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Abstract

Scattering from man-made objects in SAR imagery exhibits aspect and frequency
dependencies which are not always well modeled by standard SAR imaging techniques
based on the ideal point scattering model. This is particularly the case for high-

resolution wide-band and wide-aperture data where model deviations are even more

pronounced. If ignored, these deviations will reduce recognition performance due to

the model mismatch, but when appropriately accounted for, these deviations from the

ideal point scattering model can be exploited as attributes to better distinguish scat-

terers and their respective targets. With this in mind, this thesis develops an efficient

modeling framework based on a sub-aperture pyramid to utilize scatterer anisotropy for

the purpose of target classification. Two approaches are presented to exploit scatterer

anisotropy using the sub-aperture pyramid. The first is a nonparametric classifier that

learns the azimuthal dependencies within an image and makes a classification decision

based on the learned dependencies. The second approach is a parametric attribution

of the observed anisotropy characterizing the azimuthal location and concentration of

the scattering response. Working from the sub-aperture scattering model, we develop

a hypothesis test to characterize anisotropy. We start with an isolated scatterer model

which produces a test with an intuitive interpretation. We then address the problem of

robustness to interfering scatterers by extending the model to account for neighboring

scatterers which corrupt the anisotropy attribution. The development of the anisotropy

attribution culminates with an iterative attribution approach that identifies and com-
pensates for neighboring scatterers. In the course of the development of the anisotropy
attribution, we also study the relationship between scatterer phenomenology and our
anisotropy attribution. This analysis reveals the information provided by the anisotropy
attribution for two common sources of anisotropy. Furthermore, the analysis explicitly
demonstrates the benefit of using wide-aperture data to produce more stable and more
descriptive characterizations of scatterer anisotropy.

Thesis Supervisor: Alan S. Willsky
Title: Edwin S. Webster Professor of Electrical Engineering
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Chapter 1

Introduction

Synthetic aperture radar (SAR)(17, 42, 43, 52] is a microwave radar[58] imaging sys-

tem frequently used in fields such as remote sensing, surveillance, and automatic target

recognition (ATR). Its popularity is due in large part to its ability to attain a high

imaging resolution, rapidly cover large areas of terrain, supply its own illumination, and

operate in inclement weather. The SAR imaging scenario is illustrated in Figure 1.1
where a radar is mounted on an airborne or spaceborne craft and takes multiple mea-

surements of a scene. In conventional radar, the cross-range resolution is the width of

the shaded footprint illustrated. This width is proportional to the distance between the

radar and the target area; and, it is inversely proportional to the size of the antenna.

SAR achieves a high resolution by effectively manipulating the latter. In particular,
it uses the measurements taken from the different positions along the flight path and

fuses them together to synthesize an aperture the length of the integrated flight path,
thus producing higher fidelity and higher resolution imagery than that of conventional

radar imaging.
The application for SAR by which this thesis is motivated is ATR[8, 9, 23]. This

involves using attributes of the SAR data to classify the contents of the image scene.

Any ATR algorithm can be loosely regarded as a feature extraction and comparison

process.. The features may be as simple as the reflectivity value at each pixel, e.g. as

used in simple image correlation techniques[56]. They may also be as complicated as

precise descriptions of the geometrical structure of the target[25, 34, 13] or as abstract

transformations of the data which do not have a clear physical interpretation[10]. A

motif of this thesis is the development of a feature to be used in ATR which provides

both distinguishing information for discrimination and a physically meaningful inter-

pretation. The need for the former is clear in that the feature should help differentiate

various targets of interest. The latter is useful because it allows for an intuitive un-

derstanding of what information the feature represents thus guiding its use in ATR

algorithms. Furthermore, although the proposed features are designed with ATR in

mind, the information they convey is useful in many other contexts due to their physi-

cal interpretation.
The features with which this thesis is concerned are motivated by a shortcoming of

standard SAR imaging. As technology progresses, the desire for higher resolution im-
agery drives the development of SAR systems with larger synthetic apertures. The syn-
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Figure 1.1. SAR Imaging scenario.

thesized aperture is produced with the use of an advanced signal processing technique.

As with any signal processing algorithm, its gains are achieved by taking advantage of

a model for the data. One such aspect of the model is the assumption of an isotropic

point scatterer, i.e. one whose reflectivity is invariant with respect to azimuthal orienta-

tion. This assumption may also be equivalently interpreted as saying that all scatterers

are smaller than the resolution of the imaging process. Herein lies the problem. Real

scatterers have a physical extent to them. Thus, at some point, the scatterers start to

span multiple resolution cells as the resolution cell size decreases, or viewed differently,

scatterers start to exhibit variable azimuthal responses as the aperture size is increased.

In other words, the isotropic assumption begins to break down.

With the increasing availability of wide-aperture data, the issue of how to handle

scatterer anisotropy becomes an important issue. A naive (and common) approach is

to simply ignore scatterer anisotropy and process the data according to standard the

image formation procedure. Although such a method produces better quality images

compared to narrow-aperture images, they are under-achieving in the sense that the

estimates can be severely biased due to the model mismatch, and more importantly,

they do not reveal valuable information that azimuthal variations convey.
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* 1.1 Premise

This thesis is based on the premise that scatterer anisotropy is present and exploitable

in SAR. Not only is scatterer anisotropy predicted by scattering physics[48, 61], but it

has also been observed in real data[2, 12, 51]. Neglecting anisotropy naturally leads to

suboptimal use of the SAR data due to the model mismatch as demonstrated by Yeang
et. al.[61].

Scatterer anisotropy need not degrade SAR quality. In fact, it can offer significant

improvements to SAR imaging and ATR. From an imaging standpoint, a better scat-

tering model allows for more accurate reflectivity estimates since the weighting in the

image formation process can be adjusted according to the azimuthal scattering pat-

tern (e.g. with a matched filter). Knowledge of anisotropy may also be used to better

suppress interfering scatterers in super-resolution image formation algorithms. In ad-

dition to improving reflectivity estimation, knowledge of the anisotropy of a scatterer
is useful as a feature in and of itself. For a canonical scatterer, one can infer properties

about its geometric shape and size from its anisotropy. Knowledge of the geometry of

the individual scatterers on an object may then be considered in tandem to aid the

classification of the target under investigation. Anisotropy information may also be

useful to characterize the stability of a scatterer. In particular, the specular response

from an anisotropic canonical scatterer appears over a smaller range in azimuth leading

to an observability that is more sensitive to azimuthal orientation. Knowledge of this

anisotropy however allows such sensitivity to be incorporated into algorithms such as

peak matching which should improve ATR performance.

N 1.2 Previous Efforts

Previous efforts to deal with scatterer anisotropy in SAR can loosely be divided into

two categories: those which are based on precise canonical scattering models and those

based on the more general sub-aperture scattering models. Physical optics (PO)[48]

and the geometric theory of diffraction (GTD)[33] give accurate predictions of the scat-

terer response for what are called canonical or atomic scatterers. These are scattering

primitives which have very simple geometries and include as examples the flat plate,
cylinder, sphere, top-hat, dihedral, and trihedral.

Canonical scattering models are a natural tool for exploiting scatterer anisotropy

due to their precise modeling. Their application in SAR has generally fallen into one

of two classes. The first is their use to estimate the canonical type and the associ-

ated parameters of scatterers in SAR data. Moses, Potter, and Chiang take such an

approach where they use GTD models. Potter and Moses[45], use a maximum likeli-
hood framework to estimate the scatterer type and associated parameters from image
data. This work is extended by Chiang[13] to evaluate the improvement in SAR ATR

performance that such estimates could provide. McClure and Carin[40] have also used
canonical models to estimate the scatterer type and associated parameters. In their
approach, they populate a "dictionary" of basis functions with the GTD responses for
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various scatterers of interest in addition to other families of models'. They use this
dictionary of basis functions in a matching-pursuit framework to decompose SAR data
into constituent scatterers. In the mentioned approaches, very high fidelity data is
necessary for accurate estimation. This is required because over a single image, it is
often difficult to differentiate responses from different geometrical configurations. Per-
formance degrades even more so in the presence of interfering scatterers. Richards[46]
addresses this problem in a context in which many images from various orientations
are available such as in an automated target model generation framework. He uses
the iterative expectation-maximization algorithm to perform scatterer correspondence
among the various images and to estimate the parameters of each of the scatterers.
The use of a large amount of observation data in this approach successfully allows for
accurate estimation of the scatterers.

The success of the approaches mentioned in the previous paragraph depends heavily
on the availability of large amounts of data or high fidelity data with little interference
among scatterers. However, it is often the task in ATR to classify an object using only
one or a few images which contain many scatterers. This motivates the other, less ambi-
tious, use of canonical models which is to use them to improve the images of reflectivity
estimates. Benitz[4, 7, 5] takes this approach by employing canonical scatterer models
in super-resolution methods. In particular, he uses a canonical scatterer response as
the model in a variant on Capon's method and in the MUSIC algorithm. The result is
an image of reflectivities specifically tuned for the model scatterer. Because the image
is tuned for a particular scatterer, this imaging process is performed for a series of
pre-specified scatterer geometries thus giving rise to a vector of images or what Benitz
calls high definition vector imaging (HDVI).

Chaney et. al.[12] and Allen et. al.[2] follow approaches similar in spirit to Benitz's
methods but with some significant differences. Allen and Chaney are both concerned
with low-frequency SAR which has a lower resolution where only large scatterers, mea-
suring on the order of a meter or more, are apparent in the imagery. For a vehicle,
these scatterers are typically the broadside response associated with the front, back, or
side of the target. However, tree trunks also produce strong responses. Allen uses the
differences in azimuthal dependencies between the flat plate and the cylindrical tree
trunk to differentiate the two. He does so using a bank of approximate matched filters
to generate reflectivity estimates. The matched filters are approximate in the sense
that they are based on sub-aperture scattering models, i.e. models which assume the
azimuthal response is uniform over a section of the aperture and zero elsewhere. In

particular, he uses a sequence of overlapping sub-apertures each of which has the same
length. Allen uses the resulting sub-aperture reflectivity estimates in two ways. First, to
distinguish a vehicle's broadside response from a tree trunk's isotropic response, Allen
uses the maximum sub-aperture reflectivity to characterize the scatterer. Although the
flat plate and tree trunk produce similar reflectivities when the entire aperture is used,

'Besides the canonical scatterer models, McClure and Carin use resonance models to account for
cavities and chirp models to account for dispersive structures.
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the flat plate produces a very directive response resulting in a very strong response con-

centrated in a few of the sub-apertures, whereas the tree trunk produces an isotropic

response resulting in a constant but smaller reflectivity among all the sub-apertures.

Thus, the vehicle appears significantly brighter than trees in Allen's image of maximum
sub-aperture reflectivities. Allen also uses the sub-aperture reflectivities to estimate

the azimuthal location and width of the directive flat plate response. He does so by
plotting the sub-aperture reflectivities as the sub-apertures transition from one end of

the aperture to the other thus displaying how the response varies in azimuth. The

characteristics of the directive response are then measured from this plot.

Chaney independently takes an approach similar to Allen's. In particular, Chaney

forms a series of sub-aperture reflectivity estimates and chooses the sub-aperture pro-

ducing the maximum estimate. Doing this for every pixel, Chaney obtains an image

of matched reflectivity estimates. The most significant difference between Allen's and

Chaney's approaches is that Chaney varies the size the sub-aperture to adapt to the

azimuthal width of the response, whereas Allen uses a fixed pre-specified azimuthal

width. Varying the size of the sub-aperture, however, also produces reflectivity esti-

mates with different spatial resolutions. Thus, to limit the artifacts that such changes
may produce in the image, Chaney also regularizes the sub-aperture selection to limit

the fluctuations as one moves throughout the image.

There are two primary differences between the approach taken by Benitz and those

taken by Allen and Chaney. The first is that Allen and Chaney use the simpler sub-

aperture scattering model and are thus not overwhelmed by the myriad images they

need to generate. They are only concerned with the gross-level scatterer anisotropy

which one can observe. The second difference is that Benitz provides a vector of images

(one image of estimates under each scatterer model), whereas Allen and Chaney provide
a single image (choosing a single estimate from among all the models). The latter is

more amenable to direct inclusion into existing image based ATR algorithms, but the

fashion in which the estimate is chosen leads to sub-optimal resolution. In particular,
Allen uses sub-apertures of a pre-specified length, thus imposing a fixed resolution

which is not adapted to individual scatterers. Chaney, in contrast, uses sub-apertures

of varying lengths, and, for each pixel, selects the sub-aperture which produces the

maximum reflectivity estimate. This approach, however, leads to an excessively coarse

resolution because the method neglects the higher noise variance in smaller sub-aperture

estimates. In particular because the sub-aperture reflectivity estimate from too small

an aperture has an unbiased error, the higher noise variance increases the probability

that the maximum reflectivity is produced in one of the smaller sub-apertures.

Smith[51] takes an approach similar to Allen's by dividing the full-aperture into

overlapping sub-apertures of constant length. However, instead of looking to detect
and measure anisotropy from canonical scatterers, Smith's goal is to characterize the
stability of the scatterer. In particular, for each peak location determined through a
separate peak extraction step, a number is assigned to the scatterer characterizing the
fluctuations of the sub-aperture reflectivities. This peak stability is then used as a
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confidence measure for that scatterer in a peak matching classification algorithm. This
stability weighting is motivated by the idea that more stable peaks (i.e. those which
exhibit less azimuthal variation) should be weighted more heavily since they are more
likely to be matched in another image of the target. Although this thesis argues that
anisotropy is useful and should not be discarded, Smith's approach is reasonable in its
context of application to existing ATR peak matching algorithms which use standard
SAR image formation based on the isotropic scattering assumption.

Subotic et. al.[53] have also worked with sub-aperture models, but not in the context
of anisotropy. In his work, he examines the reflectivities produced by a nested sequence
of sub-apertures. Treating the sequence as a multi-scale process, he then examines
several statistical tests for the detection of isotropic scatterers. Subotic's contribution
is significant because of its specific focus on how the varying size of the resolution cell
impacts the statistical behavior of the reflectivity estimates. All of the other methods
mentioned in this section do not address this issue with the exception of Chaney who
addresses it indirectly by regularizing the sub-aperture selection process.

Irving et. al.[31] has also proposed modeling SAR data as a multi-scale stochastic
process. Instead of varying the size of the sub-aperture to change the resolution, Irving
coherently averages 2 x 2 pixel blocks in a recursive fashion to generate a quad-tree
representation of the SAR data. He then uses an auto-regressive model in scale to
describe the behavior of the log-magnitude of the reflectivities on the quad-tree. This
is motivated by the idea that clutter is composed of many small independent scatter-
ers and thus should have little scale-to-scale dependence because the random phases
on each of the scatterers cause them to interfere with each other in a chaotic fashion
as resolution is varied. In contrast, larger scattering objects, such as trees or targets,
should demonstrate strong scale-to-scale dependence as they share a common phase over
the scatterer and thus constructively interfere to produce a stronger response as scale
is coarsened. Multi-scale modeling is thus used by Irving to differentiate anomalous
man-made targets from natural clutter according to their scale auto-regressive behav-
ior. This idea is also used for terrain segmentation by Fosgate et. al.[24] where grass
and forest terrain are differentiated based on their respective multi-scale dependencies.
Fosgate also proposes a multi-scale anomaly detector to detect the extremely high scale-
to-scale correlation that is characteristic of man-made targets. Kim et. al.[36] enhances
the segmentation algorithm of Fosgate by incorporating model deviations and subse-
quently develops a segmentation-based compression algorithm exploiting the revealed
dependencies for each terrain class.

* 1.3 Thesis Objective

The results of both Allen and Chaney demonstrate that anisotropy can be used to
improve ATR performance on acquired SAR data. This thesis builds upon their sub-
aperture analysis to develop robust methods to exploit scatterer anisotropy in ATR.
In particular, we present a more robust representation of the data and a statistical
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framework which improves upon that of Allen and Chaney by providing more accurate

anisotropy characterizations and higher resolution imagery.

The first main issue to be addressed in this thesis is that of data representation.
While it is theoretically true that any invertible transformation of the data is equally

suitable for subsequent estimation, the packaging of the data significantly impacts the

clarity and practical implementation of the estimation. For the case of SAR, there
is a fundamental trade-off in being able to obtain measurements with high azimuthal

resolution (i.e. the ability to observe azimuthal variations) and high imaging resolution.
The methods mentioned in the previous section do not directly address this issue and

thus suffer from this trade-off as they must exchange one form of resolution for the

other. However, this thesis proposes a multi-resolution pyramid representation of the

SAR data at a variety of resolution trade-offs that permits a decision-directed approach

which produces estimates with both high imaging and azimuthal resolution.
Having addressed the first issue of data representation, this thesis proceeds to its

primary goal of exploiting anisotropy for ATR. Even with the sub-aperture representa-

tion in place, there are still issues which require consideration. First, there is the issue
of how anisotropy is to be exploited to aid ATR. Two approaches are taken towards

this end. One is to apply machine learning to solve the classification problem. In this

approach, the anisotropy dependencies conditioned on a particular target classes are

learned via a nonparametric estimator. The learned densities are then directly used

to implement a classifier. The drawback to this approach is that it limits the degree

to which physical modeling and intuition can be leveraged to analyze and improve the

classifier. In particular, the learned densities are driven by the data and do not convey

obvious physical information about the target. Thus, the role which an ATR analyst can
play is limited. This motivates the second approach to improving ATR which extends

the efforts of Allen and Chaney. In particular, the sub-aperture scattering model is

used to describe the concentration of scattering in azimuth. An optimal sub-aperture is

chosen and subsequently used to provide an enhanced reflectivity estimate. In addition
to the sub-aperture reflectivity estimates, the specifics about the chosen sub-aperture

are also provided to convey information about the geometry of the scatterer. The ef-

forts of Allen and Chaney are extended in three significant ways. The first is that their

model for the sub-aperture measurements is improved upon thereby producing a more

accurate test. The second improvement is that the structure of the sub-aperture pyra-
mid is leveraged to obtain both high imaging and high azimuthal resolution through

the use of a decision-directed procedure exploiting the presence of multiple resolutions.

The third extension is that the effects of neighboring scatterers are included in our
analysis. Addressing the issue of interfering scatterers is essential as they corrupt the
observed azimuthal response resulting in anisotropy misclassifications and, in effect,
reduced spatial resolution when ignored.
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0 1.4 Thesis Organization

The remainder of this thesis addresses these issues and is organized as follows.

* 1.4.1 Background

Chapter 2 provides the necessary background in SAR and machine learning needed to
address the issues of concern in this thesis. The chapter begins by discussing the fun-
damentals of SAR. Such details are important in that the processing used to achieve
SAR's high resolution are strongly based on the ideal point-scattering model which ig-
nores scatterer anisotropy. SAR image formation is also presented from a beamforming
perspective which allows the inclusion of models other than the ideal point scatterer
model. The chapter concludes with a description of nonparametric density estimation
and how it can be used for classification.

* 1.4.2 Sub-aperture Analysis

Chapter 3 introduces the sub-aperture pyramid which serves as the fundamental struc-
ture for all of the analysis in this thesis. In this structure, the sub-apertures are arranged
in a pyramidal fashion according to their size and azimuthal location. The sub-aperture
pyramid is used both to estimate reflectivity and define the models for anisotropy. The
framework can be interpreted in a multi-scale setting, where each scale provides a dif-
ferent azimuthal versus spatial resolution trade-off. This structure is also viewed in the
context of other works. In particular, it can be seen as

" a multiple-basis representation offering different tilings of the azimuthal-image
plane2 a la wavelet packet dictionaries[59].

" an extension of the sub-aperture work by Allen and Chaney,

" an instance of the vector imaging work by Benitz,

M 1.4.3 Nonparametric Estimation of Anisotropy

Chapter 4 presents an extension of the nonparametric approach of DeBonet et. al.[20].
The fundamental change is the use of the sub-aperture pyramid motivated by scattering
physics in contrast to steerable wavelets motivated by visual attributes. Because the
sub-aperture scattering model approximates the aspect dependent scattering produced
by canonical scatterers, the sub-aperture pyramid captures such responses in a clear
manner. The advantage of this machine learning approach is that data dependencies are
automatically learned with a nonparametric estimator. However, there are several issues
concerning the implementation of this nonparametric approach which are addressed in
this chapter. Classification performance is measured and analyzed with the MSTAR[1]
data set.

2This is traditionally called the time-frequency plane in signal processing, but is not done so here to
prevent confusion with SAR terminology.
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* 1.4.4 Sub-aperture Anisotropy Attribution

Chapter 5 deals with the topic of attributing a given spatial pixel with an anisotropy la-
bel and associated reflectivity estimate. Allen and Chaney choose the sub-aperture with
maximum reflectivity because of its matched-filter interpretation. However, Allen im-
poses a pre-specified sub-aperture size and thus cannot adapt the sub-aperture to match
the width of the azimuthal response. Chaney, in contrast, varies the sub-aperture size,
but he does not account for the resulting change in the sub-aperture noise variance.
Based on the sub-aperture pyramid, a consistent statistical model and test for sub-
aperture anisotropy are presented. The result is an intuitively simple test providing
better imaging resolution and more accurate anisotropy labels than Allen and Chaney.
The anisotropy characterization also reveals why the sub-aperture selection used by
Allen and Chaney leads to an excessively coarse imaging resolution. Several modifi-
cations on the proposed anisotropy test are discussed. The first modification changes
the estimation of an auxiliary parameter to address the lack of an explicit model for
interfering scatterers which distort the azimuthal response and hence the classification.
The second modification also addresses the issue of interfering scatterers but does so
through a telescopic decision-directed testing procedure on the sub-aperture pyramid
which also reduces computational complexity. The third modification addresses devi-
ations from the sub-aperture scattering models through a model perturbation term.
Results demonstrating the utility provided by the anisotropy attribution are provided
on the MSTAR data set.

* 1.4.5 Anisotropy Phenomenology

The results on MSTAR data at the end of Chapter 5 strongly argue for two different
sources of anisotropy. The study of these two modes is the topic of Chapter 6. These
two classes are called geometric and volumetric scatterers. Geometric scatterers are
large structured scatterers such as canonical scatterers and scatterers with slight devia-
tions from canonicity. Volumetric scatterers on the other hand are actually a collection
of many unresolvable scatterers which happen to coherently combine to produce an
anisotropic response over the observed azimuth. Not surprisingly, anisotropy from vol-
umetric scatterers is not stable due to the chaotic nature of its azimuthal response, and
thus it provides no utility to ATR. Anisotropy from geometric scatterers is however very
stable and provides significant information about the underlying scatterer, and thus it
provides significant utility for ATR. Unfortunately, it is difficult, if not impossible, to
determine the source of anisotropy based on a single observation from moderate reso-
lution (i.e. moderate aperture) SAR. However, the use of wide-aperture SAR decreases
the incidence of anisotropy from volumetric scatterers by utilizing the increased range
of azimuthal data to assess the stability3 of the azimuthal response.

3This notion of azimuthal stability is more general than that of Smith's[51] who considers devia-
tions from the point scattering model as compared to deviations from canonical anisotropic responses
considered in this thesis.
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M 1.4.6 Iterative Anisotropy Attribution

Chapter 7 returns to the topic of anisotropy attribution by improving the modeling and
estimation proposed in Chapter 5. In particular, this chapter extends the modeling of
neighboring scatterers by allowing the consideration of anisotropic neighbors. Rather
than attempting the monumental task of simultaneously estimating the anisotropy of
all the pixels, an iterative approach is taken in which the azimuthal contributions from
neighboring scatterers is modeled using the anisotropy classification from the previous
iteration. Special care must be taken in using the information from the previous iter-
ation so as to appropriately account for the contributions from neighboring scatterers.
In particular, a distinction must be made between pixels and scatterers. Consider for
example, removing the azimuthal distortion produced by a physically large interfer-
ing scatterer that spans several, say N, pixels. If one were to simply subtract off its
effect for every pixel, then that would be equivalent to saying that there are N scat-
terers exhibiting this response (one for each of the pixel locations) instead of the one
underlying scatterer. Thus, the modeling of neighboring scatterers must be carefully
taken into account in order to prevent over-compensating for their azimuthal distor-
tion. While it is necessary to remove the interference from neighboring scatterers, the
effects from on-scatterer pixels should be preserved. On-scatterer pixels are pixels cor-
responding to the same scatterer as the pixel being examined. If their contribution is
removed, then another form of distortion is introduced which cancels part of the re-
sponse from the scatterer in question thus corrupting the anisotropy classification. In
order to address these issues, an additional processing step is used which aggregates
pixels into their underlying scatterers. The segmentation algorithm used is based on
a greedy maximum-likelihood algorithm. The segmentation is then used to distinguish
off-scatterer pixels from on-scatterer pixels so that only the contribution from interfer-
ing scatterers are removed. The chapter concludes with a presentation of experimental
results demonstrating the performance of both the anisotropy attribution and scatterer
segmentation.

N 1.4.7 Conclusions

The thesis concludes with Chapter 8. A summary of the contributions in this thesis
is first provided. This is followed by a discussion of opportunities for future research
utilizing or extending the anisotropy analysis we have developed.
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Chapter 2

Background

The work in this thesis focuses on the development of techniques that exploit non-

ideal scattering in synthetic aperture radar (SAR) imagery for the purpose of target

recognition. In this background chapter, the fundamentals describing relevant areas of
SAR and machine learning are presented. These are broad topics incapable of being

summarized in a single chapter. Focus is thus restricted to those aspects which are

most pertinent to the work in this thesis. Section 2.1 presents the fundamentals of con-

ventional SAR image formation. Section 2.2 describes SAR from a spectral estimation

perspective motivated by array processing which helps provide intuition about SAR.

Section 2.3 discusses the issue of nonideal scattering along with some current efforts to

address it. Section 2.4 concludes the chapter with a discussion of nonparametric den-

sity estimation and how it can be used for the problem of classification. A footnote for

each sub-section heading indicates the bibliographical sources from which the material

is obtained and where more details may be found.

* 2.1 Conventional SAR

Active radar imaging systems are frequently used in remote sensing and surveillance

applications. SAR is a special case of microwave radar imaging that uses sophisti-
cated signal processing to achieve a high imaging resolution. In the SAR scenario, a

radar is mounted on an airborne or spaceborne craft where it illuminates the region

of interest and measures the corresponding reflectivity. Using a microwave band radar

system has several advantages. Since it is an active imaging system, it provides its

own illumination in the form of microwave radiation, thus allowing it to be used for

both day and night operation. Furthermore, because microwave radiation is not sig-

nificantly attenuated by atmospheric components such as common gases, dense fog, or
cloud cover, microwave-frequency radar systems produce images that are unimpaired
by such natural phenomena.

The radar imaging scenario is illustrated in Figure 2.1 along with some commonly
used terms. The footprint refers to the ground area illuminated by the radar and
represents the region for which the reflectivity is being measured. The target field is the
cumulative area covered by the footprint as the radar is moved. In the case of spotlight
SAR, the radar is continuously steered such that the area of illumination is constant,
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in which case, the target field and the footprint coincide. In the case of stripmap SAR,

the position of the radar is held fixed with respect to the platform, and the target

field corresponds to the swath of terrain covered. We will not concern ourselves with

the differences between these two modes of SAR as the underlying principles discussed

are the same for both cases. Cross-range or azimuth refers to the direction along the

ground which is parallel to the radar's trajectory. Although these refer to the same

direction, the term azimuth is generally reserved for discussion of sensor measurements,

and the term cross-range is generally reserved for discussion of the target field or image.

Slant-range is the direction from the radar to center of the footprint. Slant-range is

also frequently referred to as down-range or simply range. The elevation angle is the

angle between the normal of the ground and the slant-range. The projection of the

slant-range onto the ground is termed the ground-range.

slant-range

elevation
angle

c60 footprint

Figure 2.1. Terminology used in SAR imaging.

For each cross-range location, the reflectivity of objects at varying down-range loca-

tions is estimated by transmitting a reference signal and measuring the gain and delay

of the return signal. The time delay provides the scatterer's range, and the gain pro-

vides its reflectivity. Thus, the coordinates in the resulting radar image are slant-range

and cross-range as illustrated in Figure 2.2(a). Objects not in this imaging plane are

projected onto it with their slant-range distance being reported as the distance from

the radar. This imaging plane is "opposite" to that of photographical images where

the imaging plane is the plane perpendicular to the wavefront of the transmitted signal,

i.e. the coordinates are cross-range and the other orthogonal direction to slant-range as

illustrated in Figure 2.2(b).
Without sophisticated signal processing, the range resolution is determined by the

pulse width of the transmitted signal. A rectangular pulse of duration Tp, for exam-
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#7

(a)

Figure 2.2.
imagery.

(b)

Illustration of the imaging planes (shaded region) for (a) SAR and (b) photographical

ple, would have a range resolution of cTp where c is the speed of light. Ideally, one

would transmit an arbitrarily short pulse signal to achieve a corresponding high range

resolution; however, in order to maintain a high SNR on the reflected signal for a suffi-

cient level of detection, the amplitude of the pulse must be increased as its duration is

shortened. Practical limitations on equipment restrict the signal that can be produced,

and in particular, limit the amplitude that can be generated for such a narrow pulse.

However, by using the technique of range compression, which is standard in microwave

imaging systems, the reflection from transmitting a high-energy long-duration pulse

may be processed so that the resulting resolution is much finer than that corresponding

to the duration of the transmitted pulse. This permits both a high SNR and a high

range resolution without having to generate a high amplitude short duration pulse.

A drawback of microwave imaging is that with straightforward techniques, the cross-

range resolution is poor due to the long wavelength of microwave radiation relative to

other sources such as light. The cross-range resolution is dictated by the width of

the illuminated radar footprint which is proportional to both the distance from the

radar and the wavelength of the signal and is inversely proportional to the size of the

radar antenna. For practical scenarios, this resolution can be on the order of several

kilometers. SAR overcomes this limit by fusing together multiple measurements taken

at different azimuthal locations to synthesize a longer antenna aperture and thus reduce

the width of the radar footprint. It is this processing in cross-range that differentiates
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SAR from other microwave imaging systems. In the remainder of this section, the
techniques used to achieve high range and cross-range resolution are described.

N 2.1.1 Matched Filter Range Compression 1

This section explains the use of the matched filter for range compression. As previously
mentioned, range compression is a technique that allows the use of a long duration
transmission signal which simultaneously provides high range resolution and high SNR.
The matched filter is used because it is the optimal filter for detecting a signal in the
presence of additive white Gaussian noise. The signal we seek to detect is a time delayed
version of the one transmitted where the delay reflects the distance from the scattering
object. Consider transmitting the following linear frequency modulated (FM) chirp
signal

s(t) = rect ReI ej2r(fCt±Kt2 /2) = rect cos (27r(fct + it/2)) (2.1)

where f, is the carrier frequency, , is the frequency rate, Tp is the pulse duration, and

(1 ItI <l/2
rect(t) = -

0 otherwise.

The phase of the transmitted signal in Eq. (2.1) is

#(t) = 27r(fct + Kt2 /2)

giving an instantaneous frequency of

l d
f (t) = 1pd 5(t) = fe + tt.27r dt

Thus, with a duration of Tp, the bandwidth of the signal is B = I/'ITp since the frequency
varies from fe - KTp/2 to f, + ,Tp/2 as t varies from -Tp/2 to Tp/2. The Fourier
Transform for s(t) is difficult to compute in closed form, but for large time-bandwidth
products BTp, the following approximation can be used [17]

( 1 e If - fcl < B/2

S(f) - e-i sign(K)7r/4 er (ff-c) 2 /K |f + fc| < B/2

0 otherwise,

i.e. it is approximately an ideal bandpass signal with quadratic phase.

'Primary sources: Wehner[581 and Curlander[171.
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Consider an ideal point scatterer with reflectivity A at a range R from the radar.

For a point scatterer, the reflected signal is a time delay of the transmitted signal where

the delay is given by the round-trip propagation time, i.e.

Vr = As(t - 2R/c). (2.2)

Using the matched filter h(t) = s*(-t) with frequency response H(f) = S*(f), the

output in the frequency domain is 2

G(f) = H(f)Vr(f)

= AS*(f )S(f ) e-j212Rc

_A e-j4R/c If - fcI < B/2, If + fc| < B/2

0 otherwise

which in the time domain corresponds to

f -fc+B/2 fc+B/2eiR/e 2 ftd
g(t) = A e-j 4 R/c ej 27rft df + A f -j47rRc e/j27rt

-fc-B/2 Jfc-B/2

= 2AB cos(2rfc(t - 2R/c)) in(7rB(t - 2Rc))
irB(t - 2R/c)

= 2AB cos(2irfc(t - 2R/c)) sinc(B(t - 2R/c))

The cos(.) term is a high frequency modulation and the sinc(.) term determines the

range focal point and resolution. In particular, the envelope of the matched filter output

is a sinc function centered at t = 2R/c which corresponds to a scatterer at a range of

R. The first nulls of the sinc envelope occur at t = 2R/c t 1/B. Thus, if the range

resolution is taken to be the distance from the peak to the first null, the resolution is

6r = c. (2.3)
2B

If the resolution is alternatively defined in terms of the half-power or 3dB width, then

taking the distance between the half-power points of the sinc(-) function, the resolution

is

-3dB40.44c (2.4)

U 2.1.2 Matched Filter Cross-Range Compression 3

The use of range compression is standard in microwave radar imaging and allows for a

high range resolution. Cross-range resolution however is unaffected as it is governed by
the azimuthal width of the radar footprint in cross-range which is

AR
6footprint = (2.5)

2 The scaling constant ,JJ has been dropped since it is just a constant gain term.
3 Primary sources: Munson[43] and Curlander[17.
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where A is the wavelength of the transmitted signal and Lp is the physical length of the

aperture. For many scenarios, this corresponds to a resolution on the order of several

kilometers. The novelty of SAR is in its fusing multiple azimuthal measurements to

synthesize a larger aperture and thus achieve a higher cross-range resolution. The

relative displacement between the moving radar platform and the stationary target

field gives rise to a chirp-like term in cross-range allowing range compression to be

performed in this dimension as well. The situation is illustrated in Figure 2.3 where an

airborne SAR makes regularly spaced measurements illuminating all points of interest

as it follows a linear path. Because the velocity of the platform is negligible compared

to that of the transmitted pulse, the radar can be considered to be stationary for the

measurement taken at each y = nA for integers n.

0 point scatterer at (xo,)b)
Q

Range (x)

Figure 2.3. Multiple cross-range sensor measurements of the target field.

Again, consider transmitting the chirp signal in Eq. (2.1). Now, consider a point

scatterer with reflectivity A at location (xo, yo) in down-range and cross-range respec-

tively. The received signal corresponding to the measurement taken at y = nA is

V,(t, nA) = As t - 2R(xoyo - mA)

where R(xo, yo - nA) is the distance from the nth sensor at (0, nA) to the scatterer at

(xo, yo). Both n and t convey time but on different scales. In particular, the variable t

is associated with the propagation of the transmitted signal which travels at the speed

of light, whereas n is associated with the movement of the radar which travels at the

speed of the aircraft or spacecraft. Because the duration over which t is measured is

much shorter than that for n, t is called fast time and n is called slow time.
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Performing the range compression in fast time with the matched filter h,(t) = s*(-t)
on the nth sensor measurement gives the output in the frequency domain as

Gr(f, n) = H(f)V(f,fnA)

= AS* (f)S(f) e-j 2 2 R(xo,yo-ns)/c

Ae -j4R(x,yo-nA)/c If - fcI < B/2, If + fc| < B/2

0 otherwise

which corresponds in the time domain to

gr(t, n) 1-fc+B/2 
Jfc+B/2

SA 1 e-j4xR(xo,yo-nA)/c ej 2 nf tdf + A ej47R(xo,yo-nA)/c
--fc-B/2 fc-B/2

= 2AB cos 27rfe t - 2R(xo, yo - nA) sinc(B t - 2R(xo, yo - nA)

= 2AB Re{ ej27fc(t-2R(xo,yo -n)/c)} sinc (B [t - 2R(xo,yo - A)

j27rft df

Again, the matched filter output has the form of a modulated sinc pulse with mainlobe
width c/2B in down-range. In SAR imaging situations, the azimuthal extent of the
footprint is narrow relative to the range xo. Thus, the range R in the slowly varying
sine expression can be approximated 4 as xo[42]. Such a coarse approximation is not
sufficient for the rapidly varying modulation term where deviations of a fraction of a
wavelength can have a profound effect. For this term, a first order approximation can
be used 5 [42]

R(xo, yo - nA) = x0 + (yo - mA) 2

(yo - nA) 2

2xO

Substituting these approximations for R in g,(t, n) yields

( 27rf, t_2xO+(yO-nsf2/xO
g,(t,rn) 2AB Re e ' / sinc(B(t - 2xo/c))

= 2AB Re{ e j27fc(t-2xo/c) e-j2x fc(yo-nA)2/(xoc)} sinc(B(t - 2xo/c)).

Due to the sinc contribution, the response g, (t, n) is significant only when t is approx-
imately equal to 2xo/c, i.e. when focused on the scatterer in down-range. For such a
value of t, the approximation to g,(t, n) is

g, (2xo/c, n) P 2AB Re { e-j2rfc(ns-yo) 2 /(Xoc)}

4 When this approximation does not hold, there is said to be range walk and special processing needs
to be performed to compensate for it.

5 Again, the assumption of xo > yo - nAl is necessary for the sufficiency of this approximation.
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which is similar in form to a delayed version of the transmitted chirp in Eq. (2.1) with
the time variable denoted as nA, a carrier frequency of 0, and a frequency rate of
-2fc/(xoc). A rect(-) function is absent from the above equation for gr(2xo/c, n), so
instead of processing it with a matched filter (spanning all n), it is cross correlated with
a windowed version of the chirp signal. This filter is

ha (n; xo) = Re{ ej21crn 2 /(Xoc) rect(nA/La)

where La is the length of the synthetic aperture and implicitly determines the number
of cross-range measurements used since they are assumed to be uniformly spaced. Note
that the filter is parameterized with the range location, in addition to slow-time, because
the frequency rate of the chirp in the filter varies with range to correctly focus in
azimuth. Because multiple measurements are used, the effective aperture length La is
much larger than the physical aperture, and thus the name synthetic aperture radar.

