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Abstract
Effective diagnosis and treatment in cancer is a barrier for the development of personalized medicine,
mostly due to tumor heterogeneity. In the particular case of gliomas, highly heterogeneous brain tumors
at the histological, cellular and molecular levels, and exhibiting poor prognosis, the mechanisms behind
tumor heterogeneity and progression remain poorly understood.

The recent advances in biomedical high-throughput technologies have allowed the generation of
large amounts of molecular information from the patients that combined with statistical and machine
learning techniques can be used for the definition of glioma subtypes and targeted therapies, an invaluable
contribution to disease understanding and effective management.

In this work sparse and robust sparse logistic regression models with the elastic net penalty were
applied to glioma RNA-seq data from The Cancer Genome Atlas (TCGA), to identify relevant tran-
scriptomic features in the separation between lower-grade glioma (LGG) subtypes and identify putative
outlying observations. In general, all classification models yielded good accuracies, selecting different sets
of genes. Among the genes selected by the models, TXNDC12, TOMM20, PKIA, CARD8 and TAF12
have been reported as genes with relevant role in glioma development and progression. This highlights
the suitability of the present approach to disclose relevant genes and fosters the biological validation of
non-reported genes.
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1. Introduction
Lower-grade gliomas (LGG) represent a group of tumors of the Central Nervous System (CNS)
arising from the supporting glial cells of the CNS (Youssef & Miller, 2020). The highly invasive
nature and incomplete surgical resection in LGG are major responsible for tumor recurrence and
progression into high-grade gliomas, namely glioblastoma (GBM) (Kang et al., 2021). LGG are
heterogeneous tumors at the histopathological and genotypic levels (Louis et al., 2021), which calls
for the need to disclose diagnostic biomarkers and therapeutic targets towards the improvement in
the procedures applied to each patient, mainly diagnosis and treatment.

The great advances in the development of technologies such as high-throughput screening and
mass spectrometry, globally designated as “omics”, have now made possible getting into the molec-
ular heterogeneity of tumors and better characterizing cancer subtypes. The classification of LGG
subtypes has been evolving as the understanding of tumors progresses. The latest classification (Louis
et al., 2021; WHO, 2021) introduces changes that reflect the increasing role of molecular features
in complementing other established approaches to tumor characterization, namely histology and
immunohistochemistry, some based on novel technologies such as DNA methylomics (Louis et al.,
2021).

Despite the massive amounts of data generated by omics’ technologies, identifying the most
relevant information out of these high-dimensional data remains a complex task. The application
of machine learning techniques has shown promising in multi-omics data analysis, handling well
with the complexity of biological data in order to produce efficient results (Cai et al., 2022). In the
context of gliomas, machine learning techniques are useful for extracting relevant biomarkers to
support treatment decisions and patient monitoring (Wu et al., 2021).

One of the major challenges associated with the high-dimensional nature of omics data is the
need to find lower dimensions of the data which are informative, and to identify the most relevant
features in the molecular structure underlying the disease development and progression. Dimen-
sionality reduction and feature selection combined with pattern recognition methods have been used
for that purpose. Among these techniques, logistic regression and its sparsity-inducing modifica-
tions have been widely used in biomedical research, and their ability to dealing with several data
types recently led to its even more frequent application (Hastie et al., 2015). In gliomas’ research,
sparse logistic regression using different regularizers was successfully applied for classifying glioma
subtypes and grades, and GBM cell clones based on gene expression and radiomic features (Liu et al.,
2008; Lopes & Vinga, 2020; Nakamoto et al., 2019).

A wrong diagnosis leads to severe consequences regarding the appropriateness of the therapy
prescribed, and the overall cancer progression and survival. Therefore, models should be accurate
in classifying patients in the correct disease class and at the same time being able to identify pa-
tients deviating from the overall pattern of their attributed class. These might reflect a wrong class
membership or point to outlying features that deserve further investigation at the individual and
molecular levels. In high-dimensional scenarios, as in the case of omics data, with far more variables
than observations, both classical methods and sparsity-inducing counterparts are highly influenced
by these outlying observations, not being able to detect them and ultimately rendering regular ob-
servations as outliers, also known as the masking and swamping effects (Serfling & Wang, 2014).
Outlier observations not only strongly impact parameter estimation but also variable selection (Al-
fons et al., 2013). Therefore, methods that are robust to observations that deviate from the remaining
observations in the same group have been proposed, in particular, sparse modifications of the popu-
lar Least Trimmed Squares (LTS) robust estimator (Rousseeuw, 2013; Rousseeuw & Driessen, 2006)
have been successful applied to high-dimensional data, namely gene expression cancer data (Alfons
et al., 2013; Jensch et al., 2022; Segaert et al., 2019; Sun et al., 2021).

