(a) (b)

f1
c1

f2

f3
c2

(c)

LMB0

LMB1

f1

c1

f2

f3

c2

LMB2

f1

hl

DLMB0 DLMB2 DLMB1

f1c1 f1c2 f3c1f2c2f2c1 f3c2

FC node

≅ argmaxℎ𝑙𝑙𝑃𝑃�𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾�ℎ𝑙𝑙�, (5)

where 𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 is a decision from an LMBk. Because the prior probability 𝑝𝑝(ℎ𝑙𝑙)

is unknown in the testing and joint probability 𝑃𝑃(𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵1 ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵2 , … ,𝐷𝐷𝐿𝐿𝐿𝐿𝐵𝐵𝐾𝐾) is

constant, they are removed.

There are two key tasks to perform to construct a BN. One is building a BN
structure to represent the data model and the other is finding conditional probability
functions of nodes. Building the BN structure is to find pairs of nodes having a
significant dependency and let the network structure satisfy the properties required
to solve given problems. The problem of finding an optimal structure of a BN has
an exponential complexity, since the total number of possible combinations for the
BN is

𝑓𝑓(𝑛𝑛) = ∑ (−1)(𝑖𝑖+1) 𝑛𝑛!
(𝑛𝑛−1)!𝑖𝑖!

2𝑖𝑖(𝑛𝑛−1)𝑓𝑓(𝑛𝑛 − 1)𝑛𝑛
𝑖𝑖=1 , (6)

where n is the number of nodes [54]. For example, 3,781,503 possible graph

２６

structures can be generated for a network having only six nodes.

In order to tackle the difficulty, in our solution, constructing a BN structure has
two steps: building an initial skeleton network with prior information and refining
the structure iteratively using a score function that represents how well the structure
fits. The initial BN consists of three kinds of nodes: nodes for representing classes,
nodes for classifier instances (FE-classifier pairs), and nodes for decisions of LMBs
such as 𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘. After preparing an initial BN, the structure is refined based on

dependencies between FE-classifier pairs. Fig. 11 shows an example of building a
BN structure, where a system is composed of three basic FEs and two basic
classifiers (a). The system first builds three LMBs: LMB0 with <f1c1, f1c2, f2c1, f2c2>,
LMB1 with <f2c1, f2c2, f3c1, f3c2>, and LMB2 with < f3c1, f3c2, f1c1, f1c2> (b). The
initial skeleton network structure is generated as shown with solid arrows (directed
edges) in (c). Each solid edge represents direct influence from the predecessor to the
successor. The edges are fixed in the network, because they are expected to have
strong relationships between nodes.

The number of nodes in a BN generated for a GMB is |𝐹𝐹||𝐶𝐶| + �|𝐹𝐹|
2 � �|𝐶𝐶|

2 � + 1,

where the three terms respectively account for the number of nodes corresponding
to ficks (called FC nodes), the number of LMBs, and the node for class h. Once the
initial skeleton network is constructed, the edges to be added are only between FC
nodes and thus the number of nodes to be considered reduces to |𝐹𝐹||𝐶𝐶|. 5 This is

meaningful because the second term for LMBs, �|𝐹𝐹|
2 � �|𝐶𝐶|

2 � , dominates the

complexity for building a BN when both |F| and |C| are large. For example, the

5 The FC nodes representing ficks construct a BN as a subset of the entire BN for
a GMB, and thus they still have a constraint that no cycle exists. Since hl has only
outgoing edges and DLMBs have only incoming edges as shown in Fig. 10 (c), no
cycle containing either hl or DLMBs can be made by adding an edge between ficks (a
cycle containing only ficks can still happen).

２７

number of nodes is reduced from 19 to 9, given that |F| and |C| are three; it is
reduced from 53 to 16 when |F|=|C|=4; the gain from this method is further
magnified beyond four. Thus the complexity of the problem of building connections
between nodes is also reduced. For the case of |F|=|C|=3, the number of possible
ways to construct a BN is diminished from about 3.3x1065 (19 nodes) to 1.2x1015 (9
nodes) as calculated by (6). Nevertheless, the problem is still intractable and thus
requires an efficient heuristic method. There have been many heuristic algorithms
for building a BN including Markov chain Monte Carlo (MCMC), variational

inference, K2, Chow–Liu trees methods, and their extensions [55] [56] [57] [58].

However, most of the algorithms treat each node in the BN with same priority. On
the other hand, we pay attention to difference characteristics of different FC nodes;
the FC nodes sharing the same FE and/or classifier tend to have higher dependency
on each other. In addition, some FC nodes have higher accuracy than others and
thus have higher priority. Finally, the BN that we propose can be constructed from
an initial skeleton network, which we can also exploit.

Thus, to devise our own heuristic method, we consider meaningful relationships
among FC nodes. Each dotted line in Fig. 7(c) illustrates the relationship between
two FC nodes. As mentioned above, two FC nodes possibly have strong association
with each other when they share either the same FE or the same classifier. For
instance, since f1c1 and f1c2 share the same FE, the two FC nodes have a high chance
of getting an edge between them when building the BN. However, if they have a
weak dependency having little effect on the performance of the system, the edge is
removed. This is done through learning for which there are two well-known
algorithms: score-based approach and constraint-based approach. The score-based
approach defines a scoring function for the BN structures to represent the fitness for
the given case and attempts to find a structure that maximizes the score. The
constraint-based approach exploits constraint conditions such as independency
between two nodes. We use the score-based method since it shows better
performance in general and the complexity can be controlled for applications having

２８

Fig. 12. Accuracy comparison between feature extractors (HOG, HAAR, CENT, LBP)

and classifiers (SVM, KNN) in DaimlerChrysler dataset. It depicts that feature

extractors are more significant than classifiers.

HOG HAAR CENT LBP
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

SVM
KNN

confined BN structures6 like GMBs. One of the most effective scoring functions is
Bayesian information criterion (BIC) score [59], which can reflect not only the
fitness of the structure but also the complexity of the structure.

In order to decrease the complexity of building an optimal (or near-optimal) BN
structure for the GMB, we consider accuracy of FC nodes first, followed by FEs
and then classifiers instead of considering them at the same time.7 Between FEs
and classifiers, we consider FEs first since they have greater influence on the
accuracy than classifiers as shown in Fig. 12.

6 The BN for a GMB consists of distinct components, the types of which are
confined to hypothesis (class), FE-classifier pairs, and LMBs. Thus it is easy to
construct a set of candidate BNs and select the one with the highest score.

7 The reason why we consider FEs and classifiers is that nodes having the same
FE or the same classifier tend to have higher dependency with each other compared
with nodes having different FEs and classifiers.

２９

The algorithm for building the BN is illustrated in Fig. 13. After the solid edges
for the initial skeleton network are built in line 1 and 2, the dotted edges are
constructed in lines 3 to 13. All the FC nodes are sorted by accuracy in descending
order in line 3, and then picked up in order in line 4 (Nodei). Within the nested loops

STRUCTURING-OF-BAYESIAN-NETWORK-FOR-GMB

1: Connect class node hl and every basic FE-classifier node ficj (FC node)
with an edge.

2: For each FC node, connect it with edges to DLMBs that use the node.

3: SortedListOfFcNodes  sort all the FC nodes by accuracy in
descending order

4: For each Nodei in SortedListOfFcNodes for i from 1 to |F||C|-1

5: For each Nodej in SortedListOfFcNodes for j from i+1 to |F||C|
 If Nodej shares an FE with Nodei

6: Calculate BIC score with an edge from Nodei to
 Nodej if the edge does not form a cycle

7: Calculate BIC score with an edge from Nodej to
 Nodei if the edge does not form a cycle

8: Calculate BIC score without edge insertion

9: Select the best one among the above three cases

10: For each Nodej in SortedListOfFcNodes for j from i+1 to |F||C|
 If Nodej uses the same classifier type as Nodei

11: Repeat the lines from 6 to 9

12: For each Nodej in SortedListOfFcNodes for j from i+1 to |F||C|
 If Nodej does not satisfy the condition in 5 or 10

13: Repeat the lines from 6 to 9

Fig. 13. Learning algorithm of Bayesian network for GMB.

３０

in line 5, nodes (Nodej) sharing the same FE with Nodei are selected and edges are
added to connect Nodei and Nodej. Then, in line 10, nodes using the same classifier
type are selected. Finally, in line 12, the remaining nodes are selected. For example,
if HOG-SVM is examined in line 4, HOG-KNN sharing the same FE (HOG) and
HAAR-SVM using the same classifier type (SVM) are selected in line 5 and 10,
respectively, whereas HAAR-KNN that has nothing in common is selected last in
line 12. The nodes are processed in descending order of accuracy, since more
accurate nodes should have higher chance to participate in building edges. In short,
investigation of relations between FC nodes is performed by accuracy first, then FE
sharing, and then classifier types. Each FC node, Nodei, in line 4 is connected to
another FC node, Nodej, located below Nodei in SortedListOfFcNodes and evaluated.
The BIC score-based method is used for the evaluation. From line 6 to 9, the
algorithm selects the best one among forward, backward, and null edges (note that
the forward or backward edge should not generate any cycle, because a BN does not
allow a cycle in it). Calculating BIC scores with the forward, backward, and null
edges in lines from 6 to 9 is repeated in line 11 and 13 in the same manner. The
complexity of examining a cycle in a BN in line 6, 7, 11, and 13 was reported to
be 𝑂𝑂(|𝑉𝑉|) with incremental method, where |V| is the number of vertexes (nodes)
[60]. Because the number of nodes in our case is |F||C| and the pairwise comparison

has complexity of O((|𝐹𝐹||𝐶𝐶|−1)∙|𝐹𝐹||𝐶𝐶|
2

), the complexity of building a BN is bounded

by 𝑂𝑂(|𝐹𝐹|3|𝐶𝐶|3).8

8 A recent study on incrementally examining a cycle in a directed acyclic graph
(DAG) suggested more efficient algorithm, which is bounded by 𝑂𝑂(√𝐸𝐸) for sparse
graphs and 𝑂𝑂(𝑉𝑉2.5/𝐸𝐸) for dense graphs [61], which means that the complexity of
our proposed method in building a BN can be lower than 𝑂𝑂(|𝐹𝐹|3|𝐶𝐶|3).

３１

2.4 Experimental results

We took pedestrian detection and recognition of handwritten numerals in the UCI
dataset [51] as the applications used for evaluating the proposed schemes (both
GMB and LMB). We compared them with existing ensemble schemes proposed in
[14], [40], [33] and AdaBoost as well as basic FE-classifier pairs. As the
performance metric for the comparison, we used receiver operating characteristics
(ROC) curves for two class classification and used accuracy and error rate for
multiple classes classification problems.

Fig. 14. Accuracy of individual classifiers (SVM, AdaBoost, and decision tree),

ensemble using optimal WMV weight not considering dependency, and RL weight for

Banknote Authentication in UCI dataset. For the illustration, the plane

wS+wA+wD=1 (the sum of weights should be one) is projected into xy-plane, where

wS, wA and wD are the weights of SVM, AdaBoost, and decision tree, respectivly;

z-axis represents the accuracy.

３２

2.4.1 Measure of effectiveness for WMV and RL

In order to see the effectiveness of using RL for deciding weights of classifiers,
we compared the WMV using RL with the original WMV. Hereafter, we call 'the

TABLE II

COMPARISON OF ACCURACY OF THREE CLASSIFIERS,

WMV, AND RL ENSEMBLE FOR UCI DATASET *

Dataset SVM AdaBoost
Decision

tree
WMV

Ensemble
RL

Ensemble

Banknote
Authenticat

ion
0.9611 0.9343 0.9465 0.9781 0.9878

QSAR
Biodegradat

ion
0.5365 0.7333 0.6540 0.7333 0.7778

Breast
Cancer

Wisconsin
0.9234 0.9330 0.9474 0.9522 0.9657

Musk
(Version 2)

0.9889 0.9384 0.8236 0.9949 0.9949

Madelon 0.5643 0.5242 0.7579 0.7579 0.7579
Gamma

Telescope
0.7166 0.8266 0.7262 0.7443 a 0.8266

Gisette 0.9583 0.9322 0.8794 0.9472 b 0.9711

* The accuracy is measured in evaluation dataset.

a,b The accuracy of WMV ensemble is even lower than that of a single
component classifier in some cases.

３３

Fig. 15. Examples of DaimlerChrysler Pedestrian dataset. The upper ones are

pedestrian samples while the lower ones are non-pedestrian samples.

WMV using RL' simply 'RL' and call 'the original WMV' simply 'WMV' for
convenience. WMV does not consider dependency among classifiers when deciding
weights as mentioned in Section 2.3.4, while RL explores the space of weights
considering the dependency in a trial-and-error manner. TABLE II shows the
accuracy measured for seven datasets from UCI Machine Learning Repository [51]
for WMV and RL using five-fold cross validation, where the accuracy is measured
in evaluation dataset (rows).9 The table also shows the accuracy of three individual
classifiers including SVM, AdaBoost, and decision tree.

In case of Banknote authentication, QSAR biodegradation, Breast cancer and
Wisconsin dataset, RL is superior to WMV. An interesting result is shown in
Gamma telescope and Gisette dataset; the accuracy of WMV ensemble is lower than
even that of a single component classifier such as AdaBoost and SVM. In Madelon
and Gamma telescope, some single classifiers show the same accuracy as the
ensemble schemes, which means that ensemble of classifiers is not effective in the

9 Because an overfitted classifier is given a higher priority in training dataset,
investigating the accuracy of each classifier with training data cannot precisely
estimate the performance of the classifier. Thus, all the accuracy values were
measured in evaluation dataset.

３４

Fig. 16. Screenshot of an experimental application of hierarchical ensemble of MFMC

to pedestrian detection using DaimlerChrysler dataset, which is developed based on

OpenCV with the C++ language.

datasets. RL ensemble always outperforms original WMV ensemble and single
classifiers in all cases. Fig. 14 illustrates the resulting weights space of SVM,
AdaBoost, decision tree, and their ensembles (WMV and RL) for Banknote
authentication dataset, which illustrates accuracy values for varying combinations
of classifier weights. RL shows the best ensemble accuracy of 0.9878, which is
higher than that of WMV (0.9781), SVM (0.9611), AdaBoost (0.9343), and decision
tree 0.9465).

2.4.2 Pedestrian detection dataset

The experiments use DaimlerChrysler Pedestrian dataset [62], which is composed
of 49,000 18x36-resolution images; 29,400 images are used for training and 19,600

３５

Fig. 17. Experimental system in the paper. (a) The system consists of full connections

between feature extractors and classifiers: HOG, CENT, HAAR as feature extractors

and SVM, DTREE, KNN as classifiers. (b) GMB is comprised of nine LMBs, each of

which has 2x2 combinations.

HOG SVM

DTREE

KNNHAAR

HOG

HAAR

HOG
SVM DTREE KNN SVM

LMB00 LMB01 LMB02

LMB10 LMB 11 LMB12

LMB20 LMB21 LMB22

(a) (b)

CENT

CENT

images are used for testing. The training set contains 14,400 samples for pedestrians
and 15,000 samples for non-pedestrians, while the test set has 9,600 and 10,000
samples respectively. For evaluation of the classifiers, a bagging method is adopted;
after 80% of the samples in the training set have been used for training, the
classifiers are evaluated with the entire training set, and then the results are
examined with the test set. Fig. 15 depicts examples of DaimlerChrysler Pedestrian
dataset.

The objective of this work is to show that how the proposed hierarchical
ensemble scheme can improve the performance compared with baseline ensemble
systems. Therefore, we choose well-known FEs and classifiers. As shown in Fig. 17,
HOG [28], CENTRIST [47], HAAR [48] are used as FEs and SVM, KNN, DTREE
[49] are used as classifiers which have been popular for pedestrian detection
systems. The three feature extractors are complementary to each other as follows.
HOG uses histograms to count occurrences of gradient orientation for local
positions of an image, where local information is well represented; it has been used
in many human detection applications [63] [64] [65]. Because CENTRIST focuses
on contours such as human body outline, human detection researches have utilized

３６

Fig. 18. Mutual information for all pairs of nine classifiers. Dependency between

classifiers actually exists.

it [66] [67] [68]. In case of HAAR, rectangular windows detect the pixel intensities
of corresponding image regions; it concentrates on block information; many human
detection studies have used HAAR based on this reasoning [69] [70] [71].
Meanwhile, GMB is divided into nine LMBs, each of which is created by
combining two FEs and two classifiers. For instance, LMB00 is comprised of HOG
and CENTRIST as features, and SVM and DTREE as classifiers, resulting in four
combinations: <HOG, SVM>, <HOG, DTREE>, <CENTRIST, SVM>, and
<CENTRIST, DTREE>. HOG was implemented with 2x2 blocks, each block
containing 3x3 pixels, and block stride of 3 pixels. In case of HAAR, we used two
wavelets, one for 4x4 pixels and the other for 8x8 pixels, as was done by [62].
There is no such specific parameter used for the case of CENTRIST, which is one of
the characteristics of CENTRIST. Since the size of feature vectors for HOG, HAAR
and CENTRIST are quite large (972, 7038 and 656, respectively), we used a linear
kernel in the case of SVM to increase simulation speed.

The entire system was implemented in the C++ language, based on OpenCV [72]

３７

Fig. 19. Performance comparison between the proposed framework and the other

schemes.

0 0.1 0.2 0.3 0.4 0.5 0.6
0.7

0.75

0.8

0.85

0.9

0.95

1

False alarm rate

H
it

ra
te

GMB
LCDF
TFA
QBWWV
BWWV
RSWV
WMV
HOG-SVM
HOG-KNN
HOG-DTREE
HAAR-SVM
HAAR-KNN
HAAR-DTREE
CENT-SVM
CENT-KNN
CENT-DTREE

vision library. Fig. 16 shows a screenshot of experimental examples in which thick
bounding boxes depict missing detections. Small boxes in the left bottom corner
represent pedestrian cases, while non-pedestrian cases have no such marking.

Mutual information (MI) 𝐼𝐼�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� given by ∑ 𝑃𝑃(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑃𝑃�𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗�
𝑃𝑃(𝑥𝑥𝑖𝑖)𝑃𝑃�𝑥𝑥𝑗𝑗�

) can

be used to measure a mutual dependence of two random variables, where 𝑥𝑥𝑖𝑖 and
𝑥𝑥𝑗𝑗 are the variables. 𝑝𝑝(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) is a joint probability and 𝑝𝑝(𝑥𝑥𝑖𝑖) and 𝑝𝑝(𝑥𝑥𝑗𝑗) are
marginal probabilities of 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗, respectively. The value of mutual information

is zero if two variables are independent. Fig. 18 shows that the values of mutual
information for all classifier instances; it depicts that no classifier instance is
independent of others. It justifies the superiority of the proposed RL compared to
the original WMV.

As shown in Fig. 19, all the ensemble methods including GMB, LCDF [40], TFA

３８

TABLE III

RESULTS OF ENSEMBLE METHODS FOR PEDESTRIAN DETECTION

Ensemble
Method

Hit rate

FAR 0.1
FAR
0.2

GMB 0.947 0.977
LCDF 0.928 0.966
TFA 0.912 0.951
QBWWV 0.911 0.948
BWWV 0.906 0.951
RSWV 0.899 0.946
WMV 0.886 0.939

[14], QBWWV [33], BWWV, RSWV, and WMV outperform all the pairs of a single
FE and a single classifier such as HOG-SVM, HOG-KNN, HAAR-SVM, etc. In the
case of TFA, the weight values of classifiers are generated from the training matrixes
obtained by likelihood probabilities.

The figure shows that GMB using BN is superior to all other methods. The hit rate
(HR)10 of GMB achieves 0.947 at 0.1 false alarm rate (FAR)11 while those of LCDF,
TFA, QBWWV, BWWV, RSWV, and WMV are respectively 0.928, 0.912, 0.911,
0.906, 0.899, and 0.886. Table II summarizes the performance results. The hit rate of
GMB is 0.947 at 0.1 FAR whereas the hit rate of WMV is 0.886. Considering that
the hit rate is close to the maximum hit rate of 1.000, the improvement in miss rate

10 Hit rate is the ratio of the number of correct detections of pedestrians (i.e.,
number of true positives) over the total number of pedestrians (i.e., number of true
positives + number of false negatives).

11 False alarm rate is the ratio of the number of incorrect decisions for
non-pedestrians (i.e., number of false positives) over the total number of
non-pedestrians (i.e., number of false positives + number of true negatives).

３９

Fig. 20. ROC curves of all the LMBs. Construction of the LMBs is identical to that in

Fig. 17.

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1
LMB00

False alarm rate

H
it

ra
te

LMB00-RL
LMB00-WMV
HOG-SVM
HOG-DTREE
CENT-SVM
CENT-DTREE

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1
LMB01

False alarm rate

H
it

ra
te

LMB01-RL
LMB01-WMV
HOG-DTREE
HOG-KNN
CENT-DTREE
CENT-KNN

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1
LMB02

False alarm rate

H
it

ra
te

LMB02-RL
LMB02-WMV
HOG-SVM
HOG-KNN
CENT-KNN
CENT-SVM

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1
LMB10

False alarm rate

H
it

ra
te

LMB10-RL
LMB10-WMV
CENT-DTREE
CENT-SVM
HAAR-DTREE
HAAR-SVM

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1
LMB11

False alarm rate

H
it

ra
te

LMB11-RL
LMB11-WMV
CENT-DTREE
CENT-KNN
HAAR-DTREE
HAAR-KNN

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1
LMB12

False alarm rate

H
it

ra
te

LMB12-RL
LMB12-WMV
CENT-KNN
CENT-SVM
HAAR-KNN
HAAR-SVM

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1
LMB20

False alarm rate

H
it

ra
te

LMB20-RL
LMB20-WMV
HOG-SVM
HOG-DTREE
HAAR-DTREE
HAAR-SVM

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1
LMB21

False alarm rate

H
it

ra
te

LMB21-RL
LMB21-WMV
HOG-DTREE
HOG-KNN
HAAR-DTREE
HAAR-KNN

0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1
LMB22

False alarm rate

H
it

ra
te

LMB22-RL
LMB22-WMV
HOG-SVM
HOG-KNN
HAAR-KNN
HAAR-SVM

(false negative) by about 50% (from 0.114 down to 0.053) is quite significant.
Meanwhile, the main drawback of EM approach used in LCDF is that the accuracy
depends on the initialization and usually converges to some local maximum of the
likelihood. In the experiment, we tried many times with different initial values and
took the best result.

Fig. 20 depicts ROC curves of each LMB in the GMB with 3x3 LMBs. Every
LMB gives higher accuracy compared to any simple FE-classifier pair, which
means that an LMB can work as a classifier stronger than basic classifiers. Each
chart in the figure compares an LMB using the proposed reinforcement learning

４０

 (a) (b)

Fig. 21. Performance comparison between GMB and AdaBoost. (a) Error rate of

AdaBoost according to the number of classifiers; the parentheses represent the used

feature set(s). (b) ROC curve, where the points of AdaBoost depict 10, 20, 30, 40, and

50 classifiers, respectively.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

of classifiers

E
rro

r r
at

e

ADA(HOG,HAAR,CENT)
ADA(HOG)
ADA(HAAR)
ADA(CENT)

0 0.1 0.2 0.3 0.4 0.5 0.6
0.7

0.75

0.8

0.85

0.9

0.95

1

False alarm rate

H
it

ra
te

GMB
ADA(HOG,HAAR,CENT)
ADA(HOG)
ADA(HAAR)
ADA(CENT)

(RL) and another one using the weighted majority vote (WMV) and shows that RL
outperforms WMV in most cases, which is due to the fact that WMV ignores all
dependencies of MFMC. In case of LMB21, however, WMV shows slightly better
HR (e.g., higher by 0.015 at 0.1 FAR). One possible reason is that the
implementation of RL is not perfect since the states are based on quantized weights.

2.4.3 Comparison between GMB and AdaBoost

For an experiment with AdaBoost, we selected four cases: three cases using a
single feature set of HOG, HAAR, and CENTRIST, respectively and the one using
all the feature sets simultaneously. We prepared 50 weak classifiers for each case.
Fig. 21 depicts the performance comparison between AdaBoost and GMB; Fig. 21
(a) shows error rate of AdaBoost according to the number of classifiers, where error
rate decreases as the number of participating classifiers increases. However, the
enhancement saturates when 50 classifiers join into the algorithm. AdaBoost using
all the feature sets, named as ADA(HOG, HAAR, CENT) in the graph, achieves the

４１

 (a) (b)

Fig. 22. GMB composition for UCI Multiple Feature dataset, where five FEs and five

classifiers are used. (a) MFMC combination between FEs and classifiers. (b) GMB

consists of 10x10 LMBs.

FAC DT

FOU KNN

ANN

RF

GBT

KAR

MOR

ZER

A

B

C

D

E

1

2

3

4

5

A
B
C
D

E

A

B
D

1 2 3 4 5 1 3 5 2 4 1

E
A
C

best performance. On the other hand, when compared to GMB, it is inferior as
shown in Fig. 21 (b), where the numbers of weak classifiers in AdaBoost are 10, 20,
30, 40, and 50, respectively.

