2,320 research outputs found

    Multi Stage based Time Series Analysis of User Activity on Touch Sensitive Surfaces in Highly Noise Susceptible Environments

    Full text link
    This article proposes a multistage framework for time series analysis of user activity on touch sensitive surfaces in noisy environments. Here multiple methods are put together in multi stage framework; including moving average, moving median, linear regression, kernel density estimation, partial differential equations and Kalman filter. The proposed three stage filter consisting of partial differential equation based denoising, Kalman filter and moving average method provides ~25% better noise reduction than other methods according to Mean Squared Error (MSE) criterion in highly noise susceptible environments. Apart from synthetic data, we also obtained real world data like hand writing, finger/stylus drags etc. on touch screens in the presence of high noise such as unauthorized charger noise or display noise and validated our algorithms. Furthermore, the proposed algorithm performs qualitatively better than the existing solutions for touch panels of the high end hand held devices available in the consumer electronics market qualitatively.Comment: 9 pages (including 9 figures and 3 tables); International Journal of Computer Applications (published

    Grasp-sensitive surfaces

    Get PDF
    Grasping objects with our hands allows us to skillfully move and manipulate them. Hand-held tools further extend our capabilities by adapting precision, power, and shape of our hands to the task at hand. Some of these tools, such as mobile phones or computer mice, already incorporate information processing capabilities. Many other tools may be augmented with small, energy-efficient digital sensors and processors. This allows for graspable objects to learn about the user grasping them - and supporting the user's goals. For example, the way we grasp a mobile phone might indicate whether we want to take a photo or call a friend with it - and thus serve as a shortcut to that action. A power drill might sense whether the user is grasping it firmly enough and refuse to turn on if this is not the case. And a computer mouse could distinguish between intentional and unintentional movement and ignore the latter. This dissertation gives an overview of grasp sensing for human-computer interaction, focusing on technologies for building grasp-sensitive surfaces and challenges in designing grasp-sensitive user interfaces. It comprises three major contributions: a comprehensive review of existing research on human grasping and grasp sensing, a detailed description of three novel prototyping tools for grasp-sensitive surfaces, and a framework for analyzing and designing grasp interaction: For nearly a century, scientists have analyzed human grasping. My literature review gives an overview of definitions, classifications, and models of human grasping. A small number of studies have investigated grasping in everyday situations. They found a much greater diversity of grasps than described by existing taxonomies. This diversity makes it difficult to directly associate certain grasps with users' goals. In order to structure related work and own research, I formalize a generic workflow for grasp sensing. It comprises *capturing* of sensor values, *identifying* the associated grasp, and *interpreting* the meaning of the grasp. A comprehensive overview of related work shows that implementation of grasp-sensitive surfaces is still hard, researchers often are not aware of related work from other disciplines, and intuitive grasp interaction has not yet received much attention. In order to address the first issue, I developed three novel sensor technologies designed for grasp-sensitive surfaces. These mitigate one or more limitations of traditional sensing techniques: **HandSense** uses four strategically positioned capacitive sensors for detecting and classifying grasp patterns on mobile phones. The use of custom-built high-resolution sensors allows detecting proximity and avoids the need to cover the whole device surface with sensors. User tests showed a recognition rate of 81%, comparable to that of a system with 72 binary sensors. **FlyEye** uses optical fiber bundles connected to a camera for detecting touch and proximity on arbitrarily shaped surfaces. It allows rapid prototyping of touch- and grasp-sensitive objects and requires only very limited electronics knowledge. For FlyEye I developed a *relative calibration* algorithm that allows determining the locations of groups of sensors whose arrangement is not known. **TDRtouch** extends Time Domain Reflectometry (TDR), a technique traditionally used for inspecting cable faults, for touch and grasp sensing. TDRtouch is able to locate touches along a wire, allowing designers to rapidly prototype and implement modular, extremely thin, and flexible grasp-sensitive surfaces. I summarize how these technologies cater to different requirements and significantly expand the design space for grasp-sensitive objects. Furthermore, I discuss challenges for making sense of raw grasp information and categorize interactions. Traditional application scenarios for grasp sensing use only the grasp sensor's data, and only for mode-switching. I argue that data from grasp sensors is part of the general usage context and should be only used in combination with other context information. For analyzing and discussing the possible meanings of grasp types, I created the GRASP model. It describes five categories of influencing factors that determine how we grasp an object: *Goal* -- what we want to do with the object, *Relationship* -- what we know and feel about the object we want to grasp, *Anatomy* -- hand shape and learned movement patterns, *Setting* -- surrounding and environmental conditions, and *Properties* -- texture, shape, weight, and other intrinsics