The goal of this work is the identification of key transcriptomic markers in LGG through sparse
logistic regression. Robust methods are used to classify patients into astrocytoma and oligoden-
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droglioma LGG subtypes, identify the relevant gene features separating the patient groups, and
identify outlying patients whose transcriptomic profile differs from the members of the same sub-
type. The LGG RNA-sequencing (RNA-seq) dataset was obtained from The Cancer Genome Atlas
(TCGA) data portal1.The obtained results are expected to contribute to glioma disease understand-
ing, therapy research and disease management.

2. Materials and Methods
2.1 Dataset
The glioma RNA-seq dataset was extracted from The Cancer Genome Atlas (TCGA) data portal,
comprising the expression of 20501 variables from 659 patients with the following glioma subtypes:
glioblastoma (GBM, 149 patients), astrocytoma (LGG-a, 193 patients), oligoastrocytoma (LGG-oa,
129 patients) and oligodendroglioma (LGG-od, 188 patients). Further classification analysis was
performed based on LGG patients, belonging to LGG-a and LGG-od subtypes, excluding LGG-
oa, a LGG subtype showing histological and molecular characteristics of both LGG-a and LGG-od
subtypes, therefore considered a mixed subtype (Sahm et al., 2014).

2.2 Binary classification methods
2.2.1 Sparse logistic regression with the elastic net penalty (SLR)
Let X = {x1, . . . , xN} be the set of observations, with each xi having p ∈ N variables and an
outcome yi ∈ Y that can be 0 or 1. In this work, class 1 represents patients with LGG-a, with class
0 representing patients with LGG-od. Logistic regression considers that the logit function of the
probabilities of the observations xi belonging to class 1 can be modeled with a linear regression as
follows:

log
πi

1 – πi
= β0 + β⊤xi + εi, β = (β1, . . . ,βp), πi = P(Yi = 1|Xi = xi), (1)

with βj corresponding to the coefficient associated to j-th variable, j ∈ {1, . . . , p}, and β0 the
independent term of the regression. Equation (1) leads to the modeling of those probabilities with
a sigmoid function with p + 1 parameters, defined as

P(Yi = 1|Xi = xi) =
1

1 + e–(β0+β⊤xi)
. (2)

The predicted probability indicates which class an observation will be assigned to, choosing
class 1 for xi if πi ≥ 0.5 and class 0 otherwise. The β0 and β coefficients in Equation (2) are then
estimated by minimizing the penalized negative log-likelihood function (Hastie et al., 2015) as

l(β0,β) = –
1
N

N∑
i=1

[
yi logπi + (1 – yi) log(1 – πi)

]
+ λFα(β), (3)

where Fα(β) induces sparsity in the classifier and represents the regularization term, which for the
elastic net (Zou & Hastie, 2005) is defined as

Fα(β) =
p∑

i=1

(
α|βi| +

1 – α

2
β2

i

)
, (4)

with α controlling the balance between the Lasso and Ridge penalties and λ controlling the strength
of the penalty.

1https://www.cancer.gov/tcga.

https://www.cancer.gov/tcga
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2.2.2 Robust sparse logistic regression with the elastic net penalty (rSLR)
Although SLR solves the problem of high dimensionality of the data inducing sparsity, these class
of models is still limited regarding outliers, since this observations aren’t penalized, biasing the op-
timum values obtained with Equation (3).

To handle this common issue, an adaptation of the Least Trimmed Squares (LTS) estimator for
robust linear regression was introduced in Kurnaz et al. (2018), given by

Q(H,β0,β) = –
1
h
∑
i∈H

[
yi logπi + (1 – yi) log(1 – πi)

]
+ λFα(β), (5)

where H ⊆ {1, 2, . . . , N} with |H| = h and Fα(β) is defined in Equation (4).
Therefore, β0 and β, as well as an optimal subset H of indexes, are now estimated by minimizing

Q(H,β0,β). In this work, h corresponds to 75% of the number of observations in the training set
(see Section 2.3).