By, approximating the cross correlation of gr( 2xo/c,n) with ha(n;xo) as the au-
tocorrelation of ha(n; x0 ) and subsequently following similar steps as for the range
compression, the time domain output becomes

4ABLafc . (2Lafe
gr,a(2xo/c,n) = sinc (nA - yo),.

As for the matched filtering in range compression, when the cross-range resolution is
taken as the distance between the peak of the sinc and the nearest null, this gives an
azimuthal resolution of

cxo Acx0
ba (2.6)

2fcLa 2La

Alternatively, using the half-power bandwidth as the resolution,

0.44cxo _ 0.44Acxo (2.7)
da3dB- -7

fcLa La

The expression for resolution in Eq. (2.6) is quite similar to that for conventional radar
in Eq. (2.5), but note that Eq. (2.6) uses the synthesized aperture length La, which is
controlled as a parameter, whereas Eq. (2.5) uses the physical aperture length LP which
is limited by physical constraints.

* 2.1.3 Deramp Pulse Compression 6

This section presents a slightly different algorithm called the deramp-FFT method to
approximate the matched filter image formation for SAR data. The purpose of its
inclusion here is not because of its popularity, but more importantly, because it helps
provide a bridge to connect SAR to ideas in spectral estimation for far field array

processing. This association is further described in Section 2.2.

6Primary sources: Curlander[17] and Munson[43].
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Again, consider transmitting the chirp s(t) in Eq. (2.1). Performing range com-

pression involves convolving the received signal in Eq. (2.2) with the matched filter

h(t) = s*(-t). However, since the signal s(t) has a frequency which varies with time,
efficient linear time-invariant (LTI) processing techniques cannot be used. The idea of

deramp-FFT pulse compression is to process the received signal in a computationally

efficient fashion while still maintaining the performance of the matched filter. Towards
this end, let us start by defining a version of the transmitted signal with an extended

pulse duration, i.e.

Se(t) A Re{ e -'±t2/2) rect(t/Te) = cos (27r(fct + r. t 2 /2)) rect(t/Te)

where Te is the duration which will be specified shortly. This extended chirp is delayed,
subsequently multiplied by the received signal v,(t), and then bandpass filtered to
produce i4(t) as illustrated in Figure 2.4. The delay T, is an arbitrary, but known,
reference and is usually taken to be the round trip delay to the center of target field.

Figure 2.5 conveys the intuition behind deramp pulse compression. Both the received

and extended signals have a frequency which is linear in time. Because the delay in the

extended signal corresponds to a known location, in this case the center of the target

field, the position of the scatterer can be inferred from the constant frequency difference

between the received and extended signals, i.e. the vertical separation Af illustrated in

Figure 2.5. To detect this difference, the deramp-FFT multiplies the extended reference

signal with the received signal. Taking the product of sinusoids results in other sinusoids

with frequencies which are the difference and sum of the originals. Thus, keeping only

the lower frequency sinusoid reveals the location of the scatterer which is the reason for

the mixing and filtering in Figure 2.4. A maximum amount of overlap in time between

the received and reference signals would be beneficial because of the increased SNR. The

received signal v, is thus mixed with the extended signal se, instead of the transmitted

signal s, in order to obtain this maximum overlap in the presence of the unknown delay

in the reflected signal.

vr (t) X fVr (t) Bandpass j; (t)
Filter

Delay
by Tr

se (t)

Figure 2.4. Mixing the received signal with a delayed extended chirp.

41Sec. 2.1. Conventional SAR



42 CHAPTER 2. BACKGROUND

- se(t - TI)

AJ=Kx(To - Tr)

s(t)

ss
:0

Te

Vr(t) = As(t - To)
t10

Figure 2.5. Mixing signals to produce a sinusoid whose frequency is proportional to the distance from
the center of the footprint.

A more precise description of the deramp-FFT method is now presented. To start,
let Te be sufficiently large such that the support of the delayed and extended chirp

Se(t - T,) contains the support of the received signal v,(t) for all scattering locations
of interest. Then, the result of the mixing is

Vr (t) = se(t - Tr)s(t - To)

A cos (2,r [fc(t - Tr) + 2  cos(27r [fc(t - TO) + K(tTO)2

0

|t - To| < Tp12
otherwise

A cos (2r [fc(2t - T,

= +cos(2,r [fc(Tr

0

- To ) + K ±T+T 0 2 2t(Tr+To)

TO) + Tr-T0
2+2t(To-Tr)] It - To < Tp/2

otherwise.

By restricting the range over which a scatterer may contribute to the returned signal,
the value of To is bounded. A bandpass filter can thus be specified such that only

the lower frequency sinusoid is passed when the scatterer is in the region of interest.
Application of such a filter produces the output

A cos (27r [fc(T, - T,,) + /, Tr2-T2+2t(To-T,) |t -- ToI < Tp/2
tr(ti) =

0 otherwise

A cos (27r [fc(T, - To) + r 2 + r(To - T,)t]

0

It - To| < Tp/2

otherwise

which is called the deramped signal. This deramped signal is a constant frequency

sinusoid over the reflected pulse width Tp. The first two terms in the argument of the

deramped signal's sinusoid are constant phase terms. The third, however, term is a
frequency proportional to To - Tr, or equivalently, the displacement of the scatterer
from the reference location. Thus, knowledge of the frequency is equivalent to knowing

(2.8)
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Sec. 2.2. Spectral Estimation and SAR

the location of the scatterer. A Fourier transform can thus be applied to 'i,(t) to
determine the signal strength at each frequency. The precision with which To can be
measured using the Fourier transform over the interval Tp is 1/(IlTp) which translates
to a range resolution of 6, = c/(2|I|T,). This is the same as Eq. (2.3) for the matched
filter processing. The application of the deramp-FFT processing to cross-range follows
identically, and also results in a Fourier transform of a similarly processed signal. Thus,
instead of using a time-varying matched filter to obtain reflectivity estimates for each
image location, one can take the FFT of a signal which has been mixed and filtered as
in Figure 2.4 which significantly reduces the amount of computation required.

E 2.2 Spectral Estimation and SAR I

Recently, there has been much interest in beamforming methods for SAR[37, 3, 4, 7,
5, 11, 16, 21], much of it dealing with super-resolution techniques which try to achieve
higher resolutions than those imposed by the Fourier limit in Eqs. (2.3) and (2.6).
Beamforming methods for SAR are developed using the deramped-SAR framework
where the estimation of the location and reflectivity of a scatterer can be interpreted
as a spectral estimation problem.

The discussion in this section concentrates on the spectral estimation approach to
SAR image formation using the deramped signal as opposed to the direct matched
filtering approach presented in Sections 2.1.1 and 2.1.2. The spectral estimation formu-
lation is equally applicable for both down-range and cross-range processing, and thus no
distinction will be made between the two. The spectral estimation framework is based
on the far-field array processing scenario illustrated in Figure 2.6(a) for a uniform linear
array (ULA) composed of N regularly spaced collinear sensors. Many other array con-
figurations exist[37], but this is one of the simplest and is the one which relates to SAR.
In far-field array processing, one considers a radiation source8 at a distance sufficiently
far that the incident wave to the sensor array can be modeled as a plane wave. The
problem is then to find the signal strength and angle of arrival of the incident wave
which is accomplished by adjusting the weighting coefficients of the sensors in the array
to produce an antenna pattern like that illustrated in Figure 2.6(b). In particular, the
antenna pattern is produced by coherently combining delayed versions of the received
signals where the delay for each sensor increases linearly as the array is traversed to
account for the propagation delay. The value of the delay increment between sensors
determines the direction of focus for the array as illustrated by wo in Figure 2.6(b). In
addition to the sensor delay, which corresponds to linear phase across the sensor array,
the magnitude of the gain on each sensor can be adjusted to modify the shape of the
antenna pattern produced by the array. Viewed from a signal processing perspective,
with a constant magnitude gain on each sensor, the impulse response from a infinitely

7 Primary sources: Krim[37], DeGraaf[21], and Cox[16].
8 The source itself need not be an active source such as in astronomical settings but may be a passive

source whose reflectivity is measured as in radar settings.

43



long array corresponds to a delta function whose location is determined by the linear
phase (or delay increment) of the array. However, since there are only a finite number
of sensors, such a filter will exhibit sidelobe behavior due to the "windowing" of the
array. To mitigate these sidelobe effects, the magnitudes of the sensors are often ad-
justed to suppress interference from other directions. The result is a response whose
Fourier transform looks like the one illustrated in Figure 2.6(b) which is plotted in polar
coordinates instead of rectangular coordinates. The mainlobe is often called the beam
of the antenna pattern, and this process of designing and directing the beam through
adjustment of the sensor coefficients is called beamforming.

spherical
way front

27rA co wo
A

1 2 3 N-
far-fA plan

(a)

aeld
.e wavefront

antenna pattern

sensor array

(b)

Figure 2.6. Illustration of the array processing scenario for a uniform linear array. (a) Far-field source
and incident plane waves. (b) Antenna pattern for a given set of sensor weights.

It should be noted that although the SAR sensor arrangement constitutes a ULA,
SAR does not conform to the far-field array processing scenario, and thus beamforming
techniques developed for the far-field ULA cannot be directly applied to measured
SAR data. The difference between the two situations is that in SAR, the scatterer
and radar are in close proximity so that the spherical wavefront cannot be accurately
approximated as a plane wave. Thus, instead of detection of a linear phase (or sinusoid
component) as in the far-field ULA, one has to detect a quadratic phase in the sensors
in SAR. However, techniques developed for far-field array processing can still be applied
to deramped SAR data for which the quadratic phase has been removed by the mixing
operation in Figure 2.4. This mixing operation also has the effect of mapping the entire
aperture, which typically has a narrow angular span, to the 180' field of view used in
the far-field ULA framework.

In presenting beamforming techniques for SAR, the superfluous radar parameters
from the deramped signal in Eq. (2.8) are omitted. In particular, the quadrature com-
ponent of the deramped signal is also assumed to be available, and the phase is incor-
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porated into the now complex reflectivity to write the simplified signal as

x(t) = AoejwOt + n(t) (2.9)

where wo is the unknown frequency to be estimated (conveying scatterer location), A0

is the reflective gain from the scatterer, and n(t) is zero-mean circularly complex white

Gaussian noise with variance 2a.2 which represents the response from clutter in the
target field. As the measurements are taken at discrete time samples (ti, t 2 ,... , tN),

bold face letters are used to denote collections of sampled quantities, e.g. x denotes

the vector of all samples of x(t). Since the received data x is a random vector, it

has an associated correlation matrix which is denoted as R. The normalized modeled
response for a scatterer corresponding to frequency wo is termed the steering vector and
is denoted by a(wo). In particular, the steering vector for an ideal point scatterer with
associated frequency wo is

a(wo) = [eiWoto, ewotl, eot,. . . ] . (2.10)

This allows the samples of x(t) to be written as

x = Aoa(wo) + n

for the case of a single scatterer. For the multiple scatterer case, the received signal can

be written as

M

X =1 Ama(wm) + n (2.11)
m=1

where M is the number of scatterers.
The design objective in beamforming is to generate a highly directive gain peak

(or beam) and steer it to the desired location through adjustment of the weighting

coefficients. These coefficients are commonly taken as the solution to an optimization

problem for a linear filter. Letting h*(w) denote the set of sensor weights applied to x

to estimate the energy at frequency w, the output y(w) is defined as

y(w) h(w)x.

A frequently used quantity which is useful in defining optimal filters is the power of the

output y(w)

P (yw) E[lyw|

= hH(w) E[xxH] h(w)

= hH(w)Rh(w).

Using these entities, there are many different beamformers that one could design. In
the following sub-sections, two of the more popular ones are discussed.
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M 2.2.1 Conventional Beamformer

The first filter described is the conventional beamformer. This is motivated by the idea
that one wants to maximize the SNR of the filter output. In particular, we seek the
filter with unity energy which maximizes the output energy, i.e.

arg max {P(y(w))} = arg max { E[hH (w)xxh(w)]
h(w):|h(w)| 2=1 h(w):I|h(w)J| 2=1

= arg max {IAo 2 hH(w)aaffh(w) + 2o 2 h(w)Hh(w)
h(w): Ih(w)|2=1

= arg max {hH(w)aaHh(w)}. (2.12)
h(w):||h(w)||2=1

The solution for this maximization problem is

- a(w)hcona(w)a (2.13)
Va(w)H~a~

Because this filter maximizes the SNR of the output, it is an implementation of the
matched filter. Furthermore, because a(w) is an exponential of frequency w, the output
hH(w)X corresponds to a Fourier coefficient of x, and the collection of outputs over all
w corresponds to the Fourier transform of x. This formulation supports the reasoning
for taking the Fourier transform of i (t) at the end of Section 2.1.3 as it implements an
approximation of the matched filter 9 .

U 2.2.2 Capon's Beamformer

The ideas for reflectivity estimation presented thus-far only consider the situation in
which there is a single point scatterer. Super-resolution techniques, however, take into
account the presence of other dominant scatterers to suppress interference and better
resolve closely spaced sinusoids. Because the conventional beamformer is only concerned
with the estimation of a single scatter, it is not a super-resolution technique. This
sub-section describes Capon's method which is a popular super-resolution technique
that tries to suppress the effects of nearby interfering scatterers to achieve a higher
resolution. In particular, Capon's method determines the filter for each frequency w as
the solution to the following optimization problem

arg min {P(y(w))}
h(w)

s.t. hH(w)a(w) = 1. (2.14)

The idea here is to choose the filter which minimizes the total energy received while
having unity gain for the frequency w. Thus, interference from nearby strong scatterers
is suppressed as the resulting filter attempts place nulls at locations producing high

9From the formulation in Eq. (2.11), this is exactly the matched filter and not just an approximation,
but recall that several approximations were made in Section 2.1.3 to formulate SAR into this model.
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Sec. 2.3. Nonideal Scattering

energy contributions. Using standard optimization techniques, the solution for Capon's

beamformer is

R-la(w)
h~ao (w)-w (2.15)hCapon~) - H(w)R-la(w)'

Note that this filter makes use of the received data via R to detect and null interfering
scatterers. Thus, one cannot simply take R = 2o.2 1 as that would ignore the data and
simplify to the conventional beamformer. In array processing, R is typically estimated

from the received data as the sample correlation matrix of the sensor data. In SAR

however, this poses a problem since there is only one sample of the sensor data, i.e. the

one image, which results in a correlation matrix with rank one. Typically, this obstacle

is bypassed by using the assumption that the sensor domain data are stationary, and

thus the sensors can be divided into multiple groups where each group can be treated
as a distinct sample of data[3, 37]. For more information on Capon's methods and its
variants, including applications to real SAR data, the reader is referred to [16, 4, 7, 5].

* 2.3 Nonideal Scattering 10

All the discussion up to this point has been based on the ideal point scattering model,
i.e. scattering which is frequency and aspect independent, resulting in the received sig-
nal being modeled as a simple delay of the transmitted signal regardless of orientation.
However, even the most simple scattering primitives (spheres, plates, dihedrals, trihe-
drals, cylinders, cones, etc.), exhibit either frequency and/or aspect dependences. The
degree to which these dependencies manifest themselves depends on the geometry and
physical dimensions of the object. Recently, there has been much interest in determin-
ing and exploiting the nonideal scattering behavior of simple scatterers especially for
the purpose of target classification[5, 40, 45, 13, 46]. This interest is particularly strong
in applications using high resolution wide-band and wide-aperture data where these
dependencies are more pronounced.

Accurate scattering response models for canonical scatterers can be obtained from
physics-based models such as physical optics (PO) [48] or the geometric theory of diffrac-
tion (GTD)[33, 48]. For specific scatterer geometries, these models provide a closed form
approximation for the response as a function of scatterer size and orientation. The PO
model is obtain from the solution of a ray-tracing model including the effects of off-
specular responses. The GTD model extends the PO model by also accounting for
surface currents and edge effects. The two models are nominally the same except at
near tangent incident angles where the GTD model is significantly better. This thesis is
primarily concerned with gross level scattering behavior around the specular response
where the scatterer is strongly observable. In this regime, the simpler PO model is
sufficient and thus the GTD model is not discussed further. To provide an idea of the
different responses that scatterers produce, the PO model for some simple canonical

1 0Primary sources: Ruck[481, Benitz[5], and Chaney[121.
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scatterers are cited from Ruck[48]. The first is the rectangular flat plate illustrated in
Figure 2.7(a) where a flat plate of size a x b is centered at the origin and the radar
backscatter is measured from the direction given by # and 9. For this configuration,
the radar cross section 1 (RCS) is given by

0_ 47r(ab)2 F sin(ka cos(9) cos(#)) sin(kb cos(9) sin(4)) 2 (2.16)
A2  I ka cos(O) cos(#) kb cos(9) sin() I

where A = c/f is the wavelength, k = 27rA is the wavenumber, c is the speed of light,
and f is the frequency of the signal. This response is plotted for a 1mx1m plate with

f = 9.6GHz 12 , 0 = 00, and 9 E [-30', 300 13 in Figure 2.8(a). The PO model for a
sphere of radius a centered at the origin as illustrated in Figure 2.7(b) is

a sin(2ka) cos(2ka) 1-= Ia 2 i_ ka 2  2k 2a2  (2.17)

The azimuthal response for a = 1m is shown in Figure 2.8(b). Another canonical

scatterer is the right circular cylinder with radius a and height h centered at the origin

as illustrated in Figure 2.7(c). The PO response for this scatterer is

-= kah2  cos(20) ] (2.18)
1 kh sin( 20 I

which is plotted in Figure 2.8(c) for a =0.5m and h =lm with # = 00. Figure 2.7(d)
illustrates the dihedral canonical scatterer composed of two rectangular plates of size

a x b conjoined at the edge of length b such that the two plates form a 90' angle. The

PO response for this scatterer scatterer is

F 4ab sin(kb sin(9)) 1 2o= ir cos(O) sin(#5) .J(2.19)
_ A kb sin(O) I

This response is plotted in Figure 2.8(d) for a =0.5m and b =lm when 9 = 0'.
Given canonical scatterer models, a natural inclination is to use them to improve

reflectivity estimates. Extending the matched filtering approach in Sections 2.1.1 and

2.1.2 to handle nonideal scattering would be quite difficult both analytically and com-

putationally. However, nonideal scattering could be incorporated by using the predicted

response in place of the point-scatterer steering vector in Eq. (2.10) in the beamformers

presented earlier. The general solution for the conventional beamformer in Eq. (2.13)

and Capon's beamformer in Eq. (2.15) still hold under these more general steering

vectors. Benitz [7, 5] takes such an approach in his high-definition vector imaging

1 RCS is a measure of the reflected power.
1
2 This is the same as the MSTAR center frequency (see Appendix B).

13 Such a large azimuthal range is used for illustrative purposes and is beyond the capabilities of

current SAR systems. Typical azimuthal spans in modern systems are as low as 10 and as high as 300.

Furthermore, the PO approximations start to lose their accuracy beyond the displayed range.
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b

(a) rectangular plate

(c) cylinder (d) dihedral

Figure 2.7. Illustrations of canonical scatterers.

(HDVI) technique where he forms a sequence of super-resolution images using a vari-

ant on Capon's algorithm. Each image is formed using the steering vector based on a

pre-specified canonical scatterer whose size is fixed apriori. Although this can provide

information about the specific scatterers in the data, the amount of computation in-

volved can become prohibitive. The responses given by the PO and GTD models are

quite precise and relatively highly parameterized. Each steering vector used depends

not only on the type of canonical of scatterer sought (e.g. dihedral, flat plate, etc.) but

also the physical dimensions and orientation of the scatterer. The large number of possi-

ble configurations leads an infeasible number of images to generate. Furthermore, many

of differences between these scatterer models may be slight and nearly unobservable in

the data, particularly if the scene is being imaged from a single viewpoint14 .

There are also complications in using Capon's method and other super-resolution

methods which depend on the data correlation matrix R to suppress interfering scat-

4 This is in contrast to having multiple images of the same scene from various points on the view-

sphere such as in the context used by Richards[46.

(b) sphere

h{
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Figure 2.8. Azimuthal responses for canonical scatterers from the PO model.

terers15 . As mentioned in Section 2.2.2, the data correlation matrix is estimated by
dividing the sensors into multiple regions and taking the average of outer-products of
the data vector x. However, this averaging is based on the assumption of stationarity
among the sub-bands (or sub-apertures) which does not hold if the scatterers exhibit
frequency (or azimuthal) dependencies. Thus, these methods inherently assume that the
interfering scatterers are ideal point scatterers, i.e. that the response from the scatterer
is the same in each of the divided regions. Furthermore, for physically large scatterers
that span several resolution cells, these techniques may produce undesirable attributes
as they try to resolve a single distributed scatter into multiple sources. In particular,
when the scatterer modeled in the steering vector is too small, super-resolution tech-
niques try to suppress the contribution from the other pixels covering the scatterer as
they are interpreted as interfering scatterers. The result is a breaking up of the phys-
ically distributed scatterer into multiple scatterers. In such a situation however, the
resolution should actually be coarsened, not refined, to a degree consistent with the size
of the scatterer to take full advantage of the information in the reflected signal.

For wide-aperture and wide-band data, the necessity for super-resolution techniques
is arguable since the image already has a high resolution, e.g. on the order of a few inches.
In these cases, the overall impact of super-resolution techniques may be to cause more
harm than good as the model mismatch for distributed scatterers distorts the estimates

15Note that the conventional beamformer is not in this group.



as larger scatterers are broken into smaller scatterers. Rather than forming myriad esti-

mates based on a large assortment of canonical scatterer types, sizes, and orientations,
it is reasonable to take a more general but physically meaningful characterization of the
scattering response. This is the approach taken by Chaney et. al.[12] who propose to
model scatterer anisotropy in a coarse manner capturing the fact that for many scatter-

ers, anisotropy is related to their physical size. To simplify the amount of computation,
they approximate the aspect dependent scattering as zero from all azimuthal directions
except over a section of the aperture where the gain is constant, i.e.

a(w)W1W W2

0 o.w.

for some wi and w2. The matched filter in azimuth is then a windowed FFT (in the

beamforming framework) and is equivalent to processing with just a subset of the full-
aperture. The weighting across the sub-aperture is uniform as in the point scatterer
case and is not exactly tuned to any particular scatterer. Although, this implies that
optimal processing is not performed, myriad images need not be generated for all the
scattering types sought and general differences in scatterer anisotropy can be detected.
Chaney et. al. utilize sub-aperture processing by adapting the size and location of
the sub-aperture to achieve a better reflectivity estimate for anisotropic scatterers.
For example, the broadside flash phenomena associated with a large plate produces
a scattering response which is concentrated in a small section of the aperture. Thus,
by only using the section of the aperture in which most of the returned energy is

concentrated, a higher fidelity estimate of the reflectivity can be achieved since only
the portion with a high SNR is used. Viewed in the image domain rather than the
sensor domain, this can be interpreted as adjusting the amount of spatial coarsening
based on the spatial extent of the scatterer. For each pixel in their algorithm, they
compute a set of reflectivity estimates from various sub-apertures and choose the one
with the highest reflectivity. The resulting image is then thresholded to detect bright
anisotropic scatterers. One drawback to this approach is that their selection criterion
for the sub-aperture is based on a model which does not properly take into account the
effect of sub-aperture length on the variance of the sub-aperture reflectivity estimate.

The resulting images produced by their criterion have an excessively coarse resolution
implying that too small an aperture is frequently used. Furthermore, Chaney only

uses the reflectivity estimate and discards the properties of the chosen sub-aperture,
i.e. its size and location. By ignoring these specifics, possible information about the
scatterer's size and orientation is lost. From the duration of the flash (in terms of
aperture length), the size of the scatterer can be inferred since scatterer size is inversely
proportional to the duration of the flash. From the center of the flash, the orientation
of the scatterer can be inferred. For example, the peak response of a flat plate should
occur at broadside.
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0 2.4 Machine Learning

The field of machine learning deals with the use of computers to "learn" patterns in
the data and make decisions based upon the knowledge gained. This thesis is con-
cerned with the classification subset of machine learning. Obviously, knowledge of the
underlying probability distribution of the classes involved is fundamental to any good
probabilistic algorithm. However, these distributions are not known and must be esti-
mated. Another issue is how to use these estimated distributions. This section presents
the relevant background needed to address these problems. First, the topic of density
estimation is discussed. This is followed by a presentation of some fundamental concepts
in information theory. These concepts are then used to show the asymptotic equivalence
between the likelihood ratio and the information theoretic concept of Kullback-Leibler
(KL) divergence. Finally, a classification approach comparing estimated densities via
KL divergence is presented.

* 2.4.1 Kernel Based Density Estimation 16

Knowledge of probability densities is essential in the field of stochastic signal processing.
Thus, the relevant densities must be estimated to some degree. Some tasks require only
a few statistics whereas others require the entire pdf, and the former often make strong
assumptions about the underlying density. Techniques for density estimation broadly
fall into one of two categories. The first is called parametric estimation. In this case, a
particular parametric form for the density is assumed and its parameters are estimated
from data. For example, one may assume the underlying density is a Gaussian and use
the data to estimate its mean and covariance. The limitations of such parametric tech-
niques are clear in that the functional form assumed imposes a strong restriction. The
class of nonparametric density estimators make few assumptions on the density (such as
regularity) and lets the number of parameters describing the density grow unbounded
with the amount of data. It is often advantageous to use a nonparametric estimator
when little is known about the underlying phenomena producing the sample values,
and thus, one has no reason to assume a particular family of density functions. For
example, visually viewing a nonparametric estimate of the density (e.g. a histogram) is
often a useful first step in choosing one or more functionals to describe the data and
possibly associate underlying causes with different parts of the distribution. However,
the wealth of unlimited choices for the density makes this an ill-posed estimation prob-
lem. Even when a particular degree of regularity is assumed, estimation is difficult in
regions where only a few local samples are available.

Before describing a common technique for density estimation, some notation must
be defined. Lowercase boldface letters are used to denote random vectors, e.g. x, and
samples of it are denoted with a corresponding uppercase letter, e.g. X. Calligraphic
letters, e.g. X, are used to denote the corresponding sample space. The distribution for

16Primary sources: Silverman[50] and Fukunaga[26].
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a random variable is denoted by F(-) and the corresponding pdf1 7 is denoted by f(.).
When the random variable involved is not clear from the argument or context, it will
be explicitly placed as a subscript under F and f.

A histogram is an example of a nonparametric density estimator. One is free to
choose the number of uniformly space bins to get any degree of flexibility in the resulting
estimate which is limited only by the number of data samples. The Parzen density
estimator is a natural generalization of this idea. Instead of partitioning the domain into
uniformly divided regions, a localized function called a kernel is centered at each data
sample, and all the kernels are summed to produce the density estimate as illustrated in
Figure 2.9. The Parzen density estimate for f given N i.i.d. samples X 1,..., XN F
is defined as

1N X - Xi
f(X) = Nhd >ZK h )(2.20)

where K(-) is the kernel, h is the kernel width or bandwidth, and d is the dimensionality
of x. The kernel used must be nonnegative and integrate to one in order for f to be
a valid pdf. In particular, kernels that are well localized and symmetric are commonly
preferred as one would expect that each data sample tells more about the probability
in the neighborhood of that sample than the probability at some distant value. An
attribute of this technique is that when a pdf with a finite second moment is used as
the kernel, the density estimator is consistent, i.e. f converges to f in probability, if the
kernel width is chosen as an appropriately decreasing function of N [28]. The estimated
density function will also inherit the same differentiability properties as that of the
kernel. Thus, if smoothness of the density is important, then an infinitely differentiable
kernel such as the Gaussian pdf could be used.

0.8

0.6

0.4

0.2 .\

-4 -20 2 4
X

Figure 2.9. Example of Parzen density estimation.

'7 1t will be assumed that the pdf exists.
17It will be assumed that the pdf exists.



0 2.4.2 Information and Entropy 18

Although the ideas in information theory originated in the communications field, the
application of its results extend far into many other fields. The central ideas in in-
formation theory regard how much "information" is present in a sequence of random
variables and how efficiently that sequence can be coded, where efficiency is measured
in terms of the size of the coded sequence and robustness to noise. Intuitively, this is
analogous to the idea of classification by which this thesis is motivated. The object to
be identified can be considered the "information" in the signal; the coded sequence can
be thought of as the features used to identify the object; the distortions in the image
data along with the data lost due to projecting onto the feature set can be thought of
as the noise in the communications channel. The goal in ATR is to choose the best
feature set (code) that efficiently conveys the object's identity (information), but which
is robust to imaging noise and data not captured by the feature set (channel noise).
In this section, a basic review of some fundamental information theoretic concepts are
presented.

First, the concept of quantifying information is considered. Given an event E that
occurs with probability p, we wish to quantify the amount of surprise S(p) in learning
that E has occurred. It can be shown that if the surprise satisfies the following four
axioms, then it has the form

S(p) = -c log(p)

where the constant c is an arbitrary positive integer, taken to be 1, and the base of the
logarithm is arbitrary, generally taken to be 2. The four axioms are

" Axiom 1: S(1) = 0. That is, there is no surprise in observing a sure event.

" Axiom 2: S(p) is a strictly decreasing function of p. That is, the occurrence of
less likely events generate more surprise.

" Axiom 3: S(p) is a continuous function of p. That is, small changes in the
probability of an event correspond to small changes in the surprise of observing
that event.

" Axiom 4: S(pq) = S(p) + S(q), where q is the probability of an event F indepen-
dent of E. That is, the surprise of observing two independent events is the sum
of their surprises.

Now, consider a discrete random variable y that can take on values Y E Y with
probabilities p(Y). The entropy of y is defined as the expected value of the surprise of
the outcome, i.e.

H(y) = E[- log(p(y))] = - p(Y) log(p(Y)). (2.21)
YEY

18Primary sources: Cover[15] and Ross[47].
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As its name implies, entropy is a measure of randomness of the outcomes of the random

variable. Extending this idea of entropy to continuous random variables, the differential

entropy of a random variable distributed according to the pdf f is defined as

h(x) = E[- log(f (x))]= - log(f(X)) dF(X). (2.22)

Another useful concept from information theory useful for ATR is the continuous

form of the Kullback-Leibler (KL) divergence between two pdf's f and g. The KL

divergence is defined as

D(fj1g) = f(X) log(fg( ) dX (2.23)

which is the expected value, under f, of the log-likelihood ratio of f and g. 19 It is useful

to think of the KL divergence as a distance between two pdf's, even though it does not

qualify as a metric since neither the symmetry condition nor the triangle inequality

hold. One property of metrics that it does possess is that the KL divergence between

two pdf's is always nonnegative and it is zero if and only if the two pdf's are equal.

Another useful property of the KL divergence is its relation to the log-likelihood ratio

(LLR). This relationship is attractive because a thresholding of the LLR, i.e. a likelihood

ratio test (LRT), is the optimal20 decision rule for a hypothesis test. In particular, the

hypothesis test considered is: given a sequence of samples {X1,... , XN}, we wish to

choose one of two hypotheses to describe the nature of the samples

H1 : xi i.i.d. f = fi or

H 2 : xi i.i.d. f = f2.

where f is the density producing the samples and f, and f2 are two specified hypothesis

densities. It is relatively straightforward to show that

Ef [log( f2 (X) ) = D(f 11f2) - D(fI1fi), (2.24)
L f2(x)_

i.e. the differences between KL divergences in Eq. (2.24) is the expected value of the

LLR. This equivalence motivates the classification approach discussed in the next sub-

section which uses the KL divergence between densities, estimated from samples, as the

basis for a decision rule.

* 2.4.3 KL-Based Classification Technique 21

To conclude the section on machine learning, several of the machine learning compo-

nents presented are used to describe a classifier which asymptotically approaches the

1 9 For continuity, 0 log(2) is defined to be 0.
2 The LRT is optimal in the sense that for a specified cost structure on the different classification

decisions under the true hypothesis, the rule which minimizes the expected cost is an LRT.
2 1This section is a generalization of the approach described by DeBonet[20] whose specifics are de-

scribed in Appendix A.
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likelihood ratio test without assuming parametric forms for any of the underlying data.
The setup for the problem is as follows. The learning process is based on L labeled sets

{S1, ... , SL} of reference data each containing N samples. For each 1, all the samples in
S, are generated as i.i.d. samples from the labeled but unknown density fl. Then, pre-
sented with another set So = {X 1 ,.. . , XN} of data consisting of i.i.d. samples drawn
from one of the densities fi, the problem is to choose under which fj the samples of So
were generated.

The first task in this approach is to compute fl, the density estimate for fl, for

each 1 E {0,... , L}. Because no parametric forms of the densities are to be assumed,
a consistent nonparametric density estimator 22 , such as the Parzen density estimator,
should be used.

Motivated by the equivalence of the expected value of the LLR and KL divergence
in Eq. (2.24), the following derivation shows that the minimization of KL divergences
is asymptotically equivalent to maximum likelihood testing for the problem defined at
the beginning of the section. Starting from the maximum likelihood (ML) detector for
the density generating the data set SO:

f= arg max {f(X 1,... ,XN)}
lE{1,..L}

= arg max lfI(Xz)}

argmax llfi(Xi)}

= argmax~( Ni(=1 f(X)= arg max f (Xi)I Ni=N1

= arg max{ A (og() o (X i)

iiN (Xi)
= arg max 1 7

= arg max I{ log fY(xz)

.n 1 N o(Xi)
= arg min -log

N , fi( Xi )

ar g min jo (X ) log ( o )d X
1 f, (X )

= argrmin D(jollfi). (2.25)

22For other consistent density estimators, the reader is referred to Silverman[50].
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All approximations in Eq. (2.25) are meant in the sense that the argument of the

arg max {-} is approximate. The first approximation, based on the consistency of the

density estimator, is that the estimated pdf's are close to the true underlying pdf's.

The second approximation is that the relative frequency of each X E X converges23 to

the estimated probability jo(X). The result in Eq. (2.25) thus says that the choosing
the f, which is "closest" to fA in terms of the KL divergence is asymptotically equivalent

to performing ML detection. Furthermore, if a rejection hypothesis is incorporated via

l* =arg mini D(fo||fl) D(fo||fi*) ; T

none of the available hypothesis are true D(follfi.) > T
(2.26)

for a threshold T, then this decision rule is asymptotically equivalent to selecting the

pdf which minimizes the KL divergence only if

Ef log (f(x))] > T

i.e. the estimated log-likelihood is greater than T.

2 3 There are actually two asymptotic results being used here. Both the relative frequency of occurrence
in So and the density estimate converge in probability to the true pdf and thus to each other. The
former is by the weak law of large numbers, and the latter is by consistency of the density estimator.
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Chapter 3

Sub-aperture Representation

This chapter introduces the sub-aperture pyramid which forms the cornerstone of the
modeling and analysis of scatterer anisotropy in this thesis. The sub-apertures in the
pyramid are used to represent the SAR data with sub-aperture reflectivity measure-
ments and to represent anisotropy scattering hypotheses. The latter topic is left for later
chapters while this chapter focuses on the data representation that the sub-aperture
pyramid provides.

full-aperture

half-apertures

quarter-apertures

H >1
azimuthal span

Figure 3.1. Illustration of a sub-aperture pyramid.

The intuitive idea of the sub-aperture pyramid is to use a set of sub-apertures
covering the entire aperture to represent the SAR data in a way that reveals scat-
terer anisotropy. The sub-apertures are arranged in a pyramidal fashion as shown in
Figure 3.1 with the full-aperture at the top and successive levels containing increas-
ingly smaller sub-apertures, where at each scale, the entire aperture is covered by
sub-apertures. The motivation for using such a structure is best illustrated with the ex-
amples shown in Figure 3.2. Here, the sub-aperture representations of three azimuthal
responses with different degrees of anisotropy are depicted by using the amount of shad-
ing to convey the intensity of the sub-aperture reflectivity estimates. The first example
is an isotropic response for which each sub-aperture returns an identical reflectivity es-
timate. The second response is highly anisotropic which is revealed by the progression
of increasing reflectivity estimates forming a "streak" down the middle of the pyramid.
The third response is mildly anisotropic which is revealed by the sub-aperture esti-
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mates in the middle of the aperture capturing the most energy. In moving from larger

to smaller sub-apertures, in this case, once we reach a scale for which sub-aperture size

no longer exceeds the width of the azimuthal flash, the reflectivities cease to increase

as the pyramid is traversed downwards. Such a leveling off indicates that the exam-

ined sub-apertures are too narrow in azimuth. Thus, the level at which this transition

occurs indicates the degree of anisotropy of the underlying scatterer. It is through the

patterns illustrated by these examples that the sub-aperture pyramid captures scatterer

anisotropy and reveals the degree and azimuthal location of the anisotropy.

az. az. az.

Figure 3.2. Illustration of how different azimuthal responses (bottom) are represented on the sub-

aperture pyramid (top).

Based on the illustrations in Figure 3.2, one may think that the smallest sub-

apertures provide the best measurements for detecting and characterizing anisotropy.

While true for the case of a single scatterer, this is not true when there are multiple

scatterers are present. The reason is that smaller sub-apertures have a corresponding

coarser imaging resolution, as discussed in Section 2.1, resulting in more interference

in the estimated reflectivities. This thesis thus proposes the sub-aperture pyramid as a

means to achieve both a high cross-range imaging resolution and high azimuthal resolu-

tion. Note that the sub-aperture pyramid only applies to azimuthal data resulting in a

multiresolution representation in cross-range1 . In particular, the pyramid is not applied

in frequency as the entire bandwidth is always used to generate reflectivity estimates,

i.e. range is always imaged at the finest resolution. This variation in resolution in only

one dimension is in contrast to the approaches proposed by Irving et. al.[31], Fosgate

et. al.[24], and DeBonet et. al.[20] which are multiresolution in both down-range and

cross-range.
The remainder of this chapter presents the specifics of the sub-aperture pyramid

in more detail. First, the structure of the pyramid is defined and interpreted. Then,

sub-aperture reflectivity estimation is discussed. The chapter ends with interpretations

of the sub-aperture pyramid in other contexts illustrating the attractive properties it

possesses.