2.4.4 UCI Multiple Features dataset

In order to investigate multiclass cases, we experimented with UCI Multiple
Features dataset [51] which consists of features for handwritten numerals from zero
to nine (i.e., ten classes) with 2000 patterns per feature set; the resolution of source
image is 15x16 pixels. We used five feature sets generated from character shapes as
follows (numbers in parentheses indicate the size of each feature vector):

 FAC: profile correlations (216)

 FOU: Fourier coefficients (76)

 KAR: Karhunen-Love coefficients (64)

 MOR: morphological features (6)

４２

Fig. 23. Experimental result for UCI Multiple Features dataset for single classifiers

and ensemble methods.

0.4

0.5

0.6

0.7

0.8

0.9

1
A

cc
ur

ac
y

ZE
R

-A
N

N
M

O
R

-A
N

N
M

O
R

-K
N

N
FO

U
-A

N
N

M
O

R
-D

T
ZE

R
-D

T
FO

U
-D

T
K

A
R

-D
T

ZE
R

-G
B

T
M

O
R

-R
F

FO
U

-G
B

T
M

O
R

-G
B

T
ZE

R
-K

N
N

ZE
R

-R
F

FO
U

-R
F

FO
U

-K
N

N
FA

C
-K

N
N

FA
C

-D
T

FA
C

-A
N

N
K

A
R

-R
F

K
A

R
-G

B
T

K
A

R
-K

N
N

K
A

R
-A

N
N

FA
C

-R
F

FA
C

-G
B

T
W

M
V

R
S

W
V

B
W

W
V

Q
B

W
W

V
TF

A
A

D
A

M
H

LC
D

F
G

M
B

Single classifier
Ensemble

 ZER: Zernike moments (47)

For multiclass classification, we utilized five classifiers including decision tree
(DT), k-nearest neighbors (KNN), artificial neural networks (ANN), random forest
(RF), and gradient boost tree (GBT). Thus, there are 25 pairs between FEs and
classifiers as illustrated in Fig. 22 (a); the entire system for GMB has 10x10 LMBs
as shown in Fig. 22 (b). We measured the average accuracy with the 10-fold cross
validation, where two-, three-, and five-folds are used for training, evaluation, and
test set, respectively.

The experimental results with Multiple Features dataset are shown in Fig. 23. The
first group (light gray) contains the single FE and classifier pairs sorted by its
accuracy which is distributed from 0.472 to 0.904. The second group (dark gray)
contains the ensembles of classifiers as mentioned in Section 4.2. The difference
from the pedestrian detection is the use of AdaBoost.MH [73] (ADAMH) for the
multiclass problem instead of the original AdaBoost classifier. Because LCDF based
on the EM algorithm is sensitive to initial values, we choose the best one among

４３

TABLE IV

RESULTS OF ENSEMBLE METHODS FOR UCI MULTIPLE FEATURE DATASET

Ensemble
Method

Accuracy

Average
Standard
deviation

GMB 0.977 0.006
LCDF 0.955 0.017

ADAMH 0.936 0.008
TFA 0.936 0.012

QBWWV 0.937 0.009
BWWV 0.943 0.005
RSWV 0.943 0.006
WMV 0.942 0.005

many trials. The classifier ZER-ANN is removed when ensemble is constructed
because its accuracy is under 0.5. As a result, all the ensemble schemes outperform
all single classifiers. In particular, GMB is more efficient than other ensembles in
terms of accuracy as shown in TABLE IV.

2.4.5 LMB selection

Considering the disadvantage of GMB in complexity, we tried to select
automatically a subset of LMBs while maintaining the same level of accuracy as the
original version using all the LMBs. The best (optimal) LMB selection can be

generated by exhaustive search having complexity of �|𝐿𝐿𝐿𝐿𝐿𝐿|
𝐾𝐾 �, where |LMB| is the

number of LMBs belonging to GMB and K is the number of selected LMBs. In

４４

order to avoid exhaustive search, we adopted O(K)12 scheme which selects LMBs
in descending order of their individual accuracy. Fig. 24 (a) shows how GMB error
changes according to the number of selected LMBs. The first 46 LMBs cover
almost all the accuracy (error rate of 0.024) of the original GMB. The 46 LMBs
finally selected are displayed in Fig. 24 (b) with gray color in GMB plane. While all
the FEs are used in the selected LMBs, FE relations between MOR (D) and ZER(E)
are not important in terms of GMB error; <ZER(E) , FOU(B)> and <FOU(B),
MOR(D)> do not affect the GMB performance. In other words, although none of
the five FEs can be removed in order to cover the original GMB performance, GMB
complexity can be reduced by eliminating 54 weak LMBs colored white in Fig. 24
(b). On the other hand, most relations between classifiers are significant to the GMB
performance.

2.4.6 Discussion

The hierarchical ensemble scheme proposed in this paper maximally utilizes two
ensemble directions when classifiers are gathered into ensemble as illustrated in
Section 2.3.3 and Fig. 9. At the same time, it provides a way to efficiently solving
the combinatorial problem of mapping multiple FEs to multiple classifiers as
mentioned in Section 2.3.1 and 2.3.2. By using this hierarchical ensemble of LMB
and GMB, we increase scalability of MFMC with polynomial complexity. LMB is
designed to operate in vertical direction based on WMV optimized by using
reinforcement learning while GMB is constructed for horizontal direction as
Bayesian networks. TABLE V shows which ensemble scheme takes which
direction(s) when combining its components. WMV, RSWV, BWWV, QBWWV
and AdaBoost, which are based on weight assignments to their components, use the
vertical direction, while LCDF and TFA, which are based on generalization and

12 If considered a sorting problem, the complexity becomes O(KlogK) when
using quick sort.

４５

 (a) (b)

Fig. 24. LMB selection while closely maintaining the accuracy of the original GMB

containing all the LMBs. (a) GMB error decreases as the number of LMBs increases,

but beyond 46 LMBs the decrease saturates. (b) The selected 46 LMBs with gray

color.

0 10 20 30 40 50 60 70 80 90 100
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

of LMBs

G
M

B
 E

rro
r

46 LMBs

A
B
C
D

E

A

B
D

1 2 3 4 5 1 3 5 2 4 1

E
A
C

regression, utilize the horizontal direction; our scheme takes into account both
directions simultaneously. If many classifiers exist in an ensemble but they make
same decisions, there may not be any performance improvement over single
classifiers. For the same reason, the diversity among classifiers becomes a key to
enhance accuracy of the ensemble system. Intuitively, ensemble diversity will
increase only under the condition that the participating components (MFMC) use
different methods (horizontal and vertical decisions) as shown in Fig. 19 and Fig. 23.
In addition, the previous weight-based (vertical) methods such as WMV ignoring
dependency between classifiers can be enhanced through RL as shown in TABLE
II.

The proposed method using two directions simultaneously inevitably increases
complexity of the optimization problem. According to our calculation, however,

the asymptotic upper bound of the complexity is 𝑂𝑂(|𝐹𝐹|3|𝐶𝐶|3) as mentioned in
Section 2.3.5. We can further reduce the practical complexity of GMB by using LMB
selection as shown in the experimental section.

2.5 Conclusion

４６

TABLE V

COMPARISON OF ENSEMBLE METHODS ACCORDING TO THE DIRECTIONS DISCUSSED IN

SECTION 2.3.3

Ensemble
Method

Ensemble direction

Vertical Horizontal

GMB Yes Yes
LCDF No Yes

AdaBoost Yes No
TFA No Yes

QBWWV Yes No
BWWV Yes No
RSWV Yes No
WMV Yes No

 This paper presents a hierarchical ensemble framework using multiple feature
extractors and multiple classifiers (MFMC). Whereas the previous studies have
concentrated on manually finding the best combination of a small number of
existing FEs and classifiers, this paper proposes a systematic and automatic
optimization framework for arbitrary numbers of FEs and classifiers that can also
easily integrate newly developed FEs and classifiers. To manage the complexity of
the optimization problem, which increases exponentially as new FEs or classifiers
join the combination, this paper proposes to reformulate the problem in a
hierarchical manner. In the proposed scheme, the problems are divided into a set of
LMBs optimized by reinforcement machine learning, and then final decision is
induced on GMB by constructing a Bayesian network. The results show that the
hierarchical ensemble framework outperforms the previous approaches such as
WMV, RSWV, BWWV, QBWWV, TFA, AdaBoost, and LCDF.

Although the proposed ensemble framework increases the accuracy, utilizing
many features and classifiers inevitably requires more computation slowing down
the system. As a way of mitigating the problem, we consider hardware supports

４７

such as many-core and/or GP-GPU. In case of critical detection systems such as
ADAS, medical service, automatic navigation, and security system, the most
important metric is not the hardware cost but the accuracy of the system. Actually,
ensemble of classifiers such WMV, AdaBoost were invented by the same motivation.
Thus the next step of our research is to design a proper hardware architecture that
supports ensemble of various vision processing tasks including Bayesian network
manipulations.

４８

3. Synthesis of Efficient Stochastic Logic

for Many-Variable Expressions

3.1 Introduction

Stochastic computing (SC) is an alternative to conventional binary arithmetic
computing, which computes bit values with probability for applications that tolerate

a certain level of inaccuracy. SC uses occurrence probability of 1’s in a (pseudo)

random bit stream to represent a number, and allows for an extremely efficient
implementation of complex functions (such as multiplication and exponentiation),
typically with a few logic gates. For example, a conventional multiplier such as
the one shown in Fig. 25 (c) can be replaced by a single AND gate such as
the one in Fig. 25 (a). In addition, SC has advantages such as bit-level parall
elism and error tolerance. Due to these features of SC, orders of magnitude
improvement in terms of area, power, and error resilience has been reported by
previous researches applying SC to neural networks [1], image processing [2], electr
onic filters [3], and error tolerant systems [4]. Thanks to the equal positional
weight of the bits in a bit stream for a value, the precision in SC can be tu
ned by varying the number of bits for a value without hardware modification,
which is known as progressive precision [5]. Because of massive bit-level pa
rallelism from inherent independency between bits, critical path delay of SC l
ogic is very small compared to conventional binary arithmetic logic, which m
akes a design more efficient in terms of clock frequency and power consump
tion. Moreover, SC logic can be implemented in a serial or (partially) paralle
l manner as shown in Fig. 25 (a) and (b), where the former can operate mul
tiplication on the input bit streams with a single AND gate by scarifying

４９

performance (increased number of clock cycles), while the latter takes a half of the
clock cycles with two AND gates (i.e., two parallel units). SC is also tolerant to
errors arising from bit-flips, which is recently focused on by emerging
technologies such as better-than-worst-case (BTWC) design (considering process
variation, aging degradation, and supply voltage clock frequency scaling) [6] and
nanometric design (implementing with carbon nanotubes, silicon nanowires,
graphene, and molecular electronics, which inevitably generates errors) [7].

As mentioned above, SC requires very small logic area compared to conventional
binary logic since it uses very small building blocks for arithmetic operations. One
Boolean gate in SC as the one in Fig. 25(a) has the same function as a conventional
arithmetic logic block implemented with many gates as shown in Fig. 25(c).
However, SC has a critical problem that it requires 2K bits to represent only K bit
conventional binary numbers. For example, let us assume two K x K bits multipliers,

Fig. 25. Example of stochastic logic. (a) Multiplication with a single AND gate. (b)

Partially parallel version for multiplication with two AND gates. (c) Three-bit

multiplication using half adders and full adders with conventional binary radix

encoding. (d) SC logic example with operations representing y= abd+abe+cd−abcd−

abde, where simple Boolean gates are mapped to compound arithmetic operations.

A
B

Y1,1,0,1,1,1,1,0 (6/8)
1,0,1,1,0,0,1,0 (4/8)

1,0,0,1,0,0,1,0 (3/8)

(a)

A
B
C

D Y

E (d)

y = (1-ab)cd + ab(d+e-de)
 = abd+abe+cd-abcd-abde

A01,1,0,1

1,0,1,1

1,0,0,11,1,1,0

0,0,1,0
0,0,1,0B0

A1

B1

Y0

Y1

(3/8)

(6/8)

(4/8)
(b)

HHH

FFF

FFF

HFF F Full adder
(c)

P(Y=1)=y

H Half adder

0
1

５０

one with fully parallel SC logic 13 and the other with conventional binary
arithmetic logic like the one in Fig. 25 (c). Let us also assume that the complexity
(or area cost) of an AND gate is A while the complexity of a full adder is F. Then
the complexity is given by

CSC = O(A2K) (1)

and

CBIN = O(FK2) (2)

for SC logic and binary logic, respectively. Since A is much less than F, SC logic
is smaller than binary logic in case of small K. However, the gain decreases fast as
K (i.e., precision) increases because the complexity of SC logic increases
exponentially whereas the complexity of binary logic increases only quadratically.
Thus, considering arithmetic operation such as multiplication, SC logic has a benefit
when the precision is not high.

What makes SC more effective in implementing arithmetic logic is that only a
single SC gate can implement a compound arithmetic function. For instance, an OR
gate and a multiplexer (MUX) implement expressions such as y=a+b−2ab, y=(1−
c)a+cb, respectively; a MUX, for example, performs one subtraction, two
multiplications, and one addition. Fig. 26 shows traditional logic gates and the
corresponding arithmetic expressions implemented by using them as SC logic
elements, which we call SC gates. Such SC logic can implement a complex
expression when the gates are connected together. Fig. 25 (d) shows that the
combination of two ANDs, an OR, and a MUX implements in SC logic a relatively
complex arithmetic expression,

13 Fully parallel SC logic takes one clock cycle working with 2K gates while fully
serial SC logic takes 2K clock cycles with one gate. The two versions of SC logic
consumes about the same energy, but the serial version consumes much lower static
power. Partially parallel versions are in between the two.

５１

y = abd+abe+cd−abcd−abde, (3)

which, in binary logic, implements a function given by

Y = MUX(AND(A, B), MUX(AND(C, D), OR(D, E))). (4)

As shown above, a complex conventional binary logic implementation of an
arithmetic function can be replaced by a very simple SC logic implementation.
However, it is difficult to find such an SC logic that efficiently implements a given
arithmetic expression, which has prevented usage of SC logic. Moreover, because
SC logic has limited capabilities, which are stemming from their probabilistic
characteristics, an arbitrary arithmetic expression cannot be simply converted into
an equivalent SC logic. In this paper, we present an automatic logic synthesis
approach that can find a suitable SC logic from a given arithmetic expression in an
application. We try to solve the SC logic synthesis problem inspired by the
traditional multi-level logic optimization techniques [8] and their extensions [9, 10].
They are based on exhaustive search among lots of candidates and thus require
many sophisticated algorithms to avoid excessive runtime. For the SC logic
synthesis, however, our algorithm investigates the structure of a given expression
and effectively explores only a limited set of candidates. More specifically, our
scheme prunes the useless search space by using common forms of SC logic.
Experimental results demonstrate that our technique can generate SC logic circuits
that outperform the conventional binary logic circuits in terms of area, critical path
delay, and power consumption.

This paper is organized as follows. Section 3.2 gives a brief overview of the
related work. Section 3.3 describes the proposed logic synthesis schemes for SC.
Section 3.4 shows experimental results, and finally, Section V concludes the paper
with some remarks.

3.2 Related Work

There have been abundant previous researches on SC. Unipolar and bipolar

５２

encoding, and some basic stochastic operations were introduced early in the 60’s

[11]. Much later, Brown and Card [1] extended the set of stochastic operations
introducing important special functions based on state machines. Although
stochastic computing had been applied to implementing neural networks even in the

90’s [12], recent emphasis on approximate computing applications rekindled the

interest in SC [13]. From the synthesis point of view, [14] and [15] set an important
milestone by introducing general methods of designing univariate functions using
combinational and sequential circuits, respectively. Another study [16] suggested
transform approach for Boolean operation into SC operation in spectral domain. [17]
used a regularized polynomial form called binary combination polynomial for
synthesizing a given expression. Because those approaches use basis functions to
express a polynomial, the SC logic obtained by those schemes is in the form of sum
of basis terms like sum of product terms in two-level logic. In particular, as
variables are added into an expression, the complexity exponentially grows, because
basis functions should represent all combinations of variables.

There have been many researches investigating error estimation and propagation
for a given multi-level SC logic circuit [7, 18, 19, 20, 21]. The main concern of
those researches is to analyze variance propagation and the effect of correlation
between input bit streams in SC logic. [22] proposed a programmable processor that
took advantage of stochastic functional units in the aspect of computer architecture.
Many researchers worked on practical applications such as image processing [2] [13]
[23], low-density parity-check (LDPC) [25] [26] [27] [28] [29], median filter [30],
FIR filter [31], Viterbi decoder [32], Turbo-decoder [33], DCT [34], MIMO detector
[35], and neural networks [36]. Those researches proposed only a dedicated solution
for a specific application.

The methods proposed in [14] [16] [17] can synthesize SC logic circuits for
univariate polynomials or polynomials with only a few variables. Although
polynomials with a few variables are also an important class of computation, there

５３

are applications that use functions with multiple input signals (i.e., many variables).
For example, trilinear interpolation of volume rendering in computer graphics has
11 variables and 27 terms in its sum-of-products form. For this problem instance,
the previous approach [17] needs to generate 2,048 (=211) bases in the worst case,
and moreover, perform stochastic addition of at most 2,048 terms, which not only
incurs quite significant an overhead, but also considerable loss in the precision of
the computation. For such many-variable expressions, the ability to handle multiple
input signals at once can lead to a more efficient SC logic, as demonstrated in our
experiments. To the best of our knowledge, this is the first work that applies the
ideas of multi-level logic synthesis to the SC synthesis problem.

3.3 SC Logic Synthesis for Multivariate Expressions

The heart of our multi-level SC logic synthesis is to find a logic network
comprised of basic SC operations corresponding to the SC gates shown in Fig. 26
for a given conventional expressions consisting of basic arithmetic operations. In
addition, some special SC logic circuits such as division or integration [1] [11]
and other optimized modules (e.g., LDPC [25] and polynomials [14] [16] [17]),
which we call SC macro-circuits, can be integrated as sub-circuits into the final SC
logic circuit for the entire expression during our synthesis process. We do not break
a macro-circuit, but use it as a whole as if it were a variable in the expression. A
macro circuit can be a sequential circuit, and thus the final SC circuit may include
sequential logic as well as combinational logic. In this paper, we consider the
problem of synthesizing stochastic logic for an arbitrary multivariate expression. As
shown in Fig. 27 (a), from a given algorithm, the design flow generates basic blocks
(BBs) and the corresponding data flow graphs (DFGs). Then for each of the BBs
(and DFGs), it generates an arithmetic expression in the form of sum-of-products
(SOP) possibly including the SC macro-circuits. Then our scheme proposed in this

５４

paper starts from the SOP form. 14

3.3.1 Probabilistic Logic

In unipolar encoding, real number x in the range of [0 1] is represented by a
binary random variable X, whose probability of being 1 (sometimes called signal
probability) equals pX. That is, x = pX =P(X=1), which is obtained by dividing the
number of 1s by the total number of bits in the bit stream. Given two independent
random variables A and B (representing two real numbers a and b), the output Y of
the AND operation on A and B has the signal probability expressed by pY = pA˄B =

pA × pB = ab, meaning that a two-input AND gate implements the product of two
stochastic numbers in unipolar encoding as shown in Fig. 25(a). In case of two-input
OR gate with input A and B or input pair <AB>, because the inputs <01>, <10>, and
<11> makes the output 1, the probabilistic value of the output becomes the
probability sum of the input pairs, P(A=0, B=1) + P(A=1, B=0) + P(A=1, B=1) = (1

14 Since bipolar encoding representing the range of [-1 1] has the same
mechanism to unipolar encoding [0 1], this paper consider unipolar encoding in
most cases for simplicity.

Fig. 26. SC gates and their arithmetic operations in unipolar encoding.

A
B

C

Y
A
B

A
B

A
B

A
B

A
B

A
B

Y Y Y

Y Y Y YA

y=(1 c)a+cb y=ab y=a+b ab y=a+b 2ab

y=1 a y=1 ab y=1 a b+ab y=1 a b+2ab

y=abc

A
B Y
C

A
B Y
C

y=abc+a+b+c
 ab bc ca

A
B

E

YC
D

F
y=(1 e)(1 f)a+(1 e)fb
 +e(1 f)c+efd

0
1

00
01
10
11

５５

−a)b+a(1−b)+ab = a+b−ab. Fig. 26 shows the basic SC gates and the functions
they implement in unipolar encoding, assuming that the inputs are independent.
Note that simple additions such as a+b cannot be implemented by a simple SC logic
circuit because they may result in values greater than one; scaled additions such as
0.5(a+b) can be accomplished by a MUX, which can implement (1−c)a+cb with c
set to 0.5.

Because stochastic logic works in a probabilistic manner, it inherently has
non-deterministic errors in contrast to conventional binary radix logic. Regarding
bias and variance, they represent respectively the bias from mean value p for a
signal in the stochastic logic and the range of errors from the mean. Because
converting a given expression into an SC circuit by using the arithmetic expressions

Fig. 27. Overview of the proposed SC logic synthesis with many variables. (a) The

proposed scheme begins with a basic block (BB) and its data flow graph (DFG). (b)

Example of correlation. (c) Method to solve the correlation problem by using

different random sources and a D flip-flop. (d) Swapping the wire can remove the

correlation in the parallel version.

a

b c

e
d

b := a * a
d := b + c
e := b d

Algorithm Basic block (BB)

Data flow graph
(DFG)

Stochastic computing (SC)

Sum of product
(SOP) form

Compiler

or

Proposed
SC logic

SC Macro-circuit

Divider LPDC

Polynomials
with a few variables

(d)(c)(b)

(a)

aa

bc

e
d

aa

b c

e
d

α

β

a

b c

e
d

aa

b c

e
dD

D flip-flop

Correlation

Random
source

D

５６

of Fig. 26 generates expressions equivalent to the original expression, the bias of the
stochastic circuit is zero in our approach; for example, (4) represents (3) without
bias. In case of variance, some studies suggest the probability models from a simple
one [11] (considering the error of Bernoulli sequence no matter how the SC circuit
is large) to a complex one [18] (considering propagation of the variance through
gates). Another type of error is due to correlation between bit-streams.

Two correlation cases are shown in Fig. 27 (b); in case of α type, the statement

b=a*a is implemented by B = AND(A, A) = A, which is not A*A. In order to resolve
the problem, we can use different random sources A1 and A2 (i.e., AND(A1, A2) =

A1*A2) as shown in Fig. 27 (c). In case of β type in (b), because the same signal B

branches and reconverges at node e, the input signals of e may be correlated. This
type of correlation can be reduced by using D flip-flops as shown in (c) [1] [11] [20]
[22]. In the parallel version, the correlation can be reduced by swapping the wires as
shown in (d). Meanwhile, methods such as probabilistic transfer matrix (PTM) [24]
and SC correlation (SCC) [19] can be used in order to find and measure the
correlation [20].

We assume some conditions in this paper as follows,

The input is an expression with a finite number of real variables and real
coefficients.

The expression can be converted into an SOP form,

ZSOP = ∑ ∏ 𝐿𝐿𝑖𝑖,𝑗𝑗𝑗𝑗𝑖𝑖 , (5)

where Li,j is a literal or an SC macro-circuit.

The inputs and the outputs are within [0 1] range by using linear scaling such that

(V − Vmin) / (Vmax − Vmin), where V is a current value and Vmin and Vmax are the
minimum and maximum values, respectively.

５７

Different variables A and B are independent.

Two variables A0 and A1 representing the same input variable A can be made
independent by using different random sources such as Fig. 27 (c).

Note that ZSOP is an expression possibly containing an SC macro-circuit as a
variable; we focus on SC logic synthesis for a multivariate expression having many
variables, which is different from [14] [16] [17].

3.3.2 Definitions

The following terms are from multi-level logic minimization [8]. A literal is
either a variable or a constant. A cube is a product of literals. An expression is called
a kernel if, when written in SOP form, there is no literal (other than 1) dividing all
the cubes simultaneously, aka cube-free. A kernel of a given expression can be
obtained by dividing the given expression by some cube, in which case the cube is
called a co-kernel. Kernels have levels; a level-0 kernel has no inner kernels, and a
level-n kernel contains one or more level-(n−1) kernels. For example, in the
following expression,

TABLE VI

KERNEL, CO-KERNEL, AND SC KERNEL OF EXPRESSION (6)

Kernel Co-Kernel Level SC Kernel

1 – a bef 0 Yes
1 – e acdf, abf 0 Yes
b – cd aef 0 No
1 – a – e + ae = 1 – a – e(1– a) bf 1 Yes
be + cd– b– cde = cd– cde– b(1– e) af 1 No
ab – b – acd = – b + a(b – cd) ef 1 No
– ab – be + abe + acd – acde f 2 No
abef + acdf + b – abf – acdef – bef 1 3 No

５８

x = abef + acdf + b − abf − acdef − bef

= b + f(acd − ab + e(−acd − b(1 − a))) (6)

a, b, c, d, e, f, and 1 are literals; abef and acdf are cubes; the first line of an
expression x is an SOP form while the second line is a factored form. The SOP form
has six variables and 20 literals while the factored form has 14 literals. Table VI
lists kernels, co-kernels, and levels of expression (6).

We define SC logic network as a set of SC gates with a set of interconnections
among them. We say that a conventional expression can be implemented by an SC
logic network, if it is possible to convert the expression into an SC logic network by
using only the SC gates shown in Fig. 26. When an expression D divides another

expression E, i.e., E=Q∙D+R, we call D a divisor of E. We call D a factor when D

evenly divides E, i.e., there is no remainder (R=0). In this paper, we adopt the
division method used in [8]; the complexity of the division is only O(nlogn), where
n is the number of product terms. More terms are defined in the following sections

Fig. 28. Overall process for the proposed algorithm.

