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ABSTRACT 

 
Solid freeform fabrication (SFF) or Additive manufacturing (AM) techniques have 

emerged in recent years as advanced manufacturing techniques. These techniques have 

demonstrated advantages particularly in situations where the demands for unique 

geometrical structured customer-specific products are high and the time to market is 

very short. Applications of these techniques in the medical sector in combination with 

the latest medical digital imaging technologies are growing quickly. The techniques 

have inherent advantages of compatibility with the output information of medical 

digitising techniques. 

 

Foot orthoses are medical devices used as shoe inserts in the treatment of foot disorders, 

injuries and diseases such as diabetes, rheumatoid arthritis, congenital defects and other 

foot related injuries. Currently custom foot orthoses are fabricated through 

manufacturing techniques which involve costly and based on lengthy trial and error 

manufacturing process. These techniques have limitations in terms of fabricating 

required geometries and incorporating complex design features in the custom-made 

orthoses.  

 

The novelty of this research is to explore the commercial scale application of rapid 

manufacturing techniques and to assess a rapid manufacturing based design and 

fabrication system for production of custom foot orthoses. The developed system is 

aimed at delivering the custom made orthoses at mass scale with improved fit, 

consistency, accuracy and increased product quality. 

 

The traditional design and fabrication process for production of custom foot orthoses 

was investigated and modelled with IDEF0 modelling methodology. The developed 

IDEF0 model was re-modelled and then the rapid manufacturing approach was 

integrated in the design and fabrication process. The main functions of foot geometry 

capture, orthoses design and manufacture of orthoses were modelled and evaluated 

individually with respect to time and cost and quality of the final product. 



iii 

 

Different well-established rapid manufacturing techniques were integrated in the current 

design and fabrication process. The results showed that the techniques have significant 

impacts on the overall design and fabrication process in terms of increased process 

efficiency, low lead-time, increased productivity and improved quality of the final 

product.  

 

An orthosis model was fabricated on an experimental basis using different well 

established rapid manufacturing techniques. The techniques were separately investigated 

and analysed in terms of orthoses fabrication cost and build time. The cost and lead-time 

in different techniques were modelled, analysed and evaluated for evaluation of 

commercial scale applications. The analysis and evaluation of the cost and lead-time 

modelled for different rapid manufacturing techniques showed that selective laser 

sintering technique is the better option for integrating the technique in fabrication of 

custom foot orthoses and that it has the potential to compete with conventional 

techniques.  
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Chapter 1 Introduction 

1.1 Background 

In view of worldwide increased competition in manufacturing business, companies are 

under pressure to adopt new manufacturing approaches and strategies in order to 

respond quickly to their customers for providing high variety, high quality and cost-

effective personalised products (Piller and Stotko, 2002). This requires reorganisation 

and introduction of new manufacturing approaches combined with integration of 

information technology (IT) resources and efficient supply chains systems to meet the 

challenges of increased demand for product variety and personalisation to satisfy the 

changing customer demands without compromising the lead-time, cost and quality of 

products (Pine, 1993; Lebovitiz and Graban, 2001). 

 

Recently in manufacturing engineering, applications of new approaches such as agile 

manufacturing, lean manufacturing, rapid manufacturing and mass customisation have 

received much attention in literature. Mass customisation is an approach which is 

believed to offer solutions for provision of individualisation and customisation in the 

products at a mass scale (Pine, 1993; Piller, 2003). This new approach of mass 

customisation can be widely observed across the manufacturing sectors in automotives, 

computers, telecommunication, electronics, textile, sports, consumer and medical 

products (Tseng and Piller, 2003; McCarthy and Brabazon, 2003; Selldurai, 2004). In 

medical sector production of custom-made devices, implants and tailored treatments 

have a long history and the need for custom-made products/devices and personalised 

rehabilitation aids are more explicit in this sector (Kumar et al., 1996; Dalgarno et al., 

2006).  

 

Solid free form fabrication (SFF) or Additive manufacturing (AM) techniques have 

emerged in recent years as advanced manufacturing techniques. These techniques have 

great advantages particularly in situations where the demands for unique geometrical 

structured customer-specific products and the time to market are very short. Additive 
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manufacturing techniques are based on an additive approach where parts are built 

gradually by adding material layer by layer to create three dimensional geometrical parts 

specified by a computer aided design (CAD) system. There are many commercial rapid 

manufacturing techniques based systems available in the market such as selective laser 

sintering (SLS), stereolithography (SLA), fused deposition modelling (FDM) and 3D 

printing (3DP) systems (Noorani, 2006, Gibson et al., 2010). 

 

Applications of rapid manufacturing techniques in the medical sector in combination 

with the latest medical digital imaging technologies such as computerised tomography 

(CT) and magnetic resonance imaging (MRI) are growing quickly. Rapid manufacturing 

techniques have the inherent advantages of increased design freedom, the ability to 

fabricate unique geometrical structures/parts and the compatibility of these techniques 

with the output information of medical digitising techniques. These factors have 

significantly increased the role of rapid manufacturing techniques for the fabrication of 

customised/tailored devices, implants and rehabilitation aids in the medical sector 

(Cormier et al., 2003; Kruth et al., 2005; Tukuru et al., 2008). 

 

Foot orthoses are medical devices used as shoe inserts in the treatment of biomechanical 

foot disorders, injuries and diseases such as diabetes and rheumatoid arthritis. Foot 

orthoses are prescribed for the treatment of medical conditions developed in rheumatoid 

arthritis (Woodburn et al., 2002; Magalaheas et al., 2006; Bellamy, 2007), diabetes (Bus 

et al., 2004; Muller et al., 2006; Frykberg et al., 2006; Paton et al., 2007), congenital 

defects and numerous foot disorders and injuries to reduce stresses, provide comfort to 

painful areas, preventing deformity and disability and promoting improved gait in the 

patients (Pratt, 1994; Hunter et al., 1995; Nigg et al., 1999; Nicolopoulos et al., 2000). 

The significant challenges in the foot related problems are growing deterioration in the 

pathological conditions such as increasing pain and joint destruction in rheumatoid 

arthritis (Helliwell et al., 2007) and progressing foot ulceration in diabetes which 

quickly changes the state of diseases (Paton et al., 2007). In order to prevent these 

progressing problems and conditions, custom foot orthoses are prescribed for correcting 

the foot alignment to support abnormal foot structure and transferring and redistributing 
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the mechanical stresses and loads on the foot tissues in the affected parts of the foot 

(Obrovac et al., 2005). Figure 1:1 shows the images of the foot orthoses. 

 

   

 

Literature reveals that fabrication of custom foot orthoses primarily is based on labour 

intensive craft based manual techniques involving lengthy design and fabrication 

process (Doxey, 1985; Pratt, 1995; Hunter et al., 1995; Lusardi and Nielsen, 2000; 

Obrovac et al., 2005). Computer based methods were introduced in 1960s in fabrication 

of custom foot orthoses using NC milling machines (Lusardi and Nielsen, 2000). The 

NC milling techniques require significant amount of set-up time and appropriate setting 

of process planning parameters such as fixture planning, tool path planning, tool 

selection and tool wear (Frank et al., 2003; Czajkiewicz, 2008).  

 

With recent technological advancements, modern approaches such as computer aided 

design and computer aided manufacturing (CAD/CAM) were introduced in foot 

orthoses design and fabrication (Stattus and Kriechbaum, 1989). Currently, CAD/CAM 

orthoses fabrication systems ranges from office based manufacturing systems to factory-

based manufacturing systems and have replaced the craft based practices in the orthotics 

and prosthetics manufacturing industry (Smith and Burgess, 2001). However, milling 

process limitations in CAD/CAM for fabrication of complex orthoses design features 

such as wedges, flanges and metatarsal dome and incorporation of functional elements 

such as local stiffness restricts the product range using these techniques (Pallari et al., 

2010). Additionally, the experts in prosthetics and orthotics industry have raised 

significant training issues for applications and use of CAD/CAM in prosthetic and 

orthotics manufacturing industry (Otto, 2008, Pallari, et al, 2010). 

Figure 1:1 Foot orthoses 
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1.2 Aims and objectives of research 

The aim of this study is to assess the cost and lead-time of a rapid manufacturing based 

mass customisation system for fabrication of custom foot orthoses. 

To achieve the aims of the study, the following objectives have been determined; 

 

i. To summarise and evaluate existing research in the area of rapid 

manufacturing in the medical field, mass customisation, foot orthoses 

fabrication and process modelling. 

 

ii. To develop a process model for rapid manufacturing based fabrication 

system for production of custom foot orthoses.  

 

iii. To use the developed model to evaluate the set of mass customisation 

systems based on varying conditions and constraints for different rapid 

manufacturing techniques. 

 

iv. To evaluate and compare the cost and lead-time of different rapid 

manufacturing based fabrication systems with conventional resources based 

fabrication system. 

1.3  Hypothesis 

In medical sector rapid prototyping (RP) and its more mature form rapid manufacturing 

(RM) techniques have revolutionised the way the parts are fabricated. These techniques 

have the advantages of creating the parts directly from 3D CAD information layer by 

layer without tooling and moulding and have greater design freedom in production of 

geometrically complex parts and components. This creates the viability of rapid 

manufacturing techniques in the medical sector for fabrication of custom-made devices, 

parts, rehabilitation aids, dental, prosthesis and orthotics. The RM techniques have 

shown successful commercial scale applications for mass customisation of in-the-ear 

canal hearing aids and custom-made dental braces.  
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Fabrication of custom-made foot orthoses involves traditional CAD/CAM techniques 

that have limitations in fabricating the required orthosis design features such as wedges, 

flanges and metatarsal dome. Additionally, CAD/CAM techniques have shown 

difficulties in incorporating the orthoses functional elements such as integration of local 

stiffness at specific sites in the orthoses shell. These limitations of CAD/AM techniques 

restrict the product range. Rapid manufacturing techniques have advantages over the 

conventional manufacturing techniques in terms of fabricating the complex geometrical 

design features with accuracy, consistency, low lead-time and overall improved quality 

product. Rapid manufacturing techniques combined with medical digitising technologies 

can generate a digital design and fabrication system for mass scale production of 

custom-made foot orthoses.  

 

The integration of rapid manufacturing approach in the traditional orthoses design and 

fabrication process can improve the current process by replacing the traditional 

functions of manual foot geometry capture and orthoses design methods that involve 

longer time and increased cost in the process. The applications of rapid manufacturing 

techniques in design and fabrication system can generate effective solution for 

production of cost-effective custom-made foot orthoses with low lead-time at 

commercial scale. 

1.4 Structure of the Thesis 

The main part of this thesis begins with the Chapter 2 which introduces the areas of 

research from which this work is based. In this chapter an extensive literature review has 

been conducted which consists mass customisation, rapid manufacturing techniques, 

medical applications of rapid manufacturing, process modelling techniques and 

fabrication of custom foot orthoses. Further, the chapter discusses the medical 

applications of rapid manufacturing techniques for mass customisation in order to 

evaluate the applications of these techniques at commercial scale production of custom 

foot orthoses.  
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Chapter 3 covers modelling of design and fabrication process for custom foot orthoses 

and an initial process model was designed for rapid manufacturing based design and 

fabrication of custom foot orthoses. Chapter 4 presents the methods for foot geometry 

capture and orthoses design. Different foot geometry capture and orthoses design 

methods are analysed and evaluated in terms of cost, lead-time, accuracy and 

consistency.  

 

Chapter 5 discusses orthoses fabrication methods and various rapid manufacturing 

techniques used for fabrication of orthoses are discussed. In chapter 6, analysis and 

evaluation of cost and lead-time is presented for fabrication of custom-made foot 

orthoses through different rapid manufacturing techniques. Chapter 7 presents the 

overall discussion with conclusions and recommendations and finally at the end of 

chapter future work is outlined. 
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Chapter 2 Literature survey 

2.1 Introduction 

The last two decades have remained periods of tremendous upheaval and rapid change 

in the field of manufacturing engineering. The applications of rapid prototyping (RP) 

and its more mature form, rapid manufacturing (RM) together with advancements in 

medical digital techniques have grown significantly in the production of customised 

products, implants and devices in the medical sector (Heiu et al., 2003; Brown et al., 

2003; Gibson et al., 2004; Winder and Bibb, 2005). These techniques have shown 

successful commercial applications in mass customisation of personalised in-the-ear 

hearing aids and dental braces (Tongola et al., 2003; Gibson et al., 2010). 

 

In this chapter, a literature survey is reported which has been conducted in the context of 

the aims and objectives of the research study. This addresses mass customisation, rapid 

manufacturing techniques and medical applications of rapid manufacturing techniques, 

custom foot orthoses design and fabrication process, process modelling methodologies 

and IDEF0 process modelling technique.  

2.2 Mass customisation  

Mass customisation (MC) was once considered a paradox to be resolved in the future 

but has become everyday reality for many companies because of applications of 

advanced manufacturing technologies (AMT) (Pine et al., 1993; Kotha, 1995; Lau, 

1995; Eastwood, 1996), product modularity (Pine, 1993; McCutcheon et al., 1994; 

Baldwin and Clark, 1994; Pine et al., 1995) and extensive applications of information 

technologies (Piller et al., 2004) in manufacturing for customisation. Advanced 

manufacturing technologies such as computer-aided design (CAD), computer-aided 

manufacturing (CAM), flexible manufacturing systems (FMS) and computer integrated 

manufacturing (CIM) are considered as enabling technologies in manufacturing for mass 

customisation. Some researchers consider these technologies as fundamental enablers 

for mass customisation manufacturing; offering potential in reducing the tradeoffs 

between variety and productivity (Ahlstrom and Westbrook, 1999; Kotha, 1995). The 
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flexibility of these technologies enables manufactures to produce quickly a variety of 

products cost-effectively and in lot sizes as small as one.  

 

The term “Mass Customisation” was initially anticipated by Alvin Toffler in 1970 in his 

book “Future Shock” (Toffler, 1970) and later on coined by Stanley Davis in 1987 in his 

book “Future Perfect” (Davis, 1987). Later on in the year 1993, Joseph Pine has 

popularised mass customisation as new manufacturing strategy in his influential book 

“Mass Customisation” (Pine, 1993). The important objective of mass customisation is to 

achieve economies of scope that makes customised products as affordable as mass 

produced products (McCarthy et al., 2003). 

2.2.1  Definition of mass customisation 

There are many definitions for mass customisation in the literature. Three of which the 

author considers well founded are; 

 

 Mass customisation can be defined as provision of customised products and 

services, using stable business and processes at a cost and fulfilment similar to 

standard or mass produced products (Ross, 1996). 

 

 Mass customisation is a combination of producing customised products at a mass 

scale with the ability to provide customisation to satisfy the individual customers 

at reasonable cost with small lead-time (Pine et al., 1993). 

 

 Mass customisation is the competitive manufacturing ability to produce 

customised products or services in high volume at reasonably low costs within 

short lead-time (Silveira et al., 2001). 

2.2.2 Customisation approaches 

In MC literature, a number of writers have presented the frameworks for customisation 

process. Coates and Wolf (Coates and Wolf, 1995) described customisation as a 

manufacturing practice and termed customisation as “soft” and “hard”. According to 
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them, customisation is “soft” when the customers are not involved in the manufacturing 

process, while in the “hard” customisation, customers are involved in the manufacturing 

process.  

 

Lampel and Mintzberg (Lampel and Mintzberg, 1996) have identified a continuum of 

five main strategies of customisation depending on the customer involvement in the 

value chain (design, fabrication, assembly and distribution) of the product creation 

process. These are standardisation, segmented standardisation, customised 

standardisation tailored customisation and pure customisation. The customisation 

strategies differ from each other depending on the occurrence of customisation in the 

value chain. Pure standardisation refers to production of complete standard products. In 

segmented customisation, customers are seen as cluster of buyers and products are 

customised during distribution stage, targeting different markets areas. In customised 

standardisation, the product is customised during the assembly phase using standard 

modules. In tailored customisation basic product design is tailored and the product is 

fabricated for the specific needs of customers. In pure customisation, the product is 

created from scratch for the customers. Pure customisation refers to the involvement of 

the customer in the entire production cycle where the complete product is created from 

scratch according to the needs and requirements of the customers. Figure 2:1 shows the 

customisation strategies during the value chain of the product creation process. 

 

 

Figure 2:1 Customisation stratgies in the value chain (Lampel and Mintzberg, 1996) 
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Spira, (Spira, 1996) presented a customisation framework based on four types of 

customisation from customised packaging, customised services and additional custom 

work to a modular assembly for realisation of customisation. 

 

Gilmore and Pine (Gilmore and Pine, 1997) have identified four distinct approaches for 

customisation based on the empirical observations. These are collaborative, adaptive, 

cosmetic, and transparent customisation. In collaborative customisation, the customers 

select from pre-determined product configuration options and interact with manufacturer 

before the product is customised. In adaptive customisation, the standard products are 

customisable during their use by the customer. In cosmetic customisation, the standard 

products are packed especially for the specific customers. In transparent customisation, 

standard products are customised to fulfil the need of individual customer.  

 

Silveira and associates (Silveira et al., 2001) developed eight generic approaches of 

customisation ranging from pure customisation to pure standardisation based on 

different frameworks presented by the researchers.  

 

Duray and colleagues (Duray et al., 2000) combined customisation approach developed 

by Lampel and Mintzberg with the type of product modularity and categorised the 

customising companies according to the way they achieve mass customisation 

(discussed in Section 2.2.3). They categorised the customising companies in groups of 

fabricators, involvers, modularisers and assemblers. Figure 2:2 represents the 

configuration model of customising companies developed by Duray and associates 

(Duray et al, 2000). The fabricators group involve the customer at an early stage of the 

product creation process for fabrication of unique products; which closely resemble pure 

customisation. The involvers group involve the customer in product design during the 

design and fabrication stage in which standard product modules are combined according 

to customer requirements. The modularisers group involve the customer during 

assembly and delivery and use modularity at an earlier stage in the manufacturing 

process which is used by the customer at product usage stage. The assemblers group 

offers to the customers a wide range of selectable options using modular components 
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whilst offering a wide range of choices to the customers. 

 

 

 

2.2.3  Classification of customisation approaches 

Customisation has many shades, which can be realised during the manufacturing 

process. For example the simple and basic form of customisation is somewhat providing 

cosmetic options which may involve offering a number of colours, surface finish and 

packaging etc (Ross, 1996; Pine and Gilmore, 1997). Beyond the cosmetic form of 

customisation another form of customisation in which a range of selectable options are 

offered in the products to customers according to their preferences. However, the most 

competitive and challenging form of customisation is providing core customisation 

(Ross, 1996). Core customisation is a form of customisation in which the product is 

fabricated from scratch and the customers are involved at the beginning of 

manufacturing process until the final product has been produced. The process of core 

customisation actually starts from identifying the needs of the customer for the specific 

product to be customised and involves all stages of the manufacturing cycle from design 

Figure 2:2 Operationalised configuration model (Duray et al., 2002) 
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to a complete final product (Ross, 1996; Alford et al., 2000; Duray et al., 2000; Squire et 

al., 2006). 

2.2.4  Levels of customisation 

Customisation level is mainly determined by two factors; product modularity and point 

of customer involvement. 

i. Product modularity 

To achieve mass customisation, product modularity is often applied to create product 

variety. Modularity is seen as key for the realisation of mass customisation (Pine, 1993; 

Pine et al., 1995). Modularity is the process of enabling a product to be manufactured 

from standardised plug and play modules or components which are capable of being 

assembled to a final product bringing high product variety. Ulrich and Tung (Ulrich and 

Tung, 1991) developed the typology of modularity which can be applied in the 

manufacturing cycle for bringing customisation into practice. These are cut-to-fit 

modularity, bus modularity, component swapping modularity, mixed modularity, 

sectional modularity and component sharing modularity. 

 

Example of production of lower limb prosthesis shown in Figure 2.15 in Section 2.3.4 is 

an example of customisation in the products achieved through product modularity. The 

lower limb prosthesis is based on product modular structure comprise of residual limb 

socket and other parts of the leg. The socket for residual limb is fabricated individually 

and customised according to required size and measurements of the residual limb of the 

patients whereas all the other components and parts are included from product modular 

structure. 

ii. Point of customer involvement  

The point of customer involvement is the point in customisation process where 

customers interact during the manufacturing cycle of a product. This is achieved through 

established forms of communications with the customers in order to change, alter or 

modify the product according to their requirements and preferences (Duray et al., 1999; 

Duray, et al., 2000; Duray, 2002). This is a very important step in the mass 

customisation process and termed as “value creation” process during manufacturing 
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cycle. Customers take part during the value chain of manufacturing activities such as 

design, fabrication, assembly and distribution and eventually become co-producer or 

prosumer (Toffler, 1970).  

 

As the product or service during manufacturing has to pass through several transforming 

stages from design stage to a finished customised product, customisation can occur at 

any point in the value chain (Lampel and Mintzberg, 1996). The point of customer 

involvement also known as Customer Order Decoupling Point (CODP) determines the 

degree of customisation level in the products (Skipworth and Harrison, 2004). Figure 

2:3 represents the levels of customisation in the product creation value chain and the 

types of modularity applied in the customisation process. Early customer involvement in 

the manufacturing cycle using component sharing and cut-to-fit modularity results in a 

higher level or degree of customisation in the products. Customer involvement at the 

later stage in the production cycle using component swapping, mix, bus and sectional 

modularity result in lower degree of customisation in the products (Duray et al., 2000).  

 

 

 

 

Figure 2:3 Customer involvement and modularity in production cycle (Duray et al., 2000) 
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2.2.5  Commercial examples of mass customisation 

i. Dell mass customisation 

Dell is one of the most recognised brands of computers in the world. Dell produce and 

distribute servers, storage devices, printing and imaging systems, workstations, 

notebooks and desktop personal computers, networking products as well as PDAs, 

software and peripheral products. In year 1996, Dell began selling computers via its 

website (www.dell.com), offering a customisation option in their products (Lebovitz and 

Graban, 2001). This strategy was successful and by the year 1997, Dell was one of the 

top five computer manufacturer/supplier in the world using the build-to-order 

manufacturing strategy. The company now ships more than ten million systems every 

quarter.  

 

The Dell mass customisation system works through the strategy of establishing a direct 

contact with customer. Direct relationship with customers is the main successful factor 

and creates “valuable information” for the company regarding customer choices and 

preferences (Kraemer et al., 2000). Customers are able to customise the products 

through the Dell website according to their requirements and preferences within range of 

selectable options and choices offered by company. In Dell, the product is manufactured 

only after the customer has placed the order. Once the order for the product is placed, a 

highly flexible manufacturing system supported with efficient supply chain is used to 

customise and provide the custom made product within short period of time (Pollard, 

2008).  

ii. mi-adidas shoes mass customisation 

Adidas Saloman AG (Adidas) company started mass customisation in their products by 

the year 2001 under the name of “mi-adidas” for providing customised athletic sports 

shoes. The program is for customisation of running shoes to be fitter, high performance, 

choice of colours and designs; all services which were once only available to top 

athletes (Berger, 2003). By providing custom shoes the company has established “mi-

adidas” sales points either within the selected stores or in mobile units which travel 

between top sports events. The customisation process in “mi-adidas” involves three 

steps in customisation process. In the first step a profile of the customer is created which 

http://www.associatedcontent.com/theme/811/dell.html
http://www.associatedcontent.com/theme/660/storage.html
http://www.associatedcontent.com/theme/1487/products.html
http://www.associatedcontent.com/theme/811/dell.html
http://www.dell.com/
http://www.associatedcontent.com/theme/811/dell.html
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includes the information including the type of sports he/she play, nature of ground 

surface (hard or soft), type of socks and required degree of grip of the shoes. 

 

In the next step dynamic scanning of the foot measurements are taken which includes 

the measurement of the foot, pressure points distribution and some other unique physical 

attributes. In the third and last step the customers are able to select different design 

variations and colour combinations for the shoes. Once this process is completed the 

order is transferred to the manufacturing facility for final production of customised 

shoes. An extensive supply chain system is used in order to deliver the customised 

products within minimum delivery time to the customers (Moser et al., 2006). 

iii. National Bicycle Industrial Company (NBIC)  

Panasonic is also a famous name in bicycles along with other consumer electronics in 

Japan. The company provides customised bicycles to the customers in Japan with a two 

week delivery time. This delivery time is expanded to three weeks for provision of 

customised bicycles worldwide. In the year 1987, company started the customisation of 

bicycles by establishing a new plant near to its mass production plant and introduced a 

new production system named “Panasonic Order System” (POS).  

 

In (POS) customisation process customers can customise the bicycle by visiting a 

nearby dealer where they can choose from eight million different combinations 

comprising the type, colour, frame sizes, and other features of bicycle. At the shop 

various measurements of the customer are taken in terms of torso length, leg length, arm 

length and style of riding such as racing, touring, or off-road riding. This requires 

different frame angles, frame dimensions, and tube gauges for optimum performance. 

The customer has further options to select from the range of bicycle components such as 

gears, pedals, brakes, handle bars and accessories according to their requirements and 

preferences. Once the order is completed, it is then transferred to the factory having 

highly flexible manufacturing system for production of the final customised bicycle 

(Kotha, 1996). 
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The examples of product customisation showed that customisation is mainly achieved 

through modular structure of the products and with the customer involvement during the 

production cycle. As previously discussed in Section 2.2.4 modularity in the product 

structure facilitates manufacturing of the products with some degree of distinctiveness 

and differentiation which is achieved through combination of different plug and play 

product modules (Ulrich, 1995; Pine, 1993; Pine et al., 1995). Thus, modularity is used 

as a key feature for achieving higher scale in mass customisation; as the modular 

approach offers increased range of end products (Pine, 1993; Baldwin and Clark, 1994). 

However, in its actual concept pure customisation is to provide the products which 

accommodate all the requirements made by individual customer where the each product 

is created entirely from scratch. This concept of customisation is really challenging and 

most competitive. The manufacturing companies offering customisation must have 

ability to understand the customer requirements and must have the capability of 

providing the pure customised products (Ross, 1996). 

 

The important point in the customisation process is that there must be customer 

involvement in the product customisation process that distinguishes the customised 

products from mass produced products. Early or later stage involvement by the customer 

during the product production cycle shows the level or degree of the customisation in 

the product whereas product modularity contributes to alleviate the customisation 

responsiveness, speed and shortened lead-times (McCutcheon et al., 1994). 

2.3 Introduction to rapid manufacturing (RM) 

Rapid Manufacturing (RM) is natural extension of rapid prototyping (RP) and has 

evolved from the rapid prototyping technologies which have emerged over last two 

decades (Hague et al, 2003). Rapid manufacturing is defined as the direct creation of 

parts or components using parts designs created in a CAD system through a layer by 

layer or additive manufacturing process. Rapid manufacturing processes require no 

tooling or moulding and offer a greater design freedom in fabrication of highly complex 

parts (Phillip and Wendell, 1997; Kruth et al., 1998; Levy et al., 2002). 
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In rapid manufacturing a virtual model of the part is designed through computer aided 

design (CAD) and is converted to .stl file format which is de-facto industry standard file 

format for rapid manufacturing systems (Pham and Dimnov, 2001; Gibson, 2005, Cee 

Kai, 2003; Noorani, 2006; Hopkinson et al., 2006). The designed data is then sent to 

rapid manufacturing systems for the creation of the parts.  

 

Rapid manufacturing techniques have profound impacts on design and manufacturing 

with the advantages of creating complex geometrical parts, tool less manufacturing and 

digital manufacturing process. The development of rapid manufacturing techniques is 

closely related with developments and advancements in computer technologies and 

wider applications of computers in the manufacturing industry.  

2.3.1 Basic working process of rapid manufacturing  

There are five basic steps involved in a rapid manufacturing process. 

 Creating a CAD based model of design. 

 Converting the CAD model into .stl file format. 

 Slicing the .stl file into thin cross-sectional layers. 

 Fabrication of the model layer by layer on rapid manufacturing system. 

 Clean and finish the fabricated model or part (post processing). 

 

There are many rapid manufacturing techniques commercially available and these 

techniques are called solid freeform fabrication (SFF), additive manufacturing (AM) or 

layer manufacturing (LM). For small production runs or one-off products with 

complicated and complex geometrical designs features application of rapid 

manufacturing techniques can be the quick and cost effective manufacturing processes 

(Pham and Dimnov, 2001; Hopkinson and Dickens, 2003). 

2.3.2 Rapid manufacturing (RM) techniques 

Rapid manufacturing techniques can be categorised in different ways depending on the 

nature of the fabrication process such as laser, printer technology and extrusion 

technology (Gibson et al., 2010) or type of materials used (Kruth et al., 1998; Pham and 
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Dimnov, 2001; Noorani, 2006). According to the type of material used, rapid 

manufacturing (RM) techniques are divided into three categories which are; 

 Liquid-based rapid manufacturing systems 

 Powder-based rapid manufacturing systems 

 Solid-based rapid manufacturing systems 

i. Stereolithography SLA (Liquid-based system) 

Stereolithography is widely considered as the founding process in RP and was patented 

in 1984. The first commercial implementation of system introduced by 3D systems Inc, 

USA in 1986 (Pham and Dimov, 2001; Cee Kai, 2003; Hopkinson et al., 2006; Wohlers, 

2006). Figure 2:4 represents the schematic process of SLA technique. This technique 

gradually builds up a three-dimensional (3D) part from liquid photosensitive polymers 

(C) contained in vat (B); layer by layer (Noorani, 2006). Computer aided design (CAD) 

is used to drive the laser beam (D) to strike at the selected spots of the surface of liquid 

polymer that turns it into solid state forming a solid layer (Kruth et al., 1998). The 

model or part is built on a platform and once the first layer is adhered to the platform, 

the platform is then lowered and a fresh layer of liquid polymer is swept over the 

previous layer. The CAD guided laser beam again strikes on the newly deposited liquid 

polymer making another solid layer over the previous made layer. This process is 

performed and repeated continuously to construct layer by layer addition until the final 

model or part is completed (Yan and Gu, 1996; Rosochowski and Matuszak, 2000). The 

self adhesive property of the material causes layers to bond to one another to form a 

complete 3D part or object. Afterwards the fabricated solid model or part is removed 

from the system.  
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ii. 3D printing (liquid-based system) 

Figure 2:5 represents the schematic of 3D liquid based printing process. In 3D liquid 

based printing technique parts are created using CAD design by selectively deposition of 

photopolymer resin through a jetting head on to a build tray. Once the material is jetted 

on the build platform it is cured by ultra violet lights that turn the resin into solid layer. 

This process is one of the recent 3D printing techniques introduced by an Israel based 

company named Objet Geometries (Vaupotic et al., 2006; Czajkiewicz, 2008).  

Figure 2:4 Schematic of Stereolithography (SLA) technique (additive3d.com, 2010) 
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iii. Selective laser sintering SLS (Powder-based system) 

Selective laser sintering was first invented and patented by Ross Householder in 1979 

and later on it received much attention and was commercialised following the work of 

Carl Deckard at the University of Texas at Austin. The first SLS system was introduced 

by DTM Corporation (now a part of 3D systems) in 1992 (Wohlers, 2010). 

 

Selective laser sintering (SLS) creates three-dimensional solid objects or parts by 

selectively fusing powder material with CO2 laser, turning powder material into solid 

objects. Figure 2:6 represents the schematic of the SLS process. The powdered material 

is spread on the bed (A) by a roller (B) over the surface of build cylinder (C). Powdered 

material is then sintered or melted by CAD guided laser beam (F) that selectively scan 

the surface of the powder bed, melting the powder and creating a two dimensional solid 

layer. When the first layer is completed, the fabrication piston (D) moves down and 

another layer of powder material is deposited on the fabrication bed (A) from the 

powder delivery system (E) by roller on the top of previously formed layer. The process 

is repeated until the part or object is completely formed (Yan and Gu, 1996). In this 

Figure 2:5 Schematic of 3D liquid based printing (3DP) technique (Objet geometries Ltd, 2010) 
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process the fabrication chamber is maintained at a temperature just below the melting 

point of the powder material so that heat from laser only needs to raise the temperature 

slightly to cause sintering (Pham and Gault, 1998; Pham and Dimov, 2001). This makes 

the process of fabrication of the part or object quicker. After completion of fabrication 

process the part is removed from the building chamber of the machine.  

 

 

 

iv. 3D printing (powder-based system) 

Three dimensional printing (3DP) is a quick and low cost layer manufacturing 

technique. This technique was developed at Massachusetts Institute of Technology 

(MIT) USA and is used for rapid production of prototype parts and tools directly from 

three dimensional computer aided design CAD based model. Figure 2:7 represents the 

schematic of 3D printing technique. The technique has greater design freedom and can 

create parts of any geometry from a variety of materials, including ceramics, metals, 

polymers and composites. In three dimensional printing, the process starts by depositing 

a layer of powder at the top of a fabrication chamber (B). A measured quantity of 

powder is deposited from a powder supply chamber (E) through a roller (D) by moving 

a piston upward incrementally. The moving roller then distributes and compresses the 

powder at the top of the fabrication chamber. After that a multi-channel jetting head (A) 

Figure 2:6 Schematic of Selective Laser Sintering (SLS) technique (additive3d.com, 2010) 
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subsequently deposits a liquid adhesive in a two dimensional pattern onto the layer of 

the powder which becomes bonded in the areas where the adhesive is deposited in order 

to form a layer of the part. Once a layer is completed the fabrication piston (C) moves 

down by the thickness of a layer and the process is repeated until the part is formed on 

the build cylinder. This process offers the advantages of speedy fabrication, significantly 

lower system and material cost than other processes (Wohlers, 2006). 

 

 

 

v. Fused deposition modelling FDM (Solid-based system) 

Fused deposition modelling (FDM) is widely used rapid prototyping technology. It was 

first commercialised by Stratasys Inc, in 1991 and patented in 1992. Figure 2:8 

represents the schematic of the FDM process. In this process the thermoplastic polymers 

are used as raw material and the objects are formed by extruding the thermoplastic 

polymer supplied through a coil (A) by a temperature controlled extrusion nozzle (B) 

that travels in X, Y and Z directions (C) to create a two dimensional layer (Hopkinson et 

al., 2006). The build platform (D) is maintained at lower temperature in order to make 

thermoplastic quickly harden. After the platform lowers, the nozzle deposits another 

layer upon the previous layer and this process is repeated until completion of the part. 

Figure 2:7 Schematic of (3DP) powder based printing technique (additive3d.com, 2010) 
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2.3.3 Applications of rapid manufacturing in various manufacturing sectors 

There are a wide range of applications of rapid manufacturing techniques as the 

technology has been introduced successfully in the manufacturing sectors including 

automotive, aerospace, computer, marine and shipbuilding, toys making, architecture 

modelling, textile and garments designing, medical and consumer products (Pham and 

Dimov, 2001; Hopkinson et al., 2006; Wohlers, 2010; Gibson et al., 2010).  

i. Applications in aerospace 

Aerospace industry has the demand from clients with different features in the aircrafts 

and aero industry has to manufacture hundreds of parts in small volume as the spare 

parts for the aircrafts. Walter and associates (Walter et al., 2002) have studied the effects 

of rapid manufacturing on the supply of spare parts to commercial air craft industry. The 

uncertainty factor for need of spare parts requires maintaining huge inventory of the 

parts in advance to avoid delay in repair of the air craft. Rapid manufacturing can 

produce spare parts on demand thus reducing the inventory and parts can be supplied 

within time that has significant impacts on profits in the industry.  

 

One of the additional advantages of rapid manufacturing is part consolidation which 

greatly reduces the time and labour in fabrication of the parts for the industry (Gibson et 

Figure 2:8 Schematic of Fused Deposition Modelling (FDM) technique (additive3d.com, 2010) 
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al., 2010; Wohlers, 2010). The part consolidation example in Figure 2:9 shows the 

traditionally produced part (a) has 16 small designed parts where as the rapid 

manufacturing can built the same part directly without tooling with integrated assembly 

and consolidated in a single build saving the tooling, assembly, labour, time and cost. 

One of the other examples is Paramount Industries, USA which supply the unmanned air 

vehicles (UAVs) for USA government.  Many of the complex parts for UAVs were 

produced through selective laser sintering technique by the company (Wohlers, 2010). 

 

    

(a)       (b) 

 

ii. Applications in automotive  

The rapid manufacturing approach is used in the fabrication of concept cars and models 

in automotive industry. BMW, Hyundai and Bentley car manufacturers are using FDM 

and SLS techniques in the fabrication of parts, fixtures and tooling for automotive 

assembly (Gibson et al., 2010). Formula 1 racing cars also use the rapid manufacturing 

techniques in fabrication of electrical housing, camera mounts, and other aerodynamics 

parts for the racing cars (Wohlers, 2010). 

iii. Applications in architectural models and building components 

There is an increasing trend of applications of rapid manufacturing for the fabrication of 

architectural models and buildings components. Traditional methods for constructing 

architectural models and building components are time consuming and labour intensive. 

Rapid manufacturing with architectural CAD techniques are in progress for bringing 

these techniques in quickly producing architectural models with improved aesthetic 

appearance and forms. Figure 2:10 shows the fabricated building panels by 3D printing 

Figure 2:9 Aircraft duct (a) original design with 16 parts (b) consolidated design (Gibson et al, 2010) 
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for minimising thermal conductivity (Buswell et al., 2007), model of Library building 

using 3D printing (Gibson et al, 2002) and 3D model of a house (Maslowski and Heise, 

2002). 

         

(a)  (b) (c) 

 

iv. Applications in consumer products 

Application of rapid manufacturing techniques in the fabrication of consumer products 

is another growing sector in the manufacturing field. Custom headphones, case for apple 

iphone, custom-made dolls and action figures, toys manufacturing and personalized 

model making are the few examples of rapid manufacturing use in the production of 

consumer products (Wohlers, 2010; Gibson et al., 2010). Shapeways (shapways.com) is 

another internet based company offering fabrication of personalized parts and products. 

They offer fabrication of art, jewelry, gadgets, home decor and many more types of 

personalised products using rapid manufacturing technologies. 

2.3.4 Rapid manufacturing applications in the medical sector 

The development of rapid prototyping techniques were primarily aimed at facilitating 

and speeding up new product development process in various manufacturing sectors. 

However, its users quickly realised the benefits of applications of these techniques in the 

medical sector (Gibson, 2006). The need for highly individualised medical products and 

parts to fit with unique individual anatomical structures embarked researchers to exploit 

the rapid manufacturing capabilities of fabricating the complex geometrical parts and 

structures (Wohlers, 2010). In literature, numbers of researchers have documented the 

applications of rapid manufacturing in the medical sector. The rapid manufacturing 

Figure 2:10 (a) Building construction panels (Buswell et al, 2007), (b) library building models (Gibson et 

al., 2002) and (d) 3D model of a house (Maslowski and Heise, 2002) 
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applications in medical sectors can be categorised as; 

i. Diagnostic and visualising tools and pre-surgical models 

ii. Scaffolds and tissue engineering 

iii. Dental implants and dental prosthesis 

iv. Orthotics and prosthetics  

i. Applications in diagnostic, visualising tools and pre-surgical models 

Applications of rapid manufacturing are used in fabrication of physical models of 

human anatomy and parts; which are used prior to surgery planning and communication 

before going into actual complex surgery process. The models are used in understanding 

the complex anatomical structures and can be used in planning for pre-operative surgical 

procedures and simulations and predictions of outcomes by the surgeons (Noorani, 

2006) and for the training and educational purposes in the medical field (Milovanovic 

and Trajanovic, 2007; Peltola et al., 2008; Giannatsis and Dedoussis, 2009). Figure 2:11 

shows (a) 3D printed skull model with the interior vascular structure in different colour 

than the skull colour which can be used in planning specific problem surgery and 

teaching purpose, (b) fused deposition modelling produced skull showing tumour with 

different colour and (c) human organ vascularity shown with different colour produced 

on Objet Connex system (Gibson et al., 2010). 

 

        

  (a)    (b)    (C) 

 

ii. Applications in scaffolds and tissue engineering 

The ability of creating the complex structures with internal geometrical details such as 

scaffolds used for re-generation of bony tissues requires porous structure (Gibson et al., 

Figure 2:11 Images of medical parts using different colored RM systems. (a) 3DP based skull with 

vascular tracks in a darker color. (b) A bone tumor highlighted using ABS material. (c) Human organ 

fabricated through  polyjet technique showing vascularity inside the organ (Gibson et al., 2010). 
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2010). The porous supporting structure is used for re-growth of tissue cells in the 

damaged or defective bones. Rapid manufacturing techniques offer an efficient way to 

control, design and fabricate the structures like scaffolds where customisation is primary 

requirement (Peltola et al., 2008). The different rapid manufacturing techniques such as 

FDM, SLS, SLA and 3D printing have been demonstrated by numerous researchers 

(Yang et al., 2002; Lee et al., 2004; Hutmacher et al., 2004; Hollister, 2005; Leong et 

al., 2006; Armillota et al., 2007) as viable cost effective fabrication methods for creating 

customised scaffolds. Figure 2:12 shows the SLS based fabricated scaffolds. 

 

 

 

iii. Applications in dental implants and dental prosthesis 

Dental implants, prostheses, devices and parts such as crown, bridge, fixtures etc require 

customisation because of individual geometry, complexity in design and wide range of 

sizes for the individuals (Wohlers, 2010). Conventional methods for manufacturing 

dental prostheses and implants involve a number of activities to be performed manually 

such as; impression taking, wax casting, making assembly of biting, tooth preparation 

and other different steps to be performed before fabrication. The process involve 

increased time and requires high skills for fabrication of individual custom-made dental 

products (Kruth et al., 2005). The rapid manufacturing approach for fabrication of dental 

prostheses and dental devices starts by taking three-dimensional images and geometrical 

measurements of the patients and modelling and designing it in CAD-based software. 

The designed information is then transferred through .stl file format to a rapid 

manufacturing system for fabrication of final product (Qingbin et al., 2006). Figure 2:13 

Figure 2:12 Scaffolds fabricated using SLS technique (Gibson et al., 2002) 
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shows a stereolithography based fabricated jawbone. 

 

 

 

iv. Applications in orthotics and prosthetics 

Fitting of lower limb prosthesis in amputees is another application of rapid 

manufacturing techniques for customisation in medical sector. Laser scanning 

technology is used to measure and adopt the three-dimensional geometry of the residual 

limb of the patient and a virtual model of lower limb socket is produced in CAD design 

system. Finally, the designed information is sent to a rapid manufacturing system in .stl 

file format to fabricate the socket in which the residual limb of patient is to fit. The other 

parts of prosthesis remain same except the limb socket and its length. The shoe size 

depends on the other foot size of the patient and selected from the shoe stock (Ashley, 

1993; Roger et al., 2007). 

 

Various studies have shown the advantages of applications of rapid manufacturing 

techniques, computer aided design (CAD) combined with medical scanning 

technologies. The combinations of these techniques have shortened the fabrication 

process and have reduced manual labour work in various stages of manufacturing the 

parts. Number of researchers has demonstrated the rapid manufacturing based 

fabrication of lower limb prosthesis. Custom lower limb prosthesis was fabricated on the 

experimental basis at National University of Singapore by Cheng et al (Cheng et al., 

1998; Ng et al., 2002; Tay et al., 2002). They used a fused deposition modelling 

technique in the fabrication of lower limb prosthesis and showed that the fabrication of 

Figure 2:13 Jawbone with drill guides fabricated using SLA technique (Qingbin, et al., 2006) 



29 

 

prosthetic socket with functional characteristics is viable using fused deposition 

modelling  technique. During the investigation, a long building time and high 

manufacture cost were observed in using the FDM technique.  

 

Freeman and Wontrocik (Freeman and Wontrocik, 1998) used the stereolithography 

technique in the fabrication of custom-fit lower limb prosthesis. They conducted a cost 

benefit analysis using stereolithography apparatus (SLA) for manufacture of prosthetic 

sockets. The technique remove the traditional casting process for mould making in 

socket manufacturing and the sockets were designed using a CAD system and fabricated 

directly from the designed data. The study demonstrated that the technique can build 

sockets with varying wall thickness with improved fitting and accuracy. However, the 

production time and cost on sockets were higher than the traditional fabrication 

techniques. 

 

Recently, Colombo and associates (Colombo et al., 2010) have fabricated the lower limb 

prosthesis using stereolithography technique. They find better quality results, increased 

fit and improved functionalities in the prosthesis. Herbert and colleagues (Herbert et al., 

2005) investigated the applications of 3D printing technique for fabrication of prosthetic 

socket. This technique also eliminates the casting process of mould making for the 

socket and fabricates it directly from CAD by using a 3D printing technique. In their 

investigations however, they have mentioned observations regarding the material 

properties and durability of the parts produced through this technique which need further 

research specifically for suitability and functional requirements of the prosthetic sockets.  

 

Faustini and associates (Faustini et al., 2005) at University of Austin Texas, USA 

demonstrated the fabrication of a prosthetic socket using the selective laser sintering 

(SLS) technique. As rapid manufacturing technique fabricates the prosthesis according 

to the dimensions and geometry of the residual limb of the patient captured through 

scanning technique; their investigations resulted in increased fit, comfort and stability 

with comparison to traditionally manufactured prosthesis. Figure 2:14 shows SLS base 

fabricated lower limb prosthesis socket and its components. 
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2.3.5 Mass customisation of medical devices using rapid manufacturing 

The applications of rapid manufacturing in the medical sector are driven by the need of 

the patient-specific products requiring unique shapes and individual geometries and 

functionalities in the parts fabricated (Wohlers, 2010). There are an increasing number 

of practical applications of mass customisation projects in the medical sector which are 

using rapid manufacturing technologies for customised products because of the ability to 

fabricate the complex geometrical parts without tooling and fixtures (Webb, 2000). 

Some of the recent examples are; in-the-ear hearing aids and dental aligners (Dotchev et 

al., 2009; Wong and Eyers, 2010; Gibson et al., 2010). 

i. In-the-ear hearing customised devices 

Conventionally, in-the-ear hearing devices are produced by taking an impression of the 

ear canal and making its replica by developing mould casts according to measurements 

and geometry of the impression. The next step involves manufacturing of the shell for 

the device. After this, the amplification system is adjusted and fitted in the shell and 

finally assembly of all the parts of the device is done manually (Anon, 2003; Tognola et 

al., 2003). This requires high skill and time to produce the device and at the end fit, 

performance and quality of the product depends on the skill and craftsmanship of the 

individual technician (Cortex et al., 2004). 

 

The same device is fabricated much quicker through rapid manufacturing approach and 

can be customised according to individual requirements and individual ear geometry. An 

in-the-ear hearing device customisation process uses digital technology to capture the 

Figure 2:14 Lower limb prosthesis socket fabricated using SLS technique (Faustuni et al., 2007) 
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geometry and impression of the ear and then design of device is made using a CAD-

based design system. A virtual model of the product is produced whilst retaining space 

for an amplification system to fit inside the device. The final design information in the 

CAD file is converted into stl file format and then the device is fabricated using a rapid 

manufacturing system (Dalgarno et al., 2006). The commercial example of mass 

customisation using rapid manufacturing is the fabrication of customised in-the-ear 

hearing aid devices by Siemens and Phonak (www.phonak.com & 

www.hearing.siemens.com). Siemens is using selective laser sintering (SLS) and 

stereolithography apparatus (SLA) and Phonak are using selective laser sintering (SLS) 

technique for the fabrication of customised in-the-ear hearing aids. Figure 2:15 shows 

rapid manufacturing based in-the-ear hearing devices. 

    

 

ii. Dental aligners/braces 

Dental alignment involves a procedure of fixing the traditional metal wire based fixed 

braces, which is done manually by an experienced dentist. The alignment takes a long 

time and it needs re-setting of fixed braces after approximately six weeks to re-apply the 

force, which cause some pain and discomfort. One of the disadvantages of fixed braces 

is the cosmetic appearance and the patients cannot remove them during eating and 

cleaning. Align technologies Inc USA; offering customised dental braces 

(www.invisalign.com). The teeth alignment is carried out through changing the series of 

dental braces until the required alignment for the teeth is achieved. These dental braces 

improve cosmetic dental appearance.  

 

 

Figure 2:15 In-the-ear hearing aids, Phonak.com and Siemens.com; (Gibson et al., 2010) 
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Invisalign use stereolithography (SLA) in the fabrication of customised dental braces. 

The design and fabrication process for the aligner begin by taking an impression and x-

ray of the patient’s teeth by a dentist. The captured data and information is then sent to 

the manufacturing facility where the scanned data is processed according to the dentist’s 

recommendations and the detailed treatment is planned to match the objectives. Finally, 

a series of dental braces are fabricated using the SLA technique (Hopkinson and Dikens, 

2006). The customised fabricated braces are then used by the patient according to 

planned treatment process until the desired cosmetic results are achieved. Figure 2:16 

shows SLA base fabricated dental braces. 

 

   

 

iii. Custom shoe fabrication using rapid manufacturing 

In 2008, Prior 2 Lever (P2L) retailed the world’s first rapid manufacturing based soccer 

shoe for professional athletes; fabricated using selective laser sintering techniques. The 

shoe model named “Assassin” is shown in Figure 2:17 which is uniquely designed and 

fabricated for improving and enhancing the individual athlete’s performance (Wohlers, 

2008; Gibson et al., 2010). In the customisation process, the athlete makes appointment 

with P2L where a series of orthopaedic tests are performed and the player’s feet are 

scanned using a 3D digital scanner. The scanned information is then used to fabricate 

the outsole of the shoe using laser sintering and the upper is made from exclusively 

sourced calfskin from Italy.  

 

There is a commonality in the “assassin” outsole and in the insoles used as the orthoses 

in this research; the only difference being in the purpose. Whilst the P2L outsole is 

aimed at improving the athlete’s performance by providing the exact shoe fit; here the 

Figure 2:16 Transparent dental aligners (Invisalign.com, 2010) 
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insole is used as an orthoses and is mainly aimed at addressing and treating the foot 

related problems and diseases. 

 

 

Examples of in the ear-hearing-aids and lower limb prosthesis devices are good 

examples of application of modular approach for realising customisation at mass scale; 

where modular structure of the product plays important role in bringing customisation 

into practice at mass scale. Custom dental aligners and “assassin” shoe are the good 

examples of providing the core customisation at mass scale, where the product is 

fabricated from the scratch; realising pure customisation at mass scale. 

 

The applications of rapid manufacturing techniques in the medical sector and 

commercial examples of mass customisation have shown increased advantages and 

benefits over the traditional manufacturing techniques. The compatibility of the rapid 

manufacturing techniques with the output data of medical digitising techniques has 

enabled the direct fabrication of complex individualised medical parts and devices with 

improved fit and comfort and adding value to the overall final product (Gibson, 2005). 

The commercial examples of in-the-ear-hearing aids and dental braces show that the 

shape complexity and individualisation in the products is not a limitation factor for 

production of customer-specific products on a mass scale. Align technologies, between 

1997 to 2009 have produced over 44 million teeth aligner braces (www.aligntech.com); 

providing patients with truly individualised and customised teeth aligners with varying 

geometries to match each individual needs according to planned treatment. Siemens are 

currently producing 250,000 customised hearing aids annually using rapid 

manufacturing techniques (Gibson et al., 2010). Fabrication of these devices at this scale 

Figure 2:17  “assassin” fully customised soccer shoe (New Scientist, 2008) 
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shows the customisation of individualised products on a mass scale.  

 

The ability of rapid manufacturing techniques for building complex geometrical custom-

specific devices, automated fabrication process, tool less operations and minimum 

requirement of labour content in the fabrication process are the major benefits of 

applications of these techniques in medical sector for mass customisation of 

personalised products. These factors significantly contribute for increasing the business 

volumes, sales and profits for the manufacturers.  

2.4 Foot orthoses  

The medical field concerned with the application of externally applied devices which 

support or correct the function of a limb or torso is called orthotics. Foot orthoses are 

shoe inserts which are used for correcting abnormal or irregular biomechanics of the 

foot. These are externally applied devices used to modify or adjust the structural or 

functional characteristics of the neuromuscoskeletal system (Hunter et al., 1995; 

Redford et al., 1995). The purpose of an orthosis is to improve function by redistributing 

the forces from the body in a controlled manner to protect and give relief to the body 

part. The need for foot orthoses arises due to biomechanical foot disorders, congenital 

defects, sports injuries, diabetes, and rheumatoid arthritis diseases (Hunter et al., 1995; 

Redford et al., 1995; Obrovac et al., 2005). Figure 2:18 shows the fabricated foot 

orthoses. 

 

 
Figure 2:18 Foot orthosis (Staats and Kriechbaum, 1989) 
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2.4.1  Functions of foot orthoses 

The primary function of the foot orthosis is to reduce and redistribute the weight bearing 

stress, control alignment and functions of the foot in order to treat or prevent injury 

causing forces on foot bones, joints, tendons and ligaments. It is applied to improve the 

joint functions of the foot and redistribute the body pressure to give relief in the pain and 

prevent further deformation in foot and to promote corrective gait. 

2.4.2 Types of foot orthoses 

Foot orthoses are classified into three main categories according to materials used in the 

manufacture of foot orthoses (Schwartz, 1991; Hunter et al., 1995). Various 

professionals engaged in design and manufacturing and orthotic materials supplier 

catalogues broadly classify the types of orthoses in the following categories; rigid, semi 

rigid and soft orthoses (Lockard, 1988). 

i. Rigid orthoses 

Rigid or “functional” foot orthoses are primarily aimed at correcting the abnormal foot 

function combined with corrections in lower extremity providing joint stability, 

controlling motion and improving foot function (Root et al., 1997; Steven et al., 2002). 

Rigid orthoses are made from materials that provide maximum correction and 

biomechanical control of structural deformities and integrity of joints by resisting the 

ground reaction forces which can cause abnormal gait (Anthony, 1991; Hunter et al., 

1995; Lasurdi and Neilson, 2000). 

ii. Semi-rigid orthoses 

Semi-rigid orthoses are aimed at providing softness, relief form pressure sensitive areas, 

balancing the foot in neutral position, reducing the abnormal and excessive motion and 

improving lower extremity motion. Semi-rigid orthoses generally are combination of the 

properties of soft and rigid orthoses (Hunter et al., 1995).  

iii. Soft orthoses 

Soft or “accommodative” orthoses are aimed at cushioning, supporting and relieving the 

pain from injured or affected areas of the foot. The soft orthoses cannot realign the foot 
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to correct any deformities in the foot, however, they are aimed at supporting and 

providing cushion, weight distribution; relieve pressure to painful areas, shock 

absorption and improving the mobility of the patient (Hunter et al., 1995; Steven et al., 

2002). Soft orthoses are made from soft materials such as polyurethane foams (Lockard, 

1988; Goodman, 2004). 

2.4.3 Foot orthoses design features 

Foot orthoses have several design and correction features in order to address specific 

problems, symptoms and pathologies of the patient. The various design features are 

prescribed by the orthotist based on a careful thorough examination of the foot and its 

associated problems and the treatment objectives. Some of the most common orthoses 

features are described as follows. 

 Arch support 

Arch support is a foot orthoses design feature incorporated for addressing the foot arch 

related problems. The arch support re-aligns the foot and increases the contact area 

under the arch of the foot distributing the pressure from pain full areas. Figure 2:19 

shows the rear foot wedge and arch support (a) adopted from by Algeos, 2007 and 

simple arch support (b) adapted from Pedag, 2010. 

 

   

(a)        (b) 

 

 Heel lift/heel cupping/heel cushion 

Heel supports are generally used to cushion the heel area by increasing the heel support 

thickness. A deep heel cup is created for optimal function of the foot control and greater 

stability and shock absorption. The height and thickness depend upon the problem and 

Figure 2:19 Orthoses with arch support (a) and (b) Schematice of arch support (Pedag, 2010) 
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symptom in the foot and its treatment requirements (Chalmers, 2000). Figure 2:20 

shows the wedges and post (a), deep heel cup (b) and heel cushion (c) in the orthoses 

design. 

   

(a)    (b)      (c) 

 

 Medial flange  

A medial flange is an orthoses feature designed to support the severely pronated foot 

motions. This design feature is prescribed when the patient has slight or significant 

inward tilt during walking. Figure 2:21 shows the schematic of pronation (a) and (b) 

medial flange designed in the orthoses. The structure of the medial flange increases in 

the medial side of the foot starting from medial towards the heel and extending distally 

with required increase in height to control the tilt or severe poronation problem (Steven 

et al., 2002). 

   
(a) (b) 

 

 

 Wedges 

Wedges or posts are the support that is added under the heel or forefoot in order to 

overcome imbalances and realign and support the foot during walking or gait cycle. 

Figure 2:20 Heel lift/cupping/cushion in the orthoses shell (theorthoticgroup.com, 2010) 

Figure 2:21 Schematic of foot poronation (a) (orthoticshop.com, 2010) and (b) orthoses with medial 

flange (theorthoticgroup.com, 2010) 
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Wedges can be placed through design modifications over or under the main body of the 

orthoses shell (Steven et al., 2002). However, in some cases if large corrections are 

required, these features can create a problem in fitting the orthoses shell in the shoe 

(Lasurdi and Nielson, 2000). Figure 2:22 shows the (a) over post and (b) underside post 

in the orthoses shell. 

   

(a)        (b) 

 

 Metatarsal bars and pads 

Metatarsal pads and bars are used to redistribute the plantar pressure in the forefoot 

structures. The pads and bars sizes and shapes depend on the orthotist prescription 

mainly treating the forefoot and transverse arch problems. Figure 2:23 shows the 

metatarsal pad designed in the orthosis shell. 

 

 

2.4.4 Foot orthoses materials 

The selection of materials for orthoses construction primarily depends on the nature of 

diseases and associated pathological conditions of the foot along with other factors such 

as weight and activity level of the patient (Buonomo et al., 2001, Kennedy, 2008). Foot 

Figure 2:22 Posts or wedges in orthoses shell (theorthoticgroup.com, 2010) 

Figure 2:23 Metatarsal pad/dome in orthosis shell (theorthoticgroup.com, 2010) 
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pathology and type of diseases plays a vital role in selection of material for orthoses 

construction and their applications (Lockard, 1998). Diseases such as rheumatoid 

arthritis require rigid foot orthoses for controlling and improving the movements and 

functionality of the foot with comparison to diabetes related ulceration and early 

Charcot joint disease which requires accommodative orthoses for cushioning and 

redistributing the pressure from painful areas (Kennedy, 2008).  

 

The materials used in fabrication of foot orthoses are broadly classified into two 

categories (i) natural and (ii) synthetic materials. Traditionally, the natural materials 

such as leather, cork, rubber and metal were used in orthoses construction (Lockard, 

1988). With the technological advancements, modern materials such as carbon 

composites, plastics and acrylics are currently in use and are replacing the traditional 

materials in orthoses construction (Rome, 1991). Current materials are generally 

grouped as plastics, acrylics, composites, foams and rubber, leather and cork 

(Nicolopaulous et al., 2000; Steven et al., 2002; Caselli, 2004). The material for foot 

orthoses fabrication must combine physical and mechanical properties and 

characteristics including elasticity, density, durability, flexibility, compressibility, 

resilience, strength and stiffness (Rome, 1990; Nicolopoulos et al., 2000). The type of 

orthoses prescribed has a significant role in selection of combinations of above 

mentioned properties and characteristics in the orthoses material; as during the service 

phase the orthoses have to carry and withstand the whole body weight of the patient in 

parallel with serving and addressing specific treatment objectives for the user. The range 

and types of the current materials used for the orthoses fabrication are presented in 

following section. 

 Leather  

Leather is natural material traditionally used for construction of orthoses. Basically 

leather orthoses shell is made of lamination of layers of leather added over one and 

another to form a shape of positive cast of the foot that is inserted in to the shoe 

(Lockard 1988; Steven et al., 2002; Kennedy, 2008). Leather is combined with other 

material such as liquid latex binders and named as “rubber butter” (Steven et al., 2002; 

Caselli, 2004). The leather orthoses can be accommodative or functional depending on 
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the material combination and fabrication techniques (Caselli, 2004). 

 Cork 

Cork is another natural material traditionally used in the orthoses construction (Hunter et 

al., 1995). Cork is combined with rubber binders such as liquid latex forming a sheet 

which is then sanded to the required shape to fit in the shoe (Kennedy, 2008). Cushion 

Cork
TM

, Korex
 TM

, Ortho cork 
TM 

and
 
Brickcork

 
are the examples of Cork based orthoses 

material used (Nicolopoulos et al, 2000). 

 Carbon composites 

Carbon composites are carbon fibber and acrylic composites materials used to construct 

strong, thin and light weight orthoses shells. Thin layers of carbon graphite fibre cloths 

are laminated using liquid resin to form and rigid carbon graphite orthoses shell. The 

number of layers laminated effect the strength of the constructed orthoses shell (Steven 

et al, 2004). TL-2100
R 

is a good example of graphite composite material by RX-

orthotics materials. 

 Acrylic and thermoplastic polymers 

The acrylic and thermoplastics materials are rigid materials having ability to alter shape 

when heated (Nicolopolus, 2000; Caselli, 2004). These materials are used in 

accommodative orthoses which are aimed at improving the functions of the foot. 

Polymethyle methacrylate (PMMA) is regarded as rigid material commonly used in the 

orthoses fabrication (Rome, 1991). Polyethylene and polypropylene thermoplastics are 

also common material used in construction of rigid orthoses. These materials are light 

weight, flexible and come into different densities ranging from low to high density 

(Steven et al., 2002). 

 Rubber and foams 

The term rubber refers to group of compounds which are natural or synthetically 

produced substance having elastic, shock absorbing and resilient properties. This group 

is commonly known as elastomers including EVAs, sponge, latex and expanded rubber 

(Nicolopoulos et al., 2000). EVA is a heat mouldable material having better shock 

absorbing propertiesc ommonly used foot orthoses constructing materials. Spenco
TM

 and 

Lynco
TM

 are rubber based examples of materials for orthoses use. Another example of 

material used for orthoses is polyethylene thermoplastics under the name of 
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Plastazote
TM

, Aliplast
TM

, Evazote
TM

, Dermaplast
R
 (Leber & Evanski, 1986; Kennedy, 

2008). 

2.4.5 Foot orthoses fabrication 

The traditional process of fabrication of custom foot orthosis begins with capturing the 

geometry and measurements of the foot using plaster of Paris. The next step is to 

develop a positive mould of the foot impression using plaster of Paris or fibre resin tape. 

Once the mould is developed it is modified manually by adding and dressing with 

additional materials to incorporate the required features such as filling gaps or deformed 

spots or adding wedging angles and other orthoses features (Pratt, 2000). The orthosis is 

then created around the corrected and developed mould by draping a heated plastic sheet 

over it or using a vacuum pressing process (Doxey, 1995; Hunter et al., 1995; Pratt, 

1995). Finally the fabricated orthosis is fitted to the patient (Lusardi and Neilsen, 2000). 

 

With the technological developments in manufacturing engineering custom foot 

orthoses were manufactured through computer based applications. It started in 1960 

with the application of stereo-photography and numerically controlled (NC) milling 

machines in the fabrication process (Lusardi and Neilsen, 2000). Computer-aided-design 

(CAD) and computer-aided-manufacturing (CAM) has now replaced most of the 

conventional manufacturing methods for foot orthoses fabrication (Staats and 

Kriechbaum, 1989). The CAD/CAM based orthosis manufacturing process starts with 

taking an impression of foot geometry, transferring the impression information into a 

CAD-based software system where the data is expanded and corrected using a special 

computer program developed specifically for foot orthosis. After that orthoses is milled 

from a blank using CNC milling machine (Staats and Kriechbaum, 1989; Davis, 1993). 

2.4.6 Foot orthoses fabrication process 

Fabrication of custom foot orthoses involve following main steps;  

i. Foot geometry capture  

ii. Foot orthoses design 

iii. Foot orthoses fabrication 
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i. Foot geometry capture 

In order to produce an effective and comfortable orthoses which fit properly and 

accurately with the patient, provide relief in pain and improve foot function; an accurate 

foot impression is a fundamental and important step in custom orthoses fabrication 

process. Presently various approaches and methods are applied for casting foot 

impressions.  

 

The foot impression capturing techniques classified into two categories (i) plaster based 

impression capturing techniques and (ii) Digital based impression capturing techniques. 

In the following sections both categories are discussed starting with plaster based 

impression capturing techniques followed by the digital impression capturing 

techniques.  

 

i. Plaster of Paris geometry capturing technique 

Plaster of Paris impression casting is a well-established and widely applied technique for 

capturing foot impressions in the custom foot orthoses manufacturing. The technique is 

based on manual process of capturing foot impression requiring high skills and need 

considerable training and practice in order to obtain consistent impression casts. The 

steps involved in the foot impression capture are; 

i. The patient is properly and comfortably positioned with knee extended. 

The foot and lower extremity is aligned in a neutral position as shown in 

Figure 2.25 (a) and (b). 

ii. Applying carefully the gauze strip dampened in the plaster of Paris starting 

from lateral aspect of the foot covering the ankle and heel of the foot 

extending towards metatarsal and leaving some space to facilitate the 

removal of the cast as shown in the Figure 2.25 (c), (d) and (e) (Hunter et al., 

1995). 

iii. Next step is to apply another gauze strip on the foot from the anterior surface 

of the toe in the same position. With the back of the hand the applied strip is 

smoothed to ensure the total contact with the surface of the foot as shown in 

Figure 2.25 (f) and (g) (Hunter et al., 1995) 
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iv. The applied plaster of Paris is left for almost 30 minutes for drying process 

keeping the foot in the same position. 

v. Final step is the removal of the cast from the foot. In this step the cast is 

carefully removed and then inspected and evaluated for errors and accuracy 

as shown in Figure 2:24 (h). 

 

 

 

This technique has some in-built reliability issues such as occurrence of geometrical 

deviations which are mainly caused by drying process of plaster of Paris, variations in 

the uniformity of the thickness of the material, long cure time and physical handling and 

storage of the plaster casts. Labour is another major issue in the plaster of Paris casting 

technique. The impression taking process requires a highly experienced podiatrist and a 

technician to assist the podiatrist during and after the casting process. 

 

ii. Plaster slipper geometry capture technique 

This technique is relatively less messy and quicker than the traditional plaster of Paris 

casting technique. In this technique a slipper sock which is impregnated with quick 

drying resin is used for capturing foot impression. The resin sets quickly reducing the 

Figure 2:24 Foot geometry capturing in plaster of Paris based process 
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casting time as well as reducing labour work. The steps in capturing foot geometry using 

a plaster slipper sock are; 

 

i. Proper seating and positioning of the patient foot with knee extended.  

ii. A transparent plastic bag is wrapped around the foot before applying slipper 

sock. The plastic bag is used to avoid sticking of the resin in the plaster 

slipper socks as shown in the Figure 2.26 (a). 

iii. In the next step plaster slipper sock; soaked in water is applied on the foot 

and elastic band is tied with clips over the foot in order to confirm the 

contact of the sock with the planter arch and foot contour shown in Figure 

2.26 (b), (c) and (d). 

iv. Next step is holding the foot in a neutral or desired position until the resin 

dries as shown in the Figure 2.26 (d) and (e).  

v. Final step is removal of the cast as shown in Figure 2:25 (f), (g) and (h). 

 

 

 

Plaster slipper casting is a quick process for capturing foot impressions when compared 

to the plaster of Paris casting technique. However, the process requires a highly skilled 

podiatrist to get an accurate impression of the foot. This technique also involves the time 

Figure 2:25 Foot geometry capturing in plaster slipper sock based process (stssox.com, 2010) 
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required for curing of the cast and also involves the cost for the required material in the 

impression capturing, handling and storage costs. 

 

iii. Foam box impression geometry capture technique 

In foam box impression casting technique, a low density foam block contained in a box 

is used for capturing the foot impression. The use of foam impression box eliminates the 

drying process required in plaster of Paris casting technique (Laughton et al., 2002). The 

patient foot is pressed in the foam block in a neutral position in order to capture the foot 

impression and geometry. This technique also requires high skills and involves manual 

work to get the correct foot impression. The steps in the capturing foot impression and 

geometry using foam impression box are; 

 

i. Proper adjustment in the seating of the patient with hip and knee positioned 

at 90
0
 angle, prior to process of the casting which is carefully managed as 

shown in Figure 2.27 (a) in order to generate accuracy in the impression 

(Laughton, et al., 2002). 

ii. The Patient’s foot is pressed into the foam box in neutral position of the foot 

in non-weight bearing position as shown in Figure 2.27 (b) (Hunter, et al., 

1995). 

iii. Podiatrist carefully presses the foot into the foam box maintaining the neutral 

position as shown in Figure 2:26 (c) (Laughton et al., 2002).  

iv. Podiatrist carefully checks that the foot is properly pressed according to 

required position of the casting shown in Figure 2.27 (d) and (e).  

v. Patient foot is pulled back carefully from the box in the same direction 

avoiding deformation in the impression foam as shown in Figure 2.27 (g). 

vi. After capturing the impression, the cast is filled either with the plaster of 

Paris to get the positive foot impression mould shown in Figure 2.27 (h) or 

the impression is scanned through 3D scanner to get the final measurements 

and foot geometry.  
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iv. Digital foot geometry capture 

The applications of computers were introduced in 1970s for the design and fabrication 

of foot orthoses. Digitising technology was applied for capturing the foot geometry and 

foot impression. The impression of the foot which is either taken through plaster of Paris 

cast shown in Figure 2.28 (a) or by foam box impression shown in Figure 2.28 (b) is 

digitised through contacting the surface of the impression cast with a sensor probe 

shown in Figure 2.28 (c) and (d). The digitiser system technique works on magnetic 

resonance principle which sends the signals to the computer when a sensor probe is 

contacted with surface of the cast which reads and records the details of the impression 

shown in Figure 2.28 (e). The details of impression cast are captured and recorded in the 

digital format. The scanned information of the impression cast is then expanded and 

corrected by incorporation of required modifications and corrections using specific 

software developed for designing the foot orthoses shown in Figure 2.28 (f) (Staats and 

Kriechbaum, 1989). 

 

Figure 2:27 shows the digitising process of foot impression casts captured through both 

techniques (Foam impression box (a) and plaster of Paris (b)) with the CAD based 

corrected orthoses model in the electronic format (c). The CAD based model is ready to 

Figure 2:26 Foot geometry capturing in foam impression box based process 
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be sent to the NC milling machine where the block of blank is milled for fabrication of 

orthoses. 

 

 

v. Foot contour geometry capture using contact digitiser 

Foot contour measurement technique is a foot impression capturing technique used for 

capturing the foot geometry through a contour measurement system. The system 

employs mechanical placement of sensitive pins which mechanically move upward 

when the foot is placed over the scanning area as shown in Figure 2:28 (c). In this 

process, sensitive pins contact the foot contour and capture the details of the plantar 

surface of the foot. The system captures foot geometry and shape of the foot and 

generates foot impression (Hunter et al., 1995; Boardman, 2007). The foot impression 

can be taken either in full, semi and non weight bearing positions. One of the advantages 

of contact digitiser is the speed and accuracy in capturing the foot impression. Figure 

2.29 shows the foot digitising system (a) and setting of the digitiser (b) before the 

impression capturing process and (c) placement of foot for contour measurement. Once 

the contour surface of the foot is captured, the information is transferred to the CAD 

based design system for correction and modification for generating CAD based orthosis 

model (Davis, 1993). 

