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Abstract 

Accelerated urbanization has lead to the rising height of buildings and demand for inten-
sive high performance of elevators in recent years. Consequently, condition monitoring 
has become a highly desirable capability as the complexity of elevator systems increased. 
The goal of this study is to develop a monitoring method for elevator components which 
are subjected to mechanical degradation and failures. The method is capable of indicating 
the current health condition, predicting future failure as well as detecting emerging issues 
during operation. 

 
Studies of the fundamental principle of elements of condition monitoring such as meas-
urement and measuring equipment, remaining useful life models laid the foundation for 
new method developing. Moreover, there were reviews of the implementation of health 
management systems in aerospace and marine industry. A prototype was built from the 
inductive sensor and open sources embedded system. The device has been installed in two 
different elevators for data acquisition. Basic data visualization and analysis models were 
employed for current health state assessment and failure trend prediction. 

 
The results include validation of the condition monitoring method and prediction of time-
to-failure. Arithmetic means of displacement data determined operating condition 
whereas the linear regression model was used to predict failure event. Moreover, while 
suggesting the potential usefulness of the method for system condition assessment, the 
analysis of the data also exposed challenges inconsistency of the measuring method, data 
filtering technique as well as large data size requirement. 
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1 Introduction 
One of the greatest advancements in high-rise buildings in the last twenty years has 

occurred in elevator technology [1]. The elevator plays an irreplaceable role in indoor 

transport in today’s infrastructures. Worldwide, twelve-million elevators perform seven 

billion trips for over one billion people every day [2]. Such intensive and demanding 

services make safety, reliability, and efficiency among the most important characteristics 

of an elevator and its sub-systems. One important metric to validate those characteristics 

is minimum downtime, which can only be achieved by responsive advanced maintenance 

operations. In turn, the key to such advanced maintenance is the ability of the system to 

verify the current health status of the elevator, identify anomalies and predict future 

failures. Condition monitoring techniques are the enabler for such capabilities. 

Condition monitoring is a process of monitoring a system by studying performance 

parameters whose changes and patterns indicate the system’s current health condition 

as well as impending failures [3]. In recent years, a number of studies have been conducted 

at various levels of detail and stages of technological readiness on condition monitoring 

methods. However, the application of these methods to specific industries and areas of 

use, such as elevator systems, remains challenging, particularly in regard to mechanical 

components. The present study attempts to address this need by developing a method 

for the condition monitoring of the traditional mechanical elements in an elevator system. 

Even though the operating principle and performance of these components are well de-

fined, newly added complexity and higher performance criteria require the up-to-date 

features and capabilities. The study aims to develop a monitoring method whose data 

can be retrieved and accessed remotely. It is based on the analysis of the constituents of 

monitoring methods, such as measurement, embedded systems, and diagnostic and prog-

nostic algorithms. Additionally, a brief review of the methods implemented in highly 

specific pioneer industries such as Aerospace and Marine is also presented in an attempt 

to widen the perspective and approach. The evaluation of the method includes the build-

ing, and testing of the monitoring prototype in two different elevators. 

The thesis report is divided into seven chapters, beginning with the present chapter, 

which has introduced the background and motivation of the study and its potential chal-

lenges, objectives and scope. The literature review is located in Chapter 2. It begins by 

introducing the terminology of the field and its uses. The chapter then describes the 

formulation of a condition monitoring method, including specifications and architecture 

design. Next, the chapter reviews the constituent elements of measuring instruments and 

diagnostics and prognostics methods. The chapter ends with a review of the applications 

and perceived values of condition monitoring in two industries. Chapter 3 is about the 

development process of a condition monitoring method for a selected elevator component. 

The method is developed based on the component operational profile, condition data 

acquisition and analysis. Failure predicting model, as the major part of prognostics, is 

formulated here. Chapter 4 presents the design and function of the prototype that was 

built to validate the method. The selections of hardware and software specifications were 

explained. The chapter also outlines the calibration and setting procedures for running 
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the device. Chapter 5 reports the diagnostics, which are data visualization and current 

state verification results. For prognostics, future failure prediction in the form of Remain-

ing useful life in time-unit. Chapter 6 starts with the results evaluation followed by the 

discussion of limitations of the method as well as ideas for improvement in further devel-

opment. The Conclusion summarizes the work by comparing the obtained results against 

the objectives stated at the beginning. Verdicts of the work to conclude the report.  

1.1 Background 

Industrial products and equipment are subject to deterioration regardless of how well 

they are designed and built. Maintenance is to mitigate the effects of such inevitable 

degradation while prolonging the service life of the assets. Traditional maintenance meth-

ods, such as breakdown maintenance, which occurs after the failure of the system or 

preventive maintenance, which sets a specific time interval, not knowing the health status 

of the asset, are considered to be ineffective both in terms of time and cost [4]. Especially 

in today’s systems and equipment that are more complex while safety, quality, and reli-

ability requirements are increased. Too short preset maintenance interval leads to exten-

sive services whereas, too long interval causes breakdowns and emergency operations. 

 

 
Figure 1. Simplified elevator system indicating subjected components for condition 

monitoring 

 

For the elevator system, which is the vitally important mean of transportation in 

every building and infrastructure, maintenance operations demand high reliability and 

effectiveness. The typical design lifetime of elevators is relatively long, from 15 to 30 

years. Additionally, failed elevator equipment or components might lead to passenger 

entrapment or accidents resulted in injury or death [5]. Consequently, components which 

are critical to elevator performance and safety, such as guiding element and diverting 

pulley, are subjected to most advanced maintenance techniques.  
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Figure 2. Location of diverting pulley and sliding guide shoe  

on elevator car sling  

 

Located on car structure, guiding elements have sliding-based (or in other cases roll-

ing-based) contact to its operational counterpart, which is the guide rail (Figure 1). Their 

primary tasks are to guide the elevator movement along guide rails system in the elevator 

shaft. Guiding elements are subject to direct friction, surface-based contact with the guide 

rail nose. The component is capable of force absorbing and damping. Depending on the 

condition, maintenance activity for the sliding-based guide can be the replacement of the 

pad(s) or the entire sliding assembly. It is imperative to the elevator movement, in term 

of smoothness and comfort, to have sliding guide components operate in acceptable con-

dition. As a part of elevator car sling assembly, diverter pulleys, on the other hand, bear 

loads of the elevator car and its passengers while enabling traction from hoisting forces 

that actuate the car movement. The bearing assembly of the pulley makes sure the whole 

component operates at its intended functionality, which is the rotation of the pulley 

which actuates the elevator car movements. Contrary to being widely known in the in-

dustry as the most common failure in mechanical equipment [6], complete failure of bear-

ings in diverting pulley assembly in an elevator, however, are rare according to the Com-

pany’s record. Nevertheless, maintaining the robust performance of the bearing is highly 

desirable. Maintenance of the component usually includes complete replacement of the 

pulley assembly due to its essential duty and location. 

One of the methods known to reduce safety hazards is to monitor and predict the 

elevator health condition. Successful employment of the capability would also reduce 

maintenance costs and operation downtime [7]. In today’s market, it is perceived as a 

competitive advantage [8] for the manufacturers. Even though condition monitoring and 

health management is the widely studied and well-documented field over recent years, 

there is little consensus among methods and applications [9] which makes it challenging 

for new researchers to evaluate and derive from. Advanced mathematics and physics 

models are often encountered in published studies indicating much specific and complex 

in nature of the formulation of a reliable monitoring method. Additionally, although the 

basic mathematical or technical principles remain the intact, rapid development pace of 

the computer-aided related-tools such as machine learning algorithms or new connectivity 

and power consumption standards make the work prone to be outdated and out-paced. 

1.2 The aim of the work 

The thesis aims to design, build and test a reliable and robust condition monitoring 

method that is capable of verifying the current health state as well as impending failures 

of the subject. Due to the fact that elevator subsystems and components are diverse in 

functioning principles yet close in physical proximity and location, it is expected that the 

method(s) developed in the work would also be useful for similar use cases.  
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1.3 Scope and limitations 

Primary target components are sliding guide shoes on elevator carsling and secondary 

target are bearings in diverting pulley which is also a subcomponent of carsling. Failure 

mechanism and root causes, degradation rate associated with performance indicators or 

monitoring parameters of those components should be studied and identified at early 

phases of the method development.  

The process that forms the predictive maintenance plan consists of condition moni-

toring, fault detection, fault diagnostics, failure trend analysis (or fault prognostics) and 

decision support [10]. In prognostics, reliable prediction of Remaining useful life (RUL) 

is the output. There are two main principles for modeling RUL estimation, model-based 

and data-based approaches. The model-based method builds physical failure or degrada-

tion models such as crack, wear whereas data-based models utilize operational data from 

sensors to identify the status and RUL of the equipment. The thesis focuses on the data-

based model, which is considered to be preferable and cost-effective [11]. 

It is also specified that at least one of the presented methods would be tested and 

analyzed via a functioning prototype. Full test and validation of the results of these 

method(s) are, however not in the scope of the work. Deployment and integration of the 

method to elevator system are also outside of the scope of the work. 

1.4 Research methods 

Methods used in the work, listed in Table 1-1, are based on the practical expected 

outcome of having a specific monitoring technique and its functional prototype. It is the 

combination of industry experts from the company and academic efforts via various 

means of communication and arrangements from meetings to laboratory works and field 

tests. Self-studying from diverse sources such as world-wide-web researches, books, and 

web-based education does contribute significantly to the success as well as the extent of 

the work. 

 

Table 1-1. Research and study methods 
Method Topic Goal Resources Sources 

Meeting Industry expertise Condition monitoring exist-

ing practices 

Selected component design 

and operations 

Company experts Company 

materials 

Meeting 

notes 

Academic meeting Academic practices of the 

thesis work and writings 

Academic reviews 

Advisor  

Literature 

research 

Component degrada-

tion and failure 

Diagnostics and Prog-

nostic in Product 

health management 

Condition monitoring 

and measurement 

methods 

Remaining useful life 

modeling 

Condition monitoring 

methods 

Prognostics/ failure trends 

analysis 

Books, articles, pa-

pers & dissertations 

World wide 

web 

Self-educat-

ing  

Electronics and em-

bed systems 

Condition monitoring de-

vice 

  

Python programming Data analysis and visuali-

zation using 

Basic machine learning 

 
Web-bases 

education 
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Field test 

and labora-

tory works 

Prototype construc-

tions 

Data acquisition 

Prototype test 

Data acquisition 

Company experts 

Test elevator 

Field test 

and notes 

 

In order to achieve the goals, the work studies the fundamentals of a condition mon-

itoring, its contribution in Health management system, as well as the best practices of 

the method in other industries. A prototype was built and deployed in a suitable elevator 

system. In addition to method validation, the development of the prototype and obtained 

results provide useful data and insights for similar design cases. 
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2 Literature review  
Recent advancements in sensing technology and computational power have enabled 

real-time analysis which has set the stage for adaptive autonomous system management 

[12]. The key to such an advanced system is the ability to verify the current health state, 

identify and isolate failure sources as well as to forecast the impending events while the 

system is still in service. Through various development stages from theoretical research 

to readily commercialized package, the chapter presents studies of the capability, its 

constructing elements, and applications. 

It is important to the work to have a consistent understanding as well as implication 

of the terms used in the report. Especially as widely studied as condition monitoring and 

health management field in which different terms might have similar interpretations and 

meanings. Official definitions according to European Standard EN13306 [13] are: 

 
Table 2-1. Terminology 

TERM INOLOGY DEFIN ITION 

M AINTENANCE Combination of all technical, administrative and managerial actions during the 

life cycle of an item intended to retain it in or restore it to, a state in which it 

can perform the required function. 

CONDITION  

M ONITORING 

activity, performed either manually or automatically, intended to measure at 

predetermined intervals the characteristics and parameters of the actual state of 

an item. 