SC kernel
(III.E) (III.F)

Prime
SC kernel iSC kernel

Relationship
graph

(III.G)

KERNEL
-BASED

SC logic synthesis
(III.K)

Finding dependency
between iSC kernels

(III.H)

SC logic

Generating iSC kernel

Examining relationship
between iSC kernels

Generating SC logic
using hybrid scheme

Sum of
product

form
Expression

Kernel
(III.B)

DIRECT
SC logic
synthesis

(III.I)

５９

as necessary.

3.3.3 Overview of the Proposed Method

As illustrated in Fig. 2, the overall process for the proposed method consists of
three parts: i) generating iSC kernels, i.e., implementable SC kernels (Sections 3.3.5,
3.3.6, and 3.3.7), ii) finding relationship between iSC kernels (Section 3.3.8), and iii)
synthesizing SC logic from the original input expression (Section 3.3.9, 3.3.10, and
3.3.11). The basic idea is to decompose the input expression into iSC kernels, each
of which can be implemented using the SC gates. Refer to Sections 3.3.5 and 3.3.7
for the definition of SC kernel and iSC kernel.

If some decomposition is derived from the original expression, it is accepted as a
solution. There can be many different solutions, and for the exploration, the
algorithm tries to divide the given expression by each iSC kernel. Depending on the
result of the division, the algorithm constructs a partial solution and calls itself
recursively on the quotient and the remainder. Since the quotients and the
remainders are simpler than the dividends, the algorithm must terminate after finite
iterations. The search space is combinatorial and defined by the number of iSC
kernels and the number of ways of combining them. To speed up the search, the
algorithm pre-examines the relationships between iSC kernels and exploits them
during the search. In the final step, the SC logic network is synthesized for the
original expression by using iSC kernels and the relationship graph.

Our scheme supports expressions with degrees higher than two (e.g., x3 is
supported). Note that the dependency problem in high degree terms can be
mitigated by using the isolation scheme [20] (see Section 3.3.10).

3.3.4 Direct Synthesis VS. Kernel-based Synthesis

Our first method, called direct synthesis, arranges the input expression in an

６０

arithmetic (not logical) SOP form, which is then mapped to SC logic in a
straightforward way. This method can handle any multivariate expression, but may
incur some loss in precision. Given Fig. 29, the definition of direct synthesis is
implementing each product term using an AND gate (or XNOR in bipolar encoding),
and then combining the outputs of the AND gates using a MUX (i.e., scaled
addition or scaled subtraction); Fig. 29 shows examples, where y = ac+bd+ad+bc
is implemented with y = 4{ 0.5(0.5(ac+bd) + 0.5(ad+bc)) } in unipolar encoding
while y = (b+c−ab−ac+ad) is implemented with y=8{ 0.5(0.5(0.5(b+c)−
0.5(ab+ac)) + 0.5(0.5(0.5ad))) } in bipolar encoding.

Direct synthesis can also be performed on a factored form of the same expression,
which reduces the number of gates and literals. In this case, the original expression
(ac+bd+ad+bc) is algebraically divided by (a+b) or (c+d) to obtain a factored form
(a+b)(c+d). 15

15 The factored form is implemented by using the conventional multilevel logic
optimization technique.

Fig. 29. Examples of direct synthesis. (a) ac+bd+ad+bc, where scale factor is 4. (b)

b+c−ab−ac+ad; the scale factor is 8. It is implemented with bipolar encoding because

of scaled subtraction.

Y

A

y=ac+bd+ad+bc
 =4{0.5(0.5(ac+bd)+0.5(ad+bc))}

B

D

C

0.5

0.5

0.5

(a) (b)

0
1

0
1

0
1

YA

B

D

C
0.5

0.5

0.5

0
1

0
1

0.25

0
1

0.5

0
1

=8{0.5(0.5(0.5(b+c)-0.5(ab+ac))
 + 0.5(0.5(0.5ad))) }

y=b + c - ab - ac + ad

６１

Such a use of MUX requires scaling as well as a new constant input for the MUX
control (i.e., 0.5 in Fig. 29). Thus in order to recover the original function, the
output of the MUX needs to be scaled back up (e.g., using coefficient 8 in Fig. 29).
However, not only is it complex, slow, and expensive, but also it introduces loss of
precision. For an expression with N variables, there can be up to 2N product terms in
the worst case, which implies that the data can be scaled by up to N levels (one level
corresponds to 2X scaling) resulting in the corresponding precision loss. This
problem can seriously degrade the accuracy even for expressions with a small
number of terms, which exists in all similar previous approaches [17].

In this paper, we try to avoid scaled addition as much as possible. Our approach is
to search the design space created by the combinations of basic SC gates to find a
match while suppressing the use of MUXs as much as possible. The key then is
speeding up the search, for which we use techniques from multi-level logic
minimization. This method is a very elaborate scheme that explores many possible
combinations of basic logic elements to find the most compact SC logic matching

TABLE VII

SC-LOGIC REPRESENTATION FOR TWO-INPUT GATES

Gate SC Operation (1−P) Representation
(1−P)M+P’N
Format

MUX (1−S0)S1+S0S2 (1−S0)S1+S0S2 (1−P)M+PN
INV 1−S0 (1−S0) (1−P)
NAND 1−S0S1 (1−S0S1) (1−P)
OR S0 +S1−S0S1 (1−S0)S1+S0 (1−P)M+P

NOR 1−S0 −S1+S0S1 −{(1−S0)S1+S0 − 1} * (1−P)M+P’
XOR S0 +S1−2S0S1 (1−2S0)S1+S0 (1−P)M+P’
XNOR 1−S0 -S1+2S0S1 −{(1−2S0)S1+S0 − 1} (1−P)M+P’
AND S0S1 N/A N/A

 * NOR gate can also be represented by (1− S0)(1-S1) or (1− P)M form; the two versions are identical in terms

of complexity in SC logic synthesis process.

６２

the input expression. To avoid excessive runtime, we consider only possible
structures of SC logic that can be generated from the original expression, which
allows us to explore only a limited set of candidates. It is inspired by conventional
multi-level logic optimization [8, 9, 10]. We call this method kernel-based synthesis,
since it tries to generate SC logic that is minimized using the concept of kernels. For
example, the SC logic in Fig. 25(d) is the result of kernel-based synthesis for the
expression in (3), which has a gain compared to that of direct synthesis in terms of
area, critical path delay, and accuracy. 16 The problem is how to find an optimal SC
logic network from a given expression, which is explained in the following sections.

3.3.5 SC Kernel

In the traditional multi-level logic synthesis, kernels are extracted to select good
divisor candidates for algebraic division, since the kernels can divide the original
expression. Most schemes used in conventional multi-level logic optimization
including the one in [8] try to find a good division result through exhaustive search
using divisors obtained from kernels [10]. However, the complexity is prohibitively
high, since even a reasonably sized expression can generate many kernels and thus a
huge number of divisors. In addition, every subset of cubes in a kernel can be a
divisor for the given expression. For example, if an expression generates N kernels
and the number of cubes in the i-th kernel is Ki, the number of candidate divisors is
∑ (2𝐾𝐾𝑖𝑖 − 1)𝑁𝑁
𝑖𝑖=1 in the worst case. Thus, the number of ways of decomposing the

given expression becomes {∑ (2𝑁𝑁𝑖𝑖 − 1)}!𝑁𝑁
𝑖𝑖=1 , which is obviously intractable.

However, in our SC logic synthesis, we prune a large number of candidates that are
not suitable for SC logic networks. Thus, we can find candidates rapidly even with a
simple search. This contrasts to the conventional multi-level logic synthesis.

16 More compact SC logic network is in general more accurate due to limited
error propagation.

６３

The question to be answered is how to find good divisors to decompose a given
expression into sub-expressions that are eventually transformed into SC gates. For
this, we define SC kernel as an expression that has one constant term no less than 1
and at least one product term with negative coefficient. 17 Simply speaking, it has a
(1−P) form, where P is a sub-expression or other than a constant. The reason for

considering the (1−P) form is that, due to the probabilistic bound “1”, most SC

gates in Fig. 26 can be represented by a (1−P) form or an expression containing a
(1−P) form except for multiplication xy (i.e., AND gate) as shown in Table VII. SC
kernels can be obtained by dividing the original SOP by cubes in the same manner
as finding kernels in multilevel logic. Identifying SC kernels among the kernels of
an expression is straightforward as exemplified in Table VI. An expression without
any SC kernel (e.g., dot product expression has no SC kernel in it) is synthesized by
the direct synthesis method.

All the SC gate representations shown in Table VII except for multiplication (i.e.,

17 A constant no less than 1 is allowed. For instance, (2-R) becomes 2(1-0.5R),
where (1-0.5R) is a normal (1-P) form, and 2 is a scale factor of the expression.

TABLE VIII

SC KERNEL AND PRIME SC KERNEL OF EXPRESSION T IN EXAMPLE 2

SC Kernel Prime SC Kernel

1+bchi+bcm+hm−bc−bchm−hi−m No
1+abc−a−bc No
1+bch−bc−h No
1+hm−hi−m Yes
1−a Yes
1−bc Yes
1−h Yes

６４

AND gate) can be expressed as (1−P)M+P’N, where P, M, and N are

sub-expressions and P’ is a modification of P. The modification means that P’ has

the same expression as P but with a different coefficient and/or constant term

subtracted. For example, in case of NOR, P is S0 while P’ is (S0−1). P’ can be

recognized within linear time (i.e., O(n), n is the number of terms in a

sub-expression); thus, finding P’ is very fast. We call the expression (1−P)M+P’N a

common SC form based on (1−P). For example, a MUX is represented by a
common SC form (1−P)M+PN; INV and NAND by (1−P); OR by (1−P)M+P;

NOR, XOR, and XNOR by (1−P)M+P’. Thus, if we find a sub-expression

transformed to a common SC form, it can be mapped to an SC gate.

Example 1. Given the expression in (3), y can be divided by (1−ab), which is in
the form of (1−P). i.e., y = (1−ab)cd+ab(d+e−de). Since this is a MUX form (1−

P)M+PN, It can be converted into SC logic such as Mux(ab, cd, d+e−de). □

In case of three or more inputs, the gates can be hierarchically decomposed into a
set of two-input gates; it should contain a (1−P) form for each two-input gate. For
example, Fig. 31 shows that three-input OR gate is decomposed into two two-input
OR gates, each containg an SC kernel.

3.3.6 Prime SC Kernel

A lower-level (child) SC kernel can be generated by dividing an upper-level
(parent) SC kernel by a cube. The lower-level SC kernel can be further divided to
generate even lower-level SC kernels. This process is repeated until no more SC

６５

kernels are generated. In this way, all possible SC kernels can be generated to form
a DAG (Direct Acyclic Graph), where each node represents an SC kernel and each
directed edge represents a link from a parent SC kernel to its child SC kernel.

If an SC kernel y can be formed by a product of some (or all) of its children x1,
x2, ..., xk (i.e., y is fully factored by the children), then the decompositions obtained
by using y as a divisor are included in the set of decompositions obtained by using
those children, and thus the synthesis process does not need to consider y. If an SC
kernel cannot be formed by a simple product of its children, then the SC kernel is
called a prime SC kernel.

Example 2. Consider the following expression (same as the one in Fig. 30 (a)).

t = abc + abcghm + abchij + abcjm + abck + aghi + agm + ahjm + aj + k −
abcghi − abcgm − abchjm − abcj − aghm − ahij − ajm − ak − bck,

where the expression has nine variables, 75 literals, and 19 terms in the SOP form.
Table VIII lists all the SC kernels extracted from the expression. The SC kernels
form a DAG as shown in Fig. 30 (c). Some SC kernels (represented with gray ovals)
are fully factored by its children and such SC kernels are excluded from the DAG
(see Lemma 1). Excluding non-prime SC-kernels helps reduce the search space. The
white ovals in Fig. 30 (c) represent prime SC kernels, which cannot be fully

factored by their children. □

Fig. 30. SC kernels for expression t in Example 2. (a) SOP expression for t and the

synthesis result T. (b) Schematic diagram for T. (c) DAG for SC-kernel.

t = abc + abcghm + abchij + abcjm + abck + aghi + agm + ahjm + aj + k - abcghi - abcgm - abchjm - abcj - aghm - ahij - ajm - ak - bck

T = Mux(And(B, C), Mux(A, K, Mux(Mux(H, M, I), J, G)), A)

A
B

S
Mux(S, A, B)

(a)

(b) (c)

= (1-bc){(1-a)k + a({hi + (1-h)m}g + (1-{hi + (1-h)m})j)} + bca

M
I

H

G
J

K
A

A
B
C

T

(1 - a) (1 - bc)
(1 - h)

(1 + abc - a - bc)
= (1 - a)(1 - bc)

(1 + bch - bc - h)
= (1 - bc)(1 - h)

(1 + hm - hi - m)

(1 + bchi + bcm + hm - bc - bchm - hi -m)
= (1 - bc)(1 + hm - hi - m)

hm

bc ha

m
bc

bc
m

Prime SC Kernel
(& iSC Kernel)
Non-Prime
SC Kernel

P-Containing group

Initial P-Containing node

bcm

(t = P(T), ... , a = P(A))

A1 A2
A3

A4

0
10

1

0
1

0
1 0

1

６６

Lemma 1. (Prime SC kernel) A compound (non-prime) SC kernel, which is
fully factored (i.e., no remainder) by prime SC kernels, can be ignored during the
SC logic synthesis, since the space searched by using the prime SC kernels covers
the space searched by using the compound SC kernel.

Proof. Consider an expression E that can be divided by a compound SC kernel
H=∏ Li

𝑛𝑛
𝑖𝑖=1 , where Li's are prime SC kernels and n is the number of prime SC

kernels. Then

E = QH+R, (7)

where Q is the quotient and R is the remainder.

Each Li can also divide E since it is a kernel. Thus

E = Q1L1+R1 = (Q2L2+R2)L1+R1

= Q2L1L2+(R2L1+R1)=…

=Qn ∏ Li+∑ {Ri ∏ Lj-1
i
j=1 }n

i=1
n
i=1

= QH+R (8)

where L0 is 1. We see in (8) that various decompositions are possible by using
only prime SC kernels (Li's) and one of them is actually the same as that obtained in
(7) by the compound SC kernel. Thus, compound SC kernels can be removed from

Fig. 31. Decomposition of three-input OR gate. All the gates contain (1-P)

expression. (a) Two-input OR gate. (b) Three-input OR gate. (c) The decomposed

three-input OR gate contains (1-P) form such as (1-a) and (1-k).

(a) (b)

A
B Y
C

y=abc+a+b+c
 ab bc ca

A
B Y

y=a+b ab
 =(1 a)b+a

A
B
C

K

k=(1 a)b+a
y=(1 k)c+k =abc+a+b+c

 ab bc ca(c)

Y

６７

consideration in the process of design space exploration. □

3.3.7 iSC Kernel

Not all prime SC kernels generated from an expression can be implemented as an

SC logic network. For example, (1−c+gk) can be a prime SC kernel of an
expression but is not implementable. We define iSC kernel as a prime SC kernel that
can be implemented with one or more SC gates in Table VII. Thus we find an iSC
kernel of the (1−P) form in a given expression to construct a common SC form, (1

−P)M+P’N, where each of P, M, and N can also have a common SC form in a

recursive manner. We call an iSC kernel (1-P) a level-0 iSC kernel, if P is a single

cube. If P has one or more iSC kernels and the highest level of the kernels is λ, then

the level of the iSC kernel (1-P) is λ+1. For example, (1–a) and (1–bc) are level-0

iSC kernels, while (1+ac–bc−a) = 1−{(1−c)a+cb} = 1−Mux(c, a, b) = Inv(Mux(c,

a, b)) is a level-1 iSC kernel. Note that an iSC kernel generated from a leaf SC

Fig. 32. Finding iSC kernels from prime SC kernels for Example 3. (a) SOP form of

expression z. (b) SC logic for expression z. (c) DAG of prime SC kernels derived by

expression z. (d) Final DAG of iSC kernels derived from (c).

z = c + cckqv + ccqsw + cgkkqw + cgkqsv + cqsv + gkkqv + gks - cckqw - ccqsv - cgkkqv - cgkqsw - ckqv - cs - gkqsv
= (1-{(1-{(1-c)v + cw}q)s + {(1-c)v + cw}qk})c + {(1-{(1-c)v + cw}q)s + {(1-c)v + cw}qk}kg

Z = Mux(Mux(Mux(C, V, W)*Q, S, K), C, KG)

(1 + gk - c)

(1 + cqv + gkqw - cqw - gkqv - qv) (1 + gk - c - gs)

(1 + ckqv + cqsw + gkkqw + gkqsv + qsv - ckqw - cqsv - gkkqv - gkqsw - kqv - s)

s

qv

kqv

Prime SC Kerne

(a)

(b)
(c)(1 - c)

(1 - gs)

(1 - cqw - qv + cqv)
= 1 - {(1 - c)qv + c·qw }

(1 + gkqsv - gkqsw - kqv)
= 1 - {(1 - gs)kqv + gs·kqw }

(1 + ckqv + cqsw + qsv - ckqw - cqsv - kqv - s)
= 1 - {(1 - (cqw + qv - cqv))s + (cqw + qv - cqv)k}

iSC Kernel

(d)

C1

C2

D1
D2

C3

C4

D3
D4

D5

S

Z

Q

C

V
W

C

G
K

kqv

s

qv

0
1

0
1

1
0

６８

kernel is always level-0 since a leaf node has no child.

The idea is to generate iSC kernels from prime SC kernels. We do this
hierarchically starting from the leaf nodes in the SC kernel DAG. First we accept a

leaf node as a level-0 iSC kernel if and only if it takes (1 – single cube) form. If a

leaf node is not in this form, then it cannot be a level-0 iSC node as shown in the
following lemma.

Lemma 2. (Level-0 iSC kernel) A leaf SC kernel is an iSC kernel, if and only if
it takes the (1−single cube) form.

Proof. The 'if' part is trivial; if a leaf SC kernel takes the (1-single cube) form,
then it can be implemented with an INV or a NAND gate in Table VII and thus it is
an iSC kernel. To show the 'only if' part, let's assume that a leaf SC kernel is a
level-0 iSC kernel but does not take the (1−single cube) form. That is, the leaf SC
kernel is assumed to have (1−sum of multiple cubes) form. Note that the sum of
multiple cubes does not have another (1-P) form since it is from a leaf SC kernel
(no child), and thus it cannot be implemented with the gates in Table VII. Therefore,

the leaf SC kernel cannot be an iSC kernel, which is a conflict □

For example, in Fig. 30(c), A1=(1−a), A2=(1−bc), and A3=(1−h) are all level-0
iSC kernels. If an SC kernel is not an iSC kernel, we can make it an iSC kernel by
dropping some terms.

Example 3. Consider the following expression.

z =c + cckqv + ccqsw + cgkkqw + cgkqsv + cqsv + gkkqv + gks − cckqw −
ccqsv − cgkkqv − cgkqsw − ckqv − cs − gkqsv,
where the expression has seven variables, 68 literals, and 15 terms in SOP form.

None of the prime SC kernels of the expression z are iSC kernels as shown in Fig.
32 (c). We first consider only level-0 prime SC kernels including C1 and C2. Node

６９

C1=(1+gk−c) is not an iSC kernel since P=(c−gk) is not a single cube. If we
remove gk, it becomes implementable like node D1=(1−c). Since it still divides the
original expression18, it is a level-0 iSC kernel of the expression. In case of node

C2=(1+gk−c−gs), we obtain node D1=(1–c) and node D2=(1−gs) by removing

terms gk and gs and terms gk and c, respectively.

Traversing toward the predecessor nodes, we identify higher level iSC kernels by
dropping terms that cannot be included in the common SC form. For example, by
dividing node C3 with level-0 iSC kernel D1, we obtain C3=1−{(1−c)qv + cqw +
gkqv − gkqw}. If the terms gkqv and gkqw are removed19, node D3 is obtained as
an iSC kernel because (1−c)qv + cqw is a common SC form. Similarly, level-2
node C4 is divided by D3 resulting in 1 − {(1 − (cqw + qv − cqv))s + (cqw +
qv − cqv)k + gkkqv + gkqsw − gkkqw − gkqsv}, and the terms gkkqv, gkqsw,

gkkqw, and gkqsv can be removed to obtain kernel D5. □

3.3.8 Relationship Between iSC Kernels

Once iSC kernels are generated, we can proceed to our synthesis algorithm.
However, for effective pruning of the search space, we exploit the relationship
between iSC kernels. For example, consider casting the expression t in Fig. 30 into

the common SC form based on A1=(1−a) to obtain t=(1−P)M+P’N. It is done by

using iSC kernel A1=(1−a)=(1−P) as the divisor. If we know a priori from the
relationship between nodes A1 and A3=(1−h) that the common SC form based on

18 Any subset (sub-expression) of a kernel divides the original expression.
19 The terms to be removed can be selected easily through pattern matching with

the (1− P)M+P’N form.

７０

A3 does not exist in the M part of the (1−P)M+P’N form based on A1 (we call this

"M of A1" for brevity), then we can prune useless trials of casting t into the form of

t=(1−a){(1−h)B + h∙C}+ a∙D, where B, C, and D are sub-expressions, since such a

casting is not possible.

We define five relationships between two iSC kernels as follows, all based on the

common SC form, W=(1−P)M+P’N.

M-containing: If W has the following pattern

W = (1−P0){(1−P1)A+B}+P0C +F (9.1)

= (1−P1){(1−P0)A+P0D}+ (1−P0)B+P0E+F (9.2)

where A≠0, B, and C=(1−P1)D+E are sub-expressions, and F can be either 0 or

an arbitrary remaining subexpression. That is, if M of (1−P0) contains (1−P1), and
C (i.e., N of (1−P0)) is either 0 or a sub-expression containing (1−P1), then we say
that (1−P0) is M-containing (1−P1).

MO-containing: If W has the following pattern

W = (1−P0){(1−P1)A+B}+P0C+F (10.1)

= (1−P1){(1−P0)A}+ (1−P0)B+P0C+F, (10.2)

where A≠0, B, and C≠0 are sub-expressions, and F can be either 0 or an arbitrary

remaining subexpression. That is, if only M of (1−P0) contains (1−P1) but C (i.e.,
N of (1−P0)) does not contain (1−P1), then we say that (1−P0) is MO-containing (1
−P1).

NO-containing: If W has the following pattern

７１

W = (1−P0){A} + P0{(1−P1)B+C}+F (11.1)

= (1−P1){P0B} + P0C+(1−P0)A+F, (11.2)

where A≠0, B≠0, and C are sub-expressions, and F can be either 0 or an arbitrary

remaining subexpression. That is, if only N of (1−P0) contains (1−P1), then we say
that (1−P0) is NO-containing (1−P1).

Unrelated: If W has the following pattern

W = (1−P0)A + (1−P1)B +F, (12)

where A≠0, B≠0 are sub-expressions, and F can be either 0 or an arbitrary

remaining subexpression. Then we say that (1−P0) and (1−P1) are unrelated.

P-containing: If W has the following pattern

W = (1−P0)A + B, P0=(1−P1)C+F, (13)

TABLE IX

DETERMINING NON-P-CONTAINING RELATION A

Numerator QX QY RX

Denominator Y 1−X 1−X Y

M-Containing D −
D b D b

N c −

MO-Containing D − D N

NO-Containing N D − D

Unrelated N N − D
a D: divides with or without remainder, –: don't care,
N: cannot divide (including the case of zero dividend).

b C≠0, c C=0 in (9.1).

７２

where A≠0, B, C≠0 are sub-expressions, and F can be either 0 or an arbitrary

remaining subexpression. Then we say that (1−P0) is P-containing (1−P1).

Note in (9.1) and (9.2) that (1−P1) is also M-containing or MO-containing (1−
P0). In (10.1) for the MO-containing relationship, A and C should not be zero. If
C=0, it becomes the M-containing relationship. In the same manner, in (11.1) for the
NO-containing relationship, A and B should not be zero and the relationship is also
unidirectional. The unrelated case defined in (12), where A and B should not be zero,
is not implementable with the SC gates. In our example of Fig. 30, A1 is
NO-containing A3 and A4. A2 is MO-containing A3 and A4, and A4 is P-containing
A3. Fig. 34 shows two examples of cascaded relationships.

To find the relationship between two iSC kernels X=(1−P0) and Y=(1−P1), we
first check to see if X is a predecessor of Y in the iSC kernel DAG, hence Y can
divide X but Y is not a factor of X. If yes, then X is P-containing Y (e.g., A4 is

Fig. 33. Relationship between two iSC kernels. (a) The procedure to find the

relationships between them. (b) An example of iSC kernel relationship graph for Fig.

30.

(1 - a)

(1 - bc)

(1 + hlm - hi - lm)

(1 - h)
P-Containing

NO-Containing

MO-Containing

M-Containing

Start Node

A1

A2

A3

A4
(a)

(b)

P-Containing
Check in DAG

(QX / Y)
in Table IV

‘D’

P-Containing

MO-Containing

Yes
Start

(RX / (1-X))
‘D’

M-Containing

‘N’

‘N’

UnrelatedNO-Containing

{RX / (1-X)} / Y
‘D’‘N’

(RX / Y)

(QY / (1-X))
‘N’‘D’

‘D’

７３

P-containing A3 in Fig. 30). If X and Y are not in a P-containing relationship, we
divide the original expression W by X and Y to obtain the quotients and remainders
as follows:

QX ≡ W / X, RX ≡ W % X ,

QY ≡ W / Y, RY ≡ W % Y. (14)

If QX is divided by Y, then X is M-containing or MO-containing Y. In this case, if

RX is not divided by (1−X) or if it is divided by both (1−X) and Y, then X is
M-containing Y; otherwise, X is MO-containing Y. Table IX shows how we
determine the relationship between X and Y. Fig. 33 (a) illustrates the process of
finding the relationship between iSC kernels.

