161 research outputs found

    BRanching Artificial Neural Ensemble (BRANE) Algorithm for Supervised Learning

    Get PDF
    Various models exist to predict a numerical value in supervised learning problems. One of the challenges in predicting an outcome with high degree of precision involves dealing with numerical data points which can be represented using differently. To solve for such challenge and in order to predict the logerror value in Zillow’s competition on Kaggle, we have developed a new model, BRanching Artificial Neural Ensemble (BRANE). This ensemble network uses a number of multilayer perceptrons (MLP) to predict the outcome and combines the results using an additional MLP. This approach not only allowed us to use different datatypes as inputs, but also predicted better and converged faster than traditional MLP models

    Optimisation de réseaux de neurones à décharges avec contraintes matérielles pour processeur neuromorphique

    Get PDF
    Les modèles informatiques basés sur l'apprentissage machine ont démarré la seconde révolution de l'intelligence artificielle. Capables d'atteindre des performances que l'on crut inimaginables au préalable, ces modèles semblent devenir partie courante dans plusieurs domaines. La face cachée de ceux-ci est que l'énergie consommée pour l'apprentissage, et l'utilisation de ces techniques, est colossale. La dernière décennie a été marquée par l'arrivée de plusieurs processeurs neuromorphiques pouvant simuler des réseaux de neurones avec une faible consommation d'énergie. Ces processeurs offrent une alternative aux conventionnelles cartes graphiques qui demeurent à ce jour essentielles au domaine. Ces processeurs sont capables de réduire la consommation d'énergie en utilisant un modèle de neurone événementiel, plus communément appelé neurone à décharge. Ce type de neurone est fondamentalement différent du modèle classique, et possède un aspect temporel important. Les méthodes, algorithmes et outils développés pour le modèle de neurone classique ne sont pas adaptés aux neurones à décharges. Cette thèse de doctorat décrit plusieurs approches fondamentales, dédiées à la création de processeurs neuromorphiques analogiques, qui permettent de pallier l'écart existant entre les systèmes à base de neurones conventionnels et à décharges. Dans un premier temps, nous présentons une nouvelle règle de plasticité synaptique permettant l'apprentissage non supervisé des réseaux de neurones récurrents utilisant ce nouveau type de neurone. Puis, nous proposons deux nouvelles méthodes pour la conception des topologies de ce même type de réseau. Finalement, nous améliorons les techniques d'apprentissage supervisé en augmentant la capacité de mémoire de réseaux récurrents. Les éléments de cette thèse marient l'inspiration biologique du cerveau, l'ingénierie neuromorphique et l'informatique fondamentale pour permettre d'optimiser les réseaux de neurones pouvant fonctionner sur des processeurs neuromorphiques analogiques

    Doctor of Philosophy

    Get PDF
    dissertationScene labeling is the problem of assigning an object label to each pixel of a given image. It is the primary step towards image understanding and unifies object recognition and image segmentation in a single framework. A perfect scene labeling framework detects and densely labels every region and every object that exists in an image. This task is of substantial importance in a wide range of applications in computer vision. Contextual information plays an important role in scene labeling frameworks. A contextual model utilizes the relationships among the objects in a scene to facilitate object detection and image segmentation. Using contextual information in an effective way is one of the main questions that should be answered in any scene labeling framework. In this dissertation, we develop two scene labeling frameworks that rely heavily on contextual information to improve the performance over state-of-the-art methods. The first model, called the multiclass multiscale contextual model (MCMS), uses contextual information from multiple objects and at different scales for learning discriminative models in a supervised setting. The MCMS model incorporates crossobject and interobject information into one probabilistic framework, and thus is able to capture geometrical relationships and dependencies among multiple objects in addition to local information from each single object present in an image. The second model, called the contextual hierarchical model (CHM), learns contextual information in a hierarchy for scene labeling. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. The CHM then incorporates the resulting multiresolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. We demonstrate the performance of CHM on different challenging tasks such as outdoor scene labeling and edge detection in natural images and membrane detection in electron microscopy images. We also introduce two novel classification methods. WNS-AdaBoost speeds up the training of AdaBoost by providing a compact representation of a training set. Disjunctive normal random forest (DNRF) is an ensemble method that is able to learn complex decision boundaries and achieves low generalization error by optimizing a single objective function for each weak classifier in the ensemble. Finally, a segmentation framework is introduced that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy images

    Bio-mimetic Spiking Neural Networks for unsupervised clustering of spatio-temporal data

    Get PDF
    Spiking neural networks aspire to mimic the brain more closely than traditional artificial neural networks. They are characterised by a spike-like activation function inspired by the shape of an action potential in biological neurons. Spiking networks remain a niche area of research, perform worse than the traditional artificial networks, and their real-world applications are limited. We hypothesised that neuroscience-inspired spiking neural networks with spike-timing-dependent plasticity demonstrate useful learning capabilities. Our objective was to identify features which play a vital role in information processing in the brain but are not commonly used in artificial networks, implement them in spiking networks without copying constraints that apply to living organisms, and to characterise their effect on data processing. The networks we created are not brain models; our approach can be labelled as artificial life. We performed a literature review and selected features such as local weight updates, neuronal sub-types, modularity, homeostasis and structural plasticity. We used the review as a guide for developing the consecutive iterations of the network, and eventually a whole evolutionary developmental system. We analysed the model’s performance on clustering of spatio-temporal data. Our results show that combining evolution and unsupervised learning leads to a faster convergence on the optimal solutions, better stability of fit solutions than each approach separately. The choice of fitness definition affects the network’s performance on fitness-related and unrelated tasks. We found that neuron type-specific weight homeostasis can be used to stabilise the networks, thus enabling longer training. We also demonstrated that networks with a rudimentary architecture can evolve developmental rules which improve their fitness. This interdisciplinary work provides contributions to three fields: it proposes novel artificial intelligence approaches, tests the possible role of the selected biological phenomena in information processing in the brain, and explores the evolution of learning in an artificial life system

