1,816 research outputs found

    Remote monitoring and failure prediction of guiding elements and diverting pulleys in passenger elevators

    Get PDF
    Accelerated urbanization has lead to the rising height of buildings and demand for intensive high performance of elevators in recent years. Consequently, condition monitoring has become a highly desirable capability as the complexity of elevator systems increased. The goal of this study is to develop a monitoring method for elevator components which are subjected to mechanical degradation and failures. The method is capable of indicating the current health condition, predicting future failure as well as detecting emerging issues during operation. Studies of the fundamental principle of elements of condition monitoring such as measurement and measuring equipment, remaining useful life models laid the foundation for new method developing. Moreover, there were reviews of the implementation of health management systems in aerospace and marine industry. A prototype was built from the inductive sensor and open sources embedded system. The device has been installed in two different elevators for data acquisition. Basic data visualization and analysis models were employed for current health state assessment and failure trend prediction. The results include validation of the condition monitoring method and prediction of time-to-failure. Arithmetic means of displacement data determined operating condition whereas the linear regression model was used to predict failure event. Moreover, while suggesting the potential usefulness of the method for system condition assessment, the analysis of the data also exposed challenges inconsistency of the measuring method, data filtering technique as well as large data size requirement

    Cost modelling of rapid manufacturing based mass customisation system for fabrication of custom foot orthoses

    Get PDF
    PhD ThesisSolid freeform fabrication (SFF) or Additive manufacturing (AM) techniques have emerged in recent years as advanced manufacturing techniques. These techniques have demonstrated advantages particularly in situations where the demands for unique geometrical structured customer-specific products are high and the time to market is very short. Applications of these techniques in the medical sector in combination with the latest medical digital imaging technologies are growing quickly. The techniques have inherent advantages of compatibility with the output information of medical digitising techniques. Foot orthoses are medical devices used as shoe inserts in the treatment of foot disorders, injuries and diseases such as diabetes, rheumatoid arthritis, congenital defects and other foot related injuries. Currently custom foot orthoses are fabricated through manufacturing techniques which involve costly and based on lengthy trial and error manufacturing process. These techniques have limitations in terms of fabricating required geometries and incorporating complex design features in the custom-made orthoses. The novelty of this research is to explore the commercial scale application of rapid manufacturing techniques and to assess a rapid manufacturing based design and fabrication system for production of custom foot orthoses. The developed system is aimed at delivering the custom made orthoses at mass scale with improved fit, consistency, accuracy and increased product quality. The traditional design and fabrication process for production of custom foot orthoses was investigated and modelled with IDEF0 modelling methodology. The developed IDEF0 model was re-modelled and then the rapid manufacturing approach was integrated in the design and fabrication process. The main functions of foot geometry capture, orthoses design and manufacture of orthoses were modelled and evaluated individually with respect to time and cost and quality of the final product. Different well-established rapid manufacturing techniques were integrated in the current design and fabrication process. The results showed that the techniques have significant impacts on the overall design and fabrication process in terms of increased process efficiency, low lead-time, increased productivity and improved quality of the final product. An orthosis model was fabricated on an experimental basis using different well established rapid manufacturing techniques. The techniques were separately investigated and analysed in terms of orthoses fabrication cost and build time. The cost and lead-time in different techniques were modelled, analysed and evaluated for evaluation of commercial scale applications. The analysis and evaluation of the cost and lead-time modelled for different rapid manufacturing techniques showed that selective laser sintering technique is the better option for integrating the technique in fabrication of custom foot orthoses and that it has the potential to compete with conventional techniques

    SELF-IMAGE MULTIMEDIA TECHNOLOGIES FOR FEEDFORWARD OBSERVATIONAL LEARNING

    Get PDF
    This dissertation investigates the development and use of self-images in augmented reality systems for learning and learning-based activities. This work focuses on self- modeling, a particular form of learning, actively employed in various settings for therapy or teaching. In particular, this work aims to develop novel multimedia systems to support the display and rendering of augmented self-images. It aims to use interactivity (via games) as a means of obtaining imagery for use in creating augmented self-images. Two multimedia systems are developed, discussed and analyzed. The proposed systems are validated in terms of their technical innovation and their clinical efficacy in delivering behavioral interventions for young children on the autism spectrum

