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Branching and Bounding Improvements for Global Optimization
Algorithms with Lipschitz Continuity Properties

Coralia Cartis∗, Jaroslav M. Fowkes∗ and Nicholas I. M. Gould†

December 30, 2013

Abstract

We present improvements to branch and bound techniques for globally optimizing func-
tions with Lipschitz continuity properties by developing novel bounding procedures and
parallelisation strategies. The bounding procedures involve nonconvex quadratic or cubic
lower bounds on the objective and use estimates of the spectrum of the Hessian or deriv-
ative tensor, respectively. As the nonconvex lower bounds are only tractable if solved over
Euclidean balls, we implement them in the context of a recent branch and bound algorithm
(Fowkes et al., 2013) that uses overlapping balls. Compared to the rectangular tessellations
of traditional branch and bound, overlapping ball coverings result in an increased number
of subproblems that need to be solved and hence makes the need for their parallelization
even more stringent and challenging. We develop parallel variants based on both data- and
task-parallel paradigms, which we test on an HPC cluster on standard test problems with
promising results.

Keywords: global optimization, lipschitzian optimization, parallel branch and bound, non-
convex programming.

1 Introduction

In many applications one encounters the global optimization problem

min
x∈D

f(x), (1.1)

where f : D ⊂ Rn → R is smooth and in general non-convex and D is a compact, convex set.
It has been shown that this problem is NP-hard (Kreinovich and Kearfott, 2005) and requires
global information to be solved efficiently (Stephens and Baritompa, 1998). Branch and bound
algorithms are a traditional way to solve (1.1) (see for example, Horst and Tuy, 1996, Pinter,
1996 and Neumaier, 2004). Such algorithms work by recursively splitting (branching) the domain
D into subregions and bounding the objective function f over each subregion until the global
minimum is found.

In order for such algorithms to be efficient, one requires accurate and efficiently computable
lower bounds on f over each subregion (upper bounds are typically taken to be the function
evaluated at some point or the outcome of a local solver). Global information in the form of
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a Lipschitz constant is often used to construct such lower bounds. The case where the lower
bound is based on a Lipschitz constant of the objective function f has the immediate form
f(x) ≥ f(xB) − Lf (B)‖x − xB‖ for some point xB in a subregion B and a Lipschitz constant
Lf (B) for f over B; this case has been well studied in the global optimization literature (see
Evtushenko, 1971; Piyavskii, 1972; Shubert, 1972; Pardalos, Horst and Thoai, 1995; Pinter,
1996; Strongin and Sergeyev, 2000; Neumaier, 2004; Kvasov and Sergeyev, 2012b; Sergeyev,
Strongin and Lera, 2013, and references therein).

A more accurate lower bound using a Lipschitz constant of the gradient of the objective
function g = ∇xf can be derived using Taylor’s theorem to first order

f(x) ≥ qB(x) := f(xB) + (x− xB)T g(xB)− Lg(B)
2 ‖x− xB‖22 (1.2)

for some point xB in a subregion B and the gradient’s Lipschitz constant Lg(B) for g over B, and
has, together with refinements, also been well studied (see Breiman and Cutler, 1993; Baritompa
and Cutler, 1994; Sergeyev, 1998; Kvasov and Sergeyev, 2009, 2012a; Evtushenko and Posypkin,
2011, 2013; Lera and Sergeyev, 2013; Fowkes, Gould and Farmer, 2013). Evtushenko (1971);
Baritompa and Cutler (1994); Evtushenko and Posypkin (2011, 2013) have replaced −Lg(B) in
(1.2) with a lower bound on the spectrum of the Hessian. Baritompa and Cutler (1994) also go
a step further and replace the simple quadratic term in (1.2) by a quadratic form that lower
bounds f .

The case where one goes even further and uses second order Taylor’s theorem to obtain
a cubic lower bound using a Lipschitz constant for the Hessian H = ∇xxf was considered in
Fowkes et al. (2013)

f(x) ≥ cB(x) := f(xB) + (x−xB)T g(xB) + 1
2(x−xB)TH(xB)(x−xB)− LH(B)

6 ‖x−xB‖32 (1.3)

for some point xB in a subregion B and the Hessian’s Lipschitz constant LH(B) for H over B.
In this paper, we propose new bounding techniques using refinements of the bounds (1.2) and

(1.3). We show that for the first order bound (1.2) it is possible to obtain tighter results by using
existing lower bounds on the spectrum of the Hessian, some of which have not been previously
used, as far as we are aware, in the context of Lipschitz based global optimization. Additionally,
we extend one of these approaches to the second order bound (1.3) by replacing the Lipschitz
constant estimate with a novel lower bound on the spectrum of the third order derivative tensor.
We test the new proposals in the Overlapping Branch and Bound (oBB) framework proposed
in Fowkes et al. (2013) which allows efficient global solution of the non-convex lower bounding
subproblems

min
x∈B

lB(x) (1.4)

where lB(x) is either qB(x) in (1.2) or cB(x) in (1.3), over each subdomain B, by letting B be a
Euclidean ball which makes (1.4) tractable.

In greater detail, oBB is a Lipschitz derivative based approach that uses an overlapping
covering of balls rather than rectangular partitions. The main idea behind oBB is to recursively
split an initial ball covering the domain D into sub-balls until we find a ball (or balls) of
sufficiently small size containing the global minimiser of f over D. Using (1.4), oBB is able to
obtain lower bounds on the minimum of f over each ball which can then be used to discard
balls that cannot contain the global minimiser, i.e. balls whose lower bound is greater than the
smallest upper bound. Each ball of radius r is split into 3n overlapping sub-balls of half-radius
r/2 centred at the vertices of a hypercubic tessellation of edge-length r/

√
n around the centre of

the ball. This ensures that the sub-balls entirely cover the original ball with a constant amount
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of overlap irrespective of the original ball’s radius. A detailed description of oBB is given as
Algorithm 3.1 when the latter is run on one (master) processor core.

As one would expect, testing the proposed bounds in oBB we find that in general, due to
additional problem information being employed in the model, second order models yield better
lower bounds on the objective function compared to first order models and hence can potentially
lead to better branch and bound algorithms for Lipschitz optimization.

In general, Lipschitz-based lower bounding subproblems are non-convex, and branch and
bound algorithms require their global solution (an NP-hard problem over boxes, see Theorem 2
in Kreinovich and Kearfott, 2005). This is usually achieved using techniques such as vertex enu-
meration, interval arithmetic, convexification or problem specific constructs (Neumaier, 2004)
but these may not be flexible enough or suitably scalable for the purpose of generic problem
solvers. The approaches in Evtushenko (1971) and Evtushenko and Posypkin (2011, 2013) and
in oBB allow global solution for both first and second order models by minimizing these models
over Euclidean balls rather than boxes, which ensures that the subproblems can be solved in
polynomial time. Evtushenko (1971); Evtushenko and Posypkin (2011, 2013) propose the use
of a non-uniform mesh and employ the global solutions over balls to exclude elements in such a
non-uniform rectangular partition. While their algorithm is already in a parallel framework it
only uses first order models. Gaviano and Lera (2008) devise a similar algorithm which also ex-
cludes elements from a non-uniform rectangular partition using zeroth order models. oBB uses
second order models on overlapping balls leading to an overlapping covering of the domain (as
opposed to the rectangular partition used in Evtushenko, 1971; Evtushenko and Posypkin, 2011,
2013). Thus the oBB approach leads to more computational effort as well as potential doubling
of work so parallelisation is both crucial and challenging for obtaining good performance.

Similarly to other branch and bound algorithms, there is also the curse of dimensionality
which is made worse by the high number of balls in each oBB covering. At each iteration, oBB
splits a ball into 3n smaller sub-balls (with constant overlap) whereas traditional branch and
bound splits a box into only two larger sub-boxes. In the worst case both algorithms can be
said to perform comparably, with each ball in oBB being split into 3n sub-balls, compared to
each box being split into 2n sub-boxes for traditional branch and bound. However, as both
algorithms use disparate coverings with subdomains of different sizes, it is difficult to compare
them directly in general.

Due to the curse of dimensionality, many parallel branch and bound algorithms over boxes
have been proposed in the literature (see Ananth, Kumar and Pardalos, 1993; Crainic, Le Cun
and Roucairol, 2006; Alba et al., 2006; Casado et al., 2008; Evtushenko, Posypkin and Sigal,
2009; Paulavičius, Žilinskas and Grothey, 2011 and the survey by Gendron and Crainic, 1994).
Gendron and Crainic (1994); Crainic et al. (2006) have classified the main approaches into
two classes: Type I and Type II parallelism that correspond to forms of data parallelism and
task parallelism respectively. In Type I parallelism operations on subproblems (e.g. bounding)
are conducted in parallel whereas the branch and bound tree is explored in serial (i.e. by one
processor). In Type II parallelism by contrast, the tree itself is explored in parallel by many
processors. It should be noted that while branch and bound algorithms are conceptually thought
of as exploring a tree, for reasons of efficiency they are often implemented numerically as a
priority queue (Crainic et al., 2006). In order to parallelise oBB, we develop parallel algorithms
using both data parallel (Type I) and task parallel (Type II) paradigms. Our main contribution
here is to develop an effective task parallel variant of oBB using novel hashing techniques that
enable efficient communication, essentially removing the doubling of work entirely. Additionally,
we address the problem of balancing the load between processors by implementing an effective
load balancing strategy.
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The layout of the paper is as follows. First order lower bound estimates are given in Sec-
tion 2.1 and second order lower bound estimates in Section 2.2, with numerical results presented
in Section 2.3. We then consider the two main paradigms for parallelising the oBB algorithm,
data parallel (bounds in parallel) in Section 3.1 and task parallel (tree in parallel) in Section 3.2
with numerical results in Section 3.3. Finally, we draw conclusions in Section 4.

2 Improving Lipschitz lower bounds
Let us first consider devising more accurate lower bound estimates for Lipschitz based branch
and bound algorithms. We will therefore begin this section by looking at improved estimates
for the first order lower bound (1.2) and then extend some of these ideas to the second order
lower bound (1.3). It should be noted that the first order lower bound (1.2) and refinements
are well known in the Lipschitz derivative optimization literature, see for example, Evtushenko
(1971); Breiman and Cutler (1993); Baritompa and Cutler (1994); Sergeyev (1998); Kvasov
and Sergeyev (2009, 2012a); Evtushenko and Posypkin (2011, 2013); Lera and Sergeyev (2013);
Fowkes et al. (2013) but the use of the cubic lower bound (1.3) within a global optimization
context is recent (to the best of our knowledge).