'Frequency dependencies are not explored in this thesis because complications arise in simultaneously

performing the analysis in azimuth and frequency as discussed in Section 8.2.
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S 3.1 Sub-aperture Pyramid

Each sub-aperture can be associated with an interval of the real line. In particular, the
full-aperture is denoted by the interval [0, 1) = {tJ0 < t < 1}. Then, the sub-aperture
can be defined with simple set theoretic notions. The intuitive idea of the sub-aperture
pyramid is to generate an over-complete covering of the full-aperture with sub-apertures
that can be arranged in a pyramidal structure. Formally, the sub-aperture pyramid is
taken to be a set S of sub-apertures with the following structure. The set S is partitioned
into smaller sets Sm for m E {0,..., M} all the elements of which have a particular

sub-aperture length with larger values of m conveying smaller sub-aperture lengths as
illustrated in Figure 3.3. So refers to the singleton set consisting of the full-aperture at
the top of the pyramid, and SM refers to the set of the smallest sub-apertures at the
bottom of the pyramid. A second subscript on S denotes a specific sub-aperture at the
given scale. For what follows later in the thesis, the following conditions are imposed
on S:

(A) VSm,i, Sm,i = [a, b) c [0,1) for some a and b with 0 < a < b < 1,

(B) So = {[0, 1)},

(C) VSm,i, 3 a partition P(m, i) C SM of Sm,i, and

(D) VSm,i with m > 1, 3Sm-1,j such that Sm,i C Sm-1,j.

The first condition simply restricts each sub-aperture to be a connected subset of
the available aperture. The use of connected sets is motivated by the predominance
of concentrated unimodal scattering in azimuth produced by canonical scatterers. The
second condition states that the full-aperture resides at the top of the pyramid which

allows for consideration of the minimal degree of anisotropy, and more importantly,
produces the finest imaging resolution permissible. The third condition ensures that

each sub-aperture can be represented by a partition of smallest-sized sub-apertures at

the bottom of the pyramid. This partitioning permits for simplified analysis in the
sub-aperture attribution discussed in Chapter 5. The fourth condition asserts that
each sub-aperture, except the full-aperture, is contained within a parent sub-aperture.
Herein, the term sub-aperture pyramid refers to one satisfying conditions (A)-(D).

To illustrate the idea of the sub-aperture pyramid, three examples are presented.
The first is the disjoint, half-aperture pyramid shown in Figure 3.3(a). Here, each sub-
aperture is divided into two halves for each change in scale thus producing a dyadic
partitioning of the aperture. At each scale, this pyramid uses the minimum number of

sub-apertures to achieve the covering for a given sub-aperture length. Such a minimal
representation, however, is not robust to shifts in the azimuthal response. For example,
if the rightmost azimuthal response in Figure 3.2 were applied to the disjoint cover-
ing, then the response could not be well captured with the set of half-apertures, and
one would have to resort to using smaller sub-apertures which have a coarser imaging
resolution. An approach to addressing to such a problem is to increase the amount
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of sub-aperture overlap which is done for the half-overlapping, half-aperture pyramid

shown in Figure 3.3(b). Here, each sub-aperture is divided into three half-overlapping

sub-apertures. Although the half-overlapping pyramid is still susceptible to shifts in

azimuth, the impact of such shifts is considerably reduced. One could increase the

amount of overlap even more so if desired. For example, one could use the sub-aperture

pyramid shown in Figure 3.3(c) where the sub-apertures have a constant offset of 1/8

for each level.

S0.0

SJC S1.1

S320 S 2 .1 S2.2 S 2 ,3

I

I

S0.0

S2, I S 2 ,3 S2,5

(a) (b)

S0.0

(c)

Figure 3.3. Three examples of sub-aperture pyramids. (a) Disjoint, half-aperture pyramid. (b)

Half-overlapping, half-aperture pyramid. (c) Eighth-incrementing, half-aperture pyramid.

M 3.2 Sub-aperture Reflectivity

To quantify azimuthal variations, each sub-aperture in the pyramid is used to measure

the localized (in azimuth) reflectivity for a specified location in the image scene. This

is done using the azimuthal response which for a given location is formed by first

extracting the azimuthal sensor measurements from range compressed data for a given

range location. This produces a 1-D signal along the aperture which is not cross-range

compressed. The azimuthal response is then obtained by demodulating this signal for

its specific cross-range location. The purpose in using this partially processed signal is

that it focuses the energy in down-range and removes the distracting modulation on the

signal caused by the offset in cross-range. The result is an azimuthal response like those

presented for the canonical scatterers in Figure 2.8 which only have to be integrated to

generate the reflectivity measurement. In particular, each sub-aperture Sm,i generates

an associated measured reflectivity qm,i according to

qm,i = a(w) dw (3.1)

where a(w) represents the azimuthal response for the given location.



This sub-aperture measurement is not used as a reflectivity estimate due to lack
of normalization. An estimate has an implicit model which in this thesis is taken to
be the same as that used by Allen[2] and Chaney[12], i.e. the sub-aperture scattering
model whose response is uniform over the aperture and zero elsewhere. The reflectivity
for this model refers to the amplitude on boxcar model. Thus, assuming white noise
across the aperture, the maximum likelihood reflectivity estimate is the average of the
azimuthal response over the sub-aperture, i.e.

A ]m,i a(w) dw = qm,i (3.2)
AMi=Lm'i sm,i Lm'i

where Lm,i is the length of the sub-aperture Sm,i. It is generally more convenient to
work with the sub-aperture measurements qm,i because these measurements can be
related to each other by simple addition. In particular, if P(m, i) is a partition of Sm,i,
then qm,i can be written as

qm,i= qM,j
SM,3 EP(m,i)

without having to worry about scaling factors. However, when displaying images of
reflectivity estimates, the normalized sub-aperture reflectivity estimate will be used.

The motivation for using the sub-aperture pyramid is that it should reveal distin-
guishing aspect dependencies in the scattering. To see that it achieves this goal, consider
a metal sphere which has a strong response in all directions and thus produces a strong
consistent reflectivity estimate from each of the sub-apertures. However, as depicted
in Figure 3.4, a flat plate produces a specular response which is significantly stronger

when oriented broadside with respect to the radar. Thus, the reflectivity estimates

vary across the sub-apertures with the largest estimates coming from the sub-apertures
oriented broadside to the plate. Furthermore, because various sized sub-apertures are

used, the duration of the broadside flash is also captured in this representation. To see
this, note that for all sub-apertures which reside within the main-lobe of the response,
the reflectivity estimates are consistently large. As the sub-aperture is expanded, how-

ever, the additional signal energy received is relatively insignificant thereby lowering
the reflectivity estimate which is normalized with respect to sub-aperture length in

Eq. (3.2). Not only does using an excessively large sub-aperture lower the normalized

reflectivity estimate, but doing so also results in a noisier estimate because the addi-

tional portion of the aperture used in this estimate is dominated by noise 2 . To illustrate

that this anisotropic phenomena is present in real data as well, Figure 3.5 shows images

of sub-aperture reflectivity estimates for a three level, disjoint, half-aperture pyramid.
The scene contains a BMP-2 tank from the MSTAR public release dataset[1] which uses

2 To be precise, it is actually the SNR of the estimate that decreases when too much of the aperture
is used. The estimator variance itself actually decreases because the coherent averaging is done over a
larger aperture, but the squared-mean of the estimate decreases even more since no additional signal
energy is being incorporated.
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a 2.80 aperture. Even in this narrow aperture setting, it is clear that the large scatterer

at the front of the vehicle produces an anisotropic response which is captured in the

middle section of the sub-aperture pyramid.

0 3 w0

w0

fn..

Figure 3.4. The response of a 1m x 1m flat plate and a depiction of the reflectivity estimate for each

of the sub-apertures. Lighter shaded sub-apertures convey larger reflectivity estimates.

S

S2 2 S 3

INI,
~ 'IfA

Figure 3.5. Left: Disjoint, half-aperture pyramid. Right: Corresponding sub-aperture images of a

BMP-2 at a 170 elevation and 00 azimuth. For each image, the front of the vehicle is the portion nearest

the left edge of the image. The azimuthal flash due to the front of the tank can be seen from the quarter-

aperture images to be predominantly contained in the middle section of the aperture. However, while

providing more azimuthal information about the scattering, these smaller sub-aperture images suffer

from severe sidelobe artifacts as can be seen from the front plate response corrupting the reflectivity

estimates in neighboring cross-range pixels.

The differences among the three pyramids in Figure 3.3 lie in the degree of sub-

aperture overlap. Each level of the disjoint pyramid in Figure 3.3(a) is critically sampled

64 CHAPTER 3. SUB-APERTURE REPRESENTATION

0.5

0.0



in the sense that it has the minimal covering of the full-aperture. The other two

pyramids are "oversampled" in azimuth as they populate the pyramid with additional

overlapping sub-apertures that introduce no new information, although their presence

more clearly reveals the properties of "misaligned" azimuthal flashes which do not

exactly line up with the divisions of the minimal disjoint pyramid representation. This

example illustrates the purpose of the redundant overlapping sub-apertures which is to

provide robustness to azimuthal shifts of the data, i.e. slight rotations of the target.

The appropriate azimuthal oversampling for a pyramid is an open issue which involves

balancing model approximation error and computational burden. The optimal trade-off

between these two costs is an issue not addressed in this thesis. In our experiments,
the half-overlapping, half-aperture pyramid works reasonably well and will be used for

the remainder of the thesis.

M 3.3 Interpretations

The sub-aperture pyramid is an over-complete representation of the SAR data. The

reason for this over-completeness is to aid the robust utilization of anisotropic scattering.
To help the understanding of the sub-aperture pyramid, this section comments on the

representation in the context of existing works.

M 3.3.1 Time-Frequency Plane Tilings

Because the integration in Eq. (3.2) is only performed over the sub-aperture Smi, this

corresponds to a Fourier coefficient of windowed data. The use of smaller sub-aperture

windows thus produces estimates with a coarser imaging resolution. This trade-off is

exactly the Fourier time-frequency uncertainty principle applied to SAR data, i.e. with

purely linearly processing, one cannot obtain both high azimuthal (time) and high cross-

range (frequency) resolution due to the inverse relationship between the two. Thus,
each level of the pyramid provides a different azimuthal-cross-range resolution trade-off
which is best illustrated with the time-frequency plane tilings used in signal processing
and wavelets in particular[59]. Each level of the pyramid produces a tiling of the

azimuthal-cross-range plane as depicted in Figure 3.6 where the dimensions of the tiles

represent the amount of resolution in each domain, and each tile must span the same

amount of area. Note that the tilings in Figure 3.6 are for the disjoint, half-aperture

pyramid with critically sampled image domain data, i.e. there is no oversampling in

either domain. If one were to oversample, then the tiles would have a corresponding

overlap in the respective domain3 . The tiling for the full-aperture in Figure 3.6(a) is

best suited for isotropic scatterers for which one is interested in obtaining high cross-
range resolution but not azimuthal resolution. The tiling for the half-apertures in
Figure 3.6(b) offers a higher degree of azimuthal resolution but at the cost of imaging

3 Such oversampling is useful in application but is not illustrated here in order to clearly present the
resolution trade-off involved.
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resolution. The exchange further progresses with the use of the quarter-apertures as
illustrated in Figure 3.6(c).

The presence of various azimuthal-cross-range resolution representations in the
sub-aperture pyramid is desirable when large distributed scatterers, which produce
anisotropic responses, are present in the imagery. In these cases, the benefits of pre-
cise estimation of scatterer location can be outweighed by the information conveyed in
the azimuthal variations. Thus, it is expected that the best representation varies with
the scatterer at hand, and having all the representations in a structured framework is
beneficial. This idea is illustrated for a moderately sized scatterer spanning multiple
pixels in Figure 3.7 where the degree of shading indicates the intensity of the scatter-
ing in (a) and that of the estimates in (b)-(d). The true azimuth-cross-range span of
this scatterer is displayed in Figure 3.7(a). The corresponding reflectivity estimates us-
ing the different levels of the sub-aperture pyramid are displayed in Figure 3.7(b)-(d).
The full-aperture accurately captures the spatial extent of the scatterer but not the
intensity. In this case, the reflectivity estimates are biased towards artificially small
values because the scattering is modeled as uniform over the full-aperture and thus
the reflectivity estimate in Eq. (3.2) is normalized by an excessively large aperture
length. The half-aperture representation in Figure 3.7(c) best captures the scattering
response because the size of the tiles in this representation is closest to the azimuth-
cross-range span of the underlying scatterer, i.e. this representation provides the closest
model match. The result is that the scatterer is accurately reported as coming from
the first half-aperture, and the scatterer's reflectivity and spatial extent are estimated
reasonably well. The quarter-apertures in Figure 3.7(d) give an accurate estimate of
the scatterer's azimuthal concentration and reflectivity, but a poor representation of
the spatial location and extent due to the coarse imaging resolution.

az. az. az.

c.r. c.r. c.r.

(a) (b) (c)

Figure 3.6. Tilings of the azimuth-cross-range plane. (a) Full-aperture tiling. (b) Half-aperture tiling.
(c) Quarter-aperture tiling.

Note that the sub-aperture pyramid does not produce tilings like those of the wavelet
transform in Figure 3.8(a). A level of a "pyramid" which would produce such a tiling
is illustrated in Figure 3.8(b). In particular, this tiling would require different sized
sub-apertures within the same level of the pyramid. From a SAR physics point of view,
there is no apparent motivation for such a tiling. Because scatterers are imaged from
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(c)

az.
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(d)

Figure 3.7. Tilings of the azimuth-cross-range plane and how they represent a distributed scat-

terer. (a) The underlying scatterer's energy coverage in azimuth and cross-range. (b) Full-aperture

representation. (c) Half-aperture representation. (d) Quarter-aperture representation.

an arbitrary azimuthal orientation, it is reasonable that at each level of the pyramid,
the sub-apertures should be equally-sized and regularly spaced to maximize robustness

to the azimuthal uncertainty. Furthermore, the use of varying sized sub-apertures at

the same level would complicate the analysis due to the multiple imaging resolutions

that would be produced by that level. Hence, such sub-aperture arrangements are not

considered in this thesis.

az..

c.r.

(a) (b)

Figure 3.8. (a) Wavelet tiling of the
would produce such a tiling.

azimuth-cross-range plane. (b) A level of a "pyramid" which

* 3.3.2 Matched Filter Bank

The reflectivity estimate in Eq. (3.2) is the same as that used by Allen et. al.[2] and

Chaney et. al.[12]. In particular, it is the matched filter estimate for the sub-aperture

scattering model. The extension to the representation of Allen and Chaney is in the

use of the pyramidal structure to organize the sub-apertures. Like the work of Chaney,
this pyramid allows sub-apertures of various sizes and offsets to be used, whereas Allen

I - RIONEMENER
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uses a fixed sub-aperture size. Thus, Allen's representation corresponds to a particular
level of a sub-aperture pyramid.

The sub-aperture pyramid is also similar in spirit to Benitz's high definition vec-
tor imaging (HDVI)[5, 61. For both the sub-aperture pyramid and HDVI, reflectivities
are estimated based on various scattering hypotheses and are used to form a vector
of reflectivity images. A notable difference between the two approaches is that HDVI
uses super-resolution techniques to achieve a resolution that exceeds the Fourier limit
in Eqs. (2.3) and (2.6), whereas the sub-aperture pyramid is based on the conventional
beamformer and thus does not exceed the Fourier limit. Super-resolution techniques
are not used in the pyramid representation because they are not consistent in their
handling of anisotropic scatterers. In particular, as discussed in Section 2.3, super-
resolution techniques are designed to suppress the interference from neighboring point
scatterers even when the steering vector is adapted to anisotropic, and hence spatially
extended, scatterers. The suppression of interference is specifically tuned to that from
point scatterers because of the manner in which the data correlation matrix is esti-
mated. The method assumes stationarity in frequency and azimuth which is equivalent
to frequency independent, isotropic scattering. As a result, these methods tend to
artificially break up spatially distributed scatterers in the imagery. Because it is the
aim of this thesis to develop robust methods to exploit anisotropy, the more consistent
conventional beamformer is used to estimate reflectivity.
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Chapter 4

Nonparametric Estimation of
Anisotropy

This chapter presents a SAR classifier adapted to exploit scatterer anisotropy from the
density-based classification idea discussed in Section 2.4.3. The feature vector used in
this classifier is obtained from a sub-aperture pyramid of Section 3.1 in order to exploit
anisotropic phenomena. In particular, sub-aperture reflectivities are estimated over

the entire image to reveal the azimuthal variations produced by the scatterers on a
target. The Parzen density estimator is then used to learn the distribution of the sub-
aperture reflectivities. The resulting density estimate implicitly describes the anisotropy

exhibited by the target in the image. Thus, by comparing the density estimate from an
unlabeled target image to density estimates from labeled target images, a classification
based upon anisotropy behavior is obtained.

The classification approach presented in this chapter is a modification of the ap-
proach proposed by DeBonet et. al. [20] which is summarized in Appendix A. The most

significant difference between the two approaches is in the choice of the feature vector.
DeBonet uses a multiresolution wavelet-based feature set obtained through the applica-
tion of oriented edge-filters to the log-magnitude image data at multiple resolutions. In

particular, the feature vector for a given location is taken as the set of edge-filter outputs

corresponding to the specified location. Use of such a feature set reveals the oriented
visual texture of images as discussed by DeBonet et. al. in [19]. Like the wavelet-based
feature vector used by DeBonet, the sub-aperture feature vector used in this chapter is
also multiresolution in nature due to the use of apertures of varying lengths. However,
the use of the sub-aperture feature vector is motivated by radar scattering physics in
contrast to image texture.

The remainder of this chapter is organized as follows. Section 4.1 establishes the
context for the classification problem considered. Section 4.2 describes the algorithm
in detail including construction of the sub-aperture feature vector and implementation
issues regarding the nonparametric classifier. Section 4.3 then presents results from the
application of the proposed classifier to the MSTAR[1] data set.
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0 4.1 Problem Setting

Prior to presenting the sub-aperture based classifier, this section describes the context
in which the classifier will be used. The intended application is that described in the
beginning of Section 2.4.3 but specifically adapted to SAR. In particular, the algorithm
is designed for classifying a target that is imaged from a single unknown orientation.
The feature vectors generated from this image are called test data. It is assumed that
images of labeled targets for each classification of interest are available for comparison
to the test data. The feature vectors generated from images of these labeled targets
are called reference data. Because anisotropy, by definition, varies in azimuth, it is
necessary to have reference images at a variety of azimuths for each vehicle. Each of
these images is used to form a model for a vehicle-pose composite hypothesis. The
classification algorithm then tests each of these composite hypotheses and returns the
vehicle classification as that from the composite hypothesis selected.

N 4.2 Nonparametric Sub-aperture Based Classifier

This section describes the algorithm used to classify the contents of an image. The pro-
cess can loosely be broken down into three steps. The first step is to represent the data
in a fashion that reveals the azimuthal dependencies we wish to exploit. Section 4.2.1
presents the sub-aperture feature vector used to accomplish this task. The second step
is to learn the anisotropy behavior exhibited by a target. Section 4.2.2 describes the
application of the Parzen density estimator to the sub-aperture feature vector to learn
this behavior. With the anisotropy characterization in hand, a classification decision is
then made by comparing the density estimated from the unknown image to densities
learned from reference images. Section 4.2.3 describes the use of the KL divergence and
Chi-square divergence to compare these densities.

* 4.2.1 Sub-aperture Feature Vector

Each sub-aperture in the pyramid is used to form an image of log-magnitude reflectivity
estimates' for the target field. Because the sub-apertures in the pyramid have various
lengths, the resolutions of the corresponding sub-aperture images also vary. In particu-
lar, the resolution of a sub-aperture image is inversely proportional to the sub-aperture
length, and thus, coarser resolution images can be down-sampled at a rate inversely
proportional to the sub-aperture length. Only pyramids in which the lengths of larger
sub-apertures to smaller sub-apertures form integer ratios are considered in this chap-
ter. The use of integer ratios produces resolution cells whose cross-range extent are also
integer multiples between scales. The resolution cells can thus be arranged in a tree-
structure based upon the terrain spanned as depicted in Figure 4.1. The sub-aperture
feature vector for a specified location is generated by taking the collection of all sub-

For the remainder of this chapter, when the term reflectivity is used, it is taken to refer to the
log-magnitude reflectivity.
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aperture reflectivities corresponding to the given location. As an example, a pyramid
using a half-aperture dividing scheme produces a set of images where pixels can be
presented in a dyadic fashion as the resolution is varied as illustrated in Figure 4.1.
The feature vector for a given location can then be seen to be a "branch" traversing
this tree terminating on the specified location. The collection of feature vectors for the
entire image is taken to be the data set {Xi }N where N is the number of pixels in
the image. Note that it is immaterial whether a disjoint or overlapping sub-aperture
pyramid is used in this example since resolution is determined by the length of the
sub-aperture and is independent of the amount of overlap between sub-apertures.

Figure 4.1. The dyadic tree structure for pixels that results from using a half-aperture splitting
scheme in the sub-aperture pyramid. The feature vector for the shaded pixel is indicated by the shaded
branch.

It is important to understand the difference between the feature vector tree and sub-

aperture pyramid, both of which have a pyramidal structure. The sub-aperture pyramid

spans the azimuthal domain and is composed of the sub-apertures used to produce re-

flectivity estimates. Each node on this pyramid corresponds to a sub-aperture. This

pyramid has nothing to do with image location. The feature vector tree, in contrast,
spans cross-range in the image domain and is used to represent the reflectivity esti-

mates over the entire target field using various sub-apertures. This tree is composed

of vector-valued reflectivity estimates (one component for each sub-aperture) for each

pixel location. The collection of estimates in a path down this tree constitutes the

feature vector for the location corresponding to the node at the bottom of the branch.

Although the feature vector tree and sub-aperture pyramid are defined in different

domains, there are relationships between the two. In fact, the topology of the sub-

aperture pyramid determines the topology of the feature vector tree and vice-versa.

Figure 4.2 illustrates these relations for the half-overlapping, half-aperture pyramid.

First, the number of levels in the feature vector tree and sub-aperture pyramid are the

same because their levels are defined by resolution or equivalently sub-aperture length.

However, the root node of the sub-aperture pyramid corresponds to the leaves of the

feature vector tree and the root nodes of the feature vector tree correspond to the leaves

of the sub-aperture pyramid. To understand this reversal, recall that the root node of

the sub-aperture tree is the full-aperture and use of the full-aperture generates the finest

cross-range resolution. Thus, the corresponding entries in the feature vector tree are
at the leaves of the tree. Similarly, the shortest sub-apertures are at the bottom of
the sub-aperture pyramid, but their corresponding nodes are at the root of the feature
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vector tree since these sub-apertures give the coarsest cross-range resolution. Due to
this bijective relation for resolution, the same label m is used to denote scale in both the
feature vector tree and sub-aperture pyramid. However, to account for the difference in
the progression of resolution on the two structures, the ordering of the values of m on
the feature vector tree are reversed from that on the sub-aperture pyramid, i.e. m = M
for the root node and m = 0 for the leaves on the feature vector tree. To prevent any
confusion related to scale when discussing the sub-aperture pyramid and feature vector
tree, the terms finer and coarser are exclusively used to refer to resolution in the image
domain while the terms larger and smaller are used to refer to sub-aperture lengths in
the pyramid.

m=1

m=2

m r 7D vectorm = 2 ~of quarter-aperture estimates

M I 3D vectorm = L(of half-aperture estimates

M 0 scalar
(0ull-aperture estimates

Figure 4.2. The relationship between (left) the half-overlapping, half-aperture sub-aperture pyramid
and (right) the corresponding feature vector tree.

The number of offspring at each scale in one structure also effects the other structure.
In particular, the number of children that each node on feature vector tree spawns is
equal to the ratio of sub-aperture lengths between adjacent levels in the sub-aperture
tree. For example, any covering with half-aperture splitting produces a binary tree
of feature vectors. Furthermore, the number of sub-apertures for a given level in the
sub-aperture pyramid is equal to the dimensionality of the nodes at the associated scale
in the feature vector tree since each sub-aperture produces a reflectivity estimate.

* 4.2.2 Density Estimation

From a collection of sub-aperture feature vectors, the generating density is estimated
using the Parzen density estimator described in Section 2.4.1. In particular, the density
estimate at a point X is given by,

N

f(X) = NV K(X - Xi; h) (4.1)
i=1

where V is a normalizing volume factor, h = [h(0),... , h(M)] is the kernel width param-
eter, and K is the hyper-rectangle kernel given by

K~y; h) 1 : if VM, 1|y(m)JJ|o. < h(m),(42
K(y; h) = ohrie(4.2)

0 : otherwise

where y(m) represents the sub-vector of y whose components correspond to scale m,
and h(m) represents the kernel width used for all feature vector components at scale m.

""" W7 " \4T7
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Thus, the kernel corresponds to an indicator function conveying whether or not the data
point y is in the hyper-rectangle whose side-length is 2h(m) for components at scale m.
In order for the density estimator in Eq. (4.1) to integrate to one, the normalization

factor V must correspond to the volume of the hyper-rectangle. Thus, V is simply

V = JJ 2h(m).

Smg ES

In the approach presented in this chapter, h is a constant parameter. The procedure
for determining h is discussed later in Section 4.2.5

The combination of the use of the hyper-rectangle kernel and the tree structure

on the feature vectors affords a computationally efficient method for estimating the
density. In particular, computing the distances used in the Parzen kernel in a top-down
manner on the feature vector tree allows for the density estimation for each X to be
done in O(N log(N 2 )) instead of O(NiN 2 ) where N and N 2 are the number of pixels
in down-range and cross-range respectively.

M 4.2.3 Density Comparison

Two divergence measures are used in this chapter to compare estimated test and ref-
erence densities to make a classification decision. A natural method is to use the KL
divergence discussed in Section 2.4 via the decision rule in Eq. (2.26), i.e.

l* argmini D(foI|fi) : if D(foifi.) T
i = (4.3)

none of the available hypotheses are true otherwise

which we will call the KLD rule. This rule approximates the ML hypothesis test with
a "none of the above" decision if no hypothesis is likely enough. Although well moti-
vated, recall that approximating the ML decision rule as selecting the hypothesis with
minimum KL divergence in Eq. (4.3) requires the assumption of independent feature

vectors. This assumption, however, does not hold due to the multiresolution nature of
the feature vector. The violation of this assumption is especially clear in the case of
tree-structured features where neighboring feature vectors share coarser scale compo-
nents as illustrated in Figure 4.1. Thus, motivated by the work of DeBonet et. al.[20],
this chapter also investigates the use of the Chi-square divergence as a replacement for
the KL divergence. In particular, the KLD rule in Eq. (4.3) is replaced by

( 1 * A arg min,{x2(2(f-,fo))}1 I ifX(fI*fo) T (4.4)
none of the available hypotheses are true otherwise,

where x 2 is the Chi-square divergence given by

2 (X) - fo (X))
x 2 (fi,fo ) ] ( dX (4.5)

f, (X)
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which is a second-order approximation of two times the KL divergence[15] 2D(fo||fl.).
The rule in Eq. (4.4) will be called the x 2 rule. The performance of both the KLD and

x 2 rules are examined in Section 4.3.

* 4.2.4 Feature Space Discretization

Calculation of both the KL and x 2 divergences involve an integration over the entire
sample space which is computationally intensive due to the nonparametric nature of
the density estimates. Thus, an approximation to the integral is taken. As described in
Appendix A, DeBonet approximates the x2 divergence 2 by replacing the integral with
a weighted summation evaluated at the reference data samples. By the law of large
numbers (LLN), this estimate of x 2 divergence converges to the true value. Although
this approximation is well motivated, there is a subtle, but significant, drawback to
this approach. The problem lies in the fact that the observed data samples arise from
a mixture density. In particular, only a fraction of the pixels in the image cover the
vehicle to be classified. The rest of the pixels cover some form of clutter such as the
terrain, trees, or other nuisance scatterers. Thus, the density generating the observed
data samples can be written as the mixture

fj = age + (1 - a)gl

where gi represents the density solely for the target 1, ge represents the density for
clutter, and a represents the amount of clutter contamination in the observed data. In
many instances, clutter constitutes a significant fraction of the mixture density. For
example, the MSTAR data used at the end of this chapter has a contamination factor
on the order of 90%. Thus, most of the sample points that DeBonet uses to estimate
the x 2 divergence correspond to clutter.

This misallocation of resources in the approximation motivates this thesis to take
an alternative approach to estimating the KL and x 2 divergences. The approach used
here is a Riemannian approximation to the integral instead of a LLN-motivated approx-
imation. In particular, instead of evaluating the summation at reference data sample
points, a pre-determined set of points called evaluation points are used. The evaluation
points are generated using a modification of the k-means algorithm 3 [27] to produce
a collection of points that are approximately uniformly spaced. Letting k denote the
number of evaluation points to choose, the steps in the procedure are illustrated in
the flow diagram in Figure 4.3. First, k evaluation points are initialized in Step 1 by
setting them to randomly chosen training vectors. Regions are then defined in Step 2
by assigning each training vector to the closest evaluation point where "closeness" is
measured in terms of the supremum norm since a hyper-rectangle is used for the density
estimation. Each of the evaluation points is then redefined in Step 3 to be the center
of its corresponding region, i.e. the center of the smallest bounding box containing all

2DeBonet uses the x 2 divergence instead of the KL divergence as his score function, but his approx-
imation method is easily adapted to approximating KL divergence.

3The k-means algorithm is also known as the Generalized Lloyd Algorithm.
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the training vectors in that region. A distortion measure is then computed in Step 4
as the root-mean-square (RMS) of the sizes of the regions. A stopping criterion is then
checked in Step 5. If the relative change in distortion from the previous iteration has
decreased by less than some amount 6, then the algorithm stops, otherwise it returns
to Step 2 and continues.

Step 1:
Initialize k region centers

Step 2:
Define new regions by assigning

each training feature vector
to the nearest center.

~1(
Step 3:

Compute the center of each region
as the center of the smallest bounding
box containing all points in that region

Step 4:
Compute the distortion

as the RMS of the region sizes

no Stp 5:
Is the relative change

in distortion < ?

yes

Stop

Figure 4.3. Flow diagram illustrating the clustering procedure used to generate a uniform sampling
over the union of the supports of the reference densities.

The intuition underlying the algorithm is to adjust the sizes of the box regions until
the regions are all the same size, i.e. the evaluation points are uniformly spaced. If there
is a region larger than the surrounding ones, then the algorithm will reassign the training
vectors that are most distant from the center of the large region to neighboring regions
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where the vectors would be closer to a region center. The effect of this reallocation is
to decrease the size of the larger region at the cost of increasing the size of the smaller
region.

This procedure differs from the standard k-means algorithm in Step 3 and in the
distortion measure used. The k-means algorithm computes the centroid of each region
instead of the center. The centroid of a region is the average of the vectors in the
region and can be thought of as the center of mass in contrast to the geometric center.
The distortion measure use by the k-means algorithm is the RMS of the distances
from each training vector to the nearest centroid. The k-means algorithm produces
a sampling that is proportional to the underlying density of the training data which
results in many closely spaced samples where the density is large and few sparse samples
where the density is small. As with DeBonet's x 2 approximation, such a proportional
allocation of evaluation points is undesirable in light of the heavy clutter contamination
in the mixture distribution producing the observed data samples.

An advantage of the proposed KL and x 2 approximation procedure over DeBonet's
technique, is that DeBonet's approach may tend to use an excessive number of eval-
uation points. DeBonet approximates the integral with a summation evaluating the
summand at each reference data point. However, for large images, this produces an
excessively fine grid. In particular, oversampling smooth densities does not lead to sig-
nificantly better approximations of the integral but does increase computational cost.
However, because the approach proposed in this chapter uses a fixed number k of evo-
lution points, the proposed technique does not oversample in large data sets. Further
computational savings over DeBonet's approximation are achieved due to the invariance
of the set of evaluation points in the proposed approach. As described in Appendix A,
DeBonet uses a set of evaluation points which varies with the hypothesis to which the
test data set is compared. Thus, the density for the test data set needs to be estimated
several times (once for each hypothesis) in DeBonet's proposed classifier. To illustrate
the degree of the computational savings afforded by the evaluation points, the compu-
tational orders of the sub-aperture classifier and DeBonet's classifier are compared. For
both approaches, the computation is dominated by the density estimation of the test
data. Letting Ntest denote the number of different test data sets, i.e. the number of
times the classifier will be run, the computational orders of the two approaches can be
broken down as follows. For the approach proposed in this chapter, density estimation
for a single point is an O(Ni log(N 2 )) operation due to the tree structure in cross-range.
Evaluating the density at k points for each test data set leads to an

O(NtestkNi log(N 2 ))

algorithm to classify all the data. For DeBonet's approach, density estimation for a
single point is in an O( log(NiN 2 )) operation due to the tree structure in both down-
range and cross-range. The density is then estimated for the test data at N 1 N 2 points.
Furthermore, this set of N1N 2 points varies with the reference data set to which the
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test data set is compared thus leading to an

O(Nref NtestNlN2 log(N1N 2 )) (4.6)

algorithm to classify all the data. Noting both the omission of the factor Nref and the

replacement of N 1 N 2 by k (which can be much less than NiN 2 )4 , significant compu-

tational savings are achieved by using the approximation technique proposed in this

section.

E 4.2.5 Kernel Width Selection

Selection of the kernel width parameter in density estimation is a classic problem. There

have been many approaches to address this issue which are based on cross-validation

or leave-one-out techniques 5 that minimize a cost criterion such as mean-integrated

squared error or entropy [50, 26, 22, 32]. The goal of such methods is to characterize

accurately the density as a whole. There is, however, a subtle difference between density

estimation for the purpose of characterizing a source distribution and density estimation

for the purpose of discrimination. To illustrate this point, consider the two densities f

and g depicted in Figure 4.4. If one is only concerned with generally characterizing each

source distribution, then for both densities, accurately estimating the region around

the mode of the densities is clearly important. However, if the task is to differentiate

the behavior of these two densities, then this high probability region is not of much

importance as the densities are quite similar in this region. The tails of the densities,
in contrast, are very significant since this is where the distinguishing information lies.

The importance of such low probability regions is explicit in the KL and X2 divergences

where the largest contributions come when one of the densities takes on small values.

This example is not academic, as constant kernel width density estimators, i.e. those

which do not vary the kernel width with the local sparsity of the data, must trade-off

estimator variance in the tails for estimator bias in the mode as the kernel width is

increased 6 . Such trade-offs will effect the optimal kernel width differently depending

on how the resulting density estimates are to be used.

This thesis proposes the following discrimination-based algorithm to determine ker-

nel width 7 . The objective of the algorithm is to find the kernel width parameter h which

4 There is also a computational increase replacing log(Ni N 2) in DeBonet's approach with Ni log(N 2 )
for the algorithm proposed in this chapter, but this change is due to the feature set used and not the
integral approximation method.

5 Cross-validation and leave-one-out[22, 26] are methods used to evaluate the efficacy of a learning
rule. In cross-validation, one partitions the data into two sets and uses one set for the "learning"
process and the other to estimate the cost of using the learned variables. In leave-one-out, one uses all
but one sample for the learning process and calculates the resulting cost for the omitted sample. This
partitioning scheme is repeatedly performed omitting a different sample each time. The overall cost is
then estimated by averaging the costs from each iteration.

6The reader is referred to Silverman[50] for more details on the bias-variance trade-off in density
estimation.

7At the time this algorithm was developed, the author was not aware of other discrimination-
motivated kernel width selection procedures for density estimation. However, since that time, it has
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Figure 4.4. Two densities used to illustrate the difference in emphasis between traditional density
estimation and density estimation for the purpose of discrimination.

minimizes the probability of false alarm for the decision rule, i.e. Eq. (4.3) or (4.4), un-
der the constraint that a minimum probability of detection is achieved. Towards this
end, the coordinate descent algorithm outlined in the flow diagram of Figure 4.5 is em-
ployed. The algorithm starts by initializing the set of kernel widths h = [h(0 ), ... , h(M)]
for each scale and setting the scale over which to optimize to m = M. Step 2 then
adjusts h(m) to minimize the number of false alarms resulting from the decision rule
in Eq. (4.3) or (4.4) while maintaining a pre-specified probability of detection. Steps
3 and 4 then decrement m and test if the previous iteration optimized over the finest
scale kernel width h(0 ). If not, then the algorithm proceeds to Step 2 with the new
scale. If the previous iteration optimized over the finest scale, then Step 5 checks if
the cycle over all the scales resulted in a significant change in the value of h. If there
was a significant change, then the optimization cycle is repeated by proceeding back to
Step 1. If there was not a significant change in h, then the algorithm assumes a local
minimum has been reached and terminates.

N 4.3 Experimental Results

This section presents empirical results of the algorithms described in this chapter applied
to the public release MSTAR data set[]. This data set contains SAR images generated
with an azimuthal span of 2.8', radar center frequency of 9.6GHz, and a bandwidth
of 0.59GHz producing a resolution of one foot in both range and cross-range. A more
detailed description of the MSTAR data set can be found in Appendix B.

* 4.3.1 Kernel Width

Results on the kernel width selection technique described in Section 4.2.5 are presented
in this section. The technique is a cross-validation approach where the training data
set consists of8 BMP-2's (c21) and T-72's (132) at a 170 depression, and the testing
data set consists of the same vehicles but imaged at a 15' depression. The training

come to the author's attention that Vapnik[54, 55] has developed such a criterion based on the principle
of Structural Risk Minimization.

8 Serial numbers for vehicles are placed in parentheses following the vehicle type.
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Step 1:
Initialize h

and set m=M

Step 2:

Optimize over h sc

Step 3:
Decrement m

no Step 4:
C Is

M<0 ?

Step 6: yes
Set m=M

Step 5:
yes Was there a

significant change
in h ?

no

Stop

Figure 4.5. Flow diagram illustrating the kernel width selection procedure.

data is also used to determine k = 512 evaluation points using the method described
in Section 4.2.4. Figure 4.6 displays the number of false alarms using the KLD rule in
Eq. (4.3). Each plot in this figure optimizes the kernel width h(") for a particular scale
m while holding the kernel widths for the other scales fixed. The plots displayed are for
the final iteration of the algorithm which has settled to a local minimum. The resulting
value for h in this case is

hKL = [5.3, 2.6, 17.4]. (4.7)

Figure 4.7 displays the number of false alarms using the x 2 rule in Eq. (4.4) as a
function of kernel width. Again, the displayed plots are for the final iteration of the
algorithm which has settled to the local minimum

hX2 = [15.0, 14.6, 17.2].
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Figure 4.6. Coordinate descent optimization of the kernel width using the KLD rule in Eq. (4.3). (a)
Optimizing over the coarsest scale h(2 ) with h(0) = 5.3 and h(') = 2.6. (b) Optimizing over h(') with
h(0 ) = 5.3 and h(2) = 17.4. (c) Optimizing over the finest scale h(0 ) with h(') = 2.6 and h(2 ) = 17.4.