Figure 2:27 CAD/CAM orthosis fabrication  (Staats and Kriechbaum, 1989) 
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vi. Scanning of foam box/plaster casts using impress scanner 

Impress scanning is another technique in which a scanner tool shown in Figure 2.30 (b) 

used for capturing the foot impression. The scanning system (b) is capable of scanning 

foam box impressions, plaster of Paris and plaster slipper casts. Impress scanners use 

laser scanning technique to capture the foot impression and generates the 3-D foot 

information of the foot in digital format. The corrections and modifications in the foot 

impression can be incorporated through the CAD design system before the orthoses 

fabrication. One of the advantages of the impress scanner is the ability to scan positive 

or negative moulds including foam impression boxes and plaster positives. Figure 2:29 

shows the foam impression box (a) and impress scanner system (b) for capturing foot 

impression. 

Figure 2:28 Foot impression capturing technique by contact digitiser (www.amfit.com, 2010) 

http://www.amfit.com/
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vii. Foot geometry capture using 3D laser foot scanner 

In this process, the foot is placed on the digital scanner shown in the Figure 2.31 (a) and 

(b) which scans 3-D image of the foot. The digital information is then transferred to 

CAD designing system. The main advantage of the direct foot scanning system is 

reduced labour work and increased degree of accuracy and precision in the foot 

impression capturing process. The Figure 2:30 shows the 3D digital laser foot scanner 

used for capturing foot impression.  

 

ii. Foot orthoses design 

Foot orthoses is designed through traditional methods involving manual activities in the 

design process. The design process is mainly based on addressing the requirements of 

patient specific problems in the foot. The design process depends on the skills and 

expertises of individual podiatrist. 

 Traditional foot orthoses design methods 

The traditional method of designing foot orthoses is craft based which begins with 

development of a positive mould from the negative foot impression cast obtained 

through plaster or foam impression box casting. The positive mould is developed by 

Figure 2:29 Foam impression box cast (a) and (b) impress scanner (www.amfit.com, 2010) 

Figure 2:30 Impression capturing technique in 3D digital scanner (www.londonorthotics.co.uk, 2010) 

http://www.amfit.com/
http://www.londonorthotics.co.uk/
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filling the negative impression cast using plaster of Paris mixture. The positive mould 

cast is dried for several hours and then negative impression cast is torn away from the 

positive mould (Doxey, 1995; Hunter et al., 1995). The next step is manual dressing, 

modification and smoothing of the positive mould with additional material as shown in 

the Figure 2.32.  

 

The modification of a positive mould is a time-consuming and demanding task which 

can only be completed with proper expertise and equipment (Hunter et al., 1995). In the 

modification process, required design features such as wedges, arch height, ramps, heel 

lift/cupping, met pads; prescribed by the orthotist at the time of impression casting are 

incorporated in the positive mould (Staats and Kriechbaum, 1989; Madazhy, 2004; 

Leung et al., 2004). The final step is the fabrication of the orthoses over the corrected 

model (Lasurdi and Nielson, 2000). Figure 2:31 shows the manual corrections in the 

positive mould of the cost (a) and (b) corrected positive moulds showing arch fill. 

 

   

(a)       (b) 

 

 Computer aided (CAD) foot orthoses design methods 

With the technological developments, digital based techniques were introduced in 

designing the foot orthoses. The techniques use CAD systems in designing the foot 

orthoses using specific orthoses designing software. A number of foot orthoses design 

softwares are currently present in the market offered by different companies.  

 

The orthoses design software such as “correct and conform” from Amfit Inc; USA, 

allows number of modifications and corrections in the foot impression information 

Figure 2:31 Manual corrections process in positive mould (a) and (b) corrected positive mould with arch 

fill design feature (footcraft.com.au, 2010) 
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based on pre-specified design features or can be altered individually using menu driven 

commands and tools (Davis, 1993). This has replaced the manual activities in orthoses 

designing process by making the design process much quicker and efficient and cost 

effective (Staats and Kriechbaum, 1989; Boardman, 2007) with having the additional 

advantages for the orthoses designers for advance determination of how the orthoses 

will turn out after manufacturing (Williams, 2010). Figure 2:32 shows the CAD based 

designed orthoses model and orthoses design software. 

 

    

(a)         (b) 

 

iii. Foot orthoses fabrication 

 Traditional foot orthoses fabrication 

Fabrication of foot custom orthoses traditionally is based on manual activities and craft 

based processes. Figure 2.30 shows the thermoplastic piece (a) and (b) orthoses draped 

over the positive mould of the foot impression cast. The fabrication process begins with 

placing the thermoplastic sheet which is slightly larger than anticipated orthoses 

measurements and dimensions in a pre-heated convection oven (Hunter et al., 1995). 

The sheet of plastic is placed in the oven for five minutes in a correct temperature until 

the plastic become pliable.  

 

In the next step, heated plastic sheet from the oven is taken out and draped it over the 

developed positive mould and then manually smoothed and pressed to get full contact 

with the positive mould. In the next step cutting lines are marked on the draped plastic 

as shown in Figure 2:33 (b). The last step is cutting of the shell according to drawn lines 

and smoothing the edges of the orthoses with grinder to get accuracy in measurements 

Figure 2:32 “Correct & confirm” design software (a) and (b) CAD designed model (Amfit Inc;USA, 2010) 
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and finishing in the final product (Pratt, 1995; Doxey, 1995). 

 

    

 

Another way of fabricating the custom orthoses is use of vacuum press or vacuum 

former instead of manually pressing the heated plastic sheet over the positive mould to 

get the orthoses shell fabricated. It has been recognised by many authors that vacuum 

press fabrication of orthoses shell bring more uniform and better results compared with 

manual draping for orthoses shell fabrication (Pratt, 1995; Doxey, 1995). The process 

requires high skill and expertise in this type of orthoses fabrication to get the accuracy in 

measurements in final product (Hunter et al., 1995). Figure 2:34 shows the vacuum 

press and the formed orthosis shell. 

 

 

 

 

Figure 2:33 Thermoplastic piece (a) and (b) heated sheet draped over positive mould (Doxey, 1995) 

Figure 2:34 Vacuum press and moulded orthoses shell (Pratt, 1995) 
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 CAD/CAM orthoses fabrication 

Since its beginning in 1960s computer based custom orthoses fabrication with 

applications of stereophotography and NC milling machines has progressed well over 

the time. The technological advancements and computer designing techniques CAD 

presently widely used in custom orthoses fabrication (Lasurdi and Nielson, 2000). The 

modern system for fabrication of custom foot orthoses are comprised of digital foot 

geometry capturing equipments (Davis 1993; Smith et al., 2001), CAD based orthoses 

design system with specific software developed for orthoses designing (Davis, 1993) 

and automated CNC machine for milling the orthoses (Lasurdi and Nielson, 2000). 

 

The first commercial CAD/CAM system for production of custom foot orthoses was 

“Orthoscan system” introduced by American Digital Technology in the year 1988. The 

second system was introduced by the “Ammon Production system” through Ammon 

Corporation and was manufactured by the Bergmann Orthotic Laboratory. The both 

systems were using digital technology for capturing foot geometry (Grumbine, 1993).  

 

Presently, there are several foot orthoses manufacturers and suppliers from different 

parts of the world such as KLM Laboratories, Inc Canada (www.klmlabs.com), Amfit 

Inc, USA, (www.amfit.com), Foot Dynamics USA (www.footdynamics.com), AliMed 

Inc, USA (www.alimed.com), insole Pro, UK (www.insolepro.co.uk), London orthotics 

consultancy, Ltd, UK (www.londonorthotics.co.uk) in the orthoses industry using 

CAD/CAM applications in fabrication of custom foot orthoses (Pallari, 2008) . Amfit 

Inc, USA is one of them, currently fabricating the custom foot orthoses at their facility 

in USA and also provides the CAD/CAM orthoses fabrication systems for the market 

(Davis, 1993). Figure 2:35 shows the Amfit foot contour digitizer and Amfit custom 

insole fabrication system (www.amfit.com). 

 

http://www.klmlabs.com/
http://www.amfit.com/
http://www.footdynamics.com/
http://www.alimed.com/
http://www.insolepro.co.uk/
http://www.londonorthotics.co.uk/
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2.5 Process modelling 

Models are constructed to represent and describe the processes, existing systems or 

proposed new systems in order to evaluate the feasibility, practicality and anticipated 

performance from the processes or systems. A model is a representation of a process, an 

object or a system aiming at providing an understanding of the process (Yousuf and 

Smith, 1996). The purpose of a model is to derive a framework for applying logic and 

mathematics which can be independently tested and evaluated and applied for reasoning 

in a range of situations. A well designed model gives a comprehensive understanding of 

a process or a system (Saven, 2004). 

 

Process models are composed of interdependent and interfacing inputs or elements that 

are combined together to perform a task or serve a purpose as an output (Hammer and 

Champy, 1993). A well organised and structured process model provides a clear 

understanding of the process, its input and output, functions, resources and performance. 

2.5.1 Process modelling methodologies 

There are several methodologies which exist for process modelling such as Data Flow 

Diagram (DFD), Structured System Analysis and Design Methodology (SSADM), 

Structured System Analysis and Design (SSAD), Integration DEFinition methodology 

(IDEF), Structured Analysis and Design Techniques (SDAT), Computer Integrated 

Manufacturing Open System Architecture (CIMOSA) (Ang et al., 1997; Ang et al., 

Figure 2:35 Foot contour digitiser (a) and (b) insole fabrication system (www.amfit.com, 2010) 

http://en.wikipedia.org/wiki/Logical_argument
http://www.amfit.com/
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1999). Although these methodologies vary in scope, appearance and theoretical 

foundations; the basic applications of these methodologies are to improve the structure 

and design, increase productivity and aid communication in a process.  

 

The most influential and popular process modelling methodology is IDEF0 

methodology (Saven, 2004). An IDEF0 is a methodology designed to model the 

decisions, actions, functions and activities of a process or system (Cullinane et al., 

1997). An IDEF0 modelling methodology represents the actions, activities and functions 

of a process in a systematic manner identifying the functional relationships in activities 

and functions and flow of information and objectives of the process (Smart et al., 1995). 

2.5.2 IDEF0 modelling methodology 

There are sixteen IDEF methods/versions starting from IDEF0 to IDEF14. All IDEF 

methods are designed for specific purpose to accumulate information and develop 

understanding of the system through modelling processes. An IDEF0 model is 

comprised of graphical representation of series of related diagrams organised in a 

hierarchy, showing graphically the complex functional relationships and identifying the 

information and objects that are interrelated (Saven, 2004). IDEF0 has four important 

characteristics which make it a powerful modelling tool; differentiation between 

organisation and functions, simple graphics, data abstraction and preciseness (Mandel, 

1990; Hunt, 1996). An IDEF0 model consists of four elements which are abbreviated as 

ICOMs (Input, Controls, Output and Mechanisms) and these are; 

  

1. Inputs: represented by arrows flowing into the left side of the box. 

2. Outputs: represented by arrows flowing out from right hand side of the box. 

3. Controls: represented by the arrows flowing inwards from top side of the box. 

4. Mechanisms: represented by the arrows flowing into bottom side of the box. 
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Controls (C) 

 

Input (I)      Output (O) 

 

 

 

 

Mechanism (M) 

 

 

Figure 2:36 shows a schematic of IDEF0 diagram. The above mentioned elements 

(ICOMs) of the IDEF0 consist of inputs and outputs which may be the information or 

physical objects used in system, controls which are used for activating or regulating the 

function inside the boxes and mechanisms which are the resources that perform or carry 

out the functions in a system. A well structured IDEF0 model of a system identifies 

activities and functions in a systematic manner representing the relationship between 

functions and objectives required. 

The main objectives of the IDEF0 modelling methodology are; 

i. To represent and provide functional modelling of a system and the functional 

relationships and information flow in the system. 

ii. To provide generic, rigorous and precise modelling characteristics. 

2.5.3 History and background of IDEF0 

The origins of systematic and structured approaches for modelling and analysis of 

systems dates late to 1960s and early 1970s. In 1979 DeMacro introduced the term 

structured analysis; a methodology for creating information flow in models (DeMacro, 

1979). Initially, DFD (Data Flow Diagram) was used to represent entire system with 

other additional levels of DFD for additional information in a system. Later on, some 

deficiencies were observed in DFD approach and the need for capturing control flow 

Figure 2:36 IDEF0 basic digram 
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and control processing information became apparent for modelling real- time systems 

(Ward and Mellor, 1985).  

 

For this purpose in 1977 SDAT was developed by Ross and Schoman. SDAT is a 

graphical language consists of boxes and arrows that represent system components and 

interfaces and capture multiple levels of details in hierarchical manner. In mid 70s Soft 

Tech, Inc introduced this well established graphical language to overcome and improve 

some of shortcomings of modelling and analysis methods. The United States Air Force 

in late 1970s used SDAT as a language to develop the functional modelling method to 

support its Integrated Computer Aided Manufacturing (ICAM). IDEF0 was derived 

from the SDAT. Since the use and application of SDAT and IDEF0 in aero space 

industry in United States air force, IDEF0 modelling methodology has been widely 

applied in organisations and industries (Ross, 1985). 

2.5.4 IDEF0 modelling methodology working principles 

IDEF0 modelling methodology works on hierarchical principles where the modelling 

process starts with construction of the highest level diagram showing the purpose or 

context of the model; generally called context or reference model and marked as “A-0” 

diagram/model. The “A-0” is a one box diagram which determines the subject of the 

model and defines the scope of analysis to be included in the model (O’Sullivan, 1991; 

IEEE Xplore, 1998). 

 

The developed context or reference model is then decomposed to generate the details of 

the model at the required level marked as “as-is” A0 model. The “as-is” A0 model 

contains three to six boxes, representing the activities in the system (Yousuf and Smith, 

1996). The justification of recommendation of limits of the boxes, in case of less than 

three boxes is given that model does not constitute sufficient details for useful 

decomposition; whereas the boxes more than six contain details that should be 

suppressed within the diagram and unpacked in the decomposition. The relationship 

between reference model A-0 and “as-is” A0 model is called parent and child diagrams. 

The “as-is” A0 models are analysed and evaluated in order to improve the models or 



58 

 

systems from where the new “as-to” be models are created; aiming at modifying or 

improving the systems or models efficiency (Ang et al., 1994). 

 

Ross (Ross, 1995) described a structured modelling technique that has become 

synonymous with the design and manufacturing systems is the ICAM definition zero 

language. IDEF0 is widely used technique for modelling the design and manufacturing 

systems. Following section presents some of the examples of IDEF0 modelling in 

design and manufacturing systems. Before presenting the IDEF0 examples in design and 

manufacturing systems in the context of this research, firstly; introduction to new 

manufacturing systems named mass customisation production (MCP) systems is 

presented. 

2.5.5 Mass customisation production (MCP) systems 

Production systems which can deliver one-of-a-kind products or customised products to 

individual customers on large or mass scale are named as mass customisation production 

(MCP) systems. These systems apply advanced information technologies resources, 

highly flexible integrated manufacturing systems and efficient supply chain 

management systems (Chinnaiah et al., 1995). From the strategic point of view mass 

customisation is the process of differentiation through adding value into the product for 

the customers. The value creation process in the realisation of the products differentiates 

the mass customised production systems from mass production systems (Cullinane et 

al., 1997). 

2.5.6 Fundamental process of mass customisation production (MCP) systems 

The main objective of the mass customisation system is to realise the customised 

products at mass scale within minimum time and at cost near to mass production 

systems. These production systems involve complex manufacturing activities in order to 

generate a high variety of customised products. These systems involve extensive 

applications of the information technology resources, flexible integrated manufacturing 

systems and efficient supply chain management systems establishing the direct link 

between the key components of the system for realisation of the customised products 
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(Chinnaiah et al., 1995; Cullinane et al., 1997).  

 

In mass customisation production systems, the customisation process starts from 

acquiring the customer order towards efficiently delivering the customised products. 

Implementation of mass customisation needs to understand and evaluate key 

components, various operations and multifaceted manufacturing activities involved in 

the customisation process. In mass customisation production systems the key 

components or fundamental functions identified by numerous authors in the literature 

(Kumar et al., 1996; Cullinane et al., 1997; Piller, 2002; McCarthy et al., 2003) are; 

 Acquiring customer requirements 

 Processing customer order 

 Design of the product 

 Plan for manufacturing 

 Manufacturing the product 

 Delivery of the product 

These key components or elements in the mass customisation process are integrated 

through efficient information management systems and are regarded as the important 

elements for success of mass customisation systems. 

2.5.7 Process modelling of mass customisation production (MCP) systems  

In mass customisation production systems the core processes and activities are complex, 

interrelated and involve high variations in the operations for manufacturing variety of 

products. This requires developing a process model to support the dynamic nature of the 

operations, processes and activities in the mass customisation systems. These systems 

require effective process modelling in order to streamline the various operations and 

processes for the quick and efficient realisation of mass customisation production. 

 

As mentioned earlier, IDEF0 is a powerful tool for functional modelling of complex 

manufacturing systems. It represents the descriptions of relationship of functions and 

activities involved in the systems (Nookabadi and Middle, 1996). IDEF0 modelling 

methodology represents the detailed functional description of various functions and 
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activities, their relationship, information flow and evaluates the performance and 

consistency of the operations and processes in the systems. The main strength of the 

IDEF0 based models is the simplicity and ability of clearly representing the components 

of the system. In the following section an IDEF0 model for the mass customisation 

systems is presented from the literature developed by Cullinane and associates 

(Cullinane et al., 1997). 

2.5.8 Generic model of mass customisation production (MCP) systems 

The design of the IDEF0 process model for various systems starts generally form 

constructing the reference or base model which represents the existing or current 

situation of the systems and the purpose of the model.  

 

An IDEF0 reference model of a mass customisation production system is presented from 

literature developed by (Cullinane et al., 1997) shown in the Figure 2:37. The box 

represents the purpose of the model which is a generic mass customisation production 

system. The arrows from left side of the box are inputs which are various entities such 

as customer information, business objectives, industry data, raw materials and other 

resources which will be consumed or transformed by MCP system. The arrows at the 

top of the box represent the controls which are resources, organisational policies, 

available technologies and guidelines that guide the MCP system, while the arrows at 

the bottom of the box are the mechanisms which are the people and systems that 

carryout and accomplish the operations in the MCP system. The arrows at the right side 

of the boxes show the output from the generic MCP system. This reference model is 

further decomposed into “generic operational based IDEF0 model” for mass 

customisation systems which shows more levels of details of the model shown in the 

Figure 2:38. 
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   Resources   Organisational policies 

         Environment  Available technologies 

     Manufacturing systems  

Raw materials       Services 

Customer information                                                                       New business strategies/policies 

Supplier documents      Product or service to customer 

Demand for products      Advertising and promotions 

Customer data       Purchase orders 

Industry data       Quotations 

Business objectives 

 
   Marketing system  Production planning system 

    New technologies          Management 

               Production  Production system 

     Customer            Planning system 

2.5.9 Generic operational IDEF0 model for mass customisation systems 

From the base or context model of mass customisation production system presented in 

the Figure 2.38, a detailed operational IDEF0 model is developed by (Cullinane et al., 

1997). The developed model shows the details of various operations involved in the 

systems and facilitates in understanding the complexities in mass customisation 

systems; showing the relationship between various functions of subsystems in the 

overall system. 

 

The generic operational IDEF0 model presents a detailed description of various 

processes and activities of the individual subsystems in terms of performance and 

outputs from the systems. The model provides more details regarding the order of 

sequence of subsystems, inputs and outputs, relationship and information flow in the 

overall system. It represents individual functions, controls and mechanisms required to 

perform the operations for generating output from the subsystems.  

 

The model represents a clear logical relationship, impacts of the subsystems on each 

other and on the overall system. The model shows that various functions and operations 

Figure 2:37 IDEF0 reference diagram of mass customisation system (Cullinane et al., 1997) 

 

Generic mass customisation 

production system 
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are interrelated in a systematic hierarchy based on the IDEF0 modelling principles. 

From operational aspects for mass customisation production systems; the key operations 

and activities in the generic operational IDEF0 model are explained individually 

according to hierarchy of the operations involved in the mass customisation 

manufacturing systems. The key functions are; 

 

i. Capturing customer requirements 

The first step in the customisation process is to capture the needs, requirements and 

preferences of the customer for customisation in order to understand, evaluate and 

generate the details for the product to be customised. This step differentiates 

customisation production from mass production by incorporation of the customer 

preferences into the products (McCarthy et al., 2003). 

 

The main objective of representing the activities individually is to evaluate and assess 

the required resources such as inputs, controls and mechanisms for performing the 

activity. Figure 2.39 shows the activity of capturing customer requirements “A1”. The 

function of this activity is to receive, gather and interpret the various inputs and 

transforming them into outputs. The inputs such as demand for the product, customer 

requirements and preferences, customer data and business objectives which are 

transformed into the outputs such as customer order for the product. The mechanisms 

are management and other subsystems to carry out the task of analysing the inputs such 

as understanding carefully the requirements of the customer for the products and all 

other associated information. This activity generates accurate details, attributes and 

specifications for the product under guidelines of the controls for the organisation which 

are company policy, available resources and available technologies. 
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(C4)Environment 

(C3) Available technologies 

(C2)Organisational policies 

(C1) Resources 

(I1) Demand for the product 

(I2) Customer data      (O1) Order acceptance 

(I3) Industry data       (O2) Customer requirements 

(I4) Business objectives 

 

(M1) New technologies 

(M2) Customer 

(M3) Marketing system 

   (M4) Management 

 

ii. Processing the customer order 

After the customer order is evaluated and generated for the product, the next step is 

modelling the activity of processing the customer order “A2” shown in the Figure 2:39. 

The activity involves mechanisms including management and marketing systems which 

perform the functions in this activity under the guidelines of the controls including 

company resources and organisational policies. This activity generates a production 

order as an output that contains the complete information details regarding the customer 

order such as; assigning an order number, customer profile, product information, date of 

completion and delivery date. The properly completed documentation of the product 

order is then communicated to design and development section of the company. 

 

 

 

 

 

 

 

 

Figure 2:38 Individual subsystem for capturing customer requirement in MCP system 

Capturing 

customer 

requirements A1 
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(C4)Environment 

 (C3) Available technologies 

     (C2)Organisational policies 

       (C1) Resources 

(I1) Order acceptance      (O1) Production order 

(I2) Customer requirements     (O2) Quotations 

 

 

  (M1) New technologies      (M2) Marketing system  

      (M3) Management 

 

iii. Design of the product 

Once the production order is completed it is used as an input for the activity of 

designing and developing the product activity “A3” shown in the Figure 2:40. 

Modelling this activity represents design and development system and other resources 

which work as the mechanisms to carry out the design function for creating a product 

design using the controls and tools such as computer aided design CAD systems. The 

product design is generally configured from the designed templates or master design 

model from which different product designs are developed. If required, different designs 

can be altered, changed or made cut-to-fit for the final design according to customer 

requirements and then sent to the manufacturing department for fabrication of the 

product. 

(C4)Environment 

(C3) Available technologies 

(C2)Organisational policies 

(C1) Resources 

(I1) Production order       

(I2) Quotation     (O2) Quotations Design specifications 

 

    (M3) Design and development system 

(M1) New technologies 

      (M2) Management 

Figure 2:39 Individual subsystem for processing customer order in MCP system 

Figure 2:40 Individual subsystem for generating design of  product in MCP system 

Process customer 

order               A2             

Design and develop 

product                 A3 
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iv. Plan for manufacturing 

The next step is the function of generating the plan for manufacture. This activity “A4” 

shown in Figure 2:41 is performed through production planning systems which work as 

the mechanism. In this activity design specifications are used as inputs. This function 

generates the plan for the manufacturing under the guidelines of controls such as 

existing manufacturing system and other resources. It generates the detailed information 

regarding the process plan, production schedules, quality controls and inspections, 

supply of raw material for the product and set the quality standards for the product.  

 

(C4)Existing manufacturing 

system 

(C3) Available technologies 

(C2)Organisational policies 

(C1) Resources 

        (O1)Manufacturing plan 

(I1) Design specifications  

Quality specifications 

    

       (M3)Production planning system 

     (M1)New Technologies 

      (M2) Management 

 

v. Executing manufacturing 

Manufacture of the product is the next activity in the model after plan for manufacturing 

activity completed. The activity of executing the manufacturing “A5” is shown in the 

Figure 2:42. Production system which acts as mechanism performs the operations in the 

activity according to the design specification which is used as input to manufacturing 

the final product. The advanced manufacturing techniques such as, flexible 

manufacturing systems (FMS), computer integrated manufacturing (CIM) and computer 

aided manufacturing (CAM) are used for manufacturing the final product. 

 

 

Figure 2:41 Individual subsystem for generating plan for manufacturing in MCP system 

Plan for 

manufacturing   A4 
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(C4)Existing manufacturing system 

(C3) Available technologies 

(C2)Organisational policies 

(C1) Resources 

         

(I1) Manufacturing Plan     Quality (O) Final product 

 

    

       (M3)Production system 

     (M1)New Technologies 

      (M2) Management 

 

vi. Delivery of the product 

Delivering the custom-made product is the last activity “A6” in the process shown in the 

Figure 2:43. An efficient delivery system which acts as a mechanism performs the 

process of delivering the finished product in mass customisation systems. The delivery 

system may have its own resources to deliver the product or the system can use third 

party for delivering the product to the customer.  

 

(C4)Existing manufacturing system 

(C3) Available technologies 

(C2) Organisational policies 

(C1) Resources 

         

   (I1) Final product    (O1) Final product to customer 

 

                     (O2) Customer new information 

         

   (M1) New Technologies    (M3) Management 

      (M2) customer 

       (M4) Delivery system 

 

 

Figure 2:42 Individual subsystem for production of  final product in MCP system. 

Figure 2:43 Individual subsystem for delivering final product in MCP system 

Execute 

manufacturing A5 

 

Product delivery 
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All the above modelled functions are combined and a generic IDEF0 operational based 

model for mass customisation systems is developed. Figure 2:44 shows the generic 

operational IDEF0 based process model combined with all the main functions described 

above, for mass customisation system. 

 



68 

 

 

 

 Figure 2:44 Generic operational IDEF0 model for mass customisation systems (Cullinane et al., 1997) 
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2.5.10 Applications of IDEF0 process modelling: examples in manufacturing  

IDEF0 modelling methodology can be used for modelling the different manufacturing 

systems and in redesigning and improving the productivities and competitiveness in the 

systems (Yousuf and Smith, 1996). According to Godwin and colleagues (Godwin et al., 

1989) IDEF0 modelling technique is applicable to all kind of organisational and 

manufacturing systems regardless of their size and complexities. Some of the IDEF0 

process models for different purposes are presented. 

i. IDEF0 business process model NAPS in Finland 

The Finland based company NAPS is involved in selling the photovoltaic and solar 

power products to private households and companies in the Finland. The sales order 

process was modelled using the IDEF0 modelling technique by Rajala and Savolainen 

(Rajala and Savolainen, 1996). The company’s sale order process is based on three main 

activities; which are (i) A1: enter order, (ii) A2: process order and (iii) A3: ship order 

shown in the Figure 2:45. The company receive the orders from the customers in the 

activity A1; where the marketing and sales assistant receive and carryout the assessment 

of the order along with other related information. The activity generates the output from 

which giving offer or answer to enquiry or to check with inventory and give a delivery 

date for the order. Similarly the other two activities of A2 and A3 are performed in the 

model. According to survey conducted company received a positive response from the 

customer in terms of quick order processing time and service (Rajala and Savolainen, 

1996). 
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ii. IDEF0 based order fulfilment process model in steel industry 

Yousuf and Smith (Yousuf and Smith, 1996) modelled the order fulfilment process 

model using IDEF0 modelling technique in a steel industry. According to them the main 

purpose of designing the IDEF0 model to identify the main activities and provide 

understanding of the nature of different operations and processes involved in the system. 

They modelled “order to fulfilment” process in the steel industry shown in Figure 2:46. 

The process involves the main activities of mange the order A1 to erection of the steel 

A5. The first activity of the managing the order A1 involve the input of order from the 

customer that is assessed by personal and equipment; working as mechanism under the 

guidelines of contact documents. The output from this activity is construction and 

erection of the steel structure which work as input for the following activity. Similarly 

all the activities are modelled in the model. The order fulfilment model developed 

provides the knowledge acquisition of required activities and presents a flow of 

information regarding the process of fulfilling the order in steel industry. 

 

Figure 2:45 NAPS business process model in IDEF0 diagram (Rajala and Savolainen, 1996) 
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iii. IDEF0 process model for production of personalised bicycles  

Cullinane and associates (Cullinane et al., 1997) developed the IDEF0 process model for 

production of the personalised bicycles at NBIC Japan based on generic operational 

IDEF0 process model for mass customisation production systems. The developed model 

is shown in Figure 2:47. The process model is based on four main activities for 

production of personalised bicycle. The activities are capturing customer requirements 

A1, design product A2, manufacture the product A3 and deliver the product A4. The 

process model starts with the activity of capturing the customer order A1. Customer 

requirements for the bicycle are working as inputs for the activity and the sales 

representative use the ergonomics tools and work as mechanism to capture the required 

information under the guidelines of company policy and limitations of the technologies. 

The output from the activity is specifications for the personalised bicycle which work as 

input for the following activity of design of the product A2. Similarly the other activities 

are performed until the delivery of the product (Cullinane et al., 1997). 

 

Figure 2:46 Order fulfilment model in steel industry (Yousuf and Smith, 1996) 
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iv. IDEF0 process model for generation of 3D conformal products 

Tuck and associates (Tuck et al., 2008) used IDEF0 process modelling in designing a 

process model for design and fabrication of custom-specific conformal products using 

rapid manufacturing. The process model of design and manufacturing of conformal 

products is based on four main activities of geometry capture A1, data manipulation A2; 

design the product A3 and manufacturing the product A4 in the system. The activity of 

geometry capture A1 is modelled in the process model shown in Figure 2:48 generates 

the scanned measurement of the individual geometry as an output from the activity 

under the controls of design rule guidelines and reverse engineering equipment which 

are used as mechanism for capturing the geometrical measurements. Similarly the other 

activities A2, A3 and A4 are modelled in the process model in a hierarchical manner for 

production of custom specific conformal products. 

 

Figure 2:47 IDEF0 process model for personalised bicycles at NBIC Japan (Cullinane et al., 1997) 
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v. IDEF0 process model for manufacture of custom-fit prosthesis socket  

Colombo and colleagues (Colombo et al, 2010) modelled the design and fabrication 

process for custom-fit socket for lower limb prosthesis. The process model is shown in 

Figure 2:49. The design and fabrication process is based on five main activities from the 

activity of geometry capture A1 to the activity of constructing the socket A5. The 

activity of geometry capture A1 is modelled; where patient work as input and the 

technician captures the geometry of the lower limb of the patient using the tools under 

the guidelines of the geometry capture methods. The activity generates the stump data as 

an output for the next activity of creating stump CAD model in the system. Similarly all 

other activities are modelled in the system using the IDEF0 modelling methodology. 

 

Figure 2:48 Process model for design and fabrication of custom-specific products (Tuck et al., 2008) 
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The examples of IDEF0 process modelling technique in design and manufacturing 

systems shows that it provide graphical structure of the processes and functions in the 

design and manufacturing systems. The modelling methodology presents explicitly 

subsystems, required controls, mechanisms, inputs and outputs with showing the 

functional relationship and information flow in the systems. It provides a clear 

understanding of the different activities and functions by modelling the individual 

activities and the output from the functions and activities in the systems. 

 

 

 

 

Figure 2:49 Process model for fabrication of custom made lower limb prosthesis (Colombo et al., 2010) 
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2.6 Summary, context, aims and objectives of research 

2.6.1 Summary of the literature review.  

Custom foot orthoses are recognised and established as a non-invasive treatment in foot 

related problems and diseases including rheumatoid arthritis, diabetes and associated 

pathological complications of these diseases. The main characteristic of the custom 

orthoses fabrication and provision is the ability of providing the orthoses with prescribed 

required features and functional elements. The literature review has explored that 

conventional design and manufacturing practices and techniques are applied in the 

custom orthoses manufacturing. These techniques have limitations in incorporating the 

functional elements such as integration of local stiffness and complex design features 

including metatarsal pads and domes discussed in Section 2.4.2. These factors limit the 

range of product using the conventional techniques in the fabrication process. 

 

Rapid manufacturing techniques have greater design freedom and ability in creating the 

complex geometrical structures with required design features and functional elements. 

These factors indicate that this approach has increased potential in production of custom 

made parts and products. The commercial examples of in-the- ear hearing aids and 

dental braces along with other medical applications examples have shown the 

advantages of these techniques. The developments in fabrication of prosthesis sockets 

using rapid manufacturing techniques have shown advantages of these techniques in 

creation of custom-specific parts with increased accuracy and improved fit. 

 

The novelty of this research is the integration of rapid manufacturing techniques in 

design and fabrication process of custom foot orthoses. The main objectives are; the 

assessment of the rapid manufacturing approach in design and fabrication system which 

delivers improved quality orthoses with reduced lead-time and enables the production 

and delivery of custom-made orthoses at mass scale. The research addresses the issues 

in applications of rapid manufacturing techniques in design and manufacturing process 

for custom foot orthoses. The design and manufacturing costs and lead-time associated 

with the applications of different rapid manufacturing techniques are investigated and 
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evaluated. The research establishes the platform in evaluation of different commercially 

available rapid manufacturing techniques in custom foot orthoses fabrication at 

commercial scale. 

2.6.2 Structure of the work 

The research is structured as follows; 

1. Current design and manufacturing processes for custom foot orthoses is 

modelled and described. The modelling is based on the main activities and 

functions involved in the system. IDEF0 is used in modelling the activities and 

functions in the process. The main purpose of modelling the activities was to 

understand the functions and activities in current design and manufacturing 

process. In the next step rapid manufacturing approach was integrated in the 

process of design and fabrication for custom-made foot orthoses. A new process 

model based on IDEF0 was developed with integration of rapid manufacturing 

techniques in fabrication process. The developed model showed the impacts of 

rapid manufacturing techniques in the upstream and downstream activities in the 

design and fabrication process; representing the relationships in the functions 

and activities and overall improvements in the process. 

 

2. The main functions including foot geometry capture and orthoses design were 

evaluated and analysed in the developed rapid manufacturing based IDEF0 

process model in terms of cost, lead time, efficiency and overall productivity. 

 

3. Different commercially established rapid manufacturing techniques were used in 

the experimental work for fabrication of the foot orthosis model. The cost and 

lead-time in different rapid manufacturing techniques were analysed and 

evaluated. 

 

4. Based on the varying initial conditions and constraints, a set of mass 

customisation systems are proposed. 
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Chapter 3 Initial process modelling 

3.1 Introduction. 

In this chapter, analysis of the functions and activities involved in the design and 

fabrication of custom foot orthoses is carried out in order to understand and evaluate the 

design and manufacture process. IDEF0 process modelling methodology was used in the 

construction of a function based process model to illustrate the structured 

representations of the individual functions and activities in the system. The main 

objective was to assess and characterise the existing functions and carryout a functional 

analysis of the activities in the process of design and fabrication of custom foot orthoses. 

3.2 System for design and manufacturing of custom foot orthoses. 

Manufacturing systems have a value chain in the production cycle based on a set of 

generic functions. In conventional production systems the value chain of a production 

system starts from the generic functions of design, fabrication, assembly and distribution 

(Alford et al., 2000).  However, in production systems aimed at customisation, the value 

chain starts from function of capturing the customer requirements. All the other 

functions in value chain are driven by this function in production of custom made 

products (Cullinane et al., 1997). 

3.3 Functions in the system for design and manufacture of foot orthoses. 

A value chain is developed based on the core functions involved in the system for 

design and fabrication of custom foot orthoses (Obrovac et al., 2005; Pallari et al., 

2010). The developed value chain is based on the main functions in the production 

systems for mass customisation described in Section 2.5.6. A series of core functions 

identified in the value chain of custom foot orthoses fabrication are; (i) initial 

consultation and foot assessment, (ii) diagnosis, (iii) design of orthoses, (iv) plan for 

manufacture, (v) fabrication of orthoses and (vi) delivery of orthoses. In the following 

section, the core functions in the system are modelled in IDEF0 diagrams which will be 

used in constructing the IDEF0 process model of the existing system.  