 

PREVENTIVE 

M AINTENANCE 

Maintenance carried out t predetermined intervals or according to prescribed 

criteria and intended to reduce the probability of failure or the degradation of 

the function of an item. 

 

CONDITION  

BASED M AINTE-

NANCE 

Preventive maintenance which includes a combination of condition monitoring 

and/ or inspection and/or testing, analysis and ensuing maintenance actions”.  

The condition monitoring and/or inspection and/or testing may be scheduled, 

on request or continuous. 

 

PREDICTIVE 

M AINTENANCE 

Condition based maintenance carried out following a forecast derived from re-

peated analysis or known characteristics and evaluation of the significant param-

eters of the degradation of the item 

 

USEFUL LIFE Time interval from a given instant until the instant when a limiting state is 

reached.  

The limiting state may be a function of failure rate, maintenance support re-

quirement, physical condition, economics, age, obsolescence, changes in the user’s 

requirements or other relevant factors 

 

Failure trend analysis and prognostics are used synonymously depending on the con-

text and source of studies. Additionally, based on the expected outcomes within the scope 

of the work, Failure trend analysis, Prognostics, and Remaining useful life estimation are 

identical. In a similar manner is the case of the terms Prognostics and Health Manage-

ment (PHM) and System Health Management (SHM). 

2.1 System Health management  

Although the work focuses on condition monitoring method at component-level ca-

pabilities, it is of highly beneficial to study how health management system specifications 

and requirements are formulated. 
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2.1.1  Requirements 

Specifications of a prognostics system, according to [14, 15], are formed as the results 

of a process that analyzes associating factors of the system from which prognostic speci-

fications are defined. The process is depicted in  

Figure 3. 

Cost -  Benefit - Risk Requirements Prognostic Specifications

Feedback and fine tuning

 
 

Figure 3. Prognostic specifications (re -drawn from [15]) 

 

As a starting point, Cost – Benefit – Risk analysis identifies the cost function, re-

sources, and time constraints. Return on investment, and Cost saving estimation are two 

main objects in this analysis. System properties such as maintenance policy, uncertainty 

boundaries regarding input against output are also taken into consideration. The inputs 

for the Requirements stage include the specific goal set, schedules, budgets, and respon-

sibility. This stage also defines design requirements in details, at all levels of implemen-

tation as well as the system behaviors, and interfaces for other systems. Advanced meth-

ods, and tools such as Requirement prioritization Analytic Hierarchy Process, Critical to 

quality tree, and Quality function deployment are needed at this stage. A major part of 

Prognostic specifications is the Uncertainty management methods that considerably con-

tribute to the reliability, and accuracy of the system outputs. The other major part is 

the Prognostic performance attributes which are rates, and coverage of the output accu-

racy [16].  

2.1.2 Architecture 

At the center of the concept of a system, the architecture determines most of sub-

sequent product development activities including the system integration, and deployment 

[17]. After requirement and specifications are defined, the design of the architecture can 

be conducted. It is also to be noted that condition monitoring methodology is an element 

of this system architectures. 

The integrated condition-based maintenance 

The study in [16] proposes a complete of a Health management System architecture 

that involves technical and  non-technical aspects, as well as the decision-making process 

in an organization. In this architecture, the assets which is machinery or vehicle system 

in this context, possesses the capability to constantly provide information about their 

health statuses to an Information Systems from which chains of command for planning 

and actions are initiated. There are suitable hardware, software, and interfaces in place 

to enable those features. 
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Figure 4. H ealth M anagement system architecture (re-drawn from [14, 16, 18]) 

 

The architecture regards the operation in two categories: Contingency Management 

and Maintenance Management. In Contingency management perspective, the goals are 

to increase safety, and mission (or service) reliability as well as to minimize collateral 

damage. As a result, service availability is improved, further failures are avoided while 

consumer confidence and product reputation are maintained. Maintenance management 

view, on the other hand, seeks to decrease logistics costs, and minimize excessive servic-

ing. The study also proposes the service of Simulation models that are used for training 

the Knowledgebase from which maintenance information and maintenance activity ob-

tain the data. Command, and Control, and Maintenance, and Information Systems are 

at the center of the architecture. Condition monitoring activity, which includes data 

analysis, and decision making, is the preceding process to Condition-based maintenance. 

Condition monitoring that includes Safety and Risk analysis are done in Contingency 

management. Although the study does introduce a robust, and thorough architect for 

Health management systems, there are noticeable concerns regarding the feasibility, and 

effectiveness of the said system. One is the fragmentations of decision-making units, and 

input sources. Other is the two-way connections between each of the element in the 

architecture. This suggests interactive, and adaptive communication which might cause 

delay, and inconsistency in execution. 

The simplified condition-based maintenance 

In a more simplified presentation compare to that of the studies in [16], and [19] , 

also a Condition-based maintenance (CBM) architecture, put forth in [20] proposes a 

unified communication network that connects the seven players. The layers are data 

acquisition, data processing, condition assessment, diagnostics, prognostics, decision anal-

ysis, and presentation. 
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Figure 5. System architecture for Condition-base maintenance [19] 

 

Layer one consists of data acquiring, and signal transmitting. Signal processing in 

layer two extracts relevant features, and signatures of the data. The core functions of 

this architecture lay in layer three to five. Condition monitoring makes a comparison 

between collected data and pre-defined threshold value; the method is expected to be 

capable of generating alerts in the occurrence of abnormality. Health assessment conducts 

diagnostics to determine current status whereas prognostics calculate the deterioration 

rate and estimate Remaining useful life. The architect also mentions the service of his-

torical data in assessing health status as well as predicting future events. Decision support 

layer takes into consideration all relevant factors such as spare, and logistics, resources, 

and maintenance operations. At last layer, the presentation of information, and recom-

mendation are displayed via User interfaces and interactions. The study also acknowl-

edges challenges in this architecture. One is the high initial cost, and the other is the 

complexity of machinery structure as well as the environment in which the system oper-

ates. One of the solutions to the challenges is the integration of CBM, and data fusion 

technique. Data fusion is the process of maximizing the usefulness of the available data 

by combining data, and knowledge from multiple sources. In an integrated system, data 

fusion is employed in diagnostics, and prognostics subsystem. Fusing multiple 

degradation indicators could provide a more reliable result according to the study. The 

enhanced architecture is depicted in Figure 6. 
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Figure 6. Data fusion integrated CBM  [16] 

 

Optimal maintenance actions are believed to be achieved based on the results of 

recognition of current status, and future trend via integrated processes of monitoring, 

diagnostics, and prognostics. The fusion technique requires the employment of advanced 

methods such as neural networks, vectorizations, and statistical learning models, yet its 

results in the experiment in [16] showed only the approximations to the measured out-

come, and that further improvements of accuracy and precision is needed. 

2.2 Elements of the condition monitoring method 

The section delves into details of the construction of a condition monitoring 

method. There are two major elements, one is the data acquisition, and the other is the 

methodologies that are used to utilize the data. In data acquisition, relevant measure-

ment, and measuring device are reviewed. The utilization of data requires diagnostic and 

prognostic method. 

2.2.1  M onitoring instrumentations 

Condition data is the primary input of a monitoring method. The acquisition of such 

data requires suitable selection and deployment of the measuring equipment. The process 

starts by determining critical components to be monitored. This task requires sufficient 

analysis, and expertise that involves system, and subsystems decomposition, technical 

descriptions, and dependability analysis [20]. The output of this process is the physical 

parameters that are subjected to monitoring actions. The operation profile and degrada-

tion rate of the component are also major contributing factors of the process. Data ac-

quisition itself is the consequential task. Sensors or transducers, which convert physical 

phenomena into an electrical signal [21], are used to record information of parameters. 

There are various technical decisions to be made in the process such as sensor type, data 

storing, and data pre-processing. Next phase is data processing and diagnostics in which 

component condition is assessed, and verified. Features extraction, raw signals conver-

sion, health indicator construction, current are key activities that have the health status 

verification is the output. Prognostics involves degradation characterization, remaining 
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useful life, and failure trend analysis. Predicting algorithms, and models that can produce 

quantitative prediction values are the output. 

M easurement methods 

Measurement is defined as the process of gathering information from physical phe-

nomena, and comparing this information with agreed standards [22]. Physical phenomena 

are movement, electrical signals, radiant energy, thermal, magnetic or mechanical energy 

[21]. Information is typically recorded by sensing equipment in the form of an electric 

signal which then being conditioned,, and stored or displayed.  

The accuracy of a measurement is calculated from all accumulated errors. Error 

sources can be the sensor itself (e.g. thermal drift, linearity errors), or part of the meas-

uring system such as fixturing, ambient temperature change. They can be divided into 

two groups, ones that occur during measuring, and the others arise afterward (such as 

transform, and transmission of data). There are 2 groups of measuring errors, systematic 

errors, and random errors. Systematic errors are incorporated in the measurement output 

readings. They are consistently on one side of the correct reading (either positive or 

negative). Two dominant sources of systematic errors are the effects of environmental 

changes, and instrument setting or functionality imperfections, both happen at the time 

of measurement. Random errors, also known as precision errors, on the other hand, 

caused by random unpredictable factors. As far as systematic errors are concerned, meas-

uring equipment calibration is vitally important. Efficient, and effective calibration pro-

cedure instructions and records are needed to ensure reliable measurement results [23] 

Displacement measurement 

There are two types of displacement, translational, and rotational. There are more 

than 10 types of transducers, and methods can be used to measure displacement[24]. 

Widely used transducers for small, and medium movements are resistive potentiometer, 

linear, capacitive sensor, inductive sensor, strain gauge, and a piezoelectric transducer. 

The main sensor selection criteria are the magnitude of the displacement, and operating 

environment (including material of the measuring object). At inaccuracy level of 2%, 

the piezo accelerometer is the most common type of transducer used. 

Vibration measurement 

Dynamic response to operational forces is one of the typical outputs of vibration 

measurement. The results then can be used for optimizing operating conditions or moni-

toring the health condition of a structure or system [24]. For machinery diagnostics, 

continuous monitoring of the vibration is to identify the natural frequencies of the struc-

ture. Increase in vibration signal indicates part wear, eccentric, faulty bearings or gears, 

or loose fixtures. At high frequencies, the best measuring parameter is acceleration while 

displacement, and velocity are the ones in low-frequency motions. The output impedance 

of most vibration transducers needs signal conditioner to amplify the signals [25]. Trans-

ducer, and conditioner also need proper calibration in magnitude, and phase over the 

measuring frequent range. The conditioned signal then will go through analyzers which…. 

Vibration transducers can be contacting (e.g., for seismic measurement) or non-con-

tacting (e.g., interferometric, optical or capacitive). Important specifications for selecting 

vibration transducers are sensitivity, frequency limitations, bandwidth, noise, and ampli-

tude linearity. For contacting transducers, mechanical mounting methods, the attach-

ment position, and cabling are critical for its performance[26]. 
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Figure 7.Vibration measurement based on frequency range [27] 

 

As a generic guide, [27] suggests that the parameter which is used for vibration 

measurement is variable depending on the frequency of the vibration. For low-frequency 

vibration, displacement or velocity is the most suitable subject whereas it is the acceler-

ation for high-frequency vibration. There is also a comprehensive practical guide for the 

selecting sensor type based on the application, shown in the following table: 
 

Table 2-2 Area application of transducer types [27] 

Application Transducer type 

Motor/pump drives 

Motor/fan drives 

Motors connected to gearboxes (rolling element 

bearings) 

Motor with oil film bearings 

Generators steam turbines 

Velocity or acceleration 

Displacement or velocity 

Acceleration 

 

Displacement 

Displacement 

 

M easuring device 

Physical 

quantities

Sensor and/or 

transducer

Signal 

conditoner

Signal 

processing

Transmission 

or display

Output
Excitation

Signal
 

 

Figure 8. M easuring instrument construction (re -drawn from [22]) 

 

According to [22], a typical measuring device possesses some or all of the five stages 

shown in Figure 8. The behavior of a physical variable is recorded by a sensing unit in 

the form of electric signal. Depending on the architecture of the device, an electric signal 

can either be converted to digital for transmission, display or storage. It is also can be 

noticed that the stage-based construction of the measuring device effectively supports 

identification, and classification of the source of errors. The design of a measuring device 

is a process that consists of three major tasks: measurement descriptions, concept gener-

ation, and result evaluation. The descriptions enlists the information of device’s perfor-

mance such as range, bandwidth, accuracy, and sensitivity, technical details such as di-

mensions, power consumption, operation conditions. Additionally, business aspects such 

as development time, design lifetime, and costs are to be addressed at this phase. Concept 

generation, as the most creative part of the process, started by weighing factor charac-

terizing the requirements. The architecture of the device specifies internal as well as 

external elements including installation, and User interfaces. Iterations and design cycles 

are part of the process. Evaluation involves assessment of the performance and measure-

ment results.  
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2.2.2 Diagnostics and Prognostics 

The key success factor of a condition monitoring method is the accurate diagnostics 

of the current health status, and the ability to reliably predict future failure events [28]. 

