29 research outputs found

    Technique-Based Exploitation Of Low Grazing Angle SAR Imagery Of Ship Wakes

    Get PDF
    The pursuit of the understanding of the effect a ship has on water is a field of study that is several hundreds of years old, accelerated during the years of the industrial revolution where the efficiency of a ship’s engine and hull determined the utility of the burgeoning globally important sea lines of communication. The dawn of radar sensing and electronic computation have expanding this field of study still further where new ground is still being broken. This thesis looks to address a niche area of synthetic aperture radar imagery of ship wakes, specifically the imaging geometry utilising a low grazing angle, where significant non-linear effects are often dominant in the environment. The nuances of the synthetic aperture radar processing techniques compounded with the low grazing angle geometry to produce unusual artefacts within the imagery. It is the understanding of these artefacts that is central to this thesis. A sub-aperture synthetic aperture radar technique is applied to real data alongside coarse modelling of a ship and its wake before finally developing a full hydrodynamic model for a ship’s wake from first principles. The model is validated through comparison with previously developed work. The analysis shows that the resultant artefacts are a culmination of individual synthetic aperture radar anomalies and the reaction of the radar energy to the ambient sea surface and spike events

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques

    Oil spill and ship detection using high resolution polarimetric X-band SAR data

    Get PDF
    Among illegal human activities, marine pollution and target detection are the key concern of Maritime Security and Safety. This thesis deals with oil spill and ship detection using high resolution X-band polarimetric SAR (PolSAR). Polarimetry aims at analysing the polarization state of a wave field, in order to obtain physical information from the observed object. In this dissertation PolSAR techniques are suggested as improvement of the current State-of-the-Art of SAR marine pollution and target detection, by examining in depth Near Real Time suitability

    Ground moving target indication with synthetic aperture radars for maritime surveillance