Let us take the example in Fig. 30 (c). Given X = (1−a), Y = (1 + hlm − hi −
lm), and the original expression t, we examine QX = t/(1−a) as well as QY and RX
according to Fig. 33 (a), to find that (1−a) is NO-containing (1 + hlm − hi − lm).
This process is applied to every pair of iSC kernels and then we can get a
relationship graph for Fig. 30 (b) as shown in Fig. 33 (b). Note that the relationship

Fig. 34. Examples of relationships between iSC kernels in Fig. 30. A3 exists in P of

A4, M of A2, and N of A1; A4 exists in M of A2 and N of A1.

A1 P M N

A2 P M N

A4 P M N

A3 P M N

A2 P M N

A1 P M N

A4 P M N

A3 P M N

(a) (b)

７４

between any pair of iSC kernels can be identified by at most four divisions (for the
case of NO-containing and Unrelated). Actually, RY does not need to be calculated at
all accoding to Table IX.

3.3.9 Hybrid Scheme

Our kernel-based logic synthesis approach is not applicable to some expressions.
A good example is dot product such as (ab+cd), which does not even have any SC
kernel. During SC logic synthesis, if a part of an expression is identified as not
implementable with the kernel-based synthesis, then direct synthesis scheme (see
Section 3.3.4) is invoked to generate SC logic for that part of computation. In Fig.
35, for example, the expression of Fig. 29 (b), (b+c−ab−ac+ad), can be
implemented by MUX(a, b+c, d), where a is the control input to the MUX.
However, since (b+c) is not implemented by the kernel-based synthesis, we use
direct synthesis to obtain 0.5(b+c) and thus we have MUX(A, MUX(0.5, B, C),

0.5D) for Y, where the precision loss (i.e., scale factor) becomes 2× only (in case of
full direct synthesis, the precision loss becomes 8×).

Fig. 35. Example of hybrid scheme combining both kernel-based and direct

synthesis. (a) Expression of Fig. 29b and their SC logic. (b) Schematic diagram for the

example in unipolar encoding.

y = b+c-ab-ac+ad
=(1-a)(b+c)+ad
=2{(1-a)0.5(b+c)+0.5ad}

0.5

B
C

0.5
D

A

Direct synthesis

Kernel-based synthesis

Y

(a) (b)

Y = Mux(A, Mux(0.5, B, C), 0.5D)

0
1

0
1

７５

3.3.10 Cost Function

There can be many candidate solutions (SC logic networks) generated during the
SC logic synthesis process, and among them we try to select the minimum cost
solution x* given by

x* = argmin𝑥𝑥∈𝑆𝑆Ctotal(x), (15)

where S is the set of candidate solutions. We define the total cost Ctotal(x) of
solution x as

Ctotal(x) = (1−α)Carea(x) + αCerror(x), (16)

where Carea(x) is the area of the SC logic network, Cerror(x) is the amount of error

generated from it, and α is for weight distribution between them. The area can be

measured by the number of literals Nliteral in an SC logic network as mentioned in
[8]. For example, the SC logic network in (4) has six literals. Meanwhile, we define
two types of error Cerror and Cerror_iso as follows:

Cerror(x) = ((1−β)Var(x) + βCorr(x))∙{Scale(x)}2 (17)

Cerror_iso(x) = Var(x)∙{Scale(x)}2, (18)

where Var(x) stands for variance of the output of the SC logic network, Corr(x)
represents correlation between input streams to SC gates and can be measured using

PTM and SCC [19][20][24], and Scale(x) is a scale factor; β is for weight

distribution. Cerror(x) includes these three components while Cerror_iso(x) removes the
correlation from Cerror(x).

７６

In case of Cerror_iso(x), we assume that input streams to each gate are independent
of each other (i.e., using different random sources) and thus Corr(x) can be
neglected as shown in Fig. 27 (c). Even if there exists some correlation between the
streams, the effect of Corr(x) can be significantly reduced by using the isolation
scheme mentioned in [20], which allows us to ignore the term. The isolation scheme
needs an additional D flip-flop in serial SC logic such as that in Fig. 25 (a). However,
in parallel SC logic such as that in Fig. 25 (b), the overhead of additional D flip-flop
can be avoided by just swapping one input with the other input, as shown in Fig. 27
(d).

Measuring Var(x) has been studied in [7] [11] [18] [21]; we select the approach in
[18] because it accurately models the propagation of variance through multiple
levels of SC logic. Considering that the variance of Bernoulli sequence is
maximized at 0.5, we use 0.5 as input values for the worst case. Scale(x) is
generated from direct synthesis as mentioned in Section 3.3.4 and 3.3.9. For

instance, Scale(x) is the total scale factor such as ‘2’ in Fig. 35. Since the variance of

a random variable K scaled by a is a2 times the variance of K (i.e., Var(aK) =
a2Var(K)), we take the square of Scale(x). Eventually, we define the total cost
functions as,

Ctotal(x) = (1−α)Nliteral(x) +

SC-LOGIC-SYNTHESIS (E)

1: SF set of start nodes in the iSC kernel relationship graph
2: LE NIL, LE is a set of solutions for E
3: for each F ∈ SF
4: LE + KERNEL-BASED-SYNTHESIS (E, F)
5: R  argmin𝑋𝑋∈𝐿𝐿𝐸𝐸 (Ctotal(X))

6: return R

Fig. 36. Pseudo-code of the top-level function for the proposed algorithm.

７７

α∙((1−β)Var(x) + β Corr(x)) ∙ {Scale(x)}2, (19)

Ctotal_iso(x) = (1−α) Nliteral(x) + α∙Var(x)∙{Scale(x)}2. (20)

3.3.11 SC Synthesis Algorithm

 KERNEL-BASED-SYNTHESIS (E, F)

1: LE NIL, LE is a set of solutions for E
2: LS NIL, LS is a set of solutions for sub-expressions of E
3: P0  1-F, F is an iSC kernel
4: (Q0, R0)  DIVIDE(E, 1−P0)
5: (Q1, R1)  DIVIDE(R0, P0)
6: LS  CONTAINING-SEARCH (P0, Q0, Q1)
7: if (Q0 does not exist): then E is not an SC logic network
8: LE  DIRECT-SYNTHESIS(LS)
9: else if (both Q1 and R1 exist): then E is not an SC logic network
10: LE  DIRECT-SYNTHESIS(LS)
11: else if (Q0 is 1) and (R0 does not exist): then E has (1−P) form
12: LE  INV-NAND-AND-GATE(LS)
13: else if (Q0 exists) and (Q1 is 1): then E has (1−P)M +P form
14: LE  OR-NOR-XOR-XNOR-AND-GATE(LS)
15: else if (both Q0 and Q1 exist): then E has (1−P)M +PN form
16: LE  MUX-AND-GATE(LS)
17: else: this means that E is not an SC logic network
18: LE  DIRECT-SYNTHESIS(LS)
19: return LE

Fig. 37. Pseudo-code for Kernel-Based-Synthesis function.

７８

The overall procedure for synthesizing SC logic is illustrated from Fig. 36 to Fig.
38. Given a multivariate expression E, the SC-LOGIC-SYNTHESIS function in Fig.
36 first computes iSC kernels and their relations (Line 1). Then for each start node,
it calls the KERNEL-BASED-SYNTHESIS function to search for a solution (Line
4). A start node is an iSC kernel that has at least one outgoing edge in the iSC
relationship graph (Fig. 33 (b)). The KERNEL-BASED-SYNTHESIS function in
Fig. 37 first divides the input expression by the iSC kernel passed as the 2nd

CONTAINING-SEARCH (P, M, N)

 // P, M, and N represent common SC form, (1−P)M+P’N.
1: LE NIL, LE is a set of solutions for (P, M, N)
2: (LP , LM , LN)NIL, a set of solutions for P, M, and N, respectively

3:
NFset of (1− P) and successors of (1− P) in the iSC kernel
 relationship graph

4: for each F ∈ NF
5: if ((1− P) is P-Containing F)
6: LP + KERNEL-BASED-SYNTHESIS (P, F)
7: if ((1− P) is MO-Containing F) and (M exists)
8: LM + KERNEL-BASED-SYNTHESIS (M, F)
9: else if ((1− P) is NO-Containing F) and (N exists)
10: LN + KERNEL-BASED-SYNTHESIS (N, F)
11: else if ((1− P) is M-Containing F) and (M exists)
12: LM + KERNEL-BASED-SYNTHESIS (M, F)
13: if (N exists)
14: LN + KERNEL-BASED-SYNTHESIS (N, F)
15: else: this means that F is not an SC logic network
16: LE + DIRECT-SYNTHESIS(P, M, N)
17: LE + GET-ALL-COMBINATION(LP , LM , LN)
18: return LE

Fig. 38. Pseudo-code for Containing-Search function.

７９

parameter (Line 4) and its 1’s complement (Line 5). Then it calls the

CONTAINING-SEARCH function with P0, Q0, and Q1 (Line 6), which represent a
common SC form E = (1−P0)Q0+P0Q1. The CONTAINING-SEARCH function
returns a set LS of all combinations of possible implementations of P0, Q0, and Q1.
Then from Line 7 to Line 18 in Fig. 37, depending on the result of the divisions, a
partial solution is formed for each combination in LS (Lines 12, 14, and 16) or
defaults to direct synthesis (Lines 8, 10, and 18). For example, in Line 13, if the first
quotient Q0 exists and the second quotient Q1 is 1, the given sub-expression can be
decomposed into simpler expressions including M and N using OR, NOR, XOR and
AND gates.

The CONTAINING-SEARCH function of Fig. 38 first gathers the current node
and all the successors (iSC kernels) of the current node in the relationship graph
(e.g., Fig. 33 (b)) (Line 3). For each of the successor nodes,
KERNEL-BASED-SYNTHESIS is recursively called according to their containing
types, and the search continues.

For example, Fig. 39 shows the process for SC logic synthesis generating one
candidate of the SC logic network for Fig. 30. Given the expression t, the
SC-LOGIC-SYNTHESIS function calls KERNEL-BASED-SYNTHESIS with iSC
kernel A1=(1−a) among the start nodes (Fig. 33 (b)). S1 in Fig. 39 (a) illustrates
that the expression t is divided by (1−a) iSC kernel in Line 16 of
KERNEL-BASED-SYNTHESIS, which is matched to a MUX, because the divided
expression has the MUX form (1−P)M+PN in Table VII. CONTAINING-SEARCH
in S2 selects the next iSC kernel (1−bc) which (1−a) is M-containing. Thus, both
M- and N-part of the expression are divided by (1−bc) in S3 and S4, respectively.
Because S3 has the form of (1−bc)k, it can be synthesized as AND(INV(AND(b,c)),
k). The form generated in S4 is matched to an OR gate because it has the (1−
P)M+P form of Table VII. Meanwhile, since (1−bc) is MO-containing (1−hlm−hi
−lm), we divide the M-part by (1−hlm−hi−lm) in S6, which is synthesized as a
MUX. Finally, utilizing that (1−hlm−hi−lm) is P-containing (1−h) in S7, we

８０

obtain the last result in S8. This example shows only one candidate solution.

Note that the result of Fig. 39 (b) is different from the result of Fig. 30 (b)

Fig. 39. SC logic synthesis example for Fig. 30. The result is a different candidate

compared with Fig. 30b. (a) Synthesis steps according to each iSC kernel. (b)

Schematic diagram for the result.

< KERNEL-BASED-SYNTHESIS >
Expression: t
iSC kernel: (1 − a)
Divide: (1 − a)(k − bck) + a(bc + bcghm + bchij + bcjm + ghi + gm + hjm
 + j − bcghi − bcgm − bchjm − bcj − ghm − hij − jm)
Gate: MUX (Line 16)

< KERNEL-BASED-SYNTHESIS >
Expression: (k − bck)
iSC kernel: (1 − bc)
Divide: (1 − bc)k
Gate: INV and AND (Line 12)

< KERNEL-BASED-SYNTHESIS >
Expression: (bc + bcghm + bchij + bcjm + ghi + gm + hjm + j
 − bcghi − bcgm − bchjm − bcj − ghm − hij − jm)
iSC kernel: (1 − bc)
Divide: (1 − bc)(ghi + gm + hjm + j − ghm − hij − jm) + bc
Gate: OR (Line 14)

< KERNEL-BASED-SYNTHESIS >
Expression: hi + m − hm
iSC kernel: (1 − h)
Divide: (1 − h)m + hi
Gate: MUX (Line 16)

< CONTAINING-SEARCH >

(1 − a) (1 − bc)
M-Containing (Line 11)

< CONTAINING-SEARCH >

(1 + hlm − hi − lm)(1 − bc)
MO-Containing (Line 7)

< KERNEL-BASED-SYNTHESIS >
Expression: (ghi + gm + hjm + j − ghm − hij − jm)
iSC kernel: (1 + hlm − hi − lm)
Divide: (1 + hm − hi − m)j + (hi + m − hm)g
Gate: MUX (Line 16)

< CONTAINING-SEARCH >

(1 + hlm − hi − lm)

P-Containing (Line 5)
(1 − h)

(a)

(b)

M

N

M

P

M
I

H

G
J

B
C

K

T

A

S1

S2

S3

S4

S5
S6

S7

S8

1
0

0
1

0
1

８１

although both the input expression t and iSC kernels are identical. Different usage
of iSC kernels during SC logic synthesis generates different SC logic networks;
many candidates are actually generated. Using the cost function stated in Section
3.3.10, we finally select the best one among the candidates.

3.4 Experimental Results

In this section, we present experimental results for the performance of the
proposed algorithm itself. We also present experimental results for the quality of the
synthesis results including area, critical path delay, power consumption, as well as
accuracy.20

20 As mentioned in Section 3.2, because all previsous approaches focus on

Fig. 40. Comparison of the proposed algorithm with exhaustive search.

TABLE X

INPUT PARAMETER FOR FIG. 40

Parameter A B C D E F G H I J

of cubes 5 6 7 8 9 9 9 9 9 9
of kernels 5 6 8 8 10 11 12 13 15 15
of cubes in
max kernel

5 6 7 8 9 9 9 9 9 9

of variables 5 5 5 5 7 8 8 9 9 10

A B C D E F G H I J
10

0

10
1

10
2

10
3

10
4

10
5

N
or

m
al

iz
ed

 ru
nn

in
g

tim
e

(lo
g

sc
al

e)

Exhaustive search
Proposed

８２

3.4.1 Performance of SC Logic Synthesis Algorithm

To evaluate the performance of our algorithm, we use a synthetic input
expression. The synthesis algorithm is written in C++ language and compiled with
Microsoft visual studio compiler. The host machine is Intel Core i7-2600K
operating at 3.40GHz clock frequency. Fig. 40 compares the runtime of the
proposed algorithm with that of exhaustive search. We vary the complexity of the
synthetic input expression by modifying parameters including the number of cubes,
kernels, and variables as shown in Table X. As the parameter values get bigger as
shown in Table X, the runtime of the exhaustive search increases exponentially,
while our proposed algorithm finds all possible candidates for SC logic networks
much faster. The reason is that our approach can efficiently explore the design space
by using iSC kernels and their relationship.

polynomials including a small number of variables, the efficiency dramatically
decreases in case of many variables. Thus, we do not compare them directly.

Fig. 41. Area and error values of candidate solutions for TI used to calculate the cost

function (19).

0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

Er
ro

r (
=V

ar
(x

)*
Sc

al
e2 (x

))

Area (=N
literal

(x))

Candidate solutions

SOP form

Best solution

８３

3.4.2 Quality of Synthesis Results

We experiment with four different applications. The first one is trilinear
interpolation (TI) in volume rendering [38]. Volume rendering is commonly used in
3D data visualization and TI is a function mainly executed in volume rendering. It is
found by using Intel Parallel Studio that the function occupies 72.3% of the entire
execution time of volume rendering. It is fully mapped to an SC logic network that
can be synthesized with only kernel-based synthesis method. The expression q for
TI in SOP form is as follows,

q = xyzv1 + xyzv2 + xyzv4 + xyzv7 + xyv0 + xyv3 + xzv0 + xzv5 + xv1 + yzv0 +

yzv6 + yv2 + zv4 + v0 − xyzv0 − xyzv3 − xyzv5 − xyzv6 − xyv1 − xyv2 −
xzv1 − xzv4 − xv0 − yzv2 − yzv4 − yv0 − zv0, (21)

where x, y, and z are fractional values for current coordination and v0~7 are voxel
values; it has 11 variables, 27 terms, and 81 literals.

Fig. 41 depicts the cost value Ctotal(x) of each TI candidate x as defined in (19).

 (a) (b) (c) (d)

Fig. 42. Comparison of TI implementations. (a) SC logic generated by the proposed

algorithm. (b) SC logic expression of (a). (c) Data flow of conventional arithmetic

operations optimized with CSE. (d) Arithmetic expressions for the nodes in (c).

V0

V1

V2

V3

V4

V5

V6

V7

Q

X

Y

Z Q = Mux(Z,
 Mux(Y, Mux(X, V0, V1),
 Mux(X, V2, V3)),
 Mux(Y, Mux(X, V4, V5),
 Mux(X, V6, V7)))

0
1
0
1
0
1
0
1

0
1

0
1

0
1

y

R0 = 1 - x;
R1 = 1 - y;
R2 = 1 - z;

A = R0 * v0 + x * v1;
B = R0 * v2 + x * v3;
C = R0 * v4 + x * v5;
D = R0 * v6 + x * v7;

E = R1 * A + y * B;
F = R1 * C + y * D;

q = R2 * E + z * F;

R0

R1

*
v0

1 x

1

v1 v2 v3 v4 v5 v6 v7

* * * * * * *

A B C D

* *

E

* *

FR2

1 z

* *
q

８４

The horizontal axis represents the area cost modeled by the number of literals,
Nliteral(x), while the vertical axis represents the error cost modeled by

Var(x)∙{Scale(x)}2.

Fig. 42 (a) and (b) present the best implementation in SC logic candidates
generated by the proposed algorithm for TI, which uses only seven MUXes. We
compare the result with a conventional binary implementation. In order to optimize
the binary logic, we take the common sub-expression elimination (CSE) technique
used in compilation and high level synthesis. The CSE is a method to enhance
synthesis efficiency by eliminating common sub-expressions in the original
expression [74]. Fig. 42 (d) shows the expressions optimized by CSE, where
common sub-expressions such as R0~R2 and A~F are extracted. The data flow of
conventional arithmetic operations optimized using CSE for TI is illustrated in Fig.
42 (c), where three subtractions, 20 multiplications, and seven additions should be
used for binary logic implementation. SC logic is obviously more efficient than the

 (a) Reference image (b) FIX (8 bit) (c) SC (256 bit)

 (d) FIX (5 bit) (e) Expansion of (d) (f) Expansion of (d)

 (g) SC (32 bit) (h) Expansion of (g) (i) Expansion of (g)

Fig. 43. Result images for TI in volume rendering.

８５

conventional binary logic in case of TI. Fig. 43 (b)~(i) shows the resulting images
of volume rendering using the above implementations for different precision levels.
Compared with the reference image (a) generated by 32 bit floating point
implementation, both 5 bit fixed point implementation (FIX) and 32 bit SC logic
implementation (SC) have precision loss as shown in (d) and (g); in particular, grid
noise is seen in 5 bit FIX in (e) and (f), while dot noise is seen in 32 bit SC in (h)
and (i). In case of 8 bit FIX and 256 bit SC the quality is almost same as that of the
reference image as shown in (b) and (c) (also, refer to the SNR values in Fig. 46
(b)).

Since direct synthesis has lowest efficiency as explained in Section 3.3.4, dot
product application can be used to see the lower bound of the gain obtained by our
approach. It has no algebraic divisor and thus has no SC kernel. In the experiment,
the dot product application has 32 terms and 64 variables as follows,

𝑧𝑧 = ∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖32
𝑖𝑖=1 , (22)

where xi's and yi's are all different variables.

The runtimes of our proposed algorithm for TI and dot product are 25.06 and 5.35
seconds respectively.

To compare the SC logic network generated by our algorithm with conventional
binary logic implementation, we measure the gate area, critical path delay, and
power dissipation of the four applications. They are implemented as combinational
logic in TSMC 45nm technology library with Synopsys Design Compiler using
Verilog HDL. We choose fixed point implementation (FIX) as the counterpart of SC
logic implementation (SC), and for a fair comparison, we compare 5 bits of FIX
with 32 bits of SC and 8 bits of FIX with 256 bits of SC.

As mentioned in Section I, SC logic can be implemented in a serial or parallel
manner; it is also possible to mix them. If an SC logic network needs N bit streams,
the serial implementation spends N clock cycles, while the fully parallel version
with N duplications takes only one clock cycle. There is a trade-off between area

８６

and delay. Thus, in order to measure the quality of serial, parallel, and mixed
implementations, we use the area-delay product, which always gives us same metric
regardless of parallelism for SC logic networks.

The performance results for the applications are shown in Fig. 44 and Fig. 45,
where SC logic networks synthesized by the proposed algorithm (SC_PROP) are
compared to FIX with CSE (FIX_CSE). SC_PROP outperforms FIX_CSE in every
metric in TI. More specifically, our design is 25.92X faster on average compared to
FIX_CSE, while taking only 42.23% of area and 50.20% of power. Speed gain of
the SC logic network is due to the fact that critical path delay of one bit-line is

 (a) (b) (c) (d)

Fig. 44. Performance comparisons for TI in volume rendering between SC and

conventional binary representation. (a) Area (b) Critical path delay (c) Power

(d) Area and delay product

 (a) (b) (c) (d)

Fig. 45. Performance comparisons for Dot product. (a)Area (b) Critical path delay

(c) Power (d) Area and delay product.

5,32 6,64 7,128 8,256
0

1000

2000

3000

4000

Bit width (FIX, SC)

A
re

a
(u

m
2
)

FIX_CSE
SC_PROP

5,32 6,64 7,128 8,256
0

0.5

1

1.5

2

2.5

D
e
la

y
(n

s
)

Bit width (FIX, SC)
5,32 6,64 7,128 8,256

0

50

100

150

200

250

P
o
w

e
r(

u
W

)

Bit width (FIX, SC)
5,32 6,64 7,128 8,256

0

2

4

6

8

10

A
re

a
*D

e
la

y
(p

m
2
s
)

Bit width (FIX, SC)

5,32 6,64 7,128 8,256
0

0.5

1

1.5

2
x 10

4

A
re

a
(u

m
2
)

FIX_CSE
SC_PROP

5,32 6,64 7,128 8,256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
e
la

y
(n

s
)

5,32 6,64 7,128 8,256
0

500

1000

1500

2000

P
o
w

e
r(

u
W

)

5,32 6,64 7,128 8,256
0

1

2

3

4

5

6

A
re

a
*D

e
la

y
(p

m
2
s
)

８７

significantly less (the path delay in TI is only for three MUXes) and all the bit-lanes
of SC logic are completely independent of each other, thus enabling fully parallel
operations. Serial implementation would increase the latency due to multiple clock
cycles, but decrease the area and power instead.

In case of dot product, which allows direct synthesis method only, although
SC_PROP is 6.77X faster on average compared with FIX_CSE, the area and power
are increased by 1.89X and 1.26X respectively. This shows that direct synthesis
version has no advantage compared to kernel-based synthesis and hybrid version. In
terms of area-delay product, SC logic outperforms conventional binary logic in all
the cases.

Energy dissipation is shown in Table XI. We obtain 55.50X energy reduction on
average in volume rendering, while energy consumption in dot product is reduced
by 5.31X on average. 21

21 In order for SC to be connected to conventional binary representation,
randomizer and de-randomizer circuits are needed. However, it was not included in
this work. If input data are generated from analog logic such as sensors [2], or a
system is entirely operated in SC, the needs for randomizers are diminished. Also,
there are researches on reducing the overhead of randomizers [40].

TABLE XI

ENERGY DISSIPATION (FJ)

Application Case 5,32 bit 6,64bit 7,128bit 8,256bit
SNR (dB)
8,256 bit

Volume
rendering
(Best case)

FIX_CSE 78.13 163.03 293.36 445.21 11.46
SC_PROP 1.11 2.73 5.60 11.34 11.55

Ratio 70.64 59.72 52.39 39.26

Dot product
(Worst case)

FIX_CSE 223.86 398.32 640.68 927.42 15.68
SC_PROP 31.65 63.45 128.85 319.39 10.57

Ratio 7.07 6.28 4.97 2.90

８８

3.4.3 Comparison of Accuracy

As stated in Section I, SC logic with 2K bit stream and conventional binary logic
with K bit-width represent precision of 2-K. However, due to probabilistic
characteristics, SC inevitably has random errors for arithmetic operations, which
degrades system accuracy. The result for dot product in Fig. 46 (a) shows that the
SNR of FIX_CSE is better than that of SC_PROP as we have expected. In case of
TI, however, we can make a more efficient structure than conventional binary logic
as shown in Fig. 42 (a) and (c), and thus the SNR of SC logic can be higher than
that of conventional binary logic as shown in Fig. 46 (b). For example, a MUX
performs one subtraction, two multiplications, and one addition as mentioned in
Section I (i.e., y=(1−c)a+cb), and thus four operations are simultaneously executed
in SC, whereas the fixed point circuit has precision loss in each operation.

In both of (a) and (b), as the bit-width increases, the SNR growth of SC logic is
slower than that of conventional binary logic. The reason is as follows. The bit
stream of length N at the output of SC logic can be modeled as a Bernoulli sequence
[1] [11], and the standard deviation of the Bernoulli sequence is known to be

 (a) Dot product (b) TI in volume rendering

Fig. 46. Accuracy comparison between FIX and SC logic. (a)SNR for dot product.

(b)SNR for TI in volume rendering.

5,32 6,64 7,128 8,256
0

2

4

6

8

10

12

14

16

Bit width (FIX, SC)

S
N

R
(d

B
)

FIX_CSE
SC_PROP

5,32 6,64 7,128 8,256
0

2

4

6

8

10

12

14

16

S
N

R
(d

B
)

Bit width (FIX, SC)

８９

inversely proportional to √𝑁𝑁, which means that the accuracy increases slowly as N
increases.

3.5 Conclusion

Stochastic computing (SC) is a promising design technology in terms of gate area,
power, and error tolerance. However, synthesizing an SC logic network needs to
search very large design space and requires a considerable amount of computation.
In this paper, we proposed an approach to efficiently synthesizing SC logic for
general arithmetic expressions even containing many variables. For this, we first
define the concept of common form that can be implemented with logic gates and
find basic building blocks called iSC kernels used for constructing SC logic
networks. The design space can be pruned by using relationships between the iSC
kernels. We applied the approach to real applications and demonstrated its
effectiveness by generating SC logic that outperforms conventional binary logic.

９０

4. An Energy-Efficient Random Number

Generator for Stochastic Circuits

4.1 Introduction

The emerging classes of applications such as machine learning, computer vision,
and computer graphics, have inherent resilience to errors and/or inaccuracy [75].
Nevertheless, the conventional computing performs accurate computations even for
the applications that allow some level of inaccuracy. In such applications, stochastic
computing (SC) achieves high efficiency in terms of silicon area and power
consumption while having high error tolerance and massive parallelism, which is
mainly due to its probabilistic nature implemented with conventional CMOS digital
logic [5]. It is an attractive approach these days since the conventional binary
approach is tardy in enhancing the efficiency. Due to the good characteristics
compared with convention approach, SC has been studied for applications such as
neural networks [76], low-density parity-check (LDPC) [77], median filters [78],
image processing [79], and other applications allowing some errors.

In contrast to the conventional binary representation, SC uses random bit streams
called stochastic numbers (SNs). For this reason, given conventional binary
numbers (BNs), SC requires a circuit that converts the BNs to SNs; the circuit is
called a stochastic number generator (SNG). However, an SNG spends a large
amount of resource compared with the pure SC circuit in terms of area and power
[80] [81] [1]. This degrades the advantage of SC in hardware cost and restricts the
usability of SC.

Although there have been some studies for generating random bit streams in
different domains [82] [83] [84], most of them focus on improving accuracy by

９１

enhancing randomness, while ignoring the hardware overhead. There has been a
recent effort [1] in reducing hardware area by sharing a linear feedback shift
register (LFSR) between two SNGs. However, simply sharing an LFSR among
SNGs leads to accuracy degradation due to correlation of stochastic bits. This
degradation rapidly increases as an LFSR is shared by more SNGs. In this paper, we
suggest a much more efficient way of implementing SNGs, which generates
asymptotically one stochastic bit per store unit, i.e., D-type flip-flop (D-F/F), in
LFSR at a time. Moreover, it also enhances the accuracy of SC logic compared with
previous approaches.

4.2 II. Background

4.2.1 Preliminaries

In the range of [0 1] (or [-1 1] in bipolar form), SC takes the signal probability of
a bit stream as its real value; it is represented by the number of 1s over the length of

Fig. 47. Stochastic arithmetic operation and conventional stochastic number

generator (SNG). (a) Multiplication of two stochastic numbers (SNs) and the output

stream. (b) SNG with an LFSR. (c) An example of 7-bits LFSR.

LFSR

Binary number
(BN)

n
1R

E

Comparator

Stochastic number (SN)

(a)

A
B

Y1,1,0,1,1,1,1,0 (6/8)
1,0,1,1,0,0,1,0 (4/8)

1,0,0,1,0,0,1,0 (3/8)

(b)

(c)

P(B=1) = 4/8
P(Y=1) = P(A=1&B=1)

 = 3/8

7

D Q D Q D Q D Q D Q D Q

LFSR

D Q

1,0,0,1 ... ,1,0,1,1,0

n 2n bits
in a period

９２

the bit stream. In the example of Fig. 47 (a), the eight-bit input stream B contains
four 1s and thus represents a real number 4/8. The figure also shows arithmetic
multiplication with an AND gate in which the output probability is derived by
P(Y=1) = P(A=1&B=1) = 3/8. In order to calculate arithmetic operations such as (a),
SC requires random bit streams generated by SNGs, which can be implemented
with a comparator and an LFSR consisting of D-F/Fs and XOR gates as shown in (b)
and (c).

4.2.2 Shortcomings of Conventional Approaches

Conventional approaches activate the entire SNG circuit including the LFSR and
the comparator in order to generate only a single stochastic bit. This means that the
SNG circuit should be activated n times for one n-bit SN. The overhead increases as
the required precision increases. We define the efficiency of an SNG as the number
of bits it generates at a time, since it is related with the performance and energy
consumption. Fig. 48 (a) shows a case that 2k-bit SN stream is generated at a time
by an SNG with a 2k-bit LFSR, where the expected SN value is d/2k , i.e., d among
2k bits are 1s. It is obtained by scrambling 2k input bits without the comparator
shown in Fig. 47 (b). However, simultaneously scrambling 2k (=t) bits may lead to
high overhead in area and power consumption. Thus, we suggest to partition the bits

Fig. 48. Strategy for the proposed SNG. (a) Example of ideal SNG case, where one

stochastic bit is generated by using one store unit (i.e., D-flip/flop). (b) Partitioning of

stochastic bit-stream.

Expected value
within [0 1]

Scrambling

2k=t

...

of 1s = d
of 0s = 2k-d

2k=t

...

1
0...

1

1
1...

0

...
0
1...

0
Partitioning for SN

(a) (b)

2k
d=

LFSR
2k=t

0
1...

1

1
0...

0

(SN) (SN)

w

９３

into groups as shown in Fig. 48 (b), where each group has w bits (w < t) and the
SNG circuit processes one group at a time.

The second shortcoming of the conventional SNG in Fig. 1 (b) is in progressive
precision (PP) which is known to be one of advantages of SC compared with
conventional binary representation.22 Suppose that the SNG circuit can generate a
bit stream with N=210-1 bits (i.e., the bit width of LFSR is 10), thus has a precision
of 1/N. Consider using the circuit to generate an SN with a value 0.75. It can
accurately generate an SN that has the expected value 0.75 because each of the N
different numbers generated by the LFSR appears once during the period of
generating the N numbers. However, if we take only 25 bits with PP, for example,
the value may not accurately represent 0.75. A substring of the original N bit stream
cannot exactly represent the statistics of the entire period of the original stream. Fig.
49 (a) shows the distribution of SN values generated as substrings of an N bit stream,
where the precision varies between 1/25 and 1/N and the expected value is 0.75. Fig.

22 Precision in SC can be easily changed by adjusting the length of the bit streams without
hardware modification, whereas the precision of conventional binary logic circuit cannot be changed
with fixed hardware.

 (a) (b)

Fig. 49. SN generation for 0.75 with progressive precision (PP) in 210 bits SC

circuit. (a) Distribution of SN values. (b) Multiplication of two SNs generated with

PP using an AND gate.

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

value of j (2j bits)

S
N

 v
al

ue
 u

si
ng

 P
P

Mean & Std.
Max value
Min value

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

value of j (2j bits)

S
N

 v
al

ue
 a

fte
r m

ul
.

９４

49 (b) depicts the distribution of SN value after multiplication of two SNs by using
an AND gate; the error becomes bigger as the bit width becomes smaller.

Instead of using a substring of a long bit stream, the shorter bit streams generated
in groups as shown in Fig. 2 (b) can be used for PP (e.g., one group of w bits can be
used for precision of 1/w or two groups can be used for precision of 1/2w). When
we partition the entire bit stream into multiple groups as shown in Fig. 2 (b), it is
important to evenly distribute 1s over the groups to reduce the variance. If we can
do this, then the partitioning technique in Fig. 48 (b) can be a solution to the
aforementioned problem of PP.

Another problem is that an SNG for higher precision (e.g., 10 bits) is activated
for lower precision (e.g., 5 bits) when we use PP, which leads to overhead in terms
of power and delay. In our approach, since the circuit is not constructed for the
entire precision, but for a group precision, the problem of overhead is also solved.

Fig. 50. Overview of the proposed SNG. (a) SNG with BN input and SN output,

where v groups are generated and each group has w bit-width. (b) The proposed

SNG consists of three parts such as even-distribution (ED) encoding, inter-group,

and intra-group randomizer with LFSR input.

(a)

(b)

Expected value
n Proposed

SNG

1
0...

1

1
1...

0

...

2n = w × v
0
1...

0

Even-
distribution (ED)

encoding

Inter-group
randomizer

Intra-group
randomizerValue n wn±α

LFSRLFSR
log2w

(BN) (SN)

(BN) (SN)

w

v groups

w

w

On- or Off-line
conversion

from BN to ED code

1
0...
1

1
1...
0

...
0
1...

0

shuffle groups

0
1...

0

shuffle
bits

９５

4.3 III. Proposed Stochastic Number Generator

4.3.1 Overview of the Proposed SNG

Instead of generating new 0s and 1s, the proposed SNG shuffles 1s in the existing
bit stream by using a random source. The basic idea of the proposed SNG is to
evenly distribute 1s over the entire bit stream, which is named as low-discrepancy
(LD); the usability of LD is mentioned in [6].

Fig. 49. shows the outline of the proposed SNG in (a), which consists of three
parts as shown in (b): even-distribution (ED) encoding, inter-group randomizer, and
intra-group randomizer. ED encoding makes 1s evenly distributed within all groups;
inter-group randomizer shuffles the order of groups; intra-group randomizer
scrambles bits within a group. All steps are implemented by combinational logic
(except for two LFSRs), which makes the proposed SNG more efficient in terms of
area and power.

4.3.2 Even-distribution Encoding

The objective of even-distribution (ED) encoding is to construct v groups, where
the difference of the number of 1s between groups should be less than or equal to b.
In other words,

max𝑖𝑖∈𝑣𝑣 gi − min𝑖𝑖∈𝑣𝑣 gi ≤ 𝑏𝑏 (1)

where gi is the number of 1s for the i-th group. Fig. 51 (a) and (b) respectively
shows two examples of ED encoding when b is set to 3 and 1, where each column
represents a group and each row represents a digit in a group. Each digit has a

weight of 2𝑗𝑗𝑏𝑏, where j is the index of the digit within the group with j=0 for the
least significant digit (note that it is different from the conventional radix number
having weight of rj, where r is the radix and j is the index of the digit). Thus, the

９６

total weight of each group becomes ∑ 2𝑗𝑗𝑏𝑏𝑘𝑘
𝑗𝑗=0 , where k is the index of the most

significant digit in a group. For example, Group 1 in (a) has 1100 (36 = 24x1 +
12x1 + 6x0 + 3x0) while Group 3 is has 1011 (33 = 24x1 + 12x0 + 6x1 + 3x1); the
difference of the two groups is 3, which is bounded by b.

Given a decimal number L that is to be generated by the SNG, ED code is

generated by finding the pivot position ‘α’23 from L as shown in Fig. 51. The upper

side of α should be all zeros or all ones; we call the digits as saturation digits. The

left side of α should be all ones whereas the right side of α should be all zeros

23 α is adopted for an easy explanation on how to generate ED code.

Fig. 51. Even-distribution (ED) encoding, where white space means zero. (a) ED

code represents decimal number 204 with seven groups (column) and four digits

(row) per group when b is 3. (b) Example of ED code with 15 groups when b is 1.

(a)

(b)

0 1 2 3 4 5 6
1 11 1 1 1 1 1 1 1 24
0 10 1 1 α 12
0 01 1 1 1 1 1 6

00 1 1 1 1 1 3
Group
index 000 001 010 011 100 101 110

Group IDSaturation
digit

Digit
index

Weight
(b=3)

ED Code: 1-10-010 (Compact)Decimal L: 237

0 1 2 3 4 14
0 11 8
1 10 1 1 1 1 1 1 4
0 01 1 α 2

00 1 1 1 1 1 1
Group
index 0000 0001 0010 0011 0100 1110

Group IDSaturation
digit

Digit
index

Weight
(b=1)...

...

...

ED Code: 01-01-0001 (Compact)
Decimal L: 76

100-10-010 (Fixed length)

010-01-0001 (Fixed length)

９７

(white space means zero in the illustration). The lower left side should be all zeros,
whereas the remaining lower space should be all ones. Following the rule, the
difference of all groups is limited within b because 2𝑘𝑘𝑏𝑏 − ∑ 2𝑗𝑗𝑏𝑏𝑘𝑘−1

𝑗𝑗=0 = 𝑏𝑏, where k

is the digit (row) index of α (the rows above α can be ignored because they have the

same values). ED code is a tuple of the saturation digits, the digit index, and the

group (column) index of α in order.

For example, ED codes of the decimal number 237 and 76 are 1-10-010 and
01-01-0001 in (a) and (b), respectively. The length of saturation digits in ED code is

various according to the row index of α; for example, it becomes zero, one, two,

and three when the row index is 11, 10, 01, and 00, respectively. It is possible to use
a fixed length encoding for the saturation digit by taking R − 1 bits, where R is the
number of rows.

The granularity of ED encoding is b, which means that the error due to encoding

of a decimal number is at most �𝑏𝑏 2� �. Note that the encoding error is zero when b is

one such as Fig. 5 (b). Since using larger b reduces the number of ED code digits,
we can achieve efficiency in terms of digit storage and other logic area while
sacrificing accuracy. The conversion from a decimal number to ED code can be
conducted on- or off-line. The circuit to convert a conventional binary number into
an ED code is implemented by using combinational logic with a very small number
of gates (it is omitted due to space limitation).

4.3.3 Inter-group Randomization

９８

After allocating 1s to the groups through ED encoding, the sequence of the
groups is scrambled in inter-group randomization step. For example, in Fig. 51 (a),
the order of seven groups is shuffled to increase randomness, by using the column
index. We adopt the technique used in [85] to scramble bits by using LFSR as
follows.

Fig. 52. Inter-group randomization, where the group index is from Fig. 51a. (a)

Shuffling circuit for inter-group randomization. (b) Final signal G is a scrambled one

and the value 2/7 matches with the number of BGs. (c) Shuffling of groups according

to the value of G. (d) Method to actually generate the output signal, where ‘~G’

means negation of G. (e) Example of logic for output signal A3.

Clock Q0 Q1 Q2 R0 R1 R2 G
1 0 0 1 0 0 1 0
2 1 0 0 1 0 0 0
3 0 1 0 0 1 0 1
4 1 0 1 0 0 1 0
5 1 1 0 0 1 0 1
6 1 1 1 0 0 1 0
7 0 1 1 0 0 1 0

Value 4/7 4/7 4/7 1/7 2/7 4/7 2/7

0 1 0Group index

2 3 0 4 1 5 6
G 0 0 1 0 1 0 0 Weig. Signal

1 1 1 1 1 1 1 24 A3

1 1 12 A2

1 1 1 1 1 6 A1

1 1 1 1 1 3 A0

Clock 1 2 3 4 5 6 7

Group ID

[Group index]

D Q D Q D Q

(a)

G

LFSR

Q2Q1Q0

R2
R1R0

(LSB) (b)

Intra-group
Randomizer

(c)

[Digit index]
(LSB)

A3
G

S2

(d) (e)

Saturation
digit

11 10 01 00
G S 2 S 2 S 2 A 3

~G G S 1 S 1 A 2

~G ~G G S 0 A 1

~G ~G ~G G A 0

Output
signal

Row index of α

９９

Although we try to keep balance among the groups, some groups have a bigger
value than the others (e.g., groups 1 and 2 in Fig. 51 (a) are bigger than other
groups). Let us define the groups having bigger value as BGs. The objective of
inter-group randomization is to shuffle the BGs with other groups. Fig. 52 (a) shows
a circuit of inter-group randomization for the example in Fig. 51 (a), where LFSR is
used as a random source. In the example, the values of bit streams R0, R1, and R2

become 1/7, 2/7, and 4/7, respectively. We combine the input column index of α

with R0, R1, and R2 using AND and OR gates to generate a new placement of the
columns as illustrated in column G of Fig. 52 (b). BGs are placed where G is one
while the other groups are placed where G is zero as shown in Fig. 52 (c). Signals
A0, A1, A2, and A3 representing the digits in each group are passed into intra-group
randomizer in order to scramble all the bits within a group. The output signals from
inter-group randomization are actually generated by using saturation bit, row index

of α, and G; Fig. 52 (d) shows how each signal is constructed. It can be simply

implemented by using a multiplexer with row digit as control input; the logic for
signal A3 is shown in Fig. 52 (e). Note that the entire circuit for inter-group
randomization is also implemented by using combinational logic except for the
LFSR.

4.3.4 Proposed Building Block for Bit Shuffling

The signals from inter-group randomization such as A0, A1, A2, and A3 in Fig. 52

are scrambled by using a randomizing network as shown in Fig. 53 (a), where W’ is

a set of shuffled signals obtained from W. We suggest a building block consisting of
two multiplexers as shown in Fig. 53 (b). It swaps two input signals (M and N) into
outputs (X and Y) according to the selecting signal S having signal probability of

‘0.5’; we call it a swapper and use the symbol in (d) instead of (b).

１００

Definition 1. (Equal probability set) An equal probability (EP) set is a set of signals that

have the same signal probability. □

Let PM denote P(M=1), i.e., the signal probability of M. As shown in Fig. 53 (c), suppose

two input signals M and N have the same signal probability α (i.e., PM = PN = α). Then the

set T containing M and N is an EP set. In this case, we use PT to denote the signal

probability of a signal in T. Thus PT = α.

Lemma 1. (Two input signals and swapper) Even though the signal probabilities of two

input signals are different, the output signals of the swapper belong to an EP set.

Fig. 53. Analysis of randomness after swapping signals. (a) Overview of randomizing

network. (b) Swapping logic. (c) Definition of equal probability (EP) set. (d)

Probability for input signals to be passed onto output signals. (e) Constructing an EP

set by using a swapper. (f) Constructing an EP set of output signals from two

different EP sets of input signals. (g) A case that output signals do not belong to an

EP set.

(b)

XM

Y
N

S
P(S=1) = 0.5

(c)

Equal probability (EP)

P(M=1)
=PM=α
P(N=1)
=PN=α

PT=α

T is a set
 of X and Y

P(M→X) = 0.5

P(M→Y) = 0.5

P(N→X) = 0.5

P(N→Y) = 0.5

0.5
M

N

X

Y
(d)

(Not EP)

PM=α

PN=ß PT=(α+γ)/2

PU=(ß+γ)/2

0.5

0.5

(g)

PR=γ

(a)

Randomizing
network

... ...

W W’

PQ=α

PR=ß

(α+ß)/2

(α+ß)/2

PT=(α+ß)/2

0.5

0.5

(f)

(EP)

0.5

PM=α

PN=ß

(α≠ß)

PX=(α+ß)/2

PT

=(α+ß)/2

P(M→Y)=P(N→Y)=0.5

P(M→X)=P(N→X)=0.5

PY=(α+ß)/2(e)

(EP)

M

N

X

Y

１０１

Proof. If two signals M and N with different signal probabilities (i.e., PM=α and PN=β)

pass through a swapper, the output signals X and Y have the same signal probability PX =

PY = (α+β)/2 and thus, belong to an EP set. □

Lemma 2. (Two EP sets and swapper) Two EP sets having f signals can be merged into

one EP set having 2f signals by using f swappers, where each swapper takes two input

signals, one from each input EP set..

Proof. As shown in Fig. 53 (f), if two sets Q and R with PQ=α and PR=β pass through a

swapper, the output set T becomes an EP set with PT=(α+β)/2 because of Lemma 1. Since f

pairs are processed at the same time, f swappers are used. □

Fig. 53 (g) shows that output signals do not belong to an EP set because one input

set is not an EP set (i.e., PM≠PN).

4.3.5 Intra-group Randomization

The signals generated by the inter-group randomization are scrambled by using
the intra-group randomization, where the randomizing network mentioned in the
previous section is used. Fig. 54 shows the entire intra-group randomization circuit
consisting of three-step randomizing network and an LFSR. In Step 3, A2 is
swapped with the result from Step 2; in Step 2, A1 is swapped with the result from
Step 1. In Step 1, however, there is no previous step and thus A0 is swapped with a
dummy signal. Because the size of A0 is b (=20b), b-bits are provided for the dummy
signal. Since we are adding these dummy bits in this stage, the number L used in the
even-distribution encoding stage (see Section III.B) should be adjusted as follows.

�if L≥(b∙v), then L←(L-b∙v), S←1
otherwise, L←L, S←0

 (2)

where v is the number of groups and S is the global saturation bit to be used to
set the dummy bits. If S is 1, then all the dummy bits are set to 1. Otherwise, they

１０２

are set to 0.

In case of Step 1, since two input signal sets are EP sets, the output signal set is
also an EP set from Lemma 2; In Step 2, because two four-bit signal sets are EP sets,
the output eight-bit signal set is also an EP set; the same applies to the following
steps. Thus, the final output signals of the entire circuit belong to an EP set. Note
that the gate delay is proportional to the number of steps because the swapper
within a step operates in a parallel manner, which means that the critical path delay
is relatively short.

We use a D-F/F of an LFSR as the random source with 0.5 probability as used in
[86]. Galois LFSR [87] is adopted in order to reduce dependency between two
adjacent D-F/Fs. Regarding the scalability, the number of swappers, i.e., the number
of D-F/Fs in an LFSR is identical to the number of bits generated from a group,
which means that one store unit (i.e., D-F/F) effectively generates one random bit at
a time; it is different from conventional approaches as mentioned in Section II.B.

4.4 Experimental Results

Fig. 54. Logic for intra-group randomization consisting of randomizing network and

an LFSR. The input signals is from inter-group randomization.

20b

21b

EP set

Global
saturation

bit (S)

22b

(e.g., b=2)

Signals ‘A’ from
inter-group

randomization
(in Fig. 6)

D Q D Q D Q D Q D Q D Q

LFSR

D Q ...
0.5 0.5 0.5 0.5

Initial
b bits

Step 1

Step 2

Step 3

(A2)

(A1)

(A0)

SNG output

１０３

In this section, we compare three SNGs: the conventional SNG as shown in Fig.
47 (b), the previous work [1] sharing LFSRs, and the proposed SNG. The length of
LFSRs in the conventional SNG and the shared SNG [1] is 10; in the proposed SNG,
a group has 32 bits. They are implemented in TSMC 45nm technology library with
Synopsys Design Compiler using Verilog HDL.

4.4.1 Accuracy of Generated Stochastic Bit Stream

Fig. 55 (a) and (d) shows the accuracy of bit streams generated from the
conventional SNG and the proposed SNG, respectively, in terms of mean, standard
deviation, max, and min value; In the case, the expected value is 0.6. The accuracy
of the shared SNG [1] is identical to (a) because it simply shares an LFSR between
two SNGs. In particular, when exploiting PP (e.g., using 25 bits in 210 period), the
proposed SNG generates almost exact values whereas the values from the
conventional SNG severely deviate. In case of multiplication of the stochastic bits
by using an AND gate, the proposed SNG ((e)) shows better result than the others
((b) and (c)).

4.4.2 Area, Delay, Power, Energy and SCC Average

(a) Conventional SNG (b) Conv. SNG (Mul.) (c) Shared SNG (Mul.) (d) Proposed SNG

(e) Prop. SNG (Mul.)

Fig. 55. Accuracy after generating SN value 0.6 and multiplying them while using

PP.

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

value of j (2j bits)

S
N

 v
al

ue
 u

si
ng

 P
P

Mean & Std.
Max value
Min value

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

value of j (2j bits)

S
N

 v
al

ue
 a

fte
r M

ul
.

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

value of j (2j bits)

S
N

 v
al

ue
 a

fte
r M

ul
.

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

value of j (2j bits)

S
N

 v
al

ue
 u

si
ng

 P
P

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

value of j (2j bits)

S
N

 v
al

ue
 a

fte
r M

ul
.

１０４

As shown in Fig. 56, compared with the conventional SNG, the proposed SNG
decreases area ((a)), power ((c)), and energy ((d)) by 85.7%, 88.6%, and 86.3%,
respectively, where all SNGs are implemented in parallel manner for fair
comparison (i.e., generating 210 bits every clock cycle). Compared to the shared
SNG [1], the proposed SNG decreases the same metrics by 78.9%, 74.4%, and
72.1%, respectively. However, the critical path delay ((b)) of the proposed SNG
increases by 20% and 9% compared to the conventional and shared SNG,
respectively. In terms of correlation, we use average of SCC [1] [88] which has
smaller value when two SN bit streams are less correlated. The values for the
conventional, shared, and proposed SNG are 0.074, 0.157, and 0.110, respectively,
which means that the proposed SNG is between the two previous approaches in
terms of correlation.