    The architecture of automobile and building design : learning from 100 years of parallel processes

    Get PDF
    The industrial revolution has had a critical impact on society in general and architecture in particular. How we design, build and use buildings is different due to industrial changes in materials, processes and techniques. A key manifestation of the industrial revolution has been the automobile. Since the automobile is a more direct result of application of technique, it is helpful to examine its design to better understand the less direct influences of technique in architecture. This is especially important at a time when the role of technology in architecture is becoming both more significant and more difficult to define and evaluate. Looking at how various design concepts and objectives have been used in parallel between automobile and building designers is interesting and helpful to designers of both. Each can learn a great deal from the other. This end is aided by examining four noteworthy architects of the past one hundred years that were actively involved in building and automobile design. Not all of the technological objectives of automobile design have been achieved in its contemporary design. Some of these same objectives appear to have been better realized in building design. Work by some contemporary architects illustrates how this has occurred and how it might be furthered in the interest of improving the quality of future architecture

    Privaatsust säilitava raalnägemise meetodi arendamine kehalise aktiivsuse automaatseks jälgimiseks koolis

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneKuidas vaadelda inimesi ilma neid nägemata? Öeldakse, et ei ole viisakas jõllitada. Õigus privaatsusele on lausa inimõigus. Siiski on inimkäitumises palju sellist, mida teadlased tahaksid uurida inimesi vaadeldes. Näiteks tahame teada, kas lapsed hakkavad vahetunnis rohkem liikuma, kui koolis keelatakse nutitelefonid? Selle välja selgitamiseks peaks teadlane küsima lapsevanematelt nõusolekut võsukeste vaatlemiseks. Eeldusel, et lapsevanemad annavad loa, oleks klassikaliseks vaatluseks vaja tohutult palju tööjõudu – mitu vaatlejat koolimajas iga päev piisavalt pikal perioodil enne ja pärast nutitelefoni keelu kehtestamist. Doktoritööga püüdsin lahendada korraga privaatsuse probleemi ja tööjõu probleemi, asendades inimvaatleja tehisaruga. Kaasaegsed masinõppe meetodid võimaldavad luua mudeleid, mis tuvastavad automaatselt pildil või videos kujutatud objekte ja nende omadusi. Kui tahame tehisaru, mis tunneb pildil ära inimese, tuleb moodustada masinõppe andmestik, kus on pilte inimestest ja pilte ilma inimesteta. Kui tahame tehisaru, mis eristaks videos madalat ja kõrget kehalist aktiivsust, on vaja vastavat videoandmestikku. Doktoritöös kogusingi andmestiku, kus video laste liikumisest on sünkroniseeritud puusal kantavate aktseleromeetritega, et treenida mudel, mis eristaks videopikslites madalamat ja kõrgemat liikumise intensiivsust. Koostöös Tehonoloogiainstituudi iCV laboriga arendasime välja videoanalüüsi sensori prototüübi, mis suudab reaalaja kiirusel hinnata kaamera vaateväljas olevate inimeste kehalise aktiivsuse taset. Just see, et tehisaru suudab tuletada videost kehalise aktiivsuse informatsiooni ilma neid videokaadreid salvestamata ega inimestele üldsegi näitamata, võimaldab vaadelda inimesi ilma neid nägemata. Väljatöötatud meetod on mõeldud kehalise aktiivsuse mõõtmiseks koolipõhistes teadusuuringutes ning seetõttu on arenduses rõhutatud privaatsuse kaitsmist ja teaduseetikat. Laiemalt vaadates illustreerib doktoritöö aga raalnägemistehnoloogiate potentsiaali töötlemaks visuaalset infot linnaruumis ja töökohtadel ning mitte ainult kehalise aktiivsuse mõõtmiseks kõrgete teaduseetika kriteerimitega. Siin ongi koht avalikuks aruteluks – millistel tingimustel või kas üldse on OK, kui sind jõllitab robot?  How to observe people without seeing them? They say it's not polite to stare. The right to privacy is considered a human right. However, there is much in human behavior that scientists would like to study via observation. For example, we want to know whether children will start moving more during recess if smartphones are banned at school? To figure this out, scientists would have to ask parental consent to carry out the observation. Assuming parents grant permission, a huge amount of labour would be needed for classical observation - several observers in the schoolhouse every day for a sufficiently long period before and after the smartphone ban. With my doctoral thesis, I tried to solve both the problem of privacy and of labor by replacing the human observer with artificial intelligence (AI). Modern machine learning methods allow training models that automatically detect objects and their properties in images or video. If we want an AI that recognizes people in images, we need to form a machine learning dataset with pictures of people and pictures without people. If we want an AI that differentiates between low and high physical activity in video, we need a corresponding video dataset. In my doctoral thesis, I collected a dataset where video of children's movement is synchronized with hip-worn accelerometers to train a model that could differentiate between lower and higher levels of physical activity in video. In collaboration with the ICV lab at the Institute of Technology, we developed a prototype video analysis sensor that can estimate the level of physical activity of people in the camera's field of view at real-time speed. The fact that AI can derive information about physical activity from the video without recording the footage or showing it to anyone at all, makes it possible to observe without seeing. The method is designed for measuring physical activity in school-based research and therefore highly prioritizes privacy protection and research ethics. But more broadly, the thesis illustrates the potential of computer vision technologies for processing visual information in urban spaces and workplaces, and not only for measuring physical activity or adhering to high ethical standards. This warrants wider public discussion – under what conditions or whether at all is it OK to have a robot staring at you?https://www.ester.ee/record=b555972