Reasons for the differences between the resulting values of
rules are discussed after the presentation of the ROC curves

h =[15.0000, 14.6000,*]

70 -

68 -

66-

64

5 10 15 20 25 30 35

(a)

h= [15.0000, 17.2000 '

70-b

68 -

66 --

64[-

5 10 15 20 25 30

(b)

h using the KLD and
in Section 4.3.2.

h = ., 14.6000, 17.20001

70(-

66 --

64

5 10 15 20 25 30

(c)

Figure 4.7. Coordinate descent optimization of the kernel width using the X2 rule in Eq. (4.4). (a)
Optimizing over the coarsest scale h(2 ) with h(0 ) = 15.0 and h(') = 14.6. (b) Optimizing over h(') with
h(-) = 15.0 and h(2 ) = 17.2. (c) Optimizing over the finest scale h(0) with hNl) = 14.6 and h(2

) = 17.2.

* 4.3.2 ROC curves

Receiver operating characteristic (ROC) curves are used in this section to evaluate the
ability of the algorithm proposed in this chapter to discriminate different targets. The
reference data for the ROC detection experiments consist of the following vehicles at a
170 elevation: BMP-2 (c21), BTR-70 (c71), and T-72 (132). The testing data consist
of the following vehicles at a 150 elevation angle: BMP-2 (9563 and 9566), BTR-70
(c71), T-72 (812 and s7), 2S1 (bol), DRBM-2 (E-71), D-7 (9v13015), T-62 (A51),
ZIL-131 (E-12), and ZSU-23/4 (d08). The serial numbers for the testing vehicles are
different than those for the training vehicles with the exception of the BTR-70 (c71) in
which case there is only one serial number available in the MSTAR data set. It should
be noted that although the cross-validation selection of the kernel width parameter h
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also involves 15' elevation data, these data are not part of the test data for the ROC

detection experiments because different serial numbers are used.
The hypothesis I in which we are interested is the type of the vehicle in the SAR

image, e.g. BMP-2, BTR-70, or T-72. The characteristics of the image data, however,
vary significantly with respect to the azimuthal pose of the vehicle. This variability
may be generated by individual scatterers (i.e. anisotropic scatterers) or by the inter-
action among several scatterers (e.g. interference, resonance, or occlusion). Regardless

of the source, the resulting variability leads to the same vehicle appearing significantly
different under various orientations which needs to be accounted for in the model9 .
For example, a BMP-2 tank imaged at a cardinal angle, i.e. at 00, 900, 1800, or 270'
azimuth, exhibits a highly specular response associated with a front, side, or rear panel
that is considerably weaker at other orientations. If one were to model this vehicle with
a single pdf (i.e. one not using orientation as a parameter), then one would lose the abil-
ity to identify mutually exclusive phenomena in azimuth. To illustrate the drawback
of an orientation independent model, note that according to such a model, it would
possible to observe the broadside flash from the front, sides, and back of the BMP-2
all in the same image. Such an observation, however, is not physically possible due to
the aspect dependence which the model has ignored. To address this issue of capturing
dependencies across all azimuths, reference images at particular orientations are used

to form individual hypotheses. Each such image is associated with a composite hypoth-

esis composed of vehicle type and azimuthal pose. Performing the hypothesis test in
this fashion has the spirit of a generalized likelihood ratio test (GLRT). In fact, if the
decision rule utilized likelihood, instead of KL or x 2 divergence, then this composite

hypothesis test would be equivalent to a GLRT. For the experiments presented in this

section, the azimuthal coordinate is sampled every 36' for each type of vehicle in the

reference data, thus producing a hypothesis space with a total of Nref = 3 - 10 = 30
composite hypotheses. The hypothesized azimuthal orientation, however, is discarded

and only the vehicle classification is preserved in the final results.

ROC detection curves plotting probability of detection versus probability of false

alarm are presented in Figure 4.8(a) for the BMP-2, (b) for the BTR-70, and (c) for the

T-72. The results of the KLD rule using the kernel width parameter hKL in Eq. (4.7)

are reported with the solid curve in each plot. The results of the x 2 rule using the kernel

width parameter h.2 in Eq. (4.8) are reported with the dashed curve in each plot. The

x 2 rule clearly outperforms the KLD rule in these ROC curves. To demonstrate that the
difference in performance is due to the divergence measure used and not the choice of the
kernel width parameter, the KLD rule is reapplied with the kernel width parameter in
Eq. (4.8) used with the x 2 rule. The ROC curves for this modified rule are plotted with
the dash-dotted line in each plot. As should be expected, the use of this mismatched
kernel width results in poorer performance.

9 While the sub-aperture feature set models azimuthal dependencies, it does so only over the ob-

served azimuth in the training data, i.e. each SAR image. The problem here relates to capturing these
dependencies over the entire 3600 of azimuth.

81Sec. 4.3. Experimental Results



82 CHAPTER 4. NONPARAMETRIC ESTIMATION OF ANISOTROPY

BMP-2 BTR-70 T-72
1.0 1.0 1.0

0.8 - 0.8 0.8-

0.6 0.6 0.6 -

0.4 XL 10.4- ChDAi

.L( d.) _-L gd.o) (od.)

0.0 70.0 0.0

0.0 0.2 0.4 0.6 08 1.0 0.0 02 04 06 08 1.0 0.0 0.2 04 06 0.8 1.0
P,. P, P

(a) (b) (c)

Figure 4.8. ROC detection curves for the (a) BMP-2, (b) BTR-70, and (c) T-72 using the KLD
rule with hKL (solid curve), the X rule with h 2 (dashed curve), and the KLD rule with with h 2

(dashed-dotted curve).

Given the kernel width optimization plots in Figures 4.6 and 4.7, it is surprising
that the use of the x 2 rule outperforms the use of the KLD rule in the ROC curves of
Figure 4.8. In particular, the use of the KLD rule produces fewer false alarms than the

x 2 rule in the cross-validation algorithm used to determine h. The opposite behavior,
however, is observed in the ROC plots in Figure 4.8 where the x 2 rule produces fewer
false alarms. We propose the following explanation for this seemingly contradictory
behavior. Recall that the cross-validation learning of h uses the same serial numbers
for the BMP-2 and T-72 10 . Because the exact same vehicle"1 is used in the training and
testing cross-validation data sets, the similarity in the observed responses is likely to
be artificially high. The ROC experiments, however, use vehicles with different serial
numbers. Thus, although the observed responses should still be similar due the use of
a common vehicle class, there is more intra-class variability due to the use of a different
serial number. The higher image similarity of vehicles with the same serial number, as
compared to different serial numbers, in the MSTAR data set has been documented by
Owirka et. al.[44]. We thus believe on the basis of Figures 4.6, 4.7, and 4.8 that the x 2

rule is more robust than KLD rule to intra-class deviations. The lower sensitivity of the

X2 rule to these deviations is consistent with the larger kernel values produced for hX2
in Eq. (4.8) as compared to hKL in Eq. (4.7). In particular, the KL divergence exploits
the higher similarity of the training and testing data to drive h towards smaller values
to better distinguish the BMP-2 serial number c21 and T-72 serial number 132 which
is not equivalent to distinguishing BMP-2's and T-72's in general.

We also believe the over-sensitivity of the KLD rule to be the cause for the non-
convex ROC curves for the BMP-2 and BTR-70. In fact, for some values of Pd, the KLD
rule performs worse than random guessing for these vehicles. Because the KLD rule

1ONote that because different imaging elevation angles are used for the training and testing data sets,
there is no overlap in the two sets in terms of the samples used.

"The vehicle used in the training and testing data sets is the same physical vehicle and not just the
same type of vehicle.
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is not robust to intra-class variations, the rule is trying to detect the specific vehicle
(i.e. serial number) that is used in the learning process. The rule, thus, incorrectly
declares other instances of the target vehicle as a "none of the above" classification
because of the intra-class deviations.

To benchmark the performance of the algorithm proposed in this chapter, ROC de-
tection curves are plotted for the X2 rule using the sub-aperture feature set, DeBonet's
wavelet-based classifier[20], and the Wright Patterson Air Force Base (WPAFB) stan-

dard template matching algorithm[56]. DeBonet's wavelet-based classifier and the sub-
aperture-based classifier are comparable in performance, and both techniques outper-
form the baseline template matching algorithm. Although the sub-aperture-based clas-
sifier does not clearly outperform DeBonet's wavelet-based classifier, the performance
of the former clearly demonstrates that anisotropy information is useful for SAR ATR.
The result is even more impressive given the fact that the MSTAR data set examined
has a relatively narrow1 2 2.80 aperture over which to observe anisotropic phenomena.
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Figure 4.9. ROC detection curves for the (a) BMP-2, (b) BTR-70, and (c) T-72 using the X2 rule with
hX2 (solid curve), DeBonet's algorithm (dashed curve), and the WPAFB template matching algorithm
(dashed-dotted curve).

1
2 Figure 3.4 in Chapter 3 illustrates just how narrow this aperture is. The azimuthal response of the

1mx1m flat-plate has a null-to-null width of about 20. Thus, only large scatterers will produce strongly
observable anisotropy in the narrow=aperture MSTAR data. In wide-aperture data, however, the
anisotropy from smaller scatterers are more observable and should enhance the utility of the classifier.

T-72

- T..apert.

-eloa
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Chapter 5

Sub-aperture Anisotropy Attribution

The previous chapter explored the use of the sub-aperture pyramid in a nonparametric
learning algorithm to recognize targets based upon their anisotropy behavior. However,
besides the use of the sub-aperture feature set, little guidance based on intuition and
understanding of radar scattering physics could be provided to the algorithm. This
chapter takes a different approach to exploit scatterer anisotropy for SAR ATR. In
particular, a feature that characterizes the azimuthal location and concentration of
unimodal scattering is extracted from the data. Scattering models such as the PO model
and the GTD predict that for many scatterers, there is an inverse relationship between
the physical size and the azimuthal energy concentration of the scatterer[33, 48]. The
responses for several common canonical scatterers are given in Section 2.3. Not only
is there an inverse relation between scaling in the azimuthal and image domains, but
many canonical scatterers also produce a unimodal response along the aperture for
which azimuthal energy concentration is a natural first-order characterization. The
proposed anisotropy feature may thus be used to provide insight about the physical
structure of the object under investigation thereby aiding target classification.

The high level problem setting considered here is the same as that in the previ-
ous chapter. In particular, we are presented with a single image of SAR data and
wish to exploit the anisotropy exhibited by the target to aid the classification pro-
cess. Anisotropy is exploited in this chapter by attributing the degree of anisotropy,
i.e. azimuthal concentration, which conveys information about scatterer size. The basis
for this anisotropy attribution is the sub-aperture scattering model used by Chaney
et. al.[12] and Allen et. al.[2]. This model is preferred over more detailed models, such
as those based on PO and the GTD, because it provides a simple, yet intuitive, charac-
terization of azimuthal scattering. Furthermore, robust estimation of the parameters in
the more complicated PO and GTD models is especially difficult in the presence of in-
terfering scatterers given a limited amount of data, i.e. one image per target. Although
based on the sub-aperture model proposed by Chaney and Allen, the work presented
in this chapter significantly extends their efforts. These extensions include: improving
the model for the sub-aperture measurements, accounting for the varying resolution cell
sizes among the sub-apertures, modeling the interfering effects of neighboring scatter-
ers, and developing a nonlinear decision-directed sub-aperture selection procedure that
preserves high imaging resolution.
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The remainder of this chapter is organized as follows. Section 5.1 presents the mea-
surement model and resulting hypothesis test for an isolated scatterer. Section 5.2
extends the work to account for multiple scatterers to remove the interference from
neighboring scatterers. Section 5.3 then presents a telescopic, decision-directed mod-
ification to the testing procedures presented in Sections 5.1 and 5.2 which improves
robustness to interfering scatterers and provides simultaneous high azimuthal resolu-
tion and high imaging resolution. Section 5.4 concludes the chapter by applying the
new anisotropy attribution to MSTAR data.

N 5.1 Anisotropy Attribution - Isolated Scatterer Model

The sub-aperture pyramid is introduced in Chapter 3 which emphasizes the structure
of the pyramid and how anisotropy is conveyed through the sub-aperture reflectivities.
This chapter extends the use of the pyramid to also form a set of anisotropy models. In
particular, the sub-aperture scattering models proposed by Chaney and Allen are used
to formulate a hypothesis test for anisotropy where the hypotheses are drawn directly
from the sub-aperture pyramid.

* 5.1.1 Observation Model

The anisotropy hypothesis tests presented in this chapter are for a pre-specified scatter-
ing location. The location could come from a peak extraction process (resulting in peak
scatterer anisotropy attribution) or a pre-specified grid of points (producing an image
of the exhibited anisotropy). As is the case for calculating sub-aperture reflectivity in
Section 3.2, the dependence of the location parameter is removed through the use of the
azimuthal response a(w) which corresponds to a range-compressed, but not cross-range
compressed, 1-D signal demodulated for the specified cross-range location.

As discussed in Section 2.3, the sub-aperture scattering model used by Chaney
and Allen models the azimuthal response as a constant over a sub-aperture and zero
elsewhere. The set of candidate sub-apertures in this chapter is restricted to those
composing the sub-aperture pyramid. In particular, each sub-aperture Sm,i in the
pyramid is used to define an associated sub-aperture anisotropy hypothesis Hm,i whose
modeled response may be written as

Hm,i : a(w) = Alsmi (w). (5.1)

where A is the complex scatterer reflectivity and 1 smi (w) is the indicator function for
the sub-aperture Sm,i. This model is clearly an idealization of anisotropic scattering,
but because we are only seeking a general characterization of anisotropy, this model
serves our purpose. Although these hypotheses are used to measure anisotropy, the
ideal isotropic scattering hypothesis is included in the hypothesis set since the full-
aperture is included in the sub-aperture pyramid. The set of all possible hypotheses
associated with the sub-aperture pyramid will be denoted as '.
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A reasonable choice of observations to test these hypotheses would be the set of all

the measured sub-aperture reflectivities {q},i} where qm,i is given in Eq. (3.1) as

qm,i = a(w) dw . (5.2)

From this definition of the qm,i and the partition property on the pyramid in Section 3.1,
it is sufficient to consider the vector qM A {qm,i}m=M of measurements from the small-

est sub-apertures. This vector is sufficient because any sub-aperture reflectivity q,,i

can be computed from qM by summing all the qmj for which the associated SMi form

a partition of Sm,i, i.e.

qm,i= qM,j. (5.3)

jI SMj GP(m,i)

For example, in the three-level, half-overlapping, half-aperture pyramid in Figure 3.3(b),
qi,1 = q2,2 + q2,4 since S2,2 and S2,4 form a disjoint union of S1,1 . Because qM is a suffi-
cient statistic, this vector is taken as the observation on which the anisotropy hypothesis

test is based.
The value of the observation vector qM under hypothesis Hm,i with a normalized

reflectivity of A = 1 is denoted as b(m, i), and the jth element of b(m, i) is given by

b(m, i)j = ISM'j lSm,i (w) dw

= A(SM,j n Sm,i), (5.4)

where A denotes Lebesgue measure. Thus, the observed response is proportional to the

amount of overlap between the sub-aperture SMj used to measure the reflectivity and

the sub-aperture Sm,i used to model the azimuthal response.

Up to this point, noise in the measurements has been omitted. The noise is now

modeled as an additive white process along the aperture. In particular, the scattering

model conditioned on anisotropy hypothesis Hm,i is

q, = f [Alsm,i (w) + rq(w)] dw, (5.5)
JSM'j

where r(w) is circularly complex white Gaussian noise with spectral density 20.2 . Eq. (5.5)
leads to the model

qM = Ab(m, i) + e, with e - K(O, 2o.2 A), (5.6)

where e is the measurement noise in the smallest sub-apertures and A is the normalized
noise covariance matrix inherited from the sub-aperture pyramid. From Eq. (5.5), it
follows that the noise e in Eq. (5.6) is characterized as a zero-mean circularly complex
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Gaussian. The covariance between elements of e are dictated by the amount of sub-
aperture overlap. In particular, the elements of the normalized matrix A are given by
the amount of overlap between the sub-apertures used to generate the measurements,
i.e.

[A] ,i = A(SM,i n SM,j). (5.7)

For the case of the disjoint pyramid, A is the a scalar multiple of the identity matrix,
i.e. A = 2 -M 1I For the case of the half-overlapping half-aperture pyramid, A is the
Toeplitz matrix

1 .5

A = 5 (5.8)
2 M . .

.5 1

M 5.1.2 Hypothesis Test Example

Prior to developing the anisotropy hypothesis test in its general form, the generalized
log-likelihood ratio (GLLR) is determined for the special case of a three-level, disjoint,
half-aperture pyramid as an example. For simplicity, only three of the sub-aperture
hypotheses are examined. These hypotheses are the full-aperture hypothesis H0 ,0 , the
left-most half-aperture hypothesis Hi,o, and the left-most quarter-aperture hypothesis
H 2 ,0 . The model for the observation vector q2 for each of these hypotheses is the Gaus-
sian random vector described in Eq. (5.6). Note that there is the unknown reflectivity
parameter A in the observation model. To address this unknown parameter, a GLLR is
used which replaces A with its maximum likelihood (ML) estimate under each hypoth-
esis, i.e. for hypothesis Hm,i, A is taken as the matched-filter estimate A = qm,i/Lmi.
The generalized likelihood fm,i for each of the three hypothesis can then be specified as
follows

fo,o = p (q2|Ho,o, A = qo,o)

1 expK 2(q 2 -oo l])A4 (q2 -qoofi1T l
I27ro2 ID/ 2  4oa2 4 4HLJ

1 -1 ( qoo 2 qo+o 2 qo o 2
exp2D/ ~~[ 1 2 q2,0 - + q2,1 - -i-- + q2,2

127r.2 1 D/2 16o.2 , , -

+q2,3 - q' 2
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1,0 P (q 2 H1,0, A = 2qi,o)

1 exp 1(7[1, 1, 0, 01]T) HA (q 2 - 1,o [10 ] T)

127ru2 D/2 4a 2

1 -1 io 12 1i 012 2 21 exp[1  2 ( q2,O0 - __~ 2+I q2,1 -1_ + Ijq2,2j1 + I q23l)]
2,7ro 2 D/2 2 2 2,

2,0= P (q 2 H 2,0, A = 4q2,o

1 exp[ 1- (q2 -q 2 0[l1o1o0oI1T) HA-' (q2 - q2,o[i 1, 01 OT)~
I27ro 2 D/2 4u2 ,

1 __-1I (112 Iq2 ,121
27rO.2 1D/2 11 6 o2 2,1 2 2,2 + 123i

where D is the dimensionality of q2 , (.)T denotes transposition, (.)H denotes Hermitian

transposition, and p(.) is the Gaussian density for the observation vector conditioned

on the underlying reflectivity A and anisotropy hypothesis. In each case, the likeli-

hood simply measures the norm of the deviation in the smallest sub-apertures from

the expected value under the given hypothesis. For example, under the full-aperture

hypothesis, the expected response is to observe one-quarter of the reflectivity in each of

the quarter-apertures. Consequently, the likelihood sums the squares of the deviations

from this expected value since each sub-aperture measurement q2,i is formed from a

disjoint sub-aperture and the measurements are thus modeled as independent.

The generalized likelihoods may be used in a GLLR test as a decision rule. Taking

the ratio with respect to the full-aperture generalized likelihood, the GLLR's 7Ym,i can

be written asi

7N,o = 0

Yi logP (q2 I H1,0, A = 2qi,o)710= log(~; =2
p (q 2 IHo,o, A = q,

'The calculation involves the use of the partition property, i.e. condition (C) on the pyramid in
Section 3.1.
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( p (q 2 H 2,0 , A = 4q2,o)

S(q 2 Ho,0 , A = q0,0)

= 41 (I42,0 2 _Io~ 2)
4o.2 0.25 Jq, '2

There is an interesting transition that occurs in moving from generalized likelihoods
to the GLLR's. In particular, it should be noted that the likelihoods fm,i involve each
of the measurements from the smallest sub-apertures. These measurements manifest
themselves in the likelihood via the incoherent sum of squared-error magnitudes, i.e. the
squared-norm of the deviation from the expected sub-aperture measurements. However,
for each GLLR -ym,i, all the sub-aperture measurements, except qm,i and q0,0, cancel
out of the expression. In other words, the only sub-aperture measurements that remain
in the GLLR are those associated with the sub-aperture hypotheses the GLLR is com-
paring. In particular, the expression becomes the difference between the energy in each
sub-aperture normalized by the sub-aperture length. Thus, if the decision rule is to
select the sub-aperture with the highest GLLR, then this rule is equivalent to choosing
the sub-aperture with the largest average energy. This interpretation is quite satisfying
as it is consistent with the intuition of seeking concentrated unimodal scattering in
azimuth.

* 5.1.3 GLLR

The simple form of the GLLR for the sub-aperture hypotheses in the previous section
generalize in a quite straightforward manner. In particular, the GLLR is the difference
between the average energy in sub-apertures. To show this fact, however, is quite in-
volved and is the topic of this section. In particular, computation of the generalized
likelihoods involve all of the sub-aperture measurements (not just the one sub-aperture
measurement as the simplified GLLR may lead one to mistakenly believe). The ex-
pression becomes even more complicated when an overlapping sub-aperture pyramid is
used because the inverse noise covariance is no longer a scalar multiple of the identity.
In fact, the inverse covariance is not even sparse in this case, and thus, each of the
summands in fmi involves all of the smallest sub-aperture measurements.

Although the end expressions for the GLLR's in the previous example are intuitively
reasonable, it is somewhat surprising that so many of the sub-aperture terms cancel,
even in the more complicated case of an overlapping pyramid. As will be seen in this
section, the key to these cancelations is the use of the sub-aperture scattering model
which permits the normalized modeled response b(m, i) to be written as a linear function
of the noise covariance which ultimately cancels the inverse noise covariance weighting
matrix in the calculations.

In order to derive the GLLR for a general sub-aperture pyramid, some notation
and simple relations must first be established. Eq. (5.3) provides a representation of
larger sub-aperture reflectivity measurements from the set of smallest sub-aperture
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measurements due to the pyramid's partition property. It will be more convenient to

rewrite Eq. (5.3) as a vector multiplication. To do this, the binary vector c(P(m, i)) is

defined. In particular, the components of c(P(m, i)) are defined as

.M 1j I if SMj E P(M, i)
0 otherwise,

(5.9)

i.e. c(P(m, i)) indicates which components of SM constitute a partition of Sm,2 . Ob-

taining the sub-aperture reflectivity estimate qm,i from qM can now be done via

qm,i = 1 c(P(m, i))qm,j

= c(P(m, i))HqM. (5.10)

Recall from Section 5.1.1 that because of the manner in which the measured reflec-

tivities qm,i are calculated, i.e. integrating over a sub-aperture, the covariance between

these two measurements is proportional to the amount of sub-aperture overlap. Simi-

larly, because the boxcar-shaped sub-aperture scattering model is used, the components

of the normalized model vector b(m, i)j are also given by the amount of sub-aperture

overlap between Sm,i and SM,j. Because of the consistency between the reflectivity

measurement calculation and the sub-aperture scattering model, the noise covariance

and model basis vectors can be written in terms of each other. In particular, it follows

from Eq. (5.4) and Eq. (5.7) that

A = [b(M, 0) I b(Mj, 1) 1 ... I b(M, JM - 1)]

where JM is the number of sub-apertures at scale M. From this equation, it follows

that

b(M, i) = Aej (5.12)

where ei is the Euclidean basis vector of appropriate dimension.

be generalized to write b(m, i) for larger sub-apertures in terms of

c(P(m, i)). First, note that for a particular element j of b(m, i),

b(m, i)j = ',f (w) dw
JSM,j

f1S
SM, kSM,kEP(m,i)

E 1S

kjSM,k EPM,i) SM's

E b(M, k)j
kISM,k EP(m,i)

,,k (w) dw

1,k (w) dw

This relation can
A using the vector

by definition of b(m, i)j

using Eq. (5.3)

by definition of b(m, i)j

(5.11)
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i.e. the normalized model for hypothesis Hm,i can be written as a sum of models from
partitioned sub-apertures HM,k. Thus, for the entire vector

b(m, i) = b(M, k)
kISm,kEP(m,i)

= ~ Aek
k|SM,kEP(m,i)

=A E ek
k|SM,kEP(m,i)

= Ac(P(m, i))

using Eq. (5.12)

(5.13)

thereby obtaining the desired generalization of Eq. (5.12) to larger sub-apertures.
There is one more relation that is useful in the derivation of the GLLR. In particular,

b(m, i)Hc(P(m, i)) = b(m, i)j
JISm,jEP(m,i)

1mi (w) dw by definition of b(m, i)j

1Sm,i (w) dw
= SMi

= Lm,i (5.14)

which says that the sum of the terms in the modeled response b(m, i) is the integral of
the normalized sub-aperture response or equivalently the sub-aperture length.

With the necessary relations in hand, the GLLR for a sub-aperture scattering hy-
pothesis is now derived. Instead of explicitly stating the assumed value of A under
each of the hypotheses, for reasons which will become apparent later, it is assumed that
the estimated value used for A can be written as A0 ,0 = a0/0 qM under H0 ,0 and as

Am,i = aH jqM under Hm,i. Included in this case are the special instances

Ao,o = qo,o = c(p(0, 0))HqM

= the full-aperture reflectivity estimate and

Am,i = qm,i/Lm,i = 1 c(p(m, i))H qM

= the hypothesized sub-aperture reflectivity estimate

92 CHAPTER 5. SUB-APERTURE ANISOTROPY ATTRIBUTION

jSm,jEP(M'i) fSM,5



Sec. 5.1. Anisotropy Attribution - Isolated Scatterer Model 93

that are used in the example of Section 5.1.2. The GLLR can now be obtained as

=YM log (p (qM Hm,i, A = Am'i)
p (qM Ho,0, A = Aoo)

1(GM - b(0,O)Ao,o)H 1 A- (qm - b(0,O)Ao,o)
2 L2a.

-(qm~ - b(mn, i) A., )H 1 2A-'(q - b(,m,i)Am,i)

q (I - b(O, O)a o) H A 1 (I - b(O, O)a0Ho)

- (I - b(m, i)a~m,i)H A- (I - b(m, i)aH,i) I qM

1 qH [A-i - A- b(O, O)aH - ao,ob(, )HA-

+ ao,ob(O, O)HA-b(O, O)ag0E

- A- 1 + A-lb(m, i)aH,i + am,ib(m, i)HA-

- am,ib(m, i)HA-lb(m, i)am,i] qM

1 F- c(O, O)aH - ao,oc(O, O)H + ao,ob(O, 0) Hc(o, O)aH0
4 2 M[, ,

± c(m, i)am,i + am,ic(m, )H - am,ib(m, i)H c(m i)ami qM (5.15a)

qH [- c(O, O)a H - ao,oc(O, )H + ao0 oa H
4jOr2 L )0,0 ,0~

+ c(m, i)aH, i + am,ic(m, i)H - Lm,iam,jaH,i qM (5.15b)

1 H1 [aoo - c(P(O, 0))] [ao,o - c(P(mO, 0))]H - C(P(O, 0))c(P(O, 0))H

-H
1 1____

- Lmam,i - c(P(M, i)) Lmiam,i - c(P(m, i))

1
+ c(P(m, i))c('P(m, i))H qM. (5.15c)

m,i

where Eq. (5.15a) follows from Eq. (5.13) and LO,0 = 1, and where Eq. (5.15b) follows
from the relation in Eq. (5.14).

As in the example in Section 5.1.2, a natural choice for A is the ML estimate under
the corresponding hypothesis, i.e. Am,i = qm,i/Lm,i = c(P(m, i))HqM/Lm,j. Using this



value in Eq. (5.15) leads to

- 4 .2 q 1 c(P(m, i))c(P(m, i)) H

[Lm,iam,j - c(P(m,i))1[ Lm,iam,i - 1
"L ,'i Lm,i

- c(P(O, 0))c(P(O, 0))H] qM

4  H2 1 Li c(P(m, i))c(P(M, i))H _ C(p(OH ))C(p(O, 0))H]

4u.2 Lm,i I I'i1 2 - Iqoo 12 (5.16)

thus giving the previously stated result. In particular, the GLLR is proportional to
the difference between the average energy in the hypothesized sub-aperture and the
full-aperture. Furthermore, the expression for the GLLR does not make explicit use of
the smallest sub-aperture measurements qM except to generate the reflectivity of the
involved sub-apertures, i.e. qmi and qo,o. Thus, increasing the number of scales or the
amount of sub-aperture overlap in the pyramid does not change the statistic.

U 5.1.4 Comparison to Chaney and Allen

Using a maximum likelihood approach based on the GLLR in Eq. (5.16), the sub-
aperture decision rule can now be taken as selecting the sub-aperture with the maximum
average energy. This test is very similar to the maximum average reflectivity selection
criterion used by Allen and Chaney but is not the same in general. In particular, Allen
and Chaney maximize the normalized reflectivity, or equivalently its square

2

1 Iqm,i 12  
(5.17)

Lm,i Lm,i

Chaney and Allen use this criterion due to its interpretation as a matched-filter and thus
its maximum likelihood interpretation. However, such an interpretation requires the
assumption that each sub-aperture estimate have the same variance. This assumption
does not hold for the model proposed in Eq. (5.5) for which the variance on a sub-
aperture reflectivity estimate Am,i is inversely proportional to the sub-aperture length.
Furthermore, the assumption of a variance that is constant with respect to sub-aperture
length necessarily implies an awkward correlation structure between sub-apertures (even
when they are disjoint). Consider, for instance, the case of the full-aperture reflectivity
estimate Ao,o = qoo and the reflectivity estimates, A 1,0 = 2qi,o and A1,1 = 2q,,, from
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two disjoint half-apertures. Because the two half-apertures form a disjoint union of the
full-aperture, the measured reflectivity can be written as qo,o = qi,o+qi,1 or equivalently

A 1 ,o + A1,1Ao,o = .2

However, if A0,0 , A 1,0 , and A 1,1 are to all have the same variance, then it must be the
case that A 0 ,0 = A1 ,O = A 1,1, i.e. that the observed noisy response in the left and right
half-apertures must be exactly the same. This argument can be repeated for smaller
sub-apertures producing the result that each sub-aperture reflectivity must be the same!
This clearly imposes an unreasonable noise model on the sub-aperture measurements.

To further demonstrate the inappropriateness of the maximum reflectivity statistic
in Eq. (5.17), again consider the case of the full-aperture and the two disjoint half-
apertures. In this case, the full-aperture hypothesis can never be chosen 2 ! To see this
fact, we apply the sub-additivity of norms to the full-aperture reflectivity estimate, i.e.

IAo,o l = Iqo,oI = lqi,o + qi,iI
5 Iqi,oI + Iqi,iI

< 2max{Iqi,oj,Jqi,11}

= max {12qi,o 1, 2qi,I}

= max {|A1,oI, JA 1 ,1 |} (5.18)

i.e. the full-aperture reflectivity estimate can never exceed the maximum half-aperture
estimate. Furthermore, the two may be equal only if the first inequality in Eq. (5.18)
holds with equality, i.e. qi,o and qi,1 have the same phase or one of them is zero. The
same argument can be applied recursively on the sub-aperture pyramid to prove that the
maximum sub-aperture reflectivity always comes from one of the smallest sub-apertures
for the disjoint pyramid3 . Thus, without the use of a nonzero threshold in a GLRT, the
rule used by Allen and Chaney will always select the maximum degree of anisotropy.

In contrast to the maximum reflectivity criterion, using a ML hypothesis test with
the GLLR in Eq. (5.16) results in the decision rule of taking the maximum average
energy

Lmmi = (5.19)

This rule differs from that in Eq. (5.17) in that the latter has an extra scaling fac-
tor of 1/Lmi which produces an excessively large statistic for smaller sub-apertures,

2An exception is the case where the two half-aperture reflectivities have the same phase and the
decision rule chooses the full-aperture hypothesis in the case of two equal statistics. However, if phase
is modeled with a continuous probability distribution, then such an event occurs with zero probability.

3The authors believe the same result holds for overlapping pyramids as well, but do not attempt to
prove this point as the unsuitability of the criterion in Eq. (5.17) is already clear.
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thus leading to too small an aperture being selected. This excessively small aperture

then produces a corresponding excessively coarse imaging resolution due to the inverse

relation between aperture length and imaging resolution.

E 5.1.5 Modified GLLR

Though simple and intuitive, the GLLR in Eq. (5.16) is susceptible to the effects of close

proximity neighboring scatterers for which the isolated scatterer model in Eq. (5.5) does

not account. To see how neighboring scatterers affect the statistic, recall that reflectivity

measurements generated from smaller sub-apertures have a coarser imaging resolution.

The sub-aperture anisotropy hypotheses are thus not consistent in terms of the res-

olution cell contents. As an example, consider an isotropic scatterer with reflectivity

A located one resolution cell from the scattering center as shown in Figure 5.1. Be-

cause the scatterer is located outside the finest resolution cell, the reflectivity qo,o is

largely uninfluenced by the scatterer and thus simply measures noise. The coarser scale

half-aperture measurements q.,i, however, have a large magnitude because the larger

resolution cell includes the scatterer. In particular, if no noise were present, then the

observed azimuthal response is the complex exponential illustrated. Integrating over

the full-aperture gives a reflectivity measurement of zero, as expected, but integrating

over a half-aperture produces a measured reflectivity with magnitude A/v/2. Use of the

GLLR in Eq. (5.16) would thus produce an anisotropic classification, even though no

scatterer is present in the finest resolution cell.

q0,0 = 0

26
0 0.5 1

qi,o = A/V qi,1 = -A/2

Figure 5.1. Illustration of how an interfering scatterer can cause a false anisotropy classification with

the GLLR in Eq. (5.16).

The problem just discussed is a consequence of not modeling the influence of neigh-

boring scatterers. One of the ways in which a neighboring scatterer manifests itself is

through the corruption of the estimated reflectivity as the size of the resolution cell

varies. To address this problem, instead of choosing the ML estimate A = qm,i/Lm,i

as the unknown reflectivity in the GLLR, we can choose the best reflectivity estimate

constrained to lie in the finest resolution cell. In particular, we choose A = qo,o/Lm,i,

i.e. the reflectivity estimate using the full-aperture but normalized to account for en-

ergy only coming from sub-aperture Sm,i. Choosing A = qo,o/Lm,i for all hypotheses is
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equivalent to using Am,i = c(P(0, 0))HqM/Lm,j in Eq. (5.15) which produces

Im1 _ H L c(P(m, i))c(P(m, i)) H
4a.2 M L,j,

Lm [c(P(0, 0)) - c(P(m, i))] [c(P(O, 0)) - c(P(m, i))]H

- c(P(0,0))c(P(0,0))H qM

L Li2  qo -qm, 2 - Iqo,o1. (5.20)

This statistic is identical to that in Eq. (5.16) except for the extra term comparing the
reflectivities qo,o and qm,i. Recall that Eq. (5.16) compared the average energy in a
sub-aperture to the full-aperture. This modified GLLR accounts for the average energy

outside the hypothesized sub-aperture as well. Viewed differently, under hypothesis

Hm,i and the scattering model in Eqs. (5.5) and (5.6), the values of qo,o and qm,i should
simply be noisy perturbations of each other. The new term in Eq. (5.20) penalizes when
this is not the case thereby enforcing a consistency of the resolution cell contents. For
instance, in the example in Figure 5.1, since the the contribution of each of the half-

apertures would be the same, the modified GLLR is equal to zero for all hypotheses,
which is reasonable since there is no underlying scattering at the focused location.

* 5.1.6 Sub-aperture Scattering Model Deviations

The sub-aperture scattering model defined in Eq. (5.1) is a simple model to which real
scatterers do not exactly fit. One may question how deviations from this model affect

the resulting hypothesis tests. For example, if the scattering has a sinc(.) dependence
in azimuth, then the sidelobes4 will have a large response for a strong scatterer and

may not be well modeled as the additive measurement noise e in Eq. (5.6). To address
this issue, deviations from the sub-aperture scattering model are incorporated into the

measurement model. In particular, the underlying normalized scattering response is
perturbed by white Gaussian noise. This perturbation changes the modeled response
in Eq. (5.4) to

b(m, i) =f [1,4m (w) + v(w)] dw (5.21)
JSM,j

where v(w) is a white Gaussian process with spectral density 2p 2 and is independent of
the measurement noise q(w). Thus, the modeled measurement vector is now a random
vector characterized as

b(m, i) ~ .(b(m, i), 2p 2 A).
4 The term "sidelobes" here refers to those on a sinc-like function in the azimuthal domain and not

those associated with a neighboring scatterer in the image domain.



This modification results in the new measurement model as

Hmi : q = Ab(m,i) +e

= Ab(m, i) + w, with w ~ AF(0, 2(IAj2 p 2 + U2 )A). (5.22)

This is essentially the same model as in Eq. (5.6) except that the variance of the noise
now depends affinely on the square-magnitude of the underlying scatterer. Furthermore,
the variance under each hypothesis scales by the same factor. Thus, the value of the
noise variance is relevant only when the GLLR is compared to a threshold other than
zero and one wishes to set the threshold based on cost (or prior probability) ratios.
This modified measurement model is used throughout the remainder of the thesis.