This section examines the appropriate methods, and tools for those purposes. 

M atlab Predictive maintenance toolbox 

With Release R2018a Matlab of MathWorks introduces complete toolbox of building 

Remaining Useful Life models for a Predictive maintenance program. Condition monitor-

ing and prognostics algorithms are implemented in a Predictive maintenance system to 

analyze collected data then predict the next failures of target asset [29]. Condition mon-

itoring detects and diagnoses faults by using measured data. Condition monitoring algo-

rithm derives condition indicators which represent degradation behavior. Prognostics 

forecasts when will the asset fail base on diagnostic results. A prognostic algorithm gives 

an estimation of Remaining Useful Life or time-to-failure by using simulated models or 

machine learning or in some cases the combination of the two techniques. 

 

 

 
 

Figure 9 Workflow for algorithm development [29] 

 

The process starts with data acquisition then collected data go through a certain 

conversion, transformation or basic data cleaning techniques which will make signature 

behavior or condition indicators to be extracted easily, and accurately. The appropriate 

statistical analysis combines with asset knowledge help identify condition indicators. This 

step is iterative which takes into consideration of uncertainty as well as trial and error. 

Diagnostic and prognostics are then implemented by testing different models and combi-

nations that include also Statistic and Machine learning toolbox. RUL estimation is the 

result of this step. The last action of the development is the deployment of the algorithm 

by integrating it into the Information Technology system. As the most important role of 

prognostics, RUL model estimates remaining useful life based on statistical properties of 

condition indicator. Remain life unit depends on an observed parameter which can be in 

distance, volume or time. The Toolbox offers 3 main model families: similarity, degrada-

tion, and survival models. Similarities models use historical knowledge to apply to the 

current similar system. This approach is useful when data of systems available.  Built-in 

functions are ready for all three types of similarities models. 

Degradation models extrapolate past behavior to predict future trend. They are 

most useful when accurate condition indicators and their values are known. Survival 

method uses a statistical method to model the failure trend, useful when complete asset 

health management data is not known (for example only asset lifespan is known whereas 

how it fail is yet to observe). There are built-in functions for every model mentioned in 

the Toolbox, an example of the syntax is shown in Appendix B. 
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Figure 10 RUL modeling (re-drawn from [30]) 

 

The four classifying models 

According to ISO-13381 standard, the implementation of the diagnostics and prog-

nostics models following, consists of three levels: current failure mode prognostics, future 

failure mode prognostics and post-action prognostics preceded by diagnostics process that 

involves fault detection, isolation, and identification. As the key element of a prognostic 

process, Remaining useful life (RUL) prediction models are introduced and evaluated by 

the paper [9]. 
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Figure 11 RUL model categories [9] 

 

a) Knowledge-based model 

RUL prediction is deduced by assessing the similarity between observed data and 

historical recorded failures. The model is simple to develop, easy to understand. 

However, it requires high quality data and a thorough understanding of the sys-

tem based on historical data. In practice, the model is used to supplement other 

models’ results rather than a standalone solution. 

b) Life expectancy model 

Life expectancy model calculates RUL from acquired deterioration rate under 

known operating conditions. The model employs well-established and widely ac-

cepted statistical methods such as probability, static Bayesian networks. 

c) Artificial Neural Networks 

Artificial Neural Networks estimates RUL of the asset directly or indirectly from 

data without the implication of known failure modes. There are many types of 

data can be used as input including condition monitoring indicators, operation 

characteristics and maintenance features (e.g. records of maintenance visits) 

d) Physical model 

Physical model (also known as behavioral model) uses physical laws to quantita-

tively characterize behaviors of deterioration processes. The model is application 

specific 

 

The study also highlighted the effects of business factors on the model outputs, as 

well as the high the cost of data acquisition, IT infrastructure, and personnel training. 

An organization should implement a staged approach that is to mature its existing diag-

nostic programs prior to progress to more advanced models. Trend extrapolation is the 

most widely used technique since Artificial neural networks are most popular in academic 

applications. 

The imperial knowledge-based 

A health state estimation process consists of three subsystems – historical knowledge, 

diagnostic, and prognostic [31]. In this process, a diagnostic model is based on empirical 

knowledge of degradation and failure of the asset. Output of this model provides essential 

information for prognostics. The architecture requires a large amount of historical 

knowledge about recorded failure modes as well as the asset’s service life. Condition 

monitoring elements, such as sensor data, signal processing method as well as feature 

extraction from the condition data are linked with historical data. Whereas Prognostics 

mathematical model of the prognostics combines imperial data and diagnostic results to 

estimate and predict future events. 
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Figure 12 Diagnostic and Prognostic System Based on Health State Estimation (re -

drawn from [31]) 

 

Linear regression model 

Linear models are simple and effective in describing the relation between inputs and 

output, according to [32]. They are also suitable in circumstances where training data is 

limited, low signal-to-noise ratio. In many instances, prediction results from linear models 

are more reliable compare to nonlinear one’s. of the output predicted values Y that has  

Input vector 𝑋𝑇: 

𝑋𝑇 = (𝑋1, 𝑋2, … , 𝑋𝑝) 

The linear regression model f(X): 

𝑓(𝑋) =  𝛽0 + ∑𝑋𝑗𝛽𝑗

𝑝

𝑗=1

 

    βj: coefficients 

Regression function: 

𝐸(𝑌|𝑋) 
The output, predicted Y: 

𝑌 = 𝛽0 + ∑𝑋𝑗𝛽𝑗 + 𝜀

𝑝

𝑗=1

 

    𝜀: the error 

2.3 Condition monitoring in Industries 

Considered to be an interdisciplinary field, (structural or system) health manage-

ment and its implementation requires integration of material science, mechanics, elec-

tronics, and computer science. This means a dedicated approach is needed throughout 

the system lifecycle from design to manufacturing, operation, and maintenance [33]. An 

effective health management system is capable of detect, isolate, and predict performance 
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and degradation, at a sufficient level of details, without interrupting system operation 

[34]. It enables system intended performance at minimum cost throughout the entire 

lifecycle. Main stages of Health management process are data acquisition, diagnostics, 

prognostics, and health management. In data acquisition and diagnostics, a thorough 

understanding of the operation and failure modes of system or machine is required. This 

stage involves the formulation of performance indicators, monitoring parameters as well 

as the development of method and equipment. Relevant statistical analysis and modeling, 

advanced predictive algorithm development based on the available data are among the 

keys activities in prognostics and health management phase. 

Challenges 

As in any advanced and emerging technology development, Health management 

encounters numerous challenges, some of which are well addressed with promising results 

while others remain to be the subjects for future studies. Firstly, it is the sensor selection 

and localization. Integrity and accuracy of acquired data are the first conditions of any 

reliability requirement. This requires sensible sensor selections and optimization of their 

locations in the system. In a complex system, optimization is a substantial challenge that 

expects complete knowledge of the design and operations of the entire system [35]. Sec-

ondly, analysis of collected data requires a various set of techniques including signal 

transformation, feature extraction based on performance characteristics, data visualiza-

tion and last but not least noise and error compensation. The third challenge is prognos-

tics that involves Remaining useful life (RUL) prediction model which requires an 

adequate understanding of failure mechanisms, degradation modes of the asset. 

In relation to uncertainty sources in a condition monitoring system, there are three main 

groups. One is related to prognostic modeling in which oversimplification and/or incorrect 

selection of indicating parameters lead to inaccurate results. Another potential source is 

the measuring environment where unaccountable operational events might occur. Lastly, 

deficiencies of the subject being monitored, for example, geometry, material, production 

quality should be taken into account. 

Benefits 

In spite of the mentioned challenges that would result in the increase of time and 

cost for design and development, benefits from a functional health management system 

is believed to be significant in a variety of categories: 

• Life-cycle: Machine and system which is equipped with health monitoring capa-

bility will perform safely and reliably at minimum downtime and unscheduled 

breakdowns. As a result, operation and maintenance cost is minimized while the 

intended service is optimized. Higher reliability and performance rate equivalent 

to a higher perceived value which leads to increases in sales and revenues.  

• System design and development: data and information which is used for and pro-

vided by prognostics would also help new design cost and performance improve-

ment. A systematic and strategic decision about the life cycle, system features 

and architecture will also be enabled thanks to complete knowledge built from 

available data. management strategy… logistics, supply planning, and support.  

• Production: Quality control in product and logistics would now have thorough 

safety, performance -critical criteria from raw material supply to finished prod-

ucts. 

2.3.1  Aviation and space 

Forerunner in research and implementation of new cutting-edge technology is space 

and aviation industry. Modern aircraft is equipped with Aircraft health management 
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(AHM) systems which enable fleet-wide monitoring of onboard systems and components. 

AHM systems analyze condition data, identify potential failures, and issue service related 

information that can also be shared to ground stations [36]. The accumulated health and 

service data are used in predictive analytics and prognostics model that help improve 

inspection and maintenance in improving operational efficiency and reduction of costs 

and risks. Being as highly regulated as aircraft operation, maintenance policies are li-

censed by airworthiness authorities (i.e. European Aviation Safety Agency EASA). 

Maintenance programs, on the other hand, are built to optimize the technical total cost 

of service due to two factors: maintenance costs (such as labor, spare parts purchase, 

logistics) and aircraft downtimes [37]. Due to its complexity, an aircraft needs specialized 

software for maintenance operations. For each critical component, there is a failure pro-

cess model that calculates multiple functions such as reliability, maintainability, projects 

failure process. Entire aircraft model can also be built by combining component’s models 

taking into account reliability theory and pattern serial characteristic (that is a failure 

of one component causes the grounding of the aircraft). It is also possible to simulate 

different scenarios characterized by different maintenance policies, failures, reparation 

and cost parameters. 

 
Figure 13. Aircraft maintenance modeling [37] 

 

Compare to the previous implementation, this system reduced 20% of total annual 

cost of the Airbus A320 family in an Italian carrier, according to the article. Whereas 

according to [38], the health management system help reduce the cost by 40%, 30% to 

10% electrical components, and specifically for Boeing 777 is 50-80% maintenance cost. 