Given its low efficiency, a reweighting step is commonly used to improve the LTS estimator
(Rousseeuw & Leroy, 2005). In this step, the Pearson residuals, given by

rsi =
yi – πi√
πi(1 – πi)

, i ∈ {1, . . . , N}, (6)

with πi defined in Equation (1), are computed since they are approximately normally distributed
for the logistic model.

The outliers of the current classifier are identified and reweighted through the application of a
weight wi to each observation xi, defining wi = 1 if

∣∣rsi ∣∣ ≤ Φ–1(0.975) and wi = 0 otherwise, with
Φ–1 being the inverse of the cumulative distribution function of the standard Gaussian distribution.
This way, the model flags 2.5% of the observations as outliers.

The function to minimize in order to obtain the values for β0 and β in the reweighted model
becomes

Qr(β0,β) = –
1

Nw

n∑
i=1

wi
[
yi logπi + (1 – yi) log(1 – πi)

]
+ λupdFα(β), (7)

with Nw =
∑N

i=1 wi and λupd the update of the λ value for the reweighted model, obtained by
cross-validation with the value of α already fixed.

2.3 Model construction
Before the application of the classification methods in Section 2.2, the Uniform Manifold Approxi-
mation and Projection (UMAP) algorithm (McInnes et al., 2018) was used to visualize LGG obser-
vations in a low-dimensional space and to get an initial idea of the separability between both classes.
UMAP is a popular non-linear feature extraction algorithm which allows the visualization of groups
of samples from high-dimensional data, while preserving of the global structure of the data.

For the construction of the classification models, the dataset was split into training (75%) and
test (25%) sets, leaving 285 patients for training and 96 patients for testing, and each observation
standardized by subtracting by the training set’s sample mean value and dividing by the training
set’s standard deviation for each feature.

Several SLR models were generated, using 8-fold cross-validation for the tuning of the parameter
λ by optimization of l(β0,β) (Equation (3)), considering α ∈ {0, 0.1, 0.2, ..., 0.9, 1}.

Following the same data splitting approach, cross-validation was performed to find the pair (α, λ)
that minimizes, in average, Q(H,β,β) (Equation (5)). The resulting parameter set was used to build
a rSLR model. All models were evaluated regarding the performance measured by the area under
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the receiver operating characteristic (ROC) curve (AUC), the number of misclassifications, and the
number of features selected.

The methods described in sections 2.1 and 2.2 were implemented and tested using version 4.1.3
of the R software (R Core Team, 2022), using packages umap (Konopka, 2022), readr (Wickham
et al., 2022), glmnet (Friedman et al., 2010), enetLTS (Kurnaz et al., 2022), pROC (Robin et al., 2011)
and VennDiagram (Chen, 2022).

3. Results and Discussion
3.1 Classification
A first exploratory analysis was performed to visualize how known histological LGG groups are
distributed in a lower dimensional UMAP space generated from gene expression data.

In Figure 1 some grouping structure can be found, with clusters of LGG-a (green) and LGG-
od (purple) observed, despite showing some overlap. This result highlights the relevance of tran-
scriptomic data to separate LGG subtypes and supports its further use for LGG classification and
biomarker selection, as discussed next.

Figure 1. UMAP representation of the dataset (LGG-a: patients with astrocytoma; LGG-od: patients with oligoden-
droglioma).

Prediction of LGG subtypes was then performed by SLR based on the RNA-seq data. Overall,
good prediction models were obtained in both training and test sets for all α values evaluated, re-
garding the number of misclassifications and AUC values (Table 1). The best predictive performance
was obtained for α = 0, yielding an AUC value of 0.8107 in the test set, though selecting almost
the entire gene set. As the goal is the selection of a small set of interpretable features, other α values
might be considered, e.g., α = 0.5, which selects a lower number of features and performs similarly
in the test set.

LGG subtypes were then predicted by rSLR. The λ values in Figure 2 were chosen according
to the λ1se range that was obtained for SLR. The (α, λ) pair minimizing the loss function for rSLR
was obtained for αopt = 0.7 and λopt = 0.02. The parameters were chosen for building the rSLR
model, whose results are summarized in Table 2.