of the object I conclude the dissertation with a discussion of upcoming challenges in grasp sensing and grasp interaction, and provide suggestions for implementing robust and usable grasp interaction.Die FĂ€higkeit, GegenstĂ€nde mit unseren HĂ€nden zu greifen, erlaubt uns, diese vielfĂ€ltig zu manipulieren. Werkzeuge erweitern unsere FĂ€higkeiten noch, indem sie Genauigkeit, Kraft und Form unserer HĂ€nde an die Aufgabe anpassen. Digitale Werkzeuge, beispielsweise Mobiltelefone oder ComputermĂ€use, erlauben uns auch, die FĂ€higkeiten unseres Gehirns und unserer Sinnesorgane zu erweitern. Diese GerĂ€te verfĂŒgen bereits ĂŒber Sensoren und Recheneinheiten. Aber auch viele andere Werkzeuge und Objekte lassen sich mit winzigen, effizienten Sensoren und Recheneinheiten erweitern. Dies erlaubt greifbaren Objekten, mehr ĂŒber den Benutzer zu erfahren, der sie greift - und ermöglicht es, ihn bei der Erreichung seines Ziels zu unterstĂŒtzen. Zum Beispiel könnte die Art und Weise, in der wir ein Mobiltelefon halten, verraten, ob wir ein Foto aufnehmen oder einen Freund anrufen wollen - und damit als Shortcut fĂŒr diese Aktionen dienen. Eine Bohrmaschine könnte erkennen, ob der Benutzer sie auch wirklich sicher hĂ€lt und den Dienst verweigern, falls dem nicht so ist. Und eine Computermaus könnte zwischen absichtlichen und unabsichtlichen Mausbewegungen unterscheiden und letztere ignorieren. Diese Dissertation gibt einen Überblick ĂŒber Grifferkennung (*grasp sensing*) fĂŒr die Mensch-Maschine-Interaktion, mit einem Fokus auf Technologien zur Implementierung griffempfindlicher OberflĂ€chen und auf Herausforderungen beim Design griffempfindlicher Benutzerschnittstellen. Sie umfasst drei primĂ€re BeitrĂ€ge zum wissenschaftlichen Forschungsstand: einen umfassenden Überblick ĂŒber die bisherige Forschung zu menschlichem Greifen und Grifferkennung, eine detaillierte Beschreibung dreier neuer Prototyping-Werkzeuge fĂŒr griffempfindliche OberflĂ€chen und ein Framework fĂŒr Analyse und Design von griff-basierter Interaktion (*grasp interaction*). Seit nahezu einem Jahrhundert erforschen Wissenschaftler menschliches Greifen. Mein Überblick ĂŒber den Forschungsstand beschreibt Definitionen, Klassifikationen und Modelle menschlichen Greifens. In einigen wenigen Studien wurde bisher Greifen in alltĂ€glichen Situationen untersucht. Diese fanden eine deutlich grĂ¶ĂŸere DiversitĂ€t in den Griffmuster als in existierenden Taxonomien beschreibbar. Diese DiversitĂ€t erschwert es, bestimmten Griffmustern eine Absicht des Benutzers zuzuordnen. Um verwandte Arbeiten und eigene Forschungsergebnisse zu strukturieren, formalisiere ich einen allgemeinen Ablauf der Grifferkennung. Dieser besteht aus dem *Erfassen* von Sensorwerten, der *Identifizierung* der damit verknĂŒpften Griffe und der *Interpretation* der Bedeutung des Griffes. In einem umfassenden Überblick ĂŒber verwandte Arbeiten zeige ich, dass die Implementierung von griffempfindlichen OberflĂ€chen immer noch ein herausforderndes Problem ist, dass Forscher regelmĂ€ĂŸig keine Ahnung von verwandten Arbeiten in benachbarten Forschungsfeldern haben, und dass intuitive Griffinteraktion bislang wenig Aufmerksamkeit erhalten hat. Um das erstgenannte Problem zu lösen, habe ich drei neuartige Sensortechniken fĂŒr griffempfindliche OberflĂ€chen entwickelt. Diese mindern jeweils eine oder mehrere SchwĂ€chen traditioneller Sensortechniken: **HandSense** verwendet vier strategisch positionierte kapazitive Sensoren um Griffmuster zu erkennen. Durch die Verwendung von selbst entwickelten, hochauflösenden Sensoren ist es möglich, schon die AnnĂ€herung an das Objekt zu erkennen. Außerdem muss nicht die komplette OberflĂ€che des Objekts mit Sensoren bedeckt werden. Benutzertests ergaben eine Erkennungsrate, die vergleichbar mit einem System mit 72 binĂ€ren Sensoren ist. **FlyEye** verwendet LichtwellenleiterbĂŒndel, die an eine Kamera angeschlossen werden, um AnnĂ€herung und BerĂŒhrung auf beliebig geformten OberflĂ€chen zu erkennen. Es ermöglicht auch Designern mit begrenzter Elektronikerfahrung das Rapid Prototyping von berĂŒhrungs- und griffempfindlichen Objekten. FĂŒr FlyEye entwickelte ich einen *relative-calibration*-Algorithmus, der verwendet werden kann um Gruppen von Sensoren, deren Anordnung unbekannt ist, semi-automatisch anzuordnen. **TDRtouch** erweitert Time Domain Reflectometry (TDR), eine Technik die ĂŒblicherweise zur Analyse von KabelbeschĂ€digungen eingesetzt wird. TDRtouch erlaubt es, BerĂŒhrungen entlang eines Drahtes zu lokalisieren. Dies ermöglicht es, schnell modulare, extrem dĂŒnne und flexible griffempfindliche OberflĂ€chen zu entwickeln. Ich beschreibe, wie diese Techniken verschiedene Anforderungen erfĂŒllen und den *design space* fĂŒr griffempfindliche Objekte deutlich erweitern. Desweiteren bespreche ich die Herausforderungen beim Verstehen von Griffinformationen und stelle eine Einteilung von Interaktionsmöglichkeiten vor. Bisherige Anwendungsbeispiele fĂŒr die Grifferkennung nutzen nur Daten der Griffsensoren und beschrĂ€nken sich auf Moduswechsel. Ich argumentiere, dass diese Sensordaten Teil des allgemeinen Benutzungskontexts sind und nur in Kombination mit anderer Kontextinformation verwendet werden sollten. Um die möglichen Bedeutungen von Griffarten analysieren und diskutieren zu können, entwickelte ich das GRASP-Modell. Dieses beschreibt fĂŒnf Kategorien von Einflussfaktoren, die bestimmen wie wir ein Objekt greifen: *Goal* -- das Ziel, das wir mit dem Griff erreichen wollen, *Relationship* -- das VerhĂ€ltnis zum Objekt, *Anatomy* -- Handform und Bewegungsmuster, *Setting* -- Umgebungsfaktoren und *Properties* -- Eigenschaften des Objekts, wie OberflĂ€chenbeschaffenheit, Form oder Gewicht. Ich schließe mit einer Besprechung neuer Herausforderungen bei der Grifferkennung und Griffinteraktion und mache VorschlĂ€ge zur Entwicklung von zuverlĂ€ssiger und benutzbarer Griffinteraktion

    An electronic architecture for mediating digital information in a hallway facÌŠade

    Get PDF
    Ubiquitous computing requires integration of physical space with digital information. This presents the challenges of integrating electronics, physical space, software and the interaction tools which can effectively communicate with the audience. Many research groups have embraced different techniques depending on location, context, space, and availability of necessary skills to make the world around us as an interface to the digital world. Encouraged by early successes and fostered by project undertaken by tangible visualization group. We introduce an architecture of Blades and Tiles for the development and realization of interactive wall surfaces. It provides an inexpensive, open-ended platform for constructing large-scale tangible and embedded interfaces. In this paper, we propose tiles built using inexpensive pegboards and a gateway for each of these tiles to provide access to digital information. The paper describes the architecture using a corridor fa\c{c}ade application. The corridor fa\c{c}ade uses full-spectrum LEDs, physical labels and stencils, and capacitive touch sensors to provide mediated representation, monitoring and querying of physical and digital content. Example contents include the physical and online status of people and the activity and dynamics of online research content repositories. Several complementary devices such as Microsoft PixelSense and smartdevices can support additional user interaction with the system. This enables interested people in synergistic physical environments to observe, explore, understand, and engage in ongoing activities and relationships. This paper describes the hardware architecture and software libraries employed and how they are used in our research center hallway and academic semester projects