It is, however, worthwhile to notice that such implementation of lowering overall system 

life cycle costs would come at the expense of higher design and production costs 

Although at even higher level of complexity, health monitoring and management 

systems on Spacecraft, called FDIR (Fault Detection, Isolation and Recovery) whose role 

is to ensure the success of spacecraft’s mission objectives and constraints [39], has similar 

operation concept of acquiring and analyzing data from onboard sensors to evaluate the 

health status. The (American) National Aeronautics and Space Administration (NASA) 

proposed Integrated vehicle health management (IVHM) and integrated systems health 

management (ISHM) which can extend the health monitoring concept beyond structures 

to include the entire vehicle and its missions. Due to the extreme environment in which 

spacecraft operates, additional model namely Simulated-based systems engineering, 
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which simulates the entire spacecraft lifetime, is applied to the spacecraft detailed model 

The model is called Airframe digital twin. Full detailed information of the entire life cycle 

of the vehicle as results of the simulation improve significantly the safety and reliability 

of the spacecraft[40]. It is worth noticing that many of the spacecraft design and imple-

mentations are not applicable to elevator systems (such as radiation exposure, power 

consumption criticality), however, a successful adaptation of some of the advanced mod-

els in the aerospace industry will make a remarkable competitive advantage in the vertical 

transport industry. Next generation of technology implementation in a vehicle, also pro-

posed at NASA, is the self-aware spacecraft, aircraft which has situational awareness 

capability of the external environment as well as its internal conditions configurations. 

There are 3 main subsystems, adaptive mission management which is central to the 

awareness capability, decision-making under uncertainty and autonomous guidance, nav-

igation, and control.  Considered to the be key of a self-aware system, the intelligent 

subsystem utilizes real-time performance data and prognostics health monitoring to op-

timize the vehicle performance. The forth mentioned digital twin model plays an im-

portant role in facilitating maintenance efficiency and quantified reliability, according to 

the article. 

 
Figure 14. The concept of self-aware vehicle [12] 

 

The employment of systematic selection methods for sensors and actuators has ena-

bled distributed control architectures, replacing existing analog control systems, that 

powers advanced capabilities such as Thrust Vector control Diagnostic Model. The model 

is capable of providing qualitative failure effect propagation paths across system physics 

along with value recommended change information to have the least impact to cost and 

schedule during system design and development phase [41].  

2.3.2 M arine  

Another highly specified and regulated industry is maritime whose typical perfor-

mance contributing factors are varied from crew member expertise, sea weather and cli-

mate to fuel cost and delivery schedule, they are illustrated in Figure 15: 
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Figure 15. Ship performance contributors [42] 

 

Maritime transport makes 80% by volume and more than 70% by value of the global 

trade [43] while maintenance accounts for 20% -30% of a ship’s operational cost [44], the 

importance and size of the industry is one of the most significant. Maintenance in the 

marine industry nowadays is moving from predominant time-based, prescriptive ap-

proaches to Condition-based maintenance method. Proposed in the paper is the solution 

combining Fault Tree Analysis (FTA), FMEA and Artifical Neural Networks (ANN) 

application to issue maintenance information. FTA, whose basic construction are logic 

gates and events, is a top-down approach which deduces fault sources from failures. ANN, 

resembling the data storing and learning of the brain, is the network of parallel distrib-

uted processor formed by processing units that have accessible information (experimental 

knowledge). Being trained to learn from past events then provide functional relationships 

or forecast future events, ANN is considered to be a highly effective tool for analyzing 

and diagnosing of nonlinear behavior of complex systems as well as performance evalu-

ating of operators and decision-makers. The paper also introduces a case study in which 

one of the most important components of a ship, the main engine (MAN B&W 8k90MC-

C) is subjected to this monitoring methodology. Total of 39 basic events from various 

subcomponent groups was studied. Exhaust gas temperatures from each of the eight-

cylinder engine is one of the data acquisition targets which then is the input for ANN. 

The result, shown in Figure 16, is on hourly prediction basic (30 hourly readings to 

predict the next 10 hourly values). Often being offered as service packages in the maritime 

industry, monitoring sensor system can have design lifetime up to 30 years and could be 

easily retrofitted or upgraded [45]. 

 
Figure 16. Ship main engine exhaust gas temperature prediction [45] 
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3  Condition monitoring method for guiding elements 
In buildings, a typical elevator system is located in a dedicated shaft in which guide 

rails are installed in pair, one rail opposite to the other on the shaft wall. The vertical 

movement of the elevator car is enabled by the guiding elements located on the carsling. 

There are two typical guiding elements, the sliding guide and roller guide. Sliding guide 

is mostly used for lower speed, up to 2.5 m/s whereas the roller guide is most suitable 

for the speed from higher than 2 m/s. The scope of the work is limited to sliding guide.  

A sliding guide is designed to perform under certain amount of loads while maintain-

ing good sliding contact and damping. The Sliding guide is critical to the smoothness of 

the travel of the elevator, characterized as comfort class [46]. In the construction of a 

sliding guide, there are inserts that are subjected to surface contact and impact [47].These 

inserts wear and degraded over time and they are the subject of condition monitoring 

method developed in this work. 

3.1 Operation profile of the sliding guide 

Sliding guide, referred as sliding guide shoes in the industry, is used in an elevator 

that has the nominal travel speed up to 2.5 m/s. Available materials for insert (grey part 

in Figure 17 are polyethylene and polyurethane for lubricated guide rail and Polyamide 

for non-lubricated rail, according to Company’s Product description document SO-

07.07.011. 

 

 
 

Figure 17. Elements of a sliding guide shoe  

 

The maximum running force applied to the guide shoe components ranges from 320 

to 20000 N in one direction. Maximum impact or seismic event forces are typically twice 

as much as running forces. Also according to the same document, the generic lifetime of 

the guide shoe component is two years in standard operation (1000 N load, 2 m/s speed, 

75 m height travel). Average emitted noise is 67.8 dB, at 2 m/s speed, under 300 N guide 

force and measure 20 cm away from the contact area. According to Company’s Preven-

tive maintenance instruction document (ASG-07.04.034, Appendix J.), allowable gaps 

between guide rail surfaces to guide shoe pads are 2mm. Maintenance activities are re-

quired when 2mm is exceeded. For direction X, a typical solution is sliding insert replace-

ment and shim plates adjustment for direction Y’s. 
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Figure 18. Allowable gaps for sliding guide shoe 

3.2 Condition monitoring method 

The development process of the condition monitoring method is the analysis of failure 

modes and root causes in a sliding guide shoe. Depicted in Figure 19, there are two 

categories one that is the internal degradation of the component due to use, the operation 

failures and one that is the external elements from the environment in which the compo-

nent operates, the random failures. 

2mm threshold
/ excessive noise

/derailment

Wear

Fatique 
(cause cracks 
and other failures)

Operational failures

Random failures

Design deficiency

Collision with other component(s)
(magnet, car side operator, 

cigar switch, door coupler, etc.)

Fracture/ Crack
(due to impact)

Guide rail 

Hoisting structure

 
Figure 19. Failure modes of sliding guide shoe 

 

Based on the understanding of the failure modes analysis, the model for health man-

agement, consequently the condition monitoring method of the sliding guide is data-

based. The condition indicator is the allowable gaps at the threshold of 2 mm. As a result, 

the health condition is determined solely by the analysis of this gap parameter. illustrated 

in Figure 20 visualizes the health management architecture in the form of stages of man-

aging the condition as well as the information flow. This architect is designed to be 

independent with the renewal or replacement that might occur during maintenance of 

the sliding guide shoes. 
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Figure 20. H ealth management architecture  

 

In this architecture, data recorded by the sensor is processed before feeding to 

diagnostics and prognostics models whose analysis results are the current state and 

prediction values. One of the most important roles of the health management stage is the 

maintenance activities issuing. It also acts as the knowledge center of the component 

containing operation profile, event log, component archives. This architect also proposes 

an alarm trigger mechanism that should be employed at early stages in the event of 

emergency or random failure occurs. The condition monitoring method for sliding guide 

shoe is developed based on the Health management architecture whose specifications are 

considered to be the design requirements of the method. Figure 21 depicts the components 

of the architecture of the method by categorizing them into areas of function and 

discipline. 
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Figure 21. Condition monitoring architecture  
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The chart greatly supports the information traceability as well as the distribution of 

key elements and workload. For example, specifications about the component are essen-

tial at the beginning and prior to final results whereas computer programming or software 

plays a significant role in the functionality and performance of the method. 

3.3 Failure prediction 

At the core of predictive maintenance is RUL prediction whose results a maintenance 

plan is built upon. As for sliding guide shoe, gap parameter is now identified as the 

displacement value, is selected for monitoring activity. Statistical model namely linear 

regression is employed to the collected data to predict the event in which displacement 

value reaches 2 mm threshold.  

Regression analysis is a statistical technique which formulates the relationship be-

tween a dependent (target) and one or more independent (predictor) variables. The anal-

ysis predicts the time-series model or finds the cause-effect relationship among variables 

through linear combinations [48]. Being a useful and widely used method [49], Linear 

regression model: [50] and [51] 
 

�̂�(𝝎, 𝒙) = 𝝎𝟎 + 𝝎𝟏𝒙𝟏 + ⋯+ 𝝎𝒑𝒙𝒑 + 𝜺                              (3-1) 

xi: predictor  

y: target variable 

ωi: coefficients 

ωo: intercept 

ε: observation noise/ random error 

From proactively identifies fail car parts to predicts the company’s annual revenue, re-

gression models are widely useful across industries and applications [52]. There are four 

steps to formulate the model:  

1. Feature engineering and model selection 

2. Model training 

3. Model finalizing and validating 

4. Applying the trained model to new data 

In the case of guide shoe and guide rail displacement data, here is the process of building 

the RUL algorithm based on Linear regression predict model 
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Figure 22. RUL estimation process 

 

Data collected from the sensors will be manually converted into distance values, 

additional outlier elimination and other data cleaning techniques are recommended before 

starting analyzing. For simplicity and thanks to reasonably reliable results obtained from 

laboratory tests and calibration, the signal transformation was not done in the scope of 
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the work. The graphical analysis consists of plotting the entire data set (usually scatter 

and/or density plot for displacement measurement) in order to initially understand the 

data’s characteristic, generic operation properties, as well as reading abnormality, can so 

be identified in this step. Based on the understanding of the previous step, filtering and 

other generalizing methods are applied to prepare the data for the most accurate repre-

senting of the data, at the same time minimizing inherited errors. For displacement data 

set, subsets of maximum and minimum values during a certain timeframe (duration) are 

considered to be most appropriate representatives for continuous sensor reading.  

Scikit-learn library in Python provides ready Linear regression method which then 

is applied to the prepared data. It is crucially important in this step to visualize the 

regression line to evaluate the model fitting result. Statistic summary, error values (R-

squared, Mean squared, etc.) are computed and to be assessed at this step to determine 

whether the learned model is sufficiently accurate for predicting new values. There are 

also data split and trial and error activities during applying and evaluating the regression 

model. Feeding data set is usually split into training (70%-80%) and testing (30%-20%) 

result of which will the plotted to the same graph. Without a detailed explanation of 

statistics, Table 3-1 suggests criteria to quantitatively assessing errors. 

 
Table 3-1. Regression model errors evaluation 

 

Metrics Criterion 

R-squared Higher the better (>0.7) 

MSE (Mean squared error) Lower the better 

p-value Lower the better (<0.05) 

 

Whereas,  

𝐌𝐒𝐄 =
𝐑𝐒𝐒

𝐍
                                                                                  (3-2) 

𝐑𝐒𝐒(𝐰) ≜ ∑(𝐲𝐢 − 𝐓𝐱𝐢)
𝟐

𝐍

𝐢=𝟏

                                                              (3-3) 

  

RSS: residual sum of squares 

 yi: data 

 𝑇𝑥𝑖 (equivalent to ): predicted value by regression model 

 

The reliable regression model is then used to predict value at threshold using built-

in predict function. K-fold cross-validation is a widely used method to test the perfor-

mance model. In this method, data is split into ‘k’ mutually exclusive random sample 

portions known as “folds”. The first fold is a validation set while the remaining k-1 folds 

are training ones. The procedure is repeated k times with each fold will be validation test 

once. Typical values of k are 5 or 10 depending on computational expense and bias-

variance tradeoff [53]. Each procedure, also a readily built-in function, computes an 

accuracy value from which mean accuracy value is computed. The higher average value 

and lower the variance between values the more reliable Regression model consequently 

the prediction is [54]. 

