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Abstract

Over the decades, many statistical learning techniques such as supervised learning, un-

supervised learning, dimension reduction technique have played ground breaking roles for

important tasks in biomedical research. More recently, multi-omics data integration analysis

has become increasingly popular to answer to many intractable biomedical questions, to im-

prove statistical power by exploiting large size samples and di↵erent types omics data, and to

replicate individual experiments for validation. This dissertation covers the several analytic

methods and frameworks to tackle with practical problems in multi-omics data integration

analysis.

Supervised prediction rules have been widely applied to high-throughput omics data to

predict disease diagnosis, prognosis or survival risk. The top scoring pair (TSP) algorithm

is a supervised discriminant rule that applies a robust simple rank-based algorithm to iden-

tify rank-altered gene pairs in case/control classes. TSP usually generates greatly reduced

accuracy in inter-study prediction (i.e., the prediction model is established in the training

study and applied to an independent test study). In the first part, we introduce a MetaTSP

algorithm that combines multiple transcriptomic studies and generates a robust prediction

model applicable to independent test studies.

One important objective of omics data analysis is clustering unlabeled patients in order

to identify meaningful disease subtypes. In the second part, we propose a group structured
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integrative clustering method to incorporate a sparse overlapping group lasso technique and a

tight clustering via regularization to integrate inter-omics regulation flow, and to encourage

outlier samples scattering away from tight clusters. We show by two real examples and

simulated data that our proposed methods improve the existing integrative clustering in

clustering accuracy, biological interpretation, and are able to generate coherent tight clusters.

Principal component analysis (PCA) is commonly used for projection to low-dimensional 

space for visualization. In the third part, we introduce two meta-analysis frameworks of PCA 

(Meta-PCA) for analyzing multiple high-dimensional studies in common principal component 

space. Theoretically, Meta-PCA specializes to identify meta principal component (Meta-PC) 

space; (1) by decomposing the sum of variances and (2) by minimizing the sum of squared 

cosines. Applications to various simulated data shows that Meta-PCAs outstandingly iden-

tify true principal component space, and retain robustness to noise features and outlier 

samples. We also propose sparse Meta-PCAs that penalize principal components in order to 

selectively accommodate significant principal component projections. With several simulated 

and real data applications, we found Meta-PCA e�cient to detect significant transcriptomic 

features, and to recognize visual patterns for multi-omics data sets.

In the future, the success of data integration analysis will play an important role in 

revealing the molecular and cellular process inside multiple data, and will facilitate disease 

subtype discovery and characterization that improve hypothesis generation towards pre-

cision medicine, and potentially advance public health research.

iv



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview of high-throughput omics data . . . . . . . . . . . . . . . . . . . . 1

1.1.1 High-throughput data analysis . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 High-throughput omics data technologies . . . . . . . . . . . . . . . . 2

1.1.2.1 Microarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2.2 Next-generation sequencing (NGS) . . . . . . . . . . . . . . . 3

1.1.3 Data structure of omics study . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Machine learning analysis on high-throughput omics data . . . . . . . . . . 5

1.2.1 Major aims of statistical analysis in bioinformatics . . . . . . . . . . . 5

1.2.2 Unsupervised learning on omics data . . . . . . . . . . . . . . . . . . 7

1.2.3 Supervised discriminant analyses on omics data . . . . . . . . . . . . . 8

1.3 Dimension reduction on high-throughput omics data . . . . . . . . . . . . . 9

1.3.1 Principal component analysis (PCA) . . . . . . . . . . . . . . . . . . . 10

1.3.2 Regularized principal component analysis (Sparse PCA) . . . . . . . . 10

1.4 Multi-omics data integration analysis . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Horizontal omics data integration (Meta-analysis) . . . . . . . . . . . 12

1.4.2 Vertical omics data integration . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Overview of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.0 A TOP SCORING PAIR ALGORITHM IN META-ANALYTIC FRAME-

WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



2.2.1 Top scoring pair algorithm (TSP) and kTSP . . . . . . . . . . . . . . 18

2.2.2 Estimate K for kTSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Meta-kTSP algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Estimate K for Meta-kTSP . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Application to genomic data sets . . . . . . . . . . . . . . . . . . . . . 30

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.0 INTEGRATIVE MULTI-OMICS CLUSTERING FOR DISEASE SUB-

TYPE DISCOVERY BY SPARSE OVERLAPPING GROUP LASSO

AND TIGHT CLUSTERING . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Integrative clustering (iCluster) . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Group structured and tight integrative clustering . . . . . . . . . . . . . . . 42

3.3.1 Sparse overlapping group lasso . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Group structured integrative clustering (GS-iCluster) . . . . . . . . . 44

3.3.3 Group structured tight integrative clustering (GST-iCluster) . . . . . 47

3.3.4 Selection of penalization constant for GS-iCluster . . . . . . . . . . . 47

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Integration of mRNA, methylation and CNV using TCGA breast can-

cer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Integration of mRNA and miRNA using TCGA breast data . . . . . . 56

3.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.0 META-ANALYTIC FRAMEWORKS FOR PRINCIPAL COMPONENT

ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Meta-PCA via sum of variance decomposition (SV) . . . . . . . . . . 66

4.2.2 Meta-PCA via Sum of squared cosine (SSC) maximization . . . . . . 67

vi



4.2.3 Variable selection of Meta-PCAs (Meta-sparsePCA) . . . . . . . . . . 69

4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 True eigenvector detection of Meta-PCA . . . . . . . . . . . . . . . . 70

4.3.2 Robustness of Meta-PCA . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Application to real data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Spellman’s cell cycle data . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Prostate cancer data . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.3 TCGA cancer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.4 Mouse Metabolism Data . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.1 Best choice of Meta-PC dimension . . . . . . . . . . . . . . . . . . . . 85

4.6.2 Penalization constant for Meta-sparsePCA . . . . . . . . . . . . . . . 85

5.0 FUTURE WORKS AND CONCLUSION . . . . . . . . . . . . . . . . . . 91

5.1 Meta-KTSP extended to multi-omics and multi-class problems . . . . . . . . 91

5.2 GS-iCluster reflecting feature regulatory directions . . . . . . . . . . . . . . 92

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vii



LIST OF TABLES

1 The list of nine identified gene pairs of Average Meta-KTSP and the existing

breast cancer gene signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Shown are the brief descriptions of the nineteen microarray datasets of disease-

related binary phenotypes (e.g., case and control or ER+/-). All datasets are

publicly available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Smoothing proximal gradient descent algorithm for structured likelihood func-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Analysis of three pathways over selected genes from both GS-iCluster and

iCluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 The number of selected features in modules with two or more features. . . . . 57

6 miRNAs set enrichment analysis of miRCancer database . . . . . . . . . . . 59

7 The algorithm of Meta-PCA via sum of variance decomposition (SV) . . . . . 67

8 The algorithm of Meta-PCA (Sum of squared cosine (SSC) maximization) . . 70

9 The four proposed methods of Meta-SparsePCAs for variable selection . . . . 71

10 The summary of four prostate cancer data. . . . . . . . . . . . . . . . . . . . 79

11 Fisher discriminant scores of PC projections (prostate cancer data). . . . . . 81

12 The summary of six TCGA methylation data. . . . . . . . . . . . . . . . . . 82

13 Fisher discriminant scores of PC projections (TCGA pan-cancer data; Class

lables: Tumor, Normal, Male and Female). . . . . . . . . . . . . . . . . . . . 86

14 Fisher discriminant scores of PC projections (mouse metabolism data) . . . . 88

15 The summary of four mouse metabolism microarray datasets. . . . . . . . . . 88

viii



LIST OF FIGURES

1 Data structure of multiple genomic studies . . . . . . . . . . . . . . . . . . . 4

2 Overview of high-throughput data analysis. . . . . . . . . . . . . . . . . . . . 6

3 Two major types of omics data integration (A) Horizontal omics meta-analysis

to combine K transcriptomic datasets (B) Vertical omics integrative analysis

to combine di↵erent omics data in a given cohort. . . . . . . . . . . . . . . . 11

4 Two TSP examples from real data to show advantage of MetaTSP. X-axis and

Y-axis refer to sample indices and gene expression levels, respectively. (A)

Gene pair ITGAX/XBP1 has high TSP score (XBP1>ITGAX in controls but

ITGAX>XBP1 in cases) in the training ‘Emblom’ study but fail to replicate in

the testing ‘Konishi’ study as well as the other two Tedrow B and Pardo stud-

ies. (B) Gene pair GPR160/COMP has high TSP scores (GPR160>COMP in

controls and COMP>GPR160 in cases) in all three training studies ‘Emblom’,

‘Tedrow B’ and ‘Pardo’. The gene pair is successfully validated in the testing

‘Konishi’ study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Results of inter-study prediction using four simulated data sets (A: µa = 1, B:

µa = 0.8; n1

1

= n2

1

= 100). Y-axis represents the average Youden index. The

bar plots indicate the standard error of estimated Youden index. . . . . . . . 25

6 Three examples of Inter-study prediction with applications to real data sets

(A. Breast Cancer: ER+ vs ER-, B. Idiopathic pulmonary fibrosis, B. Six

di↵erents cancers in TCGA). Y-axis represents the average Youden index. . 28

ix



7 Comparison between single TSP scores and Meta-TSP scores using TCGA

cancer data sets. The upper panels illustrate the scores of single study TSP to

test data set (Ovarian; OV), whereas the bottom panel shows the Meta-TSP

scores of multiple the train studies to test data set (Ovarian; OV). . . . . . . 29

8 Heatmap of the four simulated data. Genes encircled by red dotted line refer

to correlated consensus genes. Study-specific genes are encircled by the blue

dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9 Simulation results of the methods of TSP and MetaTSP family (µa = 1). . . . 35

10 Simulation results of the methods of TSP and MetaTSP family (µa = 0.8). . . 36

11 Performance comparisons of the methods of TSP and MetaTSP family using

breast cancer mRNA data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12 Performance comparisons of the methods of TSP and MetaTSP family using

lung disease mRNA data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13 Performance comparisons of the methods of TSP and MetaTSP family using

TCGA pan cancer methylation data. . . . . . . . . . . . . . . . . . . . . . . . 39

14 An example of penalization constant C implemented in sparse overlapping

group lasso technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

15 Heatmap of three omics (Gene, Methylation, and CNV) features selected via

(A: Group structured / B: iCluster) integrative clustering. For ER and PR

status, the pink and green colors represent ER-positive and ER-negative, re-

spectively. For the rest, the pink color refers to Basal-like, Luminal A/B, and

HER2 enriched, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

16 Scatter plots of the top 12 feature modules that are negatively or positively

mapped to the ordered mRNA features. Red, Blue, and Black colors rep-

resent Methylation, CNV, and mRNA feature intensities, respectively. The

values at the corner are correlations between two involving features, and each

solid line represents a simple linear regression model of Methylation (Red) and

CNV (Blue). Y-axis refers to expression levels, and X-axis samples ordered by

mRNA expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

x



17 Manhattan plots of pathway enrichment analysis (A: Result from GS-iCluster

/ B: Result from iCluster). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

18 Heatmap of two omics (A:mRNA, Methylation and CNV / B:mRNA and

miRNA) features selected via GST-iCluster. . . . . . . . . . . . . . . . . . . . 56

19 A: Heatmap of two omics (mRNA and miRNA) features selected via Group

structured integrative clustering, B:Heatmap of two omics (mRNA and miRNA)

features selected via iCluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

20 Performance comparisons between Group-structured integrative clustering and

standard iCluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

21 Examples of dimension reduction via PCA and Meta-PCA (SSC) over the

four mouse metabolism omics data. The x-axis and y-axis refer to the first

and second principal component projection. Red (WT), black (VLCAD), and

blue (LCAD) colors represent wild-type, very longchain acyl-coenzyme A dehy-

drogenase (VLCAD), and longchain acyl-coenzyme A dehydrogenase (LCAD)

deficiencies, respectively. Each figure (star, square, circle, and triangle) repre-

sents each study label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

22 Geometrical illustrations for common principal component space (SSC). . . . 68

23 Performance comparisons (Meta-PCAs, PCA and JIVE) of the e↵ects on the

number of studies for estimating true eigenvector. “SV”, “SSC” refer to Meta-

PCA (SV) and Meta-PCA (SSC). “Single” represents standard PCA of each

individual study (A: C = 0.1, B: C = 0.5, C and D: C = 1). . . . . . . . . . 73

24 Robustness comparisons of Meta-PCA, JIVE and PCA to outliers and noises.

The y-axis represents the averages of Fisher discriminant scores, and the x-axis

the magnitude of cluster separation. The figure presents the two MetaPCA

methods SV (dot), SSC (triangle), JIVE (circle) and standard PCA (Single,

star) applied to each individual study. . . . . . . . . . . . . . . . . . . . . . . 75

25 Two dimensional PC projections of PCA, Meta-PCAs (SV, SSC), JIVE using

four mRNA expression data sets of Spellman’s yeast cellcycle experiment. The

numbers on the lines indicate time point during the two cell cycles. The first

and second PC projection are on the x-axis and y-axis of each panel, respectively. 78

xi



26 Two dimensional PC projections using four prostate cancer mRNA expression

data sets; star (normal), square (primary tumor) and circle (metastasis tissues).

The first and second PC projections are on the x-axis and y-axis, respectively. 80

27 Two dimensional PC projections using methylation expressions of six di↵erent

cancers (TCGA) data; Tumor (square), Normal (dot), Male (black) and Female

(grey). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

28 Two dimensional PC projections using mRNA expressions of four mouse metabolo-

ism data; WT (square), LCAD (dot) and VLCAD (star). . . . . . . . . . . . 87

29 The example of scree plot to determine the optimal dimension reduction of

Meta-PCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

30 The example of scree plot to determine the penalization constant for Meta-

sparsePCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xii



1.0 INTRODUCTION

1.1 OVERVIEW OF HIGH-THROUGHPUT OMICS DATA

1.1.1 High-throughput data analysis

The system biological information flow is fundamentally rooted upon the central dogma

paradigm from DNA to RNA, and RNA to Protein. This principle applies to all living

creatures with exception of some simple organisms. DNA, encoding for genetic instructions,

contains all necessary information for transcribing RNA transcripts, and hence functions

as the structural sketch for cellular and bio-molecular mechanisms. The ground-breaking

genome projects expedite deciphering genetic information of molecular organisms. Partic-

ularly, whole genome sequencing has become a bifurcation toward the biomedical research

history. Such advances in genomic technologies have spurred technological orchestration

among various disciplines of biomedical, physiological, and bio-chemical sciences, and facili-

tated the understanding of organismic functions, evolution and disease psychophysiology.

With the advance of modern bioinformatics, high-throughput technologies such as DNA

microarrays, next generation sequencing (NGS) or mass spectrometry progressively produce

abundant large genome-scale data with hundreds of thousands of features and large sample

sizes. Over the past decades, genome profiling techniques have become viable at di↵er-

ent levels of molecular cells and cellular organisms, including epigenome, transcriptome,

metabolome, proteome, and interactome (Joyce et al., 2006). In addition, many other bioin-

formatics technologies, such as proteomics assays and imaging techniques (e.g. fMRI and

PET scan) have been actively applied to support the biomedical research community. Since

each type of omics data has its unique characteristics, techniques that can accommodate

1



di↵erences of multiple types of omic data have been heavily sought beyond traditional bioin-

formatics analysis. Recently, multi-omics data integration analysis has been highlighted by

considering to elucidate inter-regulatory flows and whole bio-molecular systems. It has also

revolutionized the understanding of the complex molecular biology process and disease devel-

opments (Cancer Genome Atlas Research Network, 2012). Furthermore, with the advances of

hight-throughput technologies and rapid drop of the genomic experimental cost, generation

of genomic data has been exponentially increased. Several large-scale data depositories have

been constructed for public access such as Gene Expression Omnibus (GEO), ArrayExpress

and Sequence Read Archive (SRA), and The Cancer Genome Atlas (TCGA). The emerging

of large scale multi-omic data provides great opportunities for data integration analysis in

the future.

1.1.2 High-throughput omics data technologies

1.1.2.1 Microarrays have been widely utilized in most of biological research domain

and produced various real applications for translational research (?). Particularly, microar-

ray data have been analyzed, together with computational algorithms and machine learning

techniques, in applications for drug discovery, biomarker detection, pharmacology, toxicoge-

nomics, prognostic testing, population genomics and disease subtype identifications. In the

microarray technology, tens of thousands of microarray probes are immobilized on a solid

support, such as a microscope glass slide or silicon chips. Labeled target sequences bind to

probes for identifying unknown sequences. mRNA is reversely transcribed, amplified and

hybridized to cDNA templates. Several levels of mRNA bound to di↵erent sites on the array

for expression profiles of thousands of genes, and/or even the whole genome. The microar-

ray technique can also be applied to detect single nucleotide polymorphisms (SNPs), copy

number variation (CNVs), DNA methylation, and protein-DNA binding.

Since bulk microarray data sets have been generated, public access of those datasets

have been required in hope of routinely storing and openly sharing of the data resources

in the public domain. The National Center for Biotechnology Information (NCBI) has

managed Gene Expression Omnibus (GEO), where a multitude of gene expression data

2



sets are available. The Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/)

provides large-scale microarray datasets that can be downloaded via a public access. Up

to date, TCGA has accumulated over 600 miroarray samples that are clinically annotated

to primary breast cancer specimens. In this dissertation, several public microarray datasets

are used to demonstrate our novel bioinformatics analysis methods such as robust prediction

rules, coherent disease subtype identification, feature discovery, and dimension reduction for

data visualization.

1.1.2.2 Next-generation sequencing (NGS) has been introduced in recent years, and

mostly used in many biomedical applications (e.g., mutation discovery, meta-genomics, defin-

ing DNA-protein interactions, noncoding RNAs, and de-novo assembly of transcriptomic se-

quences, (Mardis, 2008). Next-generation sequencing is so-called ultra deep high-throughput

that processes millions of sequence reads simultaneously. The workflow is to bind specific

adapter oligos to both ends of each DNA fragment and then sequence the DNA fragments.

Next-generation sequencers can generate short sequencing reads while read lengths can vary

depending on user preference, technologies or platforms (e.g., Illumina1, SOLiD2, Roche).

The generated short sequencing reads are aligned to a reference genome or transcriptome to

quantify the expression levels of genes or transcripts by counting mapped short reads.

