1,064 research outputs found

    Classification and biomarker selection in lower-grade glioma using robust sparse logistic regression applied to RNA-seq data

    Get PDF
    Funding Information: This work was supported by national funds through Fundação para a CiĂȘncia e a Tecnologia (FCT) with references CEECINST/00102/2018, UIDB/00297/2020 and UIDB/00297/2020 (NOVA MATH, Center for Mathematics and Applications), UIDB/04516/2020 (NOVA LINCS), and the research project “MONET – Multi-omic networks in gliomas” (PTDC/CCI-BIO/4180/2020). The results presented are based upon data generated by the TCGA Research Network: https://www.cancer. gov/tcga. Publisher Copyright: © Brazilian Journal of Biometrics.Effective diagnosis and treatment in cancer is a barrier for the development of personalized medicine, mostly due to tumor heterogeneity. In the particular case of gliomas, highly heterogeneous brain tumors at the histological, cellular and molecular levels, and exhibiting poor prognosis, the mechanisms behind tumor heterogeneity and progression remain poorly understood. The recent advances in biomedical high-throughput technologies have allowed the generation of large amounts of molecular information from the patients that combined with statistical and machine learning techniques can be used for the definition of glioma subtypes and targeted therapies, an invaluable contribution to disease understanding and effective management. In this work sparse and robust sparse logistic regression models with the elastic net penalty were applied to glioma RNA-seq data from The Cancer Genome Atlas (TCGA), to identify relevant tran-scriptomic features in the separation between lower-grade glioma (LGG) subtypes and identify putative outlying observations. In general, all classification models yielded good accuracies, selecting different sets of genes. Among the genes selected by the models, TXNDC12, TOMM20, PKIA, CARD8 and TAF12 have been reported as genes with relevant role in glioma development and progression. This highlights the suitability of the present approach to disclose relevant genes and fosters the biological validation of non-reported genes.publishersversionpublishe

    Breast cancer detection using infrared thermal imaging and a deep learning model

    Get PDF
    Women’s breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models

    Discriminative Representations for Heterogeneous Images and Multimodal Data

    Get PDF
    Histology images of tumor tissue are an important diagnostic and prognostic tool for pathologists. Recently developed molecular methods group tumors into subtypes to further guide treatment decisions, but they are not routinely performed on all patients. A lower cost and repeatable method to predict tumor subtypes from histology could bring benefits to more cancer patients. Further, combining imaging and genomic data types provides a more complete view of the tumor and may improve prognostication and treatment decisions. While molecular and genomic methods capture the state of a small sample of tumor, histological image analysis provides a spatial view and can identify multiple subtypes in a single tumor. This intra-tumor heterogeneity has yet to be fully understood and its quantification may lead to future insights into tumor progression. In this work, I develop methods to learn appropriate features directly from images using dictionary learning or deep learning. I use multiple instance learning to account for intra-tumor variations in subtype during training, improving subtype predictions and providing insights into tumor heterogeneity. I also integrate image and genomic features to learn a projection to a shared space that is also discriminative. This method can be used for cross-modal classification or to improve predictions from images by also learning from genomic data during training, even if only image data is available at test time.Doctor of Philosoph

    Latent Factor Analysis to Discover Pathway-Associated Putative Segmental Aneuploidies in Human Cancers

    Get PDF
    Tumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression. Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly associated with 12q CNA, likely an instance of “trans”-variations in which CNA leads to the variations in gene expression outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1α protein and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a linkage

    Pathway-Based Multi-Omics Data Integration for Breast Cancer Diagnosis and Prognosis.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Statistical learning methods for multi-omics data integration in dimension reduction, supervised and unsupervised machine learning