The evaluation of the model is necessary for the final selection and further imple-

mentation. [54] suggest two steps of assessing the model, the model performance metrics 

and the other is cross-validation. The metrics chosen for this work are listed in Table 

3-1. One of the sample interpretation could be R2. Most efficient model maximizes the 
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value of the coefficient of the determinator (R2). R=0 yields no relationship between 

the predictor and the target whereas R2=1 suggests perfect prediction with no error. In 

cross-validation, it is important to note that, the training and test data must be differ-

ent and a random split of the data is recommended. 
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4 A prototype of the monitoring device for sliding 

guide shoe  
The section presents the design and functionality of a prototype based on the mon-

itoring method developed in Section 3. Among the technical requirements is designed for 

field installation and test at the elevator(s). Moreover, the design and construction of the 

prototype require a considerable amount of iterative design and development work rang-

ing from electrical, mechanical and embedded system to software tasks. 

4.1 Operation principles 

Well-defined operating environment and simple monitoring parameter have enabled 

straightforward working principle and the composition of the prototype. However, ro-

bustness in performance and high accuracy in obtained data are well kept in mind during 

to design process. 

4.1.1  M easurement  

The distance of the guide rail surface to the probe is the measuring target. The probe 

is mounted on the bracket which is mounted to elevator carsling structure. 

Inductive sensors are widely used for precision measurement of a conductive target’s 

position. Being not affected by material in the gap between probe and target, inductive 

sensor is ideal for elevator guide rail which may have lubricating oil and debris on the 

surface. However, inductive sensors are sensitive to the material of the measuring object, 

therefore proper calibration and testing are essential to the accuracy of the reading [55]. 

There are 2 sensors which measure 2 directions of car movement (Figure 23) at a 

resolution of <0,03mm (for fast reading) and <0,03 mmm of repeatability. The output 

of the is in voltage (0 ... 10 VDC), linear type for value interpretation. 

                  
 

Figure 23. Distance to guide rail measurement 

4.1.2 Data acquisition 

The output from the sensors was transmitted to the analog input port of the single-

board computer Beaglebone Black [56]. The signal is then recorded and stored in the 

computer memory in predefined and formatted data files. Distance and displacement 

values are computed manually based on the sensor’s linearity principle and preceding 

laboratory calibrations. Although manual calculations would not be favorable in a large 

number of data files, this approach allows different interpretation of the data without 
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altering the original values, which is believed to be reasonable at the prototyping phase. 

Once the method is validated, additional custom program or extending the existing pro-

gram which also takes into consideration error compensation can be easily implemented. 

4.2 The design 

Functionality and performance are first elements of selection criteria for components 

of the prototype. Limited developing time, as well as the competences affected the cost, 

the build quality and efficiency of the prototype. Improvements made during laboratory 

and field tests led to different versions of both hardware and software which are fully 

functional and capable of possible further development at the end of the work. 

4.2.1  Architecture 

Design to be a stand-alone embedded system, the prototype possesses Beaglebone 

black as the processing and memory unit, two sensors, one printed circuit board, and one 

power supply unit. The Beaglebone black (BBB), which is built as a complete computer 

that runs Linux distribution as an operating system, offers powerful processing power 

and extensive hardware expansion (up to 92 connection points [57]). BBB runs Python 

language program, which is considered to be a significant advantage in term of User 

experience, after suitable library and console being installed. Circuit board distributes 

appropriate voltage to the sensors (12VDC) and BBB (5VDC) and regulates sensor out-

put signals before transmitting them to BBB’s analog pins. 

Figure 24 illustrates the system architecture based on data flow sequence, hardware and 

software distribution of the prototype as well as the monitoring method as a whole with 

the data analysis phase. 
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Figure 24. Guide shoe monitoring prototype architecture  

 

For simplicity and minimum development time, User Interface and interaction was 

minimized to simple power switch and manual plug-in connectors between sensors and 

the printed circuit board, as well as from the board to personal computer for data trans-

mission (mini-USB port).  



30 

 

4.2.2 Hardware 

Inductive sensor 

Driveshaft runout measuring, thread detection, valve stroke, and piston positions, 

thickness measuring, calender roller gap and distance measurement (from 10 m to 

15mm) are among typical applications of inductive sensors. Furthermore, inductive sen-

sor can operate in dirty, hostile environment while maintaining a high accuracy level [55].  

Baumer IR18.D08F (BIR) is a high-resolution analog inductive sensor. In addition to key 

specifications listed in Table 4-1, important features of BIR includes: LED indicator, 3- 

level teach-in modes, no maintenance or cleaning required [58] 
Table 4-1. Baumer IR18.D08F  

 

Specification  

Measuring material 
Mild steel, Stainless 

steel and Aluminium 

Measuring distance 0 ... 8 mm 

Resolution <0,03 mm 

Sensitivity 1,25 V/mm 

Reading Linearized factor 1 

Adjustment external Teach-in 

Supply voltage 12 ... 36 VDC 

Output signal 0 ... 10 VDC 

Protection class IP 67 

 

Construction and overall dimensions of  BIR are shown in Figure 25. BIR’s measur-

ing principle is that it generates a high-frequency electromagnetic field around sensing 

face. Changes of the field by measuring the object’s movement will be detected and 

converted proportionally into output signals. The all-analog principle allows high meas-

uring speed, excellent repeatability, and low readout noise. 

 

 

       
 

Figure 25. Baumer inductive sensor IR18.D08F (Appendix H  and [59]) 
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As important as error is in any measuring equipment, to BIR highly influential 

sources of errors are: ambient temperature change which causes drifts output (ideal one 

is 230C ± 5); size and material of measuring object and said to the largest influence on 

the output is mounting situation with regard to distance between sensing face and target. 

More details can be found in Appendix H. 

Beaglebone black Revision C 

Beaglebone black is a full-featured computer at a compact size. Moreover, it runs a 

Linux-based operating system which has sizable community-supported development plat-

form and open source libraries. These allow rapid prototyping and expandable embedded 

systems [60] which make BBB ideal for the work. On-board AM335x 1GHz ARM micro-

processor can run Linux distributions, Android and even Windows Embedded CE. There 

is 512MB of DDR3 RAM and 4GB onboard eMMC storage. General purpose input/out-

put offers two 2x23 pin rows coupled with various peripheral interface subsystems enable 

the BBB to process different forms of output and input, the analog signal is one of them. 

There is one USB host port is available, and one micro HDMI for monitor screen output. 

BBB is powered by 5VDC 2A supply (Appendix I). 

Printed Circuit Board 

The custom printed circuit board (PCB) is designed and built to distribute power 

supply and regulate sensor signals which are then wired to analog pins on the BBB. 

Among other electrical components, there are the power switch, fuse, and indicating LED 

which indicates the sensor reading operation. The PCB is designed and equipped for 

working with both 12V 5A LiPo battery or direct 220V standard power supply. Details 

of the design can be found in Appendix F and G.  

 
 

 
 

Figure 26. Schematic and prototype 
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Brackets and fixtures 

Additional custom design steel bracket was designed to locate sensors to their oper-

ating position. The board and battery (if used) are fixed on carsling top beam. Concerning 

inheriting error induced by hardware, reliable connection and wiring electric cable was 

carefully considered during design and installation. Mechanical design of the bracket was 

to maximize the robustness so that sensor movement is minimized, however, shock or 

vibration absorbing mechanism were not applied. As a result, under certain conditions 

(e.g. sudden movement of the car, vibration due to impact) sensor readings are expected 

to be inaccurate which needs to addressed in data analysis processes. 

4.2.3  Software 

Operating System 

Angstrom 2013-09-24 distribution has been in use throughout the work thanks to its 

stability and compatibility. Specific instructions can be found from the community web-

site, yet it is to be noted that the process of installing the Operating system encountered 

compatibility issues, additional third-party programs to be installed (Win32 Disk Man-

ager, PuTTY) as well as trial and errors, extra research efforts to be made. 

Programming language 

Python was the sole programming language used in the work including programs for 

the prototype and functions for data visualization, analysis, and machine learning algo-

rithm. Created in 1991 as an interpreted, general-purpose, object-oriented language, Py-

thon has steadily grown into a mature widely supported ecosystem with quality packages 

and libraries for embedded system design as well as data analytics and machine learning 

applications [61]. Among the key advantages of choosing Python over the remaining 

languages are its versatility, user ease and friendliness, cross-platform support and pro-

cessing and memory efficiency which results in n faster performance. 

Library 

The Adafruit BeagleBone IO Python library named Adafruit_BBIO is installed fol-

lowing instructions at [62]. Adafruit is an American electronics and equipment manufac-

turer which offers a wide range of modern electronic component with large community 

supports. Adafruit_BBIO allows (Python) program to get access to GPIO pins on the 

BBB, among which are the 7 analog pins. There are alternatives to the Adafruit’s such 

as Bonescript library and Cloud9 IDE programming environment, with JavaScript or C 

languages. 

Data acquisition custom programs 

Basic embedded programming (in Python) skills have been acquired in order to build 

the programs which can reliably run the BBB and store sensor data into files (text or 

spreadsheet format). Descriptive programming practice was pursued in the attempt to 

have the information obtained from the program to be sufficient for further study and 

analysis. For example, test location and purpose as well as sensor reading interval, data 

file length are set as input every time the program started. The filename is the date and 

time of the creation of the file.  
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Figure 27. Recored data descriptions (top) and original sensor data. 

 

Program file can only run on Command-line basic with the BBB board connected to 

Windows (or Mac) computer via mini USB port. Full program code is available in Ap-

pendix B. 

4.3 Configurations and data acquisition 

Prior to the deployment of the device, there are two main tasks which need to be 

attained in order to acquire usable data. Firstly, an appropriate sensor teaching model is 

set while calibration, as well as associated tolerances and errors, are taken into account. 

Secondly, suitable reading interval and data package length settings for the program are 

set so that they can most accurately reflect the operational characteristic and health 

condition of the monitored guide shoe. 

4.3.1 Sensor calibration 

Teach-level 3 was set to the two sensors. This mode is factory default mode which 

can utilize the full measuring range from 0 to 8mm. Calibration of the sensors was done 

in laboratory condition to determine the ratio between the reading output of the sensor 

to the displacement of the object: 

𝒓𝒔 =
∆𝒙

∆𝒔
 (

𝒎𝒎

𝒎𝑽
)                                                                                      (4-1) 

 

Where: 

  rs: sensor output ratio 

  Δx: object displacement (x2 – x1) 

  Δs: reading difference (s2 – s1) 

Mean value of Δx and Δs in 5 measurements yields rs= 0,0067568 mm/mV 

 

       
 

Figure 28. Sensor calibration (left) and elevator installation of the sensors 
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Calculation of displacement in acquired sensor data used the mentioned rs. This 

approach allows system error to be included and compensated by rs while computing 

displacement values which then used for data analysis tasks. On the other hand, having 

the entire monitoring data depends on a single laboratory calibration is the method which 

needs precision and robustness throughout the process. 

4.3.2 Software configuration 

Configurations required to initiate the device includes reading interval, which is the 

time (in seconds) between 2 readings; data file length, which is mostly for safety reason 

in the even of corruption in software or unexpected shutdown previous data is safe in 

other saved files, typical file length is 24-hour or 8-hour data. Moreover, descriptive free 

text input that specifies the data context such as location, test purpose, elevator running 

state is considered to be helpful in the analysis phase.  

 
 

Figure 29. Koivisto elevator installation (sliding guide shoe) 

 

In the tests, the reading interval was set from 20 seconds, 30 seconds or 60 seconds 

depending on the elevator running state. In a similar manner is the file length, 4 hours, 

8 hours or 24 hours. In the course of the work, there are test run (Koivisto) and normal 

public use (Paasikivi) state of the elevators. It is also important to be noted that while 

Koivisto has sliding guide shoe which is the primary target of the work, Paasikivi is 

equipped with roller guide shoe whose operation and monitoring characteristic although 

are not in the scope of the work, the acquired result is really useful. 