    A Framework For Abstracting, Designing And Building Tangible Gesture Interactive Systems

    Get PDF
    This thesis discusses tangible gesture interaction, a novel paradigm for interacting with computer that blends concepts from the more popular fields of tangible interaction and gesture interaction. Taking advantage of the human innate abilities to manipulate physical objects and to communicate through gestures, tangible gesture interaction is particularly interesting for interacting in smart environments, bringing the interaction with computer beyond the screen, back to the real world. Since tangible gesture interaction is a relatively new field of research, this thesis presents a conceptual framework that aims at supporting future work in this field. The Tangible Gesture Interaction Framework provides support on three levels. First, it helps reflecting from a theoretical point of view on the different types of tangible gestures that can be designed, physically, through a taxonomy based on three components (move, hold and touch) and additional attributes, and semantically, through a taxonomy of the semantic constructs that can be used to associate meaning to tangible gestures. Second, it helps conceiving new tangible gesture interactive systems and designing new interactions based on gestures with objects, through dedicated guidelines for tangible gesture definition and common practices for different application domains. Third, it helps building new tangible gesture interactive systems supporting the choice between four different technological approaches (embedded and embodied, wearable, environmental or hybrid) and providing general guidance for the different approaches. As an application of this framework, this thesis presents also seven tangible gesture interactive systems for three different application domains, i.e., interacting with the In-Vehicle Infotainment System (IVIS) of the car, the emotional and interpersonal communication, and the interaction in a smart home. For the first application domain, four different systems that use gestures on the steering wheel as interaction means with the IVIS have been designed, developed and evaluated. For the second application domain, an anthropomorphic lamp able to recognize gestures that humans typically perform for interpersonal communication has been conceived and developed. A second system, based on smart t-shirts, recognizes when two people hug and reward the gesture with an exchange of digital information. Finally, a smart watch for recognizing gestures performed with objects held in the hand in the context of the smart home has been investigated. The analysis of existing systems found in literature and of the system developed during this thesis shows that the framework has a good descriptive and evaluative power. The applications developed during this thesis show that the proposed framework has also a good generative power.Questa tesi discute l’interazione gestuale tangibile, un nuovo paradigma per interagire con il computer che unisce i principi dei piĂč comuni campi di studio dell’interazione tangibile e dell’interazione gestuale. Sfruttando le abilitĂ  innate dell’uomo di manipolare oggetti fisici e di comunicare con i gesti, l’interazione gestuale tangibile si rivela particolarmente interessante per interagire negli ambienti intelligenti, riportando l’attenzione sul nostro mondo reale, al di lĂ  dello schermo dei computer o degli smartphone. PoichĂ© l’interazione gestuale tangibile Ăš un campo di studio relativamente recente, questa tesi presenta un framework (quadro teorico) che ha lo scopo di assistere lavori futuri in questo campo. Il Framework per l’Interazione Gestuale Tangibile fornisce supporto su tre livelli. Per prima cosa, aiuta a riflettere da un punto di vista teorico sui diversi tipi di gesti tangibili che possono essere eseguiti fisicamente, grazie a una tassonomia basata su tre componenti (muovere, tenere, toccare) e attributi addizionali, e che possono essere concepiti semanticamente, grazie a una tassonomia di tutti i costrutti semantici che permettono di associare dei significati ai gesti tangibili. In secondo luogo, il framework proposto aiuta a concepire nuovi sistemi interattivi basati su gesti tangibili e a ideare nuove interazioni basate su gesti con gli oggetti, attraverso linee guida per la definizione di gesti tangibili e una selezione delle migliore pratiche per i differenti campi di applicazione. Infine, il framework aiuta a implementare nuovi sistemi interattivi basati su gesti tangibili, permettendo di scegliere tra quattro differenti approcci tecnologici (incarnato e integrato negli oggetti, indossabile, distribuito nell’ambiente, o ibrido) e fornendo una guida generale per la scelta tra questi differenti approcci. Come applicazione di questo framework, questa tesi presenta anche sette sistemi interattivi basati su gesti tangibili, realizzati per tre differenti campi di applicazione: l’interazione con i sistemi di infotainment degli autoveicoli, la comunicazione interpersonale delle emozioni, e l’interazione nella casa intelligente. Per il primo campo di applicazione, sono stati progettati, sviluppati e testati quattro differenti sistemi che usano gesti tangibili effettuati sul volante come modalitĂ  di interazione con il sistema di infotainment. Per il secondo campo di applicazione, Ăš stata concepita e sviluppata una lampada antropomorfica in grado di riconoscere i gesti tipici dell’interazione interpersonale. Per lo stesso campo di applicazione, un secondo sistema, basato su una maglietta intelligente, riconosce quando due persone si abbracciano e ricompensa questo gesto con uno scambio di informazioni digitali. Infine, per l’interazione nella casa intelligente, Ăš stata investigata la realizzazione di uno smart watch per il riconoscimento di gesti eseguiti con oggetti tenuti nella mano. L’analisi dei sistemi interattivi esistenti basati su gesti tangibili permette di dimostrare che il framework ha un buon potere descrittivo e valutativo. Le applicazioni sviluppate durante la tesi mostrano che il framework proposto ha anche un valido potere generativo