78 

 

3.4 Controls and mechanisms in the system. 

The controls and mechanisms in the system are the elements which facilitate and ensure 

the smooth running of the process of design and fabrication of custom foot orthoses. 

Controls are the specific guidelines that direct and regulate the activities to produce 

correct output from the function in the system. The mechanisms are the sub-systems, 

machines and people that carryout the activities of the functions in the system. Table 3.1 

presents the identified controls and mechanisms in the system. 

 

Controls Mechanisms 

Clinical practices (c1) Orthotist (m1) 

Resources (c2) Diagnostic systems (m2) 

Diagnostic methods (c3) Foot geometry capture tools (m3) 

Foot geometry capture methods (c4) Orthoses designing system/tools (m4) 

Orthoses design methods (c5) Orthoses designer (m5) 

Manufacturing planning methods (c6) Manufacturing planning system (m6)  

Manufacturing techniques (c7)  Manufacturing techniques (m7) 

-------------- Operator (m8) 

-------------- Delivery system (m9) 

3.5 Description of the core functions in the system. 

The main functions and activities that turn inputs into output through specified controls 

and mechanisms are presented and described according to their order of sequence in the 

system. 

 Initial consultation and assessment (A1). 

Figure 3:1 represents the function of initial consultation and assessment (A1) in the 

IDEF0 diagram. The activities in this function involve collection and recording of basic 

information of the patient including anthropometric information (gender, age, weight 

and daily activities), medical history and the details about foot problem and complaint. 

The input for this function is the patient (i1). The orthotist (m1) works as the mechanism 

and carryout the initial consultation and foot assessment functions. The clinical practices 

(c1) and the resources of the company (c2) respectively work as the controls in the 

function. The clinical practices (c1) are a set of specified clinical guidelines and 

procedures that guide step by step carry out foot assessment function. Clinical 

Table 3.1 Controls and mechanisms in the system 
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guidelines require a basic clinical assessment to be conducted which includes primary 

diagnosis of the foot and reviewing the past and current medical history. The primary 

diagnosis involve an initial physical examination of the foot in which the 

clinician/orthotist (m1) examine the state and range of motions/movements, alignments, 

muscle functions and the apparent deformities in the foot. The resources (c2) control and 

regulate the consumption of resources including orthotist time for assessment, use of 

instruments/equipment during primary diagnoses and recording of the initial information 

collected.  

 

Based on the observations and findings in the initial consultation and assessment and 

from the results of primary diagnoses, a prescription/recommendation report is 

generated as an output (o1) from the function. In the prescription report, the orthotist 

recommends a more detailed diagnoses and clinical tests. 

 

    Clinical practices (c1)   

Resources (c2) 

 

 

 

(o1) 

  Patient  (i1)         Diagnoses/clinical tests  

 

 

 

     Orthotist (m1) 

 

 Diagnosis (A2). 

Diagnosis is the next function in the system. Figure 3:2 represents the IDEF0 diagram of 

diagnosis function (A2). The function involves the activities to conduct the pathological 

tests, x-rays and relevant clinical tests. The recommendations for the clinical tests and 

detailed diagnosis (i2) work as input for this function. The function is carried out by 

Figure 3:1 IDEF0 diagram of initial consultation and foot assessment function 

Initial consultation and 

assessment 
 Complaint and present foot 

conditions 

 Medical history  

 Anthropometric information 

 Primary diagnoses           

         A1 
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orthotist (m1) using the diagnostic systems (m2) which work as the mechanisms in the 

process. The clinical practices (c1), resources (c2) and diagnosis methods (c3) works as 

the controls in the function. The clinical practices (c1) guide to perform the diagnosis 

function according to specified clinical procedures. The resources (c2) regulate the 

consumption of resources such as clinician time, time in diagnosis and use of 

instruments/equipments. The diagnosis (c3) process involves the set of standard clinical 

methods and practices which regulate and guide to carry out this function.  The results 

and findings from diagnosis form a base which assists the orthotist in making the 

decision for surgical or non-surgical treatment. In case of non-surgical treatment, 

prescription for the foot orthoses (o2) is generated as an output from this function.  

 

Resources (c2)  

Diagnoses methods (c3)  

 Clinical practices (c1) 

 

 

Detailed diagnoses (i2)      Orthoses prescription 

(o2) 

 

Orthotist (m1)  

Diagnostic systems (m2) 

 

 

 Design of orthoses (A3). 

Figure 3:3 represents the function of designing the orthoses (A3) in the IDEF0 diagram. 

The activities in the function are foot geometry capture and design of orthoses. The 

prescription for the orthoses works as the input (i3) for this function. In the first step, 

foot geometry is captured. The orthotist works as mechanism (m1) and captures the foot 

geometry using the geometry capturing equipment and tools (m3) under specified foot 

geometry capturing methods (c4). In the next step, the designer (m5) designs the 

orthoses according to guidelines of design methods (c5) using the designing tools and 

Figure 3:2 IDEF0 diagram of diagnoses function 

 

 

Diagnosis 

A2 
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equipment (m4) as the mechanism. The geometry capturing methods (c4) guides step by 

step foot geometry capturing process. The available resources (c2) regulate the 

consumption of resources including orthotist time in foot geometry capture process, 

designer time in designing foot orthoses and equipments, tools and consumables in 

geometry capture and design processes. The designer (m6) incorporates the prescribed 

design features in the captured foot geometry impression cast using the design 

equipments and tools (m5) as the mechanism. After incorporation of design features, the 

designer develops and rectifies the positive model of the orthoses. The orthoses design 

methods (c5) regulate and guide the methods for designing the orthoses. The output 

from this function is final design of the orthoses (o3). 

Orthoses design methods (c5) 

Resources (c2)  

Foot geometry capture methods (c4) 

  

 

 

Orthoses prescription (i3)      Design of orthoses (o3) 

 

 

    Orthotist  (m1)  Orthoses design tools (m4) 

                Geometry capture tools (m3) 

      Technician (m4) Designer (m5) 

 

 Planning for manufacturing (A4). 

Figure 3:4 represents the function of planning for manufacturing the orthoses (A4) in 

IDEF0 diagram. The function involves generation of process plans, scheduling of 

production plans and establishment of quality control and inspection activities. The final 

design of the orthoses is used as input (i4) for this function. The function is carried out 

through manufacturing planning systems (m6) which comprise the systems and people 

involved in planning and organising the manufacturing activities under the specified 

manufacturing planning methods (c6) by using the resources of the company (c2). The 

Figure 3:3 IDEF0 diagram of function of design of orthoses 

 

Design of orthoses 
 Geometry capture 

 Design features 

 Model development         A3 

 

 

A3 
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output from this function is production order (o4) for the orthoses. 

 

Manufacturing planning methods (c6) 

Resources (c2)   

 

 

 

 

Design of orthoses (i4)      Production order (o4) 

 

 

 

Manufacturing planning systems (m6) 

 

 

 

 Manufacturing of orthoses (A5). 

Figure 3:5 shows the function of manufacturing of the orthoses (A5) in the IDEF0 

diagram. The activities in the function involve fabrication of the orthoses. The 

production order for the orthoses works as input (i5) for this function. The 

manufacturing techniques (m7) and machine operator (m8) work as the mechanisms in 

the system. In fabrication of orthoses currently conventional CAD/CAM techniques are 

used. The techniques involve turning and milling operation in the fabrication process. 

Further the orthoses require manual post processing work of trimming and finishing. 

The manufacturing techniques (c7) guide and regulate the fabrication function using the 

resources of the company (c2).  The output from this function is the fabricated orthoses 

(o5). 

 

 

 

 

Figure 3:4 IDEF0 diagram of function of planning for manufacturing 
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 Process planning 

 Production scheduling 

 Inspection 

 Quality control 
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Resources (c2) 

       Manufacturing techniques (c7) 

 

 

 

 

Production order (i5)       Fabricated orthoses (o5) 

 

 

       Machine operator (m8) 

Manufacturing techniques (m7) 

 

 

 Delivery of the orthoses (A6). 

Figure 3:6 represents the IDEF0 diagram of function of delivery of the orthoses (A6) 

which is the last function in the system. The activities in the function are delivery of the 

orthoses to the patient either by collection at the manufacturing facility or delivering 

through an established delivery system. The fabricated orthoses work as input (i6) for 

this function. The system for delivering the orthoses (m9) works as the mechanism 

through which the orthoses is delivered to the patient using the resources (c2); collection 

of orthoses at company shop or delivering through courier services. The output from this 

function is the delivery of orthoses to the patient within pre specified delivery time (o6). 

 

 

 

 

 

 

 

 

 

Figure 3:5  IDEF0 diagram of function of orthoses manufacturing  

 

Manufacturing through 

conventional techniques 

 

A5 
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Resources (c2) 

 

 

 Orthoses (i6)         ,        Orthoses to patient (o6) 

 

 

 

Delivery system (m9) 

 

 

All the core functions in the system of design and manufacturing for custom foot 

orthoses are presented and described. Based on the core functions, controls and 

mechanisms in the system; a system for the design and fabrication of custom foot 

orthoses is modelled in the existing operate-based state in IDEF0 process model in the 

following sections. 

3.6  Development of the process model. 

A process model has been developed for the system of design and fabrication of custom 

foot orthoses. The methodology in the development of process model is adopted from 

the approach of (Cullinane et al., 1997). They used IDEF0 methodology for modelling 

the mass customisation production systems (MCP) and developed a generic IDEF0 

operate-based process model. The model forms a basis which provides the guidelines in 

the development of specific models for the individual systems and companies.  

 

As mentioned in the Section 2.5.10, various researchers also have used IDEF0 

modelling methodology in developing the process model for design and fabrication 

system for production of customer-specific components and parts including Tuck and 

colleagues (Tuck et al., 2008) for fabrication of custom-made seat and Colombo and 

colleagues (Colombo et al., 2010) for the fabrication of customer-specific lower limb 

prostheses. In this work a process model for design and fabrication of custom foot 

orthoses is developed and modelled on IDEF0 modelling principles which are; 

Figure 3:6 IDEF0 diagram.of function of delivery of orthoses 

 

 

Delivery of orthoses to 
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A6 
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 Development of “context” model (A-0) of the system. 

 Development of “as-is” model (A0) of the system in existing operate-based state. 

 Development of “as-to-be” (A-1) rapid manufacturing based model of the 

system. 

3.6.1 Development of generic model (A-0) of the system. 

In the first step, a generic model (A-0) of the system is developed in which the purpose 

of the system is stated. The generic model (A-0) presents the generic view of the entire 

system. In IDEF0 modelling methodology the generic models are decomposed to a 

required level for capturing the details of the systems. Decomposition is a starting point 

in order to construct the detailed models generally called “as-is” models of the systems. 

An “as-is” model (A0) of the system represents the system in its existing “as-is” state 

and provides basis for functional analysis of the activities and functions involved in the 

systems (Ang et al., 1994). In Figure 3:7 a generic IDEF0 model (A-0) of the system of 

design and fabrication of custom foot orthoses is developed which shows all the 

required inputs, outputs, controls and mechanisms in the system. 
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Clinical practices (c1)  Foot geometry capture methods (c4) 

Resources (c2)     Orthoses design methods (c5) 

    Diagnosis methods (c2) Manufacturing techniques (c7) 

         Manufacturing planning methods (c6) 

Patient (i0) 

Business policy (i2)       Fabricated orthoses (o1) 

Industry data (i3) 

Material (i4)        Patient feedback (o2) 

 

 

 

Clinician (m1)  Designer (m5) Operator (m8) 

        Diagnoses system (m2)       Manufacturing planning system (m6) 

 Foot geometry capture tools (m3)  Delivery system (m9) 

      Orthoses design tools (m4) 

       Manufacturing techniques (m7) 

 

In following section, an “as-is” model (A0) of the system is developed from the generic 

model (A-0) of the system shown in Figure 3.7. All the functions and activities involved 

in the generic model (A-0) are exposed with detail in order to develop an “as-is” (A0) 

model of the system. An “as-is” model (A0) represents all the functions and activities of 

design and fabrication system in its existing operate-based state. 

3.6.2 Development of an “as-is” model (A0) of the system. 

In the development of “as-is” model (A0) of the system, the generic model (A-0) shown 

in Figure 3.7 is decomposed and the details of the system is generated. The main 

functions in the system discussed in the Section 3.5 are exposed by decomposition 

process. The main objective of development of an “as-is” model (A0) of the system is to 

understand the existing design and fabrication process and to review the whole system. 

The “as-is” model (A0) helps in to carryout functional analysis by evaluation of all the 

individual functions involved in the system in order to improve the existing design and 

fabrication process. Figure 3:8 shows the developed “as-is” model (A0) of the system. 

Figure 3:7 Generic model (A-0) of design and fabrication system for custom foot orthoses. 
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In the “as-is” model (A0), all the functions shown in the system turn inputs into outputs 

through specified mechanisms under the guidelines of specified controls in the system. 

The functions in the systems generally are analysed and evaluated by the performance 

analysis of the functions. The performance measurement is a process of quantifying the 

effectiveness and efficiency of a function (Slack, 2001; Tangen, 2003). The performance 

of a function is generally stated in terms of cost, time, speed, quality, satisfaction and 

additional value (Zhang, 2000). The level of performance of a function in the system is a 

key factor in decision making for redesigning or replacing the existing function in order 

to improve the overall performance of the system (Xiao et al., 2004).  

 

The “as-is” model (A0) of the existing design and fabrication system for custom foot 

orthoses is shown in Figure 3.8 which represents the core functions of; initial foot 

assessment, diagnosis, orthoses design, manufacturing planning, orthoses fabrication 

and orthoses delivery functions. All the specified controls and mechanisms used in the 

existing process of the system are shown in detail. The “as-is” model (A0) process 

model of the system provides the basis for improvements in the system by redesigning 

the existing design and fabrication process by integration of rapid manufacturing 

techniques in the system. 
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Figure 3:8 An “as-is” model (A0) of the system the in existing operate-base state. 
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3.6.3 Development of rapid manufacturing based model (A-1) of the system 

An “as-is” (A0) model of the system is redesigned in order to integrate the rapid 

manufacturing approach in the system of design and fabrication of custom foot orthoses. 

A potential rapid manufacturing based “as-to-be” model (A-1) of the system is 

developed which shows the applications of rapid manufacturing approach in the system. 

Figure 3:9 represent the developed potential rapid manufacturing based “as-to-be” 

model (A-1) of the system.  

3.6.4  Controls and mechanisms in rapid manufacturing based process model of 

the system 

In the potential rapid manufacturing based design and fabrication system for custom foot 

orthoses, the identified controls and mechanisms in the system are listed in Table 3.2. 

 

Controls Mechanisms 

Clinical practices (c1) Clinician (m1) 

Resources (c2) Diagnostic system (m2) 

Diagnostic methods (c3) Foot scanning system (m3) 

Foot scanning software (c4) CAD orthoses design system (m4) 

CAD orthoses design software (c5) Orthoses designer (m5) 

Manufacturing planning (c6) Manufacturing planning system (6) 

Rapid manufacturing techniques (c7) Rapid manufacturing system (m7) 

-------- Operator (m8) 

-------- Delivery system (m9) 

 

The application of rapid manufacturing approach has changed the system of design and 

manufacture of custom foot orthoses. As mentioned in Section 2.3, fabrication process 

in rapid manufacturing techniques use digital data which require the design of orthoses 

in the digital format. For this purpose a digital foot scanning system (m3) and a CAD 

system (m4) respectively are included as the mechanisms for performing the functions 

of foot geometry capture and orthoses design. The foot scanning software (c4) and CAD 

based orthoses designing software (c5) work as the controls and regulate and guide the 

digital impression capturing and CAD based orthoses designing functions in the system. 

Table 3.2 Controls and mechanisms in the system 
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Figure 3:9 An “as-to-be” model (A-1) of the system with rapid manufacturing approach (A5 block) in the system 
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The developed IDEF0 based process models shown in Figure 3.8 and Figure 3.9 

represents the “as-is” process model (A0) in its existing state and a proposed “as-to-be” 

model (A-1) of the system. In both models, step (i) and step (ii) involve same functions. 

However, in the proposed “as-to-be” model (A-1) the integration of rapid manufacturing 

approach has changed the functions and activities in the step (iii) and step (iv) in the 

system.  

 

Step (iii) is the function of designing the orthoses (A3) in the “as-is” model (A-0) where 

the traditional foot geometry capture function is replaced by the digital geometry capture 

technique in which a 3D digital foot scanner is used. The function of orthoses design is 

replaced by the CAD system where the orthoses is designed and modelled at one place 

(i.e. through CAD system). This has removed the traditional manual laborious activities 

in the functions of foot geometry capture and orthoses design.  

 

In step (iv) in the “as-is” model (A-0), the applications of rapid manufacturing approach 

reduces the traditional activities involved in the function of planning for the 

manufacturing (A4). The traditional activities of process planning, in process inspection 

and maintaining quality control requires relevant resources such as systems and software 

and labour work in performing the function of planning for manufacturing (A3) in the 

system. As discussed in the literature review in Section 2.3, rapid manufacturing 

techniques directly fabricate the parts designed through CAD based systems. The 

manufacturing preparation process (process planning) in rapid manufacturing techniques 

is simple and straight forward. The rapid manufacturing fabrication process consist one 

stage process chain; from product design to the final product. This reduces the need of 

process planning, in process inspection and in process quality control in comparison to 

traditional activities in function of planning for manufacturing in conventional 

production systems. 

 

The step (v) in “as-is” model (A-0), rapid manufacturing approach has replaced the 

conventional manufacturing techniques such as computerised numerical controlled 

(CNC) for manufacturing of the orthoses (A5). The conventional techniques include 
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both turning and milling operations. Based on the subtractive processes the techniques 

have limitations in the fabrication of complex geometrical parts and structures (Frank et 

al., 2003). Besides, the techniques require re-setting cutting tools for adjusting the 

varying shapes and prescribed features in the orthoses.  

 

The rapid manufacturing approach in the system has several advantages in improving 

the design and manufacturing process for custom foot orthoses. The techniques are 

based on the additive manufacturing processes where the parts are directly fabricated 

from CAD based design information. This removes the requirement of tooling, moulds 

and equipment in the manufacturing process (Kruth et al., 1998; Pham and Dimnov, 

2001; Levy et al., 2003; Tuck and Hague, 2006). In conventional manufacturing 

techniques, there is a direct link between complexity of the part and cost of 

manufacturing. The ability of rapid manufacturing techniques in the fabrication of 

complex geometrical parts reduces the manufacturing cost of the complex structured 

parts. Rapid manufacturing techniques only require raw material and digital design of 

parts in the fabrication process which minimise the requirements of high skilled 

operators (Tuck and Hague, 2006). 

3.7 Potential advantages of rapid manufacturing approach in the system. 

The main advantages of rapid manufacturing approach in the design and manufacturing 

process of custom foot orthoses identified are; 

 Reduced lead-time. 

 Reduced cost. 

 Improved foot orthoses. 

 Reduced lead-time 

The digital foot geometry capture through digital scanning process is a quick method for 

capturing 3D foot impression which reduces the time in foot impression capturing 

process. The foot impression capturing time was reduced from 6 hours per pair in 

traditional methods to 1 hour 5 minutes per pair in the digital design methods mentioned 

in Section 4.2. The main advantage of the digital scanning process is increased accuracy 

and repeatability in the foot impressions capturing process (Boardman, 2007; Payne, 
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2007; Williams, 2010). Additionally, the scanning technique generates the 3D foot 

impressions in the digital format which can be easily stored and transferred 

electronically to different places for the fabrication. 

 

The design of the orthoses using the CAD based systems is another advantage which 

improves the efficiency of the process and reduces the lead-time in the system. The 

orthoses design time was reduced from 5 hours 45 minutes per pair in traditional 

methods to 5 minutes per pair in digital methods mentioned in Section 4.5. The orthoses 

corrections and modifications can be digitally incorporated through CAD based 

designing system. The CAD system facilitates more control to the designer in designing 

and integrating digitally the required features in the orthoses as compared to manual 

incorporation of the design features in the orthoses. One of the main advantages of CAD 

design system is the digital incorporation of the features in the orthoses such as wedges, 

ramps, arch support and heel cupping which can be seen on the screen and viewed from 

various angles until the final model of the orthoses is designed according to required 

design prescription (Boardman, 2007; Williams, 2010). 

 Reduced cost. 

The rapid manufacturing approach in the system generates the digital design and 

manufacturing process for fabrication of custom foot orthoses. The use of various 

equipment, tooling and materials combined with extensive labour work during the 

different stages in fabrication of custom orthoses are replaced by digital design and 

manufacturing process which subsequently improve the efficiency of the process and 

increase the overall performance of the system. 

 

In foot geometry capture process digital foot geometry capture method removes the 

traditional labour and cost intensive geometry capturing method. The cost benefit 

analysis study conducted by Payne (Payne, 2007) for foot impression casts through 

plaster of Paris and optical scanning has shown significant reduction in the impression 

capturing cost and lead-time through optical scanning. The impression capturing cost is 

reduced from £98 per pair to £56 per pair as mentioned in Section 4.3. Additionally, the 

digital scanning saves the cost for handling and storage of the foot impressions for the 
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future use as compared to traditional storage of plaster of Paris casts and other type of 

impression casts.  

 

In design stage of foot orthoses, the process involves CAD based designing system 

which replaces the traditional methods of designing the orthoses in which the positive 

moulds of the orthoses are developed from the negative casts involving labour work, 

tooling and materials. The traditional method involves manual corrections, 

modifications in designing the orthoses positive moulds (Madazahy, 2004). The manual 

corrections and modifications process is replaced by CAD design system. This has 

reduced the orthoses design cost from £18 per pair in conventional based methods to £2 

per pair in digital based design method as mentioned in Section 4.6. In the fabrication 

stage, conventional fabrication techniques require high skill labour which is a major 

factor in increasing the manufacturing cost of the parts. However, in the rapid 

manufacturing techniques the burden of high skill labour cost is transferred to the 

technology itself i.e., the rapid manufacturing systems (Tuck and Hague, 2006). The 

rapid manufacturing systems involve minimum human interferences during the 

fabrication process due to the automated fabrication process and have the advantage of 

minimal requirements of skills and labour of the operator in the operations of the 

systems (Gibson et al., 2010). All these factors subsequently contribute in reducing the 

high skilled labour costs and overall manufacturing costs in the system. 

 Improved foot orthoses. 

The process involve digital techniques and digital systems in the design and 

manufacturing process that will result in increased accuracy in measurements of the foot 

geometry, digital incorporation of orthoses features reduces errors during the correction 

and modifications process and digital fabrication minimise the part errors, subsequently 

producing accurate and improved fit foot orthoses. The examples discussed in Section 

2.3.5 of rapid manufacturing based hearing aids by Phonak and Siemens (Gibson et al., 

2010), Dental braces by Invisalign and Dental bridges and Dental crowns by Sirona 

Dental Systems (Strub et al., 2006) have shown key advantages and benefits in terms of 

improved fit, easy repeatability and increased product performance and comfort in 

fabrication of custom made parts in comparison with the traditional fabrication process. 



 

 95 

3.8 Summary 

The rapid manufacturing based “as-to-be” process model (A-1) in Figure 3.9 shows that 

rapid manufacturing approach have significant advantages in the system especially in 

reducing the labour intensive time and cost activities. The rapid manufacturing 

techniques can be integrated in order to automate the system of design and fabrication of 

custom foot orthoses. The proposed “as-to-be” model is designed to integrate the rapid 

manufacturing approach in the system that will subsequently facilitate in improving the 

efficiency of the process and the clinical services to the patients. 

 

The main functions in the proposed design and fabrication process model are based on 

digital foot geometry capturing, CAD based orthoses designing and digital fabrication 

through rapid manufacturing techniques. This results in development of a seamless 

digital design and manufacturing process for fabrication of customised foot orthoses. 

Overall, the automated fabrication process in rapid manufacturing systems without the 

need of tooling and equipments, continuous fabrication process, minimal involvement of 

labour and increased accuracy in the part development are the potential advantages and 

benefits of the rapid manufacturing approach in the design and fabrication of system for 

customised foot orthoses. The developed rapid manufacturing based “as-to-be” process 

model (A-1) will be used for the development of an automated, cost effective system 

with low lead-time for fabrication of custom foot orthoses. The main functions shown in 

“as-to-be” process model (A-1) of the system will be investigated and evaluated in detail 

in terms of cost, lead-time, efficiency of the individual functions and activities and their 

effects on performance of the overall system. 
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Chapter 4 Foot geometry capture and orthoses design methods. 

4.1 Introduction.  

In this chapter, assessment of foot geometry capture and orthoses design methods is 

presented. The efficiency, accuracy and reliability of different foot geometry capture 

and orthoses design methods are analysed and evaluated. The time and cost involved in 

using different foot geometry capturing and orthoses design methods for a pair of 

orthoses are modelled, evaluated and compared. At the end of chapter, the overall 

advantages and significance of the applications of 3D digital scanning method for foot 

geometry capture and design of orthoses using CAD system is discussed. 

4.2  Time modelling of different foot geometry capture methods 

Foot geometry capture time for different methods was gathered first hand by industry 

visits to four different orthotic manufacturers. (i) Peacocks Medical group, Newcastle 

UK, (ii) London Orthotics Consultancy UK, (iii) The Foot Clinic UK and (iv) The Barn 

Podiatry Clinic UK. Geometry capture time was cross-checked among those 

manufacturers using a similar manufacturing process for custom foot orthoses. The 

information regarding foot geometry capture time and orthoses design time was further 

discussed with USA based orthotic manufacturer and suppliers, Seamus Kennedy, from 

Hersco Ortho Labs, USA and Melanie Shelton, Amfit, Inc, USA; through personal 

communication. Data obtained covers both geometry capture and orthoses design times. 

The time required in different foot geometry capture methods was approximated through 

considering the time made up of (i) time required for assessment of one pair of feet by 

the podiatrist and (ii) time required in foot geometry capture process. In the following 

sections, modelling of the time required in different foot geometry capture methods is 

analysed and modelled.  

4.2.1 Time in plaster of Paris based foot geometry capture method. 

The steps involved in using plaster of Paris to obtain the foot impression casts are (i) 

assessment of the feet, (ii) impression casting and (iii) drying and curing of the 

impression cast. Step (i) approximately takes 1 hour of time and is assumed to involve a 

podiatrist. The assessment time was obtained through personal communication with 
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leading orthotic clinics in United Kingdom, shown in Table 4.1. Step (ii) was assumed 

to take 30 minutes of podiatrist time for casting one pair of feet (Payne, 2007). Step (ii) 

further requires approximately 30 minutes of time to allow plaster of Paris to set 

properly on the foot (Saraswathy et al, 2004). Step (iii) takes at least 4 hours of curing 

time in order to completely dry and cure the impression casts before shipping to 

manufacturing facility (Seamus Kennedy, Hersco Ortho Labs, USA, Personal 

communication, 28.09.2010). Steps (ii) and (iii) were assumed to involve 1 hour of 

technician time during the casting process and performing post casting activities.  

 

Contact name  Name of company Contact date  

1. Andrew Fisher Orthotics Direct, UK 03.08.2010 

2. Stuart Healey The Foot Clinic, UK 03.08.2010 

3. Pamela Martin Instep Podiatry, UK 03.08.2010 

4. Karin Head & Short Footwear & Podiatry, UK 03.08.2010 

5. Jo Ward London orthotics consultancy, UK 05.10.2010 

6. Yan Liu London Medical, UK 05.08.2010 

7. Sarah The Barn Podiatry Clinic, UK 05.08.2010 

8. Robbie Rooney Sport Orthotics, UK 28.09.2010 

9. Malanie Shelton  Amfit, Inc, USA 26.08. 2010 

10.Seamus Kennedy  Hersco Ortho Labs, USA 28.09.2010 

4.2.2  Time in plaster slipper based geometry capture method. 

The steps involved in plaster slipper foot impression casting method for obtaining the 

foot impression casts are (i) assessment of the feet, (ii) impression casting and (iii) 

drying. Step (i) was assumed to take 1 hour of time and to involve a podiatrist. Step (ii) 

was assumed to take 30 minutes of podiatrist time for impression casting of one pair of 

feet. Step (iii) was assumed to take at least 1 hour of curing time required for completely 

drying of the cast before shipping to the manufacturing facility. The use of plaster 

slippers impregnated with quick drying resin removes the need of assistance of the 

technician in the foot impression casting process. 

4.2.3 Time in foam impression box geometry capture method. 

The steps involved in using foam impression box to obtain the foot impression casts are 

(i) assessment of the feet and (ii) impression casting. Step (i) was assumed to take 1 

Table 4:1 Foot assessment time obtained from leading orthotic clinics in UK and USA. 
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hour of time and to involve a podiatrist. Step (ii) was assumed to take 10 minutes of 

podiatrist time for impression capturing of one pair of feet. The use of crushable foam in 

the foam impression box capturing method remove the need for drying and curing 

process, as required in the plaster casting methods. 

4.2.4 Time in plaster casts/foam impression digitising method. 

The digitisation of plaster impression casts/foam impression box casts using the 

scanning method to obtain foot geometry in digital format involves one step. The 

method involves direct scanning of the foot impression casts captured through plaster 

casting or foam box impression casting methods. The method was assumed to take 5 

minutes of technician time for digitising the plaster casts or foam box impression casts 

through scanning process The scanning time was determined through personal 

communication with Mark Halford, Peacocks Medical group at Newcastle, UK. (Mark 

Halford. Peacocks Medical Group, UK, Personal communication, 25.05. 2010).  

4.2.5 Time in contact digitising foot geometry capture method. 

The steps involved in contact digitising method to obtain foot impression are (i) 

assessment of the feet and (ii) digital impression capturing. Step (i) was assumed to take 

1 hour of time and to involve a podiatrist. Step (ii) was assumed to take 5 minutes of 

podiatrist time for capturing the impression of one pair of feet. The impression capturing 

time was determined through personal communication. Malanie Shelton (Melanie 

Shelton. Amfit, Inc, USA, personal communication, 26.08. 2010). 

4.2.6 Time in 3D scan geometry capture method. 

The steps involved in 3D digital scanning method for obtaining the foot impressions are 

(i) assessment of the feet and (ii) optical foot impression capture. Step (i) was assumed 

to take 1 hour of time and to involve a podiatrist. Step (ii) was assumed to take 5 

minutes of podiatrist time for impression capture of one pair of feet using 3D digital 

scanning system. The foot impression capturing time was according to the time and 

motion study of digital foot scanning process conducted by Payne (Payne, 2007). 
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Foot impression 

casting method 

Required time/pair 

(Assessment + casting) 

Total 

Time/pair 

Transportation  

Time for casts 

 

Plaster of Paris casting 

 

-1 hour  and 30 minutes 

-30 minutes for setting  

-4 hours for cure time 

 

 

6 hours  

 

24 to 48 hours 

through courier. 

Plaster slipper casting -1 hour and 30 minutes 

-1 hour cure time 

2 hours and 

30 minutes 

24 to 48 hours 

through courier 

 

Foam impression box  -1 hour  

-10 minutes 

1 hour and 

10 minutes 

24 to 48 hours 

through courier 

 

Digitisation of 

plaster/foam box casts 

-1 hour  

-5 minutes. 

1 hour and 

5 minutes 

24 to 48 hours 

through courier 

 

Contact digitising -1 hour  

 -5 minutes 

1 hour and 

5 minutes 

 

Electronic 

 

3D scanning -1 hour 

 -5 minutes 

1 hour and 

5 minutes 

 

Electronic 

 

Table 4.2 shows that the traditional foot impression capturing methods involve increased 

time to obtain the foot impression casts. The plaster of Paris casting method is labour 

intensive and involves manual activities in the casting process which results in increased 

casting time. Additionally, the methods require curing time and handling and 

transportation time for shipment of casts to the manufacturing facility. The plaster 

slipper casting method also involves manual activities in the impression capturing 

process and requires curing and physical transportation time for sending the casts to the 

manufacturing facility. In the foam box impression method the impression capturing 

time is lower than the plaster casting methods, as the method does not involve any 

liquids in the impression capturing process. However, the foam impression box casting 

method involves manual activities which increase the impression casting time. 

Additionally, the method requires transportation time for sending the foam impression 

box casts to the manufacturing facility.  

 

 

Table 4:2 Time required in different foot geometry  capture methods 
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The digitising of plaster casts and foam impression box using a scanning system involve 

5 minutes of time in digitising the impression casts. However, the plaster impression 

casts and foam impression box casts consume significant amount of time in obtaining 

the foot impressions and the method requires additional time for shipment of the casts to 

the manufacturing facility. 

 

The contact digitising method involves three steps process to obtain the foot 

impressions, which are (i) pin-up, (ii) lock and (iii) digitisation. In the first step, the 

mechanical pins are allowed to move upward in order to completely come in contact 

with plantar surface of the foot. In the next step, the mechanical moving pins are locked 

at the same position.  In the third step, the positions of the pins are scanned in order to 

capture the digital impression of the foot. Although the contact digitisation method takes 

5 minutes of time in obtaining the impressions of the feet and has the advantages of 

eliminating the manual activities and transportation time. However, the contact digitisers 

have limitations in capturing the posterior heel of the foot and it only captures the 

geometry of the plantar of the foot (Huppin, 2009). 

 

The optical means for capturing the foot geometry in 3D scanning eliminates the labour 

work and other manual activities. The impression capturing is performed through direct 

scanning of the feet. The impression capturing process takes approximately 5 minutes of 

time per pair. The 3D optical scanning method is simple and one step process which 

significantly contribute in reducing the impression capturing time and eliminates the 

time for shipment and transportation of the casts. 

4.3  Cost modelling of different foot geometry capture methods 

The cost modelling of the different foot geometry capturing methods were approximated 

through considering the cost as made up of (i) cost of podiatrist labour time (ii) cost of 

technician labour time, (iii) cost of materials consumed and (iv) cost of equipment. The 

following costs were assumed in the cost modelling of foot geometry capture methods.  

 Podiatrist labour cost: £50 per hour (Payne, 2007). 

 Technician labour cost: £20 per hour (Peacocks Medical Group, UK, 2010). 
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 Plaster of Paris casting: £3 per pair (Payne, 2007) 

 Plaster slipper casting: £4 per pair (STS Company, Synthetic Tubular Sock 

Impression Products, USA). 

 Foam box impression casting: £2 per pair (A. Algeo Ltd, UK). 

 Cost of plaster/foam impression box scanning system: £5150 (Amfit Inc, USA). 

 Cost of contact digitiser system: £10,000 (Amfit Inc, USA). 

 Cost of 3D scanning system: £10,000 (Precision 3D Limited, UK). 

 

The costs for podiatrist labour time and plaster of Paris foot impression casting was 

adopted form the work of Payne (Payne, 2007) in his work for “cost benefit comparison 

of plaster casts and optical scans of the foot for manufacture of foot orthoses”. Labour 

cost per hour for the technician was obtained from Peacocks Medical Group, UK. The 

cost for Plaster slipper socks and foam box impression were obtained from generic 

orthotic material suppliers STS Company, Synthetic Tubular Sock Impression Products, 

USA and A. Algeo Ltd, UK, respectively. The cost for plaster/foam impression box 

scanning system, contact digitising system and 3D scanning system were obtained 

through email communication with Amfit Inc, USA and Precision 3D Limited, UK as 

their selling price for the equipment, materials and systems.  