U 5.1.7 Experimental Results

To demonstrate the behavior of the anisotropy attribution methods described in this
section, the three-level, half-overlapping, half-aperture pyramid is used to attribute
synthesized SAR data. A value of p = 0.1 is used to account for deviations from the sub-
aperture scattering model in Eq. (5.21). Anisotropy tests are applied to the synthesized
data whose log-magnitude image (formed using the standard image formation process)
is displayed in Figure 5.2(a). The position of the radar is to left of the image, and
thus cross-range is the vertical dimension. The parameters for the synthesized radar
data are set to nominal MSTAR parameters, i.e. an azimuthal span of 2.8', center
frequency of 9.6GHz, and a bandwidth of 590MHz. The image is composed of 11
scatterers, highlighted by circles in Figure 5.2(b), in circularly complex white Gaussian
noise. Each of the scatterers is generated according to the PO model for the flat plate
in Eq. (2.16). In particular, the following four scatterer responses are used:

" A flat plate measuring half a resolution cell in cross-range, approximately giving an
isotropic response, with a signal-to-noise ratio (SNR) 5 of 30dB. These scatterers
are denoted by 'A' in Figure 5.2(b).

" A flat plate measuring two resolution cells in cross-range, approximately giving
a half-aperture anisotropic response, with an SNR of 30dB. These scatterers are
denoted by 'B' in Figure 5.2(b).

* A flat plate measuring four resolution cells in cross-range, approximately giving
a quarter-aperture anisotropic response, with an SNR of 30dB. These scatterers
are denoted by 'C' in Figure 5.2(b).

* A flat plate measuring two resolution cells in cross-range, approximately giving
a half-aperture anisotropic response, with an SNR of 20dB. These scatterers are
denoted by 'D' in Figure 5.2(b).

5 Signal energy is taken as the square-magnitude of the full-aperture reflectivity estimate.
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(a) (b)

Figure 5.2. Log-magnitude image of the SAR data used to examine the anisotropy attribution meth-

ods. (a) Image without scatterer labels. (b) Image with true scatterer labels.

In order to simplify wording, the statistic in Eq. (5.17) used by Chaney and Allen

will be called the reflectivity statistic, the GLLR statistic in Eq. (5.16) based on the

ML estimate Am,i = qm,i/Lm,i will be called the basic GLLR, and the GLLR statistic

in Eq. (5.20) based on Am,i = qo,o/Lm,i will be called the modified GLLR. These three

statistics are applied to the data in Figure 5.2 using the cost matrix in Table 5.1 which

specifies a threshold for the GLRT hypothesis test. The particular threshold used

corresponds to a situation in which the cost of an error is twice as high when the true

underlying hypothesis is full-aperture scattering than for other types of errors. The

decision rule is biased in this manner in order to guide attributions for clutter pixels

towards the full-aperture decision to produce higher resolution images. Such a biasing

is reasonable because clutter is composed of many irresolvable scatterers producing a

noise-like response in azimuth and does not conform to the sub-aperture scattering

model developed for a single scatterer.

Table 5.1. Cost matrix used to establish thresholds in the GLLR-based decision rules.

true anisotropy \ estimated hypothesis full-ap. I half-ap. quarter-ap.

full-ap. 0 2 2

half-ap. 1 0 1

quarter-ap. 1 1 0

The results of the three decision rules are displayed in Figure 5.3. The first row of

results, i.e. figures (a) and (b), are for the test based on the reflectivity statistic. The

second row of results, i.e. figures (c) and (d), are for the test based on the basic GLLR.

The third row of results, i.e. figures (e) and (f), are for the test based on the modified

GLLR. For each of these rows, the left-hand column of images (i.e. Figures 5.3(a), (c),
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and (e)) displays the image of anisotropy attributions for each of the statistics. There are

three levels of shading in this image. White denotes a full-aperture classification, light-

gray denotes a half-aperture classification, and dark-gray denotes a quarter-aperture

classification. As in Figure 5.2(b), the scattering center for each scatterer is marked

with a geometric symbol, but now, the symbol also denotes the degree of anisotropy

for the location. In particular, a circle is used to denote a full-aperture classification, a

square is used to denote a half-aperture classification, and a triangle is used to denote

a quarter-aperture classification. The right-hand column of images (i.e. Figures 5.3(b),
(d), and (f)) displays images of the sub-aperture reflectivities from the selected sub-

apertures.
As expected, use of the reflectivity statistic in Eq. (5.17) produces an excessive

number of quarter-aperture attributions in Figure 5.3(a). With few exceptions, the

entire image is classified as quarter-aperture anisotropy, including all the prominent

scatterers, even though a cost structure favoring the full-aperture classification is used.

The use of the basic GLLR performs significantly better than the reflectivity statistic.

The basic GLLR correctly attributes 10 of the 11 scatterers, incorrectly attributing

the weak scatterer labeled D in the upper-right portion of the image. The reflectivity

statistic, in contrast, correctly attributes only the two quarter-aperture scatterers la-

beled C. Furthermore, the basic GLLR attributes considerably fewer pixels in clutter

as anisotropic thereby improving the image resolution and decreasing the reflectivity

variance for these pixels. Like the basic GLLR, the modified GLLR correctly attributes

most of the scatterers in Figures 5.3(e). In particular, the only scatterer incorrectly

attributed is again the weak scatterer labeled D in the upper-right portion of the im-

age. This scatterer is misclassified by both the basic and modified GLLR's because of

the interference from the strong quarter-aperture neighboring scatterer labeled C. Note

that the other scatterer labeled D in the lower-right portion of the image is correctly

attributed as half-aperture since this scatterer is isolated and thus unaffected by dis-

tant scatterers. The modified GLLR also further reduces the number of anisotropic
attributions in clutter.

Looking at the images in the right-hand column of Figure 5.3, it is clear that imaging

resolution has been lost by all the methods involved. Even the proposed GLLR statis-

tics, which correctly attribute most of the scatterers, result in an excessively coarse

resolution around all of the scatterers. The loss of resolution is due not to the attri-

bution on the dominant scatterers themselves but the incorrect attribution of pixels in

close proximity to the scatterers. In particular, close examination reveals that clutter

pixels adjacent to a scatterer are always classified as anisotropic. The resolution cells

for these anisotropic attributions are coarser due to the smaller sub-apertures used. In

fact, the resolution is often coarse enough that the resolution cells expand to cover the

interfering scatterer thus producing a strong reflectivity estimate and loss of imaging

resolution.
The misclassification of these clutter pixels is due to interference from the neighbor-

ing scatterer which must be addressed if the anisotropy attribution is to be used in an
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Figure 5.3. Results of using: (a,b) the reflectivity statistic; (c,d) the basic GLLR; and (e,f) the

modified GLLR on the SAR data in Figure 5.2. Left column: images of degree of anisotropy. Right

column: images of sub-aperture reflectivity.
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image based algorithm where resolution is important. One approach to remedy these
anisotropy misclassifications for clutter pixels is to require that a pixel's finest resolution
reflectivity estimate exceed a particular threshold in order to be attributed. This condi-
tion can be interpreted as requiring that a pre-processing step, thresholding reflectivity
in this case, detect pixels that contain a scatterer and thus need to be attributed with
an anisotropy label. Figure 5.4 displays the same types of images as Figure 5.3 except
that only pixels with a finest resolution reflectivity exceeding an SNR of 5dB are tested
for anisotropy, while all other pixels are processed with the full-aperture. The vast ma-
jority of the clutter pixel misclassifications have been removed by this pre-processing
step while still allowing the prominent scatterers to be attributed. The result is an
image with much higher imaging resolution that still conveys anisotropy information
from strong scatterers.

Unfortunately, the pre-screening step can do nothing to improved the attribution
of prominent scatterers. In particular, the thresholding does nothing to correct the
anisotropy attribution of the 20dB SNR scatterer labeled D in the upper-right of the
images. This scatterer is misclassified due to the interference from the stronger 30dB
SNR quarter-aperture scatterer. To improve the anisotropy attribution in the presence
of neighboring scatterers, we need to explicitly account for the interference produced
by the neighboring scatterers. The following sections in this chapter and Chapter 7
address the handling of this interference.

* 5.2 Anisotropy Attribution - Multiple Scatterer Model

The results of the previous section demonstrate that although the use of the consis-
tent (in terms of spatial coverage) reflectivity estimate Am,i = qo,o/Lm,i in place of
Am,i = qm,i/Lm,i reduces the number of false anisotropy classifications in clutter, there
are still a considerable number of misclassifications particularly surrounding a strong
scatterer. These misclassifications lead to an overly coarse resolution in the image
of sub-aperture reflectivities. Because the scatterers in the image have a high SNR,
the attribution of many clutter pixels can be avoided with the use of a pre-screening
threshold on the finest resolution reflectivity. However, such a pre-processing step might
preclude the attribution of a weak scatterer and does not improve the classification of a
strong scatterer whose observed response is distorted by interference from a neighboring
scatterer. To address this problem, this section focuses on improving the attribution
by generalizing the anisotropy observation model and hypothesis test account for the
effects of interfering scatterers.

N 5.2.1 Model and Test

To explicitly account for interfering scatterers, the sub-aperture scattering model in
Eq. (5.5) must be generalized to account for the modulations produced by neighboring

scatterers. To accomplish this task, we again start by assuming that the azimuthal

response a(w) is generated for a specified cross-range location yo. The possibility of other
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Figure 5.4. Results of using a pre-screening threshold with: (a,b) the reflectivity statistic; (c,d) the

basic GLLR; and (e,f) the modified GLLR on the SAR data in Figure 5.2. Left column: images of

degree of anisotropy. Right column: images of sub-aperture reflectivity.
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scatterers are considered at discrete locations yo + kAp, where A, specifies a cross-range
sampling resolution that is taken to be less than the full-aperture image resolution Ar.
Thus, the locations for neighboring scatterers are oversampled. Ideally, one would want
to allow the neighboring scatterers to be represented at an arbitrary location instead of
one of the pre-specified discrete locations. The former, however, significantly increases
algorithmic complexity. The error incurred from modeling neighbors at yo + kAP is
expected to be small since the location error is less than one resolution cell (due to the
oversampling).

To model the effect of a scatterer at location yo + kA, on the measurements at
location yo, the azimuthal contribution from this neighboring scatterer is modulated
to account for the shift in the image domain. The observed effect over the smallest
sub-apertures is then given by

bk(mk, ik) = j 2ir k lHmskik (w) dw (5.23)

where (Mk, ik) is the sub-aperture anisotropy associated with the scatterer at yo + kAp.
Incorporation of the neighboring scatterers is now modeled via superposition, i.e.

qM = ZAbk(mk,ik)+e (5.24)
k

where Ak is the reflectivity associated with the scatterer at yo + kAP and the noise

model for e is the same as in Eq. (5.6). In order to account for all scatterers that
significantly affect the smallest sub-aperture measurements, the summation over k in

Eq. (5.24) should be over a range large enough to include all scatterers contained in the
largest resolution cell. Thus, the model should consider all k - {-K,... , K} where K
satisfies

KAP > r = size of coarsest resolution cell
2LM

K > Ar (5.25)
- 2LMApI

and k = 0 corresponds to the focused resolution cell under investigation. Rewriting
Eq. (5.24) as a matrix equation, it becomes

AK

qM = [b-K(m-K, L-K) b ' K(mK,iK)] - e

AK

= BA+e (5.26)

where B and A are appropriately defined.

Note that the hypotheses are now in a higher dimensional space. In particular, the

hypothesis set is now 7R2K±1 since each location k has an associated scatterer. For the
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initial work presented in this chapter, the hypotheses are restricted such that only the

k = 0 (the focused resolution cell) hypothesis is allowed to vary, while the hypotheses

for the other scatterers are fixed at the full-aperture hypothesis. Thus, the hypothesis

space is still W. This constraint on the anisotropy of neighbors is relaxed in Chapter 7
in order to more accurately account for the contributions from neighboring scatterers.

The extension, however, requires addressing several complex issues and is thus left to

another chapter.
The error e in Eq. (5.26) can be used to compute the likelihood of each hypothesis.

The resulting set of likelihoods for all the hypotheses can then be used in a decision

rule. In particular, the error norm weighted by the inverse noise covariance, i.e. lielIA-1,
is a sufficient statistic because the noise is additive and Gaussian. The value of the

error e, however, is unknown and must be estimated. In the same spirit as the isolated

scattering model, e is estimated by first estimating A which is subsequently used to

compute i from Eq. (5.26), i.e.

S= q - BA

where A is an estimate of A and & is the associated error estimate. One possibility for

estimating A is ML estimation for the given hypothesis, i.e.

A = arg min {IIeII_} = (B H A-1B)-lBH A-lqM (5.27)
A

Taking A as the ML estimate, the weighted norm of the estimated error i becomes

|ie I_1' = IIqM - BA111 -

= qH [A- - AlB(BHA-1B)BHA-1] qM (5.28)

which simplifies to the basic GLLR in Eq. (5.16) for the isolated scatterer model in the

case of limiting the model order to K = 0.
The model in Eq. (5.24) has too many parameters for the test given by the mini-

mization of Eq. (5.28) to work well. In particular, if one chooses K sufficiently large

to account for all the scatterers in the coarsest resolution cell, then the model order is

greater than the number of sub-aperture measurements in qM, and thus, the estimated

error & can be made zero for all hypotheses. Consequently, we regularize the optimiza-

tion problem. In order for the estimated error i to be made small under the incorrect

model, many of the values in A generally have to be made unreasonably large which

results in an unrealistic set of reflectivities. Thus, a 2-norm regularization penalty is

used in the estimation of A. In particular, instead of minimizing the weighted squared

error to estimate A, A is estimated as

A= arg min {Ie 12_1 + yA H RA}
A

S(B H A-B + yR )-lB H A-qm
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where P is defined accordingly, -y is a regularization parameter, and R is the regular-
ization matrix that penalizes the energy in all the Ak other than k = 0, i.e.

R= I -eKe H = diag(1, ... , 1,0, 1 . .. , 1).

This regularization can be interpreted as a zero-mean Gaussian prior on the neighboring
scatterer reflectivities. Use of the regularized value of A produces the following value
for the weighted error norm

||i||-i =||qM - BAI||
1

2 2 qH [A- - 2A-BP + PHBHA-lBP] qM (5.30)

which can be used as the statistic in the anisotropy hypothesis test. For simplicity,
the statistic in Eq. (5.30) will be called the multiple scatterer model statistic (or MSM
statistic). Note that the weighting matrix in brackets of Eq. (5.30) is data independent.
Thus, the weighting matrix can be pre-computed offline for each hypothesis thereby
allowing for a computationally simple likelihood that corresponds to a norm on qM.

* 5.2.2 Experimental Results

To demonstrate the performance of the anisotropy test based on the MSM statistic
presented in this section, a GLRT based on this statistic is applied to the SAR data
in Figure 5.2. The number of neighboring scatterers considered is set by K = 6 and
their spacing is set by the image oversampling rate of A,/Ap = 1.25. The value of
the regularization parameter on neighboring reflectivities is set by -y = 0.5. All other
parameters are set to the same values as in Section 5.1.7.

The results of the new test are displayed in Figures 5.5 and 5.6. Figure 5.5(a) shows
the degree of anisotropy attributed, and Figure 5.5(b) shows the resulting sub-aperture
reflectivity estimate. Comparing Figure 5.3 and Figure 5.5, neither of which use the
pre-screening amplitude threshold, it is clear that the test using the MSM statistic better
suppresses the number of false anisotropy classifications in clutter than the tests based
on the isolated scatterer model. Furthermore, the test using the MSM statistic still
correctly attributes all of the scattering centers correctly except for the weak scatterer
labeled D in the upper-right portion of the image which is still attributed as quarter-
aperture anisotropy. The reason this extended model does not correctly attribute this

scatterer is the neighboring scatterers are modeled as isotropic with a reflectivity that

is regularized towards zero. Consequently, the model does not fully account for the

interference from strong neighboring scatterers, and the residual interference is still

sufficient to cause a misclassification.
Results using the 5dB SNR pre-screening threshold with the new test are shown

in Figure 5.6. As expected, the threshold further reduces the number of anisotropy
classifications in clutter from that in Figure 5.4 for the modified GLLR test with a

pre-screener and Figure 5.5 for the MSM statistic test without a pre-screener. Unfor-

tunately, in all cases, there are still false anisotropy classifications for clutter pixels in
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the vicinity of an actual scatterer resulting in a coarser image resolution. This coarse

resolution is quite evident around the isotropic point scatterers whose energy is visible

over several pixels in the sub-aperture imagery. The negative effects of such coarsening

are also evident in Figure 5.5 where we see that without the use of a pre-screening

threshold, scatterers in close proximity often appear as a single scatterer.

I.
*

I I

(a) (b)

Figure 5.5. Results of using the anisotropy test based on the MSM statistic applied to the SAR data

in Figure 5.2. Images of (a) degree of anisotropy and (b) sub-aperture reflectivity.

*

(a) (b)

Figure 5.6. Results of
threshold applied to the
aperture reflectivity.

using the anisotropy test based on the MSM statistic with a pre-screening

SAR data in Figure 5.2. Images of (a) degree of anisotropy and (b) sub-

* 5.3 Decision-Directed Telescopic Testing

The test based on the MSM statistic is, to a fair degree, able to suppress anisotropic

classifications in clutter. Pixels in the immediate vicinity of a scatterer, however, are still
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frequently classified as anisotropic leading to a coarsening of the image resolution around
these scatterers, even when the pre-screening threshold is applied. To help address
these misclassifications in clutter, this section presents a telescopic testing procedure
for determining anisotropy attribution. The procedure tests anisotropy hypotheses in a
decision-directed fashion making use of the knowledge that imaging resolution coarsens
as sub-aperture size is decreased to produce anisotropy classifications that are robust
to the presence of interfering scatterers. The improved anisotropy attribution thus
produces sub-aperture reflectivity images that preserve high imaging resolution while
also providing anisotropy information and improved sub-aperture reflectivity estimates.

* 5.3.1 Telescopic Algorithm

The sub-aperture pyramid which is used to form sub-aperture measurements and define
anisotropy hypotheses is convenient not only for revealing anisotropy information, but
also for providing an efficient and robust means for performing the hypothesis tests. All
of the tests presented in Sections 5.1 and 5.2 can be adapted so that instead of exhaus-
tively computing and comparing the GLLR's for each of the sub-aperture hypotheses,
the GLLR's need to be evaluated and compared for only a small subset of the candidate
hypotheses. In particular, due to the nested structure of the sub-apertures composing a
pyramid, given by condition (D) in Section 3.1, the tests can be performed in a telescopic
fashion traversing down a branch in the pyramid of sub-apertures. This processing is

depicted in the example in Figure 5.7 where the amount of shading conveys the value
of the GLLR statistic with lighter shades indicating higher GLLR's. On the pyramid,
one expects the likelihoods to increase as the pyramid is traversed downward and the
hypothesized sub-apertures approach the correct sub-aperture, i.e. as the sub-aperture
scattering model better fits the actual response. Continuing down the pyramid past the
correct sub-aperture, one expects the likelihoods to then decrease as the hypothesized
sub-apertures start to deviate from the correct sub-aperture, i.e. as the sub-aperture
scattering model becomes excessively anisotropic. This intuition motivates performing
the hypothesis test in the following manner:

Step 1: Start with the full-aperture at scale m = 0 and denote it as Ho,i.

Step 2: Consider those hypotheses at scale m+1 for which Sm+l,im+i C Sm,i , i.e. chil-
dren of the current sub-aperture. Find the one which has the highest GLLR
statistic and denote it as Hm+1,i*-

Step 3: If the parent is sufficiently more likely (i.e. -ym,i. > ym+1,i- + T, where T

is the GLLR threshold computed from the cost structure), then stop and return

Hm,ij as the estimated hypothesis.

Step 4: If m +1 = M, we are at the bottom of the tree, so stop and return Hm+i,i+

as the estimated hypothesis. Otherwise, increment m and goto Step 2.

This procedure provides an efficient approximation to selecting a hypothesis without

having to evaluate all the sub-aperture statistics. In addition to reducing computational
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Figure 5.7. Illustration of how the anisotropy testing can be done in a decision-directed fashion by

starting with the full-aperture, and at each scale, inspecting only the children of the most likely sub-

aperture. The testing terminates as soon as the parent is sufficiently more likely than its children or

the bottom of the pyramid is reached. Lighter shadings of the sub-apertures indicate higher likelihoods.

Dashed lines denote which hypotheses are tested, and solid lines denote the branch traversed.

burden, performing the hypothesis test in a telescopic fashion also enforces a degree of

consistency in the sub-apertures tested thereby increasing the robustness of the test. In

particular, in order for a particular sub-aperture ultimately to be chosen, its ancestor

hypotheses must also have been chosen in the test at the previous scales. While this

behavior is reasonable for anisotropic scatterers, this pattern is not necessarily followed

when there is interference from neighboring scatterers. In particular, the effect of a

neighboring scatterer is to corrupt the statistics for smaller sub-aperture hypotheses

since they have larger resolution cells. The statistics for larger sub-apertures, how-

ever, are unaffected since these sub-apertures have smaller resolutions cells. Thus,
the decision-directed testing process frequently stops prior to reaching a scale where

the interfering scatterer enters the coarser resolution cells and corrupts the anisotropy

attribution.

N 5.3.2 Results

The performance of the telescopic testing procedure is demonstrated using the modified

GLLR and the MSM statistic. The SAR data and test parameters used here are the

same as those used in Sections 5.1.7 and 5.2.2. The results of using the telescopic testing

procedure with the modified GLLR are displayed in Figures 5.8(a) and (b) for the case

of no pre-screening threshold and Figures 5.9(a) and (b) for the case of a pre-screening

threshold of 5dB SNR. Similarly, the results of using the telescopic testing procedure

with the MSM statistic are displayed in Figures 5.8(c) and (d) for the case of no pre-

screening threshold and Figures 5.9(c) and (d) for the case of a pre-screening threshold

of 5dB SNR.
As motivated, the use of the telescopic testing procedure has significantly reduced

the number of anisotropy classifications around strong scatterers and correspondingly

improved the resolution in these areas. In fact, with the telescopic testing method, the

modified GLLR and MSM statistic tests now produce sub-aperture reflectivity images

with sufficiently high resolution that individual scatterers can be identified. However,
the scatterer in the upper-right of the image is still misclassified. As mentioned in the

previous section, this misclassification is due to the corruption of the likelihood statistic

by the interference from a strong neighboring scatterer. The purpose of the telescopic
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':

(a) (b)

(c) (d)

Figure 5.8. Results of using the telescopic testing procedure (a-b) with the modified GLLR and (c-d)

with the MSM statistic. Images of (a,c) degree of anisotropy and (b,d) sub-aperture reflectivity.

testing procedure is to reduce anisotropy classifications in clutter where interference

causes inconsistent patterns in the likelihoods on the pyramid as the resolution cell size

varies with scale. The processing is not specifically designed to improve the classifi-

cation on strong scatterers. Consequently, it is not surprising that the attribution of

the misclassified scatterer is not corrected by the telescopic testing procedure. The ac-

counting for neighboring scatterers must be improved in order to correct this problem.

This task is left to Chapter 7.

M5.4 Results on MSTAR Data

This section presents results using the MSTAR public release data set. These images

have a resolution of one foot in both range and cross-range that is achieved using

a transmitted signal with a 590MHz bandwidth, 9.6GHz center frequency, and 2.8'

azimuth. This data set is described in detail in Appendix B.
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(a)

(c)

(b)

(d)

Figure 5.9. Results of using the telescopic testing procedure and

the modified GLLR and (c-d) with the MSM statistic. Images of

sub-aperture reflectivity.

a pre-screening threshold (a-b) with

(a,c) degree of anisotropy and (b,d)

All of the results in this section are based on the three-level, half-overlapping, half-

aperture pyramid. The GLRT based on the MSM statistic using the telescopic testing

procedure is used to characterize anisotropy. The parameters for the test are the same as

those used in the previous sections. In particular, the number of neighboring scatterers

is K = 6, the regularization parameter on neighboring reflectivities is y = 0.5, and the

cost matrix is the one given in Table 5.1. No pre-screening threshold is used for the

MSTAR data as a significant threshold might preclude the attribution of real scatterers.

* 5.4.1 Images of Anisotropy

To illustrate the anisotropy classifications produced for measured data, Figure 5.10

displays the results for a BMP-2 (c21) at 00, 300, 600, and 900 azimuths with a 170 de-

pression. Each row of the figure displays three images for a given azimuthal orientation.

The first image in each row is the standard full-aperture log-magnitude reflectivity im-
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age. The second image is a display of the anisotropy attribution at each the pixel. The
third image is the log-magnitude of the sub-aperture reflectivity image. Even though
the aperture associated with this data set is relatively small at 2.8', anisotropy is still
detected. In particular, it usually appears to be associated with a part of the tank. Par-
ticular note is made of the exceptions at the 0' azimuth. Here, there are many clutter
pixels classified as anisotropic. The reason that these pixels are declared as anisotropic
is that the interference from neighboring large scatterer is not well modeled. Recall that
the current formulation only considers the possibility of neighboring scatterers which
are isotropic. However, the front edge of the tank generates a very strong anisotropic
response which is not accurately captured in our current model. Extending the model
to account for such scattering (as done in Chapter 7) should alleviate problems such as
this.

* 5.4.2 Confusion Matrices

The images in Figure 5.10 show that scatterers are being classified as anisotropic, how-
ever these images do not convey how useful that information is in characterizing tar-
gets. To address this issue, empirical confusion matrices for anisotropy classification
are generated using the MSTAR data set. In particular, the confusion probabilities
are estimated from a data set composed of the following vehicles: 2S1 (bOl), BMP-
2 (c21), BRDM-2 (E-71), D-7 (92v13015), T-72 (132), ZIL-131 (E12), and ZSU-23/4
(d08) where truth is taken as the empirical results from the 17' depression data and
test data is taken from the 150 depression data. For each pair of training and testing
images at the same azimuth, the 20 brightest peaks6 are extracted from each image and
a correspondence match, based on relative location, is performed and taken as truth.
The empirical confusion matrices are then computed from the anisotropy attributions
of these peaks. For the remainder of this section, the use the term "confusion matrix"
refers to one computed in this fashion.

The confusion matrix for this data set is given in Table 5.2. Each row of this ma-
trix represents the estimated probability distribution of the anisotropy attribution for a
scatterer conditioned on the "truth" attribution of the sister vehicle. The most promi-
nent aspect of this confusion matrix is the apparent independence of testing anisotropy
and training anisotropy illustrated by the similarly of each row of the matrix, i.e. the
near independence on the conditioning of the training hypothesis. This result is counter-
intuitive. In particular, canonical scatterer models show a strong functional dependence
of anisotropy on scatterer geometry. Consequently, we should expect the anisotropy at-
tribution for these scatterers to be stable features. However, canonical scattering is not
the only source of anisotropy. Anisotropy may also arise from the interference of mul-
tiple irresolvable scatterers. The conglomerate response from such a set of scatterers
is a superposition of complex exponentials in azimuth. Thus, over a narrow aperture,
such as the case in MSTAR data, the composite response may appear to be anisotropic.

6 Peaks are taken as local maxima in the image with a minimum distance separating them.
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The instability of such an instance of anisotropy is not surprising especially considering

that the depression angle has changed.
To further evaluate the source and stability of anisotropic phenomena, the data set

is partitioned into those images at a near-cardinal azimuth (within 2.50 of a cardinal

angle) and those at off-cardinal azimuths. The motivation for this partitioning is that

the influence of canonical scatterers is expected to be most pronounced at near-cardinal

azimuths because of the natural rectangular shape of vehicles. Thus, near-cardinal
azimuths should exhibit anisotropic scattering associated with flat plates and other

large canonical scatterers oriented orthogonal to the impinging radar signal.

The confusion matrices for the near-cardinal and off-cardinal azimuths are given in

Table 5.3 where there are significant differences between the two cases. In particular,
there is now a noticeable presence along the diagonal of the confusion matrix based on

the near-cardinal orientations, signaling that anisotropy is more stable at these angles

as expected for canonical scatterers. That the diagonal entries are not larger is not
surprising given that there are very few large canonical scatterers at these orientations,
and several of the extracted peaks probably correspond to collections of irresolvable

scatterers. The off-cardinal confusion matrix, however, shows that training anisotropy
is independent of testing anisotropy. This result leads us to believe that there are

at least two fundamental sources of anisotropy. One source is canonical scattering
which is prominent at cardinal azimuths, but much less present at other azimuths in
narrow-aperture data. The other is an unstable source of anisotropy which is commonly

observed at off-cardinal azimuths. A likely candidate for this unstable anisotropy is
the scintillation produced by the irresolvable interfering scatterers discussed earlier.

Anisotropy arising from such interference is highly variable and changes unpredictably,
which would account for the lack of correlation in the anisotropy classifications between

the testing and training data in the off-cardinal confusion matrix.

Table 5.2. Anisotropy confusion matrix for 2S1, BMP-2, BRDM-2, D7, T-72, ZIL-131, and ZSU-23/4.

Training \ Testing full-aperture half-aperture quarter-aperture

full-aperture 0.88 0.09 0.03
half-aperture 0.83 0.13 0.15

quarter-aperture 0.81 0.12 0.07

* 5.4.3 Summary of MSTAR Results

The results on synthetic data in this chapter have shown that anisotropy information
can be reliably extracted from image data. Care must be taken, however, to address

the effects of interfering scatterers which corrupt the anisotropy attribution and lead
to a coarse imaging resolution. Several anisotropy tests were presented in this chapter
to address the effects of such interference. The GLRT based on the MSM statistic with

the telescopic testing modification proved to be the most effective but this statistic does
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Table 5.3. Anisotropy confusion matrix for vehicles at near-cardinal and off-cardinal angles.

_ Near-cardinal Off-cardinal
Training \ Testing full-ap. half-ap. qtr.-ap. full-ap. half-ap. qtr.-ap.

full-ap. 0.82 0.11 0.07 0.89 0.08 0.03
half-ap. 0.72 0.26 0.02 0.83 0.12 0.05
qtr.-ap. 0.61 0.09 0.30 0.83 0.12 0.05

not adequately compensate for strong interfering scatterers. The issue of how to better
deal with these neighboring scatterers is addressed in Chapter 7.

The results on the MSTAR data are not what one would expect given the results
on the synthetic data. In particular, the anisotropy attribution of peaks in the MSTAR
data set is not stable. The stability of anisotropy attributions are separately examined
over near-cardinal and off-cardinal angles. This partitioning reveals distinct behavior
over the two sets. In particular, the anisotropy attribution is very unstable at off-
cardinal angles, but the attribution is relatively stable at near-cardinal angles. This
behavior leads us to conjecture that there are two sources of anisotropy which are
examined in detail in Chapter 6.
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S..

Figure 5.10. Anisotropy characterization of a BMP-2 at (first row) 0' azimuth, (second row) 300

azimuth, (third row) 60* azimuth, and (fourth row) 900 azimuth. First column: Images of log-magnitude

reflectivities. Middle column: Image of anisotropy classifications. Last column: Image of sub-aperture

reflectivities.
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Chapter 6

Relation between Phenomenology
and Anisotropy Attribution

In the previous chapter, we observed that anisotropy attribution is considerably less

stable at off-cardinal angles than at near-cardinal angles in the MSTAR data set. This

behavior supports the argument for separate sources of anisotropy. This chapter ex-

plores two such sources that are consistent with the observations in the MSTAR data.

The two particular sources considered are geometric and volumetric scatterers. Scatter-

ing models, such as the PO and GTD models, give functional forms for radar scattering

from canonical scatterers which clearly convey an azimuthal dependence on the shape,
size, and orientation of the scatterer. These models, however, are based on very specific

assumptions about the configuration of scatterer. For example, the model for a dihedral

assumes two equal-sized rectangular plates conjoined to form a 900 angle. Our analysis

of anisotropy, however, produces a more general characterization of anisotropy. This

characterization allows for the consideration of a broader class of scatterers that we call

geometric scatterers. This class includes not only canonical scatterers but also those

scatterers which deviate from canonicity. The other source of anisotropy considered is

what we call volumetric scatterers. These scatterers are actually a collection of multiple

scatterers which are too closely spaced to resolve as a single scatterer and thus appear

as a single scatterer with an erratic azimuthal response due to the chaotic interference

among the constituent scatterers.
To demonstrate the scattering produced by these sources of anisotropy, Figure 6.1

shows the azimuthal response from a canonical flat plate measuring 1m in cross-range

and a volumetric scatterer composed of 10 randomly located scatterers distributed

over im in cross-range. The flat plate response is clearly anisotropic as the azimuthal

energy is highly concentrated in the middle section of the aperture. The anisotropy

characterization of the volumetric scatterer, however, is not as clear because the az-

imuthal response is less concentrated in azimuth, and the energy is erratically dis-

tributed across the aperture. Figure 6.1 illustrates an important point about the "sta-

bility" of anisotropy. In particular, over a relatively small aperture, such as the 2.80
aperture used in the MSTAR data, it is clear how the volumetric scatterer's response
might be classified as anisotropic as only one of the localized fluctuations is observed. If

117



118 CHAPTER 6. RELATION BETWEEN PHENOMENOLOGY AND ANISOTROPY ATTRIBUTION

Geometric scatterer Volumetric scatterer
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(a) (b)

Figure 6.1. Instances of azimuthal scattering by a (a) geometric scatterer and (b) volumetric scatterer
with the real and imaginary components of the response shown in the solid and dashed lines respectively.

the aperture is shifted or enlarged, however, the erratic distribution of energy over the
aperture may lead to a different attribution for this scatterer because the sub-aperture
scattering model poorly fits this azimuthal response. Thus, the anisotropy attribution
for these volumetric scatterers is not expected to be stable. Geometric scatterers, in
contrast, should produce a stable and informative anisotropy characterization as the
unimodal azimuthal responses for these scatterers are relatively well modeled by the
sub-aperture scattering model. Thus, the attribution for geometric scatterers should
be robust to variations in the size and location of the aperture.

The remainder of this chapter elaborates on the ideas presented above. Section 6.1
discusses the behavior of geometric anisotropyl and the information that anisotropy
attribution conveys for geometric scatterers. Section 6.2 discusses the behavior of vol-
umetric anisotropy and how this behavior varies with the properties of the collection of
scatterers, such as spatial density and coverage. Section 6.3 uses the results of the previ-
ous two sections to explain how the use of wide-aperture data results in a lower incidence
of anisotropic attributions for volumetric scatterers while preserving the attributions for
the more meaningful geometric scatterers. Section 6.4 describes an additional benefit of
wide-aperture data which is the posing of additional, less anisotropic, sub-aperture hy-
potheses that allow for a more refined characterization of small scatterers. Section 6.5
concludes the chapter by demonstrating the argued benefits of a wide-aperture on the
Grayling Ultra-wideband SAR 2 (GUS) data set.

'We will refer to anisotropy due to geometric scatterers as geometric anisotropy and anisotropy due
to volumetric scatterers as volumetric anisotropy.

2 The GUS data set is composed of extremely high resolution imagery achieved using large bandwidth
of 4GHz and an aperture of 260.
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* 6.1 Geometric Anisotropy

The behavior of geometric and volumetric anisotropy is studied in this chapter using the

telescopic anisotropy test based on the multiple scatterer model developed in Chapter 5.
The analyses presented in this and the following sections are based on narrow-aperture

data because of the prevalence of such data in the SAR community. The data used

in these sections are synthesized according to MSTAR operational parameters, i.e. one

foot resolution in range and cross-range achieved with a 2.80 aperture, 9.6GHz center

frequency, and 590MHz bandwidth. It should be emphasized that the use of MSTAR

parameters is merely to aid intuitive understanding as the results can always be scaled

with respect to aperture size. The three-level, half-overlapping, half-aperture pyramid

depicted in Figure 3.3(b) is used for this narrow-aperture data. The number of neigh-

boring scatterers considered is set by K = 6, and their spacing is set by the oversampling

rate of Ar/Ap = 1.25 used in the MSTAR data set. The value of the regularization

parameter on neighboring reflectivities is set by -y = 0.5. Deviations from the boxcar

model are accounted for by setting p = 0.1.
To study the dependence of anisotropy classification on scatterer size, this thesis uses

what will be called an anisotropy plot. This plot displays several curves, one for each

degree of anisotropy, where each curve plots the probability of anisotropy classification

conditioned on the dependent variable scatterer size. Thus, the plotted values for a

fixed scatterer size, i.e. for any value of the independent coordinate (scatterer size), the

values of the three curves correspond to the probability of choosing each of the three

hypotheses. To generate the anisotropy plots, Monte Carlo probability estimates are

used. In particular, for each scatterer size, 213 = 8192 Monte Carlo trials are run, and

the probability of attribution for each degree of anisotropy is taken as the corresponding

relative frequency of occurrence.
The flat rectangular plate scatterer is studied in this section to demonstrate the

behavior of geometric anisotropy. The flat plate is only one instance of a geometric

scatterer, but its unimodal azimuthal response is characteristic of the class of geometric

scatterers considered. Note that it is the objective of this section to understand the

stability of the anisotropy classification of these scatterers and not to specifically char-

acterize parameters of the scatterers. Thus, the use of the flat plate alone is sufficient

for our goals.
Anisotropy plots for the flat plate are shown in Figure 6.2 with each plot account-

ing for various uncertainties. Figure 6.2(a) is the simplest case where the scatterer is

taken at broadside and the exact scattering center location is known. The synthesized

azimuthal response is generated according to the PO model for the rectangular plate

in Eq. (2.16). Measurement noise is incorporated in this data through the addition of

white Gaussian noise across the aperture. The PSNR of the signal is kept constant

at PSNR=20dB, thus noise variance scales with the maximum peak reflectivity in the
image domain.

Contained in Figure 6.2(a) are three curves each of which represents the probabil-
ity of a particular anisotropy attribution (full, half, or quarter-aperture) as a function
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Figure 6.2. Anisotropy plots for a square plate in Gaussian noise at 20dB PSNR and (a) no azimuthal
and location uncertainty; (b) maximal azimuthal uncertainty and no location uncertainty; (c) maximal
azimuthal uncertainty and location uncertainty given by peak extraction.

of plate size. As expected, the full-aperture classification dominates for the smaller

plate sizes which generate broader responses in azimuth. As plate size is increased, the

half-aperture classification starts to dominate. Between 0.8m and 1m, the half-aperture

classification probability is approximately one. The noise-free azimuthal response for a

plate size in the middle of this region (0.9m) is shown in Figure 6.3(a) which is quite

reasonably classified as half-aperture. The solid curve in Figure 6.3(a) represents the

real component of the azimuthal response, and the dashed curve represents the imagi-

nary component. The vertical lines are a visual aid dividing the aperture into eighths.