Comparable predictive performance was obtained for rSLR with respect to SLR for the range of
α values considered. A total of 23 observations were flagged as outliers by rSLR (3 for the LGG-a
class and 20 for the LGG-od class), ending up as misclassifications in the training set. For some of
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Table 1. Results obtained with each fitted SLR (λ1se: the largest λ at which the mean squared error (MSE) is within one
standard error of the smallest MSE in the cross-validation; βi ̸= 0: number of features selected; Misc.: number of misclas-
sifications; AUC: area under the ROC curve value).

α λ1se βi ̸= 0 Training set Test set
Misc. AUC Misc. AUC

0 88.3081 20140 34 0.8799 18 0.8107
0.1 3.1007 7 130 0.5390 42 0.5532
0.2 0.7031 79 41 0.8552 19 0.8000
0.3 0.4910 52 40 0.8587 19 0.8000
0.4 0.3203 42 39 0.8623 19 0.8000
0.5 0.2127 41 36 0.8729 19 0.8005
0.6 0.1692 31 36 0.8729 20 0.7898
0.7 0.1385 30 36 0.8729 20 0.7898
0.8 0.1054 30 36 0.8729 22 0.7694
0.9 0.0894 26 36 0.8729 23 0.7592

1 0.0805 22 37 0.8693 23 0.7592

these outlying observations, their proximity to the opposite class can be confirmed in the UMAP
dimensions generated considering the expression data of the 99 genes selected by the rSLR model
(Figure 3), where the separation between the two LGG classes becomes more evident.

Figure 2. Cross-validation in order to find the pair (α,λ) that minimizes the average loss function for rSLR (TMNLL: mean
of the negative log-likelihoods).

Table 2. Results obtained with the fitted rSLR (αopt and λopt: the pair (α, λ) that gives the optimum value for the loss
function in the cross validation; λupd: the λ value for the reweighted model; βi ̸= 0: number of features selected; Misc.:
number of misclassifications; AUC: area under the ROC curve value).

αopt λopt λupd βi ̸= 0 Training set Test set
Misc. AUC Misc. AUC

0.7 0.02 0.0171 99 27 0.9046 21 0.7792

3.2 Selected genes
For biological interpretation purposes, a closer inspection on the genes selected by SLR and rSLR
was performed. Considering the genes selected in common by the SLR models excluding the one
obtained withα = 0.1 due to its low AUC value for the test set (see Table 3), the thioredoxin domain-
containing 12 (TXNDC12) gene, which is a highly expressed gene in gliomas and has been pointed
as a potential molecular marker for glioma pathological grade and prognosis (Wang et al., 2021),
showed one of the largest absolute coefficient values.
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Figure 3. UMAP representation of the dataset based on the features selected by the rSLR model (LGG-a: patients with
astrocytoma; LGG-a.out: outlier patients within the astrocytoma class; LGG-od: patients with oligodendroglioma; LGG-
od.out: outlier patients within the oligodendroglioma class).

Table 3. Genes selected in common by the SLR models (excluding α = 0.1), ordered left to right by decreasing absolute
values of the coefficients in the SLR model obtained for α = 0.2.

LSM14A CARD8 TXNDC12 NADK THRAP3
TRAPPC3 FAM155A LRRTM4 WLS VRK3
USF2 LOC148189 ERCC1 ACADM XRCC1
PITPNB PRAM1 FGF20

The intersection of the gene sets obtained by SLR and rSLR models is illustrated in Figure 4.
The SLR model obtained for α = 0.2 was chosen for its similarity in the number of selected features
and comparable AUC value with the rSLR model. Thirty-three genes were selected in common by
the two models, leaving 46 exclusively selected by SLR and 66 by rSLR.

Figure 4. Venn diagram with the intersection of the genes selected by SLR with α = 0.2 and rSLR.

The genes selected by the models can be found in Table 4. Among the relevant genes identified
in the separation of patients into LGG-a and LGG-od subtypes, several have been reported in the
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literature as playing a role in gliomas, with the translocase of outer mitochondrial membrane 20
(TOMM20) (Zheng et al., 2022), cAMP-dependent protein kinase inhibitor alpha (PKIA) (Ratushna,
2020), caspase recruitment domain-containing protein 8 (CARD8) (Sharma et al., 2019) and TATA-
box binding protein associated factor 12 (TAF12) (Ren et al., 2015; Wijethilake et al., 2020) standing
out as genes involved in glioma proliferation and tumorigenesis. These genes also showed among
the largest coefficients for rSLR (Figure 5).