4.3.1 Cost in plaster of Paris based foot geometry capture method. 

In the foot geometry capture method using plaster of Paris, the assessment of one pair of 

feet was assumed to take 1 hour of podiatrist time for assessment followed by the 30 

minutes of time in the impression capturing process. This makes the podiatrist labour 

cost at the rate of £75 per pair in the process. The cost of consumables in the plaster of 

Paris casting was approximated at £3 per pair (Payne, 2007). The method also require 1 

hour of time of technician labour at the rate of £20 per hour for assisting the podiatrist in 

the impression capturing process and packaging and shipment the impression casts to 

the manufacturing faculty. The total impression capturing cost using plaster of Paris 

geometry capturing method is approximated at £98 per pair. 
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4.3.2 Cost in plaster slipper based foot geometry capture method. 

In the plaster slipper geometry capturing method, the assessment of one pair of feet was 

assumed to take 1 hour podiatrist time followed by the 30 minutes of time in the 

impression capturing process. This makes the podiatrist labour cost in the process at the 

rate of £75 per pair. The cost of consumables in the plaster slipper casting was 

approximated at £4 per pair (STS Company, Synthetic Tubular Sock Impression 

Products, USA, 2010). The total impression capturing cost using plaster slipper 

geometry capturing method was approximated at £79 per pair. 

4.3.3 Cost in foam box impression based foot geometry capture method. 

In the foam box impression geometry capturing method, the assessment of one pair of 

feet was assumed to take 1 hour of podiatrist time followed by the 10 minutes of time in 

foot impression capturing process. This makes the podiatrist labour cost in the process at 

the rate of £58 per pair. The cost of the consumables was approximated at £2 per pair 

(A. Algeo Ltd, UK, 2010). The total impression capturing cost using foam impression 

box geometry capture method was approximated at £60 per pair. 

4.3.4 Cost in digitisation of plaster casts and foam impression box method 

The digitisation of the plaster and foam impression box casts is assumed to involve less 

time in the foot geometry capture process. However, the plaster casts and foam box 

impression casts consume significant amount of time and cost in obtaining the plaster 

based and foam box based foot impression casts. The digitisation of the impression casts 

was assumed to take 5 minutes of technician time at the rate of £2 per pair. The 

technique does not involve any physical material in the digitisation of the impression 

casts. The method involves one-off cost of £5000 for the digitisation system (Amfit Inc, 

USA, 2010). The annual depreciation cost for digitising system is assumed at the rate of 

£1000 per year, considering the 5 years as a life span for digitising system. As the 

digitisation of one pair of impression casts takes 5 minutes of time, it is assumed that 

based on 220 working days per year 21120 pairs per year can be digitised at the 

depreciation cost of £1000 per year. This makes the digitisation cost per pair negligible 

in the process. The total digitisation cost for the plaster of Paris, plaster slipper and foam 

impression box casts were approximated at £100, £81 and £60 per pair, respectively. 
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The cost includes the impression capturing cost through plaster casting and foam 

impression box casting methods and the cost for digitisation of one pair of impression 

casts. 

4.3.5 Cost in contact digitisation based geometry capture method 

The contact digitisation method involve less time in the impression capturing process. 

The digitisation of one pair of feet takes 5 minutes of time and assumed to involve 

podiatrist labour cost at the rate of £5 per pair in the process. The contact digitisation 

technique does not involve any physical material in the impression capturing process; 

however, the method involves one-off cost of £10,000 for the contact digitising system 

(Amfit Inc, USA, 2010). The annual depreciation cost for a contact digitising system is 

assumed at the rate of £2000 per year, considering the 5 years life span for a contact 

digitiser system. As the assessment of one pair of the feet is assumed to take 1 hour of 

time, the orthotist can assess 1760 patients per year based on 220 working days per year. 

At the depreciation cost of £2000 per year, 1760 pairs per year can be digitised, which 

makes the impression capture cost approximately at the rate of £1 per pair. The total 

impression capturing cost in the contact digitisation method is approximated at £56 per 

pair which includes the assessment, foot impression capturing and equipment costs. 

4.3.6 Cost in 3D scan based foot geometry capture method 

The 3D digital scanning for foot geometry capturing is quick process and involve less 

time in impression capturing. The scanning of one pair of feet takes 5 minutes of time 

and assumed to involve podiatrist labour cost at the rate of £5 per pair. The technique 

involves one-off cost of £10,000 for the scanning system (Precision 3D Limited, UK, 

2010). The annual depreciation cost for a 3D digital scanner was assumed at the rate of 

£2000 per year, considering the 5 years life span for a 3D digital scanner. As the 

assessment of one pair of feet is assumed to take 1 hour of time, the orthotist can assess 

1760 patients per year, based on the 220 working days per year. At the depreciation cost 

of £2000 per year, 1760 pairs per year can be scanned using the 3D digital scanner. This 

makes the impression capture cost approximately at the rate of £1 per pair. The total 

impression capturing cost in the 3D digital scanning method was approximated at £56 

per pair which includes the assessment, impression capturing and equipment costs. 
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Table 4.3 shows that the traditional foot geometry capturing methods have the higher 

impression capturing costs. In plaster of Paris casting method, the labour time of the 

podiatrist and technician increases the impression capturing cost. The plaster slipper 

casting and foam impression box casting methods also involve increased labour time, 

which subsequently increase impression capturing cost. The digitisation of plaster casts 

and foam impression casts although require less time in capturing the digital information 

of the cast. However, significant amount of labour time is already consumed in 

obtaining the plaster/foam box impression casts before the digitisation process. The 

contact digitising method compared with other impression capturing methods involve 

less time. However, the method has limitations in capturing 3D impression of the foot 

and captures only the geometry of the plantar of the foot.  

4.4  Foot orthoses design methods 

Design of custom foot orthoses involves traditional methods based on manual and 

labour intensive activities. However, with the technological advancements CAD based 

design methods were also introduced.  

Foot impression 

capturing  

techniques 

Assessment 

cost/pair 

Podiatrist 

Geometry capture 

cost/pair 
Podiatrist +Technician 

Material 

cost/pair 

Total 

cost/pair 

Plaster of Paris  

 

Plaster slipper  

 

Foam impression box 

£50 

 

£50 

 

£50 

£25           + £20 
 

£25            N/A 

 

£8              N/A 

£3 

 

£4 

 

£2 

£98 

 

£79 

 

£60 

Digitisation of impression casts 
Plaster of Paris  

 

Plaster slipper  

 

Foam impression box 

£50 

 

£50 

 

£50 

£25 + £20 + £2  
 

£25 + £2  

 

£8 + £2 

 

£3 

 

£4 

 

N/A 

£100 

 

£81 

 

£60 

Digital scanning  

Contact digitising £50 £5                N/A £1 £56 

3D digital scanning £50 £5                N/A  £1 £56 

Table 4:3 Foot geometry capturing cost involved in the different methods 
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4.4.1 Plaster based foot orthoses design methods 

Traditionally, orthoses design has been based on physically modifying the casts of the 

feet. The process requires development of a positive model of the impression cast using 

the plaster of Paris powder. The positive model is developed from negative impression 

cast, obtained through plaster casting method or foam impression box casting method 

(Hunter et al, 1995; Madazhy, 2004), as described in Section 2.4.6. 

4.4.2 Steps in plaster based design method 

The plaster based orthoses design process is based on two steps; (i) development of the 

positive model from negative impression cast and (ii) incorporation of design features in 

the positive model. Step (i) requires developing a positive mould by casting the plaster 

of Paris in the negative impression casts; creating a master model (Staats and 

Kriechbaum, 1989). The developed master model is then modified and corrected in 

order to incorporate the required design features such as adding wedges, arch height, 

ramps, heel lift/cupping, met pads etc to create the orthosis over it (Hunter, et al, 1995; 

Lasurdi and Nielson, 2000).  

4.4.3 Digital based foot orthoses design methods 

Digital based design process uses the CAD techniques in the orthoses design that has 

better efficiency, time and cost saving in the orthoses design process (Staats and 

Kriechbaum, 1989; Boardman, 2007, Williams, 2010). The CAD based design 

techniques remove the manual activities and minimises the labour work; as required in 

the plaster based designing methods.  

4.4.4 Steps in digital based design methods 

Digital based orthoses design is based on one step process in which a digital 

representation of the foot impressions/casts is used for designing the orthoses through 

CAD system. The orthoses design features such as wedges, ramps, arch support, met 

pads and heel lift/cupping are digitally incorporated in the digital representation of foot 

impression/casts using the specific orthosis design software. 
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4.5 Time modelling of conventional orthoses design methods 

The time required in the plaster based design methods were approximated through 

considering the time as made up of (i) time required for development of positive mould 

and (ii) time required for corrections and incorporation of orthoses design features in the 

positive model.  

4.5.1 Time modelling of plaster based design methods 

The steps involved in design of foot orthoses using plaster of Paris casts are (i) 

development of the positive model of impression cast and step (ii) incorporation of the 

design features in positive model. Step (i) was assumed to take 15 minutes of time per 

pair and to involve a technician in the process. Step (i) further requires 1 hour of time as 

the setting time (Hunter et al, 1995) and 4 hours as the curing time for the positive 

model to be completely dry before the manual corrections and modifications (Seamus 

Kennedy, Hersco Ortho Labs, USA, Personal communication, 28.09.2010). Step (ii) was 

assumed to take 30 minutes of time per pair for corrections, modification and 

incorporation of design features in the positive model by an orthotic technician (Mark 

Halford, Personal communication Peacocks Medical Group UK, 2010).  

 

The orthoses design process using plaster slipper negative impression casts and foam 

box impression method is identical to that of using a plaster of Paris cast. The only 

difference is the form of the initial negative cast/mould. The timing above is therefore 

also assumed for orthoses design from plaster slipper casts and foam box impression 

casts. Table 4.4 shows the orthosis design time when using plaster based designing 

methods. 

 

Plaster based design 

methods 

Positive 

mould/pair 

Setting and 

cure time 

Designing 

time/pair 

Total 

time/pair 

Plaster of Paris casts 

Plaster slipper casts 

Foam box casts 

 

15 minutes 

 

1hr + 4hrs 

 

30 min 

5hrs 45 

min 

Table 4:4 Time in conventional  methods base designing 
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4.5.2 Time modelling of digital based orthoses design methods. 

Design time in using the foot impression obtained through contact digitiser, 3D scanning 

and scanning of the plaster and foam impression box casts is based on one step. The 

design process is assumed to take 5 minutes of time per pair and to involve a designer in 

the process (Melanie Shelton, Amfit Inc, USA, Personal communication, 26.08.2010; 

Mark Halford, Peacocks Medical Group, UK, 2010). In the design process, the designer 

incorporates digitally the perspective alterations and prescribed design features using the 

specific orthoses design software tools. Finally, a virtual 3D model of the corrected 

orthoses is developed in the digital file format.  

 

The digital based design processes are identical to each other, as all the techniques use 

the scanned information of the foot impression for designing the orthosis. The only 

difference is in the type of technique used for capturing the initial information of the 

foot impression. The orthoses design time mentioned above is therefore assumed 

identical in digital based impression capturing technique including; scanned information 

of the plaster/foam impression box casts, contact digitising and 3D scanned foot 

impression. Table 4.5 shows design time in the digital based methods. 

 

Digital based design methods Labour time/pair Total time/pair 

Plaster casts/foam box scanning 

Contact digitiser scanning 

3D digital scanning 

 

5 minutes 

 

5 minutes 

4.6 Cost modelling of conventional based design methods. 

Cost modelling of plaster based orthoses design methods were approximated through 

considering the cost as made up of (i) cost of the technician time and (ii) cost of material 

consumed. The following costs have been assumed in the cost modelling of plaster 

based designing methods. 

 Orthotic technician labour cost: £20 per hour (Brocklesby and  Wools, 2009) 

 Material cost for 2 kgs of plaster of Paris powder per pair (Philips, 1990), @ 

£1.5 per kg (A. Algeo Ltd UK, 2010). 

Table 4:5 Design time in digital based methods 
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These assumptions give a labour cost of £15 per pair and the material cost of £3 per pair 

(Algeo Ltd UK, 2010), giving a total approximated cost of £18 per pair in the plaster 

based design processes. Table 4.6 shows the design cost using plaster based methods. 

 

Plaster based design 

methods 

Labour 

cost/pair 

Material 

cost/pair 

Total 

cost/pair 

Plaster of Paris casts 

Plaster slipper casts 

Foam impression box casts 

 

£15 

 

£3 

 

£18 

 

4.6.1 Cost modelling of digital based design methods. 

The cost modelling of digital based orthoses designing methods has been approximated 

through considering the cost as made up of (i) cost of the designer time and (ii) 

equipment cost. The following costs have been assumed in cost modelling of digital 

based designing methods.  

 Designer labour cost: £20 per hour (Peacocks Medical Group, UK) 

 Cost of CAD system and design software £5000 (Amfit.com, 2010) 

 

Digital based design 

methods 

Labour cost/pair Material 

cost/pair 

Total 

cost/pair 
Plaster casts/foam box scans 

Contact digitiser scans  

3D digital scans 

 

£2 

 

N/A 

 

£2 

 

 

Table 4.7 shows the design cost in the digital based methods. Digital techniques remove 

the traditional activities in the design process. Additionally, the techniques eliminate the 

use of materials and manual activities which significantly reduces the designer labour 

time and cost. However, the digital orthoses design method involves one-off cost of 

£5000 for the CAD system and orthoses designing software. The annual depreciation 

cost for CAD design system and orthoses software is assumed at the rate of £1000 per 

year; considering 5 years life span for the CAD system and software. As the designing 

of one pair of orthoses takes only 5 minutes of time per pair of designer time (Mark 

Table 4:6 Design cost in plaster based methods 

Table 4:7 Design cost in digital based methods 
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Halford, Peacocks Medical Group, UK, 2010), it is assumed that in 220 working days 

per year a total of 21120 pairs per year can be designed at the depreciation cost of £1000 

per year for the CAD system. This makes the equipment cost per pair negligible in the 

process. The assumptions above give a design cost of approximately £2 per pair in the 

digital based design processes. 

4.7 Summary. 

Table 4.2 shows the time modelling in plaster based foot geometry capture methods and 

digital based geometry capture methods. The digital based geometry capture method 

involves reduced time of 1 hour and 5 minutes per pair as compared to 6 hours of time 

per pair in conventional foot geometry capture methods. Table 4.3 shows the cost 

modelling in plaster based geometry capture methods and digital based geometry 

capture methods. The digital based method involves lower cost of £56 per pair as 

compared to £98 per pair in the conventional based methods. The comparison shows 

that the plaster based methods involve longer time and are cost intensive methods. The 

methods are craft based and labour intensive involving manual and physical work, 

where the foot geometry capture is based on the experience and craftsmanship of the 

individual designer.  

 

Table 4.4 shows the time modelling in plaster based orthoses design methods and Table 

4.5 shows digital based orthoses design methods. The digital design methods involve 

decreased design time of 5 minutes per pair as compared to 5 hours 45 minutes per pair 

in conventional design methods. Table 4.6 shows the cost modelling in plaster based 

design methods and Table 4.7 shows the digital based design methods. The digital based 

design method involves £2 per pair as compared to £18 per pair in the conventional 

design based methods. The comparison shows that the plaster based design methods 

involve longer time and are cost-intensive methods. The methods are craft based and 

labour intensive involving manual and physical work, where the orthoses design is 

based on the experience and craftsmanship of the individual designer.  
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The digital based foot geometry capture and CAD based orthoses design methods have 

the additional advantages of increased accuracy, reliability and repeatability if 

necessary. Holding 3D foot geometry and CAD based orthoses designs in digital format 

also reduces the time and cost required for storage and handling of casts and designed 

orthoses. Based on the number of factors mentioned, it is concluded that digital based 

geometry capture and CAD based orthoses design offer significant benefits to the 

industry. However, for these to be realised, the downstream processes in fabrication of 

foot orthoses must be capable of operating with digital information. 
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Chapter 5 Foot orthoses fabrication methods 

5.1 Introduction  

In this chapter build-time and material consumption in fabrication of custom foot 

orthosis model through different rapid manufacturing techniques is presented. 

Commercially established rapid manufacturing techniques including (i) Fused 

deposition modelling (FDM) using Dimension SST 768 system and uPrint system by 

Stratasys, Inc, USA, (ii) PolyJet 3DP using Connex
TM

 500 system by Objet Geometries, 

Israel, (iii) Stereolithography using ipro 8000 SLA system, (iv) V-Flash 3D system and 

(v) Selective laser sintering using spro SD 60 SLS system by 3D systems Inc. USA, for 

fabrication of foot orthosis model.  

5.2 Selection of rapid manufacturing techniques for orthoses fabrication 

The selection of rapid manufacturing techniques for fabrication of foot orthoses was 

based on various medical applications of RM techniques discussed in Section 2.3.4 for 

fabrication of surgical and diagnostic aids, tissue engineering and scaffolds, prosthetic 

fabrication and medical models (Gibson et al, 2010, Wohlers, 2010). The significant 

advantages of the rapid manufacturing techniques are; ease in the fabrication of custom-

specific complex geometrical parts and devices, increased accuracy and consistency in 

final parts with the additional advantage of repeatability for custom-specific 

personalised parts and products.  

5.2.1 Requirement of the process 

 Low lead-time as the objective is to get custom made orthoses within 24 hours of 

time after initial foot assessment process and prescription of orthoses. 

 Fabrication of complex orthoses design features with increased accuracy, and 

consistency.  

 Established and seamless manufacturing process to minimise complications in 

the production. 

 Increased automation in design and fabrication process. 

 Reduced finishing and trimming time and manual labour. 
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5.2.2 Selection of materials 

Most of materials for foot orthoses are rigid to semi rigid, as the primary aim of foot 

orthoses is to improve functionality and provide support. The soft materials tend to 

“bottom out” and break down quickly during the amount of activities in the service 

phase which significantly reduces the orthoses service life and support (Goodman, 2004; 

Caselli, 2004). 

 

The material for foot orthoses must combine physical and mechanical properties 

characteristics including elasticity, density, durability, flexibility, compressibility, 

strength and stiffness, ease of fabrication and availability (Rome, 1990; Nicolopoulos et 

al, 2000). Stiffness and strength are the main two important characteristics in orthoses 

materials along with other mechanical and physical properties as the foot orthoses 

during the service phase have to carry out and withstand the whole body weight in 

parallel with serving and addressing specific treatment objectives for the patients. 

 Material selection 

Requirements of material used in foot orthoses are; 

 Hard and stiff enough to be able to realign the foot when most of the body 

weight is going through it during the service phase. 

 Impact resistant as the orthoses should be able to withstand rough handling. 

 Should be able to withstand extended use with users without any change in 

material properties. 

 Ease of fabrication. 

 Ease of use. 

 Availability. 

Table 5.1 shows the mechanical properties of traditional materials from semi rigid to 

rigid materials used in the orthoses fabrication; discussed in Section 2.4.4. In rigid and 

semi-rigid custom orthoses, the thickness of orthoses shell commonly ranges from 2 mm 

to 4 mm (Mcpoil and Brocao, 1985; Lockard, 1998; Steven, 2002).  
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Mechanical properties                                                                     Units 

 

Ethylene vinyl acetate EVA 

Young’s modulus 10 - 40 MPa 

Yield strength 12-18 MPa 

Tensile strength 16 - 20 MPa 

Fracture toughness 0.5 – 0.7 MPa 

   

Polypropylene PP 

Young’s modulus 89 - 1500 MPa 

Yield strength 20.27 - 37.2 MPa 

Tensile strength 27.6 - 41.4 MPa 

Fracture toughness 3 – 4.5 MPa 

   

Acrylonitrile butadiene styrene ABS 

Young’s modulus 1100 - 2900 MPa 

Yield strength 18.5 - 51 MPa 

Tensile strength 27.6 – 55.2 MPa 

Fracture toughness 1.19 – 4.29 MPa 

   

Polycarbonate PC 

Young’s modulus 2000 - 2400 MPa 

Yield strength 59 - 70 MPa 

Tensile strength 60 - 72 MPa 

Fracture toughness 2.1 – 4.6 MPa 

   

Poly methylmethacrylate (PMMA) 

Young’s modulus 2240 - 3800 MPa 

Yield strength 53.8 – 72.4 MPa 

Tensile strength 48.3 – 79.6 MPa 

Fracture toughness 0.7 – 1.6 MPa 

   

Polyamides PA 
Young’s modulus 2620 - 3200 MPa 

Yield strength 50 -94.8 MPa 

Tensile strength 90 - 165 MPa 

   

Table 5:1 Mechanical properties of traditional materials (Edupac, 2011) 

http://en.wikipedia.org/wiki/Acrylonitrile
http://en.wikipedia.org/wiki/Butadiene
http://en.wikipedia.org/wiki/Styrene
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Table 5:2 Relative bending stiffness in traditional material (2 to 4 mm thicknesses) 
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Table 5:3 Relative bending stiffness in RM material (2 mm to 4 mm thicnesses) 
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The custom foot orthoses are prescribed for provision of “comfort” or for “improving” 

the foot function. The implications of bending stiffness are to improve foot function and 

comfort. The value of bending stiffness depends on the specific intended function and 

comfort in the prescribed orthoses. The orthoses prescribed in order to primarily provide 

pain relief requires a quite low stiffness in order to be comfortable. The orthoses 

prescribed in order to improve the foot function typically require higher stiffness.  

 

As earlier mentioned, in rigid and semi-rigid orthoses fabricated from nylon or 

propylene material the thickness of orthoses shell ranges from 2 mm to 4 mm, so there is 

not an ideal value of bending stiffness in custom-made orthoses. However, there is a 

useful range of values of bending stiffness according to thickness size of the orthoses 

shell prescribed for specific purposes (pain relief or foot function). Table 5.2 and 5.3 

shows the range of relative bending stiffness of conventional materials and rapid 

manufacturing materials with varying thicknesses from 2 mm to 4 mm for orthoses 

shell.  

 

The orthoses prescribed for improving the foot function and correct the walking 

behaviour is generally fabricated from rigid materials such as Polypropylene (PP) in 

different thickness sizes ranging from 2 mm to 4 mm according to conditions and 

requirements of the patients. Table 5.2 shows the calculated values for relative bending 

stiffness in Polypropylene (PP) material ranging from 712 to 5696 N.mm. The values of 

relative bending stiffness in rapid manufacturing materials shown in Table 5.3 qualify 

the range of values in traditional materials used for orthoses shell of varying shell 

thickness sizes. Figure 5.1 shows the relative bending stiffness of traditional materials 

with comparison to relative bending stiffness of rapid manufacturing materials, shown in 

Figure 5.2 used in fabrication of orthosis model. The comparison shows that the rapid 

manufacturing materials offer potential to be used as orthoses material for end use 

product. 
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5.3 Fabrication of the orthosis model. 

The CAD based designed model of orthosis in stl. file format was used for fabrication of 

orthosis model. The orthosis model was adopted from the work of Pallari. J. H (Pallari, 

2008) for mass customisation of foot orthoses for rheumatoid arthritis patients. The 

orthosis model was designed in order to realign and improve the biomechanical 

movements and foot functions for rheumatoid arthritis patients.   

Figure 5:1 Relative bending stiffness in traditional materials 

Figure 5:2 Relative bending stiffness in RM materials 
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Table 5.4 shows the specifications of the fabricated orthosis model. Figure 5.3 show foot 

orthosis model with a volume of 83596.162mm
3
, surface area of 32145.781 mm

2
 and 

bounding box of 179.52 x 79.81 x 50.82 mm. The 3D CAD based model was fabricated 

and build-times were obtained from the proprietary machine software for the following 

RM technologies on well established 6 different rapid manufacturing systems with 

default software parameters having different slice thickness. There are good physical 

reasons to use particular slice thickness in different rapid manufacturing systems. This is 

related to physics and chemistry of the layer consolidation method during the fabrication 

process in different rapid manufacturing systems. Rapid manufacturing systems are 

optimised with standard operating parameters. Moving away from these parameters 

often invalidities the warranties and can deliver a poor quality product.  

 Specifications of the orthosis model. 

 

Measurements of orthosis model 

Orthosis model  Width 179.52, depth: 79.81 mm height 50.82 mm 

 

   

5.4  Rapid manufacturing systems used in orthosis model fabrication. 

Table 5.5 shows the technical specifications and material cost in different rapid 

manufacturing techniques used for fabrication of orthosis model. The orthosis models 

were fabricated on default machine parameters with same specifications of the orthosis 

model were across the rapid manufacturing systems used. 

 

 

Table 5:4 Measurements of fabricated orthosis model accorss all RM techniques  

Figure 5:3 Orthosis 3D file used as benchmark part across all RM techniques (Pallari, 2008) 
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Printer name Build volume 

mm 

Approx. 

resolution mm 

BV cm
3
 Material  

cost £/kg 

spro 60 SD SLS 381 x 330 x 457 ±0.08  57458.61 64.00 

ipro 8000 SLA 650 x 350 x 300 ±0.05  68250.00 285.00 

Polyjet Connex 500 500 × 400 × 200 0.1 - 0.3 40000.00 225.00 

3DP V-Flash 178 x 229 x 203 ±0.22  8259.08 455.00 

Dimension uPrint 203 x 152 x 152 ±0.245  4719.47 330.00 

Dimension SST 768 203 x 203 x 305 ±0.245  19677.38 330.00 

 

Table 5.5 Technical specifications of different rapid manufacturing systems 

 

Table 5.6 presents build-times obtained through proprietary machine software and 

material consumption in fabrication of orthosis model using different rapid 

manufacturing systems. In SLS technique using spro SD 60 SLS system, Duraform PA 

(Nylon 12) material was used in the orthosis model.  The orthosis model consumed 

50.15 grams of material. In SLA technique using ipro 8000 system, Accura 55 resin 

material was used in the orthosis model. The material consumption was 60 grams in 

orthosis model and 30 grams in support structure. In polyjet technique using Connex 

500 system, Vero White FullCure®830 material was used in the orthosis model and 

FullCure®705 in the support structure. In 3DP V-flash system, V-Flash
 

®FTI material 

was used in the orthosis model. In FDM technique using Dimension 768 system, ABS 

P400 material was used in orthosis model and P400 soluble material was used in the 

support structure. In uPrint system, ABS P430 material was used in orthosis model and 

P430 material was used in the support structure. The properties of materials used are 

presented in Appendix on page no: 220. 

 

Printer name Build  

volume        mm 

Build time 

hours/part  

Material  

used 

Material 

consumed  

spro 60 SD SLS 381 x 330 x 457 3  Duraform 50.15 grams 

ipro 8000 SLA 650 x 350 x 300 6  Accura 55 60 grams 

Connex 500 500 × 400 × 200 6 Verowhite 180.9 grams 

3DP V-Flash 178 x 229 x 203 10  FTI GN 52 grams 

SST 768 FDM 203 x 203 x 305 7  ABS P400 90 grams 
Dimension uPrint 203 x 152 x 152 7  ABS P430 55 grams 

 

Table 5.6 Build time and material consumed in different rapid manufacturing systems 
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5.5  Summary. 

Foot orthosis model was fabricated on 6 different commercially established rapid 

manufacturing systems using the default fabrication parameters established by 

proprietary software on the systems. In the orthosis model fabrication, different build-

times were obtained due to different fabrication processes and materials used. The 

comparison of range of bending stiffness in rapid manufacturing based materials with 

range of bending stiffness in traditional materials showed that RM based materials 

qualify and can be used in the fabrication of custom foot orthosis shell. In the next 

Chapter, analyses of the cost and build time on different rapid manufacturing systems is 

presented. 
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Chapter 6 Cost and lead-time modelling  

6.1 Introduction. 

In this chapter modelling of the cost and lead-time for fabrication of foot orthoses using 

different rapid manufacturing techniques is presented. The cost and lead-time obtained 

from different techniques were analysed and compared with conventional orthoses 

fabrication technique. The analysis includes various cost elements and lead-time 

obtained in fabrication of orthosis model. The cost and lead-time modelling provide a 

basis for decision making for selection of appropriate rapid manufacturing technique 

that proves more efficient in comparison with conventional fabrication technique for 

fabrication of custom foot orthoses at commercial scale. 

 

6.2 Cost modelling in rapid manufacturing 

Fabrication costs in rapid manufacturing broadly fall into four main categories 

(Hopkinson and Dickens, 2003; Ruffo et al., 2006; Gibson et al., 2010; Atzeni et al., 

2010). The cost categories are (i) production and administrative overheads, (ii) machine 

purchase and operation, (iii) labour and (iv) material costs. Table 6.1 shows various 

activities involved in rapid manufacturing and their descriptions (Wholers and Grimm, 

2002, Ruffo et al, 2006).  

 

Activity Cost description 

Material Cost of material purchase 

Software Cost of software purchase and upgrades 

Hardware Cost of PC purchase and upgrade  
Equipment depreciation Cost of equipment depreciation  

Maintenance Cost of equipment maintenance per year   

Labour Cost of labour (machine set-up and post-processing) 

Production overhead Cost incurred due to production, energy and floor space 
Administrative overhead Cost for running enterprise and consumables 

 

The work in this research is based on development of cost models for different rapid 

manufacturing based design and fabrication systems. Different rapid manufacturing 

based systems have given different total per pair cost of custom-made foot orthoses. In 

Table 6:1 Activities associated with rapid manufacturing 
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cost modelling process, a series of alternative scenarios were presented as part of a 

sensibility analysis of initial developed operating cost models; by including a fraction of 

an operator and by increasing the number of machines which has subsequently increased 

the machine operation hours and production volume per year and reduced the total per 

pair cost.  

 

The initial operating cost models were further extended and “best case” operating cost 

models were developed. In the “best case” operating cost models the total estimated 

machine operation labour hours per year were balanced with total labour hours per year 

of the technicians in order to obtain optimal productivity from the models in terms of 

total per pair cost and total production volume per year.   

 

6.3 Development of cost models 

The cost models in this work are based on cost categories adopting a full costing system 

in comparison to cost model developed by Hopkinson and Dickens (Hopkinson and 

Dickens, 2003), splitting the cost into three categories; machine, labour and materials. In 

the development of full cost models different cost categories included were production 

and administrative overheads, machine purchase and operation, labour and material 

costs. The cost of material was considered as the direct cost whereas all the other cost 

elements were considered as indirect costs in the developed cost models. 

 

In development of cost models for different rapid manufacturing techniques “initial 

operating cost models” were developed in order to obtain the total cost per pair of the 

foot orthoses. The initial operating cost models are based on one machine and one 

operator in a facility. The technician works for 220 working days per year which does 

not allow the operation of machine for 365 days per year. This is addressed with 

development of “best case” operating models. The “best case” operating models are 

based on balancing the machines operation labour hours per year and labour hours per 

year of the technician in order to ensure near full utilisation of both the equipment and 

staff and to obtain the optimal productivity from the model. A uniform floor space of 

246.5m
2
 at the rate of £120/m

2
, energy consumption cost of £1.5/hour and 
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administration overheads at the rate of £2320 has been assumed for all cases in the cost 

modelling process which are based on UK trade and information enquiry services 

(www.ukti.gov.uk, 2010) and research work of Ruffo and colleagues (Ruffo et al, 2006). 

In “best case” developed models, the floor space for additional machines is included 

according to required space for machine installation, recommended by the suppliers. 

This has subsequently increased the production and administration over heads in the 

“best case” models. Table 6.2 shows the main assumptions used in the cost modelling 

process.  

 

Cost elements and assumptions in development of cost models  

Machine operation hours per year Total build time/run and total no: of runs/year  

Floor space cost 246.5 m
2 

@£120/m
2 

 

Machine space for SLS and SLA 20m
2
/machine 

Machine space for Connex 500, V-

Flash, SST 768, uPrint and Amfit. 

6m
2
/machine scaled according to space 

recommended from equipment suppliers. 

Depreciation time for machines 5 years 

Machine energy consumption cost £1.5/hour 

Administration overheads £2320/year/machine  

Technician labour cost/annum £39980/year or £22.71/hour  

 

An important assumption was made for the productivity of machines per year. 

Hopkinson and Dickens in their cost modelling have assumed 7884 machine operation 

hours per year; utilisation of 90% of machine operation time per year. Gibson and 

associates have assumed 8332 machine operation hours per year; utilisation of 95% of 

machine operation time per year; whereas, Ruffo and colleagues have assumed 5000 

machine operation hours per year; utilisation of 57% of machine operation time per 

year.  In this work, the productivity assumption for machine operation time per year is 

based on total number of machine operation hours per year which was calculated on the 

basis of; 

(i) Total build time per run  

(ii) Total estimated number of runs per year.  

Another important assumption was made regarding the useful life span of machines 

which was set for 5 years, as both the worst case and most realistic. Hopkinson and 

Table 6:2 Assumptions in the cost modelling process 

http://www.ukti.gov.uk/
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Dickens (Hopkinson and Dickens, 2003), Gibson and colleagues (Gibson et al., 2010) 

and Atzeni and associates (Atzeni et al., 2010) in their cost modelling have considered 8 

years, 7 years and 5 years, respectively as the useful life of machines for calculating the 

depreciation cost. The cost models for rapid manufacturing technique were developed 

through following calculations procedure. 

 

6.3.1 Calculating production volume per year 

Table 6.3 shows the calculation method for production volume per year of foot orthoses. 

The total production volume per year was calculated through total number of parts per 

build, build time per run and the total number of runs operated per year on a machine 

using different rapid manufacturing systems.  

 

Production volume per year Variables Obtained by 

Number of parts  N Total number of parts per build 

Build time per run T Hours 

Production rate per hour R N/T 

Total operation hours per year HY Build time/run and total no: of runs/year 

Production volume per year V From operating model 

 

6.3.2 Calculating machine cost 

Table 6.4 shows the method for calculation for machine cost per year. Machine cost per 

year was obtained by depreciation cost per year and annual maintenance cost per year 

for the machine.  Machine depreciation time was set for 5 years. 

 

Machine cost per year Variables Obtained by 

Machine and ancillary equipment E Machine capital cost 

Depreciation cost per year D E/5* 

Maintenance cost per year M 10% of machine purchase cost (E)
** 

Total machine cost per year MC D + M 
* Depreciation time was set for 5 years and **10% maintenance cost of machine (Wohlers, 2002). 

 

Table 6:3 Calculation of production volume per year 

Table 6:4 Calculation of machine cost per year. 
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6.3.3 Calculating material cost 

The method for calculation of material cost in rapid manufacturing techniques is 

different due to the nature of fabrication processes in different techniques (Gibson et al., 

2010). In stereolithography SLA, FDM, Polyjet and V-flash techniques, material cost is 

calculated by weighing the finished part including the material consumed in the support 

structure then multiplying these with the associated cost of the material (Hopkinson and 

Dickens, 2003). The method for calculating the cost of material in selective laser 

sintering technique SLS is slightly different. In SLS techniques material cost is 

calculated in terms of sintered material (weighing the finished parts) and unsintered 

material by calculating the volume of unsintered material. In SLS technique, according 

to the material manual by 3D systems Inc: USA unsintered material can be reused with 

the virgin material with ratio not exceeding to 67% of the total material per build (Ruffo 

et al., 2006). Table 6.5 shows the calculation method for material costs in different rapid 

manufacturing techniques.  
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Calculation of material cost      Variables    Cost obtained by 

Material cost calculation for SLA 

Material cost per kg SL cost £285* 

Material part including support SLmass weighing finished parts 

Material cost per SLA part SLMCP SLmass x SLcost 

Material cost calculation for SLS 

Material cost per kg LSC £64* 

Mass of each part  LSM weighing finished parts 

Volume of each part VP  From machine software 

Total build volume TBV 38.1 x 33 x 45.7 cm
3
  

Mass of sintered material/build LSMS N X LSM 

Mass of unsintered material/build LSMU (TBV- N x VP) x 0.6 

Cost of material used/build LSMC (LSMU + LSMS) x LSC 

Material cost calculation for FDM 

Material cost/cartridge FDMPC £330**  

Support material cost/cartridge FDMSC £330** 

Material per part kg FDMPM weighing finished parts 

Support material per part kg FDMSM weighing support material 

Material cost per/part  FDMPM x FDMPC + FDMSM x FDMSC 

Material cost calculation for Polyjet 

Material cost per kg PJPC £200*** 

Support material cost per kg PJSC £85*** 

Material per part kg PJPM weighing finished parts 

Support material per part kg PJSM weighing support material 

Material cost per part  (PJPM x PJPC) + (PJSM x PJSC) 

Material cost calculation for V-flash 

Material cost per kg VFPC £455**** 

Support material cost per kg VFSC £455**** 

Material per part kg VFPM weighing finished parts 

Support material per part kg VFSM weighing support material 

Material cost per part  (VFPM x PJPC) + (VFSM x VFSC) 

* Cost quotation from 3D Systems Europe Ltd, UK, 2010 **Cost quotation from Laser Lines Limited,  

UK, 2010, *** Cost quotation from, HK Technologies, Ltd. UK, 2010 and **** Cost quotation from Print 

IT 3D Ltd. UK, 2010. 