RNA-Seq is the most popular next-generation sequencing technology to quantify gene

expression. RNA-Seq is an e�cient way to produce gene-expression profiles, transcriptional

structures of genes, and post-transcriptional modifications. Compared to the microarray

technology, RNA-Seq has quite a few better properties such as high resolution, novel exons

and genes detection, higher specificity and sensitivity with low background noise, no need for

reference sequence, distinguishing isoforms and allelic expression (Wang et al., 2009), and

accurately measuring the amounts of transcripts and their isoforms (alternatively spliced

transcripts from the same gene). RNA-Seq can be flexibly extended to di↵erent types of

analyses, for example, single nucleotide polymorphism discovery, alternative transcript iden-

tification, and gene expression profiling. TCGA projects also include thousands of primary

tumor samples from more than 30 di↵erent tumor types in order to study underlying mech-

anism of malignant transformation and progression (http://tcga-data.nci.nih.gov/tcga).

3
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Figure 1: Data structure of multiple genomic studies

1.1.3 Data structure of omics study

In genomic data analysis, large-scale genomic data are generated under various conditions

for di↵erent tissue samples. As shown in Figure 1, the data after proper pre-processing are

in an expression matrix D = {x(m)

ij } (1  i  G, 1  j  n(m), 1  m  M), where the rows

refer to expression features, the columns represent sample profiles, and x
(m)

ij is the expression

level for gene i in sample j of study m. �!gi (m) = {x(m)

i1 , . . . , x
(m)

in(m)} is the ith gene vector that

contains expression levels across all samples of study m. �!sj (m) = {x(m)

1j ; . . . , x(m)

Gj } is the jth

sample vector of expression levels across all gene features in study m. In microarray data,

x
(m)

ij is a log2 transformed of raw intensity or an intensity ratio as continuous values. For

RNA-Seq data, x(m)

ij is the read count of gene i of subject j in study m. In this dissertation,

we use these notations and the dataset structure unless explicitly described.
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1.2 MACHINE LEARNING ANALYSIS ON HIGH-THROUGHPUT OMICS

DATA

1.2.1 Major aims of statistical analysis in bioinformatics

The analyses of high-throughput data can be classified into two based on its major objectives.

The first aim is to decipher underlying biological or disease development system through var-

ious omics data from di↵erent patient cohorts or/and various treatments. Exploitative and

analytic methods such as di↵erential expression (DE) analysis, clustering analysis, pathway

analysis, and network analysis (Hawkins et al., 2010; Quackenbush, 2001) have played cru-

cial roles in the identification of relations between bio-molecular units and clinical phenotype

patterns (e.g., candidate biomarker detection, disease subtype identification and associated

biological pathways) (Figure 2). This analytic trend has also revolutionized the target drug

development, preventive disease procedures (Zografos et al., 2013) that will ultimately lead

to “translational medicine” (Winslow et al., 2012). For example, breast cancer developments

has diverse patterns that depend on expressed marker genes related to Estrogen Receptor

(ER)-positive or negative. Accurate biomarker detection closely links to the success of rele-

vant clinical treatments and/or radio- or chemotherapy.

The second objective is to identify novel biomarker classifiers for clinical trial design and

decision theory in many biomedical applications (Baek et al., 2009). The advent of prediction

rules applicable to high-throughput omics data facilitates novel translational products such

as disease diagnosis, prognosis prediction, treatment selection, preventative intervention, and

precision medicine. However, high-throughput genomic, proteomic and metabolomic data

brings new challenges in constructing robust prediction models. Model building with e↵ective

feature selection closely links to success in the development of a biomarker classifier. For

this reason, the e↵ort to detect biomarkers of disease development (translational products

in the aim above) can closely related to developing accurate and feasible prediction models

(Figure 2).

In Chapter 2, we propose “meta top scoring pairs (Meta-TSP)”, a robust prediction

model using the rank-order of paired genes. Meta-TSP can successfully function as a disease
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prediction model. In Chapter 3, we develop “group structured tight integrative clustering

(GST-iCluster)”. We show that GST-iCluster can e�ciently identify biologically relevant

genes related to disease development mechanisms, and discover coherent disease subtypes.

We expect these machine learning methods will significantly contribute to the community of

the high-throughput omic data analysis.

High throughput omics data 
(e.g. microarray, NGS, proteomics) 

•  Understand disease 
mechanisms 

•  Differential expression 
analysis  

•  Cluster analysis 
•  Pathway enrichment 

analysis 
•  Network analysis 

•  Biomarkers of disease 
development 

•  Targeted drug 
development 

•  Preventive treatment 

•  Develop prediction 
model 

•  Discriminant rules by 
machine learning 

•  Decision model 
•  Clinical trial design 

•  Disease diagnosis, 
prognosis, treatment 
decision 

•  Precision medicine 
•  Disease prevention 

Data source 

Goals 

Bioinformatics 
techniques 

Translational 
products 

Figure 2: Overview of high-throughput data analysis.
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1.2.2 Unsupervised learning on omics data

Unsupervised machine learning, aka clustering analysis, is a set of methods that do not rely

on class label information, and separate samples into clusters under a predefined distance

measure. By nature of unsupervised learning, it is intractable to evaluate its statistical prop-

erty and performance due to the absence of so-called “gold standard”. When performing

clustering analysis, a distance or dissimilarity matrix measures the degree of closeness or sep-

aration of each pair of observations, and thereby a clustering algorithm can assign samples in

proximity to each cluster. Many classical algorithms such as hierarchical clustering (Defays,

1977), K-means (Hartigan et al., 1979), self-organizing maps (Kohonen, 1982), Gaussian

mixture model-based clustering (Banfield et al., 1993) and Bayesian clustering (Laua et al.,

2007) have been developed. In addition, to control separation degrees of estimated clusters,

a few cutting-edge methods have been proposed such as tight clustering (Tseng and Wong,

2005), penalized K-means (Tseng, 2007), and consensus clustering (Monti et al., 2003).

Consider a gene expression matrix of p genes and n samples. The data matrix can be

viewed from row-wise (clustering genes) or column-wise (clustering samples) perspectives.

When performing gene clustering, it is believed that highly correlated genes have a high

chance of belonging to the same co-regulated systems and similar biological functions. Such

gene cluster analysis generates gene modules that reveals relevant biological functions and

evidences. In contrast, the problem of disease subtype discovery (clustering samples) has also

been received wide attention. The purpose of subtype discovery is to cluster samples based

on expression profiles in hope of identifying patient clusters with biologically (e.g. di↵erent

pathway activation and disease progression mechanisms) and clinically (e.g. di↵erent drug

response or survival) meaningful disease subtypes. For example, breast cancer was once

thought as one type of disease. However, the well-known paper from Perous lab (Perou et al.,

2010) applied hierarchical clustering in their microarray dataset and successfully identified

five molecular breast cancer subtypes (Luminal A, Luminal B, Basal, Her2, and Normal-

like) and demonstrated their biological and clinical relevance. This finding of novel disease

subtypes will eventually become the fundamental basis for precision medicine.
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1.2.3 Supervised discriminant analyses on omics data

Supervised machine learning has contributed to the advance of biomedical and clinical appli-

cations. In general, the task is to learn a classification model from training high-throughput

data and predict the disease status or prognosis for incoming new patients. For instance,

MammaPrint (Cardoso et al., 2007) established via supervised learning is a diagnostic tool

to assess the metastatic risk of breast tumor based on the Amsterdam 70-gene breast cancer

signature. MammaPrint measures a dichotomous risk using microarray profiles and samples

from lymph node-negative breast cancers.

Here we introduce the generic data structure for supervised machine learning. Let G

dimensional random vector
�!
X = (�!g

1

, . . . ,�!gG) be the input data of population as covariates

(e.g. the gene expression of G genes) and a random variable Y of values on {1, 2, . . . , K}

as the class labels. In biomedical research, X can be high-throughput data that contain G

features of clinical variables, gene expression levels, miRNA expression levels, protein ex-

pression levels, methylation intensities, SNPs/mutations. Y represents labels for di↵erent

groups such as “disease vs control”, “metastatic vs non-metastatic”, “short patient survival

vs long patient survival”, “drug respondents vs non-respondents” or “multiple disease sub-

types”. The observed data as a whole comprise n patients: D = ((y
1

,�!s
1

), . . . , (yn,
�!sn)) where

(yj,
�!sj ) ⇠ (Y,

�!
X ) for 1  j  n. Using supervised learning techniques, a model is learned

from the observed data D (including label information), and predicts new labels for future

patients.

When applying machine learning techniques, it is essential to understand the motivations

and details of each algorithm (e.g. data distribution assumption) to achieve accurate and

interpretable results. The true distribution of data is typically unknown and is impossible to

precisely estimate under high-dimensional settings due to “Curse of dimensionality” (refer

to Section 1.3) . This problem has led to development of various machine learning methods

based on di↵erent assumptions and types of data structure. To analyze high-throughput

data, many popular machine learning methods have been proposed and applied, such as

logistic regression, linear (quadratic) discriminant analysis, classification and regression tree

(CART), random forest and support vector machines. There are also many fundamental
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issues for better fitting machine learning models, e.g. cross-validation, feature selection and

avoiding overfitting.

1.3 DIMENSION REDUCTION ON HIGH-THROUGHPUT OMICS DATA

With the advances in technology, high-dimensional data are now commonly generated in a

wide range of research fields including genomics, signal processing, and financial risk man-

agement. The data analysis methods to deal with high dimensionality have been received

increasing attentions as high-dimensional and large size data are accumulated over the years.

The term of “Curse of dimensionality” introduced by Richard Bellman (Richard et al., 1957)

refers to problems that occur under high-dimension of state variables in optimization prob-

lems (e.g. the computing complexity increases exponentially as the dimension increases). As

a solution to this, he proposed a dynamic programming method for particular optimization

problems. When fitting statistical models, the “curse of dimensionality” causes estimation

to converge at a very slow rate. For example, the required sample sizes are only 4 and 19

for one or two dimensional space, whereas the required sample size rises to 842,000 if the

dimension increases to 10. Another example is “concentration of measure” that influences

the shape of a standard multivariate (d-dimensional) normal distribution. When d=1 or 2,

the density concentrates to the origin, but when d is large, the distribution is concentrated

on a d-dimensional sphere/shell with radius equals
p
d.

To circumvent high dimensionality problems, many dimension reduction techniques have

been developed (e.g. Principal component analysis (PCA), multidimensional scaling (MDS),

non-negative matrix factorization (NMF), etc.). In particular, the dimension reduction is

suitable for high-throughput genomic data analysis, in which the signals of interest to dif-

ferentiate groups tend to be in lower dimension subspace. Nevertheless, there are still many

practical challenges of PCA method to deal with high-dimensional data. For example, noise

features contained in most of large-scale microarray data often cause potential failure of

dimension reduction (Hubert et al., 2005).

9



1.3.1 Principal component analysis (PCA)

Principal component analysis (PCA) has been one of the most popular data-processing and

dimension reduction technique in multivariate analysis. It is particularly suitable to discover

low-dimensional signals for high-dimensional data. In the setting of small-p and large-n,

the estimated principal components of the covariance matrix are shown to be consistent

as the sample size n increases when p fixed. For high-throughput data analysis, PCA has

been applied to gene expression data (Alter et al., 2000). For example, the “gene shaving”

technique (Hastie et al., 2000) uses PCA to cluster highly variable and coherent genes in

microarray datasets. In spite of its advantages, PCA has several fundamental flaws.

Several experimental studies (Baik et al., 2006) show that the sample principal com-

ponent is inconsistent with the principal component of whole population. For example,

the high-dimensional setting of large-p and small-n causes very poor estimates. In addi-

tion, sample principal eigenvectors generally have nonzero loading values for each coordinate

component. This drawback results in low interpretability as the dimension p increases. To

overcome this issue, we introduce a meta analytic framework for principal components (Meta-

PCA) in Chapter 4. Meta-PCA is designed to discover the best common eigenvector space,

and is less sensitive to the e↵ect of noise samples and features than single PCA method.

1.3.2 Regularized principal component analysis (Sparse PCA)

Sparse PCA is designed to overcome the aforementioned shortcomings of PCA, especially, the

variable selection problem in high dimensional eigenvectors. In theory, PCA holds two bene-

ficial properties: (1) the leading principal components minimize information loss (maximized

variability);(2) Principal components are projected into perpendicular subspaces. However,

small but non-zero loadings from many features in eigenvectors often act as a major barrier

to interpret estimated principal components. One potential way to increase the interpretabil-

ity of principal component (PC) is to apply regularization (i.e., penalization) over leading

eigenvector components. This approach is commonly called “sparse PCA”, and various

sparse PCA methods have been proposed in the literature (Hoyle et al., 2004; dAspremont

et al., 2007; Journ ee et al., 2010; Shen et al., 2008; Ulfarsson et al., 2008; Jolli↵e et al.,
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2003; Witten et al., 2009; Zou et al., 2006). Jolli↵e et al. (2003) introduced SCoTLASS

to estimate principal components with possible zero loadings. Zou et al. (2006) proposed

sparse PCA (SPCA) based on a regression-type optimization via the elastic net incorporat-

ing the regression technique. Similar to SPCA, Witten et al. (2009) developed sparsePCA

that exploits the penalized matrix decomposition (PMD) using SVD approximated matrix

to minimize errors to the original observed matrix. In Chapter 5, we develop several sparse

Meta-PCAs to improve the proposed Meta-PCA’s interpretability. Various numerical ex-

amples have shown the sparse Meta-PCAs outperform Meta-PCA in favor of e�cient and

distinctive visualization in low dimension space.

1.4 MULTI-OMICS DATA INTEGRATION ANALYSIS

Figure 3: Two major types of omics data integration (A) Horizontal omics meta-analysis

to combine K transcriptomic datasets (B) Vertical omics integrative analysis to combine

di↵erent omics data in a given cohort.
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1.4.1 Horizontal omics data integration (Meta-analysis)

In the past two decades, high-throughput experimental techniques have revolutionized biomed-

ical research with large genome-scale data. The fruitful successes of this research are paving

the way towards better drug targets and precision medicine. Such “big” datasets are rou-

tinely generated now that the cost has been greatly decreased. As a result, abundant datasets

are available in the public domain. For example, as of 9/16/2014, GEO contains 1,234,880

samples and SRA has >2,826 terabases of sequencing data. E↵ective integrative methods are

urgently required to decipher the biological information inside these data, leading to a bet-

ter understanding of disease mechanisms. Omics integrative methods are commonly divided

into two major categories. Due to high experimental cost, and/or limitation of clinical tissue

access, individual labs usually generate omics datasets with small to moderate sample sizes

(e.g. n=40-100). Statistical power and reproducibility of such small studies has long been a

concern in this field (Simon et al., 2003; Simon, 2005; Domany, 2014). An increasingly pop-

ular solution is to search the literature, seek similar datasets (of similar design and biological

hypothesis) and perform data integration. In this context, the analytic questions and meth-

ods are analogous to traditional meta-analysis (Ramasamy et al., 2008; Tseng et al., 2012).

Since the microarray boom of the late 90s, a convention has been developed in which genes

on the rows and samples on the columns. As a result, multi-study data integration is often

called “horizontal omics meta-analysis” since datasets are laid out horizontally (Figure 3A).

The horizontal meta-analysis methods can conceptually be applied to other types of omics

data, such as GWAS, mRNA expression, methylation, miRNA, copy number variation and

protein expression. In particular, horizontal meta-analysis methods are useful and practical

for individual labs mostly generating data of moderate sample size. Successful development

of horizontal meta-analysis methods for subtype discovery and characterization can greatly

enhance knowledge of finding and generating hypotheses towards precision medicine. In this

dissertation, we introduce two methods on horizontal data integration analysis. In Chapter

2, we introduce “meta top scoring pairs (Meta-TSP)”, a robust prediction model of paired

genes. Meta-TSP integrates multiple studies when the prediction model is fitted, so Meta-

TSP generates high accuracy especially in inter-study prediction. In Chapter 4, we propose
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a meta-analytic framework for principal component analysis (Meta-PCA). Single PCA study

tends to be sensitive to the e↵ects of noise samples and features in high-dimensional data.

On the contrary, Meta-PCA aims to form common eigenvector space that can capture varia-

tions of multiple studies in parallel. Due to nature of common eigenvector space, Meta-PCA

is robust to noise features and outlier samples.

1.4.2 Vertical omics data integration

In contrast to horizontal meta-analysis, many large consortia (e.g. the Cancer Genome Atlas

(TCGA) and the Lung Genomics Research Consortium (LGRC)) have started to generate

multiple di↵erent types of -omics data using samples in a single cohort, including SNP

genotyping, mutation, copy number variation, mRNA expression, miRNA expression and

protein expression. The integration of the multi-omics data for understanding the inter-

omics interaction mechanisms is challenging in statistical problem. The datasets are aligned

vertically (Figure 3B) and thus, the integration of such multi-omics data is called “vertical

omics integrative analysis”. While integration of multiple omics data sources on the same

cohort provides great insight into the molecular and cellular processes of the disease and has

become popular, the problem brings new analytical challenges and it is in need to develop

of statistical methods in this field.

Similar to traditional microarray data analysis, vertical omics integration can target on

the following biological objectives: (i) candidate marker detection (Wang et al., 2008); (ii)

gene set or pathway analysis (Hu et al., 2014); (iii) dimension reduction (Lock et al., 2013A;

Li et al., 2012; Zhang et al., 2011); (iv) classification (Setty et al., 2014); and finally (v)

clustering analysis. Using multi-omics data sources, several methods for disease subtype

discovery using vertical omics integration have been proposed. Rey and Roth (2012) in-

troduced a copula mixture model for dependency-seeking clustering of multi-omics data.

Lock et al. (2013B) proposed a Bayesian consensus clustering to account for consensus and

source-specific information in the cluster formation.

Shen et al. (2009, 2013) developed an integrative clustering approach (iCluster) via a

Gaussian latent regression model. iCluster has several advantages that brought it pop-
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ularity in many, particularly cancer, applications. Multi-omics integrative clustering has

the focus to identify disease subtypes. For n subjects, suppose we have M di↵erent omics

datasets. Let X(m) be the mth dataset with pm features, where each column of X(m) con-

sists of mean-centered features of n subjects (1  m  M). The combined dataset is

X =
⇣
X(1)

T
, X(2)

T
, . . . , X(M)

T
⌘T

, where X is a
PM

m=1

p(m)⇥n matrix, and X(m) is a p(m)⇥n

matrix. The joint latent regression model is

X(m) = B(m)Z + E(m) for 1  m  M,

where Z is a ` ⇥ n matrix whose rows are latent variables and columns are samples. The

matrix B(m) is used to control the degree of relation between feature intensities and la-

tent variables (usually l << p(m), 8m). To achieve the sparse estimation of B(m), the

expectation-maximization (EM) algorithm (Dempster et al., 1977) is applied to estimate

B̂ and  ̂, together with a L
1

-lasso penalty (Tibshirani, 1996). Once we estimate the latent

variable matrix Z, the standard k-means clustering is applied to Z with respect to samples

to produce the integrative clusters.