    Sensitive and Makeable Computational Materials for the Creation of Smart Everyday Objects

    Get PDF
    The vision of computational materials is to create smart everyday objects using the materi- als that have sensing and computational capabilities embedded into them. However, today’s development of computational materials is limited because its interfaces (i.e. sensors) are unable to support wide ranges of human interactions , and withstand the fabrication meth- ods of everyday objects (e.g. cutting and assembling). These barriers hinder citizens from creating smart every day objects using computational materials on a large scale. To overcome the barriers, this dissertation presents the approaches to develop compu- tational materials to be 1) sensitive to a wide variety of user interactions, including explicit interactions (e.g. user inputs) and implicit interactions (e.g. user contexts), and 2) makeable against a wide range of fabrication operations, such cutting and assembling. I exemplify the approaches through five research projects on two common materials, textile and wood. For each project, I explore how a material interface can be made to sense user inputs or activities, and how it can be optimized to balance sensitivity and fabrication complexity. I discuss the sensing algorithms and machine learning model to interpret the sensor data as high-level abstraction and interaction. I show the practical applications of developed computational materials. I demonstrate the evaluation study to validate their performance and robustness. In the end of this dissertation, I summarize the contributions of my thesis and discuss future directions for the vision of computational materials

    Toward New Ecologies of Cyberphysical Representational Forms, Scales, and Modalities

    Get PDF
    Research on tangible user interfaces commonly focuses on tangible interfaces acting alone or in comparison with screen-based multi-touch or graphical interfaces. In contrast, hybrid approaches can be seen as the norm for established mainstream interaction paradigms. This dissertation describes interfaces that support complementary information mediations, representational forms, and scales toward an ecology of systems embodying hybrid interaction modalities. I investigate systems combining tangible and multi-touch, as well as systems combining tangible and virtual reality interaction. For each of them, I describe work focusing on design and fabrication aspects, as well as work focusing on reproducibility, engagement, legibility, and perception aspects

