263 research outputs found

    Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation

    Get PDF
    Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners are expensive and either infrastructure-heavy or subject to motion artefacts. In this paper we employ a single consumer-grade RGBD camera with an ICP-based registration approach to jointly align all points from a sequence of depth images non-rigidly. Subtle body deformation due to postural sway and respiration is successfully mitigated leading to a higher geometric accuracy through regularised locally affine transformations. We present results from 6 clinical cases where our method compares well with the gold standard and outperforms a previous approach. We show that our method produces better reconstructions qualitatively by visual assessment and quantitatively by consistently obtaining lower landmark error scores and yielding more accurate breast volume estimates

    Wavelet-Based Automatic Breast Segmentation for Mammograms

    Get PDF
    As part of a first of its kind analysis of longitudinal mammograms, there are thousands of mammograms that need to be analyzed computationally. As a pre- processing step, each mammogram needs to be converted into a binary (black or white) spatial representation in order to delineate breast tissue from the pectoral muscle and image background, which is called a mammographic mask. The current methodology for completing this task is for a lab member to manually trace the outline of the breast, which takes approximately three minutes per mammogram. Thus, reducing the time cost and human subjectivity when completing this task for all mammograms in a large dataset is extremely valuable. In this thesis, an automated breast segmentation algorithm was adapted from a multi-scale gradient-based edge detection approach called the 2D Wavelet Transform Modulus Maxima (WTMM) segmentation method. This automated masking algorithm incorporates the first-derivative Gaussian Wavelet Transform to identify potential edge detection contour lines called maxima chains. The candidate chains are then transformed into a binary mask, which is then compared with the original manual delineation through the use of the Sorenson-Dice Coefficient (DSC). The analysis of 556 grayscale mammograms with this developed methodology produced a median DSC of 0.988 and 0.973 for craniocaudal (CC) and mediolateral oblique (MLO) grayscale mammograms respectively. Based on these median DSCs, in which a perfect overlap score is 1, it can be concluded a wavelet-based automatic breast segmentation algorithm is able to quickly segment the pectoral muscle and produce accurate binary spatial representations of breast tissue in grayscale mammograms

    Automatic Segmentation And Detection Of Mass In Digital Mammograms

    Get PDF
    This paper presents an automated system for mass segmentation and detection in mammograms. Initially, breast segmentation is applied to separate the breast and non-breast area. Then, image enhancement is employed to improve the contrast of the tissues structure in mammograms. Finally, constraint region growing based on local statistical texture analysis is applied to detect and segment out the mass from the mammograms

    Automatic multi-seed detection for MR breast image segmentation

    Get PDF
    In this paper an automatic multi-seed detection method for magnetic resonance (MR) breast image segmentation is presented. The proposed method consists of three steps: (1) pre-processing step to locate three regions of interest (axillary and sternal regions); (2) processing step to detect maximum concavity points for each region of interest; (3) breast image segmentation step. Traditional manual segmentation methods require radiological expertise and they usually are very tiring and time-consuming. The approach is fast because the multi-seed detection is based on geometric properties of the ROI. When the maximum concavity points of the breast regions have been detected, region growing and morphological transforms complete the segmentation of breast MR image. In order to create a Gold Standard for method effectiveness and comparison, a dataset composed of 18 patients is selected, accordingly to three expert radiologists of University of Palermo Policlinico Hospital (UPPH). Each patient has been manually segmented. The proposed method shows very encouraging results in terms of statistical metrics (Sensitivity: 95.22%; Specificity: 80.36%; Precision: 98.05%; Accuracy: 97.76%; Overlap: 77.01%) and execution time (4.23 s for each slice)