1.5 OVERVIEW OF THE DISSERTATION

This dissertation covers three major data integration analyses: (1) robust prediction in a

meta-analytic framework (horizontal integration); (2) coherent and tight integrative cluster-

ing specialized in feature gene discovery (vertical integration); (3) meta-analytic framework

of dimension reduction for visualization (horizontal integration). In Chapter 2, we introduce

a MetaTSP algorithm that combines multiple transcriptomic studies and generates a robust

prediction model applicable to independent test studies. The top scoring pair (TSP) algo-

rithm is a supervised discriminant rule by applying a robust simple rank-based algorithm.

TSP exhaustively explores rank-altered gene pairs in case/control classes but often su↵ers

from low accuracy in inter-study prediction (i.e. the prediction model is established in the

training study and applied to an independent test study). With comprehensive applications

and simulated data, the performance of MetaTSP is shown to outperform single study TSP.
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In Chapter 3, we propose a group structured iCluster together with a sparse overlapping

group lasso technique via regularization to incorporate information of inter-omics regulation

flow, and also applying a tight clustering concept to form tight clusters by scattering outlier

samples away. This integrative clustering (unsupervised) method can identify meaningful

disease subtypes and biologically associated gene modules. We show by two real examples

and simulated data that our proposed methods improve the original iCluster in clustering ac-

curacy, biological interpretation, and are able to generate coherent tight clusters. In Chapter

4, we introduce two meta-analysis frameworks of PCA (Meta PCA) for analyzing multiple

high-dimensional studies in common principal component space. Meta PCA aims to identify

the best common PC space. Applications to various simulated data show that Meta PCA is

able to find the true principal component space, and retains robustness on noise features and

outlier samples. In Chapter 5, we further propose several sparse Meta PCA methods that

can regularize principal components, and facilitate feature identifications and visual pattern

recognition for multiple omics datasets.
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2.0 METAKTSP: A META-ANALYTIC TOP SCORING PAIR METHOD

FOR ROBUST CROSS-STUDY VALIDATION OF OMICS PREDICTION

ANALYSIS

2.1 INTRODUCTION

High-throughput experimental techniques, including microarray and massively parallel se-

quencing, have been widely applied to discover underlying biological processes and to pre-

dict the multi-causes of complex diseases (e.g., cancer diagnosis, (Ramaswamy et al., 2001),

prognosis (van de Vijver et al., 2002), and therapeutic outcomes (Ma et al., 2004)). The

associated data analysis has brought new statistical and bioinformatics challenges and many

new methods have been developed in the past 15 years. In particular, methods for classifi-

cation and prediction analysis (a.k.a. supervised machine learning) are probably the most

relevant tools towards translational and clinical applications. Take breast cancer as an ex-

ample, many expression-based biomarker panels have been developed (e.g. MammaPrint

(van ’t Veer et al., 2002), Oncotype DX (Paik et al., 2004), Breast Cancer Index BCI (Zhang

et al., 2013) and PAM50 (Parker et al., 2009)) for classification/prediction of survival, re-

currence, drug response and disease subtype. Reproducibility analysis of these markers and

classification models has been a major concern and has drawn significant attention to ensure

clinical applicability of these panels (Garrett-Mayer et al., 2008; Kuo et al., 2006; MAQC

Consortium et al., 2006; Mitchell et al., 2004; Sato et al., 2009). Many papers have focused

on normalization, reproducibility of marker detection, inter-lab or inter-platform correlation

concordance. For direct clinical utilities, more attention have shifted towards cross-study

situation or inter-study prediction (i.e. a prediction model is established in one study and

validated independently in a test study (Xu et al., 2008; Cheng et al., 2009; Mi et al., 2010;
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Bernau et al., 2014)). Such an issue is critical for translating models from transcriptomic

studies into a practical clinical tool. For example, the training cohort may have utilized an old

A↵ymetrix U133 platform. A biomarker panel and a model are constructed and a test study

from a di↵erent medical center using an RNA-seq platform is available. A successful machine

learning model should retain high prediction accuracy in such inter-lab and inter-platform

validation. We note that many normalization methods have been developed to adjust for

systematic biases across studies, including distance weighted discrimination (DWD, (Benito

et al., 2004)), cross-platform normalization (XPN, (Shabalin et al., 2008)) and Knorm cor-

relation (Teng et al., 2007). But the normalization performance largely depends on whether

the observed data structure fits the model assumptions. In most applications, researchers

have often applied meta-analysis methods instead of normalization and data merging (Tseng

et al., 2012). Similarly, we will not consider normalization and data merging approach (a.k.a.

mega-analysis).

In addition to the issue of cross-study validation, selection of a robust and accurate ma-

chine learning method is also critical. In the literature, many supervised machine learning

methods have been proposed and applied to high-throughput experimental data. For ex-

ample, the CMA package allows easy implementation of 21 popular classification methods

such as linear or quadratic discriminant analysis, lasso, elastic net, support vector machines,

random forest, PAM, etc (Slawski et al., 2008). Most of these parametric and model-based

methods potentially can su↵er from heterogeneity across platforms and limit the feasibility

and reproducibility in the cross-study validation. In addition to these popular methods, the

top scoring pair (TSP) method (Geman et al., 2004; Tan et al., 2005; Afsari et al., 2014)

is a straightforward prediction rule utilizing building blocks of rank-altered gene pairs in

case and control comparison (see Section 2.1 for more details). The method is rank-based

without any model parameter. It is invariant to monotone data transformation that relieves

from normalization necessity, and the feature selection and the model are more transparent

for biological interpretation. Although TSP and its variant are robust methods that do not

require normalization in cross-study validation, we have found that some of the selected

TSPs from the training study may not reproduce in the test study and appear to be false

positives.
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Here we consider four Idiopathic pulmonary fibrosis(IPF) studies (see Table 2). Figure

1A illustrates the expression levels of a good TSP gene pair, CBS and MOXD1, identified

from the first IPF training study Emblom XBP1 is more over-expressed than ITGAX in

control samples but under-expressed in cases. If we use this TSP to validate in the test study

Konishi, we find that XBP1 is over-expressed than ITGAX in both cases and controls and

we obtain 0% sensitivity and 100% specificity (i.e. Youden index = sensitivity + specificity -

1 = 0). We find similar poor performance in two other studies Tedrow B and Pardo, showing

that the TSP is likely a false positive. In Figure 1B, GPR160 is over-expressed than COMP

in controls and under-expressed in cases for all three studies Emblom, Tedrow B and Pardo.

It is a more reliable TSP across three studies and conceptually is less likely a false positive.

Indeed, the cross-study validation in Konishi shows good performance with 80% Youden

index. The two real examples in Figure 1 argue the potential of a meta-analytic approach by

combining multiple training transcritomic studies to identify reliable TSPs so the resulting

model has enhanced cross-study validation performance.

2.2 METHODS

2.2.1 Top scoring pair algorithm (TSP) and kTSP

The original TSP algorithm was first proposed by Geman et al. (2004). Denote by data

matrix X = {xgn} the gene expression intensity of gene g (1  g  G) in sample n (1  n

 N) and yn the class label of sample n. Particularly, we consider yn2{0, 1}, representing

controls and cases for binary classification. For any gene pair i and j (1  i, j  G), define

the conditional ordering probability score Tij(C) = Pr(Xi < Xj|Y = C) for C2{0, 1}, where

Xi and Xj are gene expression intensities of gene i and j. Intuitively, Tij(0) is the probability

in controls that gene j has larger expression intensity than that of gene i and similarly Tij(1)

is for cases. Given observed expression profile data matrix X, the probability scores can be

estimated as T̂ij(C) =
⇣PN

n=1

I(xin < xjn) · I(yn = C)
⌘�⇣PN

n=1

I(yn = C)
⌘
, where I(·) is

an indicator function that is one if the statement inside the parenthesis is true and zero oth-

18



A.!

B.!

Figure 4: Two TSP examples from real data to show advantage of MetaTSP. X-axis and

Y-axis refer to sample indices and gene expression levels, respectively. (A) Gene pair IT-

GAX/XBP1 has high TSP score (XBP1>ITGAX in controls but ITGAX>XBP1 in cases) in

the training ‘Emblom’ study but fail to replicate in the testing ‘Konishi’ study as well as the

other two Tedrow B and Pardo studies. (B) Gene pair GPR160/COMP has high TSP scores

(GPR160>COMP in controls and COMP>GPR160 in cases) in all three training studies

‘Emblom’, ‘Tedrow B’ and ‘Pardo’. The gene pair is successfully validated in the testing

‘Konishi’ study.
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erwise. The discriminant score of the gene pair is defined as Sij = T̂ij(1)� T̂ij(0). Note that

�1  Sij  1 always holds. When Sij = 1, expression of gene j is always greater than that of

gene i in cases and expression of gene j is always smaller than that in gene i among controls.

As a result, the ordering of gene i and gene j expression is predictive to the class label. On

the contrary, if Sij = �1, gene j always has smaller expression than gene i in cases and the

relation is reversed in controls. In summary, the absolute value of Sij reflects the predictive

value of the gene pair. The TSP algorithm seeks the best gene pair (i⇤, j⇤) = argmaxi 6=j |Sij|

as the classifier. When multiple gene pairs give the same highest absolute score, the best

pair that gives the largest di↵erential magnitude Dij is chosen, where Dij = |dij(1)� dij(0)|

and dij(C) =
⇣PN

n=1

(xin � xjn) · I(yn = C)
⌘�⇣PN

n=1

I(yn = C)
⌘
. When a new test sam-

ple �!x (test) =
�
x
(test)
1

, · · · , x(test)
G

�
is entered in the future, the class prediction is determined by

Ĉi⇤j⇤(
�!x (test)) =

8
><

>:

1, if Si⇤j⇤ ·
⇣
x
(test)
i⇤ � x

(test)
j⇤

⌘
 0

0, if Si⇤j⇤ ·
⇣
x
(test)
i⇤ � x

(test)
j⇤

⌘
> 0

TSP classifier above is based on only one top scoring pair (two genes) and so the method

can be very sensitive to slight noise perturbations (Geman et al., 2004). To circumvent

this issue, Tan et al. (2005) introduced kTSP to combine multiple TSPs for a more stable

algorithm. The method identified the sorted TSPs similar to above. Instead of choosing only

the best TSP, it selected the top K (where K is a parameter to be tuned) TSPs to construct

the model. The TSPs were selected from the sorted list such that the genes in the TSPs

had no overlap otherwise the latter TSPs containing overlapping genes would be skipped

and the next TSP in the sorted list would be considered. In other words, the selected top

K TSPs always contain 2K distinct genes. Suppose
�
(i⇤

1

, j⇤
1

), · · · , (i⇤K , j⇤K)
 
represents the

K selected TSPs. The kTSP algorithm makes a prediction for a new test sample �!x (test) by

Ĉ(�!x (test)) = argmaxC
PK

k=1

I
�
Ĉi⇤kj

⇤
k
(�!x (test)) = C

�
. In a sense, the k -TSP is an ensemble

classifier that aggregates multiple weak classifiers by majority vote (Opitz et al., 1999). To

avoid ties, we usually select odd numbers for K.

The TSP algorithms have the following advantages for omics prediction analysis: (1)

The method is non-parametric and thus robust since the method is constructed based on the
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relative ranking of gene pairs. Since di↵erent transcriptomic studies are usually conducted

in di↵erent labs and in di↵erent platforms, the robust nonparametric nature is more likely to

succeed in cross-study validation that we aim in this dissertation. (2) The method is based

on one or a few gene pairs. The biological interpretation of the model and the translational

application are more straightforward. It is more likely to succeed by designing a reproducible

commercial assay for wider clinical applications, such as the 21-gene RT-PCR-based Onco-

type DX test for breast cancer (Paik et al., 2004). (3) Researchers have repeatedly found that

the family of TSP algorithms provides good prediction performance in many transcriptomic

data (Xu et al., 2005; Raponi et al., 2001; Price et al., 2007).

2.2.2 Estimate K for kTSP

To estimate the best K in the kTSP algorithm, we can apply and compare the following two

methods.

Cross-validation In Tan et al. (2005), leave-one-out cross validation was used to de-

termine K in kTSP. In each iteration, one sample was left out as the test sample. The

remaining samples were used to construct a prediction model and apply to the test sample.

The procedure was repeated until each sample was left out as the test sample once. The

cross-validated error rates were then calculated for di↵erent selections of K and the best K

that produced the smallest cross validation error rate was chosen.

Variance optimization Afsari et al. (2014) recently developed a variance optimization

method to estimate K in kTSP. Recall that Sij = Pr(Xi < Xj|Y = 1)�Pr(Xi < Xj|Y = 0).

The kTSP algorithm searches for the optimized top scoring pairs without overlapping genes:

�
(i⇤

1

, j⇤
1

), · · · , (i⇤K , j⇤K)
 
= argmax{(i1,j1),··· ,(iK ,jK)}

PK
k=1

Sikjk .

Define the t-statistics of the target function:

tkTSP (K) =
PK

k=1 Si⇤
k
j⇤
kr

V ar
�PK

k=1 I(Xi⇤
k
<Xj⇤

k
)|Y=0

�
+V ar

�PK
k=1 I(Xi⇤

k
<Xj⇤

k
)|Y=1

� .

K is chosen by the value that maximizes tkTSP

�
i.e. K⇤ = argmaxK tkTSP (K)

�
. The variance

optimization procedure greatly reduced high computational demand in cross validation.
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2.2.3 Meta-kTSP algorithms

As mentioned in the introduction section, cross-study validation via Mega-kTSP (i.e. naively

combine multiple normalized data sets and apply kTSP) may not be suitable to identify a

robust prediction gene pair. Alternatively, we propose a Meta-kTSP framework below.

Denote by X(m) =
�
x
(m)

gn

 
the expression profile of study m, where x

(m)

gn represents the

gene expression intensity of gene g (1  g  G), sample n (1  n  N (m)) in study m

(1  m  M). The discriminant score S
(m)

ij for gene i and j in study m takes the di↵erence

of two summations of Bernoulli random variables:

S
(m)

ij =

�PN(m)

n=1

I(x(m)

in < x
(m)

jn ) · I(y(m)

n = 1)
�

N
(m)

1

�
�PN(m)

n=1

I(x(m)

in < x
(m)

jn ) · I(y(m)

n = 0)
�

N
(m)

0

,

where N
(m)

1

=
PN(m)

n=1

I(y(m)

n = 1) and N
(m)

0

=
PN(m)

n=1

I(y(m)

n = 0) are the number of case

and control samples in study m. We first develop three meta-analytic approaches (by Fisher

score, Stou↵er score and mean score) to choose the K non-overlapping top scoring pairs

(TSPs) for prediction model construction (denoted as
�
(i⇤

1

, j⇤
1

), · · · , (i⇤K , j⇤K)
 
). When a new

test sample, �!x (test) =
�
x
(test)
1

, · · · , x(test)
G

�
is entered in the future, the class prediction by the

kth TSP and study m is:

Ĉ
(m)

i⇤k,j
⇤
k
(�!x (test)) =

8
><

>:

1, if S
(m)

i⇤k,j
⇤
k
·
⇣
x
(test)
i⇤k

� x
(test)
j⇤k

⌘
 0

0, if S
(m)

i⇤k,j
⇤
k
·
⇣
x
(test)
i⇤k

� x
(test)
j⇤k

⌘
> 0.

The final meta-analyzed class prediction is determined by

Ĉ(�!x (test)) = argmaxC
PM

m=1

PK
k=1

I
�
Ĉ

(m)

i⇤k,j
⇤
k
(�!x (test)) = C

�
.

Below we introduce the three meta-analytic approaches to select the top K TSPs. In meta-

analysis, test statistics (e.g. t-statistics) across studies are not comparable and combining

p-values has become a popular practice. Under the null hypothesis that gene i and j are not

discriminant, S(m)

i,j can be well-approximated by Gaussian distribution S
(m)

i,j

�q
0.25

N
(m)
1

+ 0.25

N
(m)
0

⇠
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N(0, 1) since S
(m)

ij is the di↵erence of two summations of independent Bernoulli trials. The

two-sided p-value of S(m)

ij is calculated as P
(m)

ij = 2 ⇥
⇣
1 � �

⇣ ���S(m)

ij

���
.q

0.25

N
(m)
1

+ 0.25

N
(m)
0

⌘⌘
.

Alternatively, one-sided p-values can be calculated as P (m);L
ij = �

⇣
S
(m)

ij

.q
0.25

N
(m)
1

+ 0.25

N
(m)
0

⌘
for

left-sided p-values and P
(m);R
ij = 1� �

⇣
S
(m)

ij

.q
0.25

N
(m)
1

+ 0.25

N
(m)
0

⌘
for right-sided p-values.

Select K TSPs by Fisher’s method

The Fisher’s method combines p-values across studies by T (Fisher)
ij = �2⇥

PM
m=1

log
�
P

(m)

ij

�
,

where P
(m)

ij is the two-sided p-value of the discriminant score S
(m)

ij of gene i and j in study

m. Under null hypothesis that gene i and j have no discriminant power in all studies,

T
(Fisher)
ij ⇠ �2

2M . This classical p-value combination procedure has a well-known problem

that the discriminant scores across studies may have discordant signs but all with small

two-sided p-values that generate a significant meta-analyzed p-value. To circumvent this

discordant problem, we apply a one-sided test modification technique discussed in Owen

(2009). Define T (Fisher);L
ij = �2⇥

PM
m=1

log
�
P

(m);L
ij

�
and T

(Fisher);R
ij = �2⇥

PM
m=1

log
�
P

(m);R
ij

�
,

where P
(m);L
ij and P

(m);R
ij are the left and right one-sided p-values of discriminant score

S
(m)

ij of gene i and j in study m. The modified one-sided corrected Fisher’s statistic is

T
(Fisher);OC
ij = max

�
T

(Fisher);L
ij , T

(Fisher);R
ij

�
. The top K gene pairs with the largest meta-

analyzed Fisher score (i.e. T (Fisher);OC
ij ) and with no overlapping genes are selected.

Select K TSPs by Stou↵er’s method

Instead of using log-transformation in Fisher’s method, Stou↵er’s method applies an in-

verse normal transformation by T
(Stouffer)
ij =

PM
m=1

��1

�
P

(m);L
ij

��p
M Under null hypothesis

that gene i and j have no discriminant power in all studies, Tij ⇠ N(0, 1). The top K gene

pairs with the smallest meta-analyzed two-sided p-values and with no overlapping genes are

selected for prediction. Note that Stou↵er’s method has an advantage over Fisher’s method

that one-sided concordance correction is not necessary if one-sided p-values are input in the

inverse normal transformation.