As plate size is increased beyond im, the dominant classification in Figure 6.2(a) tran-

sitions from half-aperture to quarter-aperture. Between 1.3m and 1.9m, the quarter-

aperture classification probability is approximately one. The azimuthal response for a
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plate size in the middle of this region (1.6m)
classified as quarter-aperture.
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Figure 6.3. Azimuthal response for different plate sizes: (a) 0.9m, (b) 1.6m, and (c) 2.6m.

Intuition would suggest that the curves in the anisotropy plot would be unimodal

and, in particular, that the probability of the quarter-aperture classification would

monotonically increase with plate size since quarter-aperture anisotropy is the most

anisotropic classification available. However, this behavior is not observed. In partic-

ular, starting at about 1.9m, the quarter-aperture classification probability begins to

decrease slightly. The middle of the range over which the probability drops is about

at 2.6m. The azimuthal response for this plate size is shown in Figure 6.3(c). One

would expect this response to be classified as quarter-aperture anisotropy. In fact, the

null-to-null bandwidth for this plate size is a quarter of an aperture. So, the question

is why is this scatterer occasionally classified as full-aperture. This misclassification
is an artifact of the telescopic hypothesis testing procedure. To see this fact, observe
the GLLR's for the noise-free response given in the first column of Table 6.1. From

1.40
. . .
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these statistics, one can see that the quarter-aperture hypothesis does indeed produce
the highest GLLR, but because the full-aperture hypothesis is nearly as likely as the
half-aperture hypothesis, the telescopic testing occasionally terminates prior to exam-
ining the statistics for the quarter-aperture hypotheses. In particular, susceptibility
to noise can cause the full-aperture hypothesis to appear more likely than any of the
half-aperture hypotheses, thus resulting in an immediate declaration of full-aperture
scattering.

Table 6.1. GLLR's for noiseless 2.6m plate response (assuming an PSNR of 20dB).

Without azimuthal uncertainty With azimuthal uncertainty
full-aperture 0 0
half-aperture 0.60 1.0-2.3

quarter-aperture 8.4 4.2-7.5

To gain a better understanding of why the full-aperture hypothesis is nearly as
likely as the half-aperture hypothesis for the 2.6m plate, consider the basic GLLR in
Eq. (5.16). For the 2.6m plate, the zero-crossings of the sinc-like azimuthal response
are located such that the sidelobes minimize the reflectivity in the center half-aperture,
i.e. the first sidelobes maximally negate the influence of the mainlobe. Thus, the mid-
dle half-aperture reflectivity is reduced and produces a correspondingly lower GLLR
for this hypothesis. Similarly, the quarter-aperture classification rate "dips" at plate
sizes near multiples of 2.6m as the other "negative" sidelobes have a locally maximum
negative effect on the middle half-aperture3 . This problem could be alleviated by relax-
ing the hard decision made at each scale in the telescopic hypothesis testing procedure.
However, such a modification is not used here because, as discussed next, this artifact
is not an issue in practice due to the effect of azimuthal uncertainty. Furthermore,
such a change in the telescopic testing procedure would reduce robustness to interfering

scatterers as discussed in Section 5.3.
The anisotropy plot in Figure 6.2(a) corresponds to the case in which the plate is

oriented exactly broadside to the center of the aperture. To incorporate the effects of
azimuthal uncertainty, i.e. slight rotations of the scatterer, the experimental setup is
modified as follows. The SAR data is synthesized with the same parameters as before
except that the data is generated over an aperture three times as large, i.e. the azimuthal
response is generated over 8.4'. From this extended aperture, a section measuring 2.8'
is randomly chosen from a uniform distribution in a fashion that provides a maximal
amount of uncertainty subject to the constraint that the mainlobe of the azimuthal
response is always observed. In particular, the support of the uniform distribution is
given according to the following cases:

3 These other ripples are too small to be seen in Figure 6.2(a) but are apparent if the noise level is
increased or the scaling of the vertical axis is changed.
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" if the plate size is less than two wavelengths (i.e. the plate size is less than 6.25
cm), then the scatterer is considered isotropic and any 2.8' section of the extended
aperture can be selected,

* if the plate size is larger than two wavelengths but still small enough such that
the half-power bandwidth of the azimuthal response is larger than 2.80, then any
section of the extended aperture within the half-power band can be chosen, and

" if the plate size is sufficiently large such that the half-power bandwidth of the
azimuthal response is smaller than 2.8', then any section of the extended aperture
containing the half-power band can be chosen.

The anisotropy plot incorporating this azimuthal uncertainty is shown in Figure 6.2(b).
Interestingly, performance is improved for larger plate sizes by the addition of azimuthal
uncertainty. In particular, the "dip" at 2.6m in Figure 6.2(a) is reduced. Looking at the
GLLR's in the second column of Table 6.1 for the 2.6m plate (assuming 20dB PSNR), it
is apparent that it is not that the quarter-aperture GLLR increases (in fact, the GLLR
decreases slightly to typically vary between 4.2 and 7.5) but that the half-aperture
GLLR increases to typically vary between 1.0 and 2.3. This increase occurs because
the exact broadside orientation represents a worst-case scenario for the half-aperture
hypothesis (relative to the full-aperture hypothesis) due to the maximal negative ef-
fect that the first (and other odd number) sidelobes have on the middle half-aperture
reflectivity. Azimuthal uncertainty, however, perturbs this degenerate alignment.

In addition to azimuthal uncertainty, the effect of location uncertainty can also be
incorporated into the anisotropy plot. In particular, location uncertainty is simulated
by synthesizing a response for a random location and then using a peak extraction
procedure to determine the location to be used in the anisotropy test. Modeling lo-
cation uncertainty in this fashion closely mimics the location uncertainty which arises
in peak-based ATR algorithms[25, 34, 13, 9, 23]. The anisotropy plot incorporating
both azimuthal and location uncertainty is shown in Figure 6.2(c). Not surprisingly,
there is a slight degradation in performance, particularly for larger plate sizes. This
degradation is due to the fact that large plates span several resolution cells over which
the reflectivity is approximately constant. Thus, the peak extraction is susceptible to
noise over these resolution cells and frequently reports a location that, while on the
scatterer, does not correspond to the scattering center. The resulting peak location
error introduces a modulation on the observed azimuthal response which distorts the
anisotropy classification4 . In particular, for larger apertures, the linear phase on the
azimuthal response prevents the sub-aperture reflectivity estimates from reaching their
true value due to the destructive interference that occurs when integrating over the
sub-apertures. Thus, the energy from larger sub-apertures is biased towards smaller

4 One might choose to model this location error as a nuisance parameter and address the error with
a statistical approach. We do not, however, take this course due to the difficulties involved with the
nonlinear effects the error has on the observed response. We thus view location error as an artifact of
the peak-extraction algorithm and leave the problem for the peak-extraction to address.
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values. Smaller sub-apertures, on the other hand, are less susceptible to this phase
variation due to the shorter integration interval and thus give stronger reflectivity esti-
mates. This interference is the reason that errors in scatterer location tend to bias the
anisotropy classification towards higher degrees of anisotropy.

The anisotropy plots in Figure 6.2 show that even in the presence of azimuthal
and location uncertainty, the anisotropy attribution exhibits the strong dependence of
anisotropy on plate size that is predicted by canonical scattering models. Furthermore,
the anisotropy classifications are consistent with these models as illustrated by the
azimuthal responses in Figure 6.3. One would naturally expect the dependencies in
the anisotropy plot to be preserved as the aperture size is increased. As discussed in
Section 6.3, this is the case, but this seemingly trivial property turns out to be quite
significant when contrasted to the behavior of volumetric anisotropy which is discussed
next.

N 6.2 Volumetric Anisotropy

Similar to the anisotropy plots for the flat plate scatterer, a notion of scatterer "size"
is used as the dependent variable in the anisotropy plots for a volumetric scatterer.
The "size" in this case is the size of the support for the pdf generating the locations
of individual isotropic scatterers composing the volumetric scatterer. The radar and
anisotropy test parameters are the same as those used for the geometric anisotropy
plots in Figure 6.2. For each Monte Carlo sample, a volumetric scatterer is taken as a
collection of random point scatterers generated according to the following parameters:

" The density of the scatterers in terms of the average number of scatterers per
resolution cell.

* The support for the uniform distribution used to produce the down-range and
cross-range location of the scatterers. The support of the pdf producing the
down-range location of the scatterers is taken as one resolution cell. The support
of the pdf producing the cross-range location is the dependent variable in the
anisotropy plot.

* The azimuthal uncertainty which is taken to be one quarter of the aperture,
i.e. 0.70.

" The distribution producing the real-valued reflectivity 5 of the scatterers. The par-
ticular distribution used is a Gaussian, with a mean and variance of 1, truncated
to prevent negative values.

" The PSNR of the collective scattering which is taken to be 20dB.

5 The nonzero phase on the measured reflectivity comes from the displacement of the scatterers in
range and cross-range.
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Figure 6.4 shows the anisotropy plots for scattering densities of 1, 10, and 100 scat-

terers per resolution cell or equivalently 1, 10, and 100 scatterers per foot in cross-range

under the MSTAR parameters. From the differences among these plots, it is imme-

diately clear that the behavior of volumetric anisotropy is heavily dependent on the
spatial density of the constituent scatterers. In particular, the plots go from saying
that anisotropy is independent of scatterer size for low scattering densities to saying

that anisotropy is highly dependent on scatterer size at densities sufficiently high that

the volumetric scatterer resembles a flat plate. This behavior is quite reasonable. For

an average of one scatterer per resolution cell, one should expect the multiple scatterer

model to be able to account for the responses from the individual isotropic scatterers,
thus producing the full-aperture classification for the focused location regardless of the
scatterer size. However, these low-density volumetric scatterers are not always declared
full-aperture because constituent scatterers may be considerably closer than one reso-
lution cell apart or the peak extraction may cause the algorithm to focus to the wrong
location resulting in an anisotropic attribution. For a high scattering density of 100
scatterers per resolution cell, there are so many scatterers, whose spatial locations are
drawn from the uniform distribution, that the composite response very closely resem-
bles that from a flat plate with a size given by the spatial support for the volumetric
scatterer. Deviations from the anisotropy plot for the flat plate can be attributed to
the fact that

1. the scatterers are not regularly spaced since their locations are random and

2. the amplitudes on the scatterers are random.

The anisotropy plot for a density of 10 scatterers per resolution cell is a transitional
phase between the two extreme cases of 1 and 100 scatterers per resolution cell where

behaviors from both regimes are evident.
From the anisotropy plots in Figure 6.4, one can conclude that low density volumet-

ric scattering is more useful than high density scattering because the former minimizes
the classification rate of volumetric anisotropy and more accurately represents the re-
sponse as arising from a collection of point scatterers instead of a single anisotropic
scatterer. The reduction in volumetric anisotropy attributions allows for scatterers
that are declared anisotropic to be more confidently associated with geometric scat-
terers from which reliable physical information can be inferred. One may at first be
inclined to believe that we have to accept a given incidence of volumetric anisotropy
as volumetric scatterer density is a fixed parameter, but this is not the case. The
scattering density in our analysis is measured with respect to the number of scatterers
per resolution cell. The size of the resolution cell is inversely related to the size of the
aperture. Thus, by using wide-aperture data, one should be able to reduce volumetric
scattering density and hence the detection rate for volumetric anisotropy as discussed
in the next section.
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Figure 6.4. Anisotropy plots for volumetric scatterers with a scattering density of (a) 1, (b) 10, and
(c) 100 scatterers per resolution cell.

U 6.3 Extensions to Wide-Aperture Data

The results for geometric anisotropy attribution in Figures 6.2 and volumetric anisotropy
attribution in Figure 6.4 are promising in that they imply that by increasing the size of
the aperture, one can preserve the detection rate of geometric anisotropy classifications
while reducing the rate of volumetric anisotropy classifications. This effect would then
allow for a more thorough analysis of predictable anisotropic geometric scatterers in an
ATR algorithm using wide-aperture data.

To see why increasing the aperture length decreases the incidence of volumetric
(but not geometric) anisotropy, note that for low-density volumetric scattering (per
resolution cell), Figure 6.4(a) shows that the anisotropy classification is usually full-
aperture regardless of the cross-range support. However, at medium to high scattering
densities, the number of anisotropy classifications increase. Wide-aperture data should,
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thus, reduce the number of anisotropy classifications because the larger aperture reduces
the scattering density in terms of the number of scatterers per resolution cell. For
example, increasing the aperture size by a factor of ten decreases the resolution cell
size and hence scattering density by the same factor. From the anisotropy plots in
Figure 6.4, it is apparent that such a factor should have a significant impact on the rate
of volumetric anisotropy classifications. Geometric scatterers, on the other hand, can
be considered to be composed of a continuum of infinitely small scatterers (with respect
to practical imaging resolutions), so increasing the resolution by an order of magnitude,
or more, does not detract from the high scatterer density thus preserving the structure
of the anisotropy plot.

The above is an image (or spatial) domain explanation for why wide-aperture data
would reduce the rate of volumetric anisotropy while preserving that of geometric
anisotropy. There is an additional azimuthal domain interpretation. Consider a scat-
terer that is declared anisotropic based on narrow-aperture data. This classification is
made because most of the energy is concentrated in one region of the aperture. Increas-
ing the aperture length, however, increases the range over which the azimuthal response
is observed. For a volumetric scatterer, there is likely to be a considerable energy con-
tribution in the newly added sections of the aperture because the underlying response
is not truly unimodal as depicted in Figure 6.1(b). However, a geometric scatterer with
a unimodal azimuthal response should have little energy in the newly added aperture
sections due to the these measurements capturing the tails of the azimuthal response.
Furthermore, many anisotropic geometric scatterers exhibit sinc-like oscillations in the
tails of their response (which nearly integrate to zero in the sub-apertures) while many
volumetric scatterers do not. Thus, for volumetric scatterers, there is likely to be con-
siderable energy in newly appended aperture sections which may change the anisotropy
classification, but for geometric scatterers, the newly appended aperture sections will
contain little energy thereby leaving the anisotropy attribution unchanged.

To verify this conjecture empirically, anisotropy plots for the geometric and volumet-
ric scatterers are generated in the same fashion as before except that the aperture size
is increased by a factor of eight. This modification naturally changes the sub-aperture
pyramid used. To be consistent with the narrow-aperture results, we use a four-level,
half-overlapping, half-aperture pyramid which consists of

* the 22.4' full-aperture at scale 0,

* 2.8' 1/8 th-apertures at scale 1,

* 1.40 1/16th-apertures at scale 2, and

* 0.7' 1/32th-apertures at scale 3.

Furthermore, again for consistency, the 22.4' full-aperture classification is not allowed
to be declared in the anisotropy attribution process as this degree of anisotropy is not
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available in the narrow-aperture setting6 . The latter three hypotheses correspond to
the full, half, and quarter-apertures in the narrow-aperture case and are thus consis-
tent in terms of the physical characterization of the underlying scatterer. To prevent
any confusion between the narrow and wide-aperture cases, these hypotheses will be
referred to with their measurements in degrees (i.e. 2.80, 1.4', and 0.70) instead of
normalized sub-aperture length. To be consistent in the geometric and volumetric set-
tings, azimuthal uncertainty in both cases is modeled with a uniform distribution over
1/4 of the narrow-aperture, i.e. 0.70. For consistency in the noise level between the
narrow and wide-aperture settings, the same noise spectral density (in the azimuthal
domain) is used for the wide-aperture data as in the narrow-aperture case. Thus, for
isotropic scatterers, the wide-aperture PSNR is actually higher than in the narrow-
aperture case, and for anisotropic scatterers, the wide-aperture PSNR is lower than in
the narrow-aperture case due to the coherent averaging involved7 .

The wide-aperture geometric anisotropy plot incorporating azimuthal and location
uncertainty is displayed in Figure 6.5. The two plots in Figure 6.5 correspond to two
different peak extraction methods. Figure 6.5(a) is for a coarse-resolution peak ex-
traction which is done using the center 2.80 narrow-aperture. Figure 6.5(b) is for a
fine-resolution peak extraction which is done using the full-aperture. As predicted,
Figure 6.5(a) looks quite similar to the narrow-aperture anisotropy plot in Figure 6.2(c)
showing a strong dependence on the underlying plate size. Figure 6.5(b) also looks quite
similar to Figure 6.2(c), but the classification rates for 1.4' and 0.7' anisotropy have
dropped slightly for larger plate sizes. One can also see that the "transition band"
between anisotropy classifications is wider for the fine-resolution peak extraction. This
degradation in performance is due to the fact that in the high resolution setting, the
plate sizes corresponding to the degrees of anisotropy being tested span several resolu-
tion cells. Over these resolution cells, the reflectivity is nearly constant which results
in a peak location that comes from a uniform distribution over the scatterer. This lo-
cation error results in a modulation of the observed azimuthal response which corrupts
the anisotropy attribution as discussed at the end of Section 6.1 for large plate sizes.
This location error is not as significant for the coarse-resolution peak extraction method
because the resolution cell size is the same order of magnitude as the plate sizes which
correspond to our tested degrees of anisotropy. Thus, the coarse spatial averaging usu-
ally covers a significant portion of the scatterer and is thus more likely to return a peak

location near the center of the flat plate.
Now, consider the behavior of volumetric scatterers in the wide-aperture setting.

The nominal scattering density examined is 10 scatterers per coarse resolution cell
or equivalently 1.25 scatterers per fine-resolution cell in the fine-resolution setting.

Figure 6.6 displays the wide-aperture anisotropy plots. Figure 6.6(a) is for the coarse-

6 We note that the omission of the full-aperture classification is solely to aid our comparison of narrow

and wide-aperture results. In applied settings, we recommend that the full-aperture always be used to

make maximum use of the aperture and provide maximum imaging resolution.
7The difference in PSNR is due to the signal processing gain associated with a larger aperture. The

underlying measurement conditions are matched in the narrow-aperture and wide-aperture scenarios.
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Figure 6.5. Anisotropy plots based on wide-aperture data for the canonical flat plate scatterer using
(a) the coarse-resolution peak extraction and (b) the fine-resolution peak extraction.

resolution peak extraction using the center 2.8' narrow-aperture, and Figure 6.6(b) is
for the fine-resolution peak extraction using the full-aperture. The volumetric anisotropy
plot in Figure 6.6(b) behaves as conjectured, reducing the rate of volumetric anisotropy
attributions and bearing a close resemblance to the anisotropy plot for a scatter-
ing density of one scatterer per resolution cell in the narrow-aperture setting. How-

ever, Figure 6.6(a) shows virtually no reduction in the rate of anisotropy classifica-
tions. Recalling the image domain rationale that wide-aperture data reduces volu-
metric anisotropy because the use of the larger aperture allows one to better resolve
constituent scatterers, this result is not surprising. When the coarse-resolution peak
extraction is used, the algorithm is not focusing on peaks that could be resolved in the
high-resolution regime thus disregarding that information which is beneficial.

The dependence on the peak extraction process can be summarized by saying that

the coarse-resolution peak extraction preserves the anisotropy classification rates for
both geometric and volumetric scatterers, while the fine-resolution peak extraction
slightly decreases the anisotropy classification rate for geometric scatterers but sig-
nificantly reduces the rate for volumetric scatterers. However, by utilizing both the
coarse and fine-resolution peak extractions, we should be able to obtain the desired be-
havior for both geometric and volumetric anisotropy. In particular, one can select which
peak extraction method to use based on scatterer size inferred from the anisotropy at-
tribution. Recall that the fine-resolution peak extraction degrades the attribution for
geometric scatterers because the finer resolution provides a worse scatterer location es-
timate for large scatterers. This location error results in over-estimation of the degree
of anisotropy. However, this type of location error occurs only for large scatterers that
span several pixels and have high degrees of anisotropy. Thus, for these scatterers it can
only be beneficial to repeat the anisotropy attribution using the coarse-resolution peak
location which gives a more accurate estimate of the scattering center. Consequently,
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Figure 6.6. Anisotropy plots based on wide-aperture data for volumetric scatterers with scattering
density of 10 scatterers per coarse-resolution cell using (a) the coarse-resolution peak extraction and
(b) the fine-resolution peak extraction.

a decision-directed procedure can be used to determine which scale peak extraction
should be used in the anisotropy attribution. In particular, one can first use the peak
location from the fine-resolution peak extraction, and if the extraction results in an
anisotropic declaration (conveying that there is likely to be a large geometric scatterer
there), then one can defer to the peak location from the coarse-resolution peak extrac-
tion8 . Note that this approach preserves the high rate of the minimally anisotropic
2.8' classification for volumetric scatterers since these classifications do not defer to
the coarse-resolution peak extraction. The high rates for the anisotropic 1.40 and 0.7'
classifications on large geometric scatterers, however, are also preserved since their ini-
tial anisotropy classification is usually over-estimated and thus defers to the location
estimate given by the coarse-resolution peak extraction which is more accurate for these
larger scatterers.

The anisotropy plots using this hybrid coarse and fine-resolution peak extraction
are given in Figure 6.7 which display the predicted behavior. In particular, the hybrid
peak extraction offers a unified approach which preserves the high rate of geomet-
ric anisotropy attributions but reduces the rate of volumetric anisotropy attributions.
Thus, as postulated at the beginning of this section, the detection rate of volumetric
anisotropy can be reduced while preserving the rate of the more meaningful geometric
anisotropy by increasing the length of the aperture.

8 Note that there is also the issue of consistency of the peak extractions, i.e. the peaks extracted from

the coarse and fine-resolution methods may correspond to different scatterers that are not even in the
same resolution cell. In order to overcome this, we first estimate the coarse-resolution peak location
and then limit the fine-resolution peak location to reside within the resolution cell corresponding to the
coarse-resolution peak extraction. Thus, both the coarse and fine-resolution extractions are guaranteed

to come from the same coarse resolution cell.
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Figure 6.7. Anisotropy plots using the hybrid-resolution peak extraction for (a) the canonical flat
plate scatterer and (b) the volumetric scatterer with 10 scatterers per coarse resolution cell.

N 6.4 Additional Wide-aperture Hypotheses

Up to this point, for clarity in the comparison of narrow and wide-aperture anisotropy
attributions, the same hypothesis set consisting of 2.80, 1.4', and 0.70 sub-apertures has
been used for both the narrow and wide-aperture data. However, in addition to reducing
the rate of volumetric anisotropy while preserving that of geometric anisotropy, wide-
aperture data allows for additional anisotropy hypotheses, up to the size of the larger
aperture, to be defined. The inclusion of these less anisotropic hypotheses does not
affect the argument for reducing the rate of volumetric anisotropy, although these ad-
ditional hypotheses do allow for a more accurate anisotropy characterization of smaller

scatterers.
To demonstrate this improvement, Figure 6.8 displays the geometric anisotropy

plots for the flat plate scatterer using the augmented hypothesis set consisting of 22.40,
11.20, 5.60, 2.80, 1.40, and 0.70 sub-apertures instead of the restricted hypothesis set

(composed of 2.80, 1.40, and 0.70 sub-apertures) that has been used up to this point.
The range of plate sizes used here is reduced to Om-2.5m to better illustrate the be-
havior for small scatterers. The behavior observed in Figure 6.8 is a natural extension
of the behavior in the geometric anisotropy plots in Figures 6.5 and 6.7(a). In partic-

ular, the only significant difference is related to the 2.8' classification in the restricted

hypothesis set. Under the augmented hypothesis set, scatterers which were previously
characterized as 2.80 (the minimum degree of anisotropy in the restricted hypothesis
set) are now classified as 22.40, 11.20, 5.60 , or 2.80. The 22.40 classification dominates
at the smallest plate sizes, and the dominant attribution transitions to 11.20, 5.6', and
2.8' as plate size is increased as one would expect. Interestingly, the 22.40 classification
probability starts out noticeably lower when using the coarse-resolution peak extraction
in Figure 6.8(a) than when using the fine-resolution peak extraction or hybrid peak ex-
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traction in Figures 6.8(b) and (c). The reason for this behavior is that for the smaller
plate sizes, the coarse-resolution peak extraction introduces location errors on the order
of the size of the coarse resolution cell, i.e. one foot. As previously noted, location error
introduces a modulation on the response which biases the classification result towards
higher degrees of anisotropy. However, since this location error is small, the only effect
is to misclassify some of the small plates as 11.20 instead of 22.4'. Note that in the
hybrid peak extraction approach, the fine-resolution peak extraction is analyzed first
and returns a 22.40 attribution indicating the presence of a small scatterer. Thus, the
hybrid peak extraction does not defer to the coarse-resolution extraction resulting in
the correct attribution.
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Figure 6.8. Anisotropy plots for the canonical flat plate scatterer using the augmented hypothesis

set and (a) the coarse-resolution peak extraction, (b) the fine-resolution peak extraction, and (c) the

hybrid-resolution peak extraction.

Figure 6.9 displays the volumetric anisotropy plots using the augmented hypoth-
esis set. Again, the behavior of each plot is a natural extension of Figures 6.6 and
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6.7(b). In particular, the coarse-resolution peak extraction in Figure 6.9(a) shows a

high rate of anisotropic classifications, but the use of the fine-resolution peak extrac-

tion in Figure 6.9(b) allows the anisotropy test to account for and resolve constituent
isotropic scatterers. The hybrid peak extraction utilizes the first stage fine-resolution

peak extraction to preserve the low rate of volumetric anisotropy as demonstrated in

Figure 6.9(c). Thus, as argued earlier, the use of the augmented hypothesis set with

wide-aperture data allows for a more accurate characterization of anisotropy for smaller

geometric scatterers while maintaining a low incidence of volumetric anisotropy.
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Figure 6.9. Anisotropy plots for volumetric scatterers with a scattering density of 10 scatterers per
coarse resolution cell using the augmented hypothesis set and (a) the coarse-resolution peak extraction,
(b) the fine-resolution peak extraction, and (c) the hybrid-resolution peak extraction.
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0 6.5 Wide-aperture GUS Data

This section applies the anisotropy attribution to peak scatterers extracted from the
measured wide-aperture Grayling Ultra-wideband SAR (GUS) data set. The data has
a resolution of 1.9 inches in down and cross-range achieved using a 4GHz bandwidth,
a 10GHz center frequency, and a 26' aperture. For narrow-aperture comparisons,
the middle 3.3' section of this aperture (i.e. the middle eighth-aperture) is taken as
the narrow-aperture data. For each narrow-aperture peak extraction, the anisotropy
test is applied with the restricted hypothesis set composed of 3.3', 1.60, and 0.8' sub-
apertures which correspond to the full, half, and quarter narrow-apertures. For the
wide-aperture data, the hybrid-resolution peak extraction method described in the pre-
vious section is used to determine peak locations. Because the wider aperture allows for
more anisotropy hypotheses to be defined, there are several choices for the hypothesis
set in this regime. Two particular sets are examined. One choice is the restricted hy-
pothesis set used in the narrow-aperture case. An alternative is the augmented hypoth-
esis set obtained by taking all the sub-apertures in the half-overlapping, half-aperture
pyramid for the wide-aperture, i.e. the degrees of anisotropy in the augmented hypoth-
esis set are {260, 130, 6.50, 3.30, 1.60, 0.80}. Figures 6.10 and 6.11 show the extracted
peaks and their associated anisotropy attribution using the narrow and wide-aperture
data for two different vehicles. Figures 6.10 and Figures 6.11 show the standard log-
magnitude reflectivity image using a coarse imaging resolution 9 . The symbol overlays
in Figures 6.10(a) and 6.11(a) specify the location and anisotropy of each peak extrac-
tion based on the narrow-aperture data. The symbol overlays in Figures 6.10(b) and
6.11(b) specify the location and anisotropy of each peak extraction based on the wide-
aperture data. For both figures (a) and (b), a black circle denotes 3.30 anisotropy, a
square denotes 1.60 anisotropy, and a triangle denotes 0.8' anisotropy. To denote the
additional wide-aperture 26', 130, and 6.5' attributions in figure (b), we again use the
circle, square, and triangle, respectively, but display them in white instead of black.

In each of the images, the peak extractions that are labeled as anisotropic are fre-
quently associated with an apparent geometric scatterer. In particular, the collections
labeled "A" and "B" in Figure 6.10(b) are large geometric scatterers1 0 and are appro-
priately characterized as anisotropic. Note that based on the narrow-aperture data, the
two scatterers labeled "A" in Figure 6.10(a) are attributed as 3.3', but there are no
means of telling if the underlying scatterers are actually 3.3' or perhaps less anisotropic
since 3.3' is the lowest degree of anisotropy available in the narrow-aperture setting.
However, using the augmented hypothesis set afforded by the wide-aperture, it is ap-
parent that the degree of anisotropy for both scatterers is in fact approximately 3.3',
and not much more. This example demonstrates how the additional hypotheses af-

9 The coarse resolution is used for the wide-aperture case (even though a finer imaging resolution
can be achieved) due to restrictions on publishing the GUS data.

' 0That the scatterers in "A" and "B" of Figure 6.10(b) and "A" through "C" of Figure 6.11(b) are
geometric in nature is evident from the omitted (due to publishing restrictions) high-resolution imagery.
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(a) (b)

Figure 6.10. Anisotropy characterization of peaks from wide-aperture data for vehicle 1. Standard
log-magnitude image with peak anisotropy attributions based on (a) narrow-aperture data and (b)
wide-aperture data.

(a) (b)

Figure 6.11. Anisotropy characterization of peaks from wide-aperture data for vehicle 2. Standard

log-magnitude image with peak anisotropy attributions based on (a) narrow-aperture data and (b)
wide-aperture data.

forded by the larger aperture allow more information about the scatterer anisotropy to
be conveyed.

Another instance of large geometric scattering is the collection labeled "B" in

Figure 6.10. These peak extractions appear to be associated with large flat geomet-
ric scatterers, which are reflected in their anisotropy attributions most of which are
0.80. Collections "A"-"C" in Figure 6.11(b) highlight several other prominent scat-
terers which appear to be geometric in nature. It is also interesting to note that in

Figures 6.10 and 6.11, many scatterers (both on and off the vehicle) are attributed as

135Sec. 6.5. Wide-aperture GUS Data
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260 in the wide-aperture data. The vast majority of these attributions are reasonable
since they appear to be small point scatterers or clutter in the high-resolution image.

So far, we have observed the conjectured benefit of wide-aperture data over narrow-
aperture data on the anisotropy characterization of geometric scatterers, i.e. the preser-
vation of higher degrees of anisotropy observed in the narrow-aperture data and the
elaboration of the least anisotropic narrow-aperture hypothesis by augmenting the hy-
pothesis set with larger sub-aperture hypotheses. This result is predicted by the anal-
ysis presented earlier. That analysis also predicts a reduction in the rate of volumetric
anisotropy as aperture size is increased. To test this behavior with the GUS data, scenes
of imaged clutter are used with the same 26' and 3.3' apertures as before. In particu-
lar, the three clutter scenes shown in Figure 6.12 are examined. For these scenes, the
narrow-aperture anisotropy characterization is displayed in the left-hand side and the
wide-aperture characterization is displayed in the right-hand side. The set of hypothe-
ses and respective graphical labels are the same as for the geometric scatterer case in
Figures 6.10 and 6.11. It is immediately clear that there is a significant reduction in the
rate of higher degrees of anisotropy using the wide-aperture data. To explicitly see that
this reduction is due to these scatterers being resolved into individual isotropic scatter-
ers (in contrast to their simply being uniformly distributed over the larger hypothesis
set), Tables 6.2 and 6.3 show the tabulated anisotropy correspondences between the two
aperture settings. Table 6.2 shows the correspondences between the narrow and wide-
aperture anisotropy attributions when both data sets are restricted to use the same
set of narrow-aperture hypotheses. The empirical results here strongly argue that the
use of the wider aperture has resolved the scatterers which are attributed as 1.6' and
0.80 under the narrow-aperture into individual minimally anisotropic 3.3' scatterers. In
particular, of the 49 scatterers that are attributed as anisotropic when using the narrow-
aperture data, only one is attributed as anisotropic when using the wide-aperture data.

Table 6.2. Anisotropy classification correspondences for clutter with narrow and wide-aperture data
using the same anisotropy hypotheses.

Narrow-ap. \ Wide-ap. 3.3' 1.60 0.80

3.30 176 0 0
1.60 45 0 1
0.80 3 0 0

Table 6.3 shows the same type of correspondence as Table 6.2 except that the aug-
mented hypothesis set is used for the wide-aperture data. The tendency to resolve
anisotropic scatterers into isotropic scatterers is again observed in this table. In ad-
dition, many of the 3.30 anisotropy classifications are further resolved into the less
anisotropic classifications with the majority of them assigned to the 26' minimal de-
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Clutter Scene 1 - narrow-aperture Clutter Scene 1 - wide-aperture

Clutter Scene 2 - narrow-aperture Clutter Scene 2 - wide-aperture

Clutter Scene 3 - narrow-aperture Clutter Scene 3 - wide-aperture

Figure 6.12. Anisotropy characterization of peaks from 3 instances of clutter in the GUS data. Left:
Narrow-aperture anisotropy attributions. Right: Wide-aperture anisotropy attributions.
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gree of anisotropy. Thus, the predicted reduction in the rate of unstable volumetric
anisotropy is observed in real wide-aperture data.

Table 6.3. Anisotropy classification correspondences for clutter
using the augmented hypothesis set for wide-aperture data.

Narrow-ap. \ Wide-ap. 1126' [ 13' _6.50

3.30 117 28 10
1.60 29 8 5
0.80 1 2 0

with narrow and wide-aperture data

3.30 1.60 ]0.80
15 3 3
2 0 2
0 0 0



Chapter 7

Iterative Anisotropy Attribution

In this chapter, we develop an enhanced, iterative algorithm for attributing anisotropy
and estimating sub-aperture reflectivity. The idea behind this algorithm begins with
a simple examination of the structure and limitations of the anisotropy attribution
procedure developed in Chapters 5 and used in Chapter 6. Specifically, that algo-
rithm produces an anisotropy classification and a reflectivity estimate for each pixel
by using a pyramid of sub-aperture reflectivity measurements. However, because these
sub-aperture measurements use only a fraction of the full-aperture, they have corre-
spondingly coarser resolutions. These larger resolution cells allow the sub-aperture

measurements to be corrupted by scatterers that are located within these larger cells
but outside the finest resolution cell. This corruption from neighboring scatterers results
in both a coarse imaging resolution and incorrect anisotropy attributions.

In Chapter 5, we described an approach to deal with this "nuisance" effect of inter-
ference from scatterers in neighboring finest-resolution pixels. In particular, we consid-

ered the estimation of anisotropy and reflectivity at a particular pixel (which we will re-
fer to as the focused pixel). In processing the sub-aperture measurements corresponding
to that focused pixel, we also included a set of additional unknown parameters corre-
sponding to the reflectivities in an entire symmetric window of neighboring cross-range
(finest-resolution) pixels. We then performed a generalized likelihood computation.
This computation first estimates the reflectivities of the neighboring pixels in an MAP
fashion. These estimates are then used to subtract out the effects of the interfering
pixels in the anisotropy attribution of the focused pixel. As we will see, the approach
described in this chapter also performs a GLLR-based attribution and estimation but
with some differences to improve the modeling of neighboring scatterers.

The algorithm developed in Chapter 5, while producing very useful results, suffers
from two potential inconsistencies. The first concerns the physical size of scatterers with
highly anisotropic attributions. In particular, suppose that a given focused pixel has a
highly anisotropic scatterer, i.e. the level of anisotropy indicates that the physical extent
of the scatterer corresponds to several pixels (which we will call on-scatterer pixels) in
the finest-scale image. In this case, the reflectivities in these neighboring pixels are not
nuisances since these pixels correspond to the same physical scatterer as the focused
pixel. Consequently, the GLLR approach of Chapter 5 erroneously subtracts out the
effects of these "neighbors". The over-compensation for this single, physically large
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scatterer distorts the estimation and attribution of the focused pixel. However, suppose
that we have a preliminary estimate of attribution at all of these locations, e.g. by
applying the algorithm of Chapter 5. Perhaps the attributions of these neighboring
pixels can be used to group the pixels into sets corresponding to individual scatterers in a
manner that reflects the relationship between the degree of anisotropy and spatial extent
of the scatterer. With such groupings, we can re-perform the anisotropy attribution in
a manner that reduces this over-compensation, resulting in more accurate estimates of
reflectivity and anisotropy.

The other inconsistency in the algorithm used in Chapter 5 is the assumption that
the "nuisance" contributions from neighboring pixels come from weak isotropic scatter-
ers. Clearly, strong neighboring scatterers violate this assumption, but the assumption
is also violated by spatially extended, anisotropic scatterers that span several pixels.
Contrary to the case of neighboring on-scatterer pixels, we do want to remove the ef-
fects from these other locations, since these pixels correspond to a different scatterer
than the focused pixel (and are hence called off-scatterer pixels). One way to do this,
would be to take each grouping of off-scatterer pixels (corresponding to individual large
scatterers) and subtract off their aggregate effect in a single step. Note that if we were
to subtract off the anisotropic effect for each individual pixel in this group, we would
again be over-compensating, since the anisotropy already captures the fact that the
influence is from an extended scatterer spanning this group. However, an alternative
that does not over-compensate is to subtract the effect of each of the pixels in that
grouping individually assuming that each of these neighbors is isotropic. While not
rigorously the correct thing to do (since this approach neglects the phase consistency
across the pixels due to the common underlying scatterer), this approach works well in

practice, as we will see.
The remainder of this chapter develops the iterative attribution algorithm and is

organized as follows. Section 7.1 provides a high-level description of the algorithm which
is based on an aggregation/re-attribution iteration step. Section 7.2 addresses the pixel
aggregation task by posing it in a maximum likelihood framework. Section 7.3 then
extends the anisotropy test from Chapter 5 to utilize the information from the scatterer
aggregation to remove the effects of neighboring scatterers. Section 7.4 provides results

on synthesized and MSTAR data to demonstrate the improvement over the methods
presented in Chapter 5.