    Get PDF
    The explosive growth of shipping traffic all over the World, with around three quarters of the total trade goods and crude oil transported by sea, has raised newly emerging concerns (economical, ecological, social and geopolitical). Geo-information (location and speed) of ocean-going vessels is crucial in the maritime framework, playing a key role in the related environmental monitoring, fisheries management and maritime/coastal security. In this scenario space-based synthetic aperture radar (SAR) remote sensing is a potential tool for globally monitoring the oceans and seas, providing two-dimensional high-resolution imaging capabilities in all-day and all-weather conditions. The combination of ground moving target indication (GMTI) modes with multichannel spaceborne SAR systems represents a powerful apparatus for surveillance of maritime activities. The level of readiness of such a technology for road traffic monitoring is still low, and for the marine scenario is even less mature. Some of the current space-based SAR missions include an experimental GMTI mode with reduced detection capabilities, especially for small and slow moving targets. In this framework, this doctoral dissertation focuses on the study and analysis of the GMTI limitations of current state-of-the-art SAR missions when operating over maritime scenarios and the proposal of novel and optimal multichannel SAR-GMTI architectures, providing subclutter visibility of small (reduced reflectivity) slow moving vessels. This doctoral activity carries out a transversal analysis embracing system-architecture proposal and optimization, processing strategies assessment, performance evaluation, sea/ocean clutter characterization and adequate calibration methodologies suggestion. Firstly, the scarce availability of multichannel SAR-GMTI raw data and the related restrictions to access it have raised the need to implement flexible simulation tools for SAR-GMTI performance evaluation and mission. These simulation tools allow the comparative study and evaluation of the SAR-GMTI mode operated with current SAR missions, showing the reduced ability of these missions to detect small and slow boats in subclutter visibility. Improved performance is achieved with the new multichannel architecture based on non-uniformly distributed receivers (with external deployable antennas), setting the ground for future SAR-GMTI mission development. Some experimental multichannel SAR-GMTI data sets over the sea and acquired with two instruments, airborne F-SAR and spaceborne TerraSAR-X (TSX) platforms, have been processed to evaluate their detection capabilities as well as the adequate processing strategies (including channel balancing). This doctoral activity presents also a preliminary characterization of the sea clutter returns imaged by the spaceborne TSX instrument in a three-level basis, i.e., radiometric, statistical and polarimetric descriptions using experimental polarimetric data. This study has shown that the system-dependent limitations, such as thermal noise and temporal decorrelation, play a key role in the appropriate interpretation of the data and so should be properly included in the physical backscattering models of the sea. Current and most of the upcoming SAR missions are based on active phase array antennas (APAA) technology for the operation of multiple modes of acquisitions. The related calibration is a complex procedure due to the high number of different beams to be operated. Alternative internal calibration methodologies have been proposed and analyzed in the frame of this doctoral thesis. These approaches improved the radiometric calibration performance compared to the conventional ones. The presented formulation of the system errors as well as the proposed alternative strategies set the path to extrapolate the analysis for multichannel SAR systems.L'increment continu del tràfic marítim arreu del món, amb gairebé tres quartes parts del total de mercaderies i cru transportats per mar, porta associats uns impactes canviants a nivell econòmic, ambiental, social i geopolític. La geo-informació (localització i velocitat) dels vaixells té un paper fonamental en el monitoratge ambiental, la gestió de la pesca i la seguretat marítima/costanera. Els radars d'obertura sintètica (SAR, sigles en anglès) embarcats en satèl·lits són una eina molt potent per al monitoratge global dels oceans i dels mars, gràcies a la seva capacitat de generar imatges d'alta resolució amb independència de les condicions meteorològiques i de la llum solar. La detecció de blancs mòbils terrestres (GMTI, sigles en anglès) combinada amb sistemes multicanal SAR és fonamental per a la vigilància de les activitats marítimes. El nivell de maduresa d'aquesta tecnologia per monitorar tràfic rodat és baix, però per al cas marítim encara ho és més. Algunes missions SAR orbitals inclouen el mode GMTI, però amb unes capacitats de detecció reduïdes, especialment per a blancs petits i lents. En aquest marc, la tesi doctoral es centra en l'estudi i anàlisi de les limitacions GMTI dels actuals sistemes SAR operant en entorns marítims, proposant noves configuracions SAR-GMTI multicanal optimitzades per a la detecció de vaixells petits (emmascarats pels retrons radar del mar) i que es mouen lentament. La present dissertació doctoral du a terme un estudi transversal que abasta des de la proposta i optimització de sistemes/configuracions, passant per l'avaluació de les tècniques de processat, fins a l'estudi del rendiment de la missió, caracterització del mar i la valoració de noves metodologies de calibratge. En primer terme, diverses eines de simulació flexibles s'han implementat per poder avaluar les capacitats GMTI de diferents missions tenint en compte la poca disponibilitat de dades multicanal SAR-GMTI. Aquests simuladors permeten l'estudi comparatiu de les capacitats GMTI de les missions SAR orbitals actuals, demostrant les seves reduïdes opcions per identificar vaixells emmascarats pels retorns del mar. En el marc de l'activitat de recerca s'han processat dades experimentals SAR-GMTI multicanal de sistemes aeris (F-SAR) i orbitals (TerraSAR-X), per tal d'avaluar les seves capacitats de detecció de blancs mòbils sobre entorns marítims, proposant les estratègies de processat i calibratge més adients. Com a part de l'activitat de recerca doctoral, s'ha portat a terme una caracterització preliminar dels retorns radar del mar adquirits amb el sensor orbital TerraSAR-X, amb tres nivells d'anàlisi (radiomètric, estadístic i polarimètric). Aquest estudi demostra que aspectes com el soroll tèrmic i la decorrelació temporal, dependents del propi sensor i de l'entorn dinàmic del mar, poden limitar la correcta interpretació de les dades, i per tant, s'han d'incloure en els models físics dels mecanismes de dispersió del mar. Les missions SAR tant actuals com futures es basen en l'explotació de la tecnologia de les agrupacions d'antenes de fase activa (APAA) per operar diferents modes d'adquisició. El procés de calibratge associat és molt complex atès el gran nombre de feixos que es poden utilitzar. En el marc de la tesi doctoral s'han proposat i avaluat metodologies alternatives de calibratge intern per aquests sistemes, amb un millor rendiment en comparació amb les tècniques convencionals. Aquestes estratègies de calibratge, juntament amb la corresponent formulació dels errors de sistema, estableixen les bases per a l'estudi i avaluació en sistemes multicanal SA

