8,094 research outputs found

    Building a Domain Knowledge Model Based on a Concept Lattice Integrating Expert Constraints

    Get PDF
    International audienceTraditionally, FCA can be used as a tool for eliciting from data a class schema in the form of either a set of attribute implications or a concept lattice. However, such a schema does not necessarily fit the point of view of a domain expert for different reasons, e.g. noise, errors or exceptions in the data. For example, in the domain of animals, an expert may expect that the rule "mammal implies do not lay eggs" holds, while this may not be the case if the platypus is among the objects in the formal context. In this paper, we propose to bridge the possible gap between the representation model based on a concept lattice and the representation model of a domain expert. The knowledge of the expert is encoded as a set of attribute dependencies or constraints which is "aligned" with the set of implications provided by the concept lattice, leading to modifications in the original concept lattice. The method can be generalized for generating lattices satisfying constraints based on attribute dependencies and using extensional projections. This method also allows the experts to keep a trace of the changes occurring in the original lattice and the revised version, and to assess how concepts in practice are related to concepts automatically issued from data

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    Problem-Solving Knowledge Mining from Users’\ud Actions in an Intelligent Tutoring System

    Get PDF
    In an intelligent tutoring system (ITS), the domain expert should provide\ud relevant domain knowledge to the tutor so that it will be able to guide the\ud learner during problem solving. However, in several domains, this knowledge is\ud not predetermined and should be captured or learned from expert users as well as\ud intermediate and novice users. Our hypothesis is that, knowledge discovery (KD)\ud techniques can help to build this domain intelligence in ITS. This paper proposes\ud a framework to capture problem-solving knowledge using a promising approach\ud of data and knowledge discovery based on a combination of sequential pattern\ud mining and association rules discovery techniques. The framework has been implemented\ud and is used to discover new meta knowledge and rules in a given domain\ud which then extend domain knowledge and serve as problem space allowing\ud the intelligent tutoring system to guide learners in problem-solving situations.\ud Preliminary experiments have been conducted using the framework as an alternative\ud to a path-planning problem solver in CanadarmTutor

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    Empirical modelling principles to support learning in a cultural context

    Get PDF
    Much research on pedagogy stresses the need for a broad perspective on learning. Such a perspective might take account (for instance) of the experience that informs knowledge and understanding [Tur91], the situation in which the learning activity takes place [Lav88], and the influence of multiple intelligences [Gar83]. Educational technology appears to hold great promise in this connection. Computer-related technologies such as new media, the internet, virtual reality and brain-mediated communication afford access to a range of learning resources that grows ever wider in its scope and supports ever more sophisticated interactions. Whether educational technology is fulfilling its potential in broadening the horizons for learning activity is more controversial. Though some see the successful development of radically new educational resources as merely a matter of time, investment and engineering, there are also many critics of the trends in computer-based learning who see little evidence of the greater degree of human engagement to which new technologies aspire [Tal95]. This paper reviews the potential application to educational technology of principles and tools for computer-based modelling that have been developed under the auspices of the Empirical Modelling (EM) project at Warwick [EMweb]. This theme was first addressed at length in a previous paper [Bey97], and is here revisited in the light of new practical developments in EM both in respect of tools and of model-building that has been targetted at education at various levels. Our central thesis is that the problems of educational technology stem from the limitations of current conceptual frameworks and tool support for the essential cognitive model building activity, and that tackling these problems requires a radical shift in philosophical perspective on the nature and role of empirical knowledge that has significant practical implications. The paper is in two main sections. The first discusses the limitations of the classical computer science perspective where educational technology to support situated learning is concerned, and relates the learning activities that are most closely associated with a cultural context to the empiricist perspective on learning introduced in [Bey97]. The second outlines the principles of EM and describes and illustrates features of its practical application that are particularly well-suited to learning in a cultural setting

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling
    • …
    corecore