0 7.1 Algorithm Overview

Figure 7.1 describes the structure of the algorithm developed in this chapter. The al-

gorithm is broken down into three processing stages. Inputs to each processing block

are denoted by inward pointing arrows. Arrows coming from the top designate mea-

surement data that do not change as the algorithm progresses. Arrows coming from

the left are inputs from another block's output. Thus, these data vary as the iteration

progresses. Processing outputs are denoted by arrows leaving a block. Arrows pointing

140



Sec. 7.1. Algorithm Overview

to the right represent estimated quantities that are to be used by a subsequent pro-
cessing stage. Arrows pointing downwards denote outputs to the user, i.e. an image of
anisotropy attributions or reflectivity estimates.

,Stne 9:

Initial Attribution Pixel Aggregation

initial anisotropy attrib. h

Parameters:
H (0), A (0)

Ao (0), h (0)

initial anisotropy attrib. aggte pixelsI

Parameters: Parameters:
H(i), A (i) {Rc, Hc }I

^AO (i), h(i)

qM(N - 1)

initial anisotropy attrib.

Parameters: h(N -1)

H(N - 1), A(N - 1)

Ao(N - 1), h(N - 1)

Stage 3:
Re-Attribution

anisotropy re-attribution hO

Parameters:

H(0), A (0)

LAO(0), h (0)

qM)

anisotropy re-attribution hi

Parameters:

H (i), A (i)

L. (i), h (i)

qM(N -1
y(N -1)

anisotropy re-attribution h(N - 1)

Parameters:

H(N - 1), A(N - 1)

A~o(N - 1), h(N - 1)

Figure 7.1. The iterative attribution algorithm used to classify anisotropy.

The first stage of the algorithm generates outputs on a per pixel basis. In par-

ticular, for each pixel i, a processing block in this stage generates an estimate' h(i)

of the true anisotropy H(i) and an estimate Ao(i) of the reflectivity (where Ao(i) de-

notes the true reflectivity for the focused pixel i). The method described in Chapter 5
is used to obtain these initial estimates from the sub-aperture measurements qm(i).
As described in Chapter 5, estimation for this initial block is based on a pixel-by-

pixel measurement model for p(qM(i)IH(i), A(i)) where A(i) is the vector of reflec-

tivities of the focused pixel (denoted by Ao(i)) and its neighbors (denoted by Ak(i),

k E {-K, ...,3 -il,),...,I K}).

'Because the estimated anisotropy is treated as a random measurement in a subsequent processing
block, the estimate is denoted as a random variable h(i) instead of the usual notation for an estimate,
namely H(i).
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The remaining two stages in Figure 7.1 correspond to an iterative refinement loop
to be developed in the following two sections. The first of these two stages (i.e. the
pixel aggregation step) takes the standard full-aperture estimates of log-magnitude
reflectivity (denoted by r(i)) and current anisotropy estimates (denoted by h(i)) for
every pixel in the image and groups pixels so that each group corresponds to an estimate
of a single, possibly physically-extended, scatterer. The result is a partition P grouping
the image pixels according to their underlying scatterers. The method we develop for
this aggregation step involves a Bayesian formulation that captures the fact that for
each cluster C of pixels corresponding to a single scatterer:

1. The log-magnitude full-aperture reflectivity estimates for each of the pixels in
the grouping should be statistically consistent with each other because these
reflectivities are all measurements of the single, physically-extended scatterer's
log-magnitude reflectivity Rc.

2. The anisotropy classification for each of the pixels should be statistically consis-
tent with each other as these attributions are all measurements of the scatterer
anisotropy HC.

3. The length of the grouping should be statistically consistent with the scatterer
anisotropy HC.

The Bayesian formulation we describe specifies a model p({r(i), h(i)}icc IRc, Hc) cap-
turing the characteristics for any hypothesized cluster C. Using a GLR philosophy, this
allows one to compute the most likely values of RC and HC for any hypothesized cluster
and then to use these values in order to determine an approximation to the most likely
partition P of clusters.

The last stage in Figure 7.1 (i.e. the scatterer re-attribution step) refines the es-
timates of anisotropy and reflectivity for each pixel i on a pixel-by-pixel basis. Each
processing block in this stage, takes as inputs:

" the groupings P just estimated in the scatterer aggregation step,

" the sub-aperture measurements qm(i), and

" the vector y(i) of full-aperture complex reflectivity measurements for the focused
pixel (denoted by yo(i)) and its neighbors at the finest resolution (denoted by

yk(i), k E {-K,... ,-1,1,... , K}).

These quantities are used to re-estimate scatterer anisotropy and reflectivity using a
modified version of the algorithm in Chapter 5. The purpose of the modification is
to avoid over-compensating for neighboring pixels that are part of the same scatterer
grouping. In particular, in addition to using a measurement model for the observed
sub-aperture reflectivities qM(i), we pose a measurement model for the observed finest-
resolution complex reflectivities y(i). The underlying parameters (which we wish to
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estimate) in both of these models are the sub-aperture anisotropy H(i) and vector
of reflectivities A(i) as was the case in the initial attribution. The new observation
y(i) replaces the zero-mean Gaussian prior on neighboring reflectivity estimates used
in Chapter 5 and leads to more accurate reflectivity estimates of the reflectivities in
A(i). The segmentation is also used to aid the re-attribution by identifying on-scatterer

pixels and allowing their effects to be preserved, while allowing for the compensation
of effects from interfering off-scatterer pixels. The anisotropy attributions that are
produced by this stage can be provided to the pixel aggregation block in the second
stage of Figure 7.1, thus starting another aggregation/re-attribution iteration.

0 7.2 Pixel Aggregation

The aggregation of image pixels into scatterers is the first phase of the two-stage it-
eration. This section presents a maximum likelihood approach based on the input
measurements of pixel log-magnitude reflectivities 2 and pixel anisotropy attributions.

The goal of this stage is to produce a partition P of the pixels into a set of groupings

corresponding to scatterers. To achieve this goal, a measurement model is posed for
the cluster measurements {r(i)}iec and {h(i)}iec in any hypothesized cluster C con-
ditioned on the unknown parameters RC and HC. It is then shown that the posed
model produces a likelihood function that corresponds to an additive cost function.
Consequently, the problem of finding the maximum likelihood partition becomes an
optimization problem on an additive cost function. An efficient, greedy algorithm is

then presented.

* 7.2.1 Problem Setup

We start by characterizing the relationship between (i) the anisotropy attributions h(i)
and reflectivities r(i) that serve as the input data for the aggregation procedure and
(ii) the unknown parameters HC and RC for any hypothesized cluster C. In particular,
a Gaussian noise model is used for the reflectivities, i.e.

r(i) = Rc + ui (7.1)

where ui ~ V(O, pr) and p is the variance on the reflectivities.
The pixel-wise anisotropy attributions h(i) are modeled as identically distributed

samples given the underlying scatterer attribution. However, posing a reliable model for
the pixel anisotropy attributions is a difficult task. In particular, the confusion proba-
bilities p(h(i)IHc) cannot be represented in closed form due to the manner in which the
anisotropy attribution test partitions the observation space. Thus, we estimate these
probabilities using Monte Carlo simulations. In particular, data are generated using

2 For brevity, the term reflectivity will refer to the full-aperture log-magnitude reflectivity unless
otherwise specified for the remainder of this section.
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the sub-aperture scattering model as described in Eq. (5.22), i.e.

qM= Ab(mi) +

where i-v - K(O, 2(IA 2p2 + o.2 )A). We will assume high SNR scattering which leads to
the approximation

iv ~ Ar(0, 21A12P2 A).

This approximation allows us to consider only the normalized case of A = 1 since the
noise standard deviation scales with the complex reflectivity A. The GLRT using the
basic GLLR statistic is then used to attribute each MC trial. The confusion probabilities
p(h(i)IHC) are then taken as the relative frequency of occurrence in the MC trials and
stored as a look-up table.

In addition to the pixel reflectivities r(i) and anisotropy attributions h(i), there is an
inherent scatterer size conveyed by the grouping C. In particular, the cardinality #(C)
of C specifies the number of pixels (and hence the spatial extent) for the scatterer.
Recall from Section 2.1.3 that the image and azimuthal domains are related by the
Fourier transform. Thus, the cross-range extent of the scatterer is related to the degree
of anisotropy. In particular, because spatial and azimuthal concentration are inversely
related, the model for the observed scatterer size is defined in the azimuthal domain as

a(#(C)) = d(Hc)(1 + v) (7.2)

where a(#(C)) is the 3dB width in the azimuthal domain of a flat plate of size #(C),
d(Hc) is the degree of anisotropy associated with HC, and v is noise with a double-
exponential distribution. That Eq. (7.2) is not a deterministic relationship between size
and anisotropy is due to the rudimentary nature of our characterization of anisotropy

(e.g. many non-canonic responses can lead to the same level of anisotropy in our model).
The multiplicative form of the model (leading to an error term proportional to the degree
of anisotropy) is consistent with the geometrically related lengths of the sub-apertures
in our model. The use of the double exponential model for v is for computational
convenience. For reference, the model in Eq. (7.2) produces the likelihood

[ -Ia(#(C)) - dH)
p (#(C)Id(Hc)) = exp .d(H ) (7.3)

2pl x pi d( Hc)

0 7.2.2 Aggregation Likelihood

In formulating the likelihood of an entire aggregation of pixels, we start by considering
a single cluster C. The likelihood of the data in this grouping is

p ({r(i)}iec, {h(i)}ieclRc, Hc) (7.4)

The models posed in the previous sub-section are used to decouple and simplify this
likelihood expression. First, note that although the individual pixel reflectivities r(i)
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are characterized by RC and the individual pixel anisotropy attributions h(i) are char-
acterized by HC, the likelihood in Eq. (7.4) cannot immediately be written as a product

of the terms p(r(i)IRc) and p(h(i)IHc). This cannot be done because the cardinality of

the sets {r(i)}Iec and {h(i)}iEc are related to scatterer size. Consequently, considera-
tion of the grouping introduces an additional dependency on the underlying anisotropy.
However, by rewriting Eq. (7.4) to explicitly include the cardinality of C, we can obtain

the desired separation of terms. In particular, we can write

p ({r(i)}iec, {h(i)}iEclRc, Hc)

= p (#(C), {r(i)}ec, {h(i)}iec IRc, Hc) (7.5a)

= p (#(C)jRc, Hc) p ({r(i)}iec, {h(i)}iEc I#(C), Rc, Hc) (7.5b)

= p (#(C)jRc, Hc) j p(r(i)IRc) J p (h(i)jHc) (7.5c)
iEC iEC

= p (#(C)Id(HC)) H p(r(i)IRc) f p (h(i)IHC). (7.5d)
iEC ieC

Eq. (7.5a) follows from the fact that #(C) is redundant in that can be determined from

{r(i)}iec and {h(i)}jc. Eq. (7.5b) is an application of Bayes rule. Eq. (7.5c) follows
from the fact that given RC, HC, and the size of the set C, we can model the r(i) and
h(i) as i.i.d. Eq. (7.5d) follows from the degree of anisotropy characterizing the spatial

extent of the scatterer.
With the likelihood specification from Eq. (7.5) in hand, we now proceed to develop

the aggregation problem. We start with the simple case in which there are two pixel
groupings X and Y that neighbor each other, i.e. X U Y is a connected set. For each

grouping (X or Y), it is known that all the pixels in that group correspond to the

same scatterer, i.e. X and Y each span part of a scatterer but not necessarily the entire
scatterer. Based on the data r(i) and h(i), we wish to test whether X U Y corresponds
to a single scatterer (hypothesis G1 ) or separate scatterers (hypothesis G 2 ). A maximum
likelihood test is used for this task.

Because the likelihood in Eq. (7.5) depends on the unknown parameters scatterer
reflectivity RC and anisotropy HC, these parameters are estimated and used to produce
a generalized likelihood. In particular, Eq. (7.1) is used to generate the ML estimate
of RC, which is the sample mean of the reflectivities in group C. This estimate will be
denoted by Rc. The ML estimate of HC is given by

Hc = arg max { p (h(i)IH = (n, j)). (7.6)
(ndj) iEC

The probability models for the pixel reflectivity, pixel anisotropy, and cluster size
defined in Section 7.2.1 can be inserted into Eq. (7.5) to determine the generalized likeli-
hood of X and Y corresponding to two separate scatterers (G 2 ) or X U Y corresponding
to a single scatterer (G1 ). In particular, the generalized likelihood of a group C (with



C representing X, Y, or X U Y) is

tc = p (#(C) fc) f p (ri Ic) 1 p (h(i) ftc)
iEC iEC

1 Ia(#(C)) - d(Hc)l 2)-#(CE(r()- fC) 2 p h(i) fc
2p I pi d(Hc) . ic . 2p . iH

Thus, the GLLR between the two hypotheses G2 and G 1 can be written as

y = log( Xey) = f(X U Y) - f(X) - f(Y) (7.7)

where f(C) is the negative log-likelihood for the data in set C. Note that the density
normalization factor for the pixel reflectivities cancel in the likelihood ratio and can
thus be omitted from the cost function, i.e.

|a(#(C)) - d(ftc)l 1f(C) = log(2pi)+ ( d(c) (r(i) - Ac) 2 - Z log (p (h(i)ftc)) .pi d(ftc) 2Pr iEC iEc(78
(7.8)

Consequently, the decision on whether to merge the groupings X and Y is determined
by whether the costs of X and Y are lower individually (i.e. f(X) + f(Y) < f(X U Y))
or the cost is lower by combining the two (i.e. f(X) + f(Y) > f(X U Y)).

The additive nature of the GLLR in Eq. (7.7) allows the aggregation rule easily to
be extended to consider an entire partition. In particular, assume that we are presented
with two partitions P and P 2 of all the cross-range pixels and that P 2 is a refinement
of Pi, i.e. every C E Pi can be partitioned by elements of P 2 . The task is then to
determine which partition has the higher generalized likelihood. The GLLR of these
two partitions can be written as

log (HCEP2 £c = F(P1 ) - F(P2 ) (7.9)
k. ceP1 tc

where

F(P) = f(C). (7.10)
CEP

Thus, the ML aggregation problem amounts to finding the partition with the minimum
cost given by Eqs. (7.8) and (7.10)

* 7.2.3 Greedy Aggregation Algorithm

It is computationally prohibitive to evaluate the cost in Eq. (7.10) for every valid par-
tition. Motivated by the additive structure of the cost in Eq. (7.10), we propose the
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following greedy algorithm that, at each iteration, merges the two groupings which
would produce the greatest increase in the likelihood. This merging process is repeat-
edly performed until further mergers no longer increase the likelihood.

Step 1: Initialize the partition P as the set of all singletons, i.e. each grouping contains
only one pixel.

Step 2: Consider the set M of merger candidates obtained from merging two neigh-
boring groupings X, Y E P. Compute the sub-cost reduction [f(X) + f(Y) -
f(X U Y)] produced by each merger.

Step 3: Find the merger in M which provides the largest sub-cost reduction. Denote
this merger as M* = X* UY*. If the sub-cost reduction is negative, then we are at
a local minimum, i.e. there is no pairwise merger that will increase the likelihood
of the resulting partition, so the algorithm terminates. If the maximum sub-cost
reduction is positive, then the merger is accepted and P is updated to reflect the
merger, i.e. M* replaces X* and Y* in P.

Step 4: Update M to account for the new merger. That is, if [W, X, Y, Z] forms a
connected set, then the update is to remove M*, W U X, and Y U Z from M
and insert the new merger candidates W U M* and M* U Z. Compute sub-cost
reduction of the two new candidates, i.e. [f(W) + f(M*) - f(W U M*)] and

[f(M*) + f (Z) - f(M* U Z)].

Step 5: Goto step 3 to find the best merger.

* 7.2.4 Aggregation Results

To demonstrate the performance of the proposed aggregation algorithm, we use the
synthesized data from Chapter 5 which is displayed again in Figure 7.2. Figure 7.2(a)
shows the standard log-magnitude reflectivity image. Figure 7.2(b) shows this same
image but includes annotations to describe the scatterers. The geometric symbols in
this figure are used to denote the underlying true anisotropy. In particular,

" a circle represents a flat plate scatterer whose cross-range extent is half of a
resolution cell and gives a full-aperture response,

" a square represents a flat plate scatterer whose cross-range extent is two resolution
cells and gives a half-aperture response,

* a triangle represents a flat plate scatterer whose cross-range extent is four resolu-
tion cells and gives a quarter-aperture response,

Furthermore, each scatterer is given an identifier to facilitate the analysis of the seg-
mentation in this section. In particular,

* the label Ai (i E {1, ... , 6}) refers to an isotropic scatterer with a 30dB PSNR,
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" the label B 1 refers to the half-aperture scatterer with a 30dB PSNR,

" the label C (i E {1, 2}) refers to a quarter-aperture scatterer with a 30dB PSNR,

and

* the label Di (i E {1, 2}) refers to a half-aperture scatterer with a 20dB PSNR.

DR,,D

DR1 "DR4:

(a) (b)

Figure 7.2. Standard log-magnitude image of the synthesized SAR data used in Chapter 5 (a) without

annotations and (b) with annotations describing the individual scatterers. A circle denotes an isotropic

scatterer; a square denotes a half-aperture scatterer; and a triangle denotes a quarter-aperture scatterer.

The large ellipses denote which scatterers are used to define a particular down-range value (i.e. DR1,

DR2, DR3, and DR4).

The aggregation procedure operates on all the cross-range pixels for a given down-

range value. Thus, each down-range is examined individually. For the analysis presented

in this section, attention is concentrated on the down-range (referred to as DR3) con-

taining the scatterers A6 and Ci and the down-range (referred to as DR4) containing

the scatterers D 1 , C 2 , and D 2 . Later in Section 7.4, the down-range (referred to as DR1)

containing scatterers A1 and A 2 and the down-range (referred to as DR2) containing

scatterers A 3 , A 4 , A 5 , and B 1 will also be examined.

The results of the anisotropy attribution developed in Chapter 5 are used for the

attribution inputs to the segmentation. In particular, the attributions used are the

ones displayed in Figure 5.8(d) from Chapter 5. The segmentations resulting from the

approach developed in this section are shown in Figures 7.3 and 7.4 for DR3 and DR4,

respectively. In each display, figure (a) plots the standard log-magnitude reflectivities

to illustrate the location and spatial extent of the scatterers, and figure (b) plots the

segmentation. In order to clearly demarcate the many groupings involved, the segmen-

tation is conveyed in the following manner. At every boundary between two groups,

the value of the plot changes sign, i.e. from positive-to-negative or negative-to-positive.

Furthermore, the magnitude of the plotted value is set to the number of pixels in the
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grouping to help convey the size. A dashed vertical line is used to denote the true

locations of the scattering centers in both figures. For reference, these dashed lines are

labeled with the identifier (e.g. A 6 ) for each scatterer in Figures 7.3(a) and 7.4(a).

Reflectivity
40

A6  C1

020-

0
0 50 100

cross-range
(a)

Segmentation
6

4 - clutter clusters
4-

2

0

-2
0 50 100

cross-range
(b)

Figure 7.3. (a) Reflectivity of all cross-range pixels at down-range DR3 containing the isotropic

scatterer A 6 and quarter-aperture scatterer C1. (b) Segmentation for pixels at down-range DR3.

The results of the segmentation using the initial anisotropy attribution are quite
accurate. In particular, both scatterers in Figure 7.3 are reasonably characterized. Note

that physical extent of scatterers A 6 and C1 are half a resolution cell and four resolution

cells, respectively. Consequently, given the image oversampling ratio of 1.25 pixels per

resolution cell, characterizing A 6 as one pixel and C1 as five pixels is accurate. Note

that the segmentation in Figure 7.3(b) also reports two other non-singleton groupings

(labeled as "clutter clusters") in clutter. These groupings are associated with erroneous

anisotropy attributions due to interference from the larger scatterer C1. However,
these large clutter groupings should not significantly effect the anisotropy re-attribution

process described in the next section. In particular, the pixels in these clutter groupings

are marked as belonging to a different cluster than the true scatterers, and thus, the
re-attribution process should compensate for the interference (as we see in Section 7.4).

The results of the segmentation in Figure 7.4 for down-range DR4 are also fairly

accurate. Recall from Section 5.1 that the spatial extent of the three scatterers in this
image are two resolution cells, four resolution cells, and two resolution cells, respectively,
in cross-range. Accounting for the image oversampling, the characterizations of three
pixels and five pixels for the first two scatterers are accurate and are consistent with
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Figure 7.4. (a) Reflectivity of all cross-range pixels at down-range DR4 containing the half-aperture
scatterers D1 and D 2 and the quarter-aperture scatterer C2. (b) Segmentation for pixels at down-range
DR4.

the spatial extent implied by the plotted reflectivity values. The third scatterer is
characterized as two pixels. The plotted reflectivity values indicate that the grouping
for this scatterer should be extended to the left by one more pixel. The grouping is still
acceptable, however, considering that the underlying scatterer spans 2.5 pixels.

* 7.3 Anisotropy Re-attribution

The aggregation of pixels produced by the algorithm in the previous section allows us
to account for the effects of neighboring scatterers when re-attributing the anisotropy of
each pixel. In particular, as illustrated in Figure 7.1, the re-attribution processing stage
takes as inputs: the aggregation P of pixels, the sub-aperture measurements qm(i),
and finest-resolution complex reflectivity 3 measurements y(i), where y(i) is the same
dimension as A(i) and the elements of y(i) correspond to the same pixel locations as the
elements of A(i). The idea of the attribution algorithm follows the same principles as
the attribution developed in Chapter 5, except that the aggregation P and reflectivities
in y(i) are used to better estimate the unknown parameter of reflectivities A (and thus
H). This improvement is achieved by (i) incorporating a model for the data y(i) and

3 Note that in this section we are using the complex reflectivities in contrast to the log-magnitude
reflectivities used in Section 7.2.
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(ii) enhancing the model for the data qm(i). The result of these improvements is an
estimation procedure for A(i) that

1. regularizes the off-scatterer components of A(i) towards the corresponding mea-
sured values in y(i), thus improving the modeling of neighboring scatterers, and

2. explicitly excludes neighboring on-scatterer pixels (i.e. neighbors of the focused
pixel included in the same single scatterer grouping) from the re-estimation/re-
attribution process, thereby avoiding over-compensation for the influence of this
single scatterer on the observed sub-aperture measurement vector.

Note that the analysis presented in this section is performed for each focused pixel
i. Thus, we will describe the methodology for a single focused pixel and drop the
notational dependence on i.

E 7.3.1 Re-attribution Algorithm

Examination of Measurement Model from Chapter 5

Prior to posing the new measurement models for qM and y, we first re-examine the mea-
surement model used for the attribution in Chapter 5, namely that given in Eq. (5.26)
of Section 5.2 which models neighboring scatterers at regularly spaced locations corre-
sponding to image pixels, i.e.

A-K

qM = [b--K(m-K, -K) b K(mKiK)] +e

.AK_

= BA + e. (7.11)

The matrix B is formed from the basis functions bk(mk, ik) as indicated in Eq. (7.11).
Each bk (Mik, ik) models the interference from a neighboring scatterer whose anisotropy
is given by the sub-aperture scattering hypothesis Hmkik. For the approach taken in
Chapter 5, Hmk,ik is taken as the full-aperture hypothesis for all neighboring pixels,
i.e. k -, 0. Thus, only the hypothesis Hmoio effects the contents of the matrix B and is
simply denoted as H.

The estimate used for A in Section 5.2 can be interpreted as the MAP estimate of
A assuming qM is the measurement and A has the Gaussian prior

A ~K (01 2, R-1) (7.12)

where A and e are independent, LM is the length of the smallest sub-apertures,
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R,5 = diag[1,..., 1,6, 1,..., 11] = I - (1 - 6)eKeK,



and 6 is an infinitesimally small value. The estimate of A under anisotropy hypothesis
H can be viewed as the MAP estimate

A = arg max {p(AIqM)}
A

= arg max p(qM A) p(A)
A p(qm)

= argmax{p(qM|A) p(A)}
A

= arg min { |qM - BAII + A AHRA} (7.13)

where R = diag[1, ... , 1, 0,1,... , 1] = I - eeK, and the anisotropy hypothesis enters
into the equation through B. The matrix R effectively drives all the reflectivities (except
the focused pixel's reflectivity) towards zero, while the focused pixel's reflectivity A0 is
left unregularized.

Enhanced Measurement Model

Except for the case of an isolated scatterer in clutter, Eq. (7.12) is a primitive model for
neighboring scatterers. In fact, the inadequacies of this model are responsible for many
of the misclassifications from the GLRT based on the MSM statistic when dealing with
interfering scatterers. To address this problem, the model for A is improved by taking
advantage of the segmentation P and the full-resolution reflectivity estimates in y.

In order to clearly motivate the modeling choices that are made in this section, we
first present a simple measurement model and develop this model into the one that we
use. To start, we define a reduced order reflectivity parameter A which is a sub-vector of
A. In particular, A is formed by taking A and removing those elements that correspond
to neighboring, on-scatterer pixels (i.e. pixels in the same grouping as the focused
pixel but not the focused pixel itself). This procedure is illustrated in the example in
Figure 7.5 where [A 1,..., A 2] constitute a single grouping in P. A is then obtained
by removing A. 1 , A1 and A 2 from the vector. Using this reduced order parameter
reflects the fact that there is a single, physically-distributed scatterer spanning those
pixels, and thus prevents the over-compensation of the focused pixel by neighboring,
on-scatterer pixels. To account for the reduced model order, B is appropriately adjusted
by removing those columns corresponding to the discarded components of A. Denoting
this modified matrix as B, the sub-aperture measurement model becomes

qM = BA + e. (7.14)

The use of the reduced vector A addresses the problem of over-compensation from
neighboring on-scatterer pixels but not does address the interference from off-scatterer
pixels. To deal with the interference, the additional measurement y is used to estimate
A instead of using the prior in Eq. (7.12). A natural model for these finest resolution
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Figure 7.5. Illustration of reducing the model order of A by removing neighboring, on-scatterer
components to produce A.

reflectivity measurements is

y = PA + v (7.15)

where v ~ A(0, 2r
2
LM I) is noise that is independent of e, and P describes how a

-y

scatterer in A is observed in y. In particular, the jth column of P represents the

impulse response associated with the scatterer corresponding to the jth element of A.
To be consistent with B in the sub-aperture scattering model of Eq. (7.14), all pixels are

associated with the full-aperture scattering hypothesis except the focused pixel which

is assumed to obey anisotropy hypothesis H. The impulse response in the column of

P corresponding to the focused pixel is the sinc response associated with anisotropy

hypothesis H. Furthermore, the response for this focused pixel is shifted in order to

align the mainlobe of the response with the scattering center (in contrast to the focused

pixel) where the scattering center is taken as the centroid of the cluster in P containing

the focused pixel. For example, the estimated scattering center of the grouping shown

in Figure 7.5 is taken as the location halfway between the pixels corresponding to AO
and A 1 . The impulse response in any other column of P is the narrow sinc function

corresponding to the over-sampled 4 response from a full-aperture scatterer. Note that,
in contrast to A, the dimensionality of the vector y is not reduced since the response
associated with AO should model the reflectivities over all the on-scatterer pixels. From
the models in Eqs. (7.14) and (7.15), one could5 estimate A as

A = arg max p(q,, ylA)
A

4 In practice, SAR imagery is usually over-sampled by zero-padding the aperture.
5For reasons explained shortly, we do not actually use the model in Eq. (7.15) and the test defined

by Eqs. (7.16) and (7.17).



= arg max P(qM|A)P(y|A)

= arg min {||qM - + || -1 yly - PZ|l2
AA

= [BHA-1b+_.pHpJ -1 (~HA-1qM + p-Hy) (7.16)

This estimate of A could then be used to compute the error-norm

I|A|-i1 = ||qM - _5A _.1 (7.17)

to determine a generalized likelihood of each sub-aperture hypothesis. These generalized
likelihoods can then be used to perform a GLRT to characterize anisotropy.

The model in Eq. (7.15) accurately models the reflectivities in A under the correct
hypothesis, but not under the incorrect hypothesis. Such behavior is not surprising
and is not a fundamental drawback. However, this behavior does severely impact the
performance of the anisotropy test if a telescopic hypothesis testing procedure is used.
In particular, for a highly anisotropic scatterer, decision errors are made in the early
stages of the telescopic testing sequence that prevent the correct anisotropy hypothesis
from being tested. This problem is best illustrated with an example. Consider the
situation illustrated in Figure 7.6 where a large, distributed scatterer is being modeled
with an insufficiently anisotropic response (i.e. one using too large of a sub-aperture).
The location of the focused pixel in this figure is labeled with a "x" on the horizontal
axis. In order to match the finest resolution reflectivity for that location with an
ill-fitting sinc function, the estimate A0 is regularized towards a large negative value
since we are focused on a negative sidelobe. Using such a poorly regularized value of
A in Eq. (7.17) produces large erratic error values for e under incorrect sub-aperture
hypotheses. Thus, in the early stages of the telescopic test (when none of the examined
hypotheses are correct) the telescopic testing procedure frequently makes an "incorrect"
decision in the sense that the decision either terminates the testing (having decided that
the correct sub-aperture has been reached) or leads the telescopic testing procedure
down an incorrect path on the pyramid where the correct hypothesis is never evaluated.

We mention two methods to address this problem. One approach would be to omit
the telescopic testing procedure and evaluate all the sub-aperture hypotheses since the
problem only arises when the incorrect sub-aperture hypothesis is evaluated. This
course is not taken in this thesis due to the computational savings the telescopic testing
procedure provides. Instead, the approach taken in this section is along the same lines
as the approach in Section 5.2 where the reflectivity for the scatterer under examination
is left unregularized. The approach taken here uses the measurement y only to estimate
the reflectivity of neighboring scatterers and leaves the estimation of the focused pixel's
reflectivity to be determined by the sub-aperture measurements qM. In particular,
the dimensionality of the measurement y is reduced by discarding all measurements
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Figure 7.6. Illustration of why the reflectivity is incorrectly estimated in the early stages of the

telescopic test on a spatially distributed scatterer. The sinc function is centered at the scattering

center, but the sinc associated with the hypothesis being tested is too narrow. The point we are trying

to fit (labeled with a cross-hatch) corresponds to a sidelobe of the sinc, but the observation model in

Eq. (7.15) assumes that the sinc mainlobe spans the entire scatterer. Thus, the estimated reflectivity
is in gross error and severely distorts the anisotropy characterization.

(including yo) of on-scatterer pixels. This reduced vector is denoted as y off and is

modeled as

Yoff = Pof fA+7) (7.18)

where ) ~ (0, 2o 2
LM I) and Poff is the matrix obtained from P by removing those

rows associated with the discarded elements of y. Using the new model in Eq. (7.18),
the value of A is estimated as

A = arg max p(qMI yoffI}
A

= argmax p(qMIA)p(yffIA)}
A

= argmin {|qM - BAi- 1 + |yff - PoffA11}
AA

= 7HH-1+ ]P -1(BHA-qM + yPf ofyoff). (7.19)

This estimate of A is then used to compute the error-norm

|eIA_1 = _ M - A-_ (7.20)

that determines the generalized likelihood of each sub-aperture hypothesis and is used
to perform a GLRT to characterize anisotropy. This test using Eqs. (7.19) and (7.20)
is the one we use for the results in Section 7.4.

* 7.3.2 Comments about the Algorithm

Prior to demonstrating the performance of the aggregation/re-attribution process, this
section makes a few comments about the re-attribution step.
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Modeling Neighbors as Isotropic

The first point we address is whether modeling neighboring scatterers as isotropic cap-
tures the interference from anisotropic interfering scatterers. In particular, a single,
physically-distributed scatterer exhibits a consistent phase on the reflectivity over the
on-scatterer pixels. Although the approach presented in this section does not explicitly
model this phase consistency, the estimate in Eq. (7.19) is still able to capture this
phase consistency to a large degree. In particular, this phase consistency is captured by
the measured complex reflectivities, albeit corrupted by measurement noise. Thus, for
scatterers with a high SNR, there should be a strong (although not perfect) consistency
in the phase on the estimates of A corresponding to a single scatterer. The success
of this approach in capturing the behavior of interfering scatterers is demonstrated in
Section 7.4.

Omission of the Previous Iteration's Anisotropy Estimates

The re-attribution statistic obtained from Eqs. (7.19) and (7.20) uses only the aggre-
gated groupings, the full-aperture reflectivity measurements, and the sub-aperture re-
flectivity measurements to estimate the anisotropy of a given pixel. Each neighboring
scatterer is modeled as a series of isotropic scatterers instead of a single anisotropic
scatterer because this pixel-wise approach is robust to attribution errors from earlier
iterations. If a previous iteration's anisotropy attribution and sub-aperture reflectiv-
ity estimate are used to model neighboring scatterers, then initial attribution errors
could be catastrophic. In particular, consider the false anisotropy attributions in clut-
ter around a strong scatterer. We will call these misclassifications phantom attributions
as the anisotropy attribution is due to the interference from a neighboring scatterer and
not the contents of the focused pixel's resolution cell. Many of the sub-aperture reflec-
tivity estimates for these phantom classifications are large because the associated coarse
resolution cell contains part of the interfering scatterer. If these erroneous attributions
and reflectivity estimates are used in a re-attribution step, then the algorithm would
compensate for a non-existent scatterer which would almost surely lead to other errors.
The re-attribution approach proposed in this chapter, however, is robust to such er-
rors since the finest resolution reflectivities are used and the response from neighboring
scatterers are modeled in a pixel-wise fashion. Because the finest resolution reflectiv-
ities are used, one does not suffer from the coarser resolution associated with small
sub-apertures. Furthermore, because the scatterers are modeled pixel-by-pixel, the re-
attribution step need only be able to distinguish on-scatterer from off-scatterer pixels,
i.e. it is not necessary to determine the spatial extent of each interfering scatterer.

Skipping the Re-attribution Step

We also point out that the re-attribution for a pixel needs to be performed only

if the grouping containing that pixel has changed from the previous aggregation/re-
attribution iteration. In particular, if the set of on-scatterer pixels for a given location
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is unchanged from the previous iteration, then all the quantities in Eqs. (7.19) and

(7.20) are unchanged and the re-attribution can be skipped. We have observed that in

practice, the vast majority of pixels need to be re-attributed only once, i.e. after the

initial aggregation step. This is especially the case for clutter pixels which are usually

grouped as singletons.

Independence of e and 77

The observation models in Eqs. (7.14) and (7.18) assume that the noises e and v on

the sub-aperture and finest-resolution reflectivity measurements are independent. This

assumption is not precisely true since the sub-aperture measurements qM and reflectiv-

ities yff are obtained from the same set of azimuthal data. However, we believe that

any existing dependencies are weak due to the differences in the way the measurements

are obtained. In particular,

" For the sub-aperture measurements, the azimuthal data is demodulated to focus

on a particular pixel location. Then, the components of qM are obtained by
integrating this single azimuthal response over each individual sub-aperture.

" For the finest-resolution reflectivities, an azimuthal response is calculated for each

pixel location where the demodulation of the response varies according to the

focused location. Each of these multiple azimuthal responses are then integrated

over the entire aperture to produce the set of reflectivities yoff.

Thus, the dependence (conditioned on A) between the two measurements should be

small because of the different modulations used prior to the integration and the different

integration intervals used.

E 7.4 Experimental Results

This section demonstrates the results of the iterative anisotropy attribution. The algo-

rithm is applied to the synthesized data used in Chapter 5 and the MSTAR data imaged

at cardinal angles. The results on synthesized data are presented first to present a de-

tailed analysis of the workings of the algorithm. The results on MSTAR data are then

presented to demonstrate that the algorithm performs well in real-world settings.

For all the results in this section, the initial anisotropy attribution in stage 1 of

Figure 7.1 uses the GLRT based on the MSM statistic of Section 5.2 with the telescopic

testing procedure and the same testing parameters as in Chapter 5. The segmentation
parameters are taken as pl = 0.5 and p, = 0.5. The re-attribution parameters are taken

to be the same as in the initial attribution except for the regularization parameter which
is now taken to be -y = 0.25. The value of y is reduced from 0.5 for the initial anisotropy
attribution to 0.25 for the re-attribution in order to produce a consistent model for the
sub-aperture and finest resolution reflectivity measurements. In particular, recall that
the error q for the finest resolution reflectivities in Eq. (7.18) specifies the noise variance
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as 2or
2

Lm Q- 1 in order to produce the objective function in Eq. (7.19). Furthermore,
recall from Eq. (5.5) that the noise variance on the full-aperture reflectivity estimate is
2a.2. Thus, in order for these two models to be consistent, it must follow that

2J.2 LM .2a2L 2o-2

1 _

I = 0.25
LM

for the three-level, half-overlapping, half-aperture pyramid. The larger value of -y = 0.5
is necessary for the initial anisotropy attribution in order to suppress the contribution
from other on-scatterer pixels. The re-attribution approach, however, already explic-
itly removes these redundant parameters from the model, and thus, the regularization
parameter need not be set artificially high.

Figures 7.7 through 7.11 display the results of the iterative anisotropy attribution for
the synthetic image data used in Chapter 5 which is repeated in Figure 7.2. Figure 7.7
displays the anisotropy attribution and sub-aperture reflectivity images at each itera-
tion. Figures 7.7(a) and (b) are the result of the initial attribution using the GLRT
based on the MSM statistic of Section 5.2. Figures 7.7(c) through (f) are the results
of the first and second re-attribution iterations. Subsequent aggregation/re-attribution
iterations do not result in any changes from the attributions shown in figures (e) and
(f). The improvement of the anisotropy re-attribution over the initial attribution is
clear. The most obvious result is that all of the phantom attributions in clutter have
been removed 6 in Figures 7.7(c) and (e). In particular, the initial attribution in figure
(a) produces several spurious anisotropic classifications in the vicinity of the annotated
scatterers. However, the aggregation/re-attribution corrects for all of these phantom at-
tributions. The attribution of these clutter pixels as full-aperture by the re-attribution
procedure is achieved through the accurate modeling of the interference from the neigh-
boring scatterers. The only criticism of the results in Figure 7.7 is that the attributions
of the pixels on the half-aperture scatterers (scatterers B 1 , D 1 , and D 2 in Figure 7.2)
are not all correct. In particular, while the scattering center for each scatterer is cor-
rectly attributed as half-aperture (as marked by the square annotation in Figures 7.7(c)
and (e), some of the pixels neighboring the scattering center are attributed incorrectly
as quarter-aperture (as indicated by their darker shading). These misclassifications are
due to location error. In particular, as described in Section 6.1, the displacement from
the scattering center produces a modulation on the observed azimuthal response which
biases the measured energy of larger sub-apertures towards zero, and thus, biases the
anisotropy characterization towards more highly anisotropic attributions.