    Convex Model-Based Synthetic Aperture Radar Processing

    Get PDF
    The use of radar often conjures up images of small blobs on a screen. But current synthetic aperture radar (SAR) systems are able to generate near-optical quality images with amazing benefits compared to optical sensors. These SAR sensors work in all weather conditions, day or night, and provide many advanced capabilities to detect and identify targets of interest. These amazing abilities have made SAR sensors a work-horse in remote sensing, and military applications. SAR sensors are ranging instruments that operate in a 3D environment, but unfortunately the results and interpretation of SAR images have traditionally been done in 2D. Three-dimensional SAR images could provide improved target detection and identification along with improved scene interpretability. As technology has increased, particularly regarding our ability to solve difficult optimization problems, the 3D SAR reconstruction problem has gathered more interest. This dissertation provides the SAR and mathematical background required to pose a SAR 3D reconstruction problem. The problem is posed in a way that allows prior knowledge about the target of interest to be integrated into the optimization problem when known. The developed model is demonstrated on simulated data initially in order to illustrate critical concepts in the development. Then once comprehension is achieved the processing is applied to actual SAR data. The 3D results are contrasted against the current gold- standard. The results are shown as 3D images demonstrating the improvement regarding scene interpretability that this approach provides

    Satellite measurement of ocean turbulence

    No full text
    Turbulence and mixing in the surface layer of the ocean is a significant element in the combined ocean-atmosphere system, and plays a considerable role in the transfer of heat, gas and momentum across the air-sea boundary. Furthermore, improving knowledge of the evolution of energy within the ocean system, both globally and locally, holds importance for improving our understanding of the dynamics of the ocean at large- and small-scales. As such, insight into turbulence and turbulent flows at the ocean surface is becoming increasingly important for its role in ocean-atmosphere exchange and, from a wider perspective, climate change.A research project was initiated to understand the role that spacecraft remote-sensing may play in improving observation of “turbulence” (in a broad sense) in the ocean, and for identifying how steps towards such observation may be made. An initial, exploratory study identified the potential benefit of Synthetic Aperture Radar in “bridging the gap” between in-situ and remote observations o

    Satellite remote sensing of surface winds, waves, and currents: Where are we now?

    Get PDF
    This review paper reports on the state-of-the-art concerning observations of surface winds, waves, and currents from space and their use for scientific research and subsequent applications. The development of observations of sea state parameters from space dates back to the 1970s, with a significant increase in the number and diversity of space missions since the 1990s. Sensors used to monitor the sea-state parameters from space are mainly based on microwave techniques. They are either specifically designed to monitor surface parameters or are used for their abilities to provide opportunistic measurements complementary to their primary purpose. The principles on which is based on the estimation of the sea surface parameters are first described, including the performance and limitations of each method. Numerous examples and references on the use of these observations for scientific and operational applications are then given. The richness and diversity of these applications are linked to the importance of knowledge of the sea state in many fields. Firstly, surface wind, waves, and currents are significant factors influencing exchanges at the air/sea interface, impacting oceanic and atmospheric boundary layers, contributing to sea level rise at the coasts, and interacting with the sea-ice formation or destruction in the polar zones. Secondly, ocean surface currents combined with wind- and wave- induced drift contribute to the transport of heat, salt, and pollutants. Waves and surface currents also impact sediment transport and erosion in coastal areas. For operational applications, observations of surface parameters are necessary on the one hand to constrain the numerical solutions of predictive models (numerical wave, oceanic, or atmospheric models), and on the other hand to validate their results. In turn, these predictive models are used to guarantee safe, efficient, and successful offshore operations, including the commercial shipping and energy sector, as well as tourism and coastal activities. Long-time series of global sea-state observations are also becoming increasingly important to analyze the impact of climate change on our environment. All these aspects are recalled in the article, relating to both historical and contemporary activities in these fields