Select K TSPs by mean score Since the discriminant score is di↵erence of two con-

ditional probabilities, the scores are directly comparable across studies and can be directly

combined. We define the mean score T
(mean)
ij =

PM
m=1

S
(m)

ij

�
M to combine M studies. The

top K gene pairs with the largest absolute value of the meta-analyzed scores (i.e.
���T (mean)

ij

���)

and with no overlapping genes are selected for prediction model construction.
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2.2.4 Estimate K for Meta-kTSP

Similar to Section 2.2, cross-validation and variance optimization methods can be extended

to estimate K for Meta-kTSP.

Cross-validation We perform V -fold cross-validation for Meta-kTSP. Each of the M

studies are firstly split into V equal-sized subgroups. In each cross-validation, one subgroup

of samples in each study is left out as the testing samples. The remaining (V �1) subgroups

are used as training samples to construct the classifier and then apply to the test sample.

The procedure is repeated for V times until all samples are left out and tested. We choose

the optimal K such that the highest average Youden index over M studies is obtained. We

adopted 5-fold cross-validation.

Variance optimization Similar to single study kTSP algorithm in Afsari et al. (2014),

we define the following target function:

t
(meta)
kTSP (K) =

PM
m=1

PK
k=1 S

(m)
i⇤
k
j⇤
kr

V ar
�PM

m=1

PK
k=1 I(X

(m)
i⇤
k

<X
(m)
j⇤
k

)|Y=0

�
+V ar

�PM
m=1

PK
k=1 I(X

(m)
i⇤
k

<X
(m)
j⇤
k

)|Y=1

� .

K is chosen by the value that maximizes t
(meta)
kTSP (K) (i.e. K⇤ = argmaxK t

(meta)
kTSP (K)). The

variance optimization procedure greatly reduced computational complexity in cross valida-

tion. We will show its equal or slightly improved performance compared to cross validation

in our proposed meta-analytic scheme and this estimation method will be recommended in

practice.

2.3 RESULTS

2.3.1 Simulations

We hypothesize that if gene pairs are consistently identified with strong TSP scores over

multiple training studies, such gene pairs outperform original TSPs from a single study. We

tested this hypothetical argument using simulated data sets. Below we describe simulated

expression profiles under correlated gene structures to mimic real data sets. We performed

a smaller scale of simulation with G = 200 genes and M = 4 transcriptomic studies, where
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A.!

B.!

Figure 5: Results of inter-study prediction using four simulated data sets (A: µa = 1, B:

µa = 0.8; n1

1

= n2

1

= 100). Y-axis represents the average Youden index. The bar plots

indicate the standard error of estimated Youden index.
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the number of samples is n(m)

j (n(1)

1

= n
(1)

2

= 80, 100, 200, n(2)

1

= n
(2)

2

= 30, n(3)

1

= n
(3)

2

= 20,

and n
(4)

1

= n
(4)

2

= 15) for study m (1  m  M = 4) of sample subgroup j (i.e. j = 1 for

controls and j = 2 for cases). Denote expression data matrix by X(m) = {x(m)

g,u } for gene

1  g  G = 200, 1  u  n
(m)

1

+ n
(m)

2

and 1  m  M = 4.

Step 1. Simulate consensus predictive genes

(1) For each of the two consensus clusters c (1  c  2) in studym(1  m  M), sample gene

correlation structure ⌃⇤
cjm ⇠ W�1( , 60) for every gene cluster c and sample subgroup j of

study m, where  = 0.5I
20⇥20

+0.5J
20⇥20

, W�1 denotes inverse Wishart distribution, I is the

identity matrix, and J is the matrix with all the entries being 1. Set vector �cjm as the square

roots of the diagonal elements in ⌃⇤
cjm. Calculate ⌃cjm such that �cjm⌃cjm�

T
cjm = ⌃⇤

cjm.

(2) We simulate two clusters of consensus predictive genes, each containing 20 genes. The

first down-regulated gene cluster is generated by (x(m)

1,u , · · · , x
(m)

20,u) ⇠ MVN(µa,⌃1jm), where

sample u belongs to class j in study m and µa = 0.8 for j = 1 (controls) and µa = �0.8 for

j = 2 (cases). This is a smaller e↵ect size simulation. We also simulate a strong e↵ect size

simulation by µa = 1 or �1 for controls and cases. Similarly, the second up-regulated gene

cluster is simulated by (x(m)

21,u, · · · , x
(m)

40,u) ⇠ MVN(µa,⌃2jm), where µa = �0.8 and 0.8 for

controls and cases in weak signal scenario and µa = �1 and 1 in strong signal scenario. These

40 consensus predictive genes are the basis to aggregate predictive power across studies.

Step 2. Simulate study-specific predictive genes

We next simulate four clusters (m0 = 1, 2, 3, 4) of study specific genes, each containing 20

genes. Each gene cluster has specific predictive power to the corresponding study m. The

down-regulated genes are simulated by (x(m)

40+(m0�1)·20+1,u, · · · , x
(m)

40+(m0�1)·20+10,u)⇠ MVN(µb,⌃2+m0,j,m),

where m0 = m, ⌃
2+m,j,m (1  m  4) are simulated similar to (1) of Step 1 and µb = 4 or �4

for controls and cases. For up-regulated predictive genes, (x(m)

40+(m0�1)·20+11,u, · · · , x
(m)

40+m0·20,u) ⇠

MVN(µb,⌃6+m0,j,m) and µb = �4 or 4 for controls and cases. Whenm0 6= m, the gene cluster

m0 has no predictive power in study m and (x(m)

40+(m0�1)·20+1,u, · · · , x
(m)

40+m0·20,u) ⇠ MVN(0, I).

These study-specific genes are a main source of errors in cross-study validation.

Step 3. simulate non-informative genes

Finally, the remaining 80 non-informative genes are simulated by x
(m)

g,u ⇠ N(0, 1) for 121 

g  200.
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We repeated simulations for 50 times, and the results are benchmarked by averaged

Youden index. Figure 5 shows the simulation evaluation for di↵erent methods using Youden

index. For meta-analysis methods, we tested three meta-analyzed approaches for selected

TSPs (Fisher, Stou↵er, mean) and TSP/kTSP options. In kTSP, we have two further options

(cross validation CV and variance optimization VO) to determine K, the number of TSPs

for model construction. This gives a total of 9 meta-analysis methods to compare. In each

meta-analysis evaluation, we take one study out as the test study, combine the remaining

three studies to select the TSPs and construct the model, and finally use the model to predict

samples in the test study. The result of Figure 2A in a stronger signal setting (µa = 1 or �1)

shows that all six meta-analysis methods by kTSP performed well (Youden Index = 0.851 -

0.876). The three meta-analysis methods by TSP performed slightly worse (Youden Index

= 0.723 - 0.759). In contrast, we also compared three mega-analysis and three single study

analysis approaches. In mega-analysis approaches, the three training studies are normalized

and combined into one study to construct the prediction model and evaluate in the test

study. In single study analysis, the accuracy was evaluated by averaging inter-study accuracy

from each of the three training studies to the test study. The result clearly shows inferior

performance of the three mega-analysis approaches and poor performance of single study

prediction. This confirms our hypothesis that prediction model from a single study may

not be robust and accurate. Proper meta-analysis by combining multiple training studies

improves the stability and accuracy of the model to predict an independent test study. Figure

9 and 10 shows results of di↵erent parameter settings varied by the mean of consensus genes

and the number sample of the first study. In the weaker signal case in Figure 2B (µa = 0.8

or �0.8), we found that Meta-kTSP using Fisher’s selecting approach sometimes has inferior

performance than Stou↵er and mean methods. This is probably because of the nature of

heavy tail log-transformation in the Fisher’s method. A p-value close to 0 (e.g. 1E-20)

can contribute a very large score in Fisher’s method and can easily dominate the analysis.

The inverse transformation in Stou↵er’s method and the mean score approach somewhat

alleviated the problem. From this aspect, we will only compare Stou↵er and mean score

approaches in the real data applications.
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A. 

B. 

C. 

Figure 6: Three examples of Inter-study prediction with applications to real data sets (A.

Breast Cancer: ER+ vs ER-, B. Idiopathic pulmonary fibrosis, B. Six di↵erents cancers in

TCGA). Y-axis represents the average Youden index.
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Figure 7: Comparison between single TSP scores and Meta-TSP scores using TCGA cancer

data sets. The upper panels illustrate the scores of single study TSP to test data set (Ovarian;

OV), whereas the bottom panel shows the Meta-TSP scores of multiple the train studies to

test data set (Ovarian; OV).
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Table 1: The list of nine identified gene pairs of Average Meta-KTSP and the existing breast

cancer gene signatures.

Label Gene1 Gene2 Averaged scores References

Pair 1 PI3 (ER-) GATA3 (ER+) -0.698 Usary et al. (2004, GATA3, ER+)

Pair 2 ODC1 (ER-) DNALI1 (ER+) -0.644 Parris et al. (2010, DNALI1, ER+)

Pair 3 LAD1 (ER-) SCCPDH (ER+) -0.632 Dvorkin-Gheva et al. (2011, SCCPDH, ER+), Smith et al. (2008, LAD1, ER-)

Pair 4 FOXC1 (ER-) MYB (ER+) -0.623 Ray et al. (2010, FOXC1, ER-)

Pair 5 PSME4 (ER-) DACH1 (ER+) -0.620 Powe et al. (2014, DACH1, ER+)

Pair 6 WARS (ER-) FBP1 (ER+) -0.609 van’t Veer et al. (2002, FBP1, ER+)

Pair 7 CDCA8 (ER-) AFF3 (ER+) -0.608 Thakkar et al. (2010, AFF3, ER+)

Pair 8 MRFAP1L1 (ER+) KCMF1 (ER-) 0.599 Symmans et al. (2010, KCMF1, ER-)

Pair 9 RNASEH1 (ER-) MAGED2 (ER+) -0.598 Thakkar et al. (2010, MAGED2, ER+)

2.3.2 Application to genomic data sets

Below we demonstrate application of Meta-kTSP methods to three real omics examples of

breast cancer expression profiles (1,658 samples in 7 studies), idiopathic pulmonary fibrosis

expression profiles (IPF; 291 samples in 6 studies) and The Cancer Genome Atlas multi-

cancer methylation profiles (TCGA, http://cancergenome.nih.gov/; 1,785 samples in 6 stud-

ies). Table 2 provides detailed data description of all 19 studies and their data sources.

Genes and methylation probes were matched across studies. Non-expressed and/or non-

informative genes were filtered according to the rank sum of mean intensities or standard

deviations across studies (Wang et al., 2012). This generated 3,035 genes in breast can-

cer, 3,010 genes in IPF and 3,061 methylation probes in TCGA for down-stream prediction

analysis.

Figure 7 shows the inter-study prediction performance of three examples (A: breast

cancer ER+ versus ER- prediction by expression profiles; B: IPF versus controls prediction

by expression profiles; C: cancer versus adjacent normal prediction by methylation profiles).

In each example, we plotted performance of metaKTSP methods (using OV feature selection

method to determine K) when each study was chosen as the test study and the remaining

studies were used as training studies. For single study analysis, we performed all pairs of
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cross-study validation and averaged the performance. For mega-analysis, each sample was

standardized to mean zero and unit variance and multiple studies were merged for analysis.

Finally, we aggregated Youden indexes of all studies using weighted average by sample size

(last plot in each row). The result clearly showed best performance of the two Meta-kTSP

methods (TSP selection by mean score or Stou↵er’s method). Mega-analysis methods had

worse performance and single study analysis without combining information across studies

performed the worst. In the final example of pan-cancer analysis, the performance of single

study analysis was below random guess (Youden index < 0). This suggests that prediction

models from single study analysis mostly reflected study-specific (cancer-specific) signature

that could not be generalized to other cancers. By meta-analysis, pan-cancer methylation

features were successfully selected to facilitate successful inter-study prediction. Figure 4

provides further insight on this concept. In Figure 4A, 9 TSPs were selected in individual

training studies (BRCA, COAD, KIRC, LUAD and STAD), respectively. When these TSPs

were evaluated in the ovarian cancer (OV) study, the absolute discriminant scores dropped

significantly, many of which dropped from close to 1 to below 0.5. On the contrary, the

9 TSPs selected by meta-analysis shared universally large discriminant scores for all five

training studies (Figure 4B) and the discriminant scores were mostly maintained in the test

OV study. Figure 11-13 provides the full results of all 15 methods comparison in the three

examples. We note that Figure 3 did not present results of Fishers method and CV model

selection method since Fishers method performed almost identical to Stou↵ers method and

CV and OV also had similar performance.

It is interesting to note that Emblom and Larsson studies in the IPF examples had almost

no predictive value (Youden index near 0) while the other four studies performed well. This

argues that the two studies might have heterogeneous cohorts from the other four studies or

they may have worse experimental quality (Kang et al., 2012). In practice, one may perform

such cross validation to exclude potential ‘outlier’ studies before implementing Meta-kTSP.

Below we explore biological validation of detected gene pairs from Meta-kTSP using

existing literature. We first applied MetaKTSP in all the seven breast cancer studies and

identified 9 TSPs using mean score method and OV model selection. For the 18 genes in

the 9 detected pairs, 10 of them were found to associate with ER expression in previous
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publications and all of them had consistent di↵erential expression direction compared to the

microarray data (Table 1). For the pan-cancer methylation result, we identified 10 genes

from the top 5 TSPs (mean scores and six data sets in Table 2) The PCDH8 gene from the

second gene pair was previously confirmed as a candidate tumor suppressor regulated by

methylation in multiple cancers (1) Kidney cancer: frequent promoter region methylation

(58%) in primary renal cell carcinoma tumour samples (Morris et al., 2011). (2) Breast

cancer: either mutation or epigenetic silencing in a high fraction of breast carcinomas inac-

tivates PCDH8 that leads to oncogenesis in cancers (Yu et al., 2008) (3) Stomach cancer:

tumor suppressor function in gastric cancer (Zhang et al., 2012).

2.4 DISCUSSION

As high-throughput experimental data become more and more prevalent and publicly avail-

able, integrative methods to fully utilize information from the abundant multi-lab data sets

have become critical. Generating predictive biomarkers and classification model from a single

study often su↵er from limited sample size and possibly study-specific biases. The result-

ing models are often found with poor performance in cross-study validation (Reid et al.,

2005; Correa et al., 2009; McShane et al., 2013; Kern et al., 2012). To improve transla-

tional and clinical utility of the biomarker discovery and classification model construction,

combining information from multiple studies provide a promising opportunity. We seek to

improve a top scoring pair (TSP) method that is a non-parametric, accurate and easily in-

terpretable model that likely will succeed in cross-study validation for clinical applications.

We developed three MetaTSP approaches that combine multiple omics data sets to improve

the credibility of TSP biomarker selection. Using simulations and real transcriptome and

methylome data sets, we demonstrate its improved performance on cross-study validation.

We compared two methods, cross validation (CV) and variance optimization (VO), to decide

the number of TSPs used in the model construction. The result showed similar performance

of the two model selection methods. Since VO does not involve repeated subsampling and

is computationally faster, we recommend to use VO for future applications.
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Table 2: Shown are the brief descriptions of the nineteen microarray datasets of disease-

related binary phenotypes (e.g., case and control or ER+/-). All datasets are publicly

available.

Name Study Type # of samples Control Case # of matched genes Reference

TCGA Breast cancer mRNA 406 319 (+) 87 (-) 9,024 The Cancer Genome Atlas (TCGA)

Desmedt Breast cancer mRNA 198 134 (+) 64 (-) 9,024 Desmedt et al. (2007), GSE7390

Wang Breast cancer mRNA 286 209 (+) 77 (-) 9,024 Wang et al. (2005), GSE2034

Ivshina Breast cancer mRNA 245 211 (+) 34 (-) 9,024 Ivshina et al. (2006), GSE4922

Li Breast cancer mRNA 111 66 (+) 45 (-) 9,024 Li et al. (2010), GSE19615

vant Breast cancer mRNA 117 75 (+) 42 (-) 9,024 van de Vijver et al. (2002), Bioconductor

van Breast cancer mRNA 295 226 (+) 69 (-) 9,024 van’t Veer et al. (2002), Bioconductor

Tedrow A IPF mRNA 63 11 52 5,807 GSE47460

Tedrow B IPF mRNA 96 21 75 5,807 GSE47460

Emblom IPF mRNA 58 20 38 5,807 Emblom et al. (2010) GSE17978

Konishi IPF mRNA 38 15 23 5,807 Konishi et al. (2009), GSE10667

Pardo IPF mRNA 24 11 13 5,807 Pardo et al. (2005), GSE2052

Larsson IPF mRNA 12 6 6 5,807 Larsson et al. (2008), GSE11196

BRCA Breast cancer Methylation 343 27 316 10,121 The Cancer Genome Atlas (TCGA)

COAD Colon cancer Methylation 204 37 167 10,121 The Cancer Genome Atlas (TCGA)

KIRC Kidney cancer Methylation 418 199 219 10,121 The Cancer Genome Atlas (TCGA)

LUAD Lung cancer Methylation 151 24 127 10,121 The Cancer Genome Atlas (TCGA)

OV Ovarian cancer Methylation 560 4 556 10,121 The Cancer Genome Atlas (TCGA)

STAD Stomach cancer Methylation 109 43 66 10,121 The Cancer Genome Atlas (TCGA)
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          Study 1      Study 4      Study 3      Study 2 

                      Consensus genes 
Study-specific genes 

Case Control 

Figure 8: Heatmap of the four simulated data. Genes encircled by red dotted line refer to

correlated consensus genes. Study-specific genes are encircled by the blue dotted line.
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# of Samples in Study 1 : 80 / Mean of consensus genes : 1 

# of Samples in Study 1 : 100 / Mean of consensus genes : 1 

# of Samples in Study 1 : 200 / Mean of consensus genes : 1 

Figure 9: Simulation results of the methods of TSP and MetaTSP family (µa = 1).
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# of Samples in Study 1 : 200 / Mean of consensus predictive genes : 0.8 

# of Samples in Study 1 : 100 / Mean of consensus predictive genes : 0.8 

# of Samples in Study 1 : 80 / Mean of consensus predictive genes : 0.8 

Figure 10: Simulation results of the methods of TSP and MetaTSP family (µa = 0.8).
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Figure 11: Performance comparisons of the methods of TSP and MetaTSP family using

breast cancer mRNA data.