    Towards a Brain-inspired Information Processing System: Modelling and Analysis of Synaptic Dynamics: Towards a Brain-inspired InformationProcessing System: Modelling and Analysis ofSynaptic Dynamics

    Get PDF
    Biological neural systems (BNS) in general and the central nervous system (CNS) specifically exhibit a strikingly efficient computational power along with an extreme flexible and adaptive basis for acquiring and integrating new knowledge. Acquiring more insights into the actual mechanisms of information processing within the BNS and their computational capabilities is a core objective of modern computer science, computational sciences and neuroscience. Among the main reasons of this tendency to understand the brain is to help in improving the quality of life of people suffer from loss (either partial or complete) of brain or spinal cord functions. Brain-computer-interfaces (BCI), neural prostheses and other similar approaches are potential solutions either to help these patients through therapy or to push the progress in rehabilitation. There is however a significant lack of knowledge regarding the basic information processing within the CNS. Without a better understanding of the fundamental operations or sequences leading to cognitive abilities, applications like BCI or neural prostheses will keep struggling to find a proper and systematic way to help patients in this regard. In order to have more insights into these basic information processing methods, this thesis presents an approach that makes a formal distinction between the essence of being intelligent (as for the brain) and the classical class of artificial intelligence, e.g. with expert systems. This approach investigates the underlying mechanisms allowing the CNS to be capable of performing a massive amount of computational tasks with a sustainable efficiency and flexibility. This is the essence of being intelligent, i.e. being able to learn, adapt and to invent. The approach used in the thesis at hands is based on the hypothesis that the brain or specifically a biological neural circuitry in the CNS is a dynamic system (network) that features emergent capabilities. These capabilities can be imported into spiking neural networks (SNN) by emulating the dynamic neural system. Emulating the dynamic system requires simulating both the inner workings of the system and the framework of performing the information processing tasks. Thus, this work comprises two main parts. The first part is concerned with introducing a proper and a novel dynamic synaptic model as a vital constitute of the inner workings of the dynamic neural system. This model represents a balanced integration between the needed biophysical details and being computationally inexpensive. Being a biophysical model is important to allow for the abilities of the target dynamic system to be inherited, and being simple is needed to allow for further implementation in large scale simulations and for hardware implementation in the future. Besides, the energy related aspects of synaptic dynamics are studied and linked to the behaviour of the networks seeking for stable states of activities. The second part of the thesis is consequently concerned with importing the processing framework of the dynamic system into the environment of SNN. This part of the study investigates the well established concept of binding by synchrony to solve the information binding problem and to proposes the concept of synchrony states within SNN. The concepts of computing with states are extended to investigate a computational model that is based on the finite-state machines and reservoir computing. Biological plausible validations of the introduced model and frameworks are performed. Results and discussions of these validations indicate that this study presents a significant advance on the way of empowering the knowledge about the mechanisms underpinning the computational power of CNS. Furthermore it shows a roadmap on how to adopt the biological computational capabilities in computation science in general and in biologically-inspired spiking neural networks in specific. Large scale simulations and the development of neuromorphic hardware are work-in-progress and future work. Among the applications of the introduced work are neural prostheses and bionic automation systems

    A Computational Framework for Host-Pathogen Protein-Protein Interactions

    Get PDF
    Infectious diseases cause millions of illnesses and deaths every year, and raise great health concerns world widely. How to monitor and cure the infectious diseases has become a prevalent and intractable problem. Since the host-pathogen interactions are considered as the key infection processes at the molecular level for infectious diseases, there have been a large amount of researches focusing on the host-pathogen interactions towards the understanding of infection mechanisms and the development of novel therapeutic solutions. For years, the continuously development of technologies in biology has benefitted the wet lab-based experiments, such as small-scale biochemical, biophysical and genetic experiments and large-scale methods (for example yeast-two-hybrid analysis and cryogenic electron microscopy approach). As a result of past decades of efforts, there has been an exploded accumulation of biological data, which includes multi omics data, for example, the genomics data and proteomics data. Thus, an initiative review of omics data has been conducted in Chapter 2, which has exclusively demonstrated the recent update of ‘omics’ study, particularly focusing on proteomics and genomics. With the high-throughput technologies, the increasing amount of ‘omics’ data, including genomics and proteomics, has even further boosted. An upsurge of interest for data analytics in bioinformatics comes as no surprise to the researchers from a variety of disciplines. Specifically, the astonishing rate at which genomics and proteomics data are generated leads the researchers into the realm of ‘Big Data’ research. Chapter 2 is thus developed to providing an update of the omics background and the state-of-the-art developments in the omics area, with a focus on genomics data, from the perspective of big data analytics..
    • …
    corecore