4.3.3  Operating procedure 

The first step of starting the data recording is the installation of the sensors and 

locating the device (PCB with BBB) and wiring of the sensors and the supply power. 

Next step is to connect the device with Personal Computer via mini USB cable. In Win-

dows, run Third-party program named PuTTY to set IP address of the BBB 192.168.7.2 

with root as username (or run ssh 192.168.7.2 -l root in Terminal on MacOS) to get 

access to BBB command shell. Correct data and time for the BBB can be set using --set 

--date="yyyy-mm-dd hh:mm:ss”. Before the data recording program can be started, a 

terminal multiplexer, as one of the methods to avoid connection timeout, has to be initi-

ated by running tmux in the command line. Run device program by typing python 

Apollo13.py, with Apollo13.py is the python program file which is located in the BBB 

local memory or can be written and saved in a built-in coding environment by running 
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nano Apollo13.py. The device running procedure is ended by exiting tmux using command 

input sequence Ctrl + b and then d. The USB cable can then be detached without further 

action required. The device is running and sensor data is being recorded which can be 

confirmed with the indicating LED illuminated at the same interval with the sensor’s 

reading interval. 

4.3.4  Real-time reading with ThingSpeak 

One of the additional feature tested with the prototype is the real-time pushing 

sensor signal to the educational version of the Internet of Things (IoT) platform called 

ThingSpeak by Mathworks. The feature requires a dedicated code set and internet line 

connected to the 10/100 Ethernet port on BBB board. Due to the fact that candidate 

elevators are no equipped with internet cable nor WIFI, the capability was not further 

developed.  

 

 
Figure 30. Real-time sensor readings on IoT platform  
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5 Results 
This section presents introductory data visualization techniques and statistical learn-

ing models whose results are predictions values and visualization. In addition to validat-

ing the method developed in Section 3 and 4, the work also reveals potential issues and 

limitations which are expected to be useful for future developments. Development tools 

are Pycharm Edu as the main program while Jupiter notebook was used in cases where 

it was more productive or responsive. 

5.1 M onitoring data acquisition 

During the courses of 9 weeks, the prototype was installed in two elevators – Koivisto 

and Paasikivi located in Hyvinkää. Koivisto is the primary 2-floor travel candidate. It is 

a test elevator that can be set to run continuously during the test whereas Paasikivi is 

an in-use elevator for internal personnel. Paasikivi has travel height of 4-floor. Data from 

the sensor was stored locally in device memory as files. Third-party programs, for 

instance, WinSCP on Windows computer, was used to extract the files. 

The data file is then processed and compiled into to single spreadsheet file format ready 

for analyzing. In this step, the original sensor reading in voltage was converted into 

distance value in mm. There were two sets of data that were at sufficient quality for 

analysis. One set is of 10486 data points, the reading interval was 1 minute at in-use 

elevator Paasikivi (PAS). The other has 17971 data points with same reading settings at 

test elevator Koivisto (KOI). 

5.2 Premilinary data visualizing and analytics 

In addition to advantages mentioned in 4.2.3, Python as a programming language is 

strongly supported by active scientific computing communities. Consequently, robust Py-

thon libraries with detailed instruction are widely available for academic and commercial 

purposes. 

Libraries 

Numpy is the fundamental package for efficient data storage and operations. It is 

a powerful tool for reading and writing array data. Numpy arrays form the founda-

tion of nearly the entire higher-level data science tools.  

Pandas provide productive structured data analysis environment. Indexing, label-

ing, and other frameworks and spreadsheet functionalities are key features of the 

package. 

M atplotlib is the most popular package for plotting and other 2D data visualizing 

in Python. Its plots allow zooming and panning. 

Scikit-learn (SKL) is the best-known package for implementation of machine learn-

ing algorithms. SKL provides numerous convenience functions for common prepro-

cessing tasks such as k-fold validation, normalization [50] and [63] 

Data exploring 

Scatter plot was used to gain an overall understanding of the data. Disruption in the 

data acquisition process or elevator status can be promptly identified from the graph. 

Figure 31 suggests a reasonable performance of the prototype, and operational character-

istics of the elevators are well presented. The data points are in blue and the residual 

line is red. The vertical axis is the distance (to recorded static position) in mm. The 

horizontal axis is time in minute, 0 is at the beginning of the measurement. 
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PAS 

 

KOI 
Figure 31. Displacement data from PAS (upper) and KOI elevator  

 

For PAS, as an in-use elevator, continuous sensor reading captured intermitted static 

values which reflected elevator’s free-time every day outside of working hours, whereas 

for test elevator KOI, which was set to run continuously, is uninterrupted values. The 

interpretations called for a data filtering mechanism in which statics values should be 

excluded before going forward. Additionally, maximum values in PAS were fairly stable 

while minimum values showed shifting patterns which can be understood as large move-

ment occurred at a certain location during the elevator travel (2 floors). Reserved situa-

tion recorded in KOI. It also became evident that the sensor settings were relatively 

sensitive to the movement of the elevator.  The code was inspired by  [54]  and the full 

version can be found in Appendix D 

 

Data cleaning and line fitting 

Since health condition of the object (sliding guide shoe) is determined by worst-case 

scenarios, which are maximum recorded displacement values during operation (elevator 

run), data which can be put forth for prediction modeling are maximum and minimum 

values. Construction of the new data set can be illustrated as follows: 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑒𝑡 =  

[
 
 
 
 
𝑎01

𝑎02

𝑎03

⋮
𝑎0𝑛]

 
 
 
 

→  𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑠𝑒𝑡 =  

[
 
 
 
 
𝑎1

𝑎2

𝑎3

⋮
𝑎𝑛]

 
 
 
 

 

 
𝒂𝒊 = �̅�𝒊𝒎𝒂𝒙 − �̅�𝒊𝒎𝒊𝒏                                                                        (5-1) 

Where, 

�̅�𝑖𝑚𝑎𝑥: mean value of (M) amount of maximum values in every (N) amount of data points 

in original data 

�̅�𝑖𝑚𝑖𝑛: mean value of (M) amount of minimum values in every (N) amount of data points 

in original data 
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Different values of M and N were calculated in the search for the most appropriate 

combination. Figure 32 emphasizes the effect of the choices of M to the presentation of 

the data - 200 versus 20 maximum (and minimum) values in every 1440 data points 

(which is equivalent to one operation day). It is also worth noticing that for simplifica-

tion, indices (x value) of the sensor data are omitted, instead the new indices of the mean 

value is set to be the value of N. Therefore, the smaller N statistically higher the fidelity 

of the new data set. 

𝒙 =  

[
 
 
 
 
𝑵
𝟐𝑵
𝟑𝑵
⋮

𝒏𝑵]
 
 
 
 

, 𝒚 =  

[
 
 
 
 
𝒂𝟏

𝒂𝟐

𝒂𝟑

⋮
𝒂𝒏]

 
 
 
 

                                                                          (5-2)                                                    

 

  
 

Figure 32. M aximum, minimum and displacement values (KOI) 

 

For the filtered dataset, it is the case that the amount of the available was, to some 

extent, insufficient. Larger data set would allow the higher value of N or with the same 

N, there would be a larger sample population which is highly favorable for pattern 

recognition and curve fitting. 

 

Curve-fitting 

Following the approach specified in section 3.3, different regression models were ap-

plied to the displacement data and the results are plotted in Figure 33. 

 

 
Figure 33. Regression model applied to displacement data sets 

 

Displacement threshold of 2mm is visualized as red dash-lines. The blue line is cre-

ated by Linear regression model while the orange line is from second-order polynomial 

regression. Both are Sci-kit learn libraries’. The green line, however, is created by Numpy 
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polynomial regression, also in second-order. The grey dots are collected data while the 

lines continuously project future values. It is evident that data in PAS is noticeably 

fluctuating and resulted in a higher coefficient of the curves. This yields different M and 

N combination would reflect the condition more accurately. Also available at this stage 

is the prediction of displacement which is believed to be useful for preliminary model 

evaluation. 

 

 

 

 

 

SK linear res.: 0.73272263 

Numpy poly. inter.: -2.0062 

 

 

 

 

 

 

 

 

 

 

At M=50, N= 1440, xf = 45000 that can be interpreted as – prediction of displace-

ment value, for the next three-week time, in mean values of (50) maximum displacement 

recorded per 8-hour-working-day data set (1440), linear model yields 0.7 mm whereas 

polynomial one calls for the critical condition at allowable values at 2.0 mm. Sensible 

results are not expected at this stage. 

Error and uncertainty consideration 

It is evident that systematic error as well as random error did occur in the original 

data set. However, more test cases and hardware calibrations are required in order to 

obtain a reliable uncertainty calculation. On the other hand, the effect of the error types 

on the large data size, that is  collected over a prolong period of time, by continuous 

reading method also need to be examined. For the simplification of the work, therefore, 

error and uncertainty were not calculated.  

5.3 Current condition and health state 

The mean of the recorded displacement values �̅� indicates the current condition of 

the subject sliding guide shoe.  

�̅� =
∑ 𝐚𝒊

𝒏
𝒊=𝟏

𝒏
                                                                               (5-3) 

 

According to equation (5-1), y has different size and value depending on M and N 

values. Based on the available data, tt is decided that arithmetic mean recorded in one 

day (N=1440) from one hundred boundary values (M=100) is the most appropriate es-

timation that can reliably reflect operation condition at a reasonable amount of data 

needed for the prediction model.  
 

 

Figure 34. Prediction model comparison 
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Table 5-1. Current status (M =100, N=1440) 

 PAS KOI 

DD BB DD BB 

Data size (n data point) 8 - 13 13 

Current displacement (mm) 0.826 - 1.204 1.073 

Permissible threshold (mm) 2.00 

 

According to maintenance criteria specified in section 3.1, the analysis concludes the 

sliding shoe is functioning within the allowable zone and no maintaining activities re-

quired. 

5.4 Trend and Prediction 

Obtained results thus far suggest that it is possible to attain the failure trend from 

available data. Prediction can also be made as the result of a suitable selection of the 

predictive model. Two models from two libraries were employed in making predictions. 

In order to make a quantitative evaluation of the results, Mean squared error (MSE) and 

Coefficient of determinator (R2 ) were computed for each prediction. 

5.4.1 Prediction modeling 

A Python program was written for computing prediction and its statistical metrics 

according to different M, N values. Full calculation results can be found in Appendix M, 

Figure 35 partially reveals the table.   

 

 
 

Figure 35. Prediction model comparison (M  is w, N  is n) 

 

Each set of M and N was applied to both BB and DD in PAS and KOI when it was 

possible. The prediction value of each model was followed by its corresponding MSE and 

R2. The overall interpretation was that the predictions made by polynomial regression 

were considerably more consistent across data sets and M, N values. On the contrary, 

the linear regression model performed inconsistently produces a R2 value ranging from -

14,93 to -0,01 while it was 0,03 to 0.99 for polynomials. The contrast between the two 

models was not as significant in the case of MSE, the least sensible prediction from 

Polynomial model at M=150, N=2880 is -8,29 whereas for Linear model is 0,10 at M=85 

and N=720. x=50000 for all prediction. Table 5-2 presents the best score results following 

criteria listed in Table 3-1. Current displacement value is in the bracket whereas P is 

predicted value.  
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Table 5-2. Best scores prediction model 

 Linear Model Polynomial model 

Best score 

MSE 

M=50, N=1440 

P=1.135 (1.089) 

M=150, N=2880 

P= -8.269 (0.826) 

Best score 

R2 

M=150, N=2880 

P= 0.562 (0.826) 

M=150, N=2880 

P= -8.269 (0.826) 

Best score 

MSE & R2 

M=50, N=1440 

P=1.135 (1.089) 

M=150, N=2880 

P= -8.269 (0.826) 

 

 

According to said criteria, it is evident that Polynomial regression model at M=150 

N=2880 would be the most suitable one. However, those best scores are from only one 

data set of PAS elevator. When applying the model to a different dataset (DD of KOI), 

obtained scores are among the lowest. This indicates the inconsistency in the model as 

well as score-based assessment. One major root cause is believed to be the insufficient 

amount of data. The other cause would be best scores (maximum R2 or minimum MSE) 

might not the most appropriate selectors, rather the model with certain M and N that 

performs consistently across data sets. Data size can be increased by selecting the smaller 

value of N and more consistent scores are from the Linear model. Following this approach, 

first-order Linear regression from Scikit-learn at M=50, N= 1440 is selected. 