    Bicycle Headset with Adjustable Spring Rate

    Get PDF
    Fork flop can play an important role in the performance of a mountain bike. This phenomenon of fork flop is known as the tendency that the front wheel of a bike wants to flop over to one side when moving slowly. The fork flop experienced on a bicycle changes with the geometry of the bike, but our team sought to change the fork flop experienced through an adjustable internal spring design that attaches to the bicycle instead. From our research, we decided to utilize torsion springs as the method for mitigating fork flop. We also decided to use load cells and a DAQ to compile and compare the data of our test bicycles. After creating a prototype, we compared the moments experienced on a bicycle with an extremely slack head angle to that of a bicycle with a steep head angle. The bicycle with a slack head angle had our prototype placed on it to provide the fork flop mitigation. Our results show that the bicycle with the slack head angle experienced less moments with our design placed on it, putting it on a comparable level to that of a bicycle with a steep head angle. These results suggest that our internal spring design can mitigate the fork flop experienced on a bicycle without changing the bicycle’s geometry. Our prototype gives an important conclusion that bicycle riders can change the performance of their bicycle without the need for a complete overhaul of their bike

    Timeline design for visualising cultural heritage data

    Get PDF
    This thesis is concerned with the design of data visualisations of digitised museum, archive and library collections, in timelines. As cultural institutions digitise their collections—converting texts, objects, and artworks to electronic records—the volume of cultural data available grows. There is a growing perception, though, that we need to get more out of this data. Merely digitising does not automatically make collections accessible, discoverable and comprehensible, and standard interfaces do not necessarily support the types of interactions users wish to make. Data visualisations—this thesis focuses on interactive visual representations of data created with software—allow us to see an overview of, observe patterns in, and showcase the richness of, digitised collections. Visualisation can support analysis, exploration and presentation of collections for different audiences: research, collection administration, and the general public. The focus here is on visualising cultural data by time: a fundamental dimension for making sense of historical data, but also one with unique strangeness. Through cataloguing, cultural institutions define the meaning and value of items in their collections and the structure within which to make sense of them. By visualising threads in cataloguing data through time, can historical narratives be made visible? And is the data alone enough to tell the stories that people wish to tell? The intended audience for this research is cultural heritage institutions. This work sits at the crossroads between design, cultural heritage (particularly museology), and computing—drawing on the fields of digital humanities, information visualisation and human computer-interaction which also live in these overlapping spaces. This PhD adds clarity around the question of what cultural visualisation is (and can be) for, and highlights issues in the visualisation of qualitative or nominal data. The first chapter lays out the background, characterising cultural data and its visualisation. Chapter two walks through examples of existing cultural timeline visualisations, from the most handcrafted displays to automated approaches. At this point, the research agenda and methodology are set out. The next five chapters document a portfolio of visualisation projects, designing and building novel prototype timeline visualisations with data from the Wellcome Library and Victoria & Albert Museum, London, Cooper Hewitt Smithsonian Design Museum, New York City, and the Nordic Museum, Stockholm. In the process, a range of issues are identified for further discussion. The final chapters reflect on these projects, arguing that automated timeline visualisation can be a productive way to explore and present historical narratives in collection data, but a range of factors govern what is possible and useful. Trust in cultural data visualisation is also discussed. This research argues that visualising cultural data can add value to the data both for users and for data-holding institutions. However, that value is likely to be best achieved by customising a visualisation design to the dataset, audience and use case. Keywords: cultural heritage data; historical data; cultural analytics; cultural informatics; humanities visualisation; generous interfaces; digital humanities; design; information design; interface design; data visualisation; information visualisation; time; timeline; history; historiography; museums; museology; archives; chronographics

    Suggested approach for establishing a rehabilitation engineering information service for the state of California

    Get PDF
    An ever expanding body of rehabilitation engineering technology is developing in this country, but it rarely reaches the people for whom it is intended. The increasing concern of state and federal departments of rehabilitation for this technology lag was the stimulus for a series of problem-solving workshops held in California during 1977. As a result of the workshops, the recommendation emerged that the California Department of Rehabilitation take the lead in the development of a coordinated delivery system that would eventually serve the entire state and be a model for similar systems across the nation

    Enactive Sound Machines: Theatrical Strategies for Sonic Interaction Design

    Get PDF
    Embodied interaction with digital sound has been subject to much prior research, but a method of coupling simple and intuitive hand actions to the vast potential of digital soundmaking in a perceptually meaningful way remains elusive. At the same time, artistic practices centred on performative soundmaking with objects remain overlooked by researchers. This thesis explores the design and performance of theatre sound effects in Europe and the U.S. in the late nineteenth and early twentieth century in order to converge the embodied knowledge of soundmaking at the heart of this historical practice with present-day design and evaluation strategies from Sonic Interaction Design and Digital Musical Instrument design. An acoustic theatre wind machine is remade and explored as an interactive sounding object facilitating a continuous sonic interaction with a wind-like sound. Its main soundmaking components are digitally modelled in Max/MSP. A prototype digital wind machine is created by fitting the acoustic wind machine with a rotary encoder to activate the digital wind-like sound in performance. Both wind machines are then evaluated in an experiment with participants. The results show that the timbral qualities of the wind-like sounds are the most important factor in how they are rated for similarity, that the rotational speed of both wind machines is not clearly perceivable from their sounds, and that the enactive properties of the acoustic wind machine have not yet been fully captured in the digital prototype. The wind machine’s flywheel mechanism is also found to be influential in guiding participants in their performances. The findings confirm the acoustic wind machine’s ability to facilitate enactive learning, and a more complete picture of its soundmaking components emerges. The work presented in this thesis opens up the potential of mechanisms to couple simple hand actions to complex soundmaking, whether acoustic or digital, in an intuitive way
    corecore