Table 4. Genes selected exclusively and simultaneously by SLR and rSLR (highlighted genes have their rSLR’s absolute
coefficients greater than 0.15; *Ordered left to right by decreasing absolute values of the coefficients in rSLR; **Ordered
left to right by decreasing absolute values of the coefficients in SLR).

genes(rSLR) \ genes(SLR)* TOMM20 FNBP1L MLLT3 PKIA SPINK5
GRIK5 IQCF6 AKT2 PTPN20A FAM13C
CCL22 GRM8 MTF2 CASC3 TCHH
LEKR1 ZNF792 WNT9B ZMYM4 TTLL12

GOLGA6L1 CNTNAP2 LOC401463 SEC63 TTC19
OR11H12 ADH6 ZNF766 SHANK2 GPR119
C1orf50 C15orf57 DGCR2 ZNF813 TARDBP
FARP1 TMEM30A RPAP2 SLC25A44 ZFAND6
FMOD CCDC23 FAM134A LRPPRC ARV1
OSBPL9 OR5K2 OR13H1 C9orf93 THEM4
PKN2 IL1F6 MMP26 DEFB110 SYN3
PEF1 MYL10 LSG1 AFARP1 ZNF71
MCF2 STK38 DBT SNX7 KAZ
NLRP3

genes(SLR) \ genes(rSLR)** TXNDC12 NADK THRAP3 AK2 FAM155A
WLS ERCC1 CHGB HDAC1 XRCC1
WDR77 RIC3 CSDE1 MOV10 SF3A3
ETHE1 PITPNB LOC148413 ZNF362 PRAM1
CDK11B INPP5D CAPZB NECAP2 SCP2
SLAIN1 DNAJC8 ATCAY PRKD2 STAT5A
RHOC PSMC4 RER1 CACNG2 FAM54B

SNRNP40 LSM10 PHACTR4 ASAP3 U2AF2
PAFAH2 NFIA MEGF8 ZDHHC22 PEPD
SDF4

genes(SLR) ∩ genes(rSLR)* LOC148189 CARD8 CD3EAP ZNF691 TTC4
VRK3 TAF12 LSM14A FGF20 PABPC4
USF2 WASF2 FBXO42 POP4 C12orf43

TMEM87A S100PBP LRRTM4 ACADM ZNF181
MIER1 SFRS4 KDELR1 GPBP1L1 C19orf61
PAK4 TRAPPC3 ADPRHL2 KIAA2013 NUP62
HECTD3 PDCD2L CMPK1

4. Conclusions
Understanding heterogeneity in gliomas is a critical step towards the definition of appropriate di-
agnostic and therapy decision that ultimately will help improving patient prognosis. Biomedi-
cal research now benefits from the advances in high-throughput technologies generating high-
dimensional omics data. Despite the remarkable advances in the molecular understanding of tumors,
uncertainty remains for tumors deviating from the overall pattern of the defined tumor subtypes.
This fosters the need to develop appropriate statistical and machine learning strategies which are
able to identify the relevant features that accurately predict tumor subtype and identify outlying
observations. Such approach might be particularly relevant in the case of gliomas, for which great
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Figure 5. Values for the coefficients of the genes that were selected by the rSLR classifier.

efforts have been pursued to incorporate molecular information into classification guidelines. In
this work, sparse and robust sparse logistic regression was applied to LGG RNA-seq data to predict
LGG subtypes and identify outlying patients. Despite the overlap of the different subtypes, both
SLR and rSLR performed well in their separation. Several observations were flagged as outliers
by rSLR and at the same time classified in the opposite class. Further efforts might be pursued to
confirm patient outlierness through the update of patient labels according to most recent CNS clas-
sification by WHO. Moreover, among the genes selected as relevant in the separation between LGG
subtypes, several are known to have a role in cancer and in gliomas (e.g, TXNDC12, TOMM20,
PKIA, CARD8 and TAF12), therefore encouraging further biological validation of genes with an
unknown role in gliomas among the genes selected.
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