5.4.2 Prediction results 

Final results of the condition method are presented in Table 5-1 and Table 5-3 and 

failure trend are plotted in Figure 36. For Paasikivi elevator (PAS), the sliding guide 

shoe will reach the end of its service life in 235 days from the last day the prototype 

recorded the data. It is 171 days in the case of Koivisto elevator (KOI). 

 
Table 5-3. Predictions by Linear regression model (M =50, N=1440) 

 PAS KOI 

DD BB DD BB 

Present displacement (mm) 0.826 - 1.204 1.073 

Time of measurement (min) 18720 - 18720 18720 

Time at (2mm) threshold (min) 358000 - 265000 1650000 

 

Trend plot and coefficients: 

(PAS, DD) (KOI, DD) 
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(KOI, BB) 
Figure 36. Prediction/ failure trend lines  

 

It is highly possible that in the larger data set, different prediction values and even 

different performance of the models would occur and result in different predicting values. 

In that case, the mean of prediction values over a pre-defined period would be the one 

way to determine the time-to-failure prediction. This also emphasizes the importance of 

further testing and cross-validating of the model. 
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6 Discussion  
For the condition monitoring method of the sliding guide shoes as well as other 

potential applications, there are three main areas of developments. Regarding data ac-

quisition, large and high fidelity, precise condition data could be achieved with current 

hardware. The targets are the precision in sensor calibration, consistent reading accuracy 

in different conditions such as different guide rail type, travel speed, and operating envi-

ronment. The work would mostly involve software development and would not be time-

consuming thanks to hardware’s processing power and established procedures presented 

in the report. Multi-purpose program(s) could help to compare reading settings, detecting 

outliners and anomalies while storing condition data.  

In order to minimize systematic errors, it is advisable to implement a sensor reset 

mechanism and procedure into the monitoring device. However, because health status 

and time-to-failure prediction are solely based on the data from sensors, pre-conditions 

for sensor resets and post-reset data evaluation are required prior to the data processing 

for health management purposes. 

For data transmission, the ability to access the condition data remotely depends on 

the elevator shaft (and/ or building) network infrastructure, preferably wireless. Current 

hardware requires additional module integration in order to gain wireless connection ca-

pability.  

In a similar manner is data analysis, including diagnostics and prognostics. The 

well-developed program would shorten the runtime and reduce manual tasks. Prediction 

model development, on the other hand, would require a much larger amount of condition 

data as well as the validation process. Even though the current model is linear regression 

based on data that was available to the work, the model might change with sufficient 

data size in which proper machine learning procedure can be employed, if chosen. 
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Figure 37. Proposal of prediction model development  

 

Thirdly, failure trend analysis, whose result is the time-to-failure prediction 

model, would require reasonably extensive work. Figure 37 proposes one approach of the 

iteration of model development by acquiring then comparing the prediction values with 

the physical status of the test piece. Prediction values would also need further validation 

in the various operating environment whereas monitoring parameters and/or model mod-

ifications might be needed when unmatches between model output and physical object 

measurements occur. These tests would also help gain knowledge about the component 

failures which consequently reduces the time and cost of the design and installation of 

the component. 

Additionally, as mentioned in 5.4.1, appropriate data size (for instance, 100 instead 

of 13) plays a significant role in the accuracy of the prediction values. 
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Figure 38. Contents of development phases of the method  

 

Towards the finalization phase of the method development and integration, it is 

important to recognize the key metrics are robustness and ease of use. They are the 

dominant factors for a successful implementation of new capability to any system [64]. 

On the other hand, software for machinery and systems has grown rapidly in length 

(measured in code-line), for example, software on a  high-end automobile has grown from 

ten to a hundred and fifty million code-line from the year 2010 to 2016 [65]. In the case 

of the elevator system, at a different rate and magnitude nevertheless, there would be a 

similar demand for new software and electronic architecture that allows reliable and 

smooth integration that meets the requirement of increased complexity and interdepend-

encies while maintaining the robustness and ease of use. Standardization, modularization 

of the interfaces for both hardware and software are among the method that needs to be 

employed in meeting those requirements.  

Summary of the contents of the method development can be visualized in Figure 38 

where activities in continuous-line boxes have been performed, the ones which are in 

dashed-line boxes are development suggestions. 

Another aspect to consider in developing a health monitoring system for the elevator 

is the utilization of data recorded from one or more subsystem monitoring device. The 
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work would help define the benefit-cost ratio or business case study. Article [66] intro-

duced a framework to analyze the Value of Information (VoI) of the condition data in 

order to assess the effects and benefits of a Health Management system. According to the 

study the framework requires whole system probabilistic and structural reliability models. 

As a result, a technical solution for data storage and accessibility is created. As for the 

data collected by the two inductive sensors in the work, one of the use could be a 

characterization of the movement of the elevator in term of its relative position to the 

guide rail during the in-service time.  
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7 Conclusion  
The thesis has aimed to develop a remote condition monitoring method for guiding 

element and diverting pulley in a passenger elevator. As a result, existing challenges and 

limitations in the maintenance of the target components should be mitigated. The method 

development process would involve implementing latest methodology while assessing and 

validating the method via a prototype. Consequently, future development work would 

save time and cost based on learnings and findings during the work.  

In the attempt to achieve the goals, studies of condition monitoring techniques in 

various industries (chapter 2) have a laid reliable foundation for the work. The condition 

monitoring that is developed during the work consists of the condition data acquisition 

and the analysis of such data (chapter 3). The sliding guide shoe on passenger elevator 

carsling, considered as the essential component for Ride comfort classification of an ele-

vator, is subjected to testing of the method. Based on the understanding of the require-

ment of the maintenance of the component, Monitoring parameter is simplified as the 

effective displacement of the car to the Guide rail during elevator-run. The two inductive 

sensors, which are controlled by an embedded system built on Beaglebone Black and 

Angstrom Linux distribution, recorded the data (chapter 4). The analysis of the data, by 

employing data visualization methods and linear regression models in Python program-

ming language, resulted in the verification of the present operating condition as well as 

the prediction of time-to-maintenance (chapter 5). 

One advantage of the method is the simplicity in reading and in the interpretation 

of the condition indicator and its data. The acquired results are easy to understand and 

straight forward for decision-making processes such as maintenance planning and deploy-

ment. The other advantage is the generic nature of the displacement data from which 

other elevator performance monitoring techniques can utilize. On the other hand, the 

indirect and generic data has led to the sensitivity of the method to the size as well as 

the integrity of the data. Sufficient large data size and customized data purification tech-

niques are needed. Within the scope of the work, arithmetic mean value of three-week 

data size has raised a reliability issue to the final result as well as the selection of the 

underlying prediction model, linear regression of the displacement over time. Addition-

ally, the method prototype did not contain the remote access capability including the 

remote access to collected data as well as the control of the device. Considerable longer 

development time and wireless communication infrastructure are required for such capa-

bility integration. Although data collected by the method can be utilized for monitoring 

other performance monitoring metrics of the elevator, the method did not present a 

framework upon which method for other components can be built.  

In conclusion, the success of the development of condition monitoring method for 

mechanical components in passenger elevator is defined by the accuracy of the method’s 

outcome as well as the economic values created by the implementation of such method. 

Reliable performance and high fidelity data is the outcome of the robust engineering of 

hardware and software development based on the relevant understanding of the profile 

of the subjected component or system. Additionally, the return values of a condition 

monitoring method not only involves Return on investment index including development 

and implementation time and costs, but also the ease of deployment and ease of use of 

the method that ultimately should lead to lowered operation cost and optimized life-time 

value of the component and system of the elevator. 
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APPENDIX  
 

A. M atlab Predictive maintenance Toolbox  
Sample from an algorithm syntax in Reference document (30) 

 

Train Linear Degradation Model    

Load training data. 
load('linTrainVectors.mat') 
mdl = linearDegradationModel; 
fit(mdl,linTrainVectors) 

Train Reliability Survival Model 
load('reliabilityData.mat') 
mdl = reliabilitySurvivalModel; 
fit(mdl,reliabilityData,"hours") 

Train Hash Similarity Model Using Tabular Data 
load('hashTrainTables.mat') 
mdl = hashSimilarityModel('Method',@(x) [mean(x),std(x),kurtosis(x),median(x)]); 
fit(mdl,hashTrainTables,"Time","Condition") 

Predict RUL Using Covariate Survival Model 
load('covariateData.mat') 
mdl = covariateSurvivalModel('LifeTimeVariable',"DischargeTime",'LifeTimeUnit',"hours",... 
'DataVariables',["Temperature","Load","Manufacturer"],'EncodedVariables',"Manufacturer 
fit(mdl,covariateData) 
Successful convergence: Norm of gradient less than OPTIONS.TolFun 
 

TestBatteryLoad. 

TestBatteryLoad = 25; 
TestAmbientTemperature = 60; 
DischargeTime = hours(30); 
TestData = timetable(TestBatteryLoad,TestAmbientTemperature,'B','RowTimes',hours(30)); 
TestData.Properties.VariableNames = {'Temperature','Load','Manufacturer'}; 
TestData.Properties.DimensionNames{1} = 'DischargeTime'; 

Predict the RUL for the battery. 

estRUL = predictRUL(mdl,TestData) 
 
estRUL = duration 
38.657 hr 
 
plot(mdl,TestData) 
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B. Python code on Beaglebone Black for writing sensors data 

Code name: Apollo13.py 
import Adafruit_BBIO.ADC as ADC 

import Adafruit_BBIO.GPIO as GPIO 

import time 

import sys 

import csv 

sensor_00 = 'P9_33' 

sensor_mk = 'P9_35' 

pinLED = 'P9_41' 

ADC.setup() 

GPIO.setup(pinLED, GPIO.OUT) 

 

print('Sensor reading test..........')+ "\n" 

test_rw00 = ADC.read_raw(sensor_00) 

test_rwmk = ADC.read_raw(sensor_mk) 

print('Sensor 00: %s' %test_rw00) + "\n" 

print('Sensor mk: %s'%test_rwmk )+ "\n" 

 

LogTime = int(input("Data file logging interval (seconds):")) 

delay = int(raw_input("Reading delay: ")) 

TestLocation = raw_input("Test location:") 

TestSpecs = raw_input("Test scpecs/ purposes: ") 

n = int(raw_input("Estimated amount of Data file:")) 

 

def indicatingLED(): 

   GPIO.output(pinLED, GPIO.HIGH) 

   time.sleep(5) 

   GPIO.output(pinLED, GPIO.LOW) 

   time.sleep(1) 

 

def CSVwrite(): 

    with open('%s.csv' %log_date_str, 'wb') as csvfile: 

        filewriter = csv.writer(csvfile, delimiter=',', quotechar='|', 

quoting=csv.QUOTE_MINIMAL) 

        filewriter.writerow(['Sensor 00', 'Sensor mk']) 

    while time.time() < t_end: 

        val_rw_mk = ADC.read_raw(sensor_mk) 

        val_rw_00 = ADC.read_raw(sensor_00) 

        filewriter.writerow([str(val_rw_00), str(val_rw_mk)]) 

        indicatingLED() 

        time.sleep(delay)  