37



Figure 12: Performance comparisons of the methods of TSP and MetaTSP family using lung

disease mRNA data.
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Figure 13: Performance comparisons of the methods of TSP and MetaTSP family using

TCGA pan cancer methylation data.
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3.0 INTEGRATIVE MULTI-OMICS CLUSTERING FOR DISEASE

SUBTYPE DISCOVERY BY SPARSE OVERLAPPING GROUP LASSO

AND TIGHT CLUSTERING

3.1 INTRODUCTION

The problem of disease subtype discovery using clustering algorithms has received wide at-

tention in the analysis of microarray data (Pan et al., 2007; Golub et al., 1999; Ghosh et al.,

2002). Many classical algorithms such as hierarchical clustering, K-means, self-organizing

maps, Gaussian mixture model-based clustering and Bayesian clustering have been devel-

oped. The purpose is to cluster samples in an expression profile based on their expression

intensity patterns with the goal to identify biologically (e.g. di↵erent pathway activation

and disease progression mechanisms) and clinically (e.g. di↵erent drug response or survival)

meaningful disease subtypes. Breast cancer was initially divided into two major subtypes

of estrogen receptor (ER)-positive and ER-negative disease. The well-known paper from

Perou’s lab (Perou et al., 2010) applied hierarchical clustering in their microarray dataset,

identified five molecular breast cancer subtypes (Luminal A, Luminal B, Basal, Her2, and

Normal-like) and demonstrated their biological and clinical relevance. With additional multi-

omics data sources, several methods for disease subtype discovery of vertical omics integra-

tion have been proposed. Rey and Roth (2012) introduced a copula mixture model for

dependency-seeking clustering of multi-omics data. Lock et al. (2013B) proposed a Bayesian

consensus clustering to account for consensus and source-specific information when identify-

ing clusters. Shen et al. (2009, 2013) developed an integrative clustering approach (iCluster)

via Gaussian latent regression model. iCluster has several advantages that made it popular

in many, particularly cancer, applications. First, the computation of the matrix decompo-
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sition is much more e�cient than MCMC in other Bayesian-based methods. Second, the

consensus and source-specific information from di↵erent omics data are automatically shown

in the matrix decomposition without further modeling. The method, however, has two ma-

jor drawbacks. First, the prior knowledge of regulatory mechanisms between di↵erent omics

data is not considered in the regularization of feature selection. For example, copy number

variation (CNV) is known to likely regulate a gene’s expression. When there exists an as-

sociation between a gene’s CNV and mRNA expression, we should encourage the selection

of both features to improve accuracy and biological interpretation. Secondly, current iClus-

ter assigns all samples into clusters and does not allow any “scattered” samples, a concept

commonly seen in microarray data analysis (Tseng and Wong, 2005; Tseng, 2007; Maitra

and Ramler, 2009). Considering the biological complication of disease processes, there may

exist a portion of “outlier” samples who do not belong to or form any meaningful tight

cluster. We propose group structured tight iCluster (GST-iCluster) method by applying a

sparse overlapping group lasso technique and an additional regularization on samples in the

iCluster modeling to circumvent the two aforementioned problems.

3.2 INTEGRATIVE CLUSTERING (ICLUSTER)

The latent regression model in integrative clustering was first proposed by Shen et al. (2009),

and a penalized EM algorithm was developed in Shen et al. (2013). For n subjects, suppose

we have M di↵erent omics datasets such as mRNA expression, miRNA expression, and

DNA methylation. Let X(m) be the mth dataset with pm features, where each column of

X(m) consists of mean-centered features from n subjects (1  m  M). The combined

dataset is X =
⇣
X(1)

T
, X(2)

T
, . . . , X(M)

T
⌘T

, which is a
PM

m=1

p(m) ⇥ n matrix. The joint

latent regression model is

X(m) = B(m)Z + E(m) for 1  m  M,

where Z is a ` ⇥ n matrix whose rows are latent variables and columns are samples. The

matrix B(m) is used to control the degree of relation between feature intensities and latent
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variables. Under the multivariate normal assumption, the conditional distribution is

X(m)|Z ⇠ N(B(m)Z, (m)) for 1  m  M,

where  (m) = diag(�2

1

, . . . , �2

p(m)). To achieve the sparse estimation of B(m), L
1

-lasso penalty

(Tibshirani, 1996) is used and the penalized complete log likelihood function becomes

log(Lp(B, )) = �n

2
log(| |)� 1

2
tr
⇥
(X �BZ)T �1(X �BZ)

⇤
� 1

2
tr(ZZT )� P�(B), (3.1)

where B =
⇣
B(1)

T
, B(2)

T
, . . . , B(M)

T
⌘T

, P�(B) =
PM

m=1

�(m)

P`
j=1

Pp(m)

i=1

����(m)

ij

���, and ` is the

number of e↵ective latent variables, which is defined by K�1 (Ding and He, 2004), where K

is the number of sample clusters. The expectation-maximization (EM) algorithm (Dempster

et al., 1977) is then applied to estimate B̂ and  ̂.

3.3 GROUP STRUCTURED AND TIGHT INTEGRATIVE CLUSTERING

3.3.1 Sparse overlapping group lasso

We first define feature modules using multiple omics features. Let G = {f (m)

i } be the set of

all features (1  i  p(m) and 1  m  M), and let gv ⇢ G (1  v  V ) be the vth feature

module. Features in a feature module are associated with the potential genomic feature

regulation flow and can come from the same or di↵erent omics datasets. The corresponding

model parameters are defined as �gvj = {�ij} 2 R|gv |, where 1  i  |gv|, 1  j  `, and |gv|

denotes the number of features in module gv. For example, we define a feature module based

on the gene symbol annotation of gene EST1 in the TCGA data. One mRNA (fi), one CNV

(fj), and two methylation probes (fk, f`) are aligned to gene EST1. A feature module using

those four features can be defined as {fi, fj, fk, f`}. It is possible that multiple modules

share the same feature (e.g. two miRNAs may potentially regulate the same gene). If no

feature modules share common features, it is a non-overlapping problem (no features are

overlapped across pre-defined feature modules), and otherwise the modules are overlapping.

These feature modules are the basis for group lasso regularization.
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Below we present an overview of how to solve an overlapping group lasso problem. Chen

et al. (2012) developed a Smoothing Proximal Gradient Descent (SPG) approach to tackle

with intractable nature of the sparse overlapping group lasso (non-separable and non-smooth

penalty) under the penalized regression framework. Consider the sparse overlapping group

lasso with L
1

/L
2

mixed penalties (Obozinski et al., 2008, 2010),

⌦(B) = �
X̀

j=1

VX

v=1

wgvk�gvjk2. (3.2)

Using a dual norm representation (Chen et al., 2012), the penalty function (3.2) becomes

⌦(B) = �
X̀

j=1

VX

v=1

wgv maxk↵gvjk21

↵T
gvj�gvj

= max↵2Q
X̀

j=1

VX

v=1

�wgv↵
T
gvj�gvj = max↵2Q ↵

TCB,

(3.3)

where C 2 R
PV

v=1 |gv |⇥
PM

m=1 p
(m)

, ↵ =
�
↵T
g1
,↵T

g2
, . . . ,↵T

gV

�T 2 R
PV

v=1 |gv |⇥`, ↵gv = {↵ij} 2

R|gv |⇥`, Q = {↵|k↵gvjk2  1, 1  j  `, 1  v  V }, and � and wgv are constants used to

adjust sparseness for �gv . Then, C(k,gv),i = �wgv , if k = i or 0 otherwise (For details, see the

selection of C in Section 3.3.4).

To circumvent the non-di↵erentiable property of ⌦(B) at 0, a smooth approximation of

⌦(B),

fµ(B) = max↵2Q{↵TCB � µd(↵)}, (3.4)

is used as shown in Nesterov (2005). Here, µ is a positive constant of smoothing parameter

and d(↵) = 1

2

k↵k2
2

is a smoothing function. The maximum di↵erence of fµ(B) and f
0

(B) is

max↵2Q{µd(↵)}. fµ(B) is smooth on B by Theorem 1 in Nesterov (2005), and convex and

continuously di↵erentiable on B. The gradient of fµ(B) is rfµ(B) = C↵⇤, where ↵⇤ is the

solution to obtain fµ(B) (Proposition 1 in Chen et al. 2012). Note that rfµ(B) is Lipschitz

continuous with Lipschitz constant Lµ = 1

µ
kCk2S, where kCkS is the matrix spectral norm

defined by maxkvk21

kCvk
2

. As a result, we can replace ⌦(B) with fµ(B) and solve the

optimization with the parameter µ that determines the degree of smoothness.
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3.3.2 Group structured integrative clustering (GS-iCluster)

Regulation mechanisms of complex diseases such as cancer are very complicated. The signals

from each omics data are often weak and dependent. This motivates us to develop a group

structured framework to deal with multiple omics data by applying a sparse overlapping

group lasso penalty. By adding approximation of group lasso penalties (3.4), the penalized

log likelihood (3.1) becomes

log(L(B, )) = �n

2
log(| |)� 1

2
tr
⇥
(X � BZ)T �1(X � BZ)

⇤
� 1

2
tr(ZZT )� P (B), (3.5)

where the aggregated penalty P (B) is fµ(B) + �kBk
1

and µ is a pre-defined smoothing

parameter.

In order to estimate the parameters of the latent variable matrix Z, we apply the pe-

nalized EM-algorithm. In E-step of iteration t, we take the expected value of complete-data

log-likelihood (3.5) with respect to f(Z|X,B(t)),

Q(B|B(t), X) = EZ|X,B(t)

⇣
logL(B;X,Z)

⌘

=

Z
logL(B;X,Z)f(Z|X,B(t))dZ.

Note that given X and B(t) an estimated solution for B at iteration t, E(Q) solely depends

on E(Z) and E(ZZT ). Using the property of multivariate normal distribution, we have

EZ|X,B(t)(Z|X) = B(t)T⌃�1X,

EZ|X,B(t)(ZZT |X) = I � B(t)T⌃�1B(t) + E(Z|X)E(Z|X)T ,

where ⌃ = B(t)B(t)T +  .

In M-step, B(t+1) is obtained by maximizing the function Q given B(t), an estimate at a

previous iteration:

B(t+1) = argmaxBQ(B|B(t), X)

= argmaxB

⇢
�1

2
tr[(X � BZ)T �1(X � BZ)]� 1

2
tr(ZZT )� P (B)

�
.

(3.6)

We iterate the E-step and M-step until convergence (i.e. max(|B(t) � B(t�1)|) < 10�4). To

satisfy the Gaussian assumption of latent variables in Z (i.e. standard normal distribution)
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(Shen et al., 2009), the latent variables are centered and scaled at each iteration. Once we

obtain the solution of B and Z, Partition Around Medoids (PAM; Reynolds et al. 2006) is

applied over Z to estimate integrative clustering labels.

When estimating the sparse solution of B, the Smoothing Proximal Gradient Descent

(SPG, Chen et al. 2012) algorithm can be applied to obtain B(t+1) in M-step, which improves

computation e�ciency. The smoothing part of the objective function in equation (3.6) is

h(B) =
1

2
tr[(X � BZ)T �1(X � BZ)] + fµ(B). (3.7)

The gradient and Hessian matrix of h(B) are given by

rh(B) =  �1(BZ �X)ZT + CT↵⇤ =  �1B(ZZT )�  �1XZT + CT↵⇤,

r2h(B) = H{(i,j),(i,j)} = diag(h), where h =
�
hi,j|hi,j = zTi zi

1

 jj

, 8i, j
 
,

where ↵⇤ is the optimal solution to 3.7. rh(B) is Lipschitz-continuous (Theorem 1 in Chen

et al. 2012) with Lipschitz constant

L = �
max

�
r2h(B)

�
+

kCk2S
µ

.

Since the likelihood function of exponential family is log concave (Bickel and Doksum, 2001),

h(B) remain convex and continuous. Therefore, based on Theorem 1 in Chen et al. (2012),

we can reformulate objective function in (3.6) using the proximal operator as

�1

2

���B �
�
wt � 1

L
rh(wt)

����
2

2

� �

L
kBk

1

.

A closed form solution for B can be obtained using soft-thresholding operation (Friedman

et al., 2010). The accelerated gradient descent algorithm can be applied until convergence.

The summary of the entire algorithm is presented in Table 3.
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Table 3: Smoothing proximal gradient descent algorithm for structured likelihood function.

Input: X,Z,C,B0, Lipchitz constant L, and pre-defined stopping criterion ".

For t = 1, 2, . . . until B(t) converges

(1) Minimize proximal operator along with the L
1

lasso term

B(t+1) = argminB

h
1

2

tr[(X � BZ)T �1(X � BZ)] + fµ(B) + �kBk
1

i

= argminB
1

2

���B �
�
wt � 1

L
rh(wt)

����
2

2

+ �
L
kBk

1

,

where rh(B) =  �1(BZ �X)ZT + CT↵⇤ =  �1B(ZZT )�  �1XZT + CT↵⇤

(2) Set ✓t+1

= 2

t+3

(3) Set wt+1 = B(t+1) + 1�✓t
✓t
✓t+1

�
B(t+1) � B(t)

�

Output B̂ = B(t+1)
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3.3.3 Group structured tight integrative clustering (GST-iCluster)

Motivated by the methods to pursue tight clustering (Tseng and Wong, 2005; Tseng, 2007),

we propose GST-iCluster to find stable and coherent clusters by adding an additional L
1

penalty to control the sparseness of samples in Z. In the latent regression model given

estimated B̂ from penalized EM, Z can be considered as coe�cients (i.e. X = B̂Z + ",

where " ⇠ N(0,�), � = diag(⌧ 2
1

, . . . , ⌧ 2n)). The objective function to be minimized with

respect to Z is

kX � B̂Zk2 + �
1

kZk
1

.

Again, a soft-thresholding and PAM is applied to obtain sparse solutions for Z and to produce

clustering labels.

3.3.4 Selection of penalization constant for GS-iCluster

In equation 3.4, C determines the degree of sparseness. The selection of elements in C must

be appropriate in order to obtain similar overall penalties for the coe�cient matrix B. For

instance, some features in a group may be highly overlapped (e.g. a miRNA feature links to

multiple target gene expression features). If we directly apply the sparse overlapping group

lasso (Chen et al., 2012), highly overlapped features are more likely to be penalized. For

example, suppose that we have four features fi (1  i  4) involved in two pre-defined

feature modules, g
1

= {f
1

, f
2

, f
3

} and g
2

= {f
2

, f
3

, f
4

}. We can specify components of

C
(k,gv),i as illustrated in Figure 14. We note that the sum of columns in C

(k,gv),i associates

with overall penalty for fi, and should be adjusted to assign an equal overall penalty for all

fi (1  i  4). To address this, we force the column elements of C subject to

PV
v=1|gv |X

k=1

C
(k,gv),i = � for all i. (3.8)

In this particular example, the constraint (3.8) results in

� = �!
11

=
�!

12

+ �!
22

2
=
�!

13

+ �!
23

2
= �!

24

,

and so !
11

= !
24

= 1, and !
12

= !
22

= !
13

= !
23

= 0.5.
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Figure 14: An example of penalization constant C implemented in sparse overlapping group

lasso technique.
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Two turning parameters, � of features and K (# of clusters), are involved in GS-iCluster,

and an additional �
1

for sample tight clustering is chosen for GST-iCluster. To select the

optimal turning parameter set, we propose sequential searching of all combinations of tuning

parameters via S-fold cross validation (S = 5 is used). We seek the optimum tuning pa-

rameters, � and K using GS-iCluster, and then given � and K, we seek �
1

in GST-iCluster.

S-fold cross-validation is applied in finding optimal � and K. When we apply GS-iCluster

to the training data set, class labels of samples in training dataset are estimated and those

estimated class labels are treated as true labels. The class labels of testing data set are

determined by estimated class labels from training dataset using the shortest Euclidean dis-

tance. GS-iCluster is iteratively applied to all training datasets from S-fold validation, and

all inferred class labels can be obtained from testing datasets. As an optimization criterion,

we use Adjusted Rand Index (ARI, Vinh et al. 2009). ARI is calculated between the class

labels estimated from original dataset and the class labels via S-fold cross-validation in the

test data sets. Finally, the optimal tuning parameters are selected by searching parameters

that maximize ARI values.

3.4 APPLICATIONS

We obtained the mRNA expression, CNV, methylation, and miRNA expression data of breast

cancer from TCGA Portal (https://tcga-data.nci.nih.gov/tcga/). The regulation impact of

CNV and methylation on mRNA expression is usually stronger than miRNA. Furthermore,

probes measuring CNV and methylation features match to gene regions, while one miRNA

can potentially a↵ect many genes and many di↵erent miRNAs may also impact expression

levels of many genes. As a result, we first integrated CNV, methylation and mRNA in section

3.4.1 as an example of non-overlapping group lasso. In section 3.4.2, we consider miRNA

and mRNA datasets using the sparse overlapping group lasso method.
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3.4.1 Integration of mRNA, methylation and CNV using TCGA breast cancer

data

The data obtained from TCGA Data Portal contain CNV for 23,235 genes, methylation levels

of 22,529 probes and mRNA expression levels for 17,814 genes with 306 breast cancer samples

(ER-positive: 234 samples, ER-negative: 66 samples, Not performed or Intermediate: 6

samples; freeze date: 04/01/2013). Each of CNV and mRNA probe is matched to a gene

symbol. We first filtered out genes with low-expressed (mean < 0.9) or non-informative

(standard deviation < 0.85) features in the mRNA expression data. 828 genes from mRNA

expressions are left for further analysis. We also obtained 1,345 methylation probes and

828 CNV genes by matching 828 mRNA gene symbols. Note that multiple methylation

probes may match to one mRNA gene. The features from three di↵erent omics datasets that

share the same cis-regulatory annotation (same gene symbol) are grouped together to form

828 feature modules. In this case, each module has one mRNA gene expression, one CNV

gene and one or more methylation probes. Each module contains multi-omics regulatory

information because CNV and methylation may regulate mRNA expression. GS-iCluster

and the original iCluster were applied to the data using 828 feature modules information,

although iCluster does not incorporate the module information.