4.4.3 Energy Efficiency When Operated under Maximal Precision

Considering that the maximal precision is fixed and that each application has a
desired precision in many cases, a system is operated in lower precision compared
to maximal precision. Fig. 57 shows the energy consumption when generating bit

 (a) Area (b) Critical path delay (c) Power (d) Energy (e) SCC average

Fig. 56. Comparison of area, critical path delay, power, energy, and SCC average

value to generate a 210-bit stream for conventional SNG, SNG sharing two LFSRs

[1], and the proposed SNG. For fair comparison, all cases are implemented in

parallel manner. The length of LFSRs in two previous approaches is 10 while the

number of bits in a group of the proposed SNG is 32.

Conv. Shared Prop.
0

2

4

6

8
x 10

4

A
re

a
(u

m
2)

Conv. SharedProp.
0

0.02

0.04

0.06

0.08

0.1

0.12

D
el

ay
 (n

s)
Conv. Shared Prop.

0

5

10

15

20

25

30

P
ow

er
 (u

W
)

Conv. Shared Prop.
0

0.5

1

1.5

2

2.5

3

E
ne

rg
y

(fJ
)

Conv. SharedProp.
0

0.05

0.1

0.15

av
er

ag
e

of
 S

C
C

１０５

streams with desired precision of 1/25, while the maximum precisions are 1/25 and
1/210, respectively. Conv-5 and Conv-10 mean that the length of the LFSR in the
conventional SNG is 5 and 10, respectively. The figure shows that the proposed
SNG is more energy-efficient. It is because the entire LFSR is activated for one
stochastic bit in the previous approaches. However, in the proposed SNG, 25 bits are
simultaneously generated as shown in Fig. 54, while maintaining the accuracy
regardless of the maximal precision.

4.5 Conclusion

Stochastic computing is one of promising approaches since it requires small
hardware footprint and low energy, and provides high error tolerance. However, it
requires random bit streams generated by stochastic number generators (SNGs),
which incurs area and energy overhead. In this paper, we proposed an area- and
energy-efficient SNG even enhancing accuracy in progressive precision (PP).
Experimental results show that our SNG outperforms the existing approaches in
terms of area, power, energy, and accuracy.

Fig. 57. Energy to generate 25 bits. Conv-5 and Conv-10 represent that the length

of LFSR in the conventional SNG are 5 and 10, respectively. Shared-5 and Shared-10

mean the shared SNGs.

Conv-5 Conv-10 Shared-5 Shared-10 Proposed
0

0.02

0.04

0.06

0.08

0.1

E
ne

rg
y

(fJ
)

１０６

5. Approximate De-randomizer for

Stochastic Circuits

5.1 Introduction

Stochastic computing (SC) is an alternative paradigm to conventional binary
arithmetic computing [5]. SC can boost efficiency in terms of area, power, and error
tolerance while relaxing the accuracy of computation in emerging applications such
as machine learning, computer vision, and computer graphics. Numbers in SC are

represented by the probability of 1’s occurrence in a random bit stream. For

example, in Fig. 47 (a), since the occurrences of 1’s in the three 8-bit streams at A, B,

and Y are 6, 4, and 3, respectively, the corresponding stochastic numbers (SNs) are
P(A=1)=6/8, P(B=1)=4/8, and P(C=1)=3/8. The single AND gate performs
multiplication (i.e., 6/8 x 4/8 = 3/8).

For an efficient conversion between binary numbers (BNs) and SNs, there have
been researches on converting from BNs to SNs (aka randomization) and vice versa
(aka de-randomization). In this paper, we focus on the conversion from SNs to BNs.
Converting an SN into a BN requires counting the number of 1s in the random bit
stream. Fig. 47 (b) and (c) show a serial counter and an accumulative parallel
counter (APC) [89] [90], respectively, where flip-flops are used with some other
logic for accumulation. 24 The parallel counter (PC) in an APC uses full adders (FA)
in order to generate 20~2m-1 weighted bits (i.e., a BN) from a stream of 20 weighted

24 In this paper, we consider only APC because the serial counter consumes large amounts of energy.

１０７

input bits (i.e., an SN), where m is the number of bits of the BN. Fig. 47 (d) shows
an example of PC generating 4 bits BN from 15 bits SN.

Considering that SNs are based on the probabilistic nature of random bit streams
and thus the accuracy is already compromised during SC, there is no reason to stick
to accurate conversion using the conventional PC. Note that using the conventional
PC may lead to lots of inefficiency in the aspect of entire workload, since the length
of bit streams in SN is much longer than that in BN; only k bits in BN becomes 2k
bits in SN.

In this paper, we suggest an approximate PC exploiting two properties of SN: 1)
inaccuracy due to randomness and 2) long bit stream. The proposed PC can be
implemented with a smaller circuit compared with the conventional accurate PC,
where the inaccuracy problem can be alleviated due to the long bit stream.

5.2 Proposed Approximate Parallel Counter

Fig. 58. Stochastic numbers (SNs) and conventional counters, where the numbers in

brackets represent the bit index of binary numbers (BNs). (a) Multiplication of two

SNs. (b) Accumulative serial counter. (c) Accumulative parallel counter (APC). (d)

Example of a parallel counter (PC) converting 15 bits SN into 4 bits BN.

(a)

A
B

Y1,1,0,1,1,1,1,0 (6/8)
1,0,1,1,0,0,1,0 (4/8)

1,0,0,1,0,0,1,0 (3/8)

P(B=1) = PB= 4/8
P(Y=1) = P(A=1&B=1)

 = PY = PA * PB = 3/8

(3/8)1,0,0,1,0,0,1,0

Flip-flop
[0]
[1]
[2]
[3]

Binary
number
(BN)

Stochastic
number (SN)

(b)

MSB

(c)

0
0
1
0

1
0
0
1

(BN)

(SN)

Parallel counter (PC)

[0]
[1]
[2]
[3] 23

20

[1]

[0]

[0]

[0]

[1]

[0]

[0]

[0]

[0]

[2]

[1]

23

22

21

20

(d)
A
B
C

Carry
Sum

Full
adder

PC

１０８

The proposed approximate PC is shown in Fig. 59 (a), which consists of two
parts: an approximation unit (AU) and a conventional accurate PC. The former is
implemented by simple gates such as AND and/or OR gate; Fig. 59 (b) shows a
2-layer AU. The approximate PC exploiting a 1-layer AU is shown in (c). The input
weight of AU is 20 while the output weight becomes 2l, where l is the number of
layers.25 (e) shows errors for 1-layer AU using AND or OR gate. Note that AND
gates generate negative errors while OR gates generate positive errors.

5.2.1 Analysis for Gate Count in 1-layer Approximate PC

In order to see how much area reduction can be obtained by the proposed
approach, we calculate the number of FAs in Fig. 47 (d) and Fig. 59 (c). Suppose
that N-input bits become v-output binary bits (N=2v−1) and f(v) is the number of
FAs. In case of the conventional PC (i.e., Fig. 47 (d)), when v increases by one, the

number of FAs increases by two times plus v−1. Thus, f(v) = 2∙f(v−1)+v−1 = 2v−v

−1, where f(2)=1 (i.e., one FA is needed to generate two-digit binary numbers). The
number of gates in the conventional PC is given by

Gconv(N) = {(N+1) − log2
N+1 − 1} ∙ 5, (1)

considering that v = log2
N+1 and FA consists of five gates. The proposed PC with

1-layer AU, as shown in Fig. 59 (c), uses f(v−1) FAs for v-output bits and N/2
additional AND or OR gates, where N=2v.26 Thus, the number of gates in the
proposed PC is,

25 Due to space limitation, we explain only 1-layer AU in this paper.
26 In this case, we use N=2v instead of N=2v− 1, since it fits better with the use of two input gates. The

generated BN cannot represent the maximum value of SN, but the error is small and thus can be ignored.

１０９

Gprop-1(N) = {N/2 − log2
N} ∙ 5 + N/2, (2)

Fig. 60 (a) shows the number of gates for (1) and (2), where the proposed PC
using 1-layer AU reduces gate count by about 40% compared to the conventional
PC.

5.2.2 Analysis for Error in 1-layer Approximate PC

In order to analyze the effect of approximation and error, we define e as the
output error in number of 1s and T1(N,k,e) as the probability mass function (PMF),
where N is the length of the given bit stream and k is the number of 1s in the input.

In other words, given k 1s in the N-bit stream, T1(∙) shows the probability of error e

generated by the proposed approximate PC in Fig. 59 (c). The PMF is given by

Fig. 59. The proposed parallel counter (PC). (a) Overview of the PC. (b) 2-layer

approximate unit (AU). (c) The proposed PC using 1-layer AU, converting 16-bit SN

into 4-bit BN. (d) Example of 1s distribution in 1-layer AU. (e) Output and error for

all inputs in AND and OR gate.

(e)

PC

AU

(a) (b)

(c)

23

22

21

21

AU (=21) [2][1]

[1]

[1]

22

22

...

22

(d)

0 1 1 0 1 1 0 1

N=8
S=N/2
 =4

Error: +1 0 +1-1

k=5

r=1 q=2d=1

Total error e: +1

Out (21) Error (20) Out (21) Error (20)
0 0 0 0 0 0
0 1 0 -1 1 +1
1 0 0 -1 1 +1
1 1 1 0 1 0

AND OR
In (20)

１１０

𝑇𝑇1(𝑁𝑁,𝑘𝑘, 𝑒𝑒) = ∑
�𝑆𝑆/2
𝑞𝑞 ��𝑆𝑆/2

𝑟𝑟 ��𝑆𝑆−𝑞𝑞−𝑟𝑟𝑑𝑑 �∙2𝑞𝑞2𝑟𝑟

�𝑁𝑁𝑘𝑘�
,𝑒𝑒=𝑞𝑞−𝑟𝑟 (3)

where S is the number of output bits (slots) of the AU (S=N/2), and d is the

number of slots containing two 1s at the inputs (d=(k−e)/2), and q is the positive
error of OR gates while r is the negative error of AND gates. Fig. 59 (d) shows five
1s in the 8-bit input stream. Note that q+r is the number of errors and is the same as
the number of slots containing one 1-bit and that the cumulative error e is q−r.

Fig. 60 (b) shows a theoretical result for the error PMF of T1(.), given 1024-bit

streams. The mean of error values of T1(.) is zero and the maximum standard

deviation of the errors is only 11.3 (about 1.1%). This means that there is no bias,
and that the error is within only 1.1% for about 70% among all trials (within 2.2%
for 95%).

5.3 Experimental Results

We compare the conventional PC and the proposed PC with heterogeneous
1-layer AU, given 1024-bit streams. They are implemented in TSMC 45nm
technology library with Synopsys Design Compiler using Verilog HDL. As shown
in Fig. 61, the proposed PC decreases area ((a)), critical path delay ((b)), and power

 (a) (b)

Fig. 60. Theoretical analysis of the proposed scheme. (a) The number of gates for the

conventional PC and the proposed PC with 1-layer AU. (b) The mean and standard

deviation of number of errors for 1-layer PC with 1024 input bits.

0 2 4 6 8

x 10
4

0

1

2

3

4
x 10

5

of inputs

of
 g

at
es

conv. PC
prop. PC

0 200 400 600 800 1000
-20

-10

0

10

20

of 1s

er
ro

r

mean
std.

１１１

((c)) by 38.3%, 7.6%, and 49.4%, respectively. (d) and (e) show the errors of
1024-bit streams containing 512 and 128 1s, where the means of errors are almost
zero and the standard deviations are 11.32 and 9.40, respectively. The results match
well with the theoretical analysis results.

5.4 Conclusion

Although de-randomizer is a very important component for stochastic circuits, it
has not been paid attention in the literature of stochastic computing (SC).
Considering that SC is based on inaccurate computation, using a conventional
accurate parallel counter (PC) in SC leads to inefficiency. We have proposed an
approximate PC, which outperforms the conventional PC in terms of area, delay,
and power, with no bias and small standard deviation of errors.

 (a) Area (b) Critical path delay (c) Power

 (d) PMF (512 1s) (e) PMF (128 1s)

Fig. 61. Experimental results of the proposed approximate PC compared with the

conventional PC in 1024-bit stream. (a) Area. (b) Critical path delay. (c) Power. (d)

PMF when 512 1s among 1024 bits. (e) PMF when 128 1s.

Conv. Prop.
0

2000

4000

6000

A
re

a
(u

m
2)

Conv. Prop.
0

0.5

1

D
el

ay
 (n

s)

Conv. Prop.
0

1

2

P
ow

er
 (u

W
)

-50 0 50
0

0.05

0.1

error

P
ro

b.

Std.=11.32

-50 0 50
0

0.05

0.1

error

P
ro

b.

Std.=9.395

１１２

6. Dynamic Energy-Accuracy Trade-off

Using Stochastic Computing in Deep

Neural Networks

6.1 Introduction

Deep neural networks (DNNs) dramatically improve the accuracy of machine
learning applications such as object detection [91] and speech recognition [92] that
need the intelligence of human. However, compared with other machine learning
techniques such as support vector machine (SVM), decision tree, and k-nearest
neighbor (KNN), DNNs typically require a lot more computations due to many
layers and many neurons comprising the network. Moreover, the industrial and
academic needs tend to increase the size and complicate the topology of DNNs [93].
Because of this, using high performance computers with accelerators such as GPUs
and/or clustering a bunch of machines is regarded as a practical solution to
implementing DNNs [94]. Considering, however, that machine learning has also
been rapidly adopted in mobile and embedded systems such as self-driving car [95]
and patient data analysis [96] with limited resources, researchers have paid great
attention to finding possible ways of efficiently executing DNNs including
minimizing the required precision [97] and reducing the size of network [98].

In contrast to those studies based on conventional binary arithmetic computing, a
different type of computing such as stochastic computing (SC) can be an attractive
solution. SC uses the probability of 1s in a random bit stream to represent a number.
For example, six 1s in an eight-bit stream in unipolar encoding represent 6/8 as
shown in Figure 62 (a). SC can implement a circuit with smaller hardware footprint,
lower power, and shorter critical path delay compared with conventional binary

１１３

logic. It also has advantages in error tolerance and bit-level parallelism. Considering
that the majority operations of s DNN is multiplication, SC has great advantage in
implementing a DNN because a single AND gate in SC can execute multiplication
as shown in Figure 62 (a) with the unipolar encoding having range [0 1].

However, compared with conventional binary arithmetic, SC has some limitations

such as small operational range [−1 1] in bipolar encoding (or [0 1] in unipolar
encoding), random error fluctuation, and inefficiency of accumulation. In this paper,
we present how we can alleviate the problems that we encounter with when
designing a DNN using SC.

Neural network exploiting SC was first introduced in the noticeable research of
[99], where a state-machine based approach was used for implementing an
activation function. However, it was not a DNN but a two-layer autoencoder.
Although a research for hardware implementation of SC for deep belief network
was studied recently [100], only the multiplication part was implemented with SC.

Figure 62. Deep neural network (DNN) using stochastic computing. (a) Stochastic

multiplication in unipolar encoding with the range [0 1]. (b) Bipolar stochastic

multiplication with [−1 1] range. (c) DNN layers with weight vector Wk in layer k.

A
B

Y1,1,0,1,1,1,1,0 (6/8)
1,0,1,1,0,0,1,0 (4/8)

1,0,0,1,0,0,1,0 (3/8)
(a)

(b)

A
B Y

1,1,0,1,0,1,1,1,1,0,1,1 (3/6)
1,0,0,0,1,0,1,0,0,0,1,0 (-2/6) 1,0,1,0,0,0,1,0,0,1,1,0

 (-1/6)

x10

x20

xn00

...

Wk-1

layer k-1

... ...

layer k

nk

i th neuron

j th neuron
Wij

k

Wk

xi
k-1

xj
k

(c)

１１４

6.2 Background

Because DNN commonly requires negative numbers as well as positive numbers,
we use bipolar encoding in this paper. Bipolar stochastic number can be calculated

from unipolar number as pbipolar = 2*punipolar − 1. For example, as shown in Figure 62

(b), because nine 1s in a 12-bit stream is 9/12 in unipolar, it is 3/6 in bipolar
encoding. An XNOR gate can be used in bipolar encoding to perform multiplication

such as (3/6) × (− 2/6) = (− 1/6).

A DNN consists of neurons executing multiplication, accumulation, and
activation function. Sigmoid or hyperbolic tangent is a typical form of the activation
function. In Figure 62 (c), the operation of the jth neuron in layer k (i.e., 𝒙𝒙𝑗𝑗𝑘𝑘) can be

defined as follows,

𝒙𝒙𝑗𝑗𝑘𝑘 = 𝑎𝑎𝑎𝑎 �∑ 𝑾𝑾𝑖𝑖𝑖𝑖
𝑘𝑘 𝒙𝒙𝑖𝑖𝑘𝑘−1𝑛𝑛𝑘𝑘−1

𝑖𝑖=0 �, (1)

where 𝑾𝑾𝑖𝑖𝑖𝑖
𝑘𝑘 is a synaptic weight between 𝒙𝒙𝑖𝑖𝑘𝑘−1 and 𝒙𝒙𝑗𝑗𝑘𝑘 in layer k; 𝑛𝑛𝑘𝑘 is the

number of neurons in layer k; af() is the activate function.

6.3 Challenges to Apply SC to DNN

When adopting SC to DNNs, some obstacles should be solved in order to reach
the accuracy level achieved by conventional floating-point or fixed point arithmetic.
We found that directly applying SC to DNN lead to severe accuracy degradation
which is not acceptable in common cases. It happens when synaptic weights are
initialized to random numbers with a normal distribution around zero (mean is zero
and standard deviation is given by m−1/2 where m is the number of inputs to a
neuron) as recommended in [101]. In addition, the weights are close to zero due to
L1-, L2-regularization which gives penalties to non-zero parameters in order to
prevent overfitting [102]. As a result, synaptic weights are aggregated near zero.
However, as shown in Figure 63 (a), the XNOR(X, Y) operation representing

１１５

multiplication in bipolar encoding generates large random errors near the zero
values of X and Y. Unfortunately, because many synaptic weights exist near zero,
accumulating the products of synaptic weights and inputs increases the error to an
acceptable level in our investigation. Figure 63 (b) shows the distribution of 20000
synaptic weights concentrated near zero (dashed line and left Y-axis) and the error
of the sum of the products27 (solid line and right Y-axis). In terms of signal-to-noise
ratio (SNR), the results get worse, because the signal values (i.e., the products) tend
to be small for near-zero weights.

The second problem in applying SC to DNN is the accumulation of many
products. In SC, accumulation can be implemented with a multiplexer (MUX)
known as scaled addition or an OR gate known as saturated addition. The former
sacrifices the precision due to scaling down (or taking average of inputs) while the
latter is too sensitive to the correlation of inputs. Another problem is that SC has

27 To calculate the error of the sum of products at each weight value, the products
were obtained by multiplying all the weights for the same value with 0 input. This is
to show the tendency of errors appearing at the output of the accumulator.

 (a) Error of XNOR gate (b) Error of near-zero weights

Figure 63. Random error problem occurs when applying SC to DNN. (a) Random

error of XNOR gate in 1024-bit stream as absolute value. (b) 20000 weights

distribution in 200x100 networks (left Y-axis) and error multiplying by zero (right

Y-axis).

0
1

1

1

E
rr

or

10 -4

2

Y

0

X

3

0

-1 -1
-0.4 -0.2 0 0.2 0.4

Value

0

500

1000

1500

of

 w
ei

gh
ts

0

2

E
rr

or

weight error

１１６

range limitation from −1 to 1 in bipolar encoding. Thus arithmetic operations in
SC can be easily saturated if special care is not taken.

6.4 DNN Using Stochastic Circuit

6.4.1 Overview of the Proposed DNN using SC

To use a DNN, we first need to train it (training phase) using training data and
then test it with new test inputs (testing phase). We apply SC to testing phase

 (a) Training procedures (b) Testing with the SC neuron

 (c) Early decision termination

Figure 64. Overview of the proposed procedures and main idea. (a) Training

procedure for DNN using SC with 32-bit floating-point computation. (b) SC neurons

are operated with SC exploiting the suggested solutions in testing phase. (c) Early

decision termination by using progressive precision of SC.

x1

x2

x3

xn

...

Ʃ

w1

w2

w3

wn

Accumulation
Activate
function

Multiplication

Multiplication without
near-zero weights

Weights-scaling

Activate function
with an accumulator

StartInitial-training

Removing
near-zero weights

Weight-moving
into [-1 1] range

Re-training

Meet the required
accuracy?

End
YesNo

Apporoximate
Counter

Accuracy simulation
with SC manner

5 10 15 20 25 30
value of k [=1/(32*k) precision]

0

0.1

0.2

0.3

0.4

fra
ct

io
n

of
 te

st
 d

at
a

Easy input
to classify

Hard input
to classify

Early decision termination

１１７

because DNN is mostly operated in testing phase once it is trained in a
high-performance system such as a super-computer. Figure 64 shows the proposed
training procedure that supports our approach of using SC for DNN. The training
performed in a 32-bit floating-point system consists of initial-training, removing
near-zero weights, incremental weight-moving into [−1 1] range, and re-training as
shown in Figure 3 (a); accuracy simulation is conducted in SC after the re-training.
The two training steps, initial- and re-training, are identical to the conventional
DNN training method using back-propagation algorithm [103]. There are typically
many near-zero weights because weights have a tendency to become zero due to
regularization as mentioned in Section 6.3. And we find that the technique to
remove such near-zero weights is very effective.

In the testing phase, as shown in Figure 64, four methods are applied: 1)
multiplications are done without near-zero weights to minimize random errors, 2)
weights are scaled to improve signal intensity (i.e., SNR), 3) activation functions
are implemented with an accumulator, and 4) approximate counters are used to
reduce the size of hardware circuit.

SC can adjust the computation precision without hardware modification. This
cannot be realized in other computing systems. For example, an SC system can use
32 and 1024 bits (or any bit-length) for 1/32 and 1/1024 precision, respectively,
whereas 10-bit fixed-point system is fixed to 1/1024 precision only. By using this
property of SC for the operation at low-precision, we can reduce
energy-consumption. Fortunately, in most time, a large fraction of input data can be
easily classified because many classification problems are far from decision
boundaries [104]. We investigate MNIST dataset for handwritten digit images [105],
as shown in Figure 64 (c), where classifying 78.1% of input data needs 1/128
precision while classifying 93.3% needs 1/256 precision. Thus, we suggest early
decision termination (EDT) to finish the computation for easily classified inputs in
an early stage with low precision (i.e., a relatively small number of bits).

１１８

6.4.2 Removing Near-Zero Weights

Because the existence of near-zero weights is a main source of generating errors
when using SC for a DNN as mentioned in Section 6.3, we propose to remove
near-zero weights in the training phase. In the literature of machine learning,
discarding zero weights is recently suggested in order to reduce the size of network
[102]. On the other hand, we remove near-zero weights to reduce random
fluctuation errors. Re-training is necessarily required because we find that the
accuracy after pruning near-zero weights severely decreases and recovers after
re-training. We remove near-zero weights under the threshold proportional to
standard deviation of weights in a layer as follows,

𝑇𝑇ℎ𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒−𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑾𝑾𝑘𝑘� ∙ (𝛼𝛼 + 𝛽𝛽 ∙ 𝑖𝑖), (2)

where 𝑾𝑾𝑘𝑘 is all synaptic weights in a layer k; 𝛼𝛼 and 𝛽𝛽 are parameters decided
empirically; i represents the number of iterations in Figure 64 (a). Thus, as i
increases, more near-zero weights are removed. In our case, 𝛼𝛼 and 𝛽𝛽 are set to 0.2
and 0.01, respectively; re-training epoch is ten. The distribution of weights after
removing near-zero weights is shown as black solid line in Figure 65.

Figure 65. The distribution of weights after removing near-zero weights and

-1 -0.5 0 0.5 1

weight value

0

500

1000

of

 w
ei

gh
ts

removing

near-zero weights

weight scaling

１１９

6.4.3 Applying Weight Scaling

In order to minimize random fluctuation error and maximize SNR, we propose
weight scaling technique. As shown in Figure 63 (a), error increases as the weight
becomes close to zero and decreases as it becomes close to 1 or −1 while signals

are changed in the opposite way. Thus, in (1), if we scale up the weights 𝑾𝑾𝑘𝑘
before the multiplication and then scale back down the result after accumulation, the

SNR can be improved. Suppose that the weights 𝑾𝑾𝑘𝑘 are limited to a range

[−1
𝑠𝑠

 1
𝑠𝑠
] where s > 1, (1) can be rewritten as follows,

𝒙𝒙𝑗𝑗𝑘𝑘 = 𝑎𝑎𝑎𝑎 �1
𝑠𝑠
∙ ∑ 𝑠𝑠 ∙ 𝑾𝑾𝑖𝑖𝑖𝑖

𝑘𝑘 𝒙𝒙𝑖𝑖𝑘𝑘−1𝑛𝑛𝑘𝑘−1
𝑖𝑖=0 � (3)

Because 𝑠𝑠 ∙ 𝑾𝑾𝑘𝑘 > 𝑾𝑾𝑘𝑘, the signal level increases whereas the error decreases.
For example, if 𝑾𝑾𝑘𝑘 are (0.10, −0.15, 0.20), i.e., limited to [−0.2 0.2], then the
weights can be scaled up five times (s=5) to become (0.50, −0.75, 1.00). The red
dotted line in Figure 65 shows the advantages of the proposed weight-scaling
technique. Note that the number of near-zero weights also decreases because they
become far from zero center. The overhead of scaling is negligible because the
scaling operation can be applied to synaptic weights in binary format only once
after finishing the training phase.