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work

    Exploring scatterer anisotrophy in synthetic aperture radar via sub-aperture analysis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 189-193).Scattering from man-made objects in SAR imagery exhibits aspect and frequency dependencies which are not always well modeled by standard SAR imaging techniques based on the ideal point scattering model. This is particularly the case for highresolution wide-band and wide-aperture data where model deviations are even more pronounced. If ignored, these deviations will reduce recognition performance due to the model mismatch, but when appropriately accounted for, these deviations from the ideal point scattering model can be exploited as attributes to better distinguish scatterers and their respective targets. With this in mind, this thesis develops an efficient modeling framework based on a sub-aperture pyramid to utilize scatterer anisotropy for the purpose of target classification. Two approaches are presented to exploit scatterer anisotropy using the sub-aperture pyramid. The first is a nonparametric classifier that learns the azimuthal dependencies within an image and makes a classification decision based on the learned dependencies. The second approach is a parametric attribution of the observed anisotropy characterizing the azimuthal location and concentration of the scattering response. Working from the sub-aperture scattering model, we develop a hypothesis test to characterize anisotropy. We start with an isolated scatterer model which produces a test with an intuitive interpretation. We then address the problem of robustness to interfering scatterers by extending the model to account for neighboring scatterers which corrupt the anisotropy attribution.(cont.) The development of the anisotropy attribution culminates with an iterative attribution approach that identifies and compensates for neighboring scatterers. In the course of the development of the anisotropy attribution, we also study the relationship between scatterer phenomenology and our anisotropy attribution. This analysis reveals the information provided by the anisotropy attribution for two common sources of anisotropy. Furthermore, the analysis explicitly demonstrates the benefit of using wide-aperture data to produce more stable and more descriptive characterizations of scatterer anisotropy.y Andrew J. Kim.Ph.D

    An advanced specular and diffuse Bidirectional Reflectance Distribution Function target model for a synthetic aperture ground penetrating radar

    Get PDF
    Specific radars that are designed to radiate electromagnetic (EM) energy into the ground for the purpose of detecting and identifying underground targets are called ground penetrating radars (GPR). High resolution three-dimensional images of the underground environment can be produced using a bistatic, synthetic aperture radar (SAR) processing technique. Information pertaining to the underground scenario can be extracted from the three-dimensional images through methodical post data analysis. Theoretical models and proof-of-concept designs are used to validate and advance deep GPR research and development efforts. The theoretical modeling of a deep GPR system is a lucrative method to obtain realistic deep GPR results and analysis. Realistic theoretical deep GPR models must correctly model a GPR system as well as the effects of energy interactions on the deep GPR data. The desire for a realistic deep GPR model is to aid in the ultimate efforts of one day making field deployable and airborne deep GPRs. Complex energy interactions take place when EM energy propagates through a high dielectric medium creating adverse effects on GPR data. These energy interactions include specular and diffuse reflections, attenuation, and dispersion. A valid theoretical model must be capable of producing realistic joint specular and diffuse reflection at different dielectric boundaries. This thesis proposes and analyzes the Bidirectional Reflectance Distribution Function (BRDF) as a valid specular and diffuse reflectance model used in the generation of realistic GPR data. This thesis also introduces and analyzes the direct path signal and the air-soil interface commonly found in bistatic GPR systems. The efforts of this thesis will provide a realistic GPR model that can be used in the development of more advanced systems. To assess the validity of the proposed model comprehensive testing and analysis has been completed. Intense analysis of the realistic theoretical model introduced in this thesis included variations in the target\u27s spatial orientation, size, and position. Analysis also examined the validity of the BRDF as a reflectance model along with the modeling of the direct path signal. The model was then compared to known real GPR data. The authentic energy interaction created through the use of the BRDF and incorporation of path attenuation, dispersion, direct path signal, and the air-soil interface has proven to produce acceptable results
    corecore