Figure 15 shows the results from iCluster and GS-iCluster. The cross-validation analysis

was applied and determined the optimal number of clusters at 4 among the choices of 3, 4,

5 and 6. We selected the tuning parameters so that both methods can find similar number

of nonzero e↵ect features (1,110 for GS-iCluster and 1,100 for iCluster). Among the selected

features from GS-iCluster, 119 features belong to modules covering all three types of omics

entries (Category I), 339 features belong to modules covering selected mRNA and methyla-

tion (Category II), and 150 features belong to modules covering selected mRNA and CNV

(Category III). In total, 608 out of 1,110 (54.8%) features share modules one another and

hence may have better biological interpretation, iCluster selected 1,100 features and only 405

(36.8%) share modules. Scatter plots of the top 12 modules of each category I - III selected

by the largest absolute values of correlations are shown in Figure 16. Standardized mRNA

expression, methylation levels and CNV values are shown on the same plot (y-axis) with
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      92         55           108           51  

Gene (590) 

Methylation (414) 

CNV (96) 

A. B. 

Gene (440) 

Methylation (469) 

CNV (201) 

Figure 15: Heatmap of three omics (Gene, Methylation, and CNV) features selected via (A:

Group structured / B: iCluster) integrative clustering. For ER and PR status, the pink and

green colors represent ER-positive and ER-negative, respectively. For the rest, the pink color

refers to Basal-like, Luminal A/B, and HER2 enriched, respectively.
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B. Category II (mRNA + Methylation) 

C. Category III (mRNA + CNV) 

A. Category I (mRNA + Methylation+ CNV) 

Figure 16: Scatter plots of the top 12 feature modules that are negatively or positively

mapped to the ordered mRNA features. Red, Blue, and Black colors represent Methylation,

CNV, and mRNA feature intensities, respectively. The values at the corner are correlations

between two involving features, and each solid line represents a simple linear regression

model of Methylation (Red) and CNV (Blue). Y-axis refers to expression levels, and X-axis

samples ordered by mRNA expression.
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black, red and blue respectively. The samples are sorted on the x-axis by mRNA expression.

As expected, Category II modules with identified mRNA and methylation features showed

significant negative Pearson correlation (�0.83 to �0.59), while Category III modules with

mRNA and CNV features show positive correlations but with smaller magnitude (0.41 to

0.54). This is consistent with the prior biological knowledge that methylation usually sup-

pressed mRNA expression (negative correlation) and amplification or deletion of CNV usually

has positive causal relationship (up-regulation or down-regulation) with mRNA expression.

The result provides a good internal validation since the module information integrated in

the group lasso does not include the directions of association. The reason that CNV shows

a smaller correlation with mRNA expression compared to methylation is probably because

most tumors in the data do not have CNV aberrations. The true association of the CNV and

gene expression may be much stronger than what we observed based on Pearson correlation.

We further investigated the performances of GS-iCluster and iCluster on identifying bio-

logical functions related to breast cancer using pathway enrichment analysis (using Fisher’s

exact test) with gene symbols of the selected features. Three pathway databases, BioCarta

(217 pathways),  KEGG  (186 pathways)  and integrated  breast  cancer  pathway

(http://wikipathways.org), were used. Figure 17 shows the Manhattan plot of the pathway 

enrichment analysis and three significant pathways were identified using GS-iCluster while none 

were identified using iCluster at the 5% significant level of false discovery rate.

Table 4 lists the top 3 significant pathways related to breast cancer, which were identified

by GS-iCluster but not by iCluster: cytokine receptor interaction, Chemokine signaling,

and JAK-STAT signaling. Compared to iCluster, results from GS-iCluster identified many

more category I modules (mRNA + Methylation + CNV), which indicates high genomic

instability and regulatory complexity in these oncogene pathways. Notably, these pathways

were already shown to biologically associate with breast cancer (Huan et al., 2014; Palacios

et al., 2014; Hernandez-Vargas et al., 2011).

The results from GST-iCluster are shown in Figure 18A. It excluded 88 samples from

clustering (inside the dotted green line). These samples appear to have little discriminant

subtype patterns. While the number of samples used for clustering is reduced, the patterns

looks more coherent to the assigned clusters. In real data analyses, we often notice that
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Figure 17: Manhattan plots of pathway enrichment analysis (A: Result from GS-iCluster /

B: Result from iCluster).
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Table 4: Analysis of three pathways over selected genes from both GS-iCluster and iCluster

.

# of features in the

pathway

# of selected

features &

pathway fea-

tures (Total

# of selected

features)

P-value Q-value Category I Category

II

Category

III

KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION

(GS-iCluster) 162 91 (1110) 0.0000004 0.00015 18 12 9

(iCluster) 162 71 (1100) 0.054 1 4 21 3

KEGG CHEMOKINE SIGNALING PATHWAY

(GS-iCluster) 70 44 (1110) 0.000013 0.0053 7 5 5

(iCluster) 70 34 (1100) 0.044 1 2 9 1

KEGG JAK STAT SIGNALING PATHWAY

(GS-iCluster) 68 42 (1110) 0.000034 0.014 10 3 9

(iCluster) 68 31 (1100) 0.1278 1 2 7 3

Category I : mRNA+methyl+CNV

Category II : mRNA+methyl

Category III : mRNA+CNV
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samples used for cancer subtype identification tend to be loosely associated with the subtypes

because of heterogeneity and the complicated biological mechanisms of cancer. GST-iCluster

may provide deeper insights and better accuracy by identifying accurate subtypes of disease

only for patients with clear genomic and epigenetic patterns.

B. 

Gene (279) 

miRNA (57) 

Gene (440) 

Methylation (469) 

CNV (201) 

A. 

Figure 18: Heatmap of two omics (A:mRNA, Methylation and CNV / B:mRNA and miRNA)

features selected via GST-iCluster.

3.4.2 Integration of mRNA and miRNA using TCGA breast data

We collected two microarray datasets that contain mRNA and miRNA expressions of 229

breast cancer samples from TCGA (ER-positive: 174 samples, ER-negative: 51 samples,

Not performed or Intermediate: 4 samples; freeze date: 04/01/2013). We selected top 1,500

most variable gene expression probes from 17,814 original probes, and 650 miRNAs (mean

< 0.015, SD < 0.13) from 1,046 probes to conduct further analysis. Based on the miRNA

database of target gene predictions (miRanda; John et al. (2004)), candidate target mRNA

features and the miRNAs were grouped to define feature modules in GS-iCluster.

GS-iCluster identified 4 sample clusters among the choices of 3, 4, 5 and 6 as optimal

number of disease subtypes. Again to make the results from both iCluster and GS-iCluster
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Table 5: The number of selected features in modules with two or more features.

Category I Category II Category III Category IV

(mRNA + Methyl +

CNV)

(mRNA +

Methyl)

(mRNA + CNV) (Methyl + CNV)

GS-iCluster 119 339 150 159

iCluster 43 294 68 57

A. 

Gene 
(365) 

miRNA 
(34) 

B. 
                  85                   44            63            37  

Gene 
(279) 

miRNA 
(57) 

Figure 19: A: Heatmap of two omics (mRNA and miRNA) features selected via Group

structured integrative clustering, B:Heatmap of two omics (mRNA and miRNA) features

selected via iCluster

57



comparable, tuning parameters in both methods are selected to have similar number of se-

lected features (552 in iCluster and 537 in GS-iCluster). iCluster identified 33 miRNAs

compared to 40 miRNAs from GS-iCluster (Figure 19A). The miRCancer database of miR-

NAs and cancer associations (Xie et al., 2013) was obtained to evaluate biological relevance

of the findings. Out of total 399 miRNAs in the database, 85 miRNA features are related

to breast cancer. Among these 85 miRNAs, 56 miRNAs from GS-iCluster overlap with 17

miRNA features, while miRNAs from iCluster overlap with only 9. Based on Fisher’s ex-

act test, GS-iCluster are more likely to detect breast cancer related miRNAs (OR = 2.68,

p = 0.0142) than iCluster (OR= 1.60, p = 0.3381)(Table 6). We further applied GST-

iCluster in Figure 18B and excluded 15 scattered samples from the clustering. Similar to

the previous example in Section 4.1, we obtained much tighter subtype patterns.

3.5 SIMULATION

In this simulation study, we evaluate the performance of GS-iCluster compared to iCluster for

module structure identification and clustering accuracy by comparing with true underlying

clusters. Our simulation scheme is as follows:

1. Generate two omics datasets (s = 1, 2), one for mRNA expression and the other for

methylation. Each dataset contains three true sample clusters (k = 1, 2, 3) that are

characterized by five gene clusters (h = 1, 2, . . . , 5). Simulated data and corresponding

parameters are generated sequentially:

a. Size of sample cluster k: Nk ⇠ Poisson(15);

b. Mean expression levels of gene clusters: µkh ⇠ Unif(4, 10), with restriction maxp,q |µph � µqh| �

0.5 to ensure that there is enough information to infer the sample clusters;

c. Template cluster patterns: X 0
skhi ⇠ N(µkh, 4), s = 1, 2, k = 1, 2, 3, h = 1, 2, . . . , 5, i =

1, . . . , Nk;

d. Correlation structure of genes in the same gene cluster:
P

skh is obtained by stan-

dardizing
P0

skh with the diagonal elements equal to 1, where ⌃
0
skh ⇠ W�1(�, 100).
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Table 6: miRNAs set enrichment analysis of miRCancer database

GS-iCluster (p = 0.0142)

in DB Not in DB Sum

Selected miRNAs 17 21 38

Non-selected miRNAs 39 129 128

Sum 56 150 206

iCluster (p = 0.3381)

in DB Not in DB Sum

Selected miRNAs 9 16 25

Non-selected miRNAs 47 134 181

Sum 56 150 206

59



W�1 denotes inverse Wishart distribution and � = 0.5 · I + 0.5 · J , where I and J

are identity and all-ones matrices respectively.

e. 10 correlated genes in each gene cluster of mRNA expression dataset and 30 cor-

related probes in each cluster of the methylation dataset:
�
Xskhi1, . . . , XskhiJ)T ⇠

MVN(X 0
skhi,

P
skh

�
, where J = 10 if s = 1 and J = 30 if s = 2. This generates a

total of 50 predictive features in the mRNA dataset and 150 predictive features in

the methylation dataset.

f. 450 and 1350 noise genes from N(0, 4) for data set 1 and 2 respectively. The final

simulated mRNA expression data matrix contains 500 genes and methylation data

matrix has 1,500 features for N
1

+N
2

+N
3

samples.

2. Generate m feature modules to reflect cross omics regulatory information. The parame-

ters used to generate module information are similar to those estimates from the TCGA

breast cancer data. Each module contains one mRNA expression from a specific gene

cluster and nm methylation features from the same gene cluster with the probability p,

where nm sampled from zero-truncated Poisson(3) and p 2 {0.8, 1}. When p < 1, each

gene module adds noise features with the probability 1� p. We set m = 5 for each gene

cluster in this simulation (i.e. a total of 25 feature modules), and repeat the simulations

100 times.

Figure 20 shows the clustering performance for GS-iCluster and iCluster. In Figure 20A,

estimated sample clusters are compared to the underlying truth using the adjusted rand

index (ARI, Vinh et al. 2009). ARI compares similarity of two clustering results (the larger

the better). The results from 100 simulations are presented using Loess (Cleveland, 1979)

with standard error bars. In this simulation, regularization parameters are tuned to generate

di↵erent number of selected features on the x-axis. GS-iCluster shows improved clustering

accuracy, particularly when small number of features are used for clustering (Figure 20A),

due to the incorporation of prior module knowledge.

Modules are biologically interpretable and so potentially more biologically relevant. We

then compared the number of identified modules from GS-iCluster and iCluster. To make

the results comparable, we compared the number of true modules identified (y-axis) when

the number of features used to clustering are similar (x-axis). We found that GS-iCluster
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Figure 20: Performance comparisons between Group-structured integrative clustering and

standard iCluster.

can find more module genes than iCluster (Figure 20B). To evaluate the robustness of our

method, we also compared our methods with iCluster when there exist noise features in the

modules (i.e. error knowledge in prior module information). Note that when p = 1, there is

no noise feature and when p = 0.8 there are about 20% noise features. Although adding noise

features in the modules reduce the performance of GS-iCluster as expected, GS-iCluster is

robust and is still superior to iCluster that does not incorporate module information (Figure

20A-B).

To evaluate the performance of GST-iCluster on tight clustering, N
4

noise samples are

added into both miRNA and methylation datasets. The noise features are generated from

N(0, 0.01) and the size of N
4

are 10, 40 and 70 respectively. The Youden Index is used

as a benchmark to assess the performance of noise sample detection. Large values of the

Youden Index (up to 1) represent the better performance. We calculated the Youden index

using di↵erent penalty parameters �
1

2 {0.1, 0.2, · · · , 1.4}. The performance of GST-iCluster

mostly depends on the penalty parameters as compared to e↵ects of the number of noise

samples. This suggests that we can ignore the proportions of noise samples but focus on the

selection of optimal �
1

(Figure 20C).
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3.6 DISCUSSION

The advances of high-throughput experimental technologies and a↵ordable cost result in

rapid accumulation of multi-source and multi-platform omics data sets. This trend is ex-

pected to continue in the foreseeable future. The complexity of multi-omics datasets brings

not only new statistical challenges but also great opportunities for the data integration.

Clustering samples for coherent omics signature is an important biological objective, which

can lead to findings of novel disease subtypes and deliver meaningful information for tailored

treatment and precision medicine. A comprehensive inference of potential inter-omics regu-

latory mechanisms provides a deeper under- standing of the underlying disease mechanism.

We improved the iCluster framework with an sparse overlapping group lasso technique that

incorporates prior knowledge of the regulatory information flow (e.g. methylation usually

suppresses nearby gene expression) in the modeling. We further adopted a tight clustering

concept to allow scattered samples to be left out of meaningful clusters. We demonstrated

the benefit of the new framework using simulation and real data with benchmarks of (1) fre-

quency of module identification that reflects consistency of prior regulatory knowledge, (2)

clustering accuracy in simulation and (3) pathway enrichment analysis in real data analysis.

Results in the two TCGA breast cancer examples shed lights on the disease mechanisms of

the discovered subtypes.
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4.0 META-ANALYTIC FRAMEWORKS FOR PRINCIPAL COMPONENT

ANALYSIS

4.1 INTRODUCTION

Dimension reduction for high-dimension data plays an important role in pattern recognition,

classification (Chu et al., 2005), clustering (Bartenhagen et al., 2010) and so on. In particular,

principal component analysis (PCA) is the most popular dimension reduction tool to explore

high dimensional data through low dimensional space. In addition, principal component

space proves to be minimizing the sum of squares of projection errors so that the first r

leading eigenvectors and eigenvalues give the best rank-r approximation to an original matrix

(Eckart et al., 1936). PCA has been jointly incorporated into many statistical analyses

(e.g. regression analysis or multivariate analysis, Jolli↵e et al. (2003); Hotelling (1957))

to circumvent the multicollinearity problem, and to alleviate the curse of dimensionality

(Bishop et al., 2006). Nevertheless, PCA potentially su↵ers many practical limitations in

high dimension data analysis. For example, noise features of large-scale microarray data often

interrupt e↵ective dimension reduction because each principal component involves a linear

combination of every variable. Moreover, a number of small but nonzero loadings become

huge obstacles for clear interpretations. For a few decades, several alternatives to PCA

have been proposed to improve its low interpretability and variable selection, such as non-

negative matrix factorization (NMF) (Lee and Seung, 1999) and sparse PCA (Jolli↵e et al.,

2003). Especially, sparse PCA aims to deal with variable selection problem by regularizing

over the eigenvector components. The method is commonly called “sparse PCA” in the

literature, and various sparse PCA have been proposed: (Hoyle et al., 2004; Journ ee et al.,

2010; Witten et al., 2009; Zou et al., 2006). Zou et al. (2006) proposed sparse PCA (eNet)
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based on a regression-type optimization problem via the elastic net penalty. Similar to eNet,

Witten et al. (2009) developed sparse PCA that exploits the penalized matrix decomposition

(PMD).

Here we introduce three mRNA data sets of mouse metabolism (See the section 4.6). In

Figure 21A, PC projections by individual study’s eigenvector (row: training study) to each

study (column: testing study) clearly loses its discriminant patterns. For example, Figure

21A (training: Liver) shows that the class labels of WT (circle), VLCAD (star) and LCAD

(triangle) are mingled together. Lee et al. (2010) reported that PCA often causes distorted

PC projections, especially when applied to an independent testing study. To circumvent this

problem, we introduce two analytic frameworks to generate common PC space for dimension

reduction of multiple homogeneous data. To our best knowledge, an analytic framework for

producing common PCA has not been proposed yet.

The Meta-PCA frameworks aim to identify “meta” principal component (Meta-PC) space

by using (1) decomposition of the sum of variances matrix (SV) motivated by Flury (1984)

and (2) minimization of the sum of squared cosines (SSC) inspired by Krzanowski (1979).

With graphical illustrations, we demonstrate how Meta-PCA (SSC) geometrically searches

optimum Meta-PC space, and determines the best Meta-PC space dimension. Meta-PCA

forms common PC space that simultaneously accounts for variations of multiple omics data

sets. Similarly, Lock et al. (2013A) developed an integrative dimension reduction algorithm,

the joint and individual analysis of explained variance (JIVE) algorithm. Interestingly JIVE

is originally designed for vertical data integration of di↵erent omics data but can be appli-

cable to multiple homogeneous data integration (horizontal data integration) by transposing

input data, and thus compared with JIVE, we are interested in how e↵ectively Meta-PCA

performs visualization and classification among class labels. Extensive simulated data exper-

iments show that Meta-PCAs precisely detects true principal component space and is robust

to e↵ects of noise features and outlier samples. With applications to various microarray ex-

periments (Mouse metabolism, Yeast cell cycle, Prostate cancer and TCGA Pan-cancers), we

assess whether Meta-PCAs e�ciently find separated PC projections onto common eigenvec-

tor space. We also propose several Meta-sparsePCA frameworks that penalize components of
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Figure 21: Examples of dimension reduction via PCA and Meta-PCA (SSC) over the four

mouse metabolism omics data. The x-axis and y-axis refer to the first and second princi-

pal component projection. Red (WT), black (VLCAD), and blue (LCAD) colors represent

wild-type, very longchain acyl-coenzyme A dehydrogenase (VLCAD), and longchain acyl-

coenzyme A dehydrogenase (LCAD) deficiencies, respectively. Each figure (star, square,

circle, and triangle) represents each study label.
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common eigenvectors, and test whether Meta-sparsePCA improves Meta-PCA in estimating

true eigenvector space by using simulated data and real genomic data.

4.2 METHODS

4.2.1 Meta-PCA via sum of variance decomposition (SV)

LetX(m) be an observed data set of sample size n(m) and p features for studym (1  m  M).