2.1 First order lower bounds

As far as we are aware, there are two principal approaches in the literature which provide suit-
able estimates for the first order lower bound (1.2) and we will briefly describe these before
discussing alternative approaches. The approach taken to estimate the gradient Lipschitz con-
stant in Fowkes et al. (2013) was to bound the norm of the Hessian over a suitable domain using
interval arithmetic. Evtushenko and Posypkin (2011, 2013), amongst others, replace the negat-
ive Lipschitz constant by a lower bound on the spectrum of the Hessian, λmin(H(x)), for x in
some interval, which they claim yields a more accurate estimate. They approximate λmin(H(x))
using Gershgorin’s Theorem, but other approximations to λmin(H(x)), for x in some domain,
have been proposed in the literature. Floudas (1999, Section 12.4) provides a useful summary of
such approximations to convexify the objective function in the context of his branch and bound
algorithm. In this section, we show that some of the estimates from Floudas (1999) are more
accurate than the Lipschitz constant estimates considered in Fowkes et al. (2013) and estimates
using Gershgorin’s Theorem in Evtushenko and Posypkin (2013).

We assume the following about problem (1.1) throughout this section:
AF 1. The objective function f : C → R is twice continuously differentiable, where C ⊂ Rn is a
sufficiently large open set containing the convex, compact domain D.1

Let us start by showing why lower bounds on λmin(H(x)) can be used in place of the gradient
Lipschitz constant −Lg in (1.2). To this end, define for some compact domain B

λBmin(H) := min
ξ∈B

λmin(H(ξ)). (2.1)

Lemma 2.1 (Evtushenko and Posypkin, 2013). Let AF 1 hold. Suppose B ⊂ C is a convex,
compact subdomain and xB ∈ B.2 Then, for any x ∈ B we have

f(x) ≥ f(xB) + (x− xB)T g(xB) + λBmin(H)
2 ‖x− xB‖22. (2.2)

1Note that we need a larger set here as the balls in our overlapping covering extend outside the domain during
the initial subdivisions.

2Note that B does not need to be convex provided all line segments from xB to x are contained in B, i.e. if B
is star-convex with star-centre xB.
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Proof: For all x, xB ∈ B and some ξ(x) ∈ B the first order Taylor expansion with the Lagrange
form for the remainder gives

f(x) = f(xB) + (x− xB)T g(xB) + 1
2(x− xB)TH(ξ)(x− xB)

= f(xB) + (x− xB)T g(xB) + 1
2

(x− xB)TH(ξ)(x− xB)
(x− xB)T (x− xB) (x− xB)T (x− xB)

≥ f(xB) + (x− xB)T g(xB) + λmin(H(ξ))
2 ‖x− xB‖22

≥ f(xB) + (x− xB)T g(xB) + λBmin(H)
2 ‖x− xB‖22

where the last two inequalities follow from the fact that the Rayleigh quotient reaches its
minimum at the smallest eigenvalue and from (2.1), respectively.

We can therefore use any lower bound on λBmin(H) in place of −Lg(B) in (1.2). In particular,
we consider the following possible lower bounds on λBmin(H) from Floudas (1999, Section 12.4),
which all require the following bounds on the Hessian.

Definition 2.1. Let AF 1 hold. Let hij(ξ) denote the elements of the Hessian matrix H(ξ) of
f . Furthermore, let H = (hij)1≤i,j≤n, H = (hij)1≤i,j≤n be such that for all i, j = 1, . . . , n

hij ≤ hij(ξ) ≤ hij (2.3)

for all ξ in a convex, compact subdomain B.

Such elementwise lower and upper bounds (2.3) can be obtained, for example, using interval
arithmetic.

Theorem 2.2 (Floudas, 1999). Let AF 1 hold. Given the elementwise bounds hij , hij and
corresponding matrices H,H in (2.3), the following lower bounds for λBmin(H) in the bound
(2.2) hold:

i) Gershgorin’s Theorem (Ger):

λBmin(H) ≥ min
i

hii −∑
j 6=i

max
{
|hij |, |hij |

} (2.4)

ii) E-Matrix Diagonal (Ediag):

λBmin(H) ≥ λmin(HM )− ρ(∆H) (2.5)

where λmin(HM ) denotes the smallest eigenvalue of the midpoint matrix HM := H+H
2 and

ρ(∆H) the spectral radius of the radius matrix ∆H := H−H
2 .

iii) E-Matrix Zero (E0):
λBmin(H) ≥ λmin(H̃M )− ρ(∆̃H) (2.6)

where the modified radius matrix ∆̃H is ∆H with zeros on the diagonal and the modified
midpoint matrix H̃M is HM with hii on the diagonal.
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iv) Lower Bounding Hessian (lbH):

λBmin(H) ≥ λmin(L) (2.7)

where the lower bounding Hessian L = (lij) is defined as

lij =

hii +
∑
k 6=i

hik−hik

2 if i = j
hij+hij

2 if i 6= j

v) Hertz’s Method (Hz):
λBmin(H) = min

k
{λmin(Hk)} (2.8)

where the vertex matrices Hk are defined as follows: Let x ∈ Rn, then there are 2n−1 possible
combinations for the signs of the xixj products (i 6= j). For the k-th such combination,
define the vertex matrix Hk = (hkij) where

hkij =


hii if i = j,

hij if xixj ≥ 0, i 6= j

hij if xixj < 0, i 6= j

Proof: See Floudas (1999, Section 12.4) for proofs of the above lower bounds (2.4)–(2.8).

We also consider a lower bound on the best −Lg(B) in (1.2), given in the following Theorem.
Theorem 2.3 (Norm of the Hessian (Norm)). Let AF 1 hold. Suppose B ⊂ C is a convex,
compact subdomain and xB ∈ B. Then, for any x ∈ B, the first order lower bound (1.2) holds.3
Furthermore, a lower bound for the best −Lg(B) in (1.2) is given by

− Lg(B) ≥ −
√√√√∑

ij

max
{
|hij |, |hij |

}2
(2.9)

where the elementwise bounds hij , hij are defined in (2.3).
Proof: (1.2) is a well-known consequence of first order Taylor expansions; see for example The-
orem 3.1.4 in Conn, Gould and Toint (2000). Note that ‖M‖2 ≤ ‖M‖F for any matrix M . We
have from Taylor’s theorem to first order and Cauchy-Schwarz that for any x, y ∈ B

‖g(x)− g(y)‖2 ≤
∥∥∥∥∫ 1

0
H (y + τ(x− y)) (x− y)dτ

∥∥∥∥
2

≤ max
0≤τ≤1

‖H (y + τ(x− y))‖2‖x− y‖2

≤ max
0≤τ≤1

‖H (y + τ(x− y))‖F ‖x− y‖2

= max
0≤τ≤1

∑
ij

[H (y + τ(x− y))]2ij

1/2

‖x− y‖2

≤

∑
ij

max
{
|hij |2, |hij |2

}1/2

‖x− y‖2

=

∑
ij

max
{
|hij |, |hij |

}2
1/2

‖x− y‖2.

3Note that if B is not assumed to be compact, then (1.2) still holds provided the gradient g is Lipschitz
continuous on the convex subdomain B and f ∈ C1(B).
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Thus the gradient g is Lipschitz continuous on a compact domain B with `2-norm Lipschitz
constant

√∑
ij max{|hij |, |hij |}2. In particular, this means that for the best gradient Lipschitz

constant Lg(B), we have for all x ∈ B

Lg(B) ≤
√√√√∑

ij

max
{
|hij |, |hij |

}2
.

If we look at the computational cost of the estimation approaches given in (2.4)–(2.8) and
(2.9) (and exclude the cost of calculating the Hessian bounds hij , hij) we can show that Ger
is an O(n2) method (i.e. it requires O(n2) floating point operations). Eidag, E0, lbH require
the calculation of one or two extreme eigenvalues and Hz requires 2n−1 leftmost eigenvalues.
Assuming standard methods for calculating all the eigenvalues of a matrix, Eidag, E0, lbH
would all be O(n3) methods and Hz would be an O(2n−1n3) method. In practice, extreme
eigenvalues of dense matrices are usually obtained in O(n2+v) flops, where v < 1, e.g. using the
power method. Calculating Norm requires squaring n2 entries and so is an O(n2) method.

2.2 Second order lower bounds

In Section 2.1, we considered replacing the gradient Lipschitz constant in the first order lower
bound (1.2) by an estimate of the smallest eigenvalue of the Hessian. In this section we will show
that, to an extent, a similar approach is also possible for the second order lower bound (1.3) and
we can replace the Hessian Lipschitz constant by an estimate of the smallest eigenvalue of the
derivative tensor. Before we describe this in detail we need to introduce some tensor eigenvalue
notation.

Let T ∈ Rn×n×n denote a third order tensor, which being a generalisation of a matrix to three
indices, is a 3-dimensional array. As with matrices, tijk denotes the (i, j, k)-th component (i.e.
element in the array) of the tensor T . Furthermore, a tensor T is called symmetric (sometimes
supersymmetric) if tσ(i)σ(j)σ(k) = tijk for any permutation σ of the indices (i, j, k). This is the
natural generalisation of a symmetric matrix to tensors. For a vector x ∈ Rn, the multiplication
of a tensor T three times on the right by x is denoted by

Tx3 :=
n∑
i=1

n∑
j=1

n∑
k=1

tijkxixjxk.

Let ‖T‖F denote the Frobenius norm for the tensor T defined as

‖T‖2F =
n∑
i=1

n∑
j=1

n∑
k=1

t2ijk.

We have from Lim (2005) that the multilinear Rayleigh quotient for the `3-norm is given by

Tx3

‖x‖33

where ‖·‖3 is the `3-norm for vectors. The `3-eigenvalues (or H-eigenvalues) of T are then defined
as the stationary points of the multilinear Rayleigh quotient. In particular, this means that the
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smallest `3-eigenvalue of T , λ`3min(T ) is given by4

λ`
3

min(T ) = min
x 6=0

Tx3

‖x‖33
. (2.10)

We assume the following about problem (1.1) throughout this section:

AF 2. The objective function f : C → R is thrice continuously differentiable, where C ⊂ Rn is
a sufficiently large open set containing the convex, compact domain D.