    Physical sketching tools and techniques for customized sensate surfaces

    Get PDF
    Sensate surfaces are a promising avenue for enhancing human interaction with digital systems due to their inherent intuitiveness and natural user interface. Recent technological advancements have enabled sensate surfaces to surpass the constraints of conventional touchscreens by integrating them into everyday objects, creating interactive interfaces that can detect various inputs such as touch, pressure, and gestures. This allows for more natural and intuitive control of digital systems. However, prototyping interactive surfaces that are customized to users' requirements using conventional techniques remains technically challenging due to limitations in accommodating complex geometric shapes and varying sizes. Furthermore, it is crucial to consider the context in which customized surfaces are utilized, as relocating them to fabrication labs may lead to the loss of their original design context. Additionally, prototyping high-resolution sensate surfaces presents challenges due to the complex signal processing requirements involved. This thesis investigates the design and fabrication of customized sensate surfaces that meet the diverse requirements of different users and contexts. The research aims to develop novel tools and techniques that overcome the technical limitations of current methods and enable the creation of sensate surfaces that enhance human interaction with digital systems.Sensorische OberflĂ€chen sind aufgrund ihrer inhĂ€renten IntuitivitĂ€t und natĂŒrlichen BenutzeroberflĂ€che ein vielversprechender Ansatz, um die menschliche Interaktionmit digitalen Systemen zu verbessern. Die jĂŒngsten technologischen Fortschritte haben es ermöglicht, dass sensorische OberflĂ€chen die BeschrĂ€nkungen herkömmlicher Touchscreens ĂŒberwinden, indem sie in AlltagsgegenstĂ€nde integriert werden und interaktive Schnittstellen schaffen, die diverse Eingaben wie BerĂŒhrung, Druck, oder Gesten erkennen können. Dies ermöglicht eine natĂŒrlichere und intuitivere Steuerung von digitalen Systemen. Das Prototyping interaktiver OberflĂ€chen, die mit herkömmlichen Techniken an die BedĂŒrfnisse der Nutzer angepasst werden, bleibt jedoch eine technische Herausforderung, da komplexe geometrische Formen und variierende GrĂ¶ĂŸen nur begrenzt berĂŒcksichtigt werden können. DarĂŒber hinaus ist es von entscheidender Bedeutung, den Kontext, in dem diese individuell angepassten OberflĂ€chen verwendet werden, zu berĂŒcksichtigen, da eine Verlagerung in Fabrikations-Laboratorien zum Verlust ihres ursprĂŒnglichen Designkontextes fĂŒhren kann. Zudem stellt das Prototyping hochauflösender sensorischer OberflĂ€chen aufgrund der komplexen Anforderungen an die Signalverarbeitung eine Herausforderung dar. Diese Arbeit erforscht dasDesign und die Fabrikation individuell angepasster sensorischer OberflĂ€chen, die den diversen Anforderungen unterschiedlicher Nutzer und Kontexte gerecht werden. Die Forschung zielt darauf ab, neuartigeWerkzeuge und Techniken zu entwickeln, die die technischen BeschrĂ€nkungen derzeitigerMethoden ĂŒberwinden und die Erstellung von sensorischen OberflĂ€chen ermöglichen, die die menschliche Interaktion mit digitalen Systemen verbessern

    Light on horizontal interactive surfaces: Input space for tabletop computing

    Get PDF
    In the last 25 years we have witnessed the rise and growth of interactive tabletop research, both in academic and in industrial settings. The rising demand for the digital support of human activities motivated the need to bring computational power to table surfaces. In this article, we review the state of the art of tabletop computing, highlighting core aspects that frame the input space of interactive tabletops: (a) developments in hardware technologies that have caused the proliferation of interactive horizontal surfaces and (b) issues related to new classes of interaction modalities (multitouch, tangible, and touchless). A classification is presented that aims to give a detailed view of the current development of this research area and define opportunities and challenges for novel touch- and gesture-based interactions between the human and the surrounding computational environment. © 2014 ACM.This work has been funded by Integra (Amper Sistemas and CDTI, Spanish Ministry of Science and Innovation) and TIPEx (TIN2010-19859-C03-01) projects and Programa de Becas y Ayudas para la Realización de Estudios Oficiales de Måster y Doctorado en la Universidad Carlos III de Madrid, 2010

    Sound Aesthetic: A Form of Narrative

    Get PDF
    This research presents an exploration into a novel design methodology that incorporates architecture, multimedia, and interactive digital technologies to create an immersive experience that encourages a spatial and sensorial discourse between user and their built environment. This immersive design method creates a continuous narrative that allows a multi-directional interaction between the two. This interaction creates a “sound” architectural aesthetic that changes the experience of space. The target of the interaction between user and space is the five human senses resulting in an immersive aesthetic. In order to illustrate this immersive aesthetic, five architectural prototypes were created using an assorted design workflow of parametric programming environment and interactive prototyping platform. This workflow is employed for the creation of five prototypes used for the simulation that has user interaction as an input and formal geometries as an output. These five prototypes target various human senses in order to enhance the immersive aesthetic. Each protoype is evaluated according to individual prototype’s ability to stimulate user’s senses. Finally, future research based on the outcomes of this research is suggested
    • 

    corecore