The problem of this method is that it needs a scaled activation function as
follows,

𝒙𝒙𝑗𝑗𝑘𝑘 = 𝑎𝑎𝑎𝑎 �1
𝑠𝑠
𝑡𝑡�, where 𝑡𝑡 = ∑ 𝑠𝑠 ∙ 𝑾𝑾𝑖𝑖𝑖𝑖

𝑘𝑘 𝒙𝒙𝑖𝑖𝑘𝑘−1𝑛𝑛𝑘𝑘−1
𝑖𝑖=0 . (4)

In the next section, we suggest a scaled active function.

１２０

6.4.4 Activation Function with Accumulation

Figure 66. A stochastic neuron and the mechanism of state-machine based activate

function. (a) A single neuron using SC. (b) state-machine having two states in an

up/down counter. (c) Using binomial distribution for the logistic function. (d) The

proposed activate function. (e) Binomial distribution with many states. (f)

state-machine having 40 states.

-20 -15 -10 -5 0 5 10 15 20
pbipolar(X=1)*m

-1

0

1

p bi
po

la
r(Y

=1
) Btanh(50, 2, t)

Btanh(50, 40, t)
tanh(0.13t)
tanh(0.45t)

x1

x2

x3

xn

...

w1

w2

w3

wn

...

p1

p2

p3

p4

pn

pavg

Parallel
Counter

Up/Down
Counter

n stochastic bit-streams
with m length

log2n

Binary number

m

n

one stochastic
bit-stream

with m length
1

(a)

(b)

Binomial
distribution

S0 S1

X

~X
X~X

Y=1Y=0

(c)

5 10 15 20 25 30 35 40 45
of 1s

0

0.05

0.1

pr
ob

.

up=0.35,bp= -0.30
up=0.50,bp= 0.00
up=0.60,bp= 0.20

n=50

n=50

S19 S20

X

~X

Y=1Y=0

5 10 15 20 25 30 35 40 45
of 1s

0

0.05

0.1

pr
ob

.

n=50

area of bp=-0.30

S39 XS0~X X

~X
...... X

~X

X

~X

(area - std) of bp=-0.30

X

~X

(d)

(e)

(f)

of states
r = 2

r = 40

１２１

We present a state-machine based hyperbolic tangent activation function (i.e.,
tanh()) to solve the accumulation problem mentioned in Section 6.3 and provide

the scaled functionality tanh �1
𝑠𝑠
𝑡𝑡� for weight-scaling. State-machine based

hyperbolic tangent was introduced in [76] and [106] for a single bit stream and
multiple bit streams, respectively. The hyperbolic tangent activation functions

proposed in the previous work only support tanh(vt), where v ≥ 2 and a natural

number; whereas, our tanh�1
𝑠𝑠
𝑡𝑡� supports a small coefficient (i.e., 1/s < 1) as well as

multiple bit streams. As shown in Figure 66 (a), given n bit-streams with m bit
length generated by the n multiplications of inputs (xi's) and weights (wi's), we count
the number of 1s in each column by using a parallel counter. The counted value is
used by the following saturated up/down counter as the amount of increase or
decrease. The resulting binary value of the up/down counter is regarded as its state.
Given r states in the up/down counter, one half of the r states generates 0 bit while
the other half generates 1 bit; the generated bits approximate outputs of tanh() in
the form of stochastic number.

6.4.4.1 Proposed Stochastic Hyperbolic Tangent

Given n input bit-streams with average probability pavg for any bit to be 1, the
probability Pone of having b 1s in a column of the input bit-streams becomes
binomial distribution as follows,

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑛𝑛𝑏𝑏� �𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎�
𝑏𝑏(1 − 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎)𝑛𝑛−𝑏𝑏 . (5)

Because cumulative distribution function (CDF) of binomial distribution mimic
the logistic function, we construct tanh() by using CDF of (5). In case of two state
up/down counter shown in Figure 66 (b), CDF of binomial distribution shown in
Figure 5 (c) for pavg = 0.00 follows tanh(0.13t) shown in Figure 5 (d). Note that state
S1 and S0 in Figure 5 (b) generates 1s and 0s, respectively. As the number of states

１２２

increases as shown in (f), it becomes a bounded random walk problem [107] and the
results are affected by the variation of walking. From this property, we find the

relationship between tanh�1
𝑠𝑠
𝑡𝑡� and the proposed Btanh(n, r, t) as follows,

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ(𝑛𝑛, 𝑟𝑟, 𝑡𝑡) ≅ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �1
𝑠𝑠
𝑡𝑡�, (6)

1
𝑠𝑠

= 1−𝑞𝑞
2(𝑛𝑛−1)

(𝑟𝑟′ − 2𝑛𝑛) + 1, and 𝑞𝑞 = 1.835(2𝑛𝑛)−0.5552 (7)

𝑟𝑟′ = 2(1−𝑠𝑠)(𝑛𝑛−1)
𝑠𝑠(1−𝑞𝑞)

+ 2𝑛𝑛 (8)

𝑟𝑟 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑜𝑜𝑜𝑜_𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟′) (9)

where n is the number of bit-streams and r is the number of states and multiple of
two. Figure 67 shows that both the proposed Btanh() and the corresponding tanh()
are almost identical to each other. Figure 68 shows the algorithm for Btanh(). In
Line 1, the maximum state is set to R−1; the state index starts from 0 and the

 (a) (b)

Figure 67. The result comparison between the proposed hyperbolic tangent Btanh()

and the original tanh(). (a) The number of states is two and 80 for 100 bit-streams.

(b) 20 and 200 states for 200 bit-streams.

-20 -10 0 10 20

p
b i p o l a r (X=1)*m

-1

-0.5

0

0.5

1

p
b

i p
o

la
r(Y

=1
)

Btanh(100, 2, t)

Btanh(100, 80, t)

tanh(0.10t)

tanh(0.45t)

-20 -10 0 10 20

p
b i p o l a r (X=1)*m

-1

-0.5

0

0.5

1

p
b

i p
o

la
r(Y

=1
)

Btanh(200, 20, t)

Btanh(200, 200, t)

tanh(0.11t)

tanh(0.53t)

１２３

number of states is R. The offset V jumping between states is calculated as bipolar
encoding in Line 5; it is zero if the number of 1s in a column is a half of N. Note

that the SC simulation step uses Btanh(n, r, t) representing tanh�1
𝑠𝑠
𝑡𝑡� while intial-

and re-training steps in Figure 64 (a) use tanh(𝑎𝑎𝑥𝑥), where t =sax; s and a are real
numbers.

6.4.4.2 Using Approximate Counter

In the stochastic neuron shown in Figure 66 (a), the biggest component in terms

BTANH (N, R, T)

// N is the number of bit-stream as shown in Figure 66 (a).
// M is the length of bit-stream.
// R is the number of states in up/down counter.
// T is the bipolar SC input, MxN size, where −N ≤ T ≤ N.
// Ti is the number of 1s bits in ith column of input streams.

Output: Yi is the ith stochastic output bit for Btan()
1: Smax = R − 1 //max state
2: Shalf = R/2 //half state
3: S  Shalf //current state
4: for i = 1 to M
5: V = Count(Ti) * 2 − N //bipolar 1s counting
6: S  S + V
7: if S > Smax then S  Smax
8: if S < 0 then S  0
9: if S > Shalf
10: Yi  1
11: else
12: Yi  0

Figure 68. Pseudo-code for the proposed Btanh().

１２４

of area and power is the parallel counter. Since SC calculates in an inaccurate
manner anyway, we do not need to stick to a conventional accurate parallel. [108]
presents an approximate parallel counter with very small error and no bias. We
reduce the area and power by using the same approach.

6.5 Early Decision Termination

Because the bits fed in at different times are independent of each other in
stochastic bit-streams, the precision can be adjusted without hardware modification;
it is known as progressive precision [5]. It is a salient advantage of SC over
conventional logic using binary arithmetic. As mentioned in Section 6.4.1, early
decision termination (EDT) is useful in terms of energy consumption and decision
speed. Our current implementation has 32 bits as the precision granularity. That is, it
processes 32 bits to make a decision, and if it fails, it continues processing the next
32 bits.

１２５

6.5.1 Moving Average Tracking Output Trends

As shown in the first row of Figure 6928, we find that the outputs of the last layer
from SC circuit severely fluctuate as EDT steps proceed, where every EDT step
processes 32 stochastic bits. In order to monitor the trend of decisions as a time
series, the following moving average is used as a low-pass filter,

28 The example uses MNIST handwritten image dataset, where the number of
classes is ten from zero to nine.

 (a) (b)

Figure 69. The intermediate procedures of early decision termination. Ground truths

are 4 and 8, respectively.

0 10 20 30
-1

0

1

la
st

 la
ye

r o
ut

pu
t

0

1

2

3

4

5

6

7

8

9

0 10 20 30
-1

0

1
m

ov
in

g
av

er
ag

e

0 10 20 30
-0.1

0

0.1

gr
ad

ie
nt

0 10 20 30

EDT steps

0

0.2

0.4

0.6

so
ftm

ax
0 10 20 30

-1

0

1

la
st

 la
ye

r o
ut

pu
t

0 10 20 30
-1

0

1

m
ov

in
g

av
er

ag
e

0 10 20 30
-0.1

0

0.1

gr
ad

ie
nt

0 10 20 30

EDT steps

0

0.2

0.4

0.6

so
ftm

ax

１２６

MVc,i = α  Yc,i + (1− α)  MVc,(i−1) (10)

where c is the class; Yc,i is the output of the last layer for class c in EDT step i and

MVc,1=Yc,1 and α is empirically set to 0.1. As shown in the second row of Figure 69,

the result of moving average better shows the trend. We find two important
components for EDT: 1) output value of the last layer and 2) the gradient of current
step. Using the former is natural because the largest output value is selected in
general classification domain. The latter can be an indicator to notify the possibility
of changing the current decision in the future. For example, class 7 and 8 are
swapped in the moving average of Figure 69 (b) (the second row), which can be
informed early by examining the gradient (the third row). Thus, the objective value
of individual class c in ith EDT step is defined as follows,

Oc,i = MVc,i + β  Gradc,i (11)

where Gradc,i is the gradient value of class c in ith step; β is a weight factor.

Finally, by using softmax functions, the objective values of individual classes are
normalized depending on the categorical probability, which is commonly used in
multiclass classification problems.

SMc,i = 𝑒𝑒𝑂𝑂𝑐𝑐,𝑖𝑖

∑ 𝑒𝑒𝑂𝑂𝑘𝑘,𝑖𝑖𝑘𝑘
 (12)

As shown in the fourth row of Figure 69, the normalized value represents the
current status of a class candidate with absolute value. For example, because class 4
dominates other classes in case of Figure 69 (a), it can be selected as the final
decision in early EDT step.

6.6 Experimental Results

１２７

For the experiment, we use MNIST handwritten digit image dataset [105]
consisting of 60000 training data and 10000 testing data with 28x28 grayscale
image and 10 classes. The networks in this experiments have two hidden layers with
a 784-100-200-10 configuration.

6.6.1 Accuracy of DNN Using SC

The accuracy of DNN is a very important metric, because usability of DNN
totally depends on it. We compare our proposed method with the previous methods
using SC [100], and a 32-bit floating-point system. As shown in Figure 70 (a),
misclassification error of test data in MNIST dataset in 32-bits floating-point is
2.23%, while test error for our proposed DNN using SC is 2.41% with 210-bit
stream. Considering that the previous work [100] using SC and floating-point are
18.2% and 5.8%, respectively, Our work dramatically improves in terms of accuracy.
Because fixed-point arithmetic generally has bigger error compared with

 (a)

 (b)

Figure 70. Comparison misclassification error. MNIST test data error in 32-bit

floating point is 2.23%. The proposed method is 2.41% while the previous work [11] is

18.2% in 210-bit stream.

[100]-FP[100]-28 [100]-29 [100]-210 Prop.-FPProp.-28 Prop.-29 Prop.-210
0

50

100

te
st

 e
rr

or
(%

)

2.23% 2.41%
18.2%

5.8%

5 10 15 20 25 30
value of k (32*k bits)

0

0.5

1

te
st

 e
rr

or

0.02410.02480.02920.03440.0508
0.1511

１２８

floating-point arithmetic and the proposed approach is almost similar to
floating-point result, we conclude that the improvement is significant. Figure 70 (b)
shows test error in the proposed method when using progressive precision
mentioned in Section 6.5, where each step uses 32-bit parallel stochastic circuit.
Note that the difference of test error between the 15th step and the 32th step is about
1% error, which means that reducing energy as well as improving decision speed is
possible with sacrificing only 1% error rate.

6.6.2 Effectiveness of Early Decision Termination

Early decision termination (EDT) exploits progressive precision of SC, which can

Figure 71. Experimental result for early decision termination (EDT) where one EDT

step use 32 stochastic bits. (a) Applying EDT to 1024 bits. (b) The last step of EDT is

set to the 16th step (i.e., 16x32=512 bits). (c) Normalized energy reduction between

using and not using EDT and test error according to the last EDP step.

5 10 15 20 25 30
EDT steps

0
300
600
900

1200
1500

of

 d
at

a
0

0.5

1

cu
m

ul
at

iv
e

ra
tio

success
failTest error: 0.0263

Norm. energy: 0.348

63%

5 10 15 20 25 30
EDT steps

0
300
600
900

1200
1500

of

 d
at

a

0

0.5

1

cu
m

ul
at

iv
e

ra
tiosuccess

fail

Test error: 0.0394
Norm. energy: 0.310

5 10 15 20 25 30
last EDT step

0

0.1

0.2

0.3

0.4

no
rm

. e
ne

rg
y

0

0.2

0.4

0.6

0.8

er
ro

r

normalized energy error

0.3480.264
0.324

(a)

(b)

(c)

last EDT step

last EDT step

１２９

adjust the required precision without hardware modification. In our experiment for
EDT, the baseline SC circuit uses 1024 stochastic bit-stream; since one EDT step
uses 32 bits, 32 EDT steps are identical to the baseline SC circuit (i.e., 32x32=1024).
EDT can reduce energy and improve decision speed. Figure 71 (a) shows that the
tests are finished earlier compared to the baseline SC circuit. For example, 63%
among 10000 tests are finished before the 10th step (i.e., 320 bits); compared with
the baseline SC with 2.41% error, EDT decreases energy by 65.2% with 2.63%
error as shown in (a). If we move the last EDT step to earlier ones, we can save
more energy as shown in (b). By setting the last EDT step to 16, energy decreases
by 69% while sacrificing accuracy by 1.53%, compared with the baseline SC circuit.
(c) shows this trade-off relationship between the last EDT step, test error, and
normalized energy reduction using EDT compared with not using EDT.

6.6.3 Comparison of Synthesis Results

We synthesize one SC neuron with 200 inputs, which is compared with 9-bit
fixed point (FIX) because SC circuit using 512(=29) bits shows reasonable test error
rate 0.031. Stochastic bits for each synaptic weight are generated with stochastic
number generators (SNG) proposed in [109], where linear feedback shift registers
(LFSRs) are shared among parallel SC circuits without generating correlation. They
are implemented as combinational logic in TSMC 45nm technology library with
Synopsys Design Compiler using Verilog HDL. The fixed-point is implemented
with 3-stage pipelines. The recent work [2] reports that spintronic SNG using
magnetic tunneling junctions (MTJs) improves energy efficiency about seven times
compared with CMOS SNG. Thus, we also add the estimated value for MTJ-SNG.

Figure 72 shows the synthesis results in terms of area, critical path delay, power,
and energy, where the delay of the fixed-point circuit is multiplied by three due to
3-stage pipeline. SC circuit can be implemented with a serial unit up to 512 parallel
units, and we select 32- and 64- parallel SC circuit for area, critical path delay and
power investigation. Note that the area and power increase in proportion to the

１３０

parallelism while critical path delay does not vary. As a result, we find that SNG
overhead is very significant; it takes 41.50%, 59.58%, and 75.76% of SC circuit
(SC w/ SNG) in terms of area, power, and critical path delay. However, regardless
of the parallelism of SC circuit, energy consumption is identical in all cases.
Compared with 9-bit width fixed-point, SC with SNG increases energy by 3.0 times
while SC without SNG decreases energy by 70.0%; we also estimate SNG with
MTJ-SNG decreasing energy by 30.0% from the result of [2]. Due to EDT, energy
decrease by about 34% compared to basic SC in all cases. Figure 73 shows iso-area
performance where all circuits are set to the area of 9-bit fixed-point which is 72104
um2. In case of latency with EDT29, SC without SNG is 4.61 times faster while SC
with SNG is 1.53 times slower compared with 9-bit fixed-point. It is because the
two cases have 120x and 70x parallelisms, respectively, under iso-area and the
critical path delay of the former is 4.125 shorter than that of the latter.

29 The latency is the time to calculate a 9-bit binary number in a fixed-point
arithmetic and to calculate a 512-bit stream in SC.

１３１

6.7 Conclusion

In this paper, we address the problems in directly adopting stochastic computing
to DNN by removing near-zero weights, applying weight-scaling, and using state
machine based activation function integrated with the accumulator. We also suggest
the early decision termination which is very useful in terms of energy and decision
speed. The experimental results demonstrate that the accuracy of DNN using SC is

Figure 72. Synthesis results. All cases are compared with 9-bit fixed-point (9-bit

FIX). In case of area, critical path delay, and power, 32- and 64-bit parallel SC circuits

are used. In case of energy, SC circuit executes 29(=512) bits.

Figure 73. Iso-area performance comparison. Energy and latency for each case are

compared under same area. The values for SC circuits using MTJ-SNG are estimated

according to [2]. Fixed-point computes with 9-bit width while all SC circuits compute

Fixed
Point

SC
w/o SNG

SC
w/ SNG

0

5

10

ar
ea

(u
m

2)

#104 9-bit FIX
32-bit

Paral. SC
64-bit

Paral. SC

0

2

4

po
w

er
(u

W
)

Estimated
SC w/

MTJ-SNG

0

10

20

30

en
er

gy
(fJ

)

Fixed
Point

SC
w/o SNG

SC
w/ SNG

Fixed
Point

SC
w/o SNG

SC
w/ SNG

Fixed
Point

SC
w/o

SNG

SC
w/

SNG

9-bit FIX
512-bit SC
512-bit SC

w/ EDT

0

1

2

3

de
la

y(
ns

)

0 2 4 6 8 10 12 14 16
latency(ns)

0

10

20

30

en
er

gy
(fJ

)

Fixed-Point (9 bits)
SC w/o EDT (512 bits)
SC w/ EDT
SC-SNG w/o EDT
SC-SNG w/ EDT
SC-MTJ-SNG w/o EDT
SC-MTJ-SNG w/ EDT

Estmated
value

１３２

close to that of the conventional floating-point system while reducing the area,
power, critical path delay, and energy.

１３３

7. Conclusion

Since machine learning is a very promising domain to assist humans with
intelligence, it has been paid attention in many various application areas. We present
schemes for machine learning from high-level algorithms down to low-level
hardware building blocks, which include hierarchical ensemble learning framework
and stochastic computing logic synthesis. They are combined in the domain of deep
learning. The result shows that the synergistic effect of them will lead to a very
efficient machine learning system.

It is well known that ensemble of classifiers can achieve higher accuracy
compared to a single classifier system. This paper pays attention to ensemble
systems consisting of multiple feature extractors and multiple classifiers (MFMC).
However, MFMC increases the system complexity dramatically, leading to a highly
complex combinatorial optimization problem. In order to overcome the complexity
while exploiting the diversity of MFMC, we suggest in this paper a hierarchical
ensemble of MFMC and its optimizing framework. By constructing local groups of
feature extractors and classifiers and then combining them as a global group, the
approach achieves a better scalability. Both reinforcement machine learning and
Bayesian networks are adopted to enhance the accuracy. We apply the proposed
method to vision based pedestrian detection and recognition of handwritten
numerals. Experimental results show that the proposed framework outperforms the
previous ensemble methods in terms of accuracy.

Stochastic Computing (SC) is a very promising technique to boost logic
efficiency in terms of area, power, and error tolerance when the accuracy of
computation can be relaxed. One of the challenges with SC, however, is how to find
optimal SC operations from conventional expressions based on binary arithmetic.
This work presents a novel approach to automatically synthesizing a network of SC

１３４

operations from a set of given conventional arithmetic expressions possibly
including many variables. It first generates building blocks called iSC kernels from
the given conventional expression and then synthesizes an SC logic network by
using the relationship between iSC kernels. Experimental results obtained by
applying our proposed algorithm to a set of applications demonstrate that our
technique generates SC logic that outperforms the conventional binary logic in
terms of area, critical path delay, and power consumption.

Deep neural networks (DNNs) have been recently paid great attention because
they achieve a noticeable performance improvement in term of accuracy in
supervised learning over other machine learning techniques. However, DNNs
consisting of many neurons require lots of computations leading to considerable
power consumption, which is an obstacle to the wide usage of DNNs in embedded
systems or mobile devices. This paper presents a method of implementing a DNN
using stochastic computing, where multiplications-the majority operations-can be
implemented with a single XNOR gate in bipolar format. Based on the observation
that directly adopting stochastic computing to DNN has some challenges such as
random error fluctuation, range limitation from -1 to 1, and overhead in
accumulating many products of inputs and synaptic weights, we address these
problems by removing near-zero weights, applying weight-scaling, and using state
machine based activation function integrated with the accumulator. The approach
allows an easy implementation of early decision termination without hardware
modification for a given classification problem by efficiently exploiting the
progressive precision characteristics of stochastic computing, which was not easy
with existing approaches. We find that the early decision termination is very useful
in terms of energy and decision speed because most of test inputs are far from
decision boundary. Our experimental results demonstrate that our technique
outperforms the conventional binary fixed logic in terms of gate area, latency, and
power consumption.

１３５

Bibliography

[1] H. Ichihara, et al., "Compact and accurate stochastic circuits with shared random
number sources," Proc. ICCD, pp. 361-366, 2014.

[2] R. Venkatesan, et al., "Spintastic: spin-based stochastic logic for energy-efficient
computing," Proc. Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, pp. 1575-1578, 2015.

[3] R. Polikar, "Ensemble based systems in decision making," Circuits and Systems
Magazine, IEEE, vol. 6, pp. 21-45, 2006.

[4] L. Rokach, "Taxonomy for characterizing ensemble methods in classification tasks: A
review and annotated bibliography," Computational Statistics & Data Analysis, vol.
53, pp. 4046-4072, 2009.

[5] A. Alaghi and J. P. Hayes, "Survey of stochastic computing," ACM Trans. Embed.
Comput. Syst., vol. 12, p. 92, 2013.

[6] A. Alaghi and J. P. Hayes, "Fast and accurate computation using stochastic circuits,"
Proc. DATE, p. 76, 2014.

[7] D. H. Wolpert, "The supervised learning no-free-lunch theorems," in Soft Computing
and Industry, ed: Springer, 2002, pp. 25-42.

[8] N. C. Oza and K. Tumer, "Classifier ensembles: Select real-world applications,"
Information Fusion, vol. 9, pp. 4-20, 2008.

[9] L. I. Kuncheva, Combining Pattern Classifiers, Methods and Algorithms:
Wiley-Interscience, 2004.

[10] L. Rokach, Pattern classification using ensemble methods vol. 75: World Scientific,
2010.

[11] Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning

１３６

and an application to boosting," in Computational learning theory. vol. 904, ed:
Springer Berlin Heidelberg, 1995, pp. 23-37.

[12] R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary
environments," IEEE Transactions on Neural Networks, vol. 22, pp. 1517-1531, 2011.

[13] H. Lin, K. Kim, and K. Choi, "Concept-Aware Ensemble System for Pedestrian
Detection," Proc. In Proceedings of IEEE Symposium on Intelligent Vehicles, 2014.

[14] O. Ludwig, D. Delgado, V. Goncalves, and U. Nunes, "Trainable classifier-fusion
schemes: An application to pedestrian detection," Proc. In Proceedings of
International IEEE Conference on Intelligent Transportation Systems, pp. 1-6, 2009.

[15] L. Oliveira, U. Nunes, and P. Peixoto, "On Exploration of Classifier Ensemble
Synergism in Pedestrian Detection," IEEE Transactions on Intelligent Transportation
Systems, vol. 11, pp. 16-27, 2010.

[16] S. Walk, K. Schindler, and B. Schiele, "Disparity statistics for pedestrian detection:
Combining appearance, motion and stereo," Proc. In Proceedings of European
Conference on Computer Vision, pp. 182-195, 2010.

[17] Y. Xu, X. Cao, and H. Qiao, "An efficient tree classifier ensemble-based approach for
pedestrian detection," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 41, pp. 107-117, 2011.

[18] O. Tuzel, F. Porikli, and P. Meer, "Pedestrian detection via classification on
riemannian manifolds," Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 30, pp. 1713-1727, 2008.

[19] C. Wojek, S. Walk, and B. Schiele, "Multi-cue onboard pedestrian detection," Proc.
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pp. 794-801, 2009.