We are now in a position to show why lower bounds on the spectrum of the derivative tensor
can be used in place of the Hessian Lipschitz constant LH in (1.3). To this end, let

T (x) := ∇xxxf(x)

denote the third order derivative tensor of f(x) and note that it is symmetric by construction.
Define for some compact domain B

λ`
3,B

min (T ) := min
ξ∈B

λ`
3

min(T (ξ)). (2.11)

Lemma 2.4. Let AF 2 hold. Suppose B ⊂ C is a convex, compact subdomain and xB ∈ B.
Then, for any x ∈ B we have

f(x) ≥ f(xB) + (x− xB)T g(xB) + 1
2(x− xB)TH(xB)(x− xB)

+


λ`3,B

min (T )
6 ‖x− xB‖32 if λ`

3,B
min (T ) ≤ 0,

λ`3,B
min (T )

6 n−1/2‖x− xB‖32 if λ`
3,B

min (T ) > 0.

(2.12)

Proof: First of all, in order to use `3-eigenvalues in (2.12) we require relations between the `2
and `3 vector norms. It is a standard result that for any p > r > 0

‖x‖p ≤ ‖x‖r ≤ n(1/r−1/p)‖x‖p

for any x ∈ Rn and in particular this means that

‖x‖3 ≥ n−1/6‖x‖2,
‖x‖3 ≤ ‖x‖2

(2.13)

for any x ∈ Rn.
Now, for x = xB the claim in the theorem is trivial, so w.l.o.g. assume x 6= xB. Then for all

x, xB ∈ B and some ξ(x) ∈ B, the second order Taylor expansion with the Lagrange form for

4Note that one can instead use the alternative definition of `2-eigenvalues that are the stationary points of the
multilinear Rayleigh quotient for the `2-norm, Tx3/‖x‖3

2 (Lim, 2005) and then the smallest `2-eigenvalue of T ,
λ`2

min(T ) would be given by λ`2
min(T ) = minx 6=0 Tx

3/‖x‖3
2. However, we will not use `2-eigenvalues here for reasons

that will become clear later.
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the remainder gives

f(x) = f(xB) + (x− xB)T g(xB) + 1
2(x− xB)TH(xB)(x− xB) + 1

6T (ξ)(x− xB)3

= f(xB) + (x− xB)T g(xB) + 1
2(x− xB)TH(xB)(x− xB) + 1

6
T (ξ)(x− xB)3

‖x− xB‖33
‖x− xB‖33

≥ f(xB) + (x− xB)T g(xB) + 1
2(x− xB)TH(xB)(x− xB) + λ`

3
min(T (ξ))

6 ‖x− xB‖33

≥ f(xB) + (x− xB)T g(xB) + 1
2(x− xB)TH(xB)(x− xB) + λ`

3,B
min (T )

6 ‖x− xB‖33

≥ f(xB) + (x− xB)T g(xB) + 1
2(x− xB)TH(xB)(x− xB)

+


λ`3,B

min (T )
6 ‖x− xB‖32 if λ`

3,B
min (T ) ≤ 0,

λ`3,B
min (T

6 n−1/2‖x− xB‖32 if λ`
3,B

min (T ) > 0

using (2.10), (2.11) and (2.13) respectively.

We can therefore use any (suitably scaled) lower bound on λ`
3,B

min (T ) in place of −LH(B)
in (1.3).5 In Section 2.1, Theorem 2.2 (2.4)–(2.8) and Theorem 2.3 (2.9) give several different
approaches to obtain lower bounds on the smallest eigenvalue in the case of a Hessian matrix.
We will now show which of these estimation approaches generalises to the case of a third order
derivative tensor. While there are `3-eigenvalue algorithms that are guaranteed to converge to
the smallest eigenvalue, these are only applicable to tensors with non-negative (or equivalently
non-positive) entries (Kolda and Mayo, 2011). Unfortunately, the tensor generalisations of the
matrices required for the lower bounding strategies presented in (2.5)–(2.8), namely the E-
matrix, Lower bounding Hessian and Hertz method have both positive and negative entries in
general. However, the generalisation of Gershgorin’s Theorem (Qi, 2005) does not require an
eigenvalue algorithm and we can therefore generalise Theorem 2.2 (2.4) to tensors. We first need
the following definition before we can give the generalised theorem.

Definition 2.2. Let AF 2 hold. Let tijk(ξ) denote the elements of the third order derivative
tensor T (ξ). Furthermore, let T = (tijk)1≤i,j,k≤n, T = (tijk)1≤i,j,k≤n be such that for all i, j, k =
1, . . . , n

tijk ≤ tijk(ξ) ≤ tijk (2.14)
for all ξ in a convex, compact subdomain B.

Once again, the elementwise lower and upper bounds (2.14) can be obtained using interval
arithmetic.

Theorem 2.5 (Gershgorin’s Theorem for the derivative Tensor (Ger T)). Let AF 2 hold.
Assuming the elementwise bounds tijk, tijk in (2.14), λ`

3,B
min (T ) in (2.12) can be bounded below by

λ`
3,B

min (T ) ≥ min
i

tiii − ∑
k 6=j 6=i

max
{
|tijk|, |tijk|

} . (2.15)

5Note that an analogous result holds for `2-eigenvalues. Unfortunately, to the best of our knowledge, there are
no known eigenvalue algorithms that are guaranteed to converge to the smallest `2-eigenvalue but it is possible
to use generalisations of the power method using multiple starting points (Kolda and Mayo, 2011; Zhang, Qi and
Ye, 2012). However, this is not reliable as (1.3) requires a bound on the smallest eigenvalue and using multiple
starting points does not guarantee this. Furthermore, there is no generalisation of Gershgorin’s Theorem for
`2-eigenvalues, which is what we propose next for `3-eigenvalues.
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Proof: Let ξ ∈ B be arbitrary. We have from Qi (2005) that Gershgorin’s Theorem for tensors
applied to the third order derivative tensor T (ξ) gives

λ`
3

min(T (ξ)) = min
i

tiii − ∑
k 6=j 6=i

|tijk(ξ)|


≥ min

i

tiii − ∑
k 6=j 6=i

max
{
|tijk|, |tijk|

}
for any ξ ∈ B. As λ`

3,B
min (T ) = minξ∈B λ`

3
min(T (ξ)) from (2.11), the result follows.

Additionally, we also have a bound on the Hessian Lipschitz constant in (1.3), an extension
of the Norm bound (2.9) from Theorem 2.3.6

Theorem 2.6 (Norm of the derivative tensor (Norm T)). Let AF 2 hold. Suppose B ⊂ C is
a convex, compact subdomain and xB ∈ B. Then, for any x ∈ B, the second order lower bound
(1.3) holds.7 Furthermore, a lower bound for the best −LH(B) in (1.3) is given by

− LH(B) ≥ −
√√√√∑

ijk

max
{
|tijk|, |tijk|

}2
(2.16)

where the elementwise bounds tijk, tijk are defined as in (2.14).

Proof: (1.3) is a well-known consequence of second order Taylor expansions; see for example
Theorem 3.1.5 in Conn et al. (2000). Note that as in the matrix case, ‖T‖2 ≤ ‖T‖F for any
tensor T (see Lemma 6.1 in Fowkes et al., 2013, for a proof). We have from Taylor’s theorem
to first order and Cauchy-Schwarz that for any x, y ∈ B

‖H(x)−H(y)‖2 ≤
∥∥∥∥∫ 1

0
T (y + τ(x− y)) (x− y)dτ

∥∥∥∥
2

≤ max
0≤τ≤1

‖T (y + τ(x− y))‖F ‖x− y‖2

= max
0≤τ≤1

∑
ijk

[T (y + τ(x− y))]2ijk

1/2

‖x− y‖2

≤

∑
ijk

max
{
|tijk|, |tijk|

}2
1/2

‖x− y‖2.

Thus the Hessian H is Lipschitz continuous on a compact domain B with `2-norm Lipschitz
constant

√∑
ijk max{|tijk|, |tijk|}2. In particular, this means that for the best Hessian Lipschitz

constant LH(B), we have

LH(B) ≤
√√√√∑

ijk

max
{
|tijk|, |tijk|

}2
.

Looking at the computational cost of the second order estimation approaches Ger T and
Norm T given in (2.15), (2.16) (and excluding the cost of calculating the tensor bounds tijk, tijk)
we can see that they are O(n3) methods since each requires summing or squaring n3 elements.

6Note that this bound appears in Section 6.2 of Fowkes et al. (2013) but it is incorrect there.
7Note that if B is not assumed to be compact, then (1.3) still holds provided the Hessian H is Lipschitz

continuous on the convex subdomain B and f ∈ C2(B).
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2.3 Numerical results

The overlapping branch and bound algorithm (oBB), namely Algorithm 2.1 from Fowkes et al.
(2013), is especially suited to testing the first and second order estimation approaches from
Section 2.1 and Section 2.2. As oBB is exactly Algorithm 3.1 from Section 3.1 in which all
the worker calculations are performed by the master, we will only briefly outline it here and
postpone a detailed description to Section 3.1. The algorithm is structured in much the same
way as most standard branch and bound algorithms: It starts with a ball covering the domain
and recursively subdivides it into overlapping balls, bounding each ball and discarding balls
that cannot contain a global minimiser until the global minimum is located. The branching
subdivides each ball into 3n half-sized overlapping sub-balls that cover the original ball and
have a fixed amount of overlap. The bounding uses the first and second order Lipschitz-based
lower bounds (1.2), (1.3) but can also accommodate the eigenvalue-based lower bounds (2.2),
(2.12) all of which it can solve in polynomial due to its use of overlapping balls.

We test the first and second order estimation approaches on test sets of

1) Random polynomials
2) Random radial basis functions (RBFs)

which we will describe in turn. The aim of the numerical experiments is to test which estimation
approach gives the best oBB performance in terms of runtime. This gives an indirect indication
of the accuracy of the estimation approach.

Random Polynomials (Evtushenko and Posypkin, 2013) This is a collection of bound con-
strained global optimization problems with polynomial objective functions and randomly gen-
erated coefficients. The polynomial objective functions used are of the form

f(x) =
n∑
i=1

10xmi +
∑
p∈P

apx
p1
i1
. . . xpn

in
(2.17)

where m is an even polynomial degree and P = {(p1, . . . , pn) : pi ∈ Z+,
∑n
i=1 pi ≤ m − 1}

is the set of n-tuples corresponding to the powers of the monomials. The randomly generated
coefficients ap are uniformly distributed in [0, 10]. Let |P| =

(m−1+n
n

)
be the number of n-tuples

in P. Evtushenko and Posypkin (2013) then observe that for an evenm, the global optimiser lies
in the box [−|P|, |P|]n and this is therefore taken to be the search domain. Following Evtushenko
and Posypkin (2013), we set the following following values for m and n in (2.17):

• Series 1: n = 3,m = 4
• Series 2: n = 3,m = 6 (2.18)
• Series 3: n = 4,m = 4

and test 10 realisations of (2.17) for each series. The bounds required by our estimation ap-
proaches, namely hij , hij in (2.3) on the Hessians and tijk, tijk in (2.14) on the derivative tensors
of the polynomials are calculated using our own implementation of standard interval arithmetic
(see e.g. Section 11 of Neumaier, 2004).

Random RBFs This is a RBF test set similar to the one above for random polynomials. We
will use cubic spline RBF objective functions of the form

f(x) = µ0 +
n∑
i=1

µixi +
N(m,n)∑
j=1

λj‖x− xj‖32 (2.19)
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where µi, λj are coefficients of the linear and radial terms respectively and N(m,n) :=
(m−1+n

n

)
is a given number of centres xj ∈ Rn. As before, we let the coefficients µi, λj be random, that is
uniformly distributed in the interval [0, 10]. We will use the same values for m and n in (2.19)
as those for random polynomials given in (2.18) and test 10 realisations of (2.19) for each series.
Note that we choose N(m,n) =

(m−1+n
n

)
so that we have the same number of terms in the RBFs

as in the polynomials above (up to a constant). We also take the box [−N(m,n), N(m,n)]n as
the search domain so that the search regions for the RBFs are the same as for the polynomials.
The bounds hij , hij in (2.3) on the Hessians and tijk, tijk in (2.14) on the derivative tensors of
the RBFs are calculated using a more accurate interval arithmetic type approach (see Section
6.2 of Fowkes et al., 2013, for details).

As we are interested in the relative performance of the first and second order estimation ap-
proaches, we will look at runtime performance profiles for both the random polynomial and RBF
test sets described above (for the definition of performance profiles, see Dolan and Moré, 2002;
see also Strongin and Sergeyev, 2000, p. 203, for the similar notion of operating characteristics
first proposed by Grishagin, 1978). To this end, we ran a Python-based serial implementation
of oBB to an absolute tolerance of 10−6 for the global minimum using one of the estimation
approaches given in (2.4)–(2.8) and (2.9). If the algorithm did not complete a run in 24 hours
then that run was considered a failure. The hardware used was part of the ECDF Eddie cluster
using a single 2.4GHz Intel Xeon E5645 processor core with 2GB of RAM for each random
polynomial or RBF realisation.

2.3.1 First order lower bounds

Let us first consider the numerical performance of the first order estimation approaches Ger,
Eidag, E0, lbH, Hz and Norm given in (2.4)–(2.8) and (2.9). Figure 2.1 below shows per-
formance profiles of the total runtime for the first order estimation approaches on the random
polynomials. For clarity we consider two ranges of the performance ratio so we can clearly see
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Figure 2.1: Random polynomial runtime performance profiles (left) with a close up of the
left-hand figure (right) for the first order estimation approaches given in (2.4)–(2.8) and (2.9).



Branching and Bounding Improvements for Global Optimization 13

the poorer estimates (Norm and Ediag) in the left-hand side of Figure 2.1 and the better
estimates (Hz, lbH, E0 and Ger) in the right-hand side of Figure 2.1, which is a close-up of
the left-hand figure. From the left-hand side of Figure 2.1 we can see that Norm is by far the
weakest approach, in fact the algorithm only finds the global minimum within 24 hours in a
third of the problems tested. For all the other estimates, the global minimum is always found, al-
though the Ediag approach also performs poorly. Looking at the better performing approaches
in the right-hand side of Figure 2.1, we can see that Hz is the best, presumably because it
always calculates exactly the smallest eigenvalue of the Hessian H(ξ) for H ≤ H(ξ) ≤ H. How-
ever, this necessitates calculating the eigenvalues of 2n−1 matrices and while this is practical for
two and three dimensional polynomials this will clearly be an issue in higher dimensions. With
this in mind, the best approaches seem to be lbH and E0 which perform similarly well, fol-
lowed by Ger which does not appear to be quite as good but nonetheless still shows reasonable
performance.

Figure 2.2 below shows performance profiles of the total runtime for the first order estimation
approaches on the random RBFs. We can see from Figure 2.2 that the performance profiles for
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Figure 2.2: Random RBF runtime performance profiles (left) with a close up of the left-hand
figure (right) for the first order estimation approaches given in (2.4)–(2.8) and (2.9).

random RBFs are very different from those for the random polynomials obtained above in
Figure 2.1. In particular, lbH significantly outperforms all the other estimation approaches.
Ger, E0, Hz and Eidag all perform similarly well and this is especially surprising as the
Eidag approach showed poor performance on the random polynomials. The Norm approach
is once again the weakest, although it performs somewhat better on the random RBFs.

It is evident from these numerical experiments that there is a need for several different
estimation approaches as no single approach is superior. In particular, as the computational
cost of the estimation approach is generally negligible compared to the cost of computing the
bounds hij , hij , it is possible to have an adaptive algorithm that computes several estimates
and uses the best one.
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2.3.2 Second order lower bounds

We will now look at the numerical performance of the second order tensor Gershgorin and
Norm approaches given in (2.15) and (2.16), respectively, on the random polynomial and RBF
test sets. Figure 2.3 below shows performance profiles of the total runtime for the second order
estimation approaches on the random polynomials and RBFs. We can see in the left-hand side
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Figure 2.3: Random Polynomial (left) and RBF (right) runtime performance profiles for the
second order estimation approaches given in (2.15) and (2.16), respectively.

of Figure 2.3 that the Gershgorin based estimate consistently outperforms the tensor norm
approach for random polynomials. Although the algorithm always finds the global minimum
using these estimates, the Gershgorin estimate yields faster and more accurate second order
lower bounds. The situation, however, is completely reversed for random RBFs as we can see
from the performance profiles in the right-hand side of Figure 2.3. In this case the tensor
norm based estimate outperforms the Gershgorin estimate and yields faster and more accurate
bounds. Once again, this emphasises the need to compute several estimation approaches and
use whichever is best.

2.3.3 Comparison of first versus second order bounds

Finally, to wrap up the discussion of finding better bounds, we compare both first and second
order lower bounds in Figure 2.4 by recalculating performance profiles of the total runtime for
both. One can clearly see from the left-hand side of Figure 2.4 that for random polynomials
the second order lower bounds significantly outperform the first order ones, with the tensor
Gershgorin approach clearly superior. This is perhaps not surprising as the second order lower
bounds (2.12),(1.3) utilising second order derivative information are likely to be more accurate
than the first order lower bounds (2.2),(1.2) which can only make use of first order information.
However, the situation is not quite so simple for the random RBFs as we can see from the
right-hand side of Figure 2.4 where the first order lower bounding Hessian estimation approach
actually outperforms the second order tensor Gershgorin approach. This is encouraging since
it shows that in some cases first order bounds which are significantly cheaper to compute can
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Figure 2.4: Random Polynomial (left) and RBF (right) runtime performance profiles for the
first order (dotted, solid and dash-dotted lines) and second order (dashed lines) estimation ap-
proaches.

be competitive with the more expensive second order bounds. The tensor norm approach is,
however, evidently the best for random RBFs, outperforming all other approaches.

In conclusion, there is no single first or second order bound that is clearly superior across
different objective functions. There are even instances where first order bounds outperform
second order ones. The best strategy in our opinion is therefore to implement all the first and
second order bounds within a branch and bound algorithm and adaptively choose which is
best. For example, for the first few subproblems all possible bounds could be computed and
the best two or three used throughout the rest of the computation. As the computational cost
of calculating the lower bounds is negligible compared to the cost of calculating the bounds
hij , hij or tijk, tijk, such adaptive strategies are feasible and indeed recommended to maximise
performance.

3 Parallelising Overlapping Branch and Bound (oBB)

In Section 2 we considered improving the bounding in Lipschitz based branch and bound global
optimization algorithms and tested our findings using an implementation of oBB, Algorithm
2.1 from Fowkes et al. (2013). In this section we will consider this implementation of oBB and
show how it can be speeded up through parallelism. As mentioned in the introduction, there
are two main approaches to parallelising branch and bound algorithms: data parallel, namely
performing the bounding operations in parallel and task parallel, traversing the branch and
bound tree in parallel (Gendron and Crainic, 1994; Crainic et al., 2006). We consider applying
these in turn to oBB in the following sections.

3.1 Data Parallelism: Bounds in Parallel

The idea behind data parallelism of a branch and bound algorithm is to share the computational
burden of calculating the bounds amongst many processor cores. Our implementation of this
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is a very straightforward master/worker approach. The master processor core runs the entire
algorithm except for the calculations involved in obtaining bounds on each subdomain, which are
(roughly) evenly divided amongst itself and the worker processors. It is immediately obvious
that this type of parallelism will only be successful if there are many bounding calculations
that can be performed independently at the same time and if these calculations are relatively
expensive compared to the rest of the algorithm.

The oBB algorithm uses Euclidean balls as the subdomains since this allows the lower
bounding subproblem (1.4) to be solved in polynomial time. However, this comes at a cost, as
the rigorous variant of oBB requires that each ball is split into 3n sub-balls which can very
quickly become prohibitively large as the dimension n increases. Nevertheless, this lends itself
well to data parallelism since at each step of the algorithm we have to bound around 3n balls
and these bounding operations can of course be done in parallel. This is the basis of the data
parallel version of oBB, given below as Algorithm 3.1.

The algorithm solves (1.4) to obtain a lower bound f(B) on the objective function f over
the subdomain B, that is

f(B) := min
x∈B

lB(x) (3.1)

where lB(x) can be any of the first or second order lower bounds given in (1.2), (2.2) and (1.3),
(2.12), respectively. The upper bound f(B) on f over B is simply the objective function f
evaluated at a feasible point xF ∈ B, that is

f(B) := f(xF ). (3.2)

It is important to note that if we run this algorithm on one master processor core, we recover
the serial version of oBB.

Algorithm 3.1. Data Parallel Branch and Bound Algorithm
Master Processor

0. Initialisation:

(a) Set k = 0 and tmax to be the maximum runtime.
(b) Let B0 be a ball with centre xB ∈ D of sufficiently large radius to cover D.
(c) Let L0 = {B0} be the initial set of balls.
(d) Let U0 = f(B0) be the initial upper bound for minx∈B0 f(x).
(e) Let L0 = f(B0) be the initial lower bound for minx∈B0 f(x).

1. While Uk − Lk > ε and the runtime < tmax, repeat the following procedure:

(a) Pruning: Remove from Lk balls B ∈ Lk such that f(B) > Uk.8

(b) Branching: Choose B ∈ Lk such that f(B) = Lk. Split B into 3n overlapping sub-balls
B1, . . . ,B3n according to the splitting rule in Section 2.2 of Fowkes et al. (2013) and
discard any sub-balls that lie entirely outside of D. Let Rk denote the set of remaining
sub-balls and let Lk+1 := (Lk \ {B}) ∪Rk.

(c) Bounding: Partition Rk into P subsets Rpk for p ∈ {1, . . . , P} and distribute them
amongst the P worker processors for bounding. Wait until all the bounds f(B), f(B)
for B ∈ Rk are received back.

(d) Set Uk+1 := minB∈Lk+1 f(B).
8As correctly pointed out by an anonymous referee (and as used in Algorithm 3.2) one can optionally use

f(B) > Uk − ε as the condition for pruning which may allow the algorithm to discard more redundant balls.
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(e) Set Lk+1 := minB∈Lk+1 f(B).
(f) Set k = k + 1.

2. Send termination signal to worker processors.
3. Return Uk as the estimate of the global minimum of f(x) over D.

Worker Processor p

1. Repeat the following procedure until termination signal is received:

(a) Wait for a set of balls Rpk from the master processor.
(b) When the set is received, calculate bounds f(B), f(B) for each ball B ∈ Rpk and send

the bounds back to the master processor.

In step 1b, the algorithm splits each ball B into 3n overlapping sub-balls of half-radius r(B)/2
centred at the vertices of a hypercubic tessellation of edge length r(B)/

√
n around the centre

of the ball; see Fowkes et al. (2013, Section 2.2) for further details of this splitting rule.

3.2 Task Parallelism: Tree in Parallel

In task parallelism of a branch and bound algorithm, the focus is on exploring the branch and
bound tree in parallel. Conceptually, a branch and bound algorithm running on an arbitrary
problem can be thought of as generating a tree. The nodes of the tree represent the subregions
and the edges denote the regions they are split from. One can then think of having several
processor cores generating different sections of the tree starting from different subregions. In
the case of traditional branch and bound using boxes this is conceptually straightforward to
implement as each subregion forms a distinct partition of the domain and any subregions split
from it are also contained within that partition. All that is required is that the processor cores
communicate the best upper bound found so far and balance the load, namely make sure the
work is evenly distributed amongst the processor cores.

However, we are interested in parallelising oBB which uses overlapping balls rather than
rectangular partitions. This makes the parallelisation more difficult since the balls do not form
natural partitions. As such several processor cores can end up bounding and splitting the same
promising ball, arrived at by repeatedly splitting different initial balls and so doubling of work
can occur. Our solution to this problem is to essentially eliminate the doubling entirely through
efficient communication. That is, the master processor keeps a list of all the balls created so
far and any new balls created by the worker processors are cross-checked against this list to
see if they already exist. Of course, such an approach relies heavily on the ability to efficiently
communicate centres and radii from the workers to the master. Sending the centre and radius of
each ball would be prohibitively expensive, but if we instead send an integer hash (Knuth, 1998,
Section 6.4) of each centre and radius this greatly decreases the cost of communication. In fact,
every time a worker processor splits a ball it needs to check whether at most 3n balls of the same
radius exist. Thus, we only need to send a hash of one radius and at most 3n balls, so 3n + 1
integers in total. Of course, the hashes are not guaranteed to be unique and there is a chance
that the algorithm will occasionally discard a ball that does not already exist. However, such
an event is extremely rare, likely to have a very small effect on the resulting minimum and can
be easily corrected for by running a local solver at the end of the algorithm. If we combine this
approach with task parallelism ideas, we obtain a suitable parallel branch and bound version of
oBB with hashing.

An important performance consideration is the order in which the master processor deals
with the incoming hashes and we have found two different approaches to be suitable. The first
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approach is perhaps the most obvious, the master processes the hashes one at a time as they
are received and the workers simply wait for confirmation of which balls already exist before
bounding them (see One-at-a-time Hashing in Section 3.2.1). While this approach is suitable
in situations where the balls are inexpensive to bound relative to the cost of communicating
the hashes, it does not perform as well when they are not. This is because the workers tend to
spend a significant amount of time waiting for a response from the master. The second approach
therefore tries to address these issues by getting the master to process the hashes from all the
workers in one go while the workers start bounding the balls in the background (see Synchronous
Hashing in Section 3.2.1). This is indeed advantageous if bounding the balls is expensive relative
to the communication cost.

Another performance improvement to oBB we implement is the use of a priority queue to
store the subproblems. A priority queue is simply an ordered list where each element is ranked
according to a specified order. In our case we order the list of balls according to the lower bound
f(B), with the smallest lower bound included first in the list. This enables us to restructure
oBB so that we do not need to find or communicate the smallest lower bound, resulting in a
more efficient algorithm in standard numerical form (Crainic et al., 2006).

We also need a strategy to balance the load between processor cores, i.e. the number of balls,
or equivalently the number of subproblems, on each processor core. After due consideration and
testing of the underlying hardware topology, we implemented a two tier strategy. This is because
most modern HPC clusters consists of a large number of nodes (i.e. sets of processors which
share the same memory) interconnected by gigabit ethernet or infiniband switches. It therefore
makes sense to load balance both within each node where communication via shared memory
will be very efficient and across different nodes where communication via gigabit ethernet or
infiniband will be relatively slow. We will describe this load balancing strategy in detail in
Section 3.2.2. The complete task parallel branch and bound algorithm is given below, with the
lower and upper bounds calculated as before in (3.1),(3.2). Details of the hashing and load
balancing are presented later in Sections 3.2.1 and 3.2.2.

Algorithm 3.2. Task Parallel Branch and Bound Algorithm
Master Processor

0. Initialisation
(a) Set tmax to be the maximum runtime of the algorithm.
(b) Let B be a ball with centre xB ∈ D of sufficiently large radius to cover D.
(c) Split B into 3n overlapping sub-balls according to the splitting rule in Section 2.2 of

Fowkes et al. (2013) and discard any sub-balls that lie entirely outside of D. Partition
the remaining sub-balls into P subsets and distribute them amongst the p worker
processors as sets Lp for p ∈ {1, . . . , P}.

(d) Let R = ∅ be the initial ordered list of hashes of radii.
(e) Let C = ∅ be the initial ordered list of sets of hashes of centres with the same radius.

1. While Lp 6= ∅ ∀p and the runtime < tmax, repeat the following procedure:

(a) Asynchronously receive Up and the size |Lp| of the set Lp from all p ∈ {1, . . . , P}
worker processors.

(b) Asynchronously send U := minp∈{1,...,P} Up to all P worker processors.
(c) Hashing: Process lists of hashes received from worker processors, updating R, the list

of radius hashes,9 and C, the list of ball-centre hashes, and inform the workers of any
duplicate entries (see Section 3.2.1).

9Note that R is always a finite set. As the radius is halved each time a ball is split, there can only be a finite
number of radii before numerical underflow occurs.
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(d) Perform load balancing across nodes (see Section 3.2.2).
(e) Perform load balancing within nodes (see Section 3.2.2).

2. Send termination signal to worker processors.
3. Return U as the estimate of the global minimum of f(x) over D.

Worker Processor p

1. Initialisation
(a) Receive workload Lp from master processor.
(b) Calculate bounds f(B) and f(B) as defined in (3.1) and (3.2), respectively, for each

ball B ∈ Lp and convert Lp into a priority queue w.r.t. f(B).
(c) Set Up := minB∈Lp f(B).
(d) Asynchronously send Up and |Lp| to master processor.
(e) Asynchronously receive U from master processor.

2. Repeat the following procedure until termination signal is received:

(a) Pruning: Remove from the priority queue Lp balls B such that f(B) > U − ε.
(b) Branching: Let B be the first element in the priority queue Lp.10 Split B into 3n over-

lapping sub-balls B1, . . . ,B3n according to the splitting rule in Section 2.2 of Fowkes
et al. (2013) and discard any sub-balls that lie entirely outside of D. Let R denote
the list of remaining sub-balls.

(c) Hashing: Generate an integer hash for each ball in R and an integer hash for the
radius. Send the integer hashes to master processor to see if any of the balls already
exist. (Synchronised hashing only: Start bounding f(x) for each ball in R until the
master processor sends the results of the check back). Receive an ordered integer list
from the master processor that contains either 1 or 0 depending on whether each ball
exists and update R accordingly.

(d) Bounding: Calculate bounds f(B), f(B) according to (3.1),(3.2), for each ball B ∈ R
if not already bounded.

(e) Remove the split ball B from the priority queue Lp and add the list of remaining
sub-balls R to Lp.

(f) Set Up := minB∈Lp f(B).
(g) Load Balancing: Asynchronously send the requested number of subproblems from the

current workload to the required processor(s) as instructed by the master processor
and update Lp accordingly. If more subproblems are requested than in the current
workload, send as many as possible. Send confirmation to the master processor once
the send has completed.

(h) Load Balancing: Asynchronously receive subproblems from other processors and up-
date Lp accordingly.

(i) Asynchronously send Up and |Lp| to master processor.
(j) Asynchronously receive U from master processor.

There are a number of strategies we have tried in an attempt to further improve Al-
gorithm 3.2 and we will briefly mention them here. One may be tempted to think that breaking
down the communication of the hashes into smaller messages would be more efficient, as this

10Note that since Lp is a priority queue w.r.t. f(B), B has the smallest lower bound f(B) of all balls in Lp.
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would allow the algorithm to solve some of the subproblems during sending/receiving. However,
sending several small messages can cause the communication latency to dominate the overall
cost of communication. Our tests have indicated that it is indeed more efficient to send all the
hashes in one large message as this minimises latency and increases the effective communication
bandwidth. Another aspect we have looked at is whether the cost of solving each subproblem
has a significant effect on the speedup observed. To test this we artificially extended the cost of
solving each subproblem by one second on the random polynomials and tested Algorithm 3.2
on this modified test set. However, we observed little difference in the speedup when compared
to Algorithm 3.2 on the original test set.

3.2.1 Hashing

In this section we will describe the hashing process used in Algorithm 3.2 in more detail,
primarily the role of the master processor. In order to be able to process the hashes efficiently,
the master processor keeps a list R containing hashes of the radius and a corresponding list C
of sets of hashes of centres of balls with that radius (see step 0d and step 0e for the master
processor in Algorithm 3.2). For example if R = {#r1,#r2} and C = {{#xB1 ,#xB2}, {#xB3}}
then balls B1,B2 have radius r1 and B3 has radius r3. Every time a ball is split into sub-balls
by a worker processor in the algorithm, each sub-ball has exactly the same radius and so the
worker only has to send one radius hash along with the hashes of the centres. When the master
processor receives the radius hash and corresponding centre hashes, it can quickly determine
the radius of the split balls since hashes of radii are stored in a separate list R which can be
efficiently searched.

As for calculating the hashes themselves, hashing the radius is straightforward, we simply
multiply by a suitably large number (e.g. we use 108) and convert to a 32-bit integer. For
hashing the centre of each ball, we use a variant of the hash function from Section 4.1 of
Teschner, Heidelberger, Mueller, Pomeranets and Gross (2003). That is, for x ∈ Rn, a collection
of large primes p1, . . . , pn and a resolution r, the hash is

#x =
⌊
x1
r

⌋
p1 Y

⌊
x2
r

⌋
p2 Y · · · Y

⌊
xn
r

⌋
pn

where Y denotes a bitwise xor (i.e. an exclusive or on the binary digits). The hash is then
converted to a 32-bit integer which ensures that the communication is as efficient as possible.
In our implementation we use a collection of arbitrarily chosen 8-digit primes along with a
resolution r of 10−5, so any ‖x‖∞ < 10−5 hashes to zero.

As we have mentioned previously, there are two possible ways for the master to process the
hashes: one-at-a-time or synchronised (namely, all together). We describe how in Algorithm 3.2,
step 1c the master processor handles either of the two approaches below.

One-at-a-time Hashing
Master Processor: (Step 1c of Algorithm 3.2)

1. If a worker processor p wants to check if a set of balls of the same radius already exists,
receive a list containing an integer hash #ci of the centre of each ball Bi and an integer
hash #r of the radius.

2. Check if #r is in R. If it is not, append #r to R, append the set of #ci’s to C since they
cannot already be present in C. If #r is in R, check if any of the #ci’s are already present
in the corresponding set in C. Add any #ci’s that are not present to the corresponding set
in C.

3. Set E to be an ordered list that contains either 1 or 0 for each i depending on whether #ci
is present in the corresponding set in C or not and send E to worker processor p.
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Synchronised Hashing

Master Processor: (Step 1c of Algorithm 3.2)

1. Receive from all worker processors p, a list containing integer hashes of the radius #rp
and centres {#cpi } of each ball Bpi on processor p wanting to be checked.

2. For each p, check if #rp is in R. If it is not, append #rp to R, append the set of #cpi ’s
to C since they cannot already be present in C. If #rp is in R, check if any of the #cpi ’s
are already present in the corresponding set in C. Add any #cpi ’s that are not present to
the corresponding set in C.

3. For each p, set Ep to be an ordered list that contains either 1 or 0 for each i depending
on whether #cpi is present in the corresponding set in C or not and send Ep to worker
processor p.

3.2.2 Load Balancing

As we have discussed previously, our load balancing scheme in Algorithm 3.2 takes into account
the underlying topology of modern HPC clusters by alternately balancing across and within
the underlying physical nodes of the cluster. In this section we describe the two load balancing
approaches, starting with load balancing within nodes as it forms the basis of our strategy for
load balancing across nodes. We will use N throughout to denote a node.

Load balancing across processors within a node

For each node, we balance the load across processors within the node as follows: At each load
balancing step the master processor takes a snapshot of the load on the node and works out
how many subproblems each processor within that node should have in order to be balanced. It
then assigns the shortfall from the processor with the largest load to the one with the smallest,
updates the snapshot and repeats until all processors in the node have a load that does not
differ by more than 10%. That is, for all processors p1, p2 ∈ N

|Sp1 − Sp2 |
max{min{Sp1 , Sp2}, 1} > 0.1 (3.3)

where Sp denotes the load (i.e. the number of subproblems) on processor p. The scheme for the
master processor in Algorithm 3.2, step 1e is given in more detail below.

Master Processor: (Step 1e of Algorithm 3.2) For each node N , repeat the following proced-
ure: Let Sp be a snapshot of the load |Lp| on each worker processor p in N , i.e. a local copy of
the load that we will work with. Let I =

⌊∑
p∈N S

p/|N |
⌋
be the ideal load on each processor in

N . We would like all processor loads to be as close as possible to the ideal load I. Set k = 0.
While (3.3) holds and k < |N |, repeat the following procedure:

1. Let Spmin and Spmax be the smallest and largest loads in the node N on processors pmin
and pmax respectively.

2. Calculate I − Spmin as the load we need to add to Spmin so that it has ideal load.
3. If any previous send has reached its destination, instruct processor pmax to asynchronously

send I − Spmin subproblems to processor pmin.
4. Update snapshots: subtract I − Spmin from Spmax and add I − Spmin to Spmin so that the

previously smallest load increases to I and the previously largest load decreases to Spmax +
Spmin − I > Spmin (unless Spmax = I in which case it is already balanced).

5. Set k = k + 1.
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Load balancing across nodes

We apply a similar scheme for load balancing across nodes as follows: At each load balancing
step the master processor takes a snapshot of the overall load on each node and works out how
many subproblems each node should have in order to be balanced. It then assigns a fraction of
the shortfall from the processor with the largest load and distributes it as evenly as possible to
all processors on the node with the smallest load. The snapshot of the total load on each node
is then updated and the process repeats until all the nodes have a load that does not differ by
more than 10%. That is, for all nodes j1, j2 = 1, . . . , N

|T j1 − T j2 |
max{min{T j1 , T j2}, 1} > 0.1 (3.4)

where T j denotes the total load on node Nj for j = 1, . . . , N . Of course by the time the sub-
problems are actually transmitted the nodes are unbalanced again and the whole process starts
over at the next load balancing step. The scheme for the master processor in Algorithm 3.2,
step 1d is given in more detail below.

Master Processor: (Step 1d of Algorithm 3.2) Let Sp be a snapshot of the load |Lp| on each worker
processor p = 1, . . . , P , i.e. a local copy of the load that we will work with. Let T j =

∑
p∈Nj

Sp

denote the total load on each node Nj for j = 1, . . . , N . Set k = 0. While (3.4) holds and k < P ,
repeat the following procedure:

1. Let I =
⌊∑N

j=1 T
j/N

⌋
be the ideal node load. We would like all node loads to be as close

as possible to the ideal node load I.
2. Let T jmin and T jmax be the smallest and largest node loads, present on the nodes Njmin and
Njmax respectively. Calculate I − T jmin as the node load we need to add to node Njmin so
that it has ideal node load.

3. Let Spmin and Spmax be the smallest and largest processor loads on nodes Njmin and Njmax

respectively. Ideally, we would like to take I − T jmin subproblems from processor pmax and
distribute them evenly across all processors in node Njmin. However, this may deplete
processor pmax so we lower the amount we take by Spmin and do not take more than
[Spmax/3], where [·] denotes rounding to the nearest integer. This gives the actual amount
A to take from pmax as

A =
{

max{I − T jmin − Spmin , 0} if less than [Spmax/3] ,
[Spmax/3] otherwise.

4. If A > 0 and any previous send has reached its destination, instruct processor pmax to
asynchronously send [A/|Njmin |] subproblems to each of the processors on node Njmin.

5. Update snapshots: add [A/|Njmin |] to Sp for all processors p in node Njmin and subtract
A from Spmax so that the previously smallest node load increases by A and the previously
largest node load decreases by A.

6. Recompute the total node load T j =
∑
p∈Nj

Sp on each node Nj for j = 1, . . . , N .
7. Set k = k + 1.

In order to get an idea of how the load on a processor core varies throughout the computation,
we have included in Appendix B diagrams of the load on an arbitrarily chosen processor for RBF
approximations to biggsc4, ex2_1_4 and brownden with average, poor and excellent speedup,



Branching and Bounding Improvements for Global Optimization 23

respectively. Each figure depicts the load against time on processor core no. 12 for the task
parallel algorithm, Algorithm 3.2, running on 24, 36, 48 and 60 processor cores. One can see
from the figures that while the load is somewhat erratic at times, in general the problems with
better speedup (biggsc4 and brownden) have a load that is better balanced. It should be noted
that good load balancing is very difficult to obtain for task parallel branch and bound algorithms
because entire sub-trees within the branch and bound tree regularly disappear as they become
fathomed, i.e. can no longer contain the global minimum as they have a lower bound greater
than the smallest upper bound. This requires large transfers of data to smooth out the sudden
load imbalance, which the communication hardware struggles to cope with.

3.3 Numerical Results

We will now test the parallel performance of our data parallel and task parallel algorithms,
namely Algorithm 3.1 and Algorithm 3.2, respectively, on the random polynomials and RBFs
from Section 2.3 along with RBF approximations to a selection of problems from the COCONUT
benchmark (Shcherbina et al., 2003). We will also run the serial code, namely Algorithm 3.1 on
one processor core, so that we can compare the parallel performance against the serial. In order
to do this we will calculate the speedup SP of the parallel algorithm on P processor cores over
the serial defined as

SP = T1
TP

(3.5)

where T1 is the runtime of the serial algorithm and TP the runtime of the parallel algorithm on
P processors.11 The hardware used is part of the ECDF Eddie cluster where each node consists
of two six-core 2.4GHz Intel Xeon E5645 processors with 2GB of RAM per core and the nodes
communicate via Gigabit Ethernet.

3.3.1 Random Polynomials and RBFs

Let us begin by looking at the parallel performance of our data and task parallel algorithms on
the random polynomials and RBFs from Section 2.3. To this end, we will run a parallel Python-
based MPI implementation of both Algorithm 3.1 and Algorithm 3.2 with one-at-a-time hashing
to an absolute tolerance of 10−6, i.e. we set ε = 10−6 in step 1 of Algorithm 3.1 and in step 2a
of Algorithm 3.2. As the first two series of problems described in Section 2.3 are very fast to
solve in serial, there is little to be gained from running them in parallel and we will therefore
focus on series three only. We will test the same ten realisations of series three from Section 2.3
in both serial and parallel for 12, 24, 36, 48 and 60 processor cores. Based upon the results of
Section 2.3 we will use cubic underestimators (2.12) with the second order tensor Gershgorin
estimation approach given in (2.15) for the random polynomials and the second order tensor
norm approach given in (2.16) for the random RBFs.

Let us first consider the parallel performance of our data parallel algorithm, Algorithm 3.1.
In the left-hand side of Figure 3.1 we can see the average speedup with confidence intervals for
Algorithm 3.1 over random polynomial and RBF series three as the number of processor cores
is increased. We can see that we get rather poor sublinear speedup for both with a maximum
of 17 times average speedup for the random polynomials and 24 times average speedup for
the random RBFs on 60 processor cores. The reason for the better performance of the random
polynomials is that calculating the elementwise lower and upper bounds is more demanding as

11Note that another approach to test the efficiency of parallelism is to calculate the redundancy defined as
(FP − F1)/FP when FP > F1 and 0 otherwise, where F1 is the number of function evaluations of the serial
algorithm and FP the number of function evaluations of the parallel algorithm on P processors (see p. 324 of
Strongin and Sergeyev, 2000).
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Figure 3.1: Average speedup (3.5) with confidence intervals for Algorithm 3.1 (Data Parallel,
left) and Algorithm 3.2 (Task Parallel, right) over random polynomial and RBF series 3.

it uses a more sophisticated interval arithmetic approach (see Section 6.2 of Fowkes et al., 2013,
for details) and therefore the worker processors are better utilised.

Let us now look at the performance of our task parallel algorithm, Algorithm 3.2 with one-at-
a-time hashing. We have found that one-at-a-time hashing significantly outperforms synchron-
ised hashing for both random polynomials and RBFs because the subproblems are inexpensive
to solve relative to the cost of communicating the hashes. We can immediately see from the
right-hand side of Figure 3.1 that our task parallel algorithm performs significantly better than
the data parallel algorithm. Random RBFs exhibit the best performance with superlinear spee-
dup until 48 processor cores with a maximum of 55 times average speedup before levelling
off. Random polynomials do not perform as well with superlinear speedup until 24 processor
cores with a maximum of 36 times average speedup before dipping slightly, nonetheless the per-
formance is still much better than that achieved with the data parallel algorithm. The poorer
performance of the random polynomial problems is due to the fact that they are very quick to
solve, taking only around four hundred seconds on 12 processor cores (see Table A.2), which
coupled with the fact that the subproblems themselves are fast to solve, leaves little scope for
improvement by adding additional processor cores.

3.3.2 COCONUT Benchmark

For a more thorough numerical evaluation we will test the parallel performance of our data
parallel and task parallel algorithms on radial basis function approximations to a selection of 31
problems12 from the COCONUT benchmark whose dimension varies from 4 to 6 (see Shcherbina
et al., 2003, for details of the benchmark). Table A.3 in Appendix A gives a brief overview of the
test functions we have approximated. We chose to approximate the COCONUT problems using
RBFs as they enable us to calculate the tensor bounds (2.14) used in the estimation approach

12Note that the majority of problems in the COCONUT benchmark have nonlinear constraints that our al-
gorithms cannot handle at present. This rather limited the number of problems we could actually test.
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for the lower bound (3.1) efficiently using a more accurate interval arithmetic type approach
(see Section 6.2 of Fowkes et al., 2013). As before, we will use cubic underestimators (2.12) with
the second order tensor norm approach given in (2.16).

The RBF approximations are fitted to a maximin Latin Hypercube sample of 10n scattered
sample points in Rn and use the cubic spline objective function we have previously used for the
random RBFs in (2.19) with a weighted norm (see Chapters 3 and 4 of Fowkes, 2012, for details).
Once again, we will run a parallel Python-based MPI implementation of both Algorithm 3.1
and Algorithm 3.2 but this time with synchronous hashing. This is because we have found that
synchronous hashing leads to significantly better performance for our approximation to the
COCONUT benchmark since in general the subproblems are expensive to bound relative to the
cost of communicating the hashes. So that we can test both easier and harder problems we will
run each problem to the absolute tolerance it achieved in 12 hours on the serial code. We will
test all 31 problems in both serial and parallel for 12, 24, 36, 48 and 60 processor cores. We will
use the tensor norm approach given Theorem 2.6 (2.16) as we have shown in Section 2.3 that
it performs better for RBF approximations.

As before, let us start by looking at the performance of our data parallel algorithm, Al-
gorithm 3.1, on our approximation to the COCONUT benchmark. In the left-hand side of
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Figure 3.2: Average speedup (3.5) with confidence intervals for Algorithm 3.1 (Data Parallel,
left) and Algorithm 3.2 (Task Parallel, right) over RBF approximations to selected functions
from the COCONUT test set.

Figure 3.2 we can see that the performance is in fact very poor with an average speedup of
around three times all the way through from 12 to 60 processors. This is very disappointing but
not unexpected as bounding subproblems is not where the majority of the work in the algorithm
takes place but it is in exploring the branch and bound tree.

Looking at the performance of our task parallel algorithm, Algorithm 3.2 with synchronous
hashing in the right-hand side of Figure 3.2, we can see significantly better speedup. In fact,
we are able to achieve superlinear speedup on average up to 36 processor cores, past which the
speedup continues to increase, albeit remaining slightly sublinear, up to a maximum of 52 times
average speedup.



26 C. Cartis, J. M. Fowkes and N. I. M. Gould

In conclusion, we can clearly see from the numerical results that a task parallel approach
leads to a very efficient parallel algorithm on average which exhibits good speedup. The data
parallel algorithm on the other hand performs rather poorly, especially on our approximation
to the COCONUT test set. This is due to the fact that the subproblem bounding which is
parallelised in the data parallel algorithm does not account for majority of the computational
work in exploring the branch and bound tree. Overall, we have shown that it is indeed possible
to devise an efficient parallel overlapping branch and bound algorithm albeit after overcoming
some underlying difficulties.

4 Conclusions

We have presented branching and bounding improvements for global optimization algorithms
with Lipschitz continuity properties and implemented our findings by improving a recent serial
branch and bound algorithm presented in Fowkes et al. (2013). We have shown that it is possible
to significantly improve upon the bounding strategies used in Lipschitz based global optimization
algorithms by drawing upon a variety of both existing and novel bounds. Our numerical results
indicate that no single bound is optimal across all types of objective function, although our novel
second order bounds exhibit the best performance in general. As these bounds are inexpensive to
calculate for small to medium-scale problems compared with the cost of the rest of the algorithm
it is feasible to implement all of them in a branch and bound algorithm and adaptively choose
the best bound at runtime. Clearly, the latter would be the best way to maximise the efficiency
of Lipschitz based branch and bound algorithms.

Our second avenue of investigation considered improving the branching used in a Lipschitz
based global optimization algorithm through the use of parallelism. We investigated two stand-
ard parallel programming paradigms, namely data parallelism and task parallelism. We found
that our data parallel approach which focused on parallelising the bounding operations within
the algorithm performed poorly. However, our task parallel approach which focused on paral-
lelising the branch and bound tree itself and proved to be a real challenge to realise, proved
very successful once implemented and exhibited excellent average speedup on a large number
of varied test problems. Our use of hashing within the task parallel algorithm was essential to
obtaining good performance and we identified two main strategies for processing the hashes,
namely one-at-a-time and synchronous hashing. Once again, adaptively choosing between these
two strategies in the algorithm would maximise its efficiency over a large variety of problems.

A critical challenge remains: scaling up the problem dimension so that we can solve problems
of greater practical interest. Scaling up the code to larger parallel machines seems like an
immediate solution but may not yield results as good as one might expect due to the increased
communication overhead this would bring. In the context of our approach, a better remedy
perhaps lies in finding more efficient coverings that would still allow us to use non-convex
bounding procedures within the algorithm.
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A Tables of Results

Function 12 pr. 24 pr. 36 pr. 48 pr. 60 pr. Initial Gap Final Gap

Polynomial 8.23 11.93 14.30 16.65 17.33 9.67e+08 1.00e-06
RBF 9.39 14.93 18.80 22.91 24.49 4.78e+08 1.00e-06

Table A.1: Average speedup (3.5) for Algorithm 3.1 (Data Parallel) on Random Polynomial
and RBF series three. Also included are the average initial and final tolerances.

Function 12 pr. 24 pr. 36 pr. 48 pr. 60 pr. Initial Gap Final Gap

Polynomial 25.14 38.16 37.38 36.97 35.54 9.67e+08 1.00e-06
RBF 22.01 43.48 52.00 55.73 55.29 4.78e+08 1.00e-06

Table A.2: Average speedup (3.5) for Algorithm 3.2 (Task Parallel) on Random Polynomial
and RBF series three. Also included are the average initial and final tolerances.
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Problem Objective Type Constraint Type Problem Type n m nnl

biggsc4 Quadratic Linear Academic 4 7 4
biggs5 Sum of Squares Fixed Variables Academic 6 1 5
brownden Sum of Squares Unconstrained† Academic 4 0 4
bt3 Sum of Squares Linear Academic 5 3 5
ex2_1_1 Quadratic Linear Academic 5 1 5
ex2_1_2 Quadratic Linear Academic 6 2 5
ex2_1_4 Quadratic Linear Academic 6 5 1
ex6_2_10 Other Linear Real Application 6 3 6
ex6_2_13 Other Linear Real Application 6 3 6
expfita Other Linear Academic 5 22 5
expfitb Other Linear Academic 5 102 5
expfitc Other Linear Academic 5 502 5
hatflda Sum of Squares Bound Constrained Academic 4 0 4
hatfldb Sum of Squares Bound Constrained Academic 4 1 4
hatfldc Sum of Squares Bound Constrained Academic 4 3 4
hatfldh Quadratic Linear Academic 4 7 4
hong Other Linear Academic 4 1 4
hs038 Other Bound Constrained Academic 4 0 4
hs041 Other Linear Academic 4 5 3
hs045 Other Bound Constrained Academic 5 0 5
hs048 Sum of Squares Linear Academic 5 2 5
hs049 Other Linear Academic 5 2 5
hs051 Quadratic Linear Academic 5 3 5
hs052 Quadratic Linear Academic 5 3 5
hs053 Quadratic Linear Academic 5 3 5
hs054 Other Linear Academic 6 1 6
hs055 Other Linear Academic 6 6 2
hs086 Other Linear Academic 5 10 5
hs268 Quadratic Linear Academic 5 5 5
kowosb Sum of Squares Unconstrained† Modelling 4 0 4
lsnnodoc Other Linear Network Academic 5 4 5

Table A.3: Selected problems from the COCONUT test set with summary statistics: n - number
of variables; m - number of constraints; nnl - number of nonlinear variables. †Note that we have
imposed suitable bounds on these problems so that we can test them using our algorithms.
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Function 12 pr. 24 pr. 36 pr. 48 pr. 60 pr. Initial Gap Final Gap ‖xp − x∗‖

biggsc4 1.96 2.20 2.07 2.20 2.18 2.25e+03 1.63e-02 6.22e-04
biggs5 1.40 1.30 1.35 1.32 1.33 3.26e+07 3.33e+05 1.30e+02
brownden 1.67 1.63 1.68 1.69 1.69 1.56e+12 1.02e+09 3.46e+01
bt3 1.58 1.67 1.61 1.74 1.64 3.56e+04 7.69e-02 5.49e-02
ex2_1_1 1.62 1.57 1.64 1.64 1.68 6.27e+03 5.89e+01 1.41e+00
ex2_1_2 4.19 4.79 5.03 5.31 5.26 4.07e+05 5.31e+01 0.00e+00
ex2_1_4 1.43 1.40 1.51 1.43 1.45 9.94e+04 1.17e+02 3.99e-01
ex6_2_10 1.50 1.41 1.40 1.41 1.42 5.06e+02 6.38e+00 4.80e-02
ex6_2_13 1.26 1.29 1.28 1.32 1.37 9.14e+02 1.60e+00 2.50e-01
expfita 2.83 3.23 3.28 3.35 3.52 9.52e+06 8.14e+03 1.61e+01
expfitb 1.22 1.22 1.19 1.23 1.23 2.07e+09 2.09e+06 2.76e+01
expfitc 1.21 1.18 1.24 1.24 1.24 2.60e+11 3.24e+08 1.49e+01
hatflda 4.93 6.04 6.37 6.67 6.76 4.60e+03 1.52e-01 1.68e+00
hatfldb 2.23 2.42 2.47 2.62 2.59 5.74e+03 7.75e-01 1.22e+00
hatfldc 2.18 2.11 2.27 2.24 2.20 4.40e+06 1.11e+03 4.36e+00
hatfldh 2.07 2.17 2.14 2.17 2.12 2.25e+03 1.62e-02 6.22e-04
hong 8.38 9.77 10.02 11.05 10.71 1.01e+06 1.17e-04 2.00e-01
hs038 1.40 1.40 1.47 1.43 1.46 2.43e+09 1.79e+06 1.32e+01
hs041 1.40 1.46 1.45 1.43 1.40 2.20e+02 7.93e-03 1.47e-02
hs045 1.32 1.40 1.36 1.39 1.31 1.13e+03 1.52e+01 1.25e-02
hs048 5.10 6.49 7.23 7.31 7.60 2.40e+04 2.88e-02 2.70e-01
hs049 1.20 1.13 1.17 1.14 1.23 8.95e+08 3.92e+05 7.45e+00
hs051 2.32 2.51 2.49 2.39 2.44 3.56e+04 3.30e-03 1.43e-01
hs052 1.87 1.96 1.97 1.93 1.88 2.36e+05 9.40e-02 4.49e-01
hs053 1.73 1.83 1.91 1.92 1.87 1.44e+05 7.83e-02 3.68e-02
hs054 2.51 2.74 2.83 2.80 3.02 1.13e+05 1.33e+01 7.07e-01
hs055 1.87 1.80 1.95 1.96 1.87 3.24e+04 1.16e-01 4.24e-06
hs086 4.39 5.19 5.45 5.49 5.14 3.46e+05 1.50e-01 3.92e-01
hs268 1.43 1.42 1.48 1.49 1.51 5.84e+08 5.46e+05 5.61e+00
kowosb 3.13 3.49 3.71 3.63 3.76 9.99e+07 5.39e+04 9.13e+00
lsnnodoc 1.29 1.37 1.30 1.39 1.28 1.78e+08 1.89e+04 1.44e+00

Table A.4: Speedup (3.5) for Algorithm 3.1 (Data Parallel) on RBF approximations to selected
problems from the COCONUT test set. Also included are the initial tolerance, final tolerance and
the distance of the obtained RBF solution to the best known solution for the original problem.
All problems were run to the absolute tolerance they achieved in 12 hours on the serial code.
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Function 12 pr. 24 pr. 36 pr. 48 pr. 60 pr. Initial Gap Final Gap ‖xp − x∗‖

biggsc4 21.56 36.69 46.10 52.46 53.88 2.25e+03 1.63e-02 6.22e-04
biggs5 11.53 21.22 25.69 30.82 32.79 3.26e+07 3.33e+05 1.30e+02
brownden 24.91 47.94 65.61 78.69 88.87 1.56e+12 1.02e+09 3.46e+01
bt3 15.41 22.54 27.28 29.75 31.59 3.56e+04 7.69e-02 5.49e-02
ex2_1_1 17.58 23.23 24.12 26.06 26.20 6.27e+03 5.89e+01 1.41e+00
ex2_1_2 13.87 19.27 20.21 23.23 24.45 4.07e+05 5.31e+01 0.00e+00
ex2_1_4 8.52 12.51 15.84 15.18 17.02 9.94e+04 1.17e+02 3.99e-01
ex6_2_10 12.69 17.93 21.55 20.19 21.59 5.06e+02 6.38e+00 4.80e-02
ex6_2_13 11.10 14.06 15.21 15.77 17.38 9.14e+02 1.60e+00 2.50e-01
expfita 15.16 24.12 29.68 33.03 36.90 9.52e+06 8.14e+03 1.61e+01
expfitb 14.27 24.18 28.58 34.35 33.77 2.07e+09 2.09e+06 2.76e+01
expfitc 12.95 22.33 27.63 31.91 34.63 2.60e+11 3.24e+08 1.49e+01
hatflda 24.62 47.01 60.92 74.38 83.00 4.60e+03 1.52e-01 1.68e+00
hatfldb 39.05 73.73 95.85 108.16 137.10 5.74e+03 7.75e-01 1.22e+00
hatfldc 17.84 31.74 41.63 47.93 51.83 4.40e+06 1.11e+03 4.36e+00
hatfldh 20.86 36.30 45.91 54.21 56.37 2.25e+03 1.62e-02 6.22e-04
hong 17.88 31.82 40.81 48.55 50.59 1.01e+06 1.17e-04 2.00e-01
hs038 24.19 44.38 59.98 71.19 79.05 2.43e+09 1.79e+06 1.32e+01
hs041 72.57 123.27 155.45 159.58 206.15 2.20e+02 7.93e-03 1.47e-02
hs045 15.66 29.06 33.67 40.41 49.38 1.13e+03 1.52e+01 1.25e-02
hs048 12.00 19.76 25.96 29.37 32.83 2.40e+04 2.88e-02 2.70e-01
hs049 12.08 16.10 17.72 17.49 18.37 8.95e+08 3.92e+05 7.45e+00
hs051 19.64 31.01 38.03 40.68 45.44 3.56e+04 3.30e-03 1.43e-01
hs052 14.03 22.08 25.27 28.21 29.60 2.36e+05 9.40e-02 4.49e-01
hs053 16.90 25.65 30.56 32.43 35.52 1.44e+05 7.83e-02 3.68e-02
hs054 13.26 17.26 20.95 23.66 23.73 1.13e+05 1.33e+01 7.07e-01
hs055 45.09 60.30 61.25 63.20 61.10 3.24e+04 1.16e-01 4.24e-06
hs086 12.81 20.67 25.18 30.05 32.14 3.46e+05 1.50e-01 3.92e-01
hs268 10.86 18.42 22.81 24.18 28.26 5.84e+08 5.46e+05 5.61e+00
kowosb 20.53 34.97 47.75 55.27 61.99 9.99e+07 5.39e+04 9.13e+00
lsnnodoc 59.22 91.96 110.59 120.18 128.07 1.78e+08 1.89e+04 1.44e+00

Table A.5: Speedup (3.5) for Algorithm 3.2 (Task Parallel) on RBF approximations to selected
problems from the COCONUT test set. Also included are the initial tolerance, final tolerance and
the distance of the obtained RBF solution to the best known solution for the original problem.
All problems were run to the absolute tolerance they achieved in 12 hours on the serial code.
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B Diagrams of Processor Load
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Figure B.1: Plots of the load against time for processor core no. 12 of the RBF approximation
to problem biggsc4 on, clockwise from top left, 24, 36, 48 and 60 processor cores.
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Figure B.2: Plots of the load against time for processor core no. 12 of the RBF approximation
to problem ex2_1_4 on, clockwise from top left, 24, 36, 48 and 60 processor cores.
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Figure B.3: Plots of the load against time for processor core no. 12 of the RBF approximation
to problem brownden on, clockwise from top left, 24, 36, 48 and 60 processor cores.
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