    Performance of a fully automatic lesion detection system for breast DCE-MRI

    Get PDF
    PURPOSE: To describe and test a new fully automatic lesion detection system for breast DCE-MRI. MATERIALS AND METHODS: Studies were collected from two institutions adopting different DCE-MRI sequences, one with and the other one without fat-saturation. The detection pipeline consists of (i) breast segmentation, to identify breast size and location; (ii) registration, to correct for patient movements; (iii) lesion detection, to extract contrast-enhanced regions using a new normalization technique based on the contrast-uptake of mammary vessels; (iv) false positive (FP) reduction, to exclude contrast-enhanced regions other than lesions. Detection rate (number of system-detected malignant and benign lesions over the total number of lesions) and sensitivity (system-detected malignant lesions over the total number of malignant lesions) were assessed. The number of FPs was also assessed. RESULTS: Forty-eight studies with 12 benign and 53 malignant lesions were evaluated. Median lesion diameter was 6 mm (range, 5-15 mm) for benign and 26 mm (range, 5-75 mm) for malignant lesions. Detection rate was 58/65 (89%; 95% confidence interval [CI] 79%-95%) and sensitivity was 52/53 (98%; 95% CI 90%-99%). Mammary median FPs per breast was 4 (1st-3rd quartiles 3-7.25). CONCLUSION: The system showed promising results on MR datasets obtained from different scanners producing fat-sat or non-fat-sat images with variable temporal and spatial resolution and could potentially be used for early diagnosis and staging of breast cancer to reduce reading time and to improve lesion detection. Further evaluation is needed before it may be used in clinical practice

    Breast boundary segmentation in thermography images based on random walkers

    Get PDF
    Breast and areola boundary detection and segmentation present the biggest challenge in breast segmentation from thermography images, as breast boundaries, especially in the upper quadrants of the breast, are nonexistent. Many segmentation approaches have been proposed for breast segmentation, such as active contours and snakes, circular Hough transforms, and live wires, but these methods often fail to achieve satisfactory results. With recent advances in image processing techniques, new segmentation concepts are being developed, such as random walkers, which have received high interest from the medical imaging community. In this study, 91 images acquired utilizing a FLIR A320 thermal camera are used for developing an automatic breast segmentation from thermography images based on the random walker algorithm. A series of enhancement filters are applied to the image to make areola detection more accurate. Afterwards, the areola is detected using a series of circular Hough transforms. The detected areola region is then utilized for automatic seed placement for the random walker algorithm. Based on expert radiologist evaluation, the proposed segmentation algorithm was able to achieve 81.3% success rate in breast segmentation, while there was a 37.5% increase in the detection of breast cancer-related abnormalities by radiologists utilizing the segmented images, compared to utilizing original images

    Fully automated breast segmentation on spiral breast computed tomography images

    Full text link
    INTRODUCTION The quantification of the amount of the glandular tissue and breast density is important to assess breast cancer risk. Novel photon-counting breast computed tomography (CT) technology has the potential to quantify them. For accurate analysis, a dedicated method to segment the breast components-the adipose and glandular tissue, skin, pectoralis muscle, skinfold section, rib, and implant-is required. We propose a fully automated breast segmentation method for breast CT images. METHODS The framework consists of four parts: (1) investigate, (2) segment the components excluding adipose and glandular tissue, (3) assess the breast density, and (4) iteratively segment the glandular tissue according to the estimated density. For the method, adapted seeded watershed and region growing algorithm were dedicatedly developed for the breast CT images and optimized on 68 breast images. The segmentation performance was qualitatively (five-point Likert scale) and quantitatively (Dice similarity coefficient [DSC] and difference coefficient [DC]) demonstrated according to human reading by experienced radiologists. RESULTS The performance evaluation on each component and overall segmentation for 17 breast CT images resulted in DSCs ranging 0.90-0.97 and in DCs 0.01-0.08. The readers rated 4.5-4.8 (5 highest score) with an excellent inter-reader agreement. The breast density varied by 3.7%-7.1% when including mis-segmented muscle or skin. CONCLUSION The automatic segmentation results coincided with the human expert's reading. The accurate segmentation is important to avoid the significant bias in breast density analysis. Our method enables accurate quantification of the breast density and amount of the glandular tissue that is directly related to breast cancer risk

    Automatic Segmentation And Detection Of Mass In Digital

    Get PDF
    This paper presents an automated system for mass segmentation and detection in mammograms
    corecore