[20] H. Yoshida, et al., "Integration of Generative Learning and Multiple Pose Classifiers
for Pedestrian Detection," Proc. VISAPP (1), pp. 567-572, 2012.

[21] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, "Survey of pedestrian detection
for advanced driver assistance systems," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 32, pp. 1239-1258, 2010.

[22] P. Dollar, C. Wojek, B. Schiele, and P. Perona, "Pedestrian Detection: An Evaluation
of the State of the Art," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, pp. 743-761, 2012.

[23] J. Yan, et al., "Robust Multi-resolution Pedestrian Detection in Traffic Scenes," Proc.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.
3033-3040, 2013.

１３７

[24] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Lecun, "Pedestrian Detection with

Unsupervised Multi-stage Feature Learning," Proc. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3626-3633, 2013.

[25] C. G. Keller, et al., "The Benefits of Dense Stereo for Pedestrian Detection," IEEE
Transactions on Intelligent Transportation Systems, vol. 12, pp. 1096-1106, 2011.

[26] S. Walk, N. Majer, K. Schindler, and B. Schiele, "New features and insights for
pedestrian detection," Proc. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1030-1037, 2010.

[27] M. Szarvas, A. Yoshizawa, M. Yamamoto, and J. Ogata, "Pedestrian detection with
convolutional neural networks," Proc. In Proceedings of IEEE Intelligent Vehicles
Symposium, pp. 224-229, 2005.

[28] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," Proc.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.
886-893, 2005.

[29] R. Xia, C. Zong, X. Hu, and E. Cambria, "Feature ensemble plus sample selection:
domain adaptation for sentiment classification," Intelligent Systems, IEEE, vol. 28, pp.
10-18, 2013.

[30] Y. S. Huang and C. Y. Suen, "A method of combining multiple experts for the
recognition of unconstrained handwritten numerals," Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 17, pp. 90-94, 1995.

[31] K.-D. Wernecke, "A coupling procedure for the discrimination of mixed data,"
Biometrics, pp. 497-506, 1992.

[32] C. J. Merz, "Using correspondence analysis to combine classifiers," Machine
Learning, vol. 36, pp. 33-58, 1999.

[33] F. Moreno-Seco, J. M. Inesta, P. J. P. De León, and L. Micó, "Comparison of classifier
fusion methods for classification in pattern recognition tasks," in Structural, Syntactic,
and Statistical Pattern Recognition. vol. 4109, ed: Springer Berlin Heidelberg, 2006,
pp. 705-713.

[34] M. Smȩtek and B. Trawiński, "Selection of heterogeneous fuzzy model ensembles
using self-adaptive genetic algorithms," New Generation Computing, vol. 29, pp.
309-327, 2011.

[35] M. Wozniak, "Evolutionary approach to produce classifier ensemble based on
weighted voting," Proc. Nature & Biologically Inspired Computing, 2009. NaBIC
2009. World Congress on, pp. 648-653, 2009.

[36] M. Wozniak and M. Zmyslony, "Combining classifiers using trained
fuser—Analytical and experimental results," Neural Network World, vol. 20, p. 925,

１３８

2010.

[37] T. Wilk and M. Wozniak, "Soft computing methods applied to combination of
one-class classifiers," Neurocomputing, vol. 75, pp. 185-193, 2012.

[38] L. A. Alexandre, A. C. Campilho, and M. Kamel, "Combining independent and
unbiased classifiers using weighted average," Proc. Pattern Recognition, 2000.
Proceedings. 15th International Conference on, pp. 495-498, 2000.

[39] B. Biggio, G. Fumera, and F. Roli, "Bayesian analysis of linear combiners," in
Multiple Classifier Systems, ed: Springer, 2007, pp. 292-301.

[40] K. Chen, L. Wang, and H. Chi, "Methods of combining multiple classifiers with
different features and their applications to text-independent speaker identification,"
International Journal of Pattern Recognition and Artificial Intelligence, vol. 11, pp.
417-445, 1997.

[41] G. Zenobi and P. Cunningham, "Using diversity in preparing ensembles of classifiers
based on different feature subsets to minimize generalization error," in Machine
Learning: ECML 2001, ed: Springer, 2001, pp. 576-587.

[42] L. Breiman, "Bagging predictors," Machine learning, vol. 24, pp. 123-140, 1996.

[43] R. E. Schapire, "The strength of weak learnability," Machine learning, vol. 5, pp.
197-227, 1990.

[44] T. G. Dietterich and G. Bakiri, "Solving multiclass learning problems via
error-correcting output codes," Journal of artificial intelligence research, pp. 263-286,
1995.

[45] G. Zhong and C.-L. Liu, "Error-correcting output codes based ensemble feature
extraction," Pattern Recognition, vol. 46, pp. 1091-1100, 4// 2013.

[46] G. Zhong and M. Cheriet, "Adaptive error-correcting output codes," Proc.
Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, pp. 1932-1938, 2013.

[47] J. Wu and J. M. Rehg, "CENTRIST: A visual descriptor for scene categorization,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, pp.
1489-1501, 2011.

[48] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple
features," Proc. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. I-511-I-518 vol. 1, 2001.

[49] C. M. Bishop, Pattern Recognition and Machine Learning: Springer, 2007.

[50] R. S. Sutton and A. G. Barto, Reinforcement Learning, An Introduction: MIT Press,

１３９

1999.

[51] A. Frank and A. Asuncion. UCI Machine Learning Repository, 2010. Available:
http://archive.ics.uci.edu/ml

[52] A. A. Sherstov and P. Stone, "Function approximation via tile coding: Automating
parameter choice," in Abstraction, Reformulation and Approximation. vol. 3607, ed:
Springer Berlin Heidelberg, 2005, pp. 194-205.

[53] N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian network classifiers," Machine
learning, vol. 29, pp. 131-163, 1997.

[54] A. Mittal and A. A. Kassim, Bayesian network technologies: applications and
graphical models: IGI Global, 2007.

[55] R. E. Neapolitan, Learning bayesian networks vol. 1: Prentice Hall, 2004.

[56] M. J. Wainwright and M. I. Jordan, "Graphical models, exponential families, and
variational inference," Foundations and Trends in Machine Learning, vol. 1, pp. 1-305,
2008.

[57] B. Lerner and R. Malka, "Investigation of the K2 algorithm in learning Bayesian
network classifiers," Applied Artificial Intelligence, vol. 25, pp. 74-96, 2011.

[58] N. Friedman and D. Koller, "Being Bayesian about network structure. A Bayesian
approach to structure discovery in Bayesian networks," Machine learning, vol. 50, pp.
95-125, 2003.

[59] F. V. Jensen and T. D. Nielsen, Bayesian networks and decision graphs, second ed.:
Springer, 2007.

[60] A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert, "Maintaining a topological order
under edge insertions," Information Processing Letters, vol. 59, pp. 53-58, 1996.

[61] B. Haeupler, et al., "Faster Algorithms for Incremental Topological Ordering," in
Automata, Languages and Programming. vol. 5125, ed: Springer Berlin Heidelberg,
2008, pp. 421-433.

[62] S. Munder and D. M. Gavrila, "An Experimental Study on Pedestrian Classification,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp.
1863-1868, 2006.

[63] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, "Fast human detection using a
cascade of histograms of oriented gradients," Proc. Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, pp. 1491-1498, 2006.

[64] N. Dalal, B. Triggs, and C. Schmid, "Human detection using oriented histograms of
flow and appearance," in Computer Vision–ECCV 2006, ed: Springer, 2006, pp.

１４０

http://archive.ics.uci.edu/ml

428-441.

[65] X. Wang, T. X. Han, and S. Yan, "An HOG-LBP human detector with partial
occlusion handling," Proc. Computer Vision, 2009 IEEE 12th International
Conference on, pp. 32-39, 2009.

[66] J. Wu, C. Geyer, and J. M. Rehg, "Real-time human detection using contour cues,"
Proc. Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp.
860-867, 2011.

[67] T. Yang, et al., "Condensation-based multi-person tracking using an online SVM
approach," Proc. Robotics and Biomimetics (ROBIO), 2013 IEEE International
Conference on, pp. 1983-1988, 2013.

[68] Y.-S. Hwang, J.-C. Kwak, and K.-Y. Lee, "Implementation of a Pedestrian Detection
Device based on CENTRIST for an Embedded Environment," 2014.

[69] X. Cui, et al., "3D Haar-Like Features for Pedestrian Detection," Proc. ICME, pp.
1263-1266, 2007.

[70] V.-D. Hoang, A. Vavilin, and K.-H. Jo, "Fast human detection based on parallelogram
haar-like features," Proc. IECON 2012-38th Annual Conference on IEEE Industrial
Electronics Society, pp. 4220-4225, 2012.

[71] P. Geismann and G. Schneider, "A two-staged approach to vision-based pedestrian
recognition using Haar and HOG features," Proc. Intelligent Vehicles Symposium,
2008 IEEE, pp. 554-559, 2008.

[72] OpenCV. Open source computer vision (OpenCV). Available: http://opencv.org

[73] R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated
predictions," Machine learning, vol. 37, pp. 297-336, 1999.

[74] S. Gupta, R. K. Gupta, N. D. Dutt, and A. Nicolau, SPARK: a parallelizing approach
to the high-level synthesis of digital circuits: Springer, 2004.

[75] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, "Analysis and
characterization of inherent application resilience for approximate computing," Proc.
DAC, p. 113, 2013.

[76] B. D. Brown and H. C. Card, "Stochastic neural computation. I. Computational
elements," IEEE Trans. Comput., vol. 50, pp. 891-905, 2001.

[77] V. C. Gaudet and A. C. Rapley, "Iterative decoding using stochastic computation,"
Electron. Lett., vol. 39, pp. 299-301, 2003.

[78] P. Li, et al., "Case Studies of Logical Computation on Stochastic Bit Streams," in
Integrated Circuit and System Design. Power and Timing Modeling, Optimization and

１４１

http://opencv.org/

Simulation, ed: Springer, 2013, pp. 235-244.

[79] A. Alaghi, C. Li, and J. P. Hayes, "Stochastic circuits for real-time image-processing
applications," Proc. DAC, pp. 1-6, 2013.

[80] W. Qian, et al., "An Architecture for Fault-Tolerant Computation with Stochastic
Logic," IEEE Trans. Comput., vol. 60, pp. 93-105, 2011.

[81] V. K. Chippa, S. Venkataramani, K. Roy, and A. Raghunathan, "StoRM: a stochastic
recognition and mining processor," Proc. ISLPED, pp. 39-44, 2014.

[82] A. Singhee and R. A. Rutenbar, Novel algorithms for fast statistical analysis of scaled
circuits vol. 46: Springer Science & Business Media, 2009.

[83] J. Hartmann and G. Kemnitz, "How to do weighted random testing for BIST?," Proc.
ICCAD, pp. 568-568, 1993.

[84] F. Muradali, V. K. Agarwal, and B. Nadeau-Dostie, "A new procedure for weighted
random built-in self-test," Proc. ITC, pp. 660-669, 1990.

[85] P. Gupta and R. Kumaresan, "Binary multiplication with PN sequences," IEEE T.
Acoust. Speech., vol. 36, pp. 603-606, 1988.

[86] A. Alaghi and J. P. Hayes, "A spectral transform approach to stochastic circuits," Proc.
ICCD, pp. 315-321, 2012.

[87] H. Beker and F. Piper, Cipher systems: the protection of communications:
Wiley-Interscience, 1982.

[88] A. Alaghi and J. P. Hayes, "Exploiting correlation in stochastic circuit design," Proc.
ICCD, pp. 39-46, 2013.

[89] B. Parhami and C.-H. Yeh, "Accumulative parallel counters," Proc. Asilomar Conf.
Signals, Systems & Computers, pp. 966-970, 1995.

[90] T. Pai-Shun and J. P. Hayes, "Stochastic Logic Realization of Matrix Operations,"
Proc. Digital System Design, pp. 356-364, 2014.

[91] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep
convolutional neural networks," Proc. NIPS, pp. 1097-1105, 2012.

[92] G. Hinton, et al., "Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, pp.
82-97, 2012.

[93] C. Szegedy, et al., "Going deeper with convolutions," arXiv preprint arXiv:1409.4842,
2014.

[94] A. Coates, et al., "Deep learning with COTS HPC systems," Proc. ICML, pp.

１４２

1337-1345, 2013.

[95] M. Montemerlo, et al., "Junior: The stanford entry in the urban challenge," J. Field
Robot., vol. 25, pp. 569-597, 2008.

[96] K. H. Lee and N. Verma, "A low-power processor with configurable embedded
machine-learning accelerators for high-order and adaptive analysis of medical-sensor
signals," IEEE J. Solid-State Circuit, vol. 48, pp. 1625-1637, 2013.

[97] M. Courbariaux, Y. Bengio, and J.-P. David, "Training deep neural networks with low
precision multiplications," Proc. workshop contribution at ICLR, 2015.

[98] H. Geoffrey, V. Oriol, and D. Jeff, "Distilling the knowledge in a neural network,"
Proc. NIPS workshop, 2014.

[99] B. D. Brown and H. C. Card, "Stochastic neural computation. II. Soft competitive
learning," IEEE Trans. Comput., vol. 50, pp. 906-920, 2001.

[100] K. Sanni, G. Garreau, J. L. Molin, and A. G. Andreou, "FPGA implementation of a
Deep Belief Network architecture for character recognition using stochastic
computation," Proc. CISS, pp. 1-5, 2015.

[101] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, "Efficient backprop," in Neural
networks: Tricks of the trade, ed: Springer, 2012, pp. 9-48.

[102] S. Han, J. Pool, J. Tran, and W. J. Dally, "Learning both weights and connections for
efficient neural networks," Proc. NIPS, 2015.

[103] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Networks,
vol. 61, pp. 85-117, 2015.

[104] S. Venkataramani, A. Raghunathan, J. Liu, and M. Shoaib, "Scalable-effort classifiers
for energy-efficient machine learning," Proc. DAC, p. 67, 2015.

[105] L. Deng, "The MNIST database of handwritten digit images for machine learning
research," IEEE Signal Process. Mag., vol. 29, pp. 141-142, 2012.

[106] A. Ardakani, et al., "VLSI Implementation of Deep Neural Network Using Integral
Stochastic Computing," arXiv preprint arXiv:1509.08972, 2015.

[107] O. C. Ibe, Elements of Random Walk and Diffusion Processes: John Wiley & Sons,
2013.

[108] K. Kim, J. Lee, and K. Choi, "Approximate De-randomizer for Stochastic Circuits,"
Proc. ISOCC, 2015.

[109] K. Kim, J. Lee, and K. Choi, "An Energy-Efficient Random Number Generator for
Stochastic Circuits," Proc. ASP-DAC, 2016.

１４３

요약(국문초록)

머신러닝(machine learning)은 인지컴퓨팅의 분야로 최근에 산업, 의학,

교통, 엔터테인먼트 등 사람과 상호작용이 필요한 많은 분야에서 뛰어난

성능을 입증 받아 주목을 받고 있다. 효율적인 머신러닝 시스템을 구현하

기 위하여 본 논문은 상위레벨의 알고리즘으로 부터 하위레벨의 하드웨

어 회로에 까지 다양한 계층의 연구를 포함하고 있다.

상위레벨의 알고리즘 연구는 혼성모델(ensemble model)을 활용한 학습방

법에 대한 것이다. 혼성모델은 다수의 특징 추출기(feature extractor)와 분

류기(classifier)를 동시에 사용하는 것으로, 이러한 요소들을 결합하여 단

일 모델에서 발생하는 문제점과 파라미터 최적화 문제점을 해결하여 정

확도 측면의 향상시킨다. 본 연구에서 다수의 특징 추출기와 분류기를 사

용하는 계층적인 혼성 프레임웍(hierarchical ensemble learning framework)을

제안하여 정확도 측면에 향상을 보여 주었다.

머신러닝 시스템은 일반적으로 부정확한 계산을 허용하고 데이터의 중

복성이 존재한다고 알려져 있다. 머신러닝 효율성을 극대화하기 위하여,

이러한 성질을 효율적으로 활용할 수 있는 확률 컴퓨팅(stochastic

computing)을 도입하여, 회로 면적 및 에너지 효율을 높일 수 있는 방법

을 제안하였다. 확률 컴퓨팅은 기존에 고정소수점 연산에 비하여 정확도

를 희생하면서 면적, 속도, 에너지 등을 향상시킬 수 있는 컴퓨팅 방법이

다. 이것을 활용하여 임의의 연산에 대한 회로를 합성할 수 있는 방법을

제안하였다.

최근 머신러닝 분야에서 훌륭한 성능으로 주목을 받고 있는 분야가 딥

러닝 (deep learning)이다. 딥러닝은 많은 뉴런(neuron)과 레이어(layer)를 활

용하여 기존의 머신러닝 시스템의 정확도 문제점을 해결하고 있다. 본 연

구는 기존 딥러닝에 확률 컴퓨팅을 접목하여 향상을 꾀하였다. 하지만 기

１４４

존의 확률 컴퓨팅을 딥러닝에 그대로 적용하는 데는 랜덤 에러, 수치의

제한, 가산기의 문제 등이 존재한다. 본 연구에서는 이러한 문제를 해결

할 수 있는 방법을 제안하여 딥러닝 효율성을 높였다. 또한 대부분의 데

이터들이 결정경계(decision boundary)에서 멀리 떨어져 있는 것을 이용하

여 이른 결정 종료(early decision termination) 방법을 제안하였다. 이를 기

반으로 합성회로의 면적, 속도, 파워 등의 향상을 실험 결과로 보여주었

다.

주요어 : 머신러닝, 기계학습, 확률컴퓨팅, 혼성 학습, 딥러닝,

딥신경망

학 번 : 2012-30193

１４５

	1. Introduction
	1.1 Hierarchical Ensemble Learning Framework
	1.2 Hardware Building Block for Machine Learning By Using Stochastic Computing
	1.2.1 Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks

	2. A Design Framework for Hierarchical Ensemble of Multiple Feature Extractors and Multiple Classifiers
	2.1 Introduction
	2.2 Related work
	2.3 Proposed hierarchical ensemble system
	2.3.1 Local Mapping Block and Global Mapping Block
	2.3.2 Complexity comparison according to composition of LMB
	2.3.3 Motivation for differentiating local and global mappings
	2.3.4 Reinforcement learning for LMB
	2.3.5 Construction of Bayesian network from GMB

	2.4 Experimental results
	2.4.1 Measure of effectiveness for WMV and RL
	2.4.2 Pedestrian detection dataset
	2.4.3 Comparison between GMB and AdaBoost
	2.4.4 UCI Multiple Features dataset
	2.4.5 LMB selection
	2.4.6 Discussion

	2.5 Conclusion

	3. Synthesis of Efficient Stochastic Logic for Many-Variable Expressions
	3.1 Introduction
	3.2 Related Work
	3.3 SC Logic Synthesis for Multivariate Expressions
	3.3.1 Probabilistic Logic
	3.3.2 Definitions
	3.3.3 Overview of the Proposed Method
	3.3.4 Direct Synthesis VS. Kernel-based Synthesis
	3.3.5 SC Kernel
	3.3.6 Prime SC Kernel
	3.3.7 iSC Kernel
	3.3.8 Relationship Between iSC Kernels
	3.3.9 Hybrid Scheme
	3.3.10 Cost Function
	3.3.11 SC Synthesis Algorithm

	3.4 Experimental Results
	3.4.1 Performance of SC Logic Synthesis Algorithm
	3.4.2 Quality of Synthesis Results
	3.4.3 Comparison of Accuracy

	3.5 Conclusion

	4. An Energy-Efficient Random Number Generator for Stochastic Circuits
	4.1 Introduction
	4.2 II. Background
	4.2.1 Preliminaries
	4.2.2 Shortcomings of Conventional Approaches

	4.3 III. Proposed Stochastic Number Generator
	4.3.1 Overview of the Proposed SNG
	4.3.2 Even-distribution Encoding
	4.3.3 Inter-group Randomization
	4.3.4 Proposed Building Block for Bit Shuffling
	4.3.5 Intra-group Randomization

	4.4 Experimental Results
	4.4.1 Accuracy of Generated Stochastic Bit Stream
	4.4.2 Area, Delay, Power, Energy and SCC Average
	4.4.3 Energy Efficiency When Operated under Maximal Precision

	4.5 Conclusion

	5. Approximate De-randomizer for Stochastic Circuits
	5.1 Introduction
	5.2 Proposed Approximate Parallel Counter
	5.2.1 Analysis for Gate Count in 1-layer Approximate PC
	5.2.2 Analysis for Error in 1-layer Approximate PC

	5.3 Experimental Results
	5.4 Conclusion

	6. Dynamic Energy-Accuracy Trade-off Using Stochastic Computing in Deep Neural Networks
	6.1 Introduction
	6.2 Background
	6.3 DNN Using Stochastic Circuit
	6.3.1 Overview of the Proposed DNN using SC
	6.3.2 Removing Near-Zero Weights
	6.3.3 Applying Weight Scaling
	6.3.4 Activation Function with Accumulation

	6.4 Early Decision Termination
	6.4.1 Moving Average Tracking Output Trends

	6.5 Experimental Results
	6.5.1 Accuracy of DNN Using SC
	6.5.2 Effectiveness of Early Decision Termination
	6.5.3 Comparison of Synthesis Results

	6.6 Conclusion

	7. Conclusion
	Bibliography
	요약(국문초록)

<startpage>22
1. Introduction 1
 1.1 Hierarchical Ensemble Learning Framework 1
 1.2 Hardware Building Block for Machine Learning By Using Stochastic Computing 1
 1.2.1 Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks 5
2. A Design Framework for Hierarchical Ensemble of Multiple Feature Extractors and Multiple Classifiers 7
 2.1 Introduction 7
 2.2 Related work 9
 2.3 Proposed hierarchical ensemble system 12
 2.3.1 Local Mapping Block and Global Mapping Block 12
 2.3.2 Complexity comparison according to composition of LMB 15
 2.3.3 Motivation for differentiating local and global mappings 17
 2.3.4 Reinforcement learning for LMB 19
 2.3.5 Construction of Bayesian network from GMB 24
 2.4 Experimental results 32
 2.4.1 Measure of effectiveness for WMV and RL 33
 2.4.2 Pedestrian detection dataset 35
 2.4.3 Comparison between GMB and AdaBoost 41
 2.4.4 UCI Multiple Features dataset 42
 2.4.5 LMB selection 44
 2.4.6 Discussion 45
 2.5 Conclusion 46
3. Synthesis of Efficient Stochastic Logic for Many-Variable Expressions 49
 3.1 Introduction 49
 3.2 Related Work 52
 3.3 SC Logic Synthesis for Multivariate Expressions 54
 3.3.1 Probabilistic Logic 55
 3.3.2 Definitions 58
 3.3.3 Overview of the Proposed Method 60
 3.3.4 Direct Synthesis VS. Kernel-based Synthesis 60
 3.3.5 SC Kernel 63
 3.3.6 Prime SC Kernel 65
 3.3.7 iSC Kernel 68
 3.3.8 Relationship Between iSC Kernels 70
 3.3.9 Hybrid Scheme 75
 3.3.10 Cost Function 76
 3.3.11 SC Synthesis Algorithm 78
 3.4 Experimental Results 82
 3.4.1 Performance of SC Logic Synthesis Algorithm 83
 3.4.2 Quality of Synthesis Results 84
 3.4.3 Comparison of Accuracy 89
 3.5 Conclusion 90
4. An Energy-Efficient Random Number Generator for Stochastic Circuits 91
 4.1 Introduction 91
 4.2 II. Background 92
 4.2.1 Preliminaries 92
 4.2.2 Shortcomings of Conventional Approaches 93
 4.3 III. Proposed Stochastic Number Generator 96
 4.3.1 Overview of the Proposed SNG 96
 4.3.2 Even-distribution Encoding 96
 4.3.3 Inter-group Randomization 98
 4.3.4 Proposed Building Block for Bit Shuffling 100
 4.3.5 Intra-group Randomization 102
 4.4 Experimental Results 103
 4.4.1 Accuracy of Generated Stochastic Bit Stream 104
 4.4.2 Area, Delay, Power, Energy and SCC Average 104
 4.4.3 Energy Efficiency When Operated under Maximal Precision 105
 4.5 Conclusion 106
5. Approximate De-randomizer for Stochastic Circuits 107
 5.1 Introduction 107
 5.2 Proposed Approximate Parallel Counter 108
 5.2.1 Analysis for Gate Count in 1-layer Approximate PC 109
 5.2.2 Analysis for Error in 1-layer Approximate PC 110
 5.3 Experimental Results 111
 5.4 Conclusion 112
6. Dynamic Energy-Accuracy Trade-off Using Stochastic Computing in Deep Neural Networks 113
 6.1 Introduction 113
 6.2 Background 115
 6.3 DNN Using Stochastic Circuit 117
 6.3.1 Overview of the Proposed DNN using SC 117
 6.3.2 Removing Near-Zero Weights 119
 6.3.3 Applying Weight Scaling 120
 6.3.4 Activation Function with Accumulation 121
 6.4 Early Decision Termination 125
 6.4.1 Moving Average Tracking Output Trends 126
 6.5 Experimental Results 127
 6.5.1 Accuracy of DNN Using SC 128
 6.5.2 Effectiveness of Early Decision Termination 129
 6.5.3 Comparison of Synthesis Results 130
 6.6 Conclusion 132
7. Conclusion 134
Bibliography 136
요약(국문초록) 144
</body>

