215 research outputs found

    Branching and Bounding Improvements for Global Optimization Algorithms with Lipschitz Continuity Properties

    Get PDF
    We present improvements to branch and bound techniques for globally optimizing func-tions with Lipschitz continuity properties by developing novel bounding procedures and parallelisation strategies. The bounding procedures involve nonconvex quadratic or cubic lower bounds on the objective and use estimates of the spectrum of the Hessian or deriv-ative tensor, respectively. As the nonconvex lower bounds are only tractable if solved over Euclidean balls, we implement them in the context of a recent branch and bound algorithm (Fowkes et al., 2012) that uses overlapping balls. Compared to the rectangular tessellations of traditional branch and bound, overlapping ball coverings result in an increased number of subproblems that need to be solved and hence makes the need for their parallelization even more stringent and challenging. We develop parallel variants based on both data- and task-parallel paradigms, which we test on an HPC cluster on standard test problems with promising results

    New technique for solving univariate global optimization

    Get PDF
    summary:In this paper, a new global optimization method is proposed for an optimization problem with twice differentiable objective function a single variable with box constraint. The method employs a difference of linear interpolant of the objective and a concave function, where the former is a continuous piecewise convex quadratic function underestimator. The main objectives of this research are to determine the value of the lower bound that does not need an iterative local optimizer. The proposed method is proven to have a finite convergence to locate the global optimum point. The numerical experiments indicate that the proposed method competes with another covering methods

    Robust Monotonic Optimization Framework for Multicell MISO Systems

    Full text link
    The performance of multiuser systems is both difficult to measure fairly and to optimize. Most resource allocation problems are non-convex and NP-hard, even under simplifying assumptions such as perfect channel knowledge, homogeneous channel properties among users, and simple power constraints. We establish a general optimization framework that systematically solves these problems to global optimality. The proposed branch-reduce-and-bound (BRB) algorithm handles general multicell downlink systems with single-antenna users, multiantenna transmitters, arbitrary quadratic power constraints, and robustness to channel uncertainty. A robust fairness-profile optimization (RFO) problem is solved at each iteration, which is a quasi-convex problem and a novel generalization of max-min fairness. The BRB algorithm is computationally costly, but it shows better convergence than the previously proposed outer polyblock approximation algorithm. Our framework is suitable for computing benchmarks in general multicell systems with or without channel uncertainty. We illustrate this by deriving and evaluating a zero-forcing solution to the general problem.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 9 figures, 2 table

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Nonconvex and mixed integer multiobjective optimization with an application to decision uncertainty