Denote by S(m) the maximum likelihood (ML) estimate of covariance matrix ⌦(m). To test

whether ⌦(m) (1  m  M) can produce a common eigenvector space, we consider a null

hypothesis, H
0

: LT⌦(m)L = ⇤(m) (1  m  M), where L is p ⇥ p common eigenvector

matrix, and ⇤(m) is diagonal eigenvalue matrix of study m (Flury, 1984). To circumvent

high computational cost, Krzanowski (1979) suggested the simple estimation of common

eigenvector matrix L:

LT
⇣ MX

m=1

S(m)

⌘
L = ⇤, (4.1)

where L and ⇤ are the eigenvector and eigenvalue matrix of T =
PM

m=1

S(m). However, a

covariance matrix is subject to a measurement scale and hence a few covariance matrices can

excessively dominate components of T . To handle this problem, we propose the weighted

covariance matrix by multiplying an inverse of the first leading eigenvalue:

T SV =
MX

m=1

w(m)S(m), (4.2)

where w(m) is an inverse of the largest eigenvalue of S(m). The largest eigenvalue accounts

for a great deal of the variance of principal components (typically more than half of total

variance), and hence the inverse of largest eigenvalue adjusts the sum of covariance matrix

to be balanced.

By applying (4.2), we propose a meta analytic framework for principal component anal-

ysis (Meta-PCA). Define a common eigenvector matrix B subject to:

⇣ MX

m=1

w(m)S(m)

⌘
B = T SVB = ⇤⇤B, (4.3)
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where T SV =
PM

m=1

w(m)S(m), ⇤⇤ is a diagonal matrix of eigenvalues of T SV , and �i is an ith

column vector of B. To determine the degree of dimension reduction, we adopt by scree plot

(Cattell et al., 1966) k-column dimensional eigenvector space such that explained variances

significantly turn away at the kth principal component. Due to the formulation structure

of (4.2), we call this method “Sum of variance decomposition (SV)”. Table 7 outlines the

framework of Meta-PCA (SV).

Table 7: The algorithm of Meta-PCA via sum of variance decomposition (SV)

(1) Let X(m) be observed data of n(m) samples and p features, by which we

estimate the ML estimator of covariance matrix S(m) (1  m  M).

(2) Calculate w(m), an inverse of the largest eigenvalue of S(m).

(3) Perform the eigen decomposition of T SV to obtain B, an eigenvector matrix

of T SV ,
⇣ MX

m=1

w(m)S(m)

⌘
B = T SVB = ⇤⇤B,

where ⇤⇤ is a diagonal matrix of eigenvalues of T SV .

(4) Choose the optimal k dimension of eigenvector matrix by scree plot, and

thereby obtain the meta eigenvector matrix BSV = (�
1

, . . . , �k).

4.2.2 Meta-PCA via Sum of squared cosine (SSC) maximization

Suppose that we derive a j(m) column dimensional eigenvector matrix V (m) = (v(m)

1

, . . . , v
(m)

j(m))

of study X(m), where v(m)

i is ith leading eigenvector for studym. Let �(m) be an angle between

an arbitrary vector g 2 Rp and a vector most nearly parallel to g in the space generated

by j(m) principal components of study m. The vector g that maximizes the sum of squared

cosine (i.e.,
PM

m=1

cos2�(m)) is given by an eigenvector of
PM

m=1

V (m)V (m)

T
corresponding to

the largest eigenvalues �
1

(Krzanowski, 1979):

⇣ MX

m=1

V (m)V (m)

T
⌘
g = �

1

g. (4.4)
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Figure 22: Geometrical illustrations for common principal component space (SSC).

The following example demonstrates an approach exploits topological comparison of mul-

tiple principal component (PC) projection to identify common PC projections. Consider two

studies X(1) and X(2): Let P and Q be arbitrary subspace of two PC projections generated

by three column dimensional eigenvector matrix of V (1) (2 Rp⇥3) and V (2)V (2)

T
V (1) (2 Rp⇥3),

respectively (i.e., P,Q 2 R3 and j(1) = j(2) = 3) (Figure 22A). Denote by g
1

and g
2

two

arbitrary orthogonal vectors in subspace P . In Theorem 1 (Krzanowski (1979)), the vec-

tors V (2)V (2)

T
g
1

and V (2)V (2)

T
g
2

laid on space Q are most parallel to g
1

and g
2

on space

P , respectively. Here, we define a common PC projection– i.e., bisector z
1

passing by be-

tween g
1

and V (2)V (2)

T
g
1

, where z
1

= 1p
(1+3�1)

�
I + V (2)V (2)

T �
g
1

, �
1

is the largest eigen-

value of
�
I + V (2)V (2)

T �
, and I is an identity matrix. The second bisector z

2

perpendicular

to z
1

is given by 1p
(1+3�2)

�
I + V (2)V (2)

T �
g
2

, where �
2

is the second largest eigenvalue of
�
I + V (2)V (2)

T �
. In Figure 22B, the second bisector z

2

(solid) topologically best represents

both two vectors g
2

(dotted) and
�
I + V (2)V (2)

T �
g
2

(dotted). We also define the space
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spanned by k bisectors as k-dimensional meta principal component (Meta-PC) space. For

example, Figure 22C presents Meta-PC space (in the middle) spanned by z
1

and z
2

, which

can topologically best explains both space P and Q. By extension, in case of M (� 3) studies

we can derive a common eigenvector matrix by eigenvectors of
PM

m=1

V (m)V (m)

T
, which best

accounts for all M individual eigenvector spaces (Theorem 3, Krzanowski (1979)).

Motivated by (4.4), we introduce the second Meta-PCA framework. We first esti-

mate a meta eigenvector matrix BSSC by applying the eigen decomposition to T SSC =
PM

m=1

V (m)⇤V (m)⇤T :
⇣ MX

m=1

V (m)⇤V (m)⇤T
⌘
BSSC = ⇤⇤BSSC , (4.5)

where V (m)⇤ is a matrix consisting of j(m) leading eigenvectors, ⇤⇤ is a diagonal eigenvalue

matrix, and BSSC = (�SSC
1

, . . . , �SSC
k ). To select dimension j(m) of V (m), we suggest a choice

of j(m) such that PC projection explains more than 80% of total variance for each data set,

since over 80% is commonly accepted as su�cient in genomic data analysis. To determine

the optimal dimension k, we utilize the scree plot method (Cattell et al., 1966). By defini-

tion, the meta-eigenvector �SSC maximizes
PM

m=1

cos2�(m) since �(m) is the minimized angle

between �SSC and k dimensional PC projection of study m. Considering the formulation

property, we name this approach “sum of squared cosine maximization (SSC)”. Table 8

outlines the framework of Meta-PCA (SSC).

4.2.3 Variable selection of Meta-PCAs (Meta-sparsePCA)

It is commonplace that large-scale microarray data contains a vast amount of noise features

that often undermine e↵ective dimension reduction. Such noise features often interrupts

e↵ective dimension reduction because each principal component involves a linear combination

of whole variables. Moreover, a number of small but nonzero loadings often causes low

interpretability of principle components. In this section, we introduce regularized Meta-

PCA frameworks (Meta-SparsePCA) for variable selection for which we consider two sparse

PCA methods: (1) regression-type sparse PCA together with elastic net penalty (eNet) (Zou

et al., 2006) (2) sparse PCA based on penalized matrix decomposition (PMD) (Witten et al.,
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Table 8: The algorithm of Meta-PCA (Sum of squared cosine (SSC) maximization)

(1) Let X(m) be data matrix of n(m) samples and p features, and V (m) be an

eigenvector matrix of X(m) (1  m  M).

(2) Choose j(m) such that V ⇤
m consists of j(m) leading eigenvectors.

(3) Perform eigen decomposition of T SSC =
PM

m=1

V (m)⇤V (m)⇤T :

⇣ MX

m=1

V (m)⇤V (m)⇤T
⌘
BSSC = ⇤⇤BSSC .

(4) Choose the optimal k dimensional by scree plot, and derive BSSC =

(�SSC
1

, . . . , �SSC
k ).

2009). Here we propose four frameworks of Meta-SparsePCA by applying the two sparse PCA

methods. More precisely, Table 9 describes the four methods of Meta-SparsePCAs, where

the two sparse PCA methods (eNet and PMD) are applied to two Meta-PCA’s objective

formulations (T SV and T SSC). Each sparse PCA algorithm is characterized with distinct

advantages depending on experimental scenarios, and thus it is worthwhile to evaluate all

candidate sparse Meta-PCAs to find the best sparse PCA. The best choice of penalization

constant is another problem, for which we develop an scree plot tool on the basis of explained

variances. (See the section 4.6).

4.3 SIMULATION STUDY

4.3.1 True eigenvector detection of Meta-PCA

In this section, we evaluate the two proposed Meta-PCA frameworks (SV and SSC) compared

with the standard PCA and JIVE. We first define a benchmark ! to assess the similarity
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Table 9: The four proposed methods of Meta-SparsePCAs for variable selection

Method 1: SSC + PMD

Estimate Meta-sparse eigenvectors (SSC) by the sparse PCA method (PMD),

(U⇤, B⇤) = argmaxU,BU
TT SSCB subject to kBk2

2

 1, kBk
1

 � and kUk2
2

 1,

where B⇤ = (�⇤
1

, · · · , �⇤
k) 2 Rp⇥k

Method 2: SSC + eNet

Estimate Meta-sparse eigenvectors (SSC) by the sparse PCA method (eNet),

(A⇤, B⇤) = argmaxA,B

Pp
i=1

kti � ABT tik2 + �
Pk

j=1

k�jk2 +
Pk

j=1

�
1,jk�jk1 subject to ATA = I,

where B⇤ = (�⇤
1

, · · · , �⇤
k) 2 Rp⇥k and ti is the ith column vector of T SSC(1  i  p).

Method 3: SV + PMD

Estimate Meta-sparse eigenvectors (SV) by the sparse PCA method (PMD)

(U⇤, B⇤) = argmaxU,BU
TT SVB subject to kBk2

2

 1, kBk
1

 � and kUk2
2

 1,

where B⇤ = (�⇤
1

, · · · , �⇤
k) 2 Rp⇥k.

Method 4: SV + eNet

Estimate Meta-sparse eigenvectors (SV) by the sparse PCA method (eNet),

(A⇤, B⇤) = argmaxA,B

Pp
i=1

kti � ABT tik2 + �
Pk

j=1

k�jk2 +
Pk

j=1

�
1,jk�jk1 subject to ATA = I,

where B⇤ = (�⇤
1

, · · · , �⇤
k) 2 Rp⇥k and ti is the ith column vector of T SV (1  i  p).

between two principal component space. Consider two eigenvector matrices V (1) and V (2),

where V (1) = (v(1)
1

, . . . , v
(1)

j1
) 2 Rp⇥j1 and V (2) = (v(2)

1

, . . . , v
(2)

j2
) 2 Rp⇥j2 . The evaluation

measure ! is given by:

!(V (1), V (2)) =
j1X

i=1

�i

= tr
�
V (1)

T
V (2)V (2)

T
V (1)

�
,
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where �i is the ith largest eigenvalue of V (1)

T
V (2)V (2)

T
V (1). Krzanowski (1979) proved

Pj1
i=1

�i is associated with angles between two eigenvectors of V (1) and V (2), and hence

!(V (1), V (2)) gauges the geometrical similarity between two matrices V (1) and V (2). Using

!, we test whether the Meta-PCA frameworks e↵ectively estimate true eigenvectors. Below

we demonstrate details of our simulation scenarios:

Step 1 (Define true eigenvectors): Let E = (e
1

, e
2

) and � = (�
1

,�
2

) be a true

eigenvector matrix of two feature clusters (c
1

and c
2

) and its corresponding true eigenvalues,

where e
1

= (1, 1, . . . , 1| {z }
10

, 0, . . . , 0)/
p
10 2 R200 and e

2

= (0, 0, . . . , 0| {z }
10

, 1, 1, . . . , 1| {z }
10

0, . . . , 0)/
p
10 2

R200, �
1

= 1000,�
2

= 800, c
1

2 {1, 2, . . . , 10} and c
2

2 {11, 12, . . . , 20}.

Step 2 (Generate random data sets): We define a true covariance matrix ⌃(m),

where ⌃(m) = ⌃ + E⇤(m) for 1  m  M , where E⇤(m) = ✏(m) · ✏(m)

T
, ✏(m) ⇠ MVNp(0,W ),

W = I⇥C, C 2 {0.1, 0.5, 1} and Ip⇥p is an identity matrix. Generate M simulated data sets

of 20 samples and 200 features, X(m) = (x(m)

1

, · · · , x(m)

200

) ⇠ MVN
200

(0,⌃(m)) for 1  m  M

and 1  M  10. Note that ten features that belong to each feature cluster (c
1

and c
2

) are

highly correlated respectively, since e
1

and e
2

are orthogonal and the eigenvalue values (�
1

and �
2

) are considerably large. By multiplying the true eigenvectors and eigenvalues, we

create a symmetric matrix ⌃, where ⌃ = eT�e.

We derive an eigenvector matrix V (m) = (v(m)

1

, v
(m)

2

) from simulated data sets X(m) (1 

m  M). By utilizing M data sets
�
i.e., X(1), X(2) . . . , X(M)

�
, the Meta-PCA frameworks

(SV, SSC) produce two dimensional meta-eigenvector matrices, BSV = (�SV
1

, �SV
2

) 2 R200⇥2

and BSSC = (�SSC
1

, �SSC
2

) 2 R200⇥2. To evaluate the similarity between the derived eigenvec-

tor matrix (BSV , BSSC , V JIV E or V (m)) and the true eigenvector matrix (= E), we calculate

!(E,BSV ), !(E,BSSC), !(E, V JIV E), and !(E, V (m)) such that by definition ! ranges from

0 to 2 due to two column dimensional space of E. The simulations are repeated 50 times

and average values are presented.

Figure 23A implicates the meta eigenvectors (BSV and BSSC) more precisely estimate

the true eigenvectors (E) than JIVE and standard PCA. When the variance parameter (C)

changes (i.e., C 2 {0.1, 0.5, 1} in Figure 3A, 3B and 3C, respectively) evaluation measures

consistently drop down (i.e., the highest values (SSC) of each scenario are 1.95, 1.75 and

1.48), yet the two Meta-PCAs consistently show superior performance against JIVE and
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C. D. 

A. B. 

Figure 23: Performance comparisons (Meta-PCAs, PCA and JIVE) of the e↵ects on the

number of studies for estimating true eigenvector. “SV”, “SSC” refer to Meta-PCA (SV) and

Meta-PCA (SSC). “Single” represents standard PCA of each individual study (A: C = 0.1,

B: C = 0.5, C and D: C = 1).
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standard PCA. The two Meta-PCAs clearly improves in identifying the true eigenvector

space. While Meta-PCA (SV) method slightly better performs than Meta-PCA (SSC), the

di↵erence does not seem noticeably significant.

Figure 23D compares the four Meta-sparsePCAs and two Meta-PCAs. We notice all

the four Meta-sparsePCAs outperform the two Meta-PCAs in identifying the true eigen-

vectors (the highest values are 1.65 (SSC+PMD), 1.61 (SV+PMD), 1.49 (SV+eNet) and

1.48 (SSC+eNet), respectively). These consequences analytically make sense, in the sense

that the sparse Meta-PCA regularizes non-influencing elements, and thereby it promotes to

leave only influential eigenvector components. Besides we found the method (SSC + PMD)

consistently performs the best among the four Meta-sparsePCAs as the number of studies

increases. We therefore recommend to utilize the Meta-sparsePCA (SSC + PMD) for future

analysis.

4.3.2 Robustness of Meta-PCA

High-throughput microarray data, for the most part, contain quite a few noise features.

Unless we filter noise features, PCA likely fails to perform e↵ective dimension reduction. In

this section, we test whether Meta-PCAs are robust to e↵ects of noise features and outlier

samples. To mimic real data, we adopt the simulation scenario introduced by Qiu et al.

(2006) that generates simulated data sets with an adjustment of cluster separation levels,

noise features and outlier samples.

Here we describe details of the simulation scenarios. We generate a full data set of

samples that separate one of three clusters, where each cluster includes 100 samples and 100

features (the method to define clusters, see Qiu et al. (2006)). We then add noise features

(20, 60 and 100) and outlier samples (0, 10 and 30). We then randomly split the full data

set into four subsets, where each subset holds an equal cluster size (i.e., 20 samples from

each cluster). Finally we impose equal outlier samples to each subset. Denote by X(m)

(1  m  4) four data sets. To generate data, we utilize “clusterGeneration” package Qiu

et al. (2006) in R (http://www.r-project.org/). To benchmark each method, we exploit the
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Figure 24: Robustness comparisons of Meta-PCA, JIVE and PCA to outliers and noises. The

y-axis represents the averages of Fisher discriminant scores, and the x-axis the magnitude of

cluster separation. The figure presents the two MetaPCA methods SV (dot), SSC (triangle),

JIVE (circle) and standard PCA (Single, star) applied to each individual study.
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Fisher discriminant scores defined by

vTSBv

vTSWv
(4.6)

where SB and SW are the between-group covariance matrix and the within-group covari-

ance matrix, and v is a line direction unit vector that maximizes (4.6) (Duda, 2014). The

simulations are repeated 100 times and average values are presented.

Figure 24 reveals that the two Meta-PCAs (SV, SSC) more e↵ectively distinguish the

three clusters, considering the two Meta-PCAs (SV, SSC) present higher Fisher discrimi-

nant scores than they appear in standard PCA (Single) and JIVE. This result implies the

two Meta-PCA frameworks are robust to e↵ects of outliers and noises, compared with JIVE

and standard PCA. More interestingly, the magnitude of outliers and noises almost pro-

portionately a↵ects the performance of Meta-PCA (SSC) (i.e., linearly increase of Fisher

discriminant scores), whereas Meta-PCA (SV) is more subject to noise and outlier e↵ects

and even become worse than Meta-PCA (SSC) in some scenarios (e.g., the panel of Outlier

= 20%, Noise = 100). When the separation degree is small, Meta-PCA (SV) tend to poorly

separate clusters (e.g., the separation degree from 0 to 0.2 in all scenarios with “Noise” be-

ing more than 60”). Taken together, we recommend exploiting Meta-PCA (SSC) for future

analysis.

4.4 APPLICATION TO REAL DATA SETS

In this section, we apply Meta-PCA (SSC) and Meta-SparsePCA (SSC + PMD) to various

high-throughput microarray data sets. We obtained mRNA expression and methylation ex-

pression data of various diseases from GEO (http://www.ncbi.nlm.nih.gov/geo/) and TCGA

Portal (https://tcga-data.nci.nih.gov/tcga/). We examine whether the proposed Meta-PCA

(SSC) and Meta-SparsePCA (SSC + PMD) e↵ectively visualizes Meta-PC projections for

multiple studies.
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4.4.1 Spellman’s cell cycle data

Spellman’s yeast cell cycle data (Spellman et al., 1998) include time-dependent gene expres-

sion profiles to monitor transcriptomic variation during yeast cell cycles. Yeast cells were

arrested to the same cell cycle stage using four di↵erent synchronizing methods: ↵ arrest

(alpha), arrest of cdc15 or cdc28 temperature-sensitive mutant, and elutriation (elu). A total

of 18, 24, 17 and 14 time points were considered for each synchronization. Since the diverse

synchronization methods can potentially lead to heterogeneity, we divided the samples into

four data sets depending on synchronizing methods (alpha, cdc15, cdc28, and elu). Due to

nature of iterative cell cycle, the expression profiles are well-characterized in cyclic patterns

(Spellman et al., 1998). We matched up features across all the four studies and filtered out

features using standard deviation (i.e. SD  0.45, non-informative features with smaller vari-

ation) that left 1,025 features. We imputed missing values via R package “impute” (Hastie

et al., 2014). We applied the frameworks of Meta-PCA (SSC) and Meta-SparsePCA (SSC

+ PMD) to assess whether they e↵ectively reveal cyclic patterns of gene expression profiles

compared with JIVE and PCA of single study.