 

def TestSpecs_txtWrite(): 

    datafile = open("%s.txt" %log_date_str,"w+") 

    datafile.write("Date and time of measurement:%s" % log_date_str+ 

"\n") 

    datafile.write("Datafile logging interval (seconds): %s" %LogTime 

+ "\n") 

    datafile.write("Reading delay (seconds): %s" %delay + "\n") 

    datafile.write("Test Location: %s" %TestLocation + "\n") 

    datafile.write("Test specs/ purposes: %s" %TestSpecs + "\n") 

    datafile.write("Test readings, sensors in position, elevator 

doesn't run:Sensor00:" + str(test_rw00) + ",    ") 

    datafile.write("Sensor mk:" + str(test_rwmk) + "\n") 

    datafile.write("--------------------------------------------------

-----"+"\n") 

    datafile.close() 
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def EndingFile(): 

    log_date_str = time.strftime("%Y%m%d_%H%M%S") 

    endfile = open("EndTime.txt","a+") 

    endfile.write("Measurement ends at:%s" %log_date_str+ "\n") 

 

print('Sensor reading started...')+ "\n" 

endfile = open("EndTime.txt","w+") 

for i in xrange(1,n): 

  t_end = time.time() + LogTime 

  log_date_str = time.strftime("%Y%m%d_%H%M%S") 

  TestSpecs_txtWrite() 

  CSVwrite() 

  EndingFile() 

 

print('Measurement ended !--------------------------------------------

---') 

sys.exit(0) 

 

 

C. Python code (runs on Beaglebone black) for real-time data 

pushing to Thingspeak 

 
import Adafruit_BBIO.ADC as ADC 

import Adafruit_BBIO.GPIO as GPIO 

import httplib, urllib 

import time 

import sys 

pinLED = 'P9_41' 

 

GPIO.setup(pinLED, GPIO.OUT) 

 

def indicatingLED(): 

   GPIO.output(pinLED, GPIO.HIGH) 

   time.sleep(0.3) 

   GPIO.output(pinLED, GPIO.LOW) 

   time.sleep(0.2) 

 

 

sensor_00 = 'P9_33' 

sensor_mk = 'P9_35' 

 

ADC.setup() 

#GPIO.setup("pinLED", GPIO.OUT) 

 

 

print('Sensor reading started...')+ "\n" 

print('Displacement data logging started...') + "\n" 

 

while True: 

    indicatingLED() 

    val_rw_00 = ADC.read_raw(sensor_00) 

    val_rw_mk = ADC.read_raw(sensor_mk) 

    params = urllib.urlencode({'field1': val_rw_mk,'field2': 

val_rw_00,'key':'I177A25G8ASD2D4G'})   

    headers = {"Content-type": "application/x-www-form-urlen-

coded","Accept":"text/plain"}   

    conn = httplib.HTTPConnection("api.thingspeak.com:80")   

    conn.request("POST", "/update", params, headers) 

    res = conn.getresponse()   

    print res.status 
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print('Measurement ended !--------------------------------------------

---') 

datafile.close() 

sys.exit(0) 

 

 

D. Python code for plotting 

 

Linear regression 

 
from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error as mse 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

def pl_regres(): 

    X= datafile[['Count']] 

    Y= datafile['BB'] 

    lm.fit(X,Y) 

    plt.title("Regression Plot") 

    sns.regplot(X,Y, data= datafile, marker= '.',line_kws={'color': 

'red'}) 

    sns.residplot(X,Y,label='Predicted value',scatter_kws={"marker": 

"+", "color":"grey"} ) 

    plt.title("Learning model fitting ") 

    plt.legend(loc='upper right') 

    plt.show() 

 

Polyline plotting 

 

 

E. Python code for Linear regression prediction  

 
def algo_RUL_mean(n,w,k): 

    # compute independent variable, count or time in minute 

    step= math.ceil(len(yset)/n) 

    xi=[] 

    for j in range (step): 

        xii= n*j+n 

        xi.append(xii) 

    # compute mean value or dependent variable 

    i=0 

    maxavg=[] 

    minavg=[] 

    while i< len(yset): 

        yrange= yset[i:i+n] 

        subsetmax= yrange[np.argsort(yrange)[-w:]] 

        subsetmin= yrange[np.argsort(yrange)[:w]] 

        avgma= np.mean(subsetmax) 

        avgmi= np.mean(subsetmin) 

        maxavg.append(avgma) 

        minavg.append(avgmi) 

        i+=n 

    minavg= np.array(minavg) 

    maxavg= np.array(maxavg) 
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    displcmnt_avg= maxavg-minavg 

 

 

    #Linear regression prediction 

    y= np.array(displcmnt_avg).reshape(-1,1) 

    x= np.array(xi).reshape(-1,1) 

    x_train= x[:-30] 

    y_train= y[:-30] 

    x_test= x[-30:] 

    y_test= y[-30:] 

 

    lm.fit(x_train,y_train) 

    #plt.scatter(x,y, color='grey', label='data') 

    #plt.scatter(x_train,y_train, marker='.',label='training data') 

 

    #Polynomial line fitting, prediction 

    interpol= np.polyfit(xi,displcmnt_avg,2) 

    new_dspl_avg= np.polyval(interpol,xi) 

    xp= np.linspace(0,50000) 

    p= np.poly1d(interpol) 

    xp_lin=np.array(xp).reshape(-1,1) 

 

    #print(new_dspl_avg) 

    plt.ylim(-0.5,2.5) 

    #plt.plot(xi,new_dspl_avg,'g-',linewidth='2', label='Polynomial 

Fitting') 

    plt.plot(xp, p(xp),linestyle='dotted',color='red', label='Polyno-

mial') 

    plt.plot(xi, displcmnt_avg,linestyle= 'solid', linewidth='0.5', 

color= 'black', label='Data') 

    #plt.plot(xi,maxavg, linestyle= 'solid', color='blue', la-

bel='Max') 

    #plt.plot(xi,minavg,linestyle= 'solid', label='Min') 

 

    #SVM fit 

    poly_svm.fit(x_train, y_train) 

    plt.plot(x_test, poly_svm.predict(x_test), label='Support Vector 

Regression') 

 

 

    plt.plot(xp_lin, svr_lin.fit(x_train,y_train).predict(xp_lin), la-

bel='SVR linear') 

    plt.plot(xp_lin, svr_rbf.fit(x_train,y_train).predict(xp_lin), la-

bel='RBF linear') 

 

 

 

    plt.plot(x_test,lm.predict(x_test),linestyle= 

'dashed',color='blue', label='Linear regression') 

    #plt.plot(xp,lm.predict(xp),linestyle= 'dashed',color='blue', la-

bel='Linear regression') 

 

    plt.title('Mean of %s Values, %s Set size' %(w,n)) 

    plt.axhline(y=2, color='grey',  linestyle='dotted') 

    plt.axhline(y=-2, color='orange',  linestyle='dotted') 

    plt.xlabel('Minute') 

    plt.ylabel('Displacement') 

    plt.legend() 

    print('Poly prediction x= %s:'%k, np.polyval(interpol,k)) 

    print('SVR prediction x= %s:'%k, poly_svm.predict(k)) 

    plt.grid(True) 

    plt.show() 
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F. M onitoring prototype schematic 

 

 
 

G. Printer curcuit board layout 
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H. Inductive sensor datasheet 
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I. Beaglebone black Revision C  specifications 
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J. Sliding guide shoe maintenance instructions 

 

 
 

 

K. Data analysis plots (enlarged) 

 

 Figure 30 enlarged 
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L. Python codes for predictive models and plots 

M odels 
from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error as sk_mse 

from numpy import array 

from sklearn.svm import SVR 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import math 

import csv 

from scipy.stats import linregress 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.pipeline import make_pipeline 

from sklearn.metrics import r2_score 

 
def algo_RUL_mean(ele,BB,DD,n,w,k): 

    # compute independent variable, count or time in minute 

    step= math.ceil(len(yset)/n) 

    xi=[] 

    for j in range (step): 

        xii= n*j+n 

        xi.append(xii) 

    # compute mean value or dependent variable 

    i=0 

    maxavg=[] 

    minavg=[] 

    while i< len(yset): 

        yrange= yset[i:i+n] 

        subsetmax= yrange[np.argsort(yrange)[-w:]] 

        subsetmin= yrange[np.argsort(yrange)[:w]] 

        avgma= np.mean(subsetmax) 

        avgmi= np.mean(subsetmin) 

        maxavg.append(avgma) 

        minavg.append(avgmi) 

        i+=n 

    minavg= np.array(minavg) 

    maxavg= np.array(maxavg) 

    displcmnt_avg= maxavg-minavg 

 

 

    # Displacement array/ Formatted data 

    y = np.array(displcmnt_avg)  .reshape(-1,1) 

    x = np.array(xi)  .reshape(-1,1) 

 

    # training ratio 

    ration = math.ceil(0.7 * n) 

    x_train = x[:ration] 

    y_train = y[:ration] 

    x__fit= np.linspace(0,50000,step) 

    x_fit= np.array(x__fit)  .reshape(-1,1) 

 

    ## Sklearn Linear regression 

    lm.fit(x_train, y_train) 

    y_fit= lm.predict(x_fit) 

    #Write prediction and stats 

    Ylin= lm.predict(k) 

    skmse= sk_mse(y_train,y_fit) 

    skr2_= r2_score(y_train,y_fit) 
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    Intercep= lm.intercept_ 

    Coef= lm.coef_ 

    print('SK mse',skmse) 

    print('SK r2',skr2_) 

 

    ## Numpy polynomial interpolation 

    interpol= np.polyfit(xi,displcmnt_avg,2) 

    #model training 

    y_nppol= np.polyval(interpol,x_train) 

    npmse = np.mean((y_train - y_nppol)**2) 

    npr2_= r2_score(y_train, y_nppol) 

    print('NP r2',npr2_) 

    print('NP mse',npmse) 

    #prediction 

    Y_nppol= np.polyval(interpol,k) 

 

 

    # Last displacement (data recorded) 

    ss= displcmnt_avg[-1] 

    zz= step*n 

 

    print('SK linear res.:',Ylin) 

    print('Numpy poly. inter.:',Y_nppol) 

    #print('SK poly.:',Y_skpol) 

 

 

    return ele, BB, DD, n, w, zz, ss, k, Ylin, skmse, skr2_, Y_nppol, 

npmse, npr2_ 

 

Plotting 

 
## Sklearn Linear regression 

lm.fit(x_train, y_train) 

y_fit= lm.predict(x_fit) 

#plotting 

plt.plot(x_fit,y_fit,label='Sklearn Linear Res') 

plt.scatter(k,lm.predict(k),label='Sklearn Linear Res Prediction') 

 

## Sklearn Polynomial regression 

sk_poly= PolynomialFeatures(2, include_bias=False) 

x_poly= sk_poly.fit_transform(x_train) 

poly_model = make_pipeline(sk_poly,LinearRegression(fit_inter-

cept=False)) 

poly_model.fit(x_poly,y_train) 

 

x_pred= sk_poly.fit_transform(x_poly) 

y_skpol= poly_model.predict(x_poly) 

#plotting 

plt.plot(x_train, y_skpol,'-', label='Sklearn Polynomial Res, 2nd-or-

der') 

 

## Numpy polynomial interpolation 

interpol= np.polyfit(xi,displcmnt_avg,2) 

y_nppol= np.polyval(interpol,x_fit) 

#plotting 

plt.plot(x_fit,y_nppol, label='Numpy Polinomial Interpolation, 2nd-or-

der') 

plt.scatter(k,np.polyval(interpol,k),label='Poly Linear Res Predic-

tion', c='green') 

 

## Plot config 
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plt.title('Model comparison') 

plt.axhline(y=2, color='red',  linestyle='dotted') 

plt.axhline(y=-2, color='red', linestyle='dotted') 

plt.xlabel('Minute') 

plt.ylabel('Displacement') 

plt.legend() 

plt.show() 
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