6.3.4 Calculation of overheads 

(i)  Production overhead 

Table 6.6 shows the calculation method for production overhead which includes floor 

space cost per annum and cost of energy consumption per year. A uniform floor space 

cost of £120/m
2
 has been considered for all cases based on current UK industrial rates 

(www.ukti.gov.uk, 2010). For energy, a cost of £1.5 per hour was assumed as energy 

Table 6:5 Calculation of material costs for RM techniques 

http://www.ukti.gov.uk/
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cost for calculation of production overhead (Grim and Wohler, 2002, Ruffo et al., 2006). 

The method of calculation of production overhead was adopted form the work of Ruffo 

and colleagues (Ruffo et al., 2006).  

 

Production overheads 

Floor space cost £120/m
2 

per annum* 

Energy consumption cost £1.5 per hour**  x  machine operation hours per year 

from operating model 
*UK trade and information enquiry services (www.ukti.gov.uk, 2010) and ** Grim and Wohler, 2002, 

Ruffo et al, 2006. 

 

(ii) Administrative overhead 

Table 6.7 shows the calculation method for administrative overhead which includes the 

cost per year for hardware, software and consumables. A cost of £1450 per year was 

assumed for consumables; whereas the useful life for software and hardware was set to 

be for 5 years. This gives a total of £2320 per year as the administrative overhead. 

 

Administrative overhead 

Hardware purchase                   (one off cost) £2175 

Software purchase                    (one off cost) £2175 

Consumables cost per year        (one off cost) £1450 

Hardware depreciation cost/year £435* 

Software depreciation cost/year £435* 

Total cost/year £2320 

  *Depreciation time for computer hardware and software was set for 5 years. 

6.3.5 Calculation of labour cost 

In this work, the annual labour cost of £32770 per year is adopted from the work of 

Ruffo and colleagues (Ruffo et al., 2006) for operator of rapid manufacturing system. 

This was added with 22% of labour cost as the employer contribution (Ruffo et al., 

2006). This gives a total annual labour cost of £39980 for 220 working days per year 

which gives the cost of £22.71 per hour. 

 

Table 6:6 Calculation of production overhead 

Table 6:7 Calculation of administrative overhead 

http://www.ukti.gov.uk/
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6.4 Mathematical calculations for cost modelling 

The method for calculation of fabrication costs is presented in the following section. 

C total = C machine + C material + C overheads + C labour Eq (6.1) 

Where C total is the estimated total cost per year which is the sum of cost of machine 

including depreciation and maintenance cost per year, C material is the estimated cost of 

material consumed in model and support structure, C overheads is the estimated cost of 

production and administration overheads per year and C labour is the labour cost per year. 

The first term in equation 6.1, cost of machine per year (C machine) is estimated using 

equation (6.2). 

C machine = E/5 + M     Eq (6.2) 

Where, E is the capital cost of machine which is divided by 5 years in order to obtain 

depreciation cost per year. The maintenance cost (M) for RM system depends on 

individual agreement between system supplier and buyer. However, as a rule about 10% 

of purchase price of the machine was budgeted for a full annual maintenance cost of the 

system (Grim and Wohler, 2002). The second term in equation 6.1, cost of material per 

year (C material) is calculated using equation (6.3) 

C material = V mod: + V sup: x (material cost £/kg) Eq (6.3) 

Where V mod: is material consumed in the model and V supp: is material consumed in the 

support structure. This is multiplied with the associated cost of material per kg. The 

third term in equation 6.1, overheads per year (C overheads) is obtained by equation (6.4). 

C overheads = C prod: overhead + C admin: overhead  Eq (6.4) 

Where, C prod: is for production overhead per year which is added with the C admin: 

administrative overhead per year. The fourth term in equation 6.1, cost of labour (C 

labour) is included as annual salary of technician per year.  

C labour = Annual salary of technician. 

The cost per pair of orthoses is calculated from following equation. 

  C per pair = C total / total number of pairs produced Eq (6.5) 

Where C total is total cost in the fabrication of orthoses per year divided by total number 

of pairs produced per year in the operating cost model. 
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6.4.1 Cost and lead-time modelling 

For modelling of the cost and lead-time, initial operating cost models were developed 

based on one operator working with one machine in a facility.  The models were based 

on total estimated production volume per year of foot orthoses using ipro SD 60 SLS, 

spro SLA, Connex 500 polyjet, V-flash 3DP, Dimension 768 SST, uPrint and Amfit 

CAD/CAM systems. In following section detailed breakdown of the cost and lead-time 

models developed for all the techniques used are presented. The cost models include 

machine purchase and operation, material, production and administration overheads and 

labour costs. A uniform cost of cost of £2320 as the administration overhead per year 

and a cost of £39980 per year as the labour cost per year was standardised as annual 

salary of the technician per year in all the developed models. 

6.4.2 Cost and lead-time modelling for SLS technique using spro SD system 

In SLS technique using spro 60 SD SLS system one machine was assumed to work for 

one run of 16 hours of build time per day working for 220 days per year. Production 

volume per year was calculated by estimating the total production volume per year from 

the model. It was estimated that from one run of 200 mm build height on average 30 

parts or 15 pairs of orthoses can be fitted. The build time of 16 hours per run was given 

by the build setup
TM

 machine controlling software. The machine was assumed to work 

for 220 days per year which gives a total of 3520 machine operation hours per year; 

approximately 40% of machine utilisation time per year.  

 

Table 6.8 shows the estimated total cost of £363360 for fabrication of 3300 pairs per 

year at the rate of £110.10 per pair. Machine cost per year was calculated by 

depreciation cost of machine and 10% of actual cost of machine as the maintenance cost 

per year. The depreciation time for machine was set for 5 years. This gives an estimated 

total of £75000 as the machine cost per year. Material cost per pair was calculated in 

terms of sintered material per build by weighing the fabricated parts and unsintered 

material per build by calculating the volume of unused material and multiplying it by 

unsintered material density. This gives an estimated material cost of £64 per pair. 

Production overhead per year was calculated by floor space cost at the rate of £120/m
2
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per year. This cost was added with cost of energy for machine at the rate of £1.5 per 

hour (Ruffo et al, 2006). This gives an estimated total of £34860 per year as production 

overhead. A uniform administrative overhead per year at the cost of £2320 was included 

in the model. 

 

Labour cost was calculated by required labour time for operation of machine; based on 

one hour of time for setting of machine and loading of material and 2 hours of time for 

cleaning the fabricated parts. The operation of one run on spro SD 60 SLS system 

requires 3 hours of labour time of the technician.  However, in initial cost model, labour 

cost of £39980 is included as the annual salary of the technician.  
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Cost calculations using ipro SD 60 system in  SLS technique 

Production volume per year  

Number of parts/build N 30 

Build time/run T 16 hours 

Production rate/hour R = N/T 1.87 

Operation hours/year HY 3520 

Total production volume/year V = R x HY  6600 parts 

Total pairs/year  3300 pairs 

Machine costs per year 

Machine & ancillary equipment E £250000* 

Machine depreciation cost/year D = E/5                  £50000 

Machine maintenance cost/year M                           £25000 

Total machine cost/year MC = D+M           £75000 

Material cost per pair 

Material cost per kg £64/kg* 

Volume of each part cm
3
 83596 mm

3
  83.59 cm

3
 

Mass of each part 83.59 cm
3
 x 0.6g/cm

3
= 50.15g 0.050 kg 

Mass of sintered material/build (30 x 83.59 cm
3
) x 0.6g/cm

3 
=1504.62g 1.50 kg 

Mass of unsintered 

material/build 

(25146 cm
3
–30 x 83.59 cm

3
)x0.6g/cm

3
 13.50 kg 

Cost of material used/build (1.50 kg + 13.50 kg) x £64/kg £960 

Material cost/part £960/30 parts per build £32/part 

Total cost/pair   £64/pair 

Production overhead per year 

Building area  246.5/m
2
*@ £120/m

2
/annum** £29580 

Energy consumption by machine @ £1.5/hour x 3520 machine operation 

hours/per year from operating model 
£5280 

Total cost/year  £34860 

Administrative overhead per year 

Hardware purchase                    one of cost £2175* 

Software purchase                    one of cost £2175* 

Consumables cost/year         £1450 

Hardware depreciation cost/year  £435** 

Software depreciation cost/year  £435** 

Total cost/year  £2320 

Labour cost per year (annual salary of operator) £39980 

Total cost/year  3300 pairs/year £363360 

Cost/pair £363360/3300 pairs  £110.10 
*, ** Ruffo et al, 2006, *** and **** Cost quotation from system and material supplier, Laser Lines 

Limited UK, 2010. 

 

 

Table 6:8 Cost calcualtion using ipro SD 60 SLS sytem 
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Figure 6:1 shows the detailed cost breakdown showing the weight of different activities 

on the total cost in the initial operating model based on 220 working days per year. The 

indirect cost accounts for 42% of the total cost. This includes machine cost 21%, 

production and administrative overheads 10% and labour cost 11% of the total cost. The 

cost of material accounts for 58% of the total cost as the direct cost in the model. 

 

 

 

 

 Sensitivity analysis of the model 

Scenario  1-Increasing the machine operation hours per year 

The initial operating model is sensitive to any variation or change in different 

parameters such as increasing the machine operation hours per year. This subsequently 

increases the total number of runs per year, labour and material costs resulting in 

increased production volume per year. 

 

The initial operating model based on 220 working days per year was assumed to work 

for 365 days per year. Table 6.9 shows the cost categories in assumed initial operating 

model working for 365 days per year.  A part time technician working for 3 hours of 

time per day for 145 days was included. The model has increased the production volume 

from 3300 pairs to 5475 pairs per year at the rate of £94.23 per pair. This has reduced 

Figure 6:1 Cost categories in initial operating model based on 220 working days per year 
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approximately 15% in total cost per pair compared to initial operating model based on 

220 working days per year. 

 

Total cost per pair using spro 60 SD SLS system 

Machine cost per year   £75000 

Material cost for 5475 pairs  @£64 per pair  £350400 

Production overhead per year  £38340 

Administrative overhead per year  £2320 

Labour cost per year Full time + part time operator £49859 

Total cost  5475 pairs per year £515919 

Cost per pair £515919/5475 pairs  £94.23 

 

Figure 6.2 shows the detailed breakdown of different cost elements in initial operating 

model based on 365 days per year. The indirect costs account for 32% of the total cost. 

This includes machine cost 15%, production and administrative overheads 7% and 

labour cost 10% of the total cost. Material cost accounts for 68% of the total cost as the 

direct cost in the model. 

 

 

 

 

Table 6:9 Total cost per pair in initial operating model based on 365 working days per year 

Figure 6:2 Cost categories in initial operating model based on 365 working days per year 
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Scenario  2-Development of “Best case” operating model 

A “best case” operating model was developed based on one run of 16 hours of build 

time per day working for 365 days per year. The developed model is based on 5 

technicians working with 8 machines in order to obtain optimal productivity by 

balancing the required labour hours per year for machines and labour hours of 

technicians per year. In the model one machine was assumed to work for one run of 16 

hours of build time per day for 365 days year. This gives 5840 machine operation hours 

per year for one machine; approximately 66% machine utilisation time per year. 

 

Table 6.10 shows the operation hours of machines per year and labour hours per year for 

technicians in the “best case” operating model. The operation of one run on one machine 

requires 3 hours of labour time. The operation of 365 runs per year on one machine 

requires a total of 1095 machine labour hours per year. This gives an estimated total of 

8760 labour hours per year required for operation of 8 machines. The labour hours for 

one technician are based on 1760 labour hours per year which gives a total of 8800 

labour hours per year for 5 technicians. The operating model was assumed to fabricate a 

total of 5475 pairs per year on each machine, which gives an estimated annual 

production volume of 43800 pairs per year. 

 

No: of  
machines 

Total required machine 
labour hours per year 

No: of  
technicians 

Total No:  of technicians 
labour hours per year 

    
1 1095 1 1760 
2 2190 2 3520 
3 3285 3 5280 
4 4380 4 7040 
5 5475 5 8800 
6 6570 6 10560 
7 7665 7 12320 
8 8760 8 14080 
9 9855 9 15840 

10 10950 10 
17600 

 

 

 

Table 6:10 Machine labour hours/year and technicians labour hour/year in “best case” cost model 
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Table 6.11 shows details of cost categories in “best case” model based on 5 technicians 

working with 8 machines. A floor space of 20m
2
 at the rate of £120/m

2
 for each machine 

and ancillary equipment and energy consumption cost of £1.5 per hour for each machine 

is included. This is added with the machine purchase and operation cost for 8 machines 

and material consumption cost of £2803200 per year. The labour cost for 5 technicians 

is estimated for £199900 per year at the rate of £22.71 per hour. The model gives an 

estimated total of £3738120 for fabrication of 43800 pairs per year at the rate of £85.34 

per pair; approximately 23% reduction in cost per pair compared to initial operating 

model based on 220 working days per year.  

 

“Best case” operating model for 5 technicians working with 8 machines  

Machine cost per year for 8 machines £600000 

Material cost for 43800 pairs                                     @£64 per pair  £2803200 

Production overhead per year for 8 machines £116460 

Administrative overhead per year for 8 machines  £18560 

Labour cost for 5 technicians  £199900 

Total cost for 43800 pairs  £3738120 

Cost per pair                                              £3738120/43800 pairs/year £85.34 

 

Figure 6.3 shows breakdown of different costs in “best case” cost model. In the total 

cost, material cost accounts for 75% as the direct cost in the model. The indirect costs 

account for 25% of the total cost. This includes machine cost 16%, production and 

administrative overheads 4% and labour cost 5% of the total cost as the indirect cost in 

the model. 

 

Table 6:11 Total estimated fabrication cost per pair in “best case” SLS cost model   
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6.4.3 Cost and lead-time modelling for SLA technique using ipro system 

In SLA technique using spro SLA system, one machine was assumed to work for 2 runs 

of 7 hours of build time per run for 220 working days per year. Production volume per 

year was calculated from the model. An ipro 8000 SLA system has a build volume of 

650 (length), 350 (width) and 300 mm (height) in which 10 parts can be fitted per build. 

A build time of 7 hours for fabrication of 10 parts was given by 3DPrint
TM

 machine 

controlling software. The machine is assumed to work for 14 hours of time for 220 days 

per year which gives a total of 3080 machine operation hours per year; approximately 

35% of machine utilisation time per year.  

 

Table 6.12 shows the estimated total cost of £439560 for fabrication of 2200 pairs per 

year at the rate of £199.8 per pair. Machine cost per year was calculated by depreciation 

cost of machine and 10% of actual cost of machine as the maintenance cost per year. 

The depreciation time for machine was set for 5 years. This gives an estimated total of 

£210000 as the machine cost per year. Material cost per pair was calculated by weighing 

the material consumed in the model part and material consumed in the support structure. 

The weight of total material consumed is then multiplied with associated cost of 

material.  

Figure 6:3 Cost categories in “best case” SLS based cost model  



 

 137 

The material consumed in orthosis model was 60 grams and material consumed in 

support structure was 30 grams. The total material consumed including support material 

was 90 grams per part which gives an estimated material cost of £25.2 per part or £50.4 

per pair. 

 

Production overhead per year was calculated by floor space cost at the rate of £120 per 

m
2
 per year. This cost was added with energy consumption cost for the machine at the 

rate of £1.5 per hour (Ruffo et al, 2006). This gives an estimated total of £34200 per 

year as production overhead. A uniform administrative overhead per year at the cost of 

£2320 was included in the model. Labour time was calculated by required labour time of 

the operator. The operation of one run on ipro 8000 SLA system requires 2 hours of 

labour time of the technician. The labour time is based on 1 hour of time for setting of 

machine and loading of material vat and 1 hour of time for removing the parts and post 

processing of the fabricated parts. However, in the initial model with one machine and 

one technician, the labour cost of £39980 is included as the annual salary of the 

technician. 
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Cost calculations for spro system in SLA technique 

Production volume per year  

Number of parts/build N 10 

Build time/run T 7 hours 

Production rate/hour R = N/T 1.42  

Operation hours/year  HY 3080 

Production volume/year V = R x HY        4400 parts 

Total pairs/year  2200 pairs 

Machine cost per year  

Machine & ancillary equipment E £700000* 

Depreciation cost/year D = E/5                  £140000 

Machine maintenance/year M                          £70000 

Total machine cost/year MC = D+M            £210000 

Material cost per pair  

Model material/part 60 grams         @£0.28/grams £16.8 

Support material/part 30 grams         @£0.28/grams £8.4 

Material cost/kg  £285* 

Material cost/part  £25.2 

Cost/pair  £50.4 

Production overhead per year 

Building area  246.5/m
2
*

     
@ £120/m

2 
per annum** £29580 

Energy consumption by 

machine 

@£1.5/hour***x3080machine operation 

hours/year from operating model 
£4620 

Total cost/year  £34200 

Administrative overhead per year 

Hardware   £2175* 

Software purchase                     £2175* 

Consumables cost/year        £1450 

Hardware depreciation cost/year  £435** 

Software depreciation cost/year  £435** 

Total cost/year  £2320 

Labour cost per year (annual salary of operator) £39980/year 

Total cost  2200 pairs/year £439560 

Cost/pair £439560/2200 pairs  £199.8 
*Cost quotation from system supplier, 3D Systems Europe Ltd, UK, 2010, **UK trade and information 

enquiry services (www.ukti.gov.uk, 2010) and ***Ruffo et al, 2006. 

 

Figure 6.4 shows the detailed breakdown of different cost elements in the initial 

operating model based on 220 working days per year. Material cost accounts for 35% of 

the total cost as the direct cost in the model. Machine cost accounts for 48%, production 

and administrative overheads 8% and labour cost accounts for 9%, which makes 65% of 

Table 6:12 Cost calcualtion per pair using spro SLA sytem 

http://www.ukti.gov.uk/
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the total cost as the indirect cost in the model.  

 

 

 

 Sensitivity analysis of the model 

Scenario  1-Increasing the operation hours per year 

The initial operating model based on 220 working days per year was assumed to work 

for 365 days per year. Table 6.13 shows the cost categories in assumed initial operating 

model working for 365 days per year.  A part time technician working for 4 hours of 

time per day for 145 working days was included. This has increased the production 

volume from 2200 pairs to 3650 pairs per year at the rate of £144.89 per pair. This has 

reduced approximately 28% in total cost per pair compared to initial operating cost 

model based on 220 working days per year. 

 

 

 

 

 

 

 

Figure 6:4 Cost categories in initial operating model based on 220 working days per year 
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Total cost per pair using ipro 8000 SLA system 

Machine cost per year   £210000 

Cost of VAT of material @£285 per litre for 148 litres £42180 

Material cost for 3650 pairs  @ £50.4 per pair £183960 

Production overhead per year  £37245 

Administrative overhead per year  £2320 

Labour cost per year Full time + part time operator £53152 

Total cost  3650 pairs per year £528857 

Cost per pair £528857/3650 pairs  £144.89 

 

 

Figure 6.5 shows the detailed breakdown of different cost elements in initial operating 

model based on 365 days per year. Material cost accounts for 43% of the total cost as 

direct cost in the model. Machine cost accounts for 40%, production and administrative 

overheads 7% and labour cost accounts for 10% of the total cost which makes 57% of 

the total cost as indirect cost in the model.  

 

 

 

 

 

 

 

 

Table 6:13 Total cost per pair in intial operating model based on 365 working days per year 

Figure 6:5 Cost categories in initial operating model based on 365 working days per year 
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Scenario  2-Development of “Best case” operating model 

A “best case” operating model was developed based on 2 runs of 7 hours of build time 

per day working for 365 days per year. The developed model is based on 5 technicians 

working with 6 machines in order to obtain optimal productivity by balancing the 

required labour hours per year for machines and labour hours for technicians per year. In 

the model one machine was assumed to work for 2 runs of 7 hours of build time per day 

for 365 days per year. This gives a total of 5110 working hours per year for each 

machine and a total of 30660 machine hours per year; approximately 41% machines 

utilisation time per year. 

 

Table 6.14 shows the operation hours of machines per year and labour hours per year for 

technicians in the “best case” operating model. The operation of one run on one machine 

requires 2 hours of labour time as mentioned in the Table 6.22. The operation of 730 

runs per year on each machine requires a total of 1460 labour hours per year. This gives 

a required estimated total of 8760 labour hours per year for operation of 6 machines. 

The labour hours per year for one technician based on 1760 labour hours per year give a 

total of 8800 labour hours per year for 5 technicians. The operating model was assumed 

to fabricate a total of 3650 pairs on each machine per year. This gives an estimated 

production volume of 21900 pairs per year of orthoses on 6 machines.  

 

No: of  
machines 

Total required machine 
labour hours per year 

No: of  
technicians 

Total No:  of technicians 
labour hours per year 

    
1 1460 1 1760 
2 2920 2 3520 
3 4380 3 5280 
4 5840 4 7040 
5 7300 5 8800 
6 8760 6 10560 
7 10220 7 12320 
8 11680 8 14080 
9 13140 9 15840 

10 14600 10 17600 

 
Table 6:14 Machine labour hours/year and technicians labour hour/year in “best case” cost mode 
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Table 6.15 shows details of cost categories in “best case” cost model based on 5 

technicians working with 6 machines. A floor space of 20 m
2
 at the rate of £120/m

2
 for 

each additional machine and ancillary equipment and energy consumption cost of £1.5 

per hour for each additional machine is included. This is added with the machine 

purchase and operation cost for 6 machines and material consumption cost per year. The 

labour cost for 5 technicians is estimated for £199900 per year at the rate of £22.71 per 

hour. The model gives an estimated total of £2918230 for fabrication of 21900 pairs per 

year at the rate of £133.25 per pair; approximately 33% reduction in cost per pair 

compared to initial operating model based on 220 working days per year.  

 

“Best case” operating model for 5 technicians working with 6 machines 

Machine cost per year for 6 machines £1260000 

Material cost for 21900 pairs                                     @£50.4 per pair  £1103760 

Production overhead per year for 6 machines £87570 

Administrative overhead per year for 6 machines  £13920 

Labour cost for 5 technicians  £199900 

Total cost for 21900 pairs  £2918230 

Cost per pair                                              £2918230/21900 pairs/year £133.25 

 

Figure 6.6 shows breakdown of different costs categories in the “best case” cost model. 

Material cost accounts for 47% of the total cost as the direct cost in the model. Machine 

cost accounts for 43%, production and administrative overheads 3% and labour cost 

accounts for 7%, which makes 53% of the total cost as the indirect cost in the model. 

 

Table 6:15 Total estimated fabrication cost per pair in “best case” SLA based cost model 



 

 143 

 

6.4.4 Cost and lead-time modelling for polyjet technique using Connex 500 

system 

In polyjet technique using Connex 500 system one machine was assumed to work for 

one run of 30 hours of build time for 220 working days per year. Production volume per 

year was calculated from the model. Connex 500 system has a build volume of 500 

(length), 400 (width) and 200 mm (height) in which 10 parts can be fitted per build. A 

build time of 30 hours per run for fabrication of 10 parts was given by Objet Studio™ 

machine controlling software. The machine was assumed to work for 220 days per year 

in which a total of 110 runs can be operated. This gives a total of 3300 hours per year at 

the rate of 30 hours of build time per run; utilisation of 37% of machine time per year.  

 

Table 6.16 shows an estimated total cost of £190755 for fabrication of 550 pairs per year 

at the rate of £346.82 per pair. Machine cost per year was calculated by depreciation 

cost of machine and 10% of actual cost of machine as the maintenance cost per year. 

The depreciation time for machine was set for 5 years. This gives an estimated total of 

£57000 as the machine cost per year. Material was cost calculated by weighing the 

material consumed in the model part and material consumed in support structure.  

 

Figure 6:6 Cost categories in “best case” SLA based cost model. 
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The weight of total material consumed is then multiplied by the associated cost of the 

material. The material consumed in orthoses model was 180.9 grams and material 

consumed in support structure was 194.7 grams. The total material consumed including 

support material was 375.6 grams per part which gives an estimated material cost of 

£51.75 per part or £103.50 per pair. 

 

Production overhead per year was calculated by floor space cost at the rate of £120/m
2
 

per year. This cost was added with energy consumption cost of the machine at the rate 

of £1.5 per hour which gives an estimated total of £34530 per year as production 

overhead. A uniform cost of £2320 per year was included as administrative overhead. 

Labour cost was calculated by the time of labour time of the operator per run. For 

operation of one run on Connex 500 system, it was estimated that 2 hours of labour time 

of the technician was required. The labour time is based on 60 minutes of time for 

setting of machine and loading the cartridges of model and support material and 60 

minutes of time for post processing of the fabricated parts. However, in the initial model 

with one machine and one technician, the labour cost of £39980 is included as the 

annual salary of the technician.  
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Cost calculations using Connex 500 system in polyjet technique 

Production volume per year  

Number of parts/build N 10 

Build time/run T 30 hours 

Production rate/hour R = N/T 0.33 

Operation hours/year HY 3300 

Production volume/year V = R x HY   1100 parts 

Total pairs/year  550 pairs 

Machine cost per year  

Machine & ancillary equipment E £190000* 

Depreciation cost/year D = E/5 £38000 

Machine maintenance cost/year M £19000 

Total machine cost/year MC = D+M £57000 

Material cost per pair  

Material/part 180.9 grams         @£0.2/grams £36.18 

Support material/part 194.7 grams         @£0.08/grams £15.57 

Model material cost/kg  £200* 

Support material cost/kg   £85* 

Material cost/part  £51.75 

Total cost/pair  £103.50 

Production overhead per year 

Building area  246.5/m
2 

@ £120/m
2 

per annum** £29580 

Energy consumption by machine @£1.5/hour x 3300 machine operation 

hours per year from operating model 
£4950 

Total cost/year  £34530 

Administrative overhead per year 

Hardware   £2175*** 

Software purchase                     £2175*** 

Consumables cost/year        £1450 

Hardware depreciation cost/year  £435 

Software depreciation cost/year  £435 

Total cost/year  £2320 

Labour cost per year (annual salary of operator) £39980/year 

Total cost  550 pairs per year £190755 

Cost/pair £190755/550 pairs  £346.82 
* Cost quotation from system supplier, HK technologies, UK, 2010, **UK trade and information enquiry 

services (www.ukti.gov.uk, 2010) and ***Ruffo et al, 2006. 

 

Figure 6.7 shows the detailed breakdown of different cost elements in initial operating 

model based on 220 working days per year. The indirect cost accounts for 70% of the 

total cost. This includes machine cost 30%, production and administrative overheads 

Table 6:16 Cost calculation per pair using Connex 500 polyjet technique 

http://www.ukti.gov.uk/
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19% and labour cost 21% of the total cost. Material cost accounts for 30% of the total 

cost as the direct cost in the model. 

 

 

 

 Sensitivity analysis of the model 

Scenario  1-Increasing the machine operation hours per year. 

The initial operating model based on 220 working days per year was assumed to work 

for 365 days per year. Table 6.17 shows the cost categories in assumed initial operating 

model working for 365 days per year. A part time technician working for 2 hours of 

time per run was included in order for operation of 72 runs in 145 days. This has 

increased the production volume from 550 pairs to 910 pairs per year at the rate of 

£257.71 per pair. This has reduced approximately 26% in total cost per pair compared to 

initial operating cost model based on 220 working days per year. 

 

 

 

 

 

 

Figure 6:7 Cost categories in initial operating model based on 220 working days per year 
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Cost modelling in Connex 500 system 

Machine cost per year  £57000 

Material cost for 910 pairs per year @£103.5 per pair  £94185 

Production overhead per year  £37770 

Administrative overhead per year  £2320 

Labour cost per year Full and part time technicians £43250 

Total cost  910 pairs per year £234525 

Cost per pair £234525/910 pairs per year £257.82 

 

Figure 6.8 shows the detailed breakdown of different cost elements in initial operating 

model based on 220 working days per year. The indirect cost accounts for 60% of the 

total cost. This includes machine cost 24%, production and administrative overheads 

17% and labour cost 19% of the total cost. Material cost accounts for 40% of the total 

cost as the direct cost in the model. 

 

 

 

 

 

 

 

 

Table 6:17 Total cost per pair in initial operating model based on 365 working days per year 

Figure 6:8 Cost categories in initial operating model based on 365 working days per year 
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Scenario  2-Development of “Best case” operating model 

A “best case” operating model was developed based on 30 hours of build time per run 

operating for 182 runs per year. The developed model is based on 2 technicians working 

with 10 machines in order to obtain optimal productivity by balancing the machines 

working hours and labour hours. In the model one machine was assumed to work for 30 

hours of build time per run operating for 182 runs per year. This gives a total of 5460 

working hours per year for each machine; approximately 62 % machine utilisation time 

per year. 

 

Table 6.18 shows the operation hours of machines per year and labour hours per year for 

technicians in the “best case” model. The operation of one run on one machine requires 

2 hours of labour time as mentioned in the Table 6.32. The operation of 182 runs per 

year on one machine requires a total of 364 hours of labour hours per year. This gives a 

required estimated total of 3640 machine labour hours per year for operation of 10 

machines. The labour hours per year for one technician based on 1760 labour hours per 

year gives a total of 3520 labour hours per year for 2 technicians. The operating model 

based on one run of 30 hours of build time on one machine was assumed to fabricate a 

total of 910 pairs per year which gives an estimated annual production volume of 9100 

pairs of orthoses per year using 10 machines. 

 

No: of  
machines 

Total required machine 
labour hours per year 

No: of  
technicians 

Total No:  of technicians 
labour hours per year 

    
1 364 1 1760 
2 728 2 3520 
3 1092 3 5280 
4 1456 4 7040 
5 1820 5 8800 
6 2184 6 10560 
7 2548 7 12320 
8 2912 8 14080 
9 3276 9 15840 

10 3640 10 17600 

 
Table 6:18 Machine labour hours/year and technicians labour hour/year in “best case” cost model 
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Table 6.19 shows details of cost categories in “best case” cost model based on 2 

technicians working with 10 machines. A floor space of 6m
2
 at the rate of £120/m

2
 for 

each additional machine and ancillary equipment and energy consumption cost of £1.5 

per hour for each additional machine is included. This is added with the machine 

purchase and operation cost of 10 machines and material consumption cost per year. The 

labour cost for 2 technicians is estimated for £79960 per year at the rate £22.71 per hour. 

The model gives an estimated total of £1705760 for fabrication of 9100 pairs per year at 

the rate of £187.44 per pair approximately 46% reduction in cost per pair compared to 

initial operating model based on 220 working days per year.  

 

“Best case” operating model for 2 technicians working with 10 machines 

Machine cost per year for 10 machines £570000 

Material cost for 9100 pairs                                     @£103.5 per pair  £941850 

Production overhead per year for 10 machines £90750 

Administrative overhead per year for 10 machines  £23200 

Labour cost for 2 technicians  £79960 

Total cost for 9100 pairs  £1705760 

Cost per pair                                        £1705760/21900 pairs/year £187.44 

 

 

Figure 6.9 shows breakdown of different costs in “best case” cost model. The indirect 

cost accounts for 45% of the total cost. This includes machine cost 34%, production and 

administrative overheads 6% and labour cost 5% of the total cost. Material cost accounts 

for 55% of the total cost as the direct cost in the model.  

 

Table 6:19 Total estimated fabrication cost per pair in “best case” polyjet based cost model 
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6.4.5 Cost and lead-time modelling for 3DP technique using V-Flash system 

In 3DP technique using V-Flash system, one machine was assumed to work one run of 

for 10 hours of time per day working for 220 working days per year. Production volume 

was calculated by the total estimated production volume form the model. A build time 

of 10 hours for fabrication of one part was given by V-flash™ machine controlling 

software. The machine is assumed to work for 220 days per year. This gives a total of 

2200 machine hours per year at the rate of 10 hours of build time per day; approximately 

25% of machine utilisation time per year.  

 

Table 6.20 shows the estimated total cost of £87839 for fabrication of 110 pairs per year 

at the rate of £798.53 per pair using V-flash 3DP system. Machine cost per year was 

calculated by the depreciation cost of the machine per year and 10% of the actual cost of 

the machine as the maintenance cost per year. The depreciation cost for the machine was 

assumed for 5 years. This gives a total cost of £4640 per year for machine cost. Material 

cost was calculated by weighing the material consumed in the model part and in support 

structure. The weight of total material consumed is then multiplied by the associated 

cost of the material.  

 

Figure 6:9 Cost categories in “best case” polyjet based cost model 
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The material consumed in the fabrication of orthoses model was 52 grams and material 

consumed in support structure was 29 grams. The total material consumed including 

support material was 81 grams per part. This gives an estimated material cost of £36.45 

per part or £72.90 per pair cost. Production overhead per year was calculated by floor 

space cost at the rate of £120/m
2
 per year. This cost was added with energy consumption 

cost of the machine at the rate of £1.5 per hour. This gives an estimated total of £32880 

per year as production overhead. A uniform cost of £2320 per year was included as 

administrative overhead.  

 

Labour cost was calculated by the required labour time for operation of machine. For the 

operation of one run using V-Flash system, it was estimated that one hour of labour time 

of the technician was required. The labour time is based on 30 minutes of the time for 

setting of the machine and loading material cartridge and 30 minutes of time for 

removing the part and post processing the fabricated part. However, in the initial model 

with one machine and one technician, the labour cost of £39980 was included as the 

annual salary of the technician. 
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Cost calculations using V-Flash system in 3DP technique 

Production volume per year  

Number of parts/build N 1 

Build time/run T  10 hours 

Production rate/hour R = N/T 0.1 hours 

Operation hours/year HY 2200 

Production volume/year V = R x HY      220 parts 

Total pairs/year  110 pairs 

Machine cost per year  

Machine & ancillary equipment E £15465* 

Depreciation cost/year D = E/5                  £3093 

Machine maintenance cost/year M                           £1546 

Total machine cost/year MC = D+M           £4640 

Material cost per pair  

Material/part 52 grams         @£0.45/grams £23.40 

Support material/part 29 grams         @£0.45/grams £13.05 

Model material cost/kg  £453* 

Support material cost/kg  £453 

Material cost/part  £36.45 

Total cost/pair  £72.90 

Production overhead per year 

Building area  246.5/m
2   

@ £120/m
2 

per annum** £29580 

Energy consumption by 

machine 

@ £1.5/hour x 2200 machine operation 

hours per year from operating model 
£3300 

Total cost/year  £32880 

Administrative overhead per year 

Hardware   £2175*** 

Software purchase                     £2175*** 

Consumables cost/year        £1450 

Hardware depreciation cost/year  £435 

Software depreciation cost/year  £435 

Total cost/year  £2320 

Labour cost per year (annual salary of operator) £39980/year 

Total cost  110 pairs per year £87839 

Cost/pair £87839/110 pairs  £798.53 

* Cost quotation for material from Print IT 3D Ltd, UK, 2010, **UK trade and information enquiry 

services (www.ukti.gov.uk, 2010) and ***Ruffo et al, 2006. 

 

Figure 6.10 shows the detailed breakdown of the costs in the initial operating model 

based on 220 working days per year. The indirect cost accounts for 91% of the total 

cost. This includes machine cost 5%, production and administrative overheads 40% and 

Table 6:20 Calculations of cost per pair using V-Flash system in 3DP technique. 

http://www.ukti.gov.uk/
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labour cost 46 % of the total cost in the model. Material cost accounts for 9% of the total 

cost as the direct cost in the model. 