In Figure 25, each row of panels refers to training study to estimate the leading top

two eigenvectors. The column refers to testing study that produces PC projections onto the

trained eigenvector space. The numbers on the lines indicate time points for two cell cycles.

PC projections at the panel of first row and first column (“alpha”) clearly delineates the

cyclic pattern of cell cycles, whereas PC projections of the second row and second column

panel (“cdc15”) oscillates as time points increase. Interestingly, this non-cyclic e↵ect was

already reported in Li et al. (2002). Note that Meta-PCA (SSC) consistently captures

the cyclic pattern of PC projections across all the four studies. In particular, Meta-PC

(SSC) projections of the study (“cdc15”) remarkably recover its cyclic pattern. This result

evidences that Meta-PCA (SSC) borrows and combines information derived from underlying

true common eigenvectors of other studies, and hence Meta-PCA (SSC) facilitate to estimate

true common eigenvector space. In Figure 25, it is obvious that Meta-PCA (SSC) and Meta-

SparsePCA (SSC + PMD) presents more noticeable cyclic patterns than they appear in

JIVE (e.g., non-clear cyclic patterns of the study (“cdc28”)) and standard PCA.
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Figure 25: Two dimensional PC projections of PCA, Meta-PCAs (SV, SSC), JIVE using

four mRNA expression data sets of Spellman’s yeast cellcycle experiment. The numbers on

the lines indicate time point during the two cell cycles. The first and second PC projection

are on the x-axis and y-axis of each panel, respectively.
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4.4.2 Prostate cancer data

In this section, we analyze data sets of four microarray experiments (Lapointe et al. (2004);

Tomlins et al. (2006); Varambally et al. (2005); Yu et al. (2004)), where each patient belong

to one of three class labels (normal, primary, and metastasis; See Table 10). We matched

up features across the four studies and filtered non-informative features by the rank sum

of feature mean and standard deviation (mean < 0.1, SD < 0.1; Wang et al. (2012)), and

imputed missing values that left 3,056 features.

Table 11 presents the result of Fisher discriminant scores and their average values over the

four studies. On average the standard PCA of “Lapointe” and “Tomlins” poorly distinguish

the class labels of samples (12.94 and 12.10 for each) compared with “Yu” and “Varambally”

(16.50 and 18.81 for each), while Meta-PCA (SSC) results in moderately high discriminant

e↵ects (16.56). In Figure 26, Meta-PC projections (SSC) reveal the transition pattern from

normal (star) to primary tumor (square) and to metastasis tissues (circle). Note that the

first leading Meta-PC (x-axis) projection accounts for larger variances across the class labels

than the second leading Meta-PC (y-axis). We also observe the class separation via JIVE

appears not as obvious as both Meta-PCA (SSC) and Meta-sparsePCA (SSC+PMD) (i.e.,

SSC (16.56), SSC+PMD (18.93), JIVE (10.36)).

Table 10: The summary of four prostate cancer data.

Author Year Platform Sample Size Source

Lapointe et al. 2004 cDNA 103 GSE3933

Tomlins et al. 2006 cDNA 57 GSE6099

Varambally et al. 2005 HG-U133 Plus 2 13 GSE3325

Yu et al. 2004 HG-U95Av2 146 GSE6919
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Figure 26: Two dimensional PC projections using four prostate cancer mRNA expression

data sets; star (normal), square (primary tumor) and circle (metastasis tissues). The first

and second PC projections are on the x-axis and y-axis, respectively.
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Table 11: Fisher discriminant scores of PC projections (prostate cancer data).

Yu Lapointe Tomlins Varambally Average

Yu 15.374 24.01 10.58 16.04 16.50

Lapointe 9 21.20 11.14 10.41 12.94

Tomlins 9.822 19.86 10.67 8.04 12.10

Varambally 11.955 26.41 10.69 26.17 18.81

SSC 14.712 26.45 11.37 13.69 16.56

JIVE 5.716 11.01 9.07 15.65 10.36

SSC+PMD 15.341 29.80 9.40 21.17 18.93

4.4.3 TCGA cancer data

In this section, we apply Meta-PCA (SSC) to TCGA cancers data sets (Level 3 DNA methy-

lation of beta values targeting on methylated and the unmethylated probes; https://tcga-

data.nci.nih.gov/tcga/). We retrieve the six cancer types (Breast carcinoma (BRCA), Colon

carcinoma (COAD), Kidney renal clear cell carcinoma (KIRC), Lung adenocarcinoma (LUAD),

rectum adenocarcinoma (READ), and Stomach Adenocarcinoma (STAD)) to explore com-

mon PC projection patterns between tumor and normal, including but not limited to, be-

tween male and female. We matched up features across all studies and filtered out probes by

the rank sum of feature mean and standard deviation (mean < 0.7, SD < 0.7; Wang et al.

(2012)), and thereby we selected 910 probes. Table 12 describes details of TCGA data.

In Figure 27, Meta-sparsePCA (SSC+PMD) layouts distinguishable PC projections over

the six cancer data sets across the four class labels (i.e., Tumor, Normal, Male and Female).

The normal samples (dot) are mostly distributed on the right side of first PC (x-axis),

whereas the tumor samples (square) are at the left side of the first PC. For the most part,

female samples (grey) are projected to the upper side of panels, while male samples (black)

are on the bottom side of panels. The projections via JIVE, by contrast, do not assemble to-
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gether to several focal points but scatter (see Table 13). Since Meta-sparsePCA (SSC+PMD)

gives an clear cut of the class labels (especially between genders), this exploratory analysis

implicates there exist common factors of cancer development revealed by the leading meta

sparse eigenvectors. Consequently, we may address a potential biological hypothesis associ-

ated with common oncogenic factors that lie over the six di↵erent cancer types as post-hoc

analysis.

Table 12: The summary of six TCGA methylation data.

Type Platform # of genes Sample Size Source

BRCA HumanMethylation27 13,311 350 The Cancer Genome Atlas

COAD HumanMethylation27 13,169 215 The Cancer Genome Atlas

KIRC HumanMethylation27 12,606 427 The Cancer Genome Atlas

LUAD HumanMethylation27 12,709 157 The Cancer Genome Atlas

READ HumanMethylation27 13,295 84 The Cancer Genome Atlas

STAD HumanMethylation27 13,196 114 The Cancer Genome Atlas

4.4.4 Mouse Metabolism Data

It is commonly known that an energy metabolism disorder in children is relevant to very

longchain acyl-coenzyme A dehydrogenase (VLCAD) deficiencies. LCAD-deficient mice have

impaired fatty acid oxidation, and su↵er from disorders of mitochondrial fatty acid oxida-

tion. We consider microarray experiments of mouse metabolism which were introduced and

analyzed in (Li et al., 2011). The data sets include mice profiles of three genotypes: wild-

type (WT), LCAD knock-out (LCAD) and VLCAD knock-out (VLCAD). We collected four

micro array data distinguished by types of tissues (brown fat, skeletal, liver and heart). We

filtered out low-expressed and low-variable features (mean<0.7, SD <0.7), and matched up

features across the four data sets, which left 1,304 features. (See Table 15).
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Figure 27: Two dimensional PC projections using methylation expressions of six di↵erent

cancers (TCGA) data; Tumor (square), Normal (dot), Male (black) and Female (grey).
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In Figure 28, PC projections of the standard PCA (e.g., “Liver”) does not e↵ectively clas-

sifies samples into the three class labels (i.e., WT (square), LCAD (dot) and VLCAD (star).

Table 14 shows that the standard PCA of “Liver” data set (training set) produces consistently

low Fisher discriminant scores, while Meta-PCA (SSC) e�ciently distinguishes the samples

into the three labels and appear even better than JIVE (i.e., SSC=10.17, JIVE=4.13). Im-

portantly, Meta-sparsePCA (SSC + PMD) further improves Fisher discriminant scores of

Meta-PCA (SSC) (i.e., SSC=10.17, SSC+PMD = 23.47).

4.5 DISCUSSION

We introduce the Meta-PCA and Meta-sparsePCA frameworks to estimate and analyze

multiple high-dimensional data through common principal components. The simulation

studies demonstrate Meta-PCA (SSC) achieves robustness to outliers and noise features,

and more precisely detect true underlying PC space (e.g., common cyclic and transitional

patterns), as compared with JIVE and standard PCA. More importantly, Meta-PCA has a

potential advantage of computational cost, while JIVE, due to nature of permutation, may

not be converged when the size of data is small, yet even if so, computing time can be

huge. Our real data examples are shown as homogeneous, which likely lead to e↵ective PC

projections. In case of heterogeneous data, we observed that Meta-PCA does not necessarily

perform e↵ective dimension reduction. Therefore it is worth collecting homogeneous data so

as to obtain reliable and well-separable PC projections. In particular, many high-throughput

data sets of prostate cancer have been reported to be more heterogeneous than other cancers

(Sboner et al., 2010). To tackle the problem, Kang et al. (2012) developed Meta-QC that

provides several benchmarks regarding study inclusion in the context of meta-analysis. For

future research directions, we may try to enhance the robustness of Meta-PCA. Hubert

et al. (2005) introduced “Robust PCA” known to be robust to e↵ects of noise features. This

direction is promising since PCA is highly sensitive to noise features or samples and thus

often fail to properly project onto robust PC space. Meta-PCA equipped with robustness is

expected to enhance the interpretation and visualization of Meta-PC.
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4.6 SUPPLEMENTARY MATERIALS

4.6.1 Best choice of Meta-PC dimension

In order to choose the optimal dimension k (=dimension of meta eigenvector matrix), we

adopt the scree plot technique. We generate simulated data exploiting the same simula-

tion scenario in the section 4.3.1 with di↵erent column dimensional true eigenvector ma-

trix. Let E = (e
1

, e
2

, e
3

, e
4

, e
5

) 2 R200⇥5 be the true eigenvector matrix of 200 dimensions,

where e
1

= (1, 0, . . . , 0), e
2

= (0, 1, 0, . . . , 0), e
3

= (0, 0, 1, 0, . . . , 0), e
4

= (0, 0, 0, 1, 0, . . . , 0),

e
5

= (0, 0, 0, 0, 1, 0, . . . , 0). Denote true eigenvalues by �
1

= 500,�
2

= 300,�
3

= 200,�
4

=

100, and �
5

= 50, and create a diagonal matrix � = diag(�
1

,�
2

,�
3

,�
4

,�
5

). Define C = 5

and j(m) = 5 (1  m  10). The simulations are repeated 100 times and average values

are presented. On the y-axis, we present the values of di↵erences in explained variances of

two neighboring values. Figure 29 indicates the elbow point at the 4th index of di↵erence,

suggesting to select five as the best.

4.6.2 Penalization constant for Meta-sparsePCA

In order to choose the optimal penalization constant �, we adopt the scree plot technique.

We generate simulated data sets using the same scenario in the section 4.3.1. We utilize a

proportion of increased explained variance G(a, b) as a benchmark to automatically choose

the best �, where G(a, b) = f(b)�f(a)
f(b)

, f(z) is explained variance of PC when the z number

of non-zero features of eigenvector matrix are applied. We choose � subject to G(a, b) < �,

where � produces b non-zero features of eigenvector and � = 0.1. The simulations are

repeated 100 times and average values are presented. Figure 30 shows that the stopping

rule chooses 20 nonzero features of true eigenvector matrix, suggesting the selection of the

penalization constant such that � leaves 20 non-zero features.
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Table 13: Fisher discriminant scores of PC projections (TCGA pan-cancer data; Class lables:

Tumor, Normal, Male and Female).

BRCA COAD KIRC LUAD READ STAD Average

BRCA 18.16 22.22 20.73 12.17 15.04 8.17 16.08

COAD 20.50 25.50 28.23 13.87 17.50 10.70 19.38

KIRC 22.59 29.13 32.70 16.25 20.33 13.78 22.46

LUAD 21.81 25.30 27.64 14.47 17.03 11.09 19.55

READ 20.27 21.29 18.43 11.06 15.35 7.02 15.57

STAD 21.84 26.17 29.34 14.89 17.40 11.98 20.27

SSC 24.93 21.02 16.88 12.52 13.12 7.94 16.07

JIVE 19.69 20.15 18.50 10.68 12.77 8.90 15.11

SSC+PMD 16.96 29.66 27.12 14.72 20.34 13.98 20.46
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Figure 28: Two dimensional PC projections using mRNA expressions of four mouse

metaboloism data; WT (square), LCAD (dot) and VLCAD (star).
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Table 14: Fisher discriminant scores of PC projections (mouse metabolism data)

Brown Heart Liver Ske Average

Brown 8.64 12.60 7.75 8.15 9.28

Heart 16.65 24.43 15.28 10.91 16.82

Liver 3.83 5.48 2.19 5.23 4.18

Ske 15.51 16.91 12.93 20.93 16.57

SSC 8.28 15.05 8.40 8.93 10.17

JIVE 3.59 5.83 3.75 3.35 4.13

SSC+PMD 19.11 29.17 22.90 22.68 23.47

Table 15: The summary of four mouse metabolism microarray datasets.

Tissue Type # of genes Sample Size Source

Brown fat Gene expression 14,495 12 Gerard Vockley, Li et al. (2011)

Liver Gene expression 14,495 12 Gerard Vockley, Li et al. (2011)

Heart Gene expression 14,495 11 Gerard Vockley, Li et al. (2011)

Skeletal Gene expression 14,495 9 Gerard Vockley, Li et al. (2011)
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Figure 29: The example of scree plot to determine the optimal dimension reduction of Meta-

PCA.
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Figure 30: The example of scree plot to determine the penalization constant for Meta-

sparsePCA.
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5.0 FUTURE WORKS AND CONCLUSION

5.1 META-KTSP EXTENDED TO MULTI-OMICS AND MULTI-CLASS

PROBLEMS

There are a few future directions to consider. The current framework can be extended

to a multi-omics or/and multi-platform integration. For instance, a TSP framework that

combines high-throughput microarray miRNA and RNA-seq. Due to the fact that TSP

relies on a rank based prediction block and RNA-seq data typically contain a multitude of

zero counts, RNA-seq might not be suitable to apply. However, it is possible to integrate

RNA-seq and microarray data using a copula mixture model (Qunhua et al., 2015), by

which we can propose a fine-tuned TSP framework designed to incorporate multi-platform

data. Moreover, a TSP model integrating multi-omics data (e.g., mRNA, methylation, CNV

and so on) can provide an potential insight into a molecular and cellular mechanism of the

diseases. Second, our method and evaluation focus on binary case-control classification.

The method could be extended to a multi-class classification scenario. Third, biological

knowledge such as pathways or known disease relevant genes can be incorporated to enhance

the TSP discovery accuracy. For example, Oncotype DX started with 250 breast cancer

related genes to identify the 21 predictive genes in their panel. Although this runs the risk

of missing understudied but significant biomarkers, this approach can potentially improve

cross-study validation in well-studied diseases. Finally, the current TSP approaches may be

extended towards module-based prediction scheme where top scoring pairs of gene modules

are sought to provide extra redundancy and robustness (Mi et al., 2010).
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5.2 GS-ICLUSTER REFLECTING FEATURE REGULATORY

DIRECTIONS

GS-iCluster can accommodate the prior knowledge of regulatory structure, where the model

embeds predefined feature modules. However, the presence or absence of exact directional

edges between features (e.g. methylation!mRNA, CNV!mRNA but not CNV!methy-

lation) are not explicitly modeled. Instead, the directional information was only used for

post-hoc evaluation in applications. Incorporating the directional network prior knowledge

is a promising future direction. Zhu et al. (2015) recently proposed a new group lasso to

estimate coe�cients in a group that are encouraged to keep concordant directions. Moti-

vated by this idea, we may assign an unbalanced penalization weight. More precisely, if the

estimated directions of mRNA and CNV are the same, we may impose a relatively small

penalization as the identical direction coincides with biologically known evidence.

The proposed GS-iCluster framework contains high computational complexity, mainly

from the iterative EM algorithm for the latent variable model and optimization via smoothing

proximal gradient (SPG) in the sparse overlapping group lasso. Since the sparse overlapping

group lasso applied here is for both multivariate inputs (latent covariates) and multivariate

outputs (omics measurements), the optimization is complex and heavy in nature. The mod-

eling is also complex but necessary. Our current package GS-iCluster is written in R and the

routines can be further optimized using C programming and parallel computing packages in

the future.

5.3 CONCLUSION

As high-throughput experimental data become prevalent, integrative methods to fully cap-

ture information of multi-lab, -platform and/or -omics data sets have become popular and

critical. Meta-analysis currently encounters new statistical and computational challenges.

Regarding data integration problems, this dissertation includes a wide variety of statistical

learning methods to combine multiple high-throughput data sets to significantly enhance
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the understanding of disease mechanisms and to generate novel biological hypotheses. First,

we sought to improve a top scoring pair (TSP) method that is a non-parametric, accurate

and easily interpretable model. The method is designed to facilitate cross-study validation

for clinical applications. The improved cross-study prediction suggests that the detected

biomarkers are robust to apply to any incoming high throughput data. Second, we improved

the existing iCluster framework with a sparse overlapping group lasso technique to accom-

modate prior knowledge of the regulatory information flow in the model. A comprehensive

inference of potential inter-omics regulatory mechanisms provides a deeper understanding of

disease development. We also proposed a tight clustering to exclude outlier samples out of

meaningful clusters. Clustering samples for coherent omics signature is a crucial biological

objective. Novel findings of disease subtypes lay a foundation to fulfill tailored treatments

down the road. Third, we propose the Meta-PCA frameworks to estimate common PC space

for e↵ective visualization and to discover common principal component patterns that multi-

ple studies commonly share. Applications to various examples of high-throughput data sets

reveals the superiority of Meta-PCA to distinguish samples into original class labels. In con-

clusion, we believe that our data integration methods will ultimately promote applications of

integrative analysis, and will benefit to translate novel findings towards prediction medicine

and/or disease management programs.
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