    Get PDF
    Over the decades, many statistical learning techniques such as supervised learning, unsupervised learning, dimension reduction technique have played ground breaking roles for important tasks in biomedical research. More recently, multi-omics data integration analysis has become increasingly popular to answer to many intractable biomedical questions, to improve statistical power by exploiting large size samples and different types omics data, and to replicate individual experiments for validation. This dissertation covers the several analytic methods and frameworks to tackle with practical problems in multi-omics data integration analysis. Supervised prediction rules have been widely applied to high-throughput omics data to predict disease diagnosis, prognosis or survival risk. The top scoring pair (TSP) algorithm is a supervised discriminant rule that applies a robust simple rank-based algorithm to identify rank-altered gene pairs in case/control classes. TSP usually generates greatly reduced accuracy in inter-study prediction (i.e., the prediction model is established in the training study and applied to an independent test study). In the first part, we introduce a MetaTSP algorithm that combines multiple transcriptomic studies and generates a robust prediction model applicable to independent test studies. One important objective of omics data analysis is clustering unlabeled patients in order to identify meaningful disease subtypes. In the second part, we propose a group structured integrative clustering method to incorporate a sparse overlapping group lasso technique and a tight clustering via regularization to integrate inter-omics regulation flow, and to encourage outlier samples scattering away from tight clusters. We show by two real examples and simulated data that our proposed methods improve the existing integrative clustering in clustering accuracy, biological interpretation, and are able to generate coherent tight clusters. Principal component analysis (PCA) is commonly used for projection to low-dimensional space for visualization. In the third part, we introduce two meta-analysis frameworks of PCA (Meta-PCA) for analyzing multiple high-dimensional studies in common principal component space. Theoretically, Meta-PCA specializes to identify meta principal component (Meta-PC) space; (1) by decomposing the sum of variances and (2) by minimizing the sum of squared cosines. Applications to various simulated data shows that Meta-PCAs outstandingly identify true principal component space, and retain robustness to noise features and outlier samples. We also propose sparse Meta-PCAs that penalize principal components in order to selectively accommodate significant principal component projections. With several simulated and real data applications, we found Meta-PCA efficient to detect significant transcriptomic features, and to recognize visual patterns for multi-omics data sets. In the future, the success of data integration analysis will play an important role in revealing the molecular and cellular process inside multiple data, and will facilitate disease subtype discovery and characterization that improve hypothesis generation towards precision medicine, and potentially advance public health research

    An Empirical Analysis of Predictive Machine Learning Algorithms on High-Dimensional Microarray Cancer Data

    Get PDF
    This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space p is much larger than the number of observations n. Seven gene-expression microarray cancer datasets, where the ratio Îș = n/p is less than one, were chosen for evaluation. The statistical and computational challenges inherent with this type of high-dimensional low sample size (HDLSS) data were explored. The capability and performance of a diverse set of machine learning algorithms is presented and compared. The sparsity and collinearity of the data being employed, in conjunction with the complexity of the algorithms studied, demanded rigorous and careful tuning of the hyperparameters and regularization parameters. This necessitated several extensions of cross-validation to be investigated, with the purpose of culminating in the best predictive performance. For the techniques evaluated in this thesis, regularization or kernelization, and often both, produced lower classiïŹcation error rates than randomized ensemble for all datasets used in this research. However, no one technique evaluated for classifying HDLSS microarray cancer data emerged as the universally best technique for predicting the generalization error.1 From the empirical analysis performed in this thesis, the following fundamentals emerged as being instrumental in consistently resulting in lower error rates when estimating the generalization error in this HDLSS microarray cancer data: ‱ Thoroughly investigate and understand the data ‱ Stratify during all sampling due to the uneven classes and extreme sparsity of this data. ‱ Perform 3 to 5 replicates of stratiïŹed cross-validation, implementing an adaptive K-fold, to determine the optimal tuning parameters. ‱ To estimate the generalization error in HDLSS data, replication is paramount. Replicate R=500 or R=1000 times with training and test sets of 2/3 and 1/3, respectively, to get the best generalization error estimate. ‱ Whenever possible, obtain an independent validation dataset. ‱ Seed the data for a fair and unbiased comparison among techniques. ‱ DeïŹne a methodology or standard set of process protocols to apply to machine learning research. This would prove very beneïŹcial in ensuring reproducibility and would enable better comparisons among techniques. _____ 1A predominant portion of this research was published in the Serdica Journal of Computing (Volume 8, Number 2, 2014) as proceedings from the 2014 Flint International Statistical Conference at Kettering University, Michigan, USA
    • 

    corecore