 

 

 

 Sensitivity analysis of the model 

Scenario  1-Increasing the machine operation hours per year 

The initial operating model based on 220 working days per year was assumed to work 

for 365 days per year. Table 6.21 shows the cost categories in assumed initial operating 

model working for 365 days per year.  A part time technician working for one hour of 

time per day for 145 working days was included. This has increased the production 

volume per year from 110 pairs to 182 pairs per year at the rate of £541.50 per pair. This 

has reduced approximately 32% in total cost per pair compared to initial operating cost 

model based on 220 working days per year. 

 

 

 

 

 

 

 

Figure 6:10 Cost categories in initial operating model based on 220 working days per year 
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Total cost per pair using V-flash system 

Machine cost per year   £4640 

Material cost for 182 pairs  @ £72.90/pair £13267 

Production overhead per year  £35055 

Administrative overhead per year  £2320 

Labour cost per year Full time + part time operator £43272 

Total cost  182 pairs per year £98554 

Cost per pair £98554/182 pairs  £541.50 

 

Figure 6.11 shows the detailed breakdown of the costs in the initial operating model 

based on 365 working days per year. The indirect cost accounts for 87% of the total 

cost. This includes machine cost 5%, production and administrative overheads 38% and 

labour cost 44 % of the total cost in the model. Material cost accounts for 13% of the 

total cost as the direct cost in the model. 

 

 

 

 

 

 

 

 

Table 6:21 Total cost per pair in intial operating model based on 365 working days per year 

Figure 6:11 Cost categories in initial operating model based on 365 working days per year 
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Scenario  2- Development of “Best case” operating model  

A “best case” operating model was developed based on one run of 10 hours of build 

time per day using V-Flash 3D system. The developed model is based on 2 technicians 

working with 10 machines in order to obtain optimal productivity by balancing the 

machines working hours and labour hours.  In the developed operating model one 

machine was assumed to work for one run of 10 hours of build time per day for 365 

days year. This gives 3650 machine working hours per year for each machine and a total 

of 36500 machines working hours per year for 10 machines; approximately 58% 

machine utilisation time per year. 

 

Table 6.22 shows the operation hours of machines per year and labour hours per year for 

technicians in the “best case” operating model. The operation of one run on one machine 

requires one hour of labour time as mentioned in the Table 6.42. The operation of 365 

runs per year on one machine requires a total of 365 hours of labour hours per year. This 

gives a required estimated total of 3650 machine labour hours per year for operation of 

10 machines. The labour hours per year for one technician are based on 1760 labour 

hours per year which gives total of 3520 hours per year for 2 technicians. The operating 

model assumed to fabricate a total of 182 pairs per year based on one run of 10 hours 

build time per day on one machine. This gives an estimated annual production volume 

of 1820 pairs of orthoses per year for 10 machines.  

 

No: of  
machines 

Total required machine 
labour hours per year 

No: of  
technicians 

Total No:  of technicians 
labour hours per year 

    
1 365 1 1760 
2 730 2 3520 
3 1095 3 5280 
4 1460 4 7040 
5 1825 5 8800 
6 2190 6 10560 
7 2555 7 12320 
8 2920 8 14080 
9 3285 9 15840 

10 3650 10 17600 

Table 6:22 Machine labour hours/year and technicians labour hour/year in “best case” cost model 
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Table 6.23 shows details of cost categories in “best case” cost model based on 2 

technicians working with 10 machines. A floor space of 6m
2
 at the rate of £120/m

2
 for 

each additional machine and ancillary equipment and energy consumption cost of £1.5 

per hour for each additional machine is included. This is added with the machine 

purchase and operation cost of 10 machines and material consumption cost per year. The 

labour cost for 2 technicians is estimated for £79960 per year at the rate £22.71 per hour. 

The model gives an estimated total of £372988 for fabrication of 1820 pairs per year at 

the rate of £288.55 per pair; approximately 64% reduction in the cost per pair compared 

to initial operating model based on 220 working days per year.  

 

“Best case” model of 2 technicians working with 10 machines 

Machine cost per year   £46400 

Material cost for 1820 pairs  @ £72.90/pair £132678 

Production overhead per year  £90750 

Administrative overhead per year  £23200 

Labour cost per year Full time + part time operator £79960 

Total cost  1820 pairs per year £372988 

Cost per pair £372988/1820 pairs  £288.55 

 

Figure 6.12 show the detailed breakdown of the costs in “best case” cost model. The 

indirect cost accounts for 64% of the total cost. This includes machine cost 13%, 

production and administrative overheads 30% and labour cost 21% of the total cost in 

the model. Material cost accounts for 36% of the total cost as the direct cost in the 

model. 

 

Table 6:23 Total estimated fabrication cost per pair in “best case” V-Flash based cost model 
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6.4.6  Cost and lead-time modelling for FDM technique using Dimension SST 768 

system 

In FDM technique using Dimension SST 768 system, one machine was assumed to 

work for one run of 14 hours of build time per day for 220 working days per year. 

Production volume was calculated by estimated annual production volume form the 

model. A Dimension SST 768 FDM system has a build volume of (length) 203, (width) 

203 and (height) 305 mm in which two parts can be fitted per platform. A build time of 

14 hours per run for fabrication of 2 parts was given by the catalyst® EX machine 

controlling software. The machine was assumed to work for 220 days per year. This 

gives a total of 3080 machine hours per year at the rate of 14 hours of build time per run 

per day approximately 35% of machine utilisation time per year. 

  

Table 6.24 shows an estimated total cost of £101452 for fabrication of 220 pairs per year 

at the rate of £461.14 per pair. Machine cost per year was calculated by depreciation 

cost of the machine per year and 10% of the actual cost of the machine as the 

maintenance cost per year. The depreciation cost for machine was assumed for 5 years. 

This gives a total of £7000 as the machine cost per year.  

 

Figure 6:12 Cost categories in “best case” V-Flash based cost model 
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Material cost was calculated by weighing the material consumed in model part and 

material consumed in support structure. The weight of total material consumed was then 

multiplied by associated cost of the material. The material consumed in fabrication of 

orthoses model was 90 grams and material consumed in support structure was 30 grams. 

The total material consumed was 120 grams per part which gives an estimated material 

cost of £40.80 per part or cost of £81.60 per pair. Production overhead per year was 

calculated by floor space cost at the rate of £120/m
2
 per year. This cost was added with 

energy consumption cost of the machine at the rate of £1.5 per hour. This gives an 

estimated total of £34200 per year as production overhead. A uniform cost of £2320 per 

year was included as administrative overhead. 

 

Labour cost was calculated by required labour time for operation of machine. For 

operation of one run using Dimension SST 768 FDM system it was estimated that 2 

hours of labour time of the technician was required. The labour time is based on 60 

minutes of time for setting of machine and loading the cartridges of model and support 

material and 60 minutes of time for post processing of fabricated parts. However, in the 

initial model with one machine and one technician, the labour cost of £39980 per year is 

included as the annual salary of the technician for 1760 labour hours per year, based on 

220 working days per year. 
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Cost calculations using Dimension SST 768 system in FDM technique 

Production volume per year  

Number of parts/build N 2 

Build time/run T  14 hours 

Production rate/hour R = N/T 0.142  

Operation hours/year HY 3080 

Production volume/year V = R x HY 440 parts  

Total pairs/year  220 pairs 

Machine cost per year  

Machine & ancillary equipment E £20000* 

Depreciation cost/year D = E/5             £5000 

Machine maintenance cost/year M                     (10%/year) £2000 

Total machine cost per year MC = D+M     £7000 

Material cost per pair  

Material/part 90 grams              @£0.34/grams £30.60 

Support material/part 30 grams              @£0.34/grams £10.20 

Model material cost/kg 968.1 grams                 £330* 

Support material cost/kg 968.1 grams £330* 

Material cost/part  £40.80 

Total cost/pair  £81.60 

Production overhead per year 

Building area  246.5/m
2
*

     
@ £120/m

2 
per annum** £29580 

Energy consumption by 

machine 

@ £1.5/ hour x 3080 machine operation 

hours per year from operating model 
£4620 

Total cost/year  £34200 

Administrative overhead per year 

Hardware   £2175*** 

Software purchase                     £2175*** 

Consumables cost/year        £1450 
Hardware depreciation cost/year  £435 

Software depreciation cost/year  £435 

Total cost/year  £2320 

Labour cost per year (annual salary of operator) £39980/year 

Total cost  220 pairs per year £101452 

Cost/pair £101452/220pairs  £461.14 
*Cost quotation from system supplier (Laser Lines Limited UK, 2010), **UK trade and information 

enquiry services (www.ukti.gov.uk, 2010) and ***Ruffo et al, 2006 

 

Figure 6.13 shows the detailed breakdown of the costs in the initial operating model 

based on 220 working days per year. The indirect cost accounts for 82% of the total 

cost. This includes machine cost 7%, production and administrative overheads 

Table 6:24 Calculation of cost per pair using SST 768 system in FDM technique 

http://www.ukti.gov.uk/
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approximately are 36% and labour cost 39% of the total cost in the model. Material cost 

accounts for 18% of the total cost as the direct cost in the model. 

  

 
 

 

 Sensitivity analysis of the model 

Scenario  1-Increasing the machine operation hours per year 

The initial operating model based on 220 working days per year was assumed to work 

for 365 days per year. Table 6.25 shows the cost categories in assumed initial operating 

model working for 365 days per year.  A part time technician working for 2 hours of 

time per day for 145 working days was included. The model has increased the 

production volume from 220 pairs to 365 pairs per year at the rate of £336.75 per pair. 

This has reduced approximately 18% in total cost per pair compared to initial operating 

cost model based on 220 working days per year. 

 

 

 

 

 

 

 

Figure 6:13 Cost categories in initial operating model based on 220 working days per year 
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Total cost per pair using Dimension SST 768 system 

Machine cost per year   £7000 

Material cost for 365 pairs  @ £81.60/pair £29784 

Production overhead per year  £37245 

Administrative overhead per year  £2320 

Labour cost per year Full time + part time operator £46566 

Total cost  365 pairs per year £122915 

Cost per pair £122915/365 pairs  £336.75 

 

Figure 6.14 shows the detailed breakdown of different cost elements in initial operating 

model based on 365 days per year. The indirect costs accounts for 76% of the total cost. 

This includes machine cost accounts for 6%, production and administrative overheads 

32% and labour cost 38% of the total cost in the model. Material cost accounts for 24% 

of the total cost as the direct cost in the model. 

 

 

 

 

 

 

 

Table 6:25 Total cost per pair in intial operating model based on 365 working days per year 

Figure 6:14 Cost categories in initial operating model based on 365 working days per year 
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Scenario  2-Development of “Best case” operating model 

A “best case” operating model was developed based on one run of 14 hours of build 

time per day using Dimension SST 768 system. The developed model is based on 5 

technicians working with 12 machines in order to obtain optimal productivity by 

balancing the machines working hours and labour hours. In the developed operating 

model one machine was assumed to work for one run of 14 hours of build time per day 

for 365 days year. This gives 5110 machine working hours per year and a total of 61320 

machine working hours per year for 12 machines. For the labour hours in the model, one 

technician was assumed to work for 8 hours per day for 220 working days per year 

which gives a total of 8800 labour hours per year for 5 technicians. 

 

Table 6.26 shows the operation hours of machines per year and labour hours per year for 

technicians in the “best case” operating model. The operation of one run on one machine 

requires 2 hours of labour time as mentioned in the Table 6.52. The operation of 365 

runs per year on one machine requires a total of 730 hours of labour hours per year. This 

gives a required estimated total of 8760 machine labour hours per year for operation of 

12 machines. The labour hours per year for one technician are based on 1760 labour 

hours per year, which gives total of 8800 hours per year for 5 technicians. The operating 

model assumed to fabricate a total of 365 pairs per year based on one run of 14 hours 

build time per day on one machine. This gives an estimated annual production volume 

of 4380 pairs of orthoses per year using 12 machines. 

No: of  
machines 

Total required machine 
labour hours per year 

No: of  
technicians 

Total No:  of technicians 
labour hours per year 

    
1 730 1 1760 
2 1460 2 3520 
3 2190 3 5280 
4 2920 4 7040 
5 3650 5 8800 
6 4380 6 10560 
7 5110 7 12320 
8 5840 8 14080 
9 6570 9 15840 

10 7300 10 17600 
11 8030 11 19360 
12 8760 12 21120 

Table 6:26 Machine labour hours/year and technicians labour hour/year in “best case” cost model 
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Table 6.27 shows details of cost categories in “best case” cost model based on 5 

technicians working with 12 machines. A floor space of 6 m
2
 at the rate of £120/m

2
 for 

each additional machine and ancillary equipment and energy consumption cost of £1.5 

per hour for each additional machine is included. This is added with machine purchase 

and operation cost for 12 machines and material consumption cost per year. The labour 

cost for 5 technicians is estimated for £199900 per year at the rate of £22.71 per hour. 

The model gives an estimated total of £798628 for fabrication of 4380 pairs per year at 

the rate of £182.33 per pair; approximately 60% reduction in cost per pair compared to 

initial operating model based on 220 working days per year.  

 

“Best case” model based on 5 technicians working 12 machines 

Machines cost per year   £84000 

Material cost for 4380 pairs  @ £81.60/pair £357408 

Production overhead per year  £128480 

Administrative overhead per year  £27840 

Labour cost per year Full time + part time operator £199900 

Total cost  4380 pairs per year £798628 

Cost per pair £798628/4380 pairs  £182.33 

 

Figure 6.15 shows breakdown of different costs in “best case” cost model. The indirect 

cost accounts for 55% of the total cost in the model. This includes machines cost 11%, 

production and administrative overheads 19% and labour cost 25% of the total cost in 

the model. Material cost accounts for 45% of the total cost as the direct cost in the 

model.  

 

Table 6:27 Total estimated fabrication cost per pair in “best case” SST 768 FDM  cost model 
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6.4.7  Cost and lead-time modelling for FDM technique using Dimension uPrint 

system  

In FDM technique using Dimension uPrint system, one machine was assumed to work 

for 14 hours of build time per day based on 2 runs per day for 220 working days per 

year. Production volume was calculated by total estimated production volume per year 

from the model. uPrint FDM system has a build volume of (length) 203, (width) 152 and 

(height) 152 mm in which one part can be fitted per platform. A build time of 7 hours 

per run for fabrication of one part was given by catalyst® EX machine control software. 

The machine was assumed to work for 14 hours of time per day for 220 days per year. 

This gives a total of 3080 machine hours per year at the rate of 2 runs of 7 hours of build 

time per day; approximately 35% of the machine utilisation time per year.  

 

Table 6.28 shows the estimated total of £94912 for fabrication of 220 pairs per year at 

the rate of £431.41 per pair using the uPrint FDM system. Machine cost per year was 

calculated by depreciation cost of the machine per year and 10% of the actual cost of the 

machine as the maintenance cost per year. The depreciation cost for the machine was 

assumed for 5 years. This gives a total cost of £4200 per year for machine cost.  

 

Figure 6:15 Cost categories in “best case”  Dimension 768 SST FDM based cost model 
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Material cost was calculated by weighing the material consumed in the model part and 

material consumed in support structure. The weight of the total material consumed is 

then multiplied by the associated cost of the material. The material consumed in 

orthoses model was 55 grams and material consumed in support structure was 40 grams. 

The total material consumed was 95 grams per part. This gives an estimated material 

cost of £32.30 per part or £64.60 per pair cost. 

 

Production overhead per year was calculated by floor space cost at the rate of £120/m
2
 

per year. This cost was added with energy consumption cost of the machine at the rate 

of £1.5 per hour. This gives an estimated total of £32880 per year as production 

overhead. A uniform cost of £2320 per year was included as administrative overhead. 

 

Labour cost was calculated through required machine operation labour time. For the 

operation of one run using it was estimated that one hour of labour time of the 

technician was required. The labour time is based on 30 minutes of time for setting of 

machine and loading the material cartridges of model and support material and 30 

minutes of time for post processing of the fabricated parts. However, in the initial model 

with one machine and one technician, the labour cost of £39980 is included as the 

annual salary of the technician.  
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Cost calculations using Dimension uPrint system in FDM technique 

Production volume per year  

Number of parts/build N 1 

Build time/run T  7 hours 

Production rate/hour R = N/T 0.142  

Operation hours/year HY 3080 

Production volume/year V = R x HY 440 parts 

Total pairs/year  220 pairs 

Machine cost per year  

Machine & ancillary equipment E £14000* 

Depreciation cost/year E/5            £2800 

Machine maintenance cost/year M                    (10% /year) £1400 

Total machine cost/year MC = D+M     £4200 

Material cost per pair  

Material/part 55 grams              @£0.34/grams £18.70 

Support material/part 40 grams              @£0.34/grams £13.60 

Model material cost/kg 968.1 grams                 £330* 

Support material cost/kg 968.1 grams                 £330* 

Material cost/part  £32.30 

Total cost/pair  £64.60 

Production overhead per year 

Building area  246.5/m
2
*

  
@ £120/m

2 
per annum** £29580 

Energy consumption by 

machine 

@ £1.5/hour x 3080 machine operation 

hours per year from operating model 
£4620 

Total cost/year  £34200 

Administrative overhead per year 

Hardware   £2175*** 

Software purchase                     £2175*** 

Consumables cost/year        £1450 

Hardware depreciation cost/year  £435 
Software depreciation cost/year  £435 

Total cost/year  £2320 

Labour cost per year (annual salary of operator) £39980/year 

Total cost   £94912 

Cost/pair £94912/220 pairs £431.41 
*Cost quotation from system supplier (Laser Lines Limited UK, 2010), **UK trade and information 

enquiry services (www.ukti.gov.uk, 2010) and ***Ruffo et al, 2006 

 

 

Figure 6.16 shows the detailed breakdown of the costs in the initial operating mode 

based on 220 working days per year. The indirect cost accounts for 85% of the total 

cost. This includes the production and administrative overheads 39%, labour cost 42% 

Table 6:28 Calculations of cost per pair using uPrint system in FDM technique 

http://www.ukti.gov.uk/
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and machine cost 4% of the total cost in the model. Material cost account for 15% of the 

total as the direct cost in the model. 

 

 

 

 

 Sensitivity analysis of the model 

Scenario  1-Increasing the machine operation hours per year. 

The initial operating model based on 220 working days per year was assumed to work 

for 365 days per year. Table 6.29 shows the cost categories in assumed initial operating 

model working for 365 days per year.  A part time technician working for 2 hours of 

time per day for 145 working days was included. The model has increased the 

production volume from 220 pairs to 365 pairs per year at the rate of £312.08 per pair. 

This has reduced approximately 28% in total cost per pair compared to initial operating 

cost model based on 220 working days per year. 

 

 

 

 

 

 

Figure 6:16 Cost categories in initial operating model based on 220 working days per year 
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Total cost per pair using Dimension uPrint FDM technique 

Machine cost per year  £4200 

Material cost  @£64.60/pair for 365 pairs £23579 

Production overhead per year  £37245 

Administrative overhead per year  £2320 

Labour cost per year  Full time + part time operators £46566 

Total  £113910 

Cost per pair  £113910/365 pairs £312.08 

 

 

Figure 6.17 shows the detailed breakdown of different cost elements in initial operating 

model based on 365 working days per year. The indirect costs accounts for 79% of the 

total cost in the model. This includes machine cost 3%, production and administrative 

overheads approximately 35% and labour cost 41% of the total cost. Material cost 

accounts for 21% of the total cost as the direct cost in the model. 

 

 

 

 

 

 

 

Table 6:29 Total cost per pair in intial operating model based on 365 working days per year 

Figure 6:17 Cost categories in initial operating model based on 365 working days per year 
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Scenario  2-Development of “Best case” operating model  

A “best case” operating model was developed based on 2 runs of 14 hours of build time 

per day using Dimension uPrint system. The developed model is based on 5 technicians 

working with 12 machines in order to obtain optimal productivity by balancing the 

machines working hours and labour hours. In the developed operating model one 

machine was assumed to work for 2 runs of 14 hours of build time per day for 365 days 

year. This gives 5110 machine working hours per year and a total of 61320 machine 

working hours per year for 12 machines. For the labour hours in the model, one 

technician was assumed to work for 8 hours per day for 220 working days per year 

which gives a total of 8800 labour hours per year for 5 technicians. 

 

Table 6.30 shows the operation hours of machines per year and labour hours per year for 

technicians in the “best case” operating model. The operation of one run on one machine 

requires 1 hour of labour time. The operation of 730 runs per year on one machine 

requires a total of 730 hours of labour hours per year. This gives a required estimated 

total of 8760 machine labour hours per year for operation of 12 machines. The labour 

hours per year for one technician are based on 1760 labour hours per year which gives 

total of 8800 hours per year for 5 technicians. The operating model assumed to fabricate 

a total of 365 pairs per year based on 2 runs of 14 hours build time per day on one 

machine. This gives an estimated annual production volume of 4380 pairs of orthoses 

per year using 12 machines. Table 6.26 in Section 2.4.6 referred as the machine 

operation hours and technician hour per year. 

 

Table 6.30 shows details of cost categories in “best case” cost model based on 5 

technicians working with 12 machines. A floor space of 6 m
2
 at the rate of £120/m

2
 for 

each additional machine and ancillary equipment and energy consumption cost of £1.5 

per hour for each additional machine is included. This is added with machine purchase 

and operation cost for 12 machines and material consumption cost per year. The labour 

cost for 5 technicians is estimated for £199900 per year at the rate of £22.71 per hour. 

The model gives an estimated total of £689568 for fabrication of 4380 pairs per year at 

the rate of £157.43 per pair approximately 64% reduction in cost per pair compared to 



 

 170 

initial operating model based on 220 working days per year.  

 

Best case model based on 5 technicians working 12 machines 

Machines cost per year   £50400 

Material cost for 4380 pairs  @£64.60/pair £282948 

Production overhead per year  £128480 

Administrative overhead per year  £27840 

Labour cost per year Full time + part time operator £199900 

Total cost  4380 pairs per year £689568 

Cost per pair £689568/4380 pairs  £157.43 

 

 

Figure 6.18 shows breakdown of different costs in “best case” cost model. The indirect 

cost accounts for 59% of the total cost. This includes machines cost 7%, production and 

administrative overheads 23% and labour cost 29% of the total cost in the model. 

Material cost accounts for 41% of the total cost as the direct cost in the model. 

 

 

 

 

 

Table 6:30 Total estimated fabrication cost per pair in “best case” uPrint FDM based cost model 

Figure 6:18 Cost categories in “best case”  uPrint FDM based cost model 
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6.4.8  Cost and lead-time modelling for CAD/CAM using Amfit system  

In CAD/CAM technique Amfit CAD/CAM system one machine was assumed to work 

for 8 hours of time per day for 220 working days per year. Production volume was 

calculated by total estimated production volume per year from the developed model.  

Amfit CAD/CAM system fabricates 3 pairs per hour of foot orthoses. This gives a total 

of 24 pairs per day based on 8 hours of working time per day (Malanie Shelton, Personal 

communication, Amfit Inc, USA, 2010). The operating model developed is based on 8 

hours of machine working time per day in which 24 pairs can be fabricated per day. The 

machine is assumed to work for 220 days per year. This gives a total of 1760 machine 

hours per year at the rate of 8 hours of working time per day; approximately 20% of 

machine utilisation time per year.  

 

Table 6:31 shows the estimated total cost of £94912 for fabrication of 5280 pairs per 

year at the rate of £29.96 per pair. Machine cost per year was calculated by depreciation 

cost of machine per year and 10% of the actual cost of the machine as the maintenance 

cost per year. The depreciation cost for the machine was assumed for 5 years. This gives 

a total of £4500 as the machine cost per year. Material cost per pair n CAD/CAM 

technique was calculated by standard cost £15 for one pair of blank which makes a total 

cost of £79200 per year or 5280 pairs of blanks. Production overhead per year was 

calculated by floor space cost at the rate of £120/m
2
 per year. This cost was added with 

energy consumption cost for the machine at the rate of £1.5 per hour. This gives an 

estimated total of £32220 per year as production overhead. A cost of £2320 per year was 

included as administrative overhead. In the initial model with one machine and one 

technician, the labour cost of £39980 per year was included as the annual salary of the 

technician for 1760 labour hours per year based on 220 working days per year. 
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Cost calculations using Amfit milling system 

Production volume per year  

Number of pairs/hour N 3 pairs 

Production rate/day N x hours per day   24 pairs 

Hours per year in operation HY                        1760 hours  

Production volume/year                              5280 pairs  

Machine cost per year  

Machine & ancillary equipment E £15000* 

Depreciation cost/year E/5            £3000 

Machine maintenance cost/year M                    (10%/year) £1500 

Total machine cost/year MC = D+M     £4500 

Material cost per pair  

Cost of blanks per pair  £15.00 

Total cost for 5280 pairs/year  £79200 

Production overhead per year 

Building area  246.5/m
2
*

     
@ £120/m

2 
per annum** £29580 

Energy consumption by 

machine 

@ £1.5 per hour x 1760 machine operation 

hours per year from operating model 
£2640 

Total cost/year  £32220 

Administrative overhead per year 

Hardware   £2175*** 

Software purchase                     £2175*** 

Consumables cost/year        £1450 

Hardware depreciation cost/year  £435 

Software depreciation cost/year  £435 

Total cost/year  £2320 

Labour cost per year (annual salary of operator) £39980/year 

Total cost   £94912 

Cost/pair £94912/5280 pairs £29.96 
*Cost quotation from Amfit Inc USA, 2010, **UK trade and information enquiry services 

(www.ukti.gov.uk, 2010) and ***Ruffo et al, 2006. 

 

Figure 6.19 shows the detailed breakdown of the costs in the initial operating model 

based on 220 working days per year. The indirect costs accounts for 50% of the total 

cost. This includes production and administrative overheads 22%, labour cost 25% and 

machine cost 3% of the total cost in the model. Material cost accounts for 50% of the 

total cost as direct cost in the model. 

 

Table 6:31 Calculations of cost per pair using Amfit CAD/CAM milling technique 

http://www.ukti.gov.uk/
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 Sensitivity analysis of the model 

Scenario  1-Increasing the machine operation hours per year. 

The initial operating model based on 220 working days per year was assumed to work 

for 365 days per year. Table 6.32 shows the cost categories in assumed initial operating 

model working for 365 days per year.  A part time technician working for 8 hours of 

time per day for 145 working days was included. The model has increased the 

production volume from 5280 pairs to 8760 pairs per year at the rate of £27.22 per pair. 

This has reduced approximately 9% in total cost per pair compared to initial operating 

cost model based on 220 working days per year. 

 

Total cost per pair using Amfit system in CAD/CAM technique 

Machine cost per year  £4500 

Material cost  @£15/pair for 8760 pairs £131400 

Production overhead per year  £33960 

Administrative overhead per year  £2320 

Labour cost per year  Full time + part time operators £66323 

Total  £238503 

Cost per pair  £238503/8760 pairs £27.22 

 

Figure 6:19 Cost categories in initial operating cost model based on 220 working days per year 

Table 6:32 Total estimated cost per pair in initial operating model based on 365 days per year 
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Figure 6.20 shows the detailed breakdown of the costs in the initial operating model 

based on 365 working days per year. The indirect costs accounts for 45% of the total 

cost. This includes production and administrative 15%, labour cost 28% and machine 

cost 3% of the total cost in the model. Material cost accounts for 55% of the total cost as 

the direct cost in the model.  

 

 

 

 

Scenario  2-Development of “Best case” operating model 

A “best case” operating model was developed based on 8 hours of machine working 

time per day. The developed model is based on 5 technicians working with 3 machines 

in order to obtain optimal productivity by balancing the machines working hours and 

labour hours. In the developed operating model one machine was assumed to work for 8 

hours of time per day for 365 days per year which gives 2920 machine working hours 

per year; utilisation of 33% of machine time per year. This gives a total of 8760 machine 

working hours per year for 3 machines. For the labour hours in the model one technician 

was assumed to work for 8 hours per day for 220 working days per year. This makes a 

total of 1760 labour hours per year for one technician and a total of 8800 labour hours 

per year for 5 technicians.  

 

Figure 6:20 Cost categories in initial operating model based on 365 days per year 
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Table 6.33 shows the required machines labour hours per year and labour hours of 

technicians per year in the “best case” operating model. In the “best case” operating 

model one machine was assumed to fabricate a total of 8760 pairs per year based on 8 

hours of working time per day. This gives an estimated annual production volume of 

26280 pairs of orthoses per year for 3 machines.  

 

No: of  
machines 

Total required machine 
labour hours per year 

No: of  
technicians 

Total No:  of technicians 
labour hours per year 

    
1 2920 1 1760 
2 5840 2 3520 
3 8760 3 5280 
4 11680 4 7040 
5 14600 5 8800 
6 17520 6 10560 
7 20440 7 12320 
8 23360 8 14080 
9 26280 9 15840 

10 29210 10 17600 

 

Table 6.34 shows the details of the cost categories in the “best case” developed model 

based on 5 technicians working with 3 machines. A floor space of 6m
2
 at the rate of 

£120/m
2
 was included for each additional machine and ancillary equipment and energy 

cost of £1.5/hour for each additional machine is included. The model gives an estimated 

total cost of £658720 per year for fabrication of 26280 pairs of orthoses per year which 

include the production and administration overhead costs, machine costs and material 

costs per year. The cost of £199900 was estimated for annual salary of the 3 technicians 

per year. The operating model gives a total estimated cost of £25.06 per pair for foot 

orthoses using Amfit CAD/CAM milling technique. This has reduced approximately 9% 

cost for a pair of orthoses compared to initial operating model based on 220 days per 

year. 

 

 

 

Table 6:33 Machine labour hours/year and technicians labour hour/year in “best case” cost model 
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“Best case” operating model of 3 machines and 5 technicians  

Machine cost per year for 3 machines                            £13500 

Material cost for 26280 pairs of blanks                                       £394200 

Production overhead per year for 3 machines        £44160 

Administrative overhead per year for 3 machines  £6960 

Labour cost for 5 technicians                                £199900 

Total cost for  26280 pairs per year £658720 

Cost per pair                       £658720/26280 pairs/year £25.06 per pair 

 

Figure 6.21 show the detailed breakdown of the costs in “best case” developed model. 

The indirect cost accounts for 40% of the total cost in the model. This includes the 

production and administrative overheads 8%, labour cost 30% and machine cost 

accounts for 2% of the total cost in the model. Material cost accounts for 60% of the 

total cost as the direct cost in the model. 

 

 

6.5  Summary  

In “best case” cost models for selective laser sintering SLS, stereolithography SLA and 

polyjet techniques showed the direct cost (cost of material) were approximately 75%, 

47% and 55% respectively of the total cost. Machine purchase and operation, labour, 

production and administration overheads account for 25%, 53% and 45% as the indirect 

Table 6:34 Total estimated fabrication cost per pair in “best case”CAD/CAM based cost  model 

Figure 6:21 Cost categories in “best case” Amfit CAD/CAM system based cost model 
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costs of the total cost. The models gave a total per pair cost of £85.34, £133.25 and 

£190.51, respectively. The lead-times of 16 hours for fabrication of 15 pairs in SLS, 7 

hours for 5 pairs in SLA and 30 hours for 5 pairs in polyjet gave the productivity of 

nearly one hour of time in SLS, one and half hour of time in SLA and 6 hours of time 

per pair in polyjet technique. 

 

In FDM technique using Dimension SST 768 and uPrint systems, the “best case” 

developed models showed direct costs were (material cost) approximately 45% and 41% 

of the total cost in both techniques. The costs for machines, labour and production and 

administration overheads were approximately 55% and 59% of the total cost in both 

techniques. The models give a total cost of £182.33 and £157.43, respectively for one 

pair of orthoses. The lead-times were also high giving approximately 14 hours of time 

for fabrication of one pair of orthoses in both techniques. In V-Flash technique, the “best 

case” developed model showed the direct cost (material cost) was 36% of the total cost. 

The labour, machines and production and administration overheads account for 64% of 

the total cost. The model gives a total cost of £288.55 for one pair of orthoses. The lead-

time of 20 hours per pair was higher than all other fabrication techniques giving 20 

hours time per pair.  

 

In CAD/CAM fabrication technique, the “best case” developed model showed that 

material cost were major incurring categories approximately 60% of the total cost 

whereas production and administration overheads and machines and labour costs 

account for 40 % of the total cost. The model gives the total cost of £25.06 per pair. The 

lead-time of 3 pairs per hour is the higher productivity ratio in comparison to all RM 

based fabrication techniques. Figure 6.22 shows fabrication cost per pair and lead-times 

and Figure 6.23 shows the cost per pair and productivity in hours per pair in different 

orthoses fabrication techniques. The development of “best case” models showed that 

indirect costs (initial capital costs) in all the RM based cost models were reduced from 

the initial capital costs in the initial operating cost model. The indirect costs of 42% in 

SLS, 65% in SLA, 70% in polyjet, 91% in V-flash, 82% in Dimension 768 SST and 

85% in Dimension uPrint were reduced to 25% in SLS, 53% in SLA, 45% in polyjet, 
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64% in V-flash, 55% in Dimension SST and 59% in Dimension uPrint based models, 

respectively in the “best case” developed models. The burden of initial capital cost is 

lowered in all the best case developed models because of increasing the number of 

machines and balancing the machine labour hours and technician labour hours in the 

developed “best case” models. 

 

 

 

 

Figure 6:22 Fabrication lead-time and cost per pair in “best case” developed models 

Figure 6:23 Cost per pair and productivity per hour in “best case” developed models 
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Chapter 7 Discussion and conclusions  

7.1 Introduction. 

The aim of this work was to assess the potential for rapid manufacturing techniques in 

the design and fabrication of custom-made foot orthoses. The main objective was to 

evaluate the application of rapid manufacturing techniques for production of cost 

effective custom-made foot orthoses at a commercial scale with low lead-time. The 

previous work had demonstrated the feasibility of rapid manufacturing techniques in 

fabrication of custom-made foot orthoses (Pallari, 2008; Pallari et al, 2010). In the 

following sections step by step research findings from this work is discussed.  

7.2 Discussion 

7.2.1 Design of rapid manufacturing based process model through IDEF0.  

In Chapter 3, Section 3.6 “rapid manufacturing” approach in the design and fabrication 

process has shown significant advantages in reducing the traditional manual activities in 

orthoses fabrication process. The automated fabrication processes in rapid 

manufacturing without the need of moulding, tooling and equipment; requiring minimal 

labour intervention during the fabrication process. Re-modelling of the process of design 

and fabrication of custom foot orthoses showed improvements and increased the process 

efficiency by applications of rapid manufacturing approach in the system. Different 

commercially established rapid manufacturing techniques integrated in the process have 

demonstrated the transformation and shift from the conventional design and fabrication 

functions to a digital design and fabrication process.  

 

In IDEF0 based “as-to-be” process model (A-1) of the system, the main functions and 

activities are based on digital foot geometry capture, CAD based orthoses design and 

digital fabrication process; using rapid manufacturing techniques. This has resulted in 

development of a seamless digital design and fabrication process for production of 

custom-made foot orthoses. The analysis of main functions in the developed rapid 

manufacturing based process model has demonstrated significant improvements in the 

main functions. Applications of digital foot geometry capture and CAD techniques in 
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design of orthoses replaced the traditional time, cost and labour intensive activities in 

functions of foot geometry capture and orthoses design. The developed model further 

showed that the function of “planning for manufacturing” in the system require less 

work after integration of rapid manufacturing techniques in the design and fabrication 

process.  

7.2.2 Digital foot geometry capture. 

The application of digital foot geometry capture method has shown significant 

improvements in terms of time and cost in comparison to traditional foot geometry 

capturing methods (Payne, 2007; Boardman, 2007; Williams, 2010). Digital foot 

geometry capture generates the output information in a digital format which is a 

requirement for the rapid manufacturing based design and fabrication system. 