    Get PDF
    Multiobjective optimization problems commonly arise in different fields like economics or engineering. In general, when dealing with several conflicting objective functions, there is an infinite number of optimal solutions which cannot usually be determined analytically. This thesis presents new branch-and-bound-based approaches for computing the globally optimal solutions of multiobjective optimization problems of various types. New algorithms are proposed for smooth multiobjective nonconvex optimization problems with convex constraints as well as for multiobjective mixed integer convex optimization problems. Both algorithms guarantee a certain accuracy of the computed solutions, and belong to the first deterministic algorithms within their class of optimization problems. Additionally, a new approach to compute a covering of the optimal solution set of multiobjective optimization problems with decision uncertainty is presented. The three new algorithms are tested numerically. The results are evaluated in this thesis as well. The branch-and-bound based algorithms deal with box partitions and use selection rules, discarding tests and termination criteria. The discarding tests are the most important aspect, as they give criteria whether a box can be discarded as it does not contain any optimal solution. We present discarding tests which combine techniques from global single objective optimization with outer approximation techniques from multiobjective convex optimization and with the concept of local upper bounds from multiobjective combinatorial optimization. The new discarding tests aim to find appropriate lower bounds of subsets of the image set in order to compare them with known upper bounds numerically.Multikriterielle Optimierungprobleme sind in diversen Anwendungsgebieten wie beispielsweise in den Wirtschafts- oder Ingenieurwissenschaften zu finden. Da hierbei mehrere konkurrierende Zielfunktionen auftreten, ist die Lösungsmenge eines derartigen Optimierungsproblems im Allgemeinen unendlich groß und kann meist nicht in analytischer Form berechnet werden. In dieser Dissertation werden neue Branch-and-Bound basierte Algorithmen zur Lösung verschiedener Klassen von multikriteriellen Optimierungsproblemen entwickelt und vorgestellt. Der Branch-and-Bound Ansatz ist eine typische Methode der globalen Optimierung. Einer der neuen Algorithmen löst glatte multikriterielle nichtkonvexe Optimierungsprobleme mit konvexen Nebenbedingungen, während ein zweiter zur Lösung multikriterieller gemischt-ganzzahliger konvexer Optimierungsprobleme dient. Beide Algorithmen garantieren eine gewisse Genauigkeit der berechneten Lösungen und gehören damit zu den ersten deterministischen Algorithmen ihrer Art. Zusätzlich wird ein Algorithmus zur Berechnung einer Überdeckung der Lösungsmenge multikriterieller Optimierungsprobleme mit Entscheidungsunsicherheit vorgestellt. Alle drei Algorithmen wurden numerisch getestet. Die Ergebnisse werden ebenfalls in dieser Arbeit ausgewertet. Die neuen Algorithmen arbeiten alle mit Boxunterteilungen und nutzen Auswahlregeln, sowie Verwerfungs- und Terminierungskriterien. Dabei spielen gute Verwerfungskriterien eine zentrale Rolle. Diese entscheiden, ob eine Box verworfen werden kann, da diese sicher keine Optimallösung enthält. Die neuen Verwerfungskriterien nutzen Methoden aus der globalen skalarwertigen Optimierung, Approximationstechniken aus der multikriteriellen konvexen Optimierung sowie ein Konzept aus der kombinatorischen Optimierung. Dabei werden stets untere Schranken der Bildmengen konstruiert, die mit bisher berechneten oberen Schranken numerisch verglichen werden können

    Best Subset Selection via a Modern Optimization Lens

    Get PDF
    In the last twenty-five years (1990-2014), algorithmic advances in integer optimization combined with hardware improvements have resulted in an astonishing 200 billion factor speedup in solving Mixed Integer Optimization (MIO) problems. We present a MIO approach for solving the classical best subset selection problem of choosing kk out of pp features in linear regression given nn observations. We develop a discrete extension of modern first order continuous optimization methods to find high quality feasible solutions that we use as warm starts to a MIO solver that finds provably optimal solutions. The resulting algorithm (a) provides a solution with a guarantee on its suboptimality even if we terminate the algorithm early, (b) can accommodate side constraints on the coefficients of the linear regression and (c) extends to finding best subset solutions for the least absolute deviation loss function. Using a wide variety of synthetic and real datasets, we demonstrate that our approach solves problems with nn in the 1000s and pp in the 100s in minutes to provable optimality, and finds near optimal solutions for nn in the 100s and pp in the 1000s in minutes. We also establish via numerical experiments that the MIO approach performs better than {\texttt {Lasso}} and other popularly used sparse learning procedures, in terms of achieving sparse solutions with good predictive power.Comment: This is a revised version (May, 2015) of the first submission in June 201

    (Global) Optimization: Historical notes and recent developments

    Get PDF

    (Global) Optimization: Historical notes and recent developments

    Get PDF
    Recent developments in (Global) Optimization are surveyed in this paper. We collected and commented quite a large number of recent references which, in our opinion, well represent the vivacity, deepness, and width of scope of current computational approaches and theoretical results about nonconvex optimization problems. Before the presentation of the recent developments, which are subdivided into two parts related to heuristic and exact approaches, respectively, we briefly sketch the origin of the discipline and observe what, from the initial attempts, survived, what was not considered at all as well as a few approaches which have been recently rediscovered, mostly in connection with machine learning
    corecore