To examine the workings of the re-attribution in further detail, Figures 7.8 through
7.11 display the segmentations produced for down-range locations DR1 through DR4
in Figure 7.2. For each of the displays, figure (a) shows the standard, full-aperture,
log-magnitude reflectivity. Figures (b) through (d) show the segmentation based on

6Note that a pre-screening threshold is not used for these results.
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Figure 7.7. Results of the iterative anisotropy attribution on the synthesized data in Figure 7.2.
First column: images of the degree of anisotropy. Second column: images of the resulting sub-aperture
reflectivities. First row: initial attribution using the MSM statistic from Chapter 5. Second row: first
anisotropy re-attribution. Third row: second anisotropy re-attribution.
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the initial attribution, first re-attribution, and second re-attribution. The structure
and information conveyed by these plots are the same as for the segmentation plots in
Section 7.2.

The first characteristic of the segmentation plots that we point out is that each of
the prominent isotropic scatterers (denoted as Ai in Figure 7.2(b)) is segmented into a
singleton group in the first segmentation iteration. Consequently, when re-attributing
clutter pixels in the vicinity of a scatterer Ai, Ai is identified as an off-scatterer pixel by
the segmentation, and thus, the re-attribution procedure compensates for the interfer-
ence produced by Ai resulting in the clutter being correctly attributed as full-aperture.

Another detail of the segmentation plots is that in the initial segmentation, there
are a few instances where clutter pixels are grouped together in Figures 7.9(b) through
Figures 7.11(b). These groupings are associated with a series of phantom anisotropy
attributions in clutter. Because these phantom attributions have a consistent initial
anisotropy attribution (resembling the anisotropy of the neighboring anisotropic scat-
terer), the segmentation interprets the pixels as a weak anisotropic scatterer. It is
important to note that while these clutter pixels are grouped into the same cluster, the
cluster does not include the underlying scatterer generating the interference. This sep-
aration between the true scatterer and the phantoms allows for the first re-attribution
iteration to recognize and compensate for the scatterer's interference. While this first
re-attribution step removes the large majority of the phantom anisotropy attributions,
a few remain. We believe these remnants are due to volumetric anisotropy. In par-
ticular, all the clutter in the cluster coherently combine to produce a chaotic response
in azimuth that is occasionally characterized as anisotropic. The subsequent segmen-
tation step, however, recognizes that these are anomalous anisotropy attributions. In

particular, because the anisotropy observed over the pixels is not consistent, the likeli-

hood of all the pixels covering the same scatterer is very low, and thus, the pixels are

not merged. The result is that these clutter pixels are grouped as singletons as dis-
played in Figures 7.9(c) through Figures 7.11(c). Consequently, the second anisotropy
re-attribution characterizes these pixels as full-aperture.

As a final comment, note that the segmentation for figure (d), based on the second

re-attribution, is the same as in (c) in Figures 7.8 through Figures 7.11. Because the

segmentations are the same, there is no purpose in performing a third re-attribution

step because the results would be the same as the second re-attribution. In fact, the

second re-attribution only has to re-examine the small handful of pixels whose grouping
in figure (b) is different than in figure (c).

Examining the reflectivity of the pixels in Figures 7.8 through 7.11, a skeptic might

argue that the segmentation could be performed based on the log-magnitude data alone,
i.e. that the anisotropy attribution is unnecessary in the segmentation step and thus

the algorithm as a whole. To demonstrate that this is not the case, we modify the
synthetic data by moving some of the scatterers closer together to the point that they

cannot easily be resolved. In particular, the four scatterer pairs in Figure 7.2 which

have been moved closer together are: A3 /A 4 , A 5/Bi, A6 /C1, and C 2 /D 2 as displayed
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Figure 7.8. Segmentation of pixels at down-range DR1 in Figure 7.2. (a) Full-aperture reflectivity. (b)
Segmentation based on the initial anisotropy attribution. (c) Segmentation based on the first anisotropy
re-attribution. (d) Segmentation based on the second anisotropy re-attribution.
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Figure 7.9. Segmentation of pixels at down-range DR2 in Figure 7.2. (a) Full-aperture reflectivity. (b)
Segmentation based on the initial anisotropy attribution. (c) Segmentation based on the first anisotropy
re-attribution. (d) Segmentation based on the second anisotropy re-attribution.
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Figure 7.10. Segmentation of pixels at down-range DR3 in Figure 7.2. (a) Full-aperture reflectivity.

(b) Segmentation based on the initial anisotropy attribution. (c) Segmentation based on the first

anisotropy re-attribution. (d) Segmentation based on the second anisotropy re-attribution.
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Figure 7.11. Segmentation of pixels at down-range DR4 in Figure 7.2. (a) Full-aperture reflectivity.
(b) Segmentation based on the initial anisotropy attribution. (c) Segmentation based on the first
anisotropy re-attribution. (d) Segmentation based on the second anisotropy re-attribution.
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in Figure 7.12. The scatterers used here are the same as before since only their locations

have changed. The resulting anisotropy attributions and sub-aperture reflectivities are

shown in Figure 7.13. The results of the algorithm on the data in Figure 7.12 are

impressive since most (10 out of 11) of the scattering centers are all correctly attributed

even though they are in very close proximity to each other and difficult to resolve.

~ v.

(a) (b)

Figure 7.12. Log-magnitude image of the SAR data with closely spaced scatterers (a) without anno-

tations and (b) with annotations.

The success in correctly attributing the scatterers lies in the use of the clustering in-

formation. The segmentation plots for the scatterers are given7 in Figures 7.14 through

7.16. From the reflectivity plots in Figures 7.14(a) through 7.16(a), it is clear that a

segmentation algorithm that uses only the log-magnitude reflectivity will fail to separate

the scatterers in the new data. The aggregation procedure proposed in Section 7.2, how-

ever, makes use of the additional anisotropy information to separate the scatterers and

produce the correct anisotropy attribution. The aggregation algorithm has difficulty

correctly assessing the spatial extent of the scatterer, but the resulting segmentation is

close enough to produce accurate anisotropy attributions.
To conclude this chapter, we demonstrate the performance of the anisotropy attri-

bution on the BMP-2 from the MSTAR data set. In particular, the BMP-2 is taken at

the cardinal angles of 00 and 900 since there is a known canonical response observed

at each of these orientations due to the front and side of the vehicle. The standard

log-magnitude reflectivity images for these orientations are shown in Figure 7.17. The

results for the 00 azimuthal orientation are shown in Figure 7.18. The layout of this

figure is the same as in Figure 7.7 except that the anisotropy attributions from only

the initial and fourth iterations are shown. Again, the initial attribution is obtained

using the approach described in Section 5.2. From Figure 7.18, it is apparent that the

7The segmentation is not displayed for down-range DR1 containing scatterers A1 and A 2 as their

scattering locations were not altered.
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(e) (f)

Figure 7.13. Results of the iterative anisotropy attribution on the synthesized data in Figure 7.12.

First column: images of the degree of anisotropy. Second column: images of the resulting sub-aperture

reflectivities. First row: initial attribution using the MSM statistic from Chapter 5. Second row: first

anisotropy re-attribution. Third row: second anisotropy re-attribution.
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Figure 7.14. Segmentation of pixels at down-range DR2 in Figure 7.12. (a) Full-aperture reflectivity.
(b) Segmentation based on the initial anisotropy attribution. (c) Segmentation based on the first
anisotropy re-attribution. (d) Segmentation based on the second anisotropy re-attribution.
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Figure 7.15. Segmentation of pixels at down-range DR3 in Figure 7.12. (a) Full-aperture reflectivity.
(b) Segmentation based on the initial anisotropy attribution. (c) Segmentation based on the first
anisotropy re-attribution. (d) Segmentation based on the second anisotropy re-attribution.
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Figure 7.16. Segmentation of pixels at down-range DR4 in Figure 7.12. (a) Full-aperture reflectivity.
(b) Segmentation based on the initial anisotropy attribution. (c) Segmentation based on the first
anisotropy re-attribution. (d) Segmentation based on the second anisotropy re-attribution.
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re-attribution significantly reduces the number of anisotropic classifications in clutter

due to the strong response at the front of the vehicle8 . Furthermore, the anisotropy for

the obvious geometric scatterer at the front of the vehicle is still captured.

(a) (b)

Figure 7.17. Standard full-aperture log-magnitude reflectivity image of a BMP-2 tank at an (a) 00

azimuth and (b) 900 azimuth.

Figure 7.19 similarly shows the anisotropy attributions from the initial and fourth

iterations of the anisotropy attribution for the BMP-2 at a 90' azimuth. Again, the re-

attribution has removed many of the anisotropy attributions which are not clearly asso-

ciated with a geometric scatterer. The algorithm has, however, preserved the anisotropy

attributions associated with the side of the vehicle which produces a strong specular

response.
Both Figures 7.18 and 7.19 show a considerable decrease in the number of anisotropy

attributions in the final iteration. Because the aggregation/re-attribution algorithm

better compensates for interference than the algorithm of Chapter 5, it is likely that

the anisotropy attributions that are removed by the iterative procedure are caused by

unstable volumetric scattering. The removal of these attributions supports the rea-

soning in Chapter 5 for the weak dependence exhibited in the near-cardinal confusion

matrix for anisotropy. In particular, at the end of Section 5.4, we speculated that the

small values of the diagonal entries in the near-cardinal confusion matrix are due to

the presence of unstable volumetric anisotropy (in addition to the obvious geometric

anisotropy observed in the data). That claim is supported by Figures 7.18 and 7.19

where the majority of the anisotropy attributions are removed except for those attribu-

tions which can be readily identified (in the aggregation/re-attribution process) with a

geometric scatterer, i.e. the front plate and broadside responses.

8 Note that for the MSTAR images in Figure 7.17, the aperture is to the right of the image. Conse-

quently, the right-most part of the vehicle in the image corresponds to the front.
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(a)

(c)

(b)

(d)

Figure 7.18. Anisotropy attributions and reflectivity images of the BMP-2 at a 0' azimuth. First

column: images of the anisotropy attributions. Second column: images of the associated sub-aperture

reflectivities. First row: initial anisotropy attribution. Second row: fourth iteration of the anisotropy

attribution.
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(a)

(c)

(b)

(d)

Figure 7.19. Anisotropy attributions and reflectivity images of the BMP-2 at a 900 azimuth. First

column: images of the anisotropy attributions. Second column: images of the associated sub-aperture

reflectivities. First row: initial anisotropy attribution. Second row: fourth iteration of the anisotropy

attribution.
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Chapter 8

Contributions and

Suggestions for Future Research

This thesis contributes to the field of SAR ATR through the exploitation of nonideal
scatterer anisotropy. Two fundamental methodologies are used towards this end. The
first is a nonparametric approach that classifies targets based on observed anisotropy
behavior that is learned from the data. The second (and more developed) approach is a
parametric characterization of the unimodal azimuthal response that is common from
canonical scatterers. This chapter summarizes these contributions in Section 8.1 and
provides suggestions for further research in Section 8.2.

* 8.1 Summary of Contributions

This section summarizes the contributions of this thesis by chapter.

Sub-aperture Representation

The cornerstone of the analysis in this thesis is the sub-aperture pyramid presented in
Chapter 3. This structure divides the aperture into various sub-apertures and arranges
them in a manner that allows for the exploitation of scatterer anisotropy throughout
the remainder of the thesis. One function of the pyramid is to represent the data in
an over-complete basis that reveals anisotropic scattering. In particular, each level of
the pyramid corresponds to a particular cross-range-azimuthal resolution trade-off. Not
only does the pyramid provide a library of representations, but these representations are
structured such that anisotropy in the data exhibit distinctive patterns in the pyramid.
In particular, unimodal azimuthal scattering appears as a "streak" down the pyramid
of reflectivity estimates where properties of the streak convey information about the
anisotropy.

The data in the pyramid are used in two ways. The first is a nonparametric approach
in which the patterns of the data are learned with a Parzen density estimator. The
second approach uses the sub-apertures to define anisotropy hypotheses and uses the
sub-aperture reflectivity measurements as observations to test the hypotheses. The
sub-aperture scattering hypotheses approximate the unimodal anisotropic scattering
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predicted by physics-based models for many canonical scattering types. In particular,
the hypotheses characterize the degree of anisotropy which is related to scatterer size.

Nonparametric Estimation of Anisotropy

Chapter 4 of this thesis extends the density-based classification approach presented by
DeBonet et. al.[20]. In both approaches, an image is characterized by generating a
set of features whose statistical relationships are learned with a nonparametric density
estimator. This learning process is applied to an image of an unknown target and images
of reference vehicles. A classification decision is then made by comparing the density
learned from the unknown target image to the densities learned from the reference
images.

The work in Chapter 4 extends DeBonet's method in two ways. The first is our use
of the sub-aperture feature set which is motivated by scattering physics, in contrast
to DeBonet's wavelet-based feature set that is motivated by image texture. The sub-
aperture feature vector is taken as the pyramid of log-magnitude sub-aperture reflec-
tivities for a given location. These reflectivities convey the variations of the azimuthal
response produced by a scatterer.

The other extension of DeBonet's work is in the manner in which the divergence
comparing two densities is approximated. DeBonet uses a summation motivated by the
law of large numbers. This approximation, however, can lead to the use of an excessive
number of samples in the summation. In particular, DeBonet's approximation tends to
evaluate the summand at a high number of clutter samples due to the predominance of
clutter in the image. The approximation proposed in Section 4.2.4, however, is based on
a Riemann sum where the samples are uniformly spread throughout the feature space
thus preventing too many samples from being allocated toward clutter. The result is a
significant reduction in the computation required.

Sub-aperture Anisotropy Attribution

Chapter 5 develops a method for attributing anisotropy. The basis of the attribution is
the sub-aperture scattering model introduce by Chaney et. al.[12] and Allen et. al.[2]
that characterizes the azimuthal response from a scatterer. The attribution is obtained
by developing an LRT for anisotropy hypotheses defined from the sub-aperture pyramid.
The first test presented is a GLRT in which the ML reflectivity estimate (under the
associated anisotropy hypothesis) is used for the value of the reflectivity parameter.
The resulting GLLR is called the basic GLLR statistic and corresponds to a difference
in average sub-aperture energy between the two sub-aperture hypotheses comprising
the likelihood ratio. Thus, average sub-aperture energy is a sufficient statistic for this
model.

While the basic GLLR statistic is consistent with our intuition for characterizing
azimuthal concentration, it is not robust to interference from neighboring scatterers
which the sub-aperture scattering model does not include. This issue is addressed in two
ways. The first address is to recognize that the ML estimate (under a given anisotropy
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hypothesis) of reflectivity has a corresponding resolution that varies with the hypothesis,
and thus, the hypotheses are not consistent with each other. To deal with this issue,
a scaling of the measured full-aperture reflectivity is used to estimate the sub-aperture
reflectivity, where the scaling factor provides the appropriate normalization for using
the full-aperture to measure a partial-aperture response. Under this approach, all the
reflectivity estimates are imaged at the finest resolution, and thus, the hypotheses are
consistent with each other. This new reflectivity estimate results in a slight modification
of the basic GLLR statistic. In particular, a term penalizing the amount of energy
outside the hypothesized sub-aperture is added to the statistic. This modified GLLR
statistic significantly improves the accuracy of the anisotropy attribution, but the effects
of interfering scatterers are still evident.

The second method used to address interfering scatterers explicitly includes their
effects in the scattering model. In particular, the sub-aperture scattering model is ex-
tended to allow for scatterers at neighboring pixel locations. In this extended model,
the nuisance reflectivity parameter corresponds to a vector of reflectivities. These re-
flectivities are estimated in an ML fashion using a Gaussian prior on the reflectivities to
regularize the estimation problem. The estimated reflectivities are then used to deter-
mine a likelihood statistic for the sub-aperture hypotheses. The LRT using this MSM
statistic performs better than the modified GLLR but is still vulnerable to interference
from neighboring scatterers.

To address the effects of interfering scatterers beyond the use of the modified GLLR
and MSM statistics, Section 5.3 proposes performing the hypothesis tests in a tele-
scopic, decision-directed fashion to take advantage of the structure provided by the
sub-aperture pyramid. The telescopic testing procedure starts at the top of the pyra-
mid and traverses a path down the pyramid following the most likely sub-aperture
hypothesis at each step. Not only does this testing reduce the number of sub-apertures
that need to be tested, but the telescopic testing enforces a consistency between the
sub-aperture hypotheses which reduces the number of anisotropic classifications due to
interfering scatterers.

The chapter concludes with application of the anisotropy attribution to the MSTAR
data. To evaluate the utility provided by the anisotropy attribution, confusion matrices
for the attribution are empirically estimated. In particular, the confusion matrices are
separately presented for the case of near-cardinal and off-cardinal orientations. The
near-cardinal orientations exhibit a mild dependence of the "test" attribution on the
"truth" attribution, although this dependence is not as strong as we had expected. The
anisotropy attribution for off-cardinal orientations is even less stable in the sense that
the "test" attribution is independent of the "truth" attribution. We conjectured that
the source of the instability is volumetric scattering which arises from the interference
of irresolvable scatterers and produces an erratic, scintillating response in azimuth.
Thus, the anisotropy characterization of these volumetric scatterers is also erratic as
the azimuthal energy concentration fluctuates and is thus sensitive to slight changes in
imaging orientation. The aperture used in the MSTAR data is too narrow to observe
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anisotropy due to canonical scatterers except at near-cardinal orientations. The remain-
der of the anisotropy attributions are thus believe to be due to volumetric scatterers.
This limited observation of canonical scattering explains the weak dependence observed
at near-cardinal azimuths and the independence observed at off-cardinal azimuths in
the MSTAR data.

Relation Between Phenomenology and Anisotropy Attribution

The results on the MSTAR data in Chapter 5 motivated the study in Chapter 6 of
anisotropy phenomenology and its effects on anisotropy attribution. Two sources of
anisotropy are considered in this chapter. The first is the class of geometric scatterers
which have a simple geometric structure and produce a consistent anisotropic response.
The second source considered is the class of volumetric scatterers that are composed of
irresolvable point scatterers that interfere in a manner resulting in a chaotic azimuthal
response which is occasionally characterized as anisotropic. For each case, the informa-
tion conveyed by the anisotropy attribution is evaluated. In particular, anisotropy plots
are shown to convey the dependence of the anisotropy attribution on the scatterer "size".
For geometric scatterers, we find that there is a strong dependence of the anisotropy
attribution on the scatterer size. Furthermore, the attributions are consistent with the
actual concentration of the azimuthal response. However, for volumetric scatterers, we
demonstrated that the strength of the dependence varies with the underlying scatterer
density. In particular, for low-density volumetric scatterers, the anisotropy attribution
is independent of scatterer size and the full-aperture attribution is usually produced.
For high-density volumetric scatterers, the anisotropy attribution is highly dependent
on scatterer size because the scatterer resembles a geometric scatterer.

It is argued and demonstrated in this chapter that by using a wider aperture, one can
reduce the incidence of observed volumetric anisotropy while preserving the observed
geometric anisotropy which is more meaningful in characterizing the scatterer. The task,
however, is not as simple as just increasing aperture length. In particular, the effects
of location uncertainty must be addressed. Increasing the aperture length increases the
location uncertainty for physically large geometric scatterers, but reduces the location
uncertainty for volumetric scatterers. To address this apparent conflict, we presented a
decision-directed peak extraction method that uses the anisotropy attribution to adapt
the resolution of the peak extraction to the underlying scatterer.

Chapter 6 also demonstrates the benefit of additional anisotropy hypotheses that
wide-aperture data allows to be defined. Larger sub-apertures can be used to form sub-
aperture hypotheses which better characterize the anisotropy produced by smaller scat-
terers. In narrow-aperture settings, these small scatterers may produce an azimuthal
response whose mainlobe is wider than the aperture and thus can only be characterized
as full-narrow-aperture. However, with a larger aperture, the localized concentration
of this response in azimuth can be better characterized as the full-narrow-aperture
attribution is no longer the minimal anisotropy characterization available.
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Iterative Anisotropy Attribution

Chapter 7 returns to the task of improving the anisotropy attribution. An iterative

approach is proposed to model and remove the effects of interfering scatterers. The
proposed iteration is a two step procedure that first clusters pixels according to their

corresponding scatterers and then re-attributes pixels using the clustering information

to suppress the effects of neighboring scatterers. The clustering is performed with a

greedy algorithm that maximizes the likelihood of an observed set of features corre-

sponding to pixel reflectivity, pixel anisotropy, and scatterer size. Due to the manner

in which the observed features are modeled, an additive cost function can be used to

evaluate the likelihood of a segmentation. Evaluation of all possible segmentations is

computationally prohibitive. Thus, the ML segmentation is approximated by a greedy
algorithm that at each iteration merges the two regions which result in the largest

increase of the likelihood.
The re-attribution procedure extends the regularization approach of Section 5.2. In

particular, the vector of reflectivities (of the focused pixel and its neighbors) is modeled

as a noisy observation of the finest resolution reflectivity measurements instead of a zero-

mean Gaussian prior (as done in Chapter 5). Incorporating this observation model into

the estimation of the reflectivity nuisance parameter produces a term that regularizes

the estimate towards the observed reflectivities. In addition, as described in Chapter 7,
the aggregation of pixels into distinct, physically extended scatterers allows us to devise

an improved method for removing interference from such neighboring scatterers.

The results from using the iterative clustering-re-attribution procedure are quite
accurate. Significant improvements are made over the attribution of Chapter 5. In

particular, virtually all of the anisotropy misclassifications (due to interference from a

neighboring scatterer) in clutter are removed. Furthermore, the attribution of weak

scatterers that are corrupted by neighboring strong scatterers are also improved.

* 8.2 Suggestions for Future Research

The research presented in this thesis opens several new directions for further research

which are described in this section.

Sub-band Analysis

The focus of this thesis has been on sub-aperture analysis to exploit aspect dependent

scattering in azimuth. This work is motivated by the physics-based PO and GTD scat-

tering models which predict aspect dependencies based upon the canonical scatterer

type, e.g. flat plate, dihedral, trihedral, top-hat, sphere, etc.. The PO and GTD scat-

tering models also predict a similar dependence in frequency. Frequency is analogous
to azimuth but for the down-range component instead of cross-range. The PO and
GTD models predict that frequency concentration characterizes down-range extent in
the same way that azimuthal concentration characterizes cross-range extent. The PO
response for several canonical scatterers is presented in Eqs. (2.16)-(2.19) of Chapter 2.
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Because of the similarity between frequency and azimuth, much of the sub-aperture
analysis should carry over sub-band analysis. However, there are two differences that
one should keep in mind when adapting the sub-aperture analysis to frequency. One
difference is that the sinc-like dependence is actually a function of the reciprocal of
frequency instead of frequency. Thus, the mode of the sinc will occur at the highest
frequency in the band. However, besides this sinc component of the response there is
an additional scaling factor of the form f /2 where n is an integer (positive, negative, or
zero) that is determined by the canonical scatterer type. Negative values of n may shift
the location of the mode to something other than the highest frequency. Furthermore,
this frequency dependent scaling factor may significantly modify the envelope on the
response, especially in ultra-wideband data. It is suspected that because the methods
in Chapters 5 and 7 have been developed to be robust to slight functional deviations
in the modeled response, this additional factor in the frequency dependence should
not significantly detract from the applicability of the analysis to frequency instead of
azimuth. However, such supposition should be studied and verified, and not taken as
fact.

The application of the sub-aperture analysis to frequency is not expected to pose
significant new challenges; however, this expectation assumes that one does sub-band
analysis instead of sub-aperture analysis. If one wishes to do both sub-band and
sub-aperture analysis simultaneously, the problem becomes considerably more difficult.
Problems manifest themselves at the very core of the analysis with the generalization
of the sub-aperture pyramid. An intuitive generalization is to extend the pyramid to
a two dimensional structure resembling the quad-trees used in the multiscale analysis
of images. In such an extension, the intervals corresponding to sub-apertures now gen-
eralize into "squares" that are the product of a sub-aperture and sub-band. Such a
generalization seriously restricts the scattering phenomena that can accurately be cap-
tured in a concise manner. In particular, there is no reason to believe that just because
scattering energy is concentrated in azimuth (or frequency) that the energy is concen-
trated in frequency (or azimuth). For example, a scatterer whose down-range extent is
significantly smaller than its cross-range extent will have a broad energy distribution
in frequency, but a high energy concentration in azimuth. Such a scatterer would not
be concisely captured in the proposed pyramidal representation. With such scatterers
in mind, we believe that one would have to generalize the pyramid to

S X S = {Sm,i X SnJ Sm,i, Sn,j E S}

in order to capture scatterers whose cross-range and down-range extents do not match.
Besides extending the pyramidal representation, there is also the issue of how to

model neighboring scatterers which are now located in both down-range and cross-range.
To model all neighboring pixels, as done in this thesis, is computationally burdensome
due to significant increase in the model order from N (neighboring pixels in cross-range
at a single range) to N 2 (neighboring pixels in both cross-range and down-range).
Considering that the iterative approach in Chapter 7 involves a matrix inversion, the

178



Sec. 8.2. Suggestions for Future Research

high cost of using all N 2 neighboring pixels is clear. Practical application of such models
will almost certainly need to exploit the sparsity of scatterers in the imagery.

Replacing the Sub-aperture Scattering Model

The sub-aperture scattering model is used to model anisotropy both because of its

simplicity and its general characterization of azimuthal concentration. An interesting
direction for further research is to evaluate the efficacy of other models for the azimuthal

response. A drawback of the sub-aperture scattering model is that the corresponding

response in the image domain is a sine function. Because the sine function has an

infinite extent, it is clear that no scatterer will truly fit this response. Furthermore, the

slow spatial decay of this response may leave the attribution unnecessarily vulnerable to

strong interfering scatterers. With this thought in mind, it may seem obvious that some

other function, which decays faster in the spatial domain, should be used. Examples of
alternative azimuthal response model are the sine function (corresponding to a boxcar

in the spatial domain) and the Gaussian pulse (corresponding to a Gaussian pulse in the

spatial domain). One must be cautious, however, in using other azimuthal scattering

models. In particular, there is the issue of how modeling errors in the azimuthal domain

will effect the resulting anisotropy test. As an example, consider using a boxcar in the

spatial domain (or equivalently a sine in the azimuthal domain). The sensitivity of the

anisotropy test to the misalignment of the zero crossings of the modeled sinc to the

actual responsel needs to be taken into consideration. This misalignment may be due

to either a difference in the fundamental frequency of the two responses or a difference

in the azimuthal location of the mainlobe. Regardless of the source, if the misalignment

is severe enough, then there may be sub-apertures in which the sidelobes of the modeled

and actual azimuthal response are 1800 out of phase resulting in a significant error in

that sub-aperture.
We believe that gains can be achieved by using a better model than the sub-aperture

scattering model. Our intuition is that a sinc azimuthal response (or any other az-
imuthal response with significant oscillations) will not be significantly more effective
than the boxcar response due to problems with the alignment of the zero-crossings.

However, we suspect that smooth unimodal functions, such as the Gaussian, would

perform better than the sub-aperture scattering model. Because such a function does

not change sign, there is no concern about the alignment of zero-crossings. Further-

more, because the model function is smooth, it will exhibit faster decay in the image

domain than the sub-aperture scattering model.

Measure of Sub-aperture Stability

In Chapter 6, we discuss how the use of a wider aperture can reduce the incidence of
volumetric anisotropy. This reduction can be achieved because volumetric scatterers
produce a chaotic azimuthal response whose energy is distributed across the aperture,

'Many scatterers produce an azimuthal response which oscillates.
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while geometric scatterers produce a highly concentrated azimuthal response. However,
this approach does not provide perfect rejection of volumetric scatterers. An interest-
ing direction for further research is to characterize each anisotropy attribution with a
confidence measure conveying how likely it corresponds to geometric anisotropy rather
than volumetric anisotropy. Such a confidence measure could be used in tandem with
the anisotropy attribution to weight its importance in a classification algorithm.

The intuitive motivation for obtaining this measure is the same as the intuition
behind the reduction of volumetric anisotropy in wide-aperture data. In particular,
we believe that a measure that characterizes the goodness-of-fit of the observed az-
imuthal response to the hypothesized azimuthal response should convey how likely an
anisotropy attribution is due to a geometric scatterer rather than a volumetric scat-
terer. Because volumetric scatterers produce a chaotic azimuthal response, even if the
response is declared anisotropic, the hypothesized azimuthal response will be a poor fit
to the volumetric scatterer's actual response. A geometric scatterer on the other hand
should demonstrate a very high similarity to the modeled azimuthal response due to its
structured, highly concentrated azimuthal response.

This idea is similar in spirit to the work of Smith et. al.[51] where they propose an
ad-hoc "peak-stability" measure to characterize the deviation of the azimuthal response
from the isotropic response. We believe that a principled statistic can be obtained which
also applies to sub-aperture scattering models.

Extending the Hybrid-Resolution Peak Extraction

The hybrid-resolution peak extraction/attribution used in Chapter 6 uses a decision-
directed method to determine which resolution should be used for the anisotropy at-
tribution. The method first examines the anisotropy attribution for the fine-resolution
peak extraction, and if the attribution is anisotropic, then the coarse-resolution peak
extraction is used for the attribution. This approach was restricted to the use of two
resolutions for simplicity and to demonstrate proof-of-concept for the suppression of
volumetric anisotropy in wide-aperture data. The approach should be generalized to
use more than just two pre-determined resolutions for the peak extraction. We believe
it would be more effective (both for the peak extraction and the anisotropy attribution)
to perform the peak extraction and anisotropy attribution in alternating steps. In par-
ticular, the peak extraction is repeatedly performed at successively coarser resolutions
until the anisotropy attribution produced for the peak extraction conveys a scatterer
size that is consistent with the resolution at which the peak of the scatterer is extracted.
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Appendix A

DeBonet's Wavelet-based Classifier

In [20], DeBonet et. al. introduce a SAR classifier that exploits the differences in cross-
scale dependencies in image data to distinguish various targets. The classification set-
ting and underlying principles of the algorithm proposed by DeBonet are the same as
those described in Section 2.4. In this appendix, DeBonet's approach is described in
more detail using the notation and ideas from Section 2.4. The cross-scale dependen-
cies are learned in a nonparametric fashion by applying the Parzen density estima-
tor to feature vectors constructed from a multiresolution representation of the image
data. Classification decisions are then made by comparing the density estimate from
an unknown target to density estimates from labeled targets as in Section 2.4.3. The
remainder of this appendix describes these steps in more detail. Section A.1 presents
the wavelet-based feature set used to represent the data. Section A.2 describes how
these features are learned. Section A.3 then discusses how the estimated densities are
used to classify vehicles.

E A.1 Wavelet-based Representation

DeBonet bases his data representation on the wavelet transformi which represents the
image data at multiple resolutions. The SAR data used in DeBonet's approach is the

log-magnitude SAR image, i.e. the phase information is discarded. Starting from this

image, DeBonet generates a sequence of multiresolution images by recursively applying

the wavelet transform and down-sampling by a factor of two to obtain the low-frequency

component of the image as illustrated in the left-hand side of Figure A.1. In this figure,
W represents a circular convolution with the scaling function for the wavelet, 1 2 repre-
sents a down-sampling by two in each image dimension, and Gm represents the image

at scale m with m = 0 denoting the finest resolution and m = M denoting the coarsest
resolution. These images correspond to a sequence of nested sub-space representations
at successive resolutions. DeBonet applies a series of filters fm,i, fm,2, ... , fm,N to Gm

to reveal particular structures at that scale as illustrated in the right side of Figure A.1.
In particular, DeBonet uses oriented Laplacian filters for the filters fm,i. The image
resulting from the application of filter fm,i to image Gm is denoted as Fm,i.

'It is assumed that the reader is familiar with wavelets. For a thorough treatment of wavelets, the
reader is referred to Cohen[14], Vetterli[57], Wickerhauser[59], and Daubechies[18].
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Wfo,i fO,N

12 Fo,1  Fo,1

W fiji fl,N

12F 1 , 1  F1, 1

fM,1 fM,N

Figure A.1. Generation of the wavelet-based feature vectors. Left-hand side: Construction of the

multiresolution SAR images G,. Right-hand side: Filtering of multiresolution images to reveal image

structure.



A feature vector is assembled for each pixel at the finest resolution by collecting

from each image Fm,i the components corresponding to that location. In particular, if
the finest resolution filtered image pixels Fo,i(x, y) are indexed by x E {1, . . . , N1} and

y E {1, ... , N 2 }, then the feature vector 2 V(x, y) for location (x, y) can be written as

V(x, y) = [Fo,I(x, y), Fo,2 (x, y),... , FO,N(X, y),

F,1 ,[])[] Fl,2 ,[X .y) ... , F1,N ([X -[-)i.

Fm,1 , FM,2 , . FM,N _

(A.1)

where [.1 represents the least integer function. Such a feature vector is depicted in
Figure A.2 where all the filtered images for each scale are collected into a vector-valued
image, and these vector images can be arranged into a quad-tree due to the dyadic

sampling variation in scale. The feature vector for pixel (x, y) then corresponds to the
branch of the tree extending from the root node ([ [ ]) at scale M to (x, y) at

scale 0.

Figure A.2. Illustration a multiresolution feature vector used by DeBonet. Each vector-valued image
is composed of the filtered images for the corresponding resolution. Each branch (such as the heavily
shaded path) in the resulting quad-tree constitutes a feature vector.

2In order to keep the notation clear, V is used instead of X to denote the sample feature vector
because x is used to denote location.
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M A.2 Learning Dependencies

DeBonet uses the wavelet-based feature set to reveal the cross-scale dependencies in a
SAR image. To characterize these dependencies, he uses the Parzen density estimator
in Eq. (2.20) with a hyper-cube kernel, i.e.

f(v) = N 2 v (A.2)
N1N 2hd h

where the Vi are the feature vectors generated from an image, | denotes the infinity
norm, and each side of the hyper-cube3 measures 2h.

* A.3 Decision Rule

To classify targets in images, DeBonet compares density estimates from reference data,
i.e. images whose contents are known, to density estimates from test data, i.e. images
whose contents are to be classified. The measure for this comparison is the Chi-Square
divergence which is a second-order approximation to twice the KL divergence[15],
i.e. 2D(fo||fi), and is given as

( vm) - f0(v))
x 2(fi, fo) f dV (A.3)

for a reference density estimate fj and test density estimate fo. This x 2 divergence is
computed between the density estimated from the test data and each of the densities
estimated from the reference data. A classification decision is then made according to
the rule

X* rgif X 2 (fi, fo) T
1 = argmin A(I !o) i 2 (fl. f (A.4)

no classification :if X2f, 0o) > T

for a threshold T. Thus, the test data is declared to have arisen from the same source
distribution as the reference data set that minimizes the x 2 divergence as long as the
resulting x 2 divergence does not exceed the threshold T. If the minimum x 2 divergence
exceeds this threshold, then a "no classification" decision is made. The threshold thus
imposes a minimal confidence requirement in order to make a classification.

3 The use of the hyper-cube is no less general than the use of a hyper-rectangle as the kernel because

the filters fmi can be used to scale the data.
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Exact computation of the integral in Eq. (A.3) is computationally intensive. DeBonet
thus approximates the integral as

1 (AV) - f mx, (Afifo)~ r ~ 1

A 2(A.5)

In this approximation, DeBonet replaces the integral with a summation evaluated at
the sample feature vectors in the reference data set S. In order to account for their
nonuniform distribution, the elements in the summation are weighted according to their

local sparsity, i.e. by the reciprocal of the density estimate. Because the points used
in the summation vary with the reference data set, the test density must be separately
estimated for each reference data set to which it is compared.
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Appendix B

MSTAR Data Set

Moving and Stationary Target Acquisition and Recognition (MSTAR) is a Defense Ad-
vanced Research Projects Agency (DARPA) program designed to explore and improve
SAR ATR. To help achieve this goal, MSTAR released a large data set for public dis-
tribution. The MSTAR data set was collected using the Sandia National Laboratory

SAR sensor platform operating at an X-band frequency. In particular, the radar had

a center frequency of 9.6GHz and a bandwidth of 0.59GHz which produces a one foot

down-range resolution. To similarly obtain a one foot cross-range resolution, a 2.80
synthetic aperture was used.

The MSTAR data set contains images of a variety of vehicles taken from various

orientations. In particular, compact discs are distributed with the following data:

" MSTAR Targets: This data subset contains images of the BMP-2 tank (9563,
9566, c21) 1 , BTR-70 transport (c71), T-72 tank(132, 812, s7), and SLICY 2 taken
at 150 and 170 elevation angles with full aspect coverage, i.e. images formed every

10 in azimuth 3 .

" MSTAR/IU Mixed Targets: This data subset contains images of the 2S1 gun

(bol), BDRM-2 truck (E-71), BTR-60 transport (k10yt7532), D-7 bulldozer
(92v13015), T-62 tank (A51), ZIL-131 truck (E12), ZSU-23/4 gun (d08), and
SLICY taken at 15', 170, 300 , and 450 elevation angles.

" MSTAR/IU T-72 Variants: This data subset contains images of the T-72 tank

(A04, A05, A07, A10, A32, A62, A63, A64) under various articulations taken at
150, 170, 300 , and 45' elevation angles.

* MSTAR Clutter: This data subset contains images of clutter from rural and urban

areas of Huntsville, Alabama taken at a 150 elevation angle.

The work in this thesis only utilizes the 150 and 170 data in the "Targets" and "Mixed
Targets" data subsets. The 170 data are generally used for the learning aspects of the

1Th serial numbers of the imaged vehicles are specified in parentheses.
2Sandia Labs Implementation of CYlinders (SLICY) is an artificial target composed of a few simple

canonical scatterers constructed to aid the study of scatterer phenomenology and ATR.
3 There are some azimuths omitted in the data set, thus there are slightly fewer than 360 images.
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classification process because the dense uniform sampling in azimuth (every 10) allows
for all possible azimuthal dependencies to be observed. The 15' data are then used as
the test data for performance evaluation.
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