 

Digital foot geometry capturing method removes the steps involved in traditional foot 

geometry capturing methods which require time for setting and drying of the impression 

cast and efforts for physical shipment of casts to manufacturing facility. The main 

advantages of digital based geometry capture are removing the need of physical material 

in foot impression casting and manual labour work in the process which has 

subsequently reduced the geometry capture time and cost.  

 

In Chapter 4, Sections 4.2 and 4.3, time and cost modelling of different geometry 

capturing methods showed that the 3D digital foot geometry capturing method 

significantly reduced the time and cost in foot impression capturing process. Digital 

geometry capturing method reduced the estimated cost of foot geometry capturing from 

£48 per pair in plaster based methods to £6 per pair in digital based methods. The 

estimated time in foot geometry capture process was also reduced from 5 hours of time 

in plaster based methods to 5 minutes of time per pair in digital foot geometry capture 

methods.  

 

Digital foot geometry capture methods have additional advantages of removing the need 

for managing and storing physical inventories of foot impression casts, material and 
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waste generation in impression capturing process. Overall, it is concluded that digital 

foot geometry capture offers significant benefits to the industry. However, for these to 

be realised, the downstream processes in fabrication of orthoses must be capable of 

operating with digital information. 

7.2.3 CAD design of orthoses.  

In designing of the orthoses, applications of CAD have shown increased advantages 

over the plaster based designing methods particularly in reducing the designing time and 

cost, labour. CAD based designing methods have shown several advantages over the 

plaster based designing methods. The required orthoses design features, corrections and 

modifications (such as adding wedging angles, heel cupping, ramps, etc.) can be 

incorporated accurately and can be viewed and reviewed on the CAD system.  

 

The significant advantage in CAD based orthoses design is elimination of manual errors 

in the designing process where the designer can view on screen the designed orthosis 

features which facilitate determining the appearance and final shape of the product after 

actual fabrication of the orthoses. One of the other additional advantages of CAD based 

design method is removing the need of physical storage of designed foot impression 

casts and material in the orthoses design process. The CAD based design method 

facilitates in managing the data base and electronic storage of the orthoses designs 

where the designs can be easily stored and quickly transferred to manufacturing facility 

which makes the orthoses design and fabrication process faster and reliable. Efficient 

data base management of digital records of orthoses designs eliminates the cost and time 

in handling the physical inventory and transferring and shipping of the designed 

orthoses. 

 

In Chapter 4, Sections 4.5 and 4.6, time and cost modelling of the different orthoses 

design methods showed that an estimated orthosis design cost of £18 per pair in plaster 

based design methods was reduced to cost of £2 per pair in the CAD based design 

methods. The orthoses design time of 5 hours and 45 minutes in plaster based designing 

methods was also reduced by CAD based designing methods; consuming only 5 minutes 
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of time per pair in design of the orthoses. The comparison of plaster based and CAD 

based orthoses design methods showed that the plaster based design methods involve 

higher time and are cost intensive. The methods are craft based and labour intensive 

involving manual and physical work, where the orthoses design is based on the 

experience and craftsmanship of the designer. The accuracy and conformance of the 

design features depend on the individual expertise rather than the systematic engineering 

design principles.  

 

In CAD based design methods the designers have increased control in incorporating the 

orthoses design features which has the potential to reduce dependency on individual 

skills and craftsmanship and show advantages in terms of increased precision accuracy 

and consistency. The CAD based designing method simplifies and speed up the orthoses 

designing process. The method facilitates the orthoses designer with increased control in 

design alterations and in adding and incorporating the prescribed design features more 

effectively and accurately. The designing process is expected to be more effective, quick 

and consistent with increased accuracy. One of the additional advantages of CAD based 

orthoses design is the easy repeatability of the design of the orthoses if required. 

 

Overall, CAD based designing methods have increased advantages over the plaster 

based designing methods in terms of reduced design time and cost. The method has 

increased process efficiency, control, precision, repeatability and advantages of reduced 

dependency on the individual skills, which have significant impacts on the consistency 

and quality in the final orthoses product.  

7.2.4 Rapid manufacturing techniques in fabrication of orthoses.  

In the fabrication of orthoses, feasibility of various rapid manufacturing techniques were 

investigated in terms of cost, lead-time and production of complex geometries and 

design features in custom-made foot orthoses. Conventional fabrication techniques have 

shown limitations in incorporating and fabricating the required complex design features 

at specific sites in the orthoses; such as fabrication of metatarsal dome and supporting 

wedges in the custom-made foot orthoses. Rapid manufacturing techniques are based on 
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additive manufacturing process where the parts are fabricated layer by layer without 

tooling and equipments. The main advantages of rapid manufacturing techniques are 

increased design freedom, ability to fabricate complex geometrical features with 

increased accuracy, consistency and overall quality improved product.  

 

The significant advantages of rapid manufacturing techniques are; ease in fabrication of 

custom-specific complex geometrical parts and devices, increased accuracy and 

consistency with the key advantage of repeatability for custom-specific personalised 

parts and products (Gibson et al, 2010, Wohlers, 2010). In fabrication of orthoses these 

techniques have shown advantages of fabricating complex geometrical design features 

with increased accuracy and consistency in comparison to conventional milling 

techniques (Pallari et al, 2010). 

7.2.5 Orthoses materials 

In Section 5.2.2 analysis of mechanical and other properties of traditional orthoses 

materials used for fabrication of custom foot orthoses with the potential rapid 

manufacturing materials showed that currently commercially available rapid 

manufacturing materials could be used in the orthoses fabrication as an end use product 

material. 

7.2.6 Cost and lead-time modelling 

The cost and lead-time modelling in chapter 6 showed that RM based systems are still 

expensive; giving higher per pair cost in comparison to conventional fabrication 

technique. However; with progressing developments in RM machines and materials, the 

cost of raw materials and systems are falling down which could bring the RM 

fabrication processes competitive with conventional fabrication techniques. 

 

7.3 Key features of rapid manufacturing based design and fabrication system 

for production of custom-made foot orthoses. 

In rapid manufacturing based design and fabrication systems the functions of foot 

geometry capture and design of orthoses are digital based and are identical. However, 

fabrication lead-time and fabrication costs are different in different rapid manufacturing 
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techniques used.  

7.3.1 Lead-time modelling  

The method for estimation of lead-time in different rapid manufacturing techniques was 

obtained through equation no 1. 

T lead-time = T gc+ T od + T fab  Eq (7.1) 

Where T lead-time is the estimated total lead-time per pair, which is the sum of foot 

geometry capture time per pair (T gc), orthoses design time per pair (Tod) and orthoses 

fabrication time per pair (T fab) in different rapid manufacturing techniques. 

 

7.3.2 Total estimated design and fabrication lead-time and total estimated cost 

per pair in different rapid manufacturing based systems. 

In the following section (i) Total estimated design and fabrication lead-time (ii) Total 

estimated design and fabrication cost and (iii) total estimated productivity in hours in 

different rapid manufacturing techniques based systems are presented. 

 

i. Total estimated design and fabrication lead-time 

The total estimated design and fabrication lead-time is made up of (i) time in foot 

geometry capture, (ii) time in orthoses design and (iii) time in fabrication of orthoses. As 

earlier mentioned that foot geometry capture and orthoses design times are identical in 

all the systems and were estimated to take 5 minutes of time for each function, 

respectively. However, orthoses fabrication lead-time is different due to different build 

time given by the rapid manufacturing systems.  

 

Table 7.1 shows the total estimated design and fabrication lead-time in different rapid 

manufacturing techniques based systems. In selective laser sintering technique, using 

spro SLS system gave the total estimated design and fabrication lead-time of 18 hours 

and 30 minutes for 15 pairs of orthoses. In stereolithography technique, using ipro 8000 

system gave total estimated design and fabrication lead-time of 7 hours and 50 minutes 

for 5 pairs of orthoses. In Polyjet technique, using Connex 500 system gave total 

estimated design and fabrication lead-time of 30 hours and 50 minutes for 5 pairs of 
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orthoses. In 3DP technique using V-Flash system gave total estimated design and 

fabrication lead-time of 20 hours and 10 minutes per pair. In FDM technique, using 

Dimension SST 768 and uPrint systems have given the total estimated design and 

fabrication lead-time of 14 hours and 10 minutes per pair.  

 

RM based  

systems 

Pairs/ 

build 

Geometry 

capture 

Design of 

orthoses  

Fabrication 

time/build 
Estimated 

lead-time  

spro SD SLS 15  75 min/15 pair 75min/15 pairs  16  hours 18 hrs 30 min 

ipro  SLA 5  25 min/5 pairs 25 min/5 pairs 7 hours 7 hrs 50 min 

Connex 5000 5  25 min/5 pairs  25 min/5pairs 30 hours 30 hrs 50 min 

3DP V-Flash 1 5 min/pair 5 min/pair 20 hours 20 hrs 10 min 

SST 768 1 5 min/pair 5 min/pair 14 hours 14 hrs 10 min 

uPrint 1 5 min/pair 5 min/pair 14 hours 14 hrs 10 min 

 

ii. Total estimated design and fabrication cost per pair. 

Table 7.2 shows the total estimated design and fabrication cost per pair in different rapid 

manufacturing based systems. The total estimated design and fabrication cost per pair is 

made up of (i) foot geometry capture cost, (ii) orthoses design cost and (iii) orthoses 

fabrication cost. The costs for geometry capture and design of orthoses are identical in 

all systems. However, fabrication costs are different due to different rapid 

manufacturing techniques and materials used. This has resulted in different total 

estimated design and fabrication costs per pair in different rapid manufacturing 

techniques based systems. 

 

Rapid 

manufacturing 

based systems 

Geometry  

capture  

cost/pair 

Orthoses  

design  

cost/pair 

Orthoses  

fabrication  

cost/pair 

Total 

estimated 

cost/pair 

spro SD SLS £6 £2 £85.34 £93.34 

ipro SLA £6 £2 £133.25 £141.25 

Connex 500 £6 £2 £190.51 £198.51 

3DP V-Flash £6 £2 £288.55 £296.55 

SST 768 £6 £2 £182.33 £190.33 

uPrint £6 £2 £157.43 £165.43 

 

Table 7:1 Total estimated design and fabrication lead-time in different RM based systems 

Table 7:2 Total estimated design and fabrication cost per pair in different RM based systems 



 

 186 

 

 

 

Figure 7.1 shows the total estimated design and fabrication lead-time and total estimated 

design and fabrication cost per pair in different rapid manufacturing based systems 

These estimates show clearly that SLS technique is projected to have the lowest overall 

cost, with SLA the next most competitive.  For all of the other processes the cost of 

materials makes the projected cost of orthoses much higher than for these two systems. 

iii. Estimated productivity in hours per pair.  

Table 7.3 shows the productivity in hours per pair in rapid manufacturing based design 

and fabrication systems. The productivity in hours per pair is made up of (i) geometry 

capture time, (ii) orthoses design time and (iii) orthoses fabrication time.  

 

RM based  

systems 
No: of pairs/ 

build 

Estimated design and 

fabrication lead-time  

Productivity  

in hours/pair 

spro SD SLS 15 18 hrs 30 min 1 hrs 22 min 

ipro 8000 SLA 5 07 hrs 50 min 1 hrs 50 min 

Polyjet connex 5 30 hrs 50 min 6 hrs 10 min 

3DP V-Flash 1 20 hrs 10 min 20 hrs 10 min 

SST 768 FDM 1 14 hrs 10 min 14 hrs 10 min 

uPrint FDM 1 14 hrs 10 min 14 hrs 10 min 

 

Figure 7:1 Design and fabrication lead-time and cost per pair in RM based systems 

Table 7:3 Estimated productivity in hours per pair in different RM based systems 
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Figure 7.2 shows estimated productivity in hours per pair and total estimated design and 

fabrication cost per pair in different RM based systems. 

 

 

 

Again the results show SLS and SLA, because of the build capacities associated with 

these machines, to have the greatest productivities, with SLS projected to be slightly 

more productive than SLA. 

 

7.3.3 Total estimated customer lead-time and total estimated overall cost per pair 

in different rapid manufacturing techniques based systems 

i. Total estimated customer lead-time 

The total estimated customer lead-time has been developed on the basis of design and 

fabrication lead-time, but amended to take into consideration the projected operating 

model, and likely delivery times assuming a centralised fabrication facility.  

  

The time for foot assessment, geometry capture and design of orthoses is assumed to 

take one day; whereas delivery of orthoses is assumed to take 2 days of time. The time 

for foot assessment and geometry capture, design of orthoses and delivery are identical 

in all the systems. This is added with orthoses fabrication lead-time given by different 

rapid manufacturing techniques based systems.  

Figure 7:2 Productivity in hours and cost per pair in RM based systems 
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Table 7.4 shows total estimated customer lead-time and total estimated cost per pair in 

different rapid manufacturing techniques based systems. Figure 8.3 shows the total 

estimated customer lead-time and total estimated cost per pair in different rapid 

manufacturing techniques based design and fabrication systems 

 

RM based  

systems 

Foot assessment, geometry 

capture and orthoses design  

Fabrication  

time/build 

Delivery 

time in  

Customer 

lead-time  

spro SD  1 day 16 hours 2 days 4 days 

ipro 8000  1 day 7 hours 2 days 4 days 

Polyjet 1 day 30 hours 2 days 5 days 

V-Flash 1 day 20 hours 2 days 4 days 

SST 768 1 day 14 hours 2 days 4 days 

uPrint 1 day 14 hours 2 days 4 days 

 

ii. Total estimated overall cost per pair. 

Table 7.5 shows the estimated total cost per pair. The total estimated cost per pair is 

made up of (i) foot assessment, (ii) foot geometry capture, (iii) orthoses design and (iv) 

orthoses fabrication costs. The cost for foot assessment, geometry capture and design of 

orthoses are identical in all the systems. These costs are added with total estimated 

fabrication cost per pair per given by different rapid manufacturing based developed 

models.  

 

RM based  

systems 

Foot 

assessment 

cost/pair 

Geometry 

capture  

cost/pair  

Orthoses 

design cost/ 

pair  

Fabrication 

cost/pair  

Total cost 

/pair 

spro SD  £50 £6 £2 £85.34 £143.34 

ipro 8000  £50 £6 £2 £133.25 £191.25 

Polyjet £50 £6 £2 £190.51 £248.51 

 V-Flash £50 £6 £2 £288.55 £346.55 

SST 768 £50 £6 £2 £182.33 £240.33 

uPrint £50 £6 £2 £157.43 £215.43 

 

Figure 7.3 shows the total estimated cost per pair and estimated delivery lead-time in 

days in rapid manufacturing techniques based design and fabrication systems. 

 

Table 7:4 Total estimated customer delivery lead-time in different RM based systems 

Table 7:5 Total estimated overall cost per pair in different RM based systems 
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Again it is clear that SLS and SLA are the most competitive processes, with SLS 

estimated to be more cost competitive than SLA with comparison to other rapid 

manufacturing based systems. 

 

7.3.4 Total estimated design and fabrication lead-time and total estimated cost 

per pair in conventional resources based methods. 

i. Total estimated design and fabrication lead-time  

Table 7.6 shows the total estimated design and fabrication lead-time in conventional 

systems having different geometry capture methods and using digital means of orthoses 

design and CAD/CAM fabrication techniques. The total estimated lead-time is made up 

of (i) time in foot assessment (ii) time in geometry capture, (iii) time in orthoses design 

and (v) time in orthoses fabrication.  

 

In conventional design and fabrication systems, orthosis is designed through CAD 

systems and fabricated by milling process where a block of material is milled using 

CAD/CAM milling machine. The time in foot assessment, orthoses design and orthoses 

fabrication is identical in all conventional resources based methods. However, total 

estimated lead-time is different due to different foot geometry capture methods.  

Figure 7:3 Total estimated delivery lead-time and total estimated cost per pair in RM based systems 
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The total estimated design and fabrication lead-time in conventional system based on 

plaster of Paris foot geometry capture method is made up of 1 hour of time in foot 

assessment per pair, 5 hours of time in foot geometry capture per pair, 5 minutes of time 

in design of orthoses per pair and 20 minutes of time in fabrication of orthoses per pair. 

This gives an estimated total lead-time of 6 hours and 25 minutes of time for design and 

fabrication of one pair of orthoses.  

 

The conventional design and fabrication system based on plaster slipper geometry 

capture method give the total estimated lead-time of 2 hours and 55 minutes of time per 

pair. Conventional design and fabrication system using foam box foot geometry capture 

method gives total estimated lead-time of 1 hour and 35 minutes per pair. Conventional 

design and fabrication systems using contact digitising and 3D digital foot scanning 

methods gave the total estimated lead-time of 30 minutes per pair.  

 

Conventional  

resources based 

systems 

Geometry 

Capture time/ 

pair 

Orthoses 

design time/ 

pair 

Fabrication 

time/pair  

Estimated 

lead-time/pair  

Plaster of Paris 5 hrs  5 min 20 min 6 hrs 25 min 

Plaster slipper 1 hr 30 min 5 min 20 min 2 hrs 55 min 

Foam box 10 min 5 min 20 min 1 hrs 35 min 
Contact digitising 5 min 5 min 20 min 30 min 

3D scanning 5 min 5 min 20 min 30 min 

 

The lead-time estimates clearly show that digital means of foot geometry capture have 

significant impact in reducing the time in foot geometry capture process. This 

subsequently reduces the total estimated design and fabrication lead-time in contact 

digitising and 3D scanning based conventional systems; with foam box impression 

based system the next most competitive. However, foam box impression method further 

requires time and efforts in physical shipment of the impression casts to manufacturing 

facility. For the plaster based systems, the time in foot geometry capture makes the total 

estimated lead-time higher than the both of the digital based foot geometry capture 

systems and also requires physical shipment of the plaster casts to manufacturing 

facility.  

Table 7:6 Total estimated design and fabrication lead-time in conventional resouces based systems 
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ii. Total estimated design and fabrication cost per pair. 

Table 7.7 shows total estimated cost per pair in conventional design and fabrication 

systems. The total estimated cost per pair is made up of (i) foot assessment (ii) geometry 

capture, (iii) orthoses design and (v) orthoses fabrication costs. In conventional 

resources based systems, fabricated orthoses further takes 5 minutes of time in finishing 

the orthoses through manual grinding and trimming for smoothing and finishing the 

edges of milled orthoses. 

 

The costs in foot assessment, orthoses design and fabrication are identical in all 

conventional systems. However, the cost in foot geometry capture is different due to 

different methods involved. This has resulted in different total estimated cost per pair in 

conventional design and fabrication systems. Plaster of Paris and plaster slipper based 

foot geometry capturing systems give the estimated costs of £75.06 and £56.06, 

respectively. Foam impression box foot geometry capturing based system involves total 

estimated cost of £37.06 per pair. Contact digitising and 3D scan foot geometry capture 

based system involve total estimated cost of £33.06 per pair. 

 

Conventional  

resources based 

systems 

Geometry 

capture cost/ 

pair 

Orthoses 

design cost/ 

pair 

Fabrication 

cost/pair 

Estimated 

total cost/pair 

Plaster of Paris £48 £2 £25.06 £75.06 

Plaster slipper £29 £2 £25.06 £56.06 

Foam box £10 £2 £25.06 £37.06 

Contact digitising £6 £2 £25.06 £33.06 

3D scanning £6 £2 £25.06 £33.06 

 

Figure 7.4 shows the total estimated design and fabrication lead-time and total estimated 

design and fabrication cost per pair in conventional resources based systems. Again the 

total cost per pair estimates show that digital means of foot geometry capture have the 

advantage of reducing total estimated cost per pair in conventional systems. This 

subsequently reduces total estimated design and fabrication cost per pair in contact 

digitising and 3D scanning based conventional systems, with foam box impression 

Table 7:7 Total estimated design and fabrication cost per pair in conventional  

resources based systems 
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based system the next most competitive. For plaster based geometry capture systems, 

foot geometry capture cost makes the total estimated cost per pair much higher than the 

digital foot geometry capture based systems.  

 

 

 

7.3.5 Total estimated customer lead-time in conventional techniques system. 

i. Total estimated customer lead-time 

The total estimated customer lead-time has been developed on the basis of design and 

manufacture lead-time, but amended to take into consideration the projected operating 

model for conventional systems, and likely delivery times assuming a centralised 

fabrication facility. 

 

Table 7.8 shows the estimated customer lead-time in conventional based design and 

fabrication methods. The total customer lead-time in conventional systems is made up of 

(i) foot assessment time (ii) shipment time in foot impression casts/foam box casts to 

manufacturing facility (iii) fabrication time and (vi) time in delivery of orthoses.  

 

 

 

Figure 7:4 Estimated design and fabrication cost per pair in conventional resources based systems 
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The Plaster and foam box foot geometry capture based conventional systems assumed to 

take one day of time in foot assessment, plaster based foot geometry capture and two 

days of time in shipment of captured plaster/foam box impression casts to fabrication 

facility. The fabrication of orthoses is assumed to take one day of time whereas delivery 

of orthoses is assumed to take two days of time. This gives the total estimated customer 

lead-time of 5 days in conventional systems using plaster/foam impression box based 

foot geometry capture. The conventional systems based on contact digitising and 3D 

foot geometry capturing assumed to take one day of time in foot geometry capture, one 

day of time in fabrication of orthoses and two days of time in delivery of the orthoses. 

The captured foot geometry information is transferred digitally to the manufacturing 

facility. This gives a total of 4 days of customer lead-time in conventional resources 

based methods using digital means of foot geometry capture.  

 

Conventional 

systems 

Foot assessment and 

geometry capture  

Fabrication  

time  

Delivery 

time 

Customer 

lead-time 

Pl Paris 2 days (physical shipment) 1 day 2 days 5 days 

Pl slipper 2 days (physical shipment) 1 day 2 days 5 days 

Foam box 2 days (physical shipment) 1 day 2 days 5 days 

Contact digit:  1 day  (electronic) 1 day 2 days 4 days 

3D scan 1 day  (electronic) 1 day 2 days 4 days 

 

The customer lead-time estimates show that digital means of foot geometry capture have 

the advantage of removing the need for physical shipment of foot impression casts to 

manufacturing facility. This subsequently makes the total estimated customer lead-time 

lower in conventional systems using direct foot geometry capture through digital means 

with comparisons to systems using plaster and foam box geometry capture methods. 

Figure 7.5 shows the estimated customer lead-time in days and total cost per pair in 

conventional design and fabrication methods using different means of foot geometry 

capture. 

ii. Total estimated overall cost per pair. 

Table 7.9 shows the estimated total cost per pair. The overall total estimated cost per 

pair is made up of (i) foot assessment, (ii) foot geometry capture, (iii) orthoses design 

Table 7:8 Total estimated delivery lead-time in conventional based systems 
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and (iv) orthoses fabrication costs. The cost for foot assessment, geometry capture and 

design of orthoses are identical in all the systems. These costs are added with total 

estimated fabrication cost per pair per given by different rapid manufacturing based 

developed models. Figure 7.5 shows the total estimated design and fabrication lead-time 

in days and total estimated overall cost per pair in conventional resources based systems. 

 

Conventional  

resources 

based systems 

Foot 

assessment/ 

pair 

Geometry 

capture/ 

pair 

Orthoses 

design/ 

pair 

Fabrication 

time/pair 

Estimated 

total 

cost/pair 

Plaster of Paris £50 £48 £2 £25.06 £125.06 

Plaster slipper £50 £29 £2 £25.06 £106.06 

Foam box £50 £10 £2 £25.06 £87.06 
Contact digitising £50 £6 £2 £25.06 £83.06 

3D scanning £50 £6 £2 £25.06 £83.06 

 

 

 

7.4 Comparison of “best case” rapid manufacturing based system with 

conventional resources based system. 

In cost modelling of different rapid manufacturing techniques based operating models 

SLS techniques based operating model was the most competitive process in comparison 

Table 7:9 Estimated overall total cost per pair in conventional resources based systems 

Figure 7:5 Total estimated delivery lead-time and cost per pair in conventional  

resources based systems 
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to other rapid manufacturing techniques. Because of more competitive operating model, 

SLS based process was compared with conventional resources based operating model. 

Table 7.10 shows the comparison of best rapid manufacturing based design and 

fabrication operating model with best conventional resources based operating model. 

The comparison is based on (i) total estimated fabrication cost per pair (ii) total 

estimated overall cost per pair (iii) total estimated customer lead-time and (iv) total 

estimated productivity pairs per day from the two models.  

 

Design and fabrication 

systems models 

Fabrication 

cost/pair 

Overall 

cost/pair 

Customer 

lead-time 

Productivity 

pairs/day 

SLS based system £85.34 £143.34 4 days 75 pairs 

Conventional system  £25.06 £83.06 4 days 72 pairs 

 

In rapid manufacturing based systems, selective laser sintering techniques based system 

give total estimated fabrication cost of £85.34 per pair and overall cost of £143.34 per 

pair which include the costs for foot assessment, geometry capture and orthoses design. 

The SLS based system model gives the estimated customer lead-time of 4 days with 

productivity of 75 pairs per day from the best case developed operating model. In 

conventional resources based systems, digital foot geometry capture based system give 

total estimated fabrication cost of £25.06 per pair and overall total estimated cost of 

£83.06 per pair which include the costs for foot assessment, geometry capture and 

orthoses design. The system model gives total estimated customer lead-time of 4 days 

with productivity of 72 pairs per day from the best case developed operating model. 

 

The comparison show that total estimated cost per pair in conventional resources based 

system is lower than the SLS based design and fabrication system. However, SLS based 

design and fabrication system has significant advantage of increased design freedom and 

fabrication of complex geometrical design features in the foot orthoses; that have 

limitations in the conventional resources based system. The other advantage in SLS 

based system is removal of manual grinding and trimming function for finishing the 

fabricated orthoses; as required in the conventional technique based systems. This gives 

Table 7:10 Comparison of conventional and SLS based system modeles 
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advantage of increased accuracy and consistency in the SLS based fabricated orthoses in 

the final product (Pallari et al, 2010). 

 Reuse of unsintered material. 

The total estimated fabrication cost of £85.34 per pair in SLS based fabrication system 

can be further reduced by reuse of unsintered material in the build. According to 

Duraform material guide by 3D systems unsintered material can be used not exceeding 

67% with the ratio of total material (Guide to Duraform materials, 3D Systems, Inc, 

USA, 2002). Swell and colleagues have experimented that five time reuse of unsintered 

Duraform PA material does not compromise overall material properties and strength 

(Swell et al, 2008). Table 7.11 shows the estimated total fabrication cost per pair in SLS 

technique with reuse of 60% of the unsintered material.  

 

“Best case” operating model for 5 technicians working with 8 machines  

Machine cost per year for 8 machines £600000 

Material cost for 43800 pairs                    @£25.60 per pair  £1121280 

Production overhead per year for 8 machines £116460 

Administrative overhead per year for 8 machines  £18560 

Labour cost for 5 technicians  £199900 

Total cost for 43800 pairs  £2056200 

Cost per pair                                              £2056200/43800 pairs/year £46.94 

 

The reuse of 60% of unsintered material with 40% of virgin powder reduces the material 

cost from £64 per pair to £25.60 per pair. This gives a total estimated fabrication cost of 

£46.94 per pair and overall all total estimated design and fabrication cost of £104.94 per 

pair; approximately 36% reduced cost per pair  in comparison to cost of £143.34 per pair 

in “best case” operating model in SLS based system. 

 

 Actual and assumed projected material cost. 

As discussed that cost of the material in SLS based is the major cost incurring element 

which makes the total cost per pair higher in the model. However, the commercialisation 

of rapid manufacturing techniques and materials are progressing at rapid rate with 

respect to improvements in the processing technique and materials which may 

Table 7:11 Total estimated fabrication cost per pair by reuse of unsintered material in SLS technique 
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subsequently bring down the costs of systems and materials. Table 7.12 shows actual 

cost of material and assumed reduced cost of material showing the projected cost per 

pair in the SLS based system model. 

 

Actual and assumed projected material cost Cost form best case SLS model 

Actual material cost        @ £64/kg £85.34 per pair 

50% reduced cost            @ £32/kg Projected cost of £53.34 per pair 

60% reduced cost            @ £25.60/kg Projected cost of £46.94 per pair 

70% reduced cost            @ £19.20/kg Projected cost of £40.54 per pair 

80% reduced cost            @ £12.80/kg Projected cost of £34.14 per pair 

70% reduced cost and  60% and 40% mix Projected cost of £29.25 per pair 

 

The assumed reduction of 50% in material cost from £64/kg to £32/kg gives the 

fabrication cost of 53.34 per pair. While reduction of 60%, 70% and 80% in material 

cost per kg give the total estimated fabrication cost of £46.94, £40.54 and £34.14 per 

pair, respectively which can bring the SLS based orthoses fabrication cost competitive 

with the orthoses cost per pair fabricated through the conventional techniques based 

system. 

7.5 Key reasons for application of rapid manufacturing techniques in 

fabrication of custom-made foot orthoses.  

Ability of the rapid manufacturing techniques in directly creating the parts from 3D 

CAD information layer by layer without tooling and moulding offers greater design 

freedom in fabrication of geometrically complex structure of foot orthoses shell.  

 

Ease in the incorporation of complex orthoses design features from CAD data such as 

metatarsal pads and domes at specific sites in orthoses shell shown in Section 2.4.3; 

prescribed for redistributing the planter pressure, fabrication of wedges and medial 

flanges required at specific sites to control the tilt or severe pronation problem. 

Conventional fabrication techniques have limitations and difficulties in fabricating 

orthoses design features and functional elements such as incorporation of local stiffness 

at specific sites in the shell which subsequently restricting the product range.  

Table 7:12 Actual material cost and assumed projected cost giving total estimated cost per pair 
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7.6 Summary 

At present the orthotics industry is predominantly made up of small companies, who do 

not always have access to large amounts of capital. A low initial capital cost would help 

industrial uptake.  Around £100 million is spent annually on the provision of orthotics 

services through the NHS, and the bulk of this is for foot related orthoses (Hutton and 

Hurry, 2009). Orthotic Service in the NHS: Improving Service Provision (York Health 

Economics Consortium). 

 

The work in this research was on the cost and lead-time modelling and estimation of 

total cost per pair of orthoses using rapid manufacturing techniques based design and 

fabrication system. The cost estimations presented in this work are based on a ‘full 

costing’ concept and includes labour, machine absorption, production, and 

administrative overheads and material costs. The indirect costs were assigned to the 

components on the machines working-time basis. The output from the cost models 

developed is a scalable production unit, which can be scaled to a specific market 

demand. Based on the cost modelling estimations in this work, the business models for 

different rapid manufacturing based design and fabrication systems can be generated. 

The return on investment (ROI) can be calculated from the business model; however 

generation of the business model was out of the scope of this research study. 

 

The total market size for additive manufacturing was $1.068 billion by 2009, only 

accounting for directly associated products and services (Wohlers, 2010). With the 

recent growth in desktop printer sales nearly 20% increases from 2009- (Wholers 2010) 

and the constant reduction in materials costs. However there was a significant gap in the 

literature for the analysis of RM versus conventional processing technologies when it 

comes to fabricating final-functional parts. Until now adoption of RM was studied from 

a design perspective highlighting the opportunities of freedom of design; however the 

factors that ultimately will influence decision makers in the organisations remain purely 

productive economic-related. The cost and lead-time modelling in this work assessed the 

productivity considerations for various RM technologies for the fabrication of custom-

made foot orthoses. 
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7.7 Conclusions 

1. This thesis has presented the first in-depth analysis of technical and commercial 

potential for rapid manufacturing techniques to be used for commercial scale 

fabrication of custom-made foot orthoses. 

 

2. Process modelling of design and fabrication system for custom-made foot 

orthoses using IDEF0 modelling methodology showed that rapid manufacturing 

techniques can be integrated in the current orthoses design and fabrication 

process in order to develop the mass customisation production systems.  

 

3. In digital means of foot geometry capture 3D scanning is the better method for 

foot geometry capture regardless of the fabrication techniques. The pin-tool 

based contact digitisers have limitations in capturing the posterior heel of the 

foot as pin-tool digitising system only captures the geometry of the plantar of the 

foot in geometry capture process.  

 

4. Analysis and evaluation of the cost and lead-time through cost modelling 

identified the most appropriate operating models for fabrication of custom-made 

foot orthoses using rapid manufacturing techniques. 

 

5. From the current commercial rapid manufacturing techniques, selective laser 

sintering SLS based system is the most competitive for custom-made foot 

orthoses fabrication among all other rapid manufacturing based systems, having 

lowest cost per pair and more build capacities and overall productivity. 

 

6. Selective laser sintering SLS fabricated custom-made foot orthoses are estimated 

to cost more than conventionally fabricated orthoses. On the basis of using 100% 

virgin powder; SLS based pair of orthoses is estimated to be 233.88% more 

expensive in terms of total estimated fabrication cost and 71.54% more 

expensive in terms of total estimated overall cost. On the basis of using 60% 

reuse of unsintered and 40% virgin powder it is estimated to be 83.64% more 
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expensive in terms of total estimated fabrication cost and 25.58% in terms of 

total estimated overall cost. 

 

7. In order to cost the SLS based fabricated orthoses same as conventionally 

fabricated orthoses, the raw material cost would have to be reduced by 70% at 

the rate of 19.20/kg and assuming that 40% virgin and 60% unsintered powder 

were re-used. This gives the total estimated fabrication cost at the rate of £29.25 

per pair and overall cost of £87.25 per pair in SLS based design and fabrication 

system. The fabrication and overall costs are 10% and 4%, respectively 

expensive in comparison to cost per pair of orthoses produced through 

conventional techniques. 

7.8 Future work 

Reuse of unsintered material for fabrication of orthoses may be further investigated in 

order to determine that material can be used for fabrication without compromising the 

material properties and quality of the final product. 

 

Duraform PA (Nylon 12) is a suitable material and could be used in the orthoses 

fabrication as the end use product material. However, beside the other mechanical 

properties, fatigue behaviour of the material may be investigated for long periods of 

service time. Fatigue under a large number of cycles could be investigated as materials 

gets degradation during service life phase over the time. 

 

In SLS based fabricated orthoses, cushioning layer may be required for orthoses shell. 

Creating a layer over the main body of orthoses shell in order to increases comfort may 

be investigated. The sole of the shoe in which orthoses shell has to fit in must be 

considered and investigated for increased resilience in order to promote the gait, 

improve mobility and over all comfort to the patient. Additionally, large scale clinical 

trials should be performed for satisfaction of patients and practicing medical personals 

and orthotist. 
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Appendix  

Properties of materials 

1. Properties of Duraform PA (Nylon 12) material used in spro SLS system 

 

 

 

Table 1: Material properties of Duraform PA Nylon 12, (3D systems.com, 2010) 
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2. Properties of Acura 55 material used in ipro SLA system 

 

 

 

Table 2: Material properties of Acura 55 resin (3D systems.com, 2010) 

 

 

3. Properties of Vero white full cure 830 material used in Connex 500 system 

 

Table 3: Material properties of Vero white full cure 830 (Objet.com, 2010) 
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4. Material properties of V-Flash 
R
 FTI material used in V-Flash system 

 

Properties Values Units 

Density 1.11 g/cm
3
 

Tensile strength 33 mpa 

Tensile modulus 1550 mpa 

Elongation 5.0 % 

Flexural strength 35 mpa 

Flexural modulus 1700 mpa 

 

Table 4: Material properties of V-Flash 
R
 FTI material (3D systems.com, 2010) 

 

 

5. Properties of ABS P400 material used in Dimension FDM 768 system 

 

 

 

Table 5: Material properties of ABS P400 (Dimension printing.com, 2010) 
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6. Properties of ABS P430 material used in Dimension uPrint system 

 

 

 

Table 6: Material properties of ABS P430 (Dimension printing.com, 2010) 
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