5,904 research outputs found

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified

    Can building footprint extraction from LiDAR be used productively in a topographic mapping context?

    Get PDF
    Chapter 3Light Detection and Ranging (LiDAR) is a quick and economical method for obtaining cloud-point data that can be used in various disciplines and a diversity of applications. LiDAR is a technique that is based on laser technology. The process looks at the two-way travel time of laser beams and measures the time and distance travelled between the laser sensor and the ground (Shan & Sampath, 2005). National Mapping Agencies (NMAs) have traditionally relied on manual methods, such as photogrammetric capture, to collect topographic detail. These methods are laborious, work-intensive, lengthy and hence, costly. In addition because photogrammetric capture methods are often time-consuming, by the time the capture has been carried out, the information source, that is the aerial photography, is out of date (Jenson and Cowen, 1999). Hence NMAs aspire to exploit methods of data capture that are efficient, quick, and cost-effective while producing high quality outputs, which is why the application of LiDAR within NMAs has been increasing. One application that has seen significant advances in the last decade is building footprint extraction (Shirowzhan and Lim, 2013). The buildings layer is a key reference dataset and having up-to-date, current and complete building information is of paramount importance, as can be witnessed with government agencies and the private sectors spending millions each year on aerial photography as a source for collecting building footprint information (Jenson and Cowen, 1999). In the last decade automatic extraction of building footprints from LiDAR data has improved sufficiently to be of an acceptable accuracy for urban planning (Shirowzhan and Lim, 2013).peer-reviewe

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Change detection of buildings from satellite imagery and lidar data

    Get PDF
    Geospatial objects change over time and this necessitates periodic updating of the cartography that represents them. Currently, this updating is done manually, by interpreting aerial photographs, but this is an expensive and time-consuming process. While several kinds of geospatial objects are recognized, this article focuses on buildings. Specifically, we propose a novel automatic approach for detecting buildings that uses satellite imagery and laser scanner data as a tool for updating buildings for a vector geospatial database. We apply the support vector machine (SVM) classification algorithm to a joint satellite and laser data set for the extraction of buildings. SVM training is automatically carried out from the vector geospatial database. For visualization purposes, the changes are presented using a variation of the traffic-light map. The different colours assist human operators in performing the final cartographic updating. Most of the important changes were detected by the proposed method. The method not only detects changes, but also identifies inaccuracies in the cartography of the vector database. Small houses and low buildings surrounded by high trees present significant problems with regard to automatic detection compared to large houses and taller buildings. In addition to visual evaluation, this study was checked for completeness and correctness using numerical evaluation and receiver operating characteristic curves. The high values obtained for these parameters confirmed the efficacy of the method

    High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques

    Get PDF
    The need for the olive farm modernization have encouraged the research of more efficient crop management strategies through cross-breeding programs to release new olive cultivars more suitable for mechanization and use in intensive orchards, with high quality production and resistance to biotic and abiotic stresses. The advancement of breeding programs are hampered by the lack of efficient phenotyping methods to quickly and accurately acquire crop traits such as morphological attributes (tree vigor and vegetative growth habits), which are key to identify desirable genotypes as early as possible. In this context, an UAV-based high-throughput system for olive breeding program applications was developed to extract tree traits in large-scale phenotyping studies under field conditions. The system consisted of UAV-flight configurations, in terms of flight altitude and image overlaps, and a novel, automatic, and accurate object-based image analysis (OBIA) algorithm based on point clouds, which was evaluated in two experimental trials in the framework of a table olive breeding program, with the aim to determine the earliest date for suitable quantifying of tree architectural traits. Two training systems (intensive and hedgerow) were evaluated at two very early stages of tree growth: 15 and 27 months after planting. Digital Terrain Models (DTMs) were automatically and accurately generated by the algorithm as well as every olive tree identified, independently of the training system and tree age. The architectural traits, specially tree height and crown area, were estimated with high accuracy in the second flight campaign, i.e. 27 months after planting. Differences in the quality of 3D crown reconstruction were found for the growth patterns derived from each training system. These key phenotyping traits could be used in several olive breeding programs, as well as to address some agronomical goals. In addition, this system is cost and time optimized, so that requested architectural traits could be provided in the same day as UAV flights. This high-throughput system may solve the actual bottleneck of plant phenotyping of "linking genotype and phenotype," considered a major challenge for crop research in the 21st century, and bring forward the crucial time of decision making for breeders
    corecore