801 research outputs found

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    A Brokering Framework for Assessing Legal Risks in Big Data and the Cloud

    Get PDF
    “Cloud computing” and “Big Data” are amongst the most hyped-up terms and buzzwords of the moment. After decades in which individuals and companies used to host their data and applications using their own IT infrastructure, the world has seen the stunning transformation of the Internet. Major shifts occurred when these infrastructures began to be outsourced to public Cloud providers to match commercial expectations. Storing, sharing and transferring data and databases over the Internet is convenient, yet legal risks cannot be eliminated. Legal risk is a fast-growing area of research and covers various aspects of law. Current studies and research on Cloud computing legal risk assessment have been, however, limited in scope and focused mainly on security and privacy aspects. There is little systematic research on the risks, threats and impact of the legal issues inherent to database rights and “ownership” rights of data. Database rights seem to be outdated and there is a significant gap in the scientific literature when it comes to the understanding of how to apply its provisions in the Big Data era. This means that we need a whole new framework for understanding, protecting and sharing data in the Cloud. The scheme we propose in this chapter is based on a risk assessment-brokering framework that works side by side with Service Level Agreements (SLAs). This proposed framework will provide better control for Cloud users and will go a long way to increase confidence and reinforce trust in Cloud computing transactions

    An economic market for the brokering of time and budget guarantees

    Get PDF
    Grids offer best effort services to users. Service level agreements offer the opportunity to provide guarantees upon services offered, in such a way that it captures the users’ requirements, while also considering concerns of the service providers. This is achieved via a process of converging requirements and service cost values from both sides towards an agreement. This paper presents the intelligent scheduling for quality of service market-oriented mechanism for brokering guarantees upon completion time and cost for jobs submitted to a batch-oriented compute service. Web Services agreement (negotiation) is used along with the planning of schedules in determining pricing, ensuring that jobs become prioritised depending on their budget constraints. An evaluation is performed to demonstrate how market mechanisms can be used to achieve this, whilst also showing the effects that scheduling algorithms can have upon the market in terms of rescheduling. The evaluation is completed with a comparison of the broker’s capabilities in relation to the literature

    Introducing risk management into the grid

    Get PDF
    Service Level Agreements (SLAs) are explicit statements about all expectations and obligations in the business partnership between customers and providers. They have been introduced in Grid computing to overcome the best effort approach, making the Grid more interesting for commercial applications. However, decisions on negotiation and system management still rely on static approaches, not reflecting the risk linked with decisions. The EC-funded project "AssessGrid" aims at introducing risk assessment and management as a novel decision paradigm into Grid computing. This paper gives a general motivation for risk management and presents the envisaged architecture of a "risk-aware" Grid middleware and Grid fabric, highlighting its functionality by means of three showcase scenarios

    Enabling service-level agreement renegotiation through extending WS-Agreement specification

    Get PDF
    WS-Agreement is a language and protocol designed for creating service-level agreements (SLAs) based on initial offers, and for monitoring those offers at runtime. The definition of WS-Agreement protocol is very general and does not contemplate the possibility of changing an agreement at runtime. This paper presents extensions of the WS-Agreement specification to support the dynamic nature of SLAs by allowing the possibility of SLA renegotiation at runtime. The extended WS-Agreement specification has been implemented and tested. Within this implementation, the concept of renegotiation is demonstrated through the ability to create more than one SLA at runtime. An evaluation is conducted to examine the profits a service provider may gain through renegotiation, as well the savings resulting from rescuing the SLA from violations as a consequence of avoiding paying penalties. The results show that making the SLA terms adaptable and changeable is a viable mechanism that provides flexibility to the service provider and service consumer

    Stochastic scheduling and workload allocation : QoS support and profitable brokering in computing grids

    No full text
    Abstract: The Grid can be seen as a collection of services each of which performs some functionality. Users of the Grid seek to use combinations of these services to perform the overall task they need to achieve. In general this can be seen as aset of services with a workflow document describing how these services should be combined. The user may also have certain constraints on the workflow operations, such as execution time or cost ----t~ th~ user, specified in the form of a Quality of Service (QoS) document. The users . submit their workflow to a brokering service along with the QoS document. The brokering service's task is to map any given workflow to a subset of the Grid services taking the QoS and state of the Grid into account -- service availability and performance. We propose an approach for generating constraint equations describing the workflow, the QoS requirements and the state of the Grid. This set of equations may be solved using Mixed-Integer Linear Programming (MILP), which is the traditional method. We further develop a novel 2-stage stochastic MILP which is capable of dealing with the volatile nature of the Grid and adapting the selection of the services during the lifetime of the workflow. We present experimental results comparing our approaches, showing that the . 2-stage stochastic programming approach performs consistently better than other traditional approaches. Next we addresses workload allocation techniques for Grid workflows in a multi-cluster Grid We model individual clusters as MIMIk. queues and obtain a numerical solutio~ for missed deadlines (failures) of tasks of Grid workflows. We also present an efficient algorithm for obtaining workload allocations of clusters. Next we model individual cluster resources as G/G/l queues and solve an optimisation problem that minimises QoS requirement violation, provides QoS guarantee and outperforms reservation based scheduling algorithms. Both approaches are evaluated through an experimental simulation and the results confirm that the proposed workload allocation strategies combined with traditional scheduling algorithms performs considerably better in terms of satisfying QoS requirements of Grid workflows than scheduling algorithms that don't employ such workload allocation techniques. Next we develop a novel method for Grid brokers that aims at maximising profit whilst satisfying end-user needs with a sufficient guarantee in a volatile utility Grid. We develop a develop a 2-stage stochastic MILP which is capable of dealing with the volatile nature . of the Grid and obtaining cost bounds that ensure that end-user cost is minimised or satisfied and broker's profit is maximised with sufficient guarantee. These bounds help brokers know beforehand whether the budget limits of end-users can be satisfied and. if not then???????? obtain appropriate future leases from service providers. Experimental results confirm the efficacy of our approach.Imperial Users onl

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Legal issues in clouds: towards a risk inventory.

    Get PDF
    Cloud computing technologies have reached a high level of development, yet a number of obstacles still exist that must be overcome before widespread commercial adoption can become a reality. In a cloud environment, end users requesting services and cloud providers negotiate service-level agreements (SLAs) that provide explicit statements of all expectations and obligations of the participants. If cloud computing is to experience widespread commercial adoption, then incorporating risk assessment techniques is essential during SLA negotiation and service operation. This article focuses on the legal issues surrounding risk assessment in cloud computing. Specifically, it analyses risk regarding data protection and security, and presents the requirements of an inherent risk inventory. The usefulness of such a risk inventory is described in the context of the OPTIMIS project

    09131 Abstracts Collection -- Service Level Agreements in Grids

    Get PDF
    From 22.03. to 27.03.09, the Dagstuhl Seminar 09131 ``Service Level Agreements in Grids \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore