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Abstract

Essential genes are those whose presence is imperative for an organism’s survival,
whereas the functions of non–essential genes may be useful but not critical. Ab-
normal functionality of essential genes may lead to defects or death at an early
stage of life. Knowledge of essential genes is therefore key to understanding de-
velopment, maintenance of major cellular processes and tissue–specific functions
that are crucial for life. Existing experimental techniques for identifying essential
genes are accurate, but most of them are time consuming and expensive. Pre-
dicting essential genes using computational methods, therefore, would be of great
value as they circumvent experimental constraints. Our research is based on the
hypothesis that mammalian essential (lethal) and non–essential (viable) genes are
distinguishable by various properties. We examined a wide range of features of
Mus musculus genes, including sequence, protein–protein interactions, gene ex-
pression and function, and found 75 features that were statistically discriminative
between lethal and viable genes. These features were used as inputs to create a
novel machine learning classifier, allowing the prediction of a mouse gene as lethal
or viable with the cross–validation and blind test accuracies of ∼91% and ∼93%,
respectively. The prediction results are promising, indicating that our classifier is
an effective mammalian essential gene prediction method.

We further developed the mouse gene essentiality study by analysing the asso-
ciation between essentiality and gene duplication. Mouse genes were labelled
as singletons or duplicates, and their expression patterns over 13 developmen-
tal stages were examined. We found that lethal genes originating from duplicates
are considerably lower in proportion than singletons. At all developmental stages
a significantly higher proportion of singletons and lethal genes are expressed than
duplicates and viable genes. Lethal genes were also found to be more ancient than
viable genes. In addition, we observed that duplicate pairs with similar patterns
of developmental co–expression are more likely to be viable; lethal gene duplicate
pairs do not have such a trend. Overall, these results suggest that duplicate genes
in mouse are less likely to be essential than singletons.

Finally, we investigated the evolutionary age of mouse genes across development
to see if the morphological hourglass pattern exists in the mouse. We found that in
mouse embryos, genes expressed in early and late stages are evolutionarily younger
than those expressed in mid–embryogenesis, thus yielding an hourglass pattern.
However, the oldest genes are not expressed at the phylotypic stage stated in prior
studies, but instead at an earlier time point – the egg cylinder stage. These results
question the application of the hourglass model to mouse development.
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Chapter 1

Introduction

1.1 Embryonic Development and Birth Defects

Development is a key process in the initiation of life for multi–cellular organisms.

Development attains two fundamental objectives: it produces cellular diversity

and arranges order within each generation, and it guarantees the continuity of life

from one generation to the next (Gilbert, 1994). Hence, developmental biology ad-

dresses a fundamental question of life: how does a complex multicellular organism

develop from a single fertilised egg? It addresses the processes by which a single

cell gives rise to the different types of cells that the body contains and ultimately

generates the specialised tissues, organs and anatomy of a mature organism. More-

over, developmental biology highlights different changes in development and how

these changes create new body forms. Overall, it addresses the events of biologi-

cal development, i.e., the progressive transformations in size, shape, and functions
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during the life of an organism by which its genotypes are decoded into correspond-

ing functioning phenotypes. Developmental biology research mostly concentrates

on the prenatal development in mammals, the period during which an embryo or

fetus progressively develops after fertilisation and gestates until birth. As most of

the changes within major tissues and organs of mammals take place during the

prenatal period, understanding the underlying molecular and cellular processes is

crucial to comprehend the growth of a new life.

Embryogenesis is the most crucial phase of the prenatal development of mam-

mals. During this stage, an embryo is formed and progressively developed until

it becomes a fetus. This progression always commences with the fertilisation of

an ovum (or egg) by a sperm in one of the two fallopian tubes several hours af-

ter ovulation (Oppenheimer and Lefevre, 1984). The product of the fertilisation

process is a zona pellucida bounded single-celled fertilised egg which is termed as

the zygote. A zygote is the first cell of a new individual that ultimately leads to

the growth of an embryo. The development of a zygote into an embryo proceeds

through four specific stages: cleavage, implantation, gastrulation and organogen-

esis. The subsequent development involves the growth of the embryo, thereby,

matures it for the life outside the womb. In the following, the brief description of

each of these stages is given. Though these developmental stages are very similar

among mammals, the duration of the gestation varies. For example, the gestation

period for humans is approximately 40 weeks, whereas it lasts for 19 to 21 days

for the mouse.
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Cleavage

The zygote undergoes a series of rapid mitotic cell divisions called cleavage while

moving towards the uterus through the fallopian tube few hours after fertilisation.

This generates a cluster of cells (blastomeres) where the combined cell size is

identical to the size of the zygote. Cleavage at first divides the zygote into 2

identical cells which eventually progresses through 4–cell, 8–cell, and 16–cell stages

and so on (Gilbert, 1994). Cleavage is very important for two specific reasons: it

generates a large number of cells which ultimately gives rise to different tissues

and organs; it increases the nucleus–cytoplasmic ratio to support embryogenesis.

Repeated cleavage allows blastomeres to tightly bind themselves to each other,

thereby forming the morula. This early embryo looks like a mulberry and consists

of 16 to 32 cells. Further cell division occurs once the morula enters into the uterus.

Blastocyst Formation and Implantation

The morula starts to accumulate uterine fluid shortly after it enters the uterine

cavity. This results in the formation of a hollow, fluid–filled cavity called blasto-

coele in the centre of the morula. This embryo structure with blastocoele is called

the blastocyst (Figure 1.1). A blastocyst is characterised by two cell types: inner

cell mass and trophoblast. Inner cell mass gives rise to the embryo proper as well

as to the extra-embryonic tissues including the yolk sac, allantois and amnion that

support the developing embryo, whereas the trophoblast forms the outer layer of
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Figure 1.1: Development of the blastocyst in humans (Information, 2001).

the blastocyst and offers nutrients to the embryo and eventually form the invading

placenta and membranes.

The zona pellucida surrounding the blastocyst begins to degenerate and de-

composes completely to be replaced by the underlying trophoblast cells when the

blastocyst reaches the uterus. The blastocyst adheres to the endometrium (in-

nermost epithelial lining) of the uterus, inducing the rapid proliferation and dif-

ferentiation of the trophoblast and invades the endometrium and its constituent

blood vessels. This process is known as implantation of the embryo that facili-

tates nutrient exchange between the mother and the embryo. Usually, the embryo

implants between eight to nine days post–fertilization in most of the successful

human pregnancies (Wilcox et al., 1999).
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Gastrulation

Once the blastocyst becomes completely embedded in the endometrium, morpho-

logical changes occur in the inner cell mass and it subsequently splits into two

layers. One cell layer is called hypoblast which gives rise to the primary yolk sac

(Gardner, 2001) and the other layer is called the epiblast which gives rise to the

cells of the embryo proper. The epiblast further forms a three-layered structure

by differentiating into the three primary germ layers ectoderm, mesoderm, and

endoderm. This three-layer embryo structure is called the gastrula.

Organogenesis

Following gastrulation is the organogenesis stage that involves the molecular

and cellular interactions between the newly formed germ layers, which ultimately

constitute specific tissues and organs in the developing embryo. The ectoderm

(outer layer of the embryo) differentiates to form the epidermis, and the neural

crest and other tissues that give rise to the nervous system. It also develops the

epithelium of the mouth and nose, sweat glands, lens of the eye, hair, and nails.

The endoderm differentiates to form the epithelium of the respiratory system and

digestive system (Zaret, 2001). It also develops into organs associated with the

digestive system including liver and pancreas. The mesoderm that lies between

the ectoderm and the endoderm gives rise to muscles, connective tissue, cartilage,

notochord, kidney, blood, blood vessels, reproductive system organs and bone.
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In human, an embryo develops all organ systems that an adult has by the end

of the eighth week when cell differentiation is mostly completed. The embryo is

known as a fetus at this stage. The fetal development lasts until birth. It involves

the growth of all the tissues and organs of the organism which is accomplished

through cell proliferation or accumulation of extracellular material (Wolpert et al.,

2015). From seven months until birth, the majority of the physical growth of the

fetus in human occurs which prepares it for the life outside the womb.

The early developmental events such as the formation of the body axes, gas-

trulation, and organogenesis are critical for normal embryogenesis (Gardner, 2001).

These events greatly influence the development of different organ systems as well

as cell fate. Significant disruptions in these dynamic in utero processes frequently

cause embryonic lethality. Accordingly, understanding the underlying genetic ba-

sis of these processes is much needed. At present, birth defects or congenital

malformation are severe and common threats to human life. Birth defects are

defined as structural (e.g. congenital heart defects, neural tube defects, cleft lip

and palate) or functional (e.g. Downs syndrome and autism) abnormalities that

are recognisable at birth, and which can lead to physical or mental disability or

even to death (Queisser-Luft et al., 2002). The American College of Obstetri-

cians and Gynecologists (ACOG) reports that about approximately out of every

33 infants is born with a major birth defect. Developing effective strategies to

prevent these birth defects is feasible only with a thorough understanding of the

underlying cause(s), patterns and pathogenesis of these abnormalities. Although
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most congenital malformations have a genetic basis, the specific gene(s) behind

these developmental abnormalities remain unknown. A greater understanding of

the causes of many birth defects can come from the identity of the genes involved

and also from the phenotypic effects that come from disrupting their functions.

1.2 Gene Essentiality

All organisms have a number of genes encoded in their DNA. These genes possess

diverse functionality and together regulate the overall characteristics of an indi-

vidual. Some genes are absolutely required for the survival and development of

an organism. These genes are termed as essential genes. Essential genes produce

lethal phenotypes when mutated and these may lead to defects or death even at an

early developmental phase. In contrast, non–essential genes are those that may

be beneficial but not absolutely required for survival. A greater understanding of

basic cellular processes, tissue–specific functions and development which are vital

for life can come from identifying essential genes. Moreover, knowledge of essential

genes promotes discovering potential drug targets in pathogens (Haselbeck et al.,

2002) and helps to recognise human diseases (Huang et al., 2004). Thus, identi-

fication of essential genes is very important. However, the set of genes that are

absolutely critical for sustaining life are still unknown for most organisms (Juhas

et al., 2011).

Determining essential genes in human is a major progression from the se-

quencing of the human genome. We have already gained knowledge of the complex
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genomic structure and the functional diversity encoded by approximately 21,000

protein–coding genes located in the human genome. But we still have not identi-

fied specifically which genes are absolutely required for our survival. Identification

of human essential genes will be indicative of the importance of a specific gene

in regulating our development and survival. Moreover, it will help us to learn

how different developmental abnormalities including congenital birth defects and

miscarriages, occur while normal development is perturbed.

1.3 Use of Mouse as a Model Organism

In developmental biology, non–human species are used as model organisms to

understand biological phenomena, as human experimentation is impractical, un-

ethical and expensive. This strategy is made possible due to the common descent

of all living organisms and the conservation of genetic material over the course

of evolution. The mouse (Mus musculus) is one of the preferred models to study

human development since mouse and human demonstrate a high level of similarity

in their genomes. Comparative analyses of mouse and human genomes revealed

that they are organised in a very similar manner with a similar number of genes

and regions of conserved linkage (synteny). Approximately 99% of human genes

have a mouse orthologue (Guénet, 2005). Genome similarities may apply to most

mammals, but the mouse has some additional properties which make it an ideal

model for studying humans. Mice are small and they are easy to maintain in the

laboratory because a mouse takes short time to reach sexual maturity (about 8
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weeks). A mouse can have a litter every 3 weeks. They can produce approximately

one litter of about 8 to 10 offspring every month which ensures their suitability

for genetic analysis.

Through mouse knockout methodologies, researchers have already revealed

biological functions of many human genes by examining their functional coun-

terparts in mouse (Rangarajan and Weinberg, 2003; López-Bigas and Ouzounis,

2004; Oliver et al., 2007). A knockout mouse refers to a genetically modified mouse

in which an existing gene is purposely inactivated or “knocked out” in a precise

manner (Wolfer et al., 2002). A knockout is achieved by a technique called “gene

targeting” where the functional copy of a gene is deleted or exchanged with a

non–functional mutated version in mouse embryonic stem cells (ES cells). Mice

are generated from the modified ES cells and the mutation remains present in every

cell. This artificially introduced mutation abolishes the activity of the pre-selected

gene that might cause changes in a mouse’s phenotype including appearance, bio-

chemical characteristics, behaviour etc. The resulting mutant phenotypes provide

valuable information about the probable role of individual genes in maintaining

normal physiological functions in mice, and by extrapolation, in humans (Huang

et al., 2004). Prior experiments on knockout mice estimated approximately 40%

of genes being essential (White et al., 2013). As it is impossible to experimentally

investigate each of the human genes for essentiality, these experimental data from

mice, therefore, can be used to infer mammalian gene essentiality.



Chapter 1. Introduction 30

1.4 Overview of Essential Gene Prediction

Identification of essential genes has already been accomplished for various or-

ganisms through various experimental methods including single gene knockouts

(Crawley, 1999; Giaever et al., 2002; Kobayashi et al., 2003), conditional knock-

outs (Liu et al., 2000; Roemer et al., 2003), RNA interference (Cullen and Arndt,

2005; Kamath et al., 2003), and transposon mutagenesis (Gallagher et al., 2007).

Experimental studies found approximately 40% genes in S. cerevisiae (Steinmetz

et al., 2002), 30% genes in C. elegans (Simmer et al., 2003) and 40% genes in

mouse (White et al., 2013) as essential. A previous study also found mouse es-

sential genes in Chromosome 4, 7 and 11 using high–efficiency ENU mutagenesis

screen (Hentges et al., 2007). All these experimental methods evaluating gene es-

sentiality are very time–consuming, resource intensive and laborious. In addition,

these techniques are restricted to few species and are not always feasible. Alterna-

tives to these costly and challenging experimental techniques are machine learning

methods (computational methods) which have received great attention in reliably

predicting essential genes at a reduced cost and efforts in recent years. Prior studies

reported different machine learning models integrating various sequence–derived

gene features to aid essential genes identification (Chen and Xu, 2005; Gustafson

et al., 2006; Seringhaus et al., 2006; Hwang et al., 2009; Acencio and Lemke, 2009;

Deng et al., 2010; Yuan et al., 2012; Yang et al., 2014). These studies deciphered

the relationships between many gene characteristics and the experimentally de-

termined essential genes, and also established the viability of machine learning
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approaches to reliably predict essential genes from these features.

Chen and Xu (2005) used neural networks (Hagan et al., 1996) and support

vector machines (SVMs) (Cortes and Vapnik, 1995) to predict essential genes in

S. cerevisiae from various features derived from high–throughput data sources

including sequence, protein–protein interaction (PPI), gene expression and com-

parative genomic data. The most important features determining gene essentiality

were found to be protein evolutionary rate, protein-protein interaction connectiv-

ity, gene duplication rate and gene expression. The authors suggest that their

approach could also be applicable to other organisms with the availability of high-

throughput data.

Saha and Heber (2006) employed the dependencies between gene essential-

ity and various attributes derived from sequence, PPI and comparative genomics

data to distinguish essential and non–essential genes in S. cerevisiae. An improved

simulated annealing optimisation algorithm (Kirkpatrick, 1984) was used to deter-

mine the weight of different attributes which signified their potential influence on

essentiality prediction. Protein–protein interactions connectivity, paralogy score

and phylogenetic conservation score were found to have more importance for the

prediction of essential genes. The authors used the weighted k–nearest neighbour

(KNN) algorithm (Cover and Hart, 1967) and SVMs to extract relationships be-

tween essentiality and gene attributes in a S. cerevisiae training dataset. Predict-

ing genes in a separate test set by the trained classifiers also report the efficiency

of these machine learning methods.
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Gustafson et al. (2006) built a Naive Bayes classifier (Russell et al., 2003; Rish,

2001) using different genomic and protein sequence features to classify essential

genes in S. cerevisiae and E. coli. A feature selection algorithm was used to

decide which subset of features is optimal for predicting essential genes. Phyletic

retention, which measures the number of closely related organisms that have an

orthologue, was found to be most informative for essentiality prediction. The

authors are the first to report the importance of using this feature in predicting

essential genes. Other significant attributes were number of paralogues (number

of gene duplicates), gene upstream size (distance to the closest gene), protein

length and codon bias. The efficacy of the Naive Bayes classifier was assessed by

cross–validation.

Seringhaus et al. (2006) proposed an ensemble classifier to predict gene es-

sentiality in S. cerevisiae from sequence-derived features only, arguing that, since

functional genomics information are unavailable for most organisms, training a

classifier using them is not rational. The ensemble classifier was developed com-

bining the output of seven different machine learning methods which include Ran-

dom Forest (Breiman, 2001), logistic regression (Le Cessie and Van Houwelingen,

1992), Naive Bayes, C4.5 decision tree (Quinlan, 1993), decision stump boosted

through Adaboost (Freund and Schapire, 1996), alternating decision tree (Freund

and Mason, 1999) and zeroR rule. The importance of each feature was measured

using the Naive Bayes method. Protein hydrophobicity, cellular localisation, GC
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content, rare amino acid ratio and codon adaptation were reported as more infor-

mative features of essential genes. Assaying gene essentiality in an unstudied and

closely related yeast species S. mikatae evaluated the effectiveness of this classifier.

Hwang et al. (2009) explored a number of topological features in the PPI

networks with an attempt to reveal their relationships with essential genes in S.

cerevisiae and E. coli. Many topological properties were found to statistically dif-

ferentiate essential and non–essential genes. The topological properties together

with a number of sequence properties were used in building an SVM classifier

to infer which genes are essential and which genes are non–essential. The au-

thors suggest that topological properties of interaction degrees, betweenness and

neighbours’ intra-degree along with phyletic retention and the length of the open

reading frame (ORF) are capable of making reliable predictions of essential genes

in both of organisms through machine learning approach.

Acencio and Lemke (2009) demonstrated that integration of protein–protein

interaction information along with cellular localisation information and biologi-

cal processes can aid in the reliable prediction of gene essentiality. Using these

features, a decision tree based meta classifier was developed which showed it ef-

fectiveness in determining gene essentiality in S. cerevisiae. This meta classifier

was generated averaging the prediction results of eight different machine learning

methods which include Naive Bayes tree, REPtree (Witten and Frank, 2005), Ran-

dom Forest, random tree (Witten and Frank, 2005), J48 decision tree (Quinlan,

1993), logistic model tree (Landwehr et al., 2005), best–first decision tree (Shi,
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2007), and alternating decision tree. The number of protein–protein interactions,

the number of regulating transcription factors and nuclear localisation were found

to be most important properties for essential genes prediction. The number of

protein-protein interactions was found as the most significant feature among all.

Deng et al. (2010) built an ensemble classifier combining logistical regression

model, C4.5 decision tree, CN2 rule and Naive Bayes method to predict essen-

tial genes from sequence and functional genomic features in four distantly related

bacterial species namely E. coli, P. aeruginosa, A. baylyi and B. subtilis. The

Naive Bayes technique was used to measure the influence that a feature has on

predicting gene essentiality. Protein domain enrichment score (DES), which rep-

resents the ratio of the occurrence frequency of each protein domain between an

essential gene and the total genes of the target organism, was found as the most

predictive feature among all. Other dominant features were cellular localisation,

protein aromaticity and gene conservation rate. For each pair AB of organisms,

the classifier was trained to learn traits related to essential genes in A, and fur-

ther was applied to make predictions in the other organism (B) and vice versa.

Overall, this study suggests that essential genes prediction could be transferable

between distantly related organisms through a machine learning approach trained

on sequence features.

The above-mentioned studies predicted essential genes of either bacteria or

unicellular yeast organisms taking the information of the experimentally identified

essential genes in those species into consideration. The large genome size and
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developmental complexity of mammals has obstructed the ample experimental

analysis of essentiality in these organisms. Though mouse knockout experiments

have already proved useful in identifying a subset of mammalian essential genes,

the entirety of the mouse genome has not yet been experimentally examined. Yuan

et al. (2012) analysed a subset of mouse essential and non-essential genes defined by

the knockout experiments and showed the feasibility of predicting mouse essential

genes through three machine learning classifiers (logistic regression, SVM and

random forests) trained on a large number of gene features. The predictive power

of these features was examined using the least absolute shrinkage and selection

operator technique (LASSO) (Tibshirani, 1996). Among all, gene evolutionary

age, protein connectivity and paralogue sequence identity were found to have more

influence on defining essentiality. However, the classifier gave poor prediction

accuracy and it failed to justify why these features are vital. Though this study

used 491 features to predict gene essentiality in mouse, a bulk of these features

essentially represent the similar information and could have been reduced into

smaller number. In addition, the miRNA target site data was handled strangely –

the authors counted each miRNA sequence as a separate feature. This would be

analogous to including all gene lengths in the training set as individual features

rather than stating that gene length is one feature.

A recent study by Yang et al. (2014) explored a large number of topological

and biological properties to discern essential and non–essential genes in humans.

Most of these properties were statistically discriminative. The authors conducted



Chapter 1. Introduction 36

a Gene Ontology (GO) enrichment analysis to infer the functional uniqueness of

essential and non–essential genes. The SVM classifier (with radial basis kernel

function) was developed based on these topological and biological properties to

learn the characteristics underlying gene essentiality. With a prediction accuracy

of 72.87%, this classifier indicates the usefulness of machine learning approaches

in predicting human essential genes.

A bioinformatics study also discovered that sequence features could deter-

mine disease genes (Kondrashov et al., 2004). The authors examined 18 different

sequence features between disease and generic human gene sets which were used to

develop a multilayer neural network model for classifying disease and non-disease

genes reliably. In addition, (Dickerson et al., 2011) presented a computational

framework to test the association of the human orthologues of mouse essential

genes with human diseases by means of a number of sequence features. This study

found the connections of disease genes with protein–protein interactions, nuclear

localisation and autosomal dominant mode of inheritance.

Currently, two databases – DEG (Zhang and Lin, 2009) and OGEE (Chen

et al., 2012a) are available that accumulated the experimentally validated essential

genes for various organisms. The DEG database includes known essential genes

in M. genitalium, V. cholerae, H. influenzae, S. aureus, E. coli, and S. cerevisiae.

The OGEE database organises experimentally tested essential and non–essential

genes in D. melanogaster, A. fumigatus, B. subtilis, M. genitalium, S. cerevisiae

and mouse along with a number of features that prior studies identified or assumed
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to have an influence on gene essentiality. These features include gene expression

profiles, conservation across species, duplication status, involvement in embryonic

development, and evolutionary origins.

1.5 Machine Learning Methods

Machine learning is a branch of computer science originating from the artificial

intelligence (AI) that has become one of the most accepted approaches for data

processing and data analysis in recent years. It is concerned with developing

systems or models that can learn from data (Witten and Frank, 2005). These

models or systems are not explicitly programmed; rather machine learning allows

the models to automatically learn hidden knowledge from training data and to

apply this knowledge in making reliable decisions when exposed to new data.

Machine learning approaches have been applied to a broad range of areas including

spam e–mail filtering, image and speech recognition, effective web search, and

genetics and genomics.

One of the major tasks a machine learning system can be trained to perform is

classification. The input to a classification problem is a training dataset comprised

of a number of observations. Each observation is characterised by a number of

features. A classification problem seeks to determine to which group (or class)

an observation belongs based on its properties. For example, a system could

be trained to classify patients, and then be used to decide whether a new patient

should be assigned a diagnosis. Machine learning classification methods are mainly
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segregated into two categories: supervised learning methods and unsupervised

learning methods.

Unsupervised learning methods are used when no class labels are assigned to

the observations in the training dataset. The classifier training, therefore, cannot

use the class information to map each observation into a unique class. Instead,

unsupervised learning methods search for hidden relationships in the data. A

well-known unsupervised classification method is clustering. Clustering divide

the observations in the training dataset into a set of disjoint groups or clusters

with each cluster having observations that are similar to each other (share similar

properties). In contrast, supervised learning methods (Figure 1.2) are used when

each observation in the training dataset is labelled with a known class. The goal

of these methods is to build a classifier for the training dataset based on the class

information. The classifier learns traits of each class and applies this knowledge

to predict the class of each observation in the test dataset.

Supervised learning methods are further divided into two groups. Methods

in the first category are used to build a single best classifier. Examples of these

methods are Naive Bayes, Artificial Neural Network (ANN), SVM and decision

tree. Methods in the second category are called ensemble methods, which build

multiple classifiers and then combine their outputs to make a prediction about an

observation. Random Forest is the most common example of ensemble methods.

The following subsections present brief descriptions of some of the well–known

supervised learning techniques used for classification.
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Figure 1.2: Workflow showing classification with supervised learning methods.

1.5.1 Naive Bayes

The Naive Bayes classifier (Rish, 2001) is a probabilistic learning method. It

classifies an observation on the basis of an assumption that each input feature is

conditionally independent of every other input feature. The input features are

dependent on the class variable. The Naive Bayes method uses Bayes rule to

recognise the most probable class for the observation. Given a class variable Ck

and a dependent feature vector x = (x1, x2, ..., xn) with n features, Equation 1.1

(Bayes rule) is used to compute a probability that the observation x belongs to

class Ck.

p(Ck|x) =
p(Ck)p(x1, x2, ..., xn|Ck)

p(x1, x2, ..., xn)
=
p(Ck)

∏n
i=1 p(xi|Ck)

p(x1, x2, ..., xn)
(1.1)

Here, p(x1, x2, ..., xn) is the probability of the observation x; p(Ck) is the probabil-

ity of the class Ck; p(xi|Ck) is the probability of xi given that the class is Ck that
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the classifier estimates from the training dataset. The observation x is predicted

belonging to class Ck with the highest p(Ck|x) value.

Advantages – The advantages of Naive Bayes classifiers are: i) simple, easy

to implement and scalable, ii) require considerably small training dataset to obtain

good results, iii) converge quickly if the assumption of conditionally independent

properties holds.

Disadvantages – The disadvantages are: i) conditional independence as-

sumption does not always hold, ii) cannot model dependencies among various

properties, iii) accuracy reduces with the increased size of the training dataset.

1.5.2 Artificial Neural Network (ANN)

Artificial neural network (ANN) (Hagan et al., 1996) is a machine learning ap-

proach that mimics the structure and function of a biological neural network. A

typical ANN system is comprised of several artificial neurons or nodes that are

interconnected by edges or signal connectors. The nodes are the computational

units that receive data and process them to get an output, whereas the connec-

tors carry processed results to and from nodes like synapses. The nodes in the

ANN often have a layered structure and work collectively as a group rather than

individuals. ANN receives data from a set of nodes usually known as input layer

and the final output is expressed via nodes in the output layer. The third set of

nodes is also often used between the input and output layers for data processing.
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Figure 1.3: Structure of an ANN with single hidden layer. Here, circles
represent the artificial neurons and the edges represent the connections between

these neurons.

These nodes comprise the hidden layer. Figure 1.3 demonstrates the structure of

an ANN with one hidden layer.

All nodes of the ANN have fixed computation associated with them. The

connectors on the other hand store parameters (weights) that are adjusted during

the learning process. The structure of the ANN thus is defined by the connection

pattern of the neurons of different layers, the weights of the connector set up by

the learning process and the activation function that converts the weighted input

of a neuron into the output.

ANN can be trained to separate samples into different classes. The training

process involves finding the common features that observations of a known class

exhibit. These features and the class information are then used to train the ANN
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by adjusting weights of the connectors. The weights of the connectors are adjusted

or optimised until the error in predictions is minimised and a specific level of

accuracy is achieved. The performance of the classification is further confirmed by

feeding the ANN with new observations belonging to a known class and monitoring

its response.

Neural networks with a single hidden layer are limited to the problems where

there exist complex relationships between input features and desired outputs. Al-

ternative to these conventional techniques are the deep neural networks (DNNs),

which attempt to model high level of abstractions in data (Figure 1.4). In re-

cent years, various deep neural network architectures have become popular tools

for machine learning including deep feed–forward neural networks, convolutional

deep neural networks and recurrent neural networks. These deep learning architec-

tures are neural networks with multiple hidden or processing layers (usually more

than 2), composed of multiple linear and non–linear transformations, which can ef-

ficiently learn complex mappings between input features and outputs. DNNs excel

at those problems where large amounts of training data are available. DNNs have

shown state–of–the–art performance in speech recognition, natural language pro-

cessing, image recognition, recognising protein folds, structures and understanding

their functions (Jo et al., 2015; Spencer et al., 2015), and also in genomics (Chen

et al., 2016).

Advantages – The advantages of ANNs are: i) flexible and adaptive, ii) good

at perceiving hidden and complex non–linear relationships between dependent and
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Figure 1.4: Structure of a deep neural network with three hidden layers. Here,
circles represent the artificial neurons and the edges represent the connections

between these neurons.

independent variables.

Disadvantages – The disadvantages are: i) training dataset has to be very

large to achieve good performance, ii) long training time, iii) provide multiple

solutions linked to local minima, iv) prone to overfitting.

1.5.3 k–Nearest Neighbours (k–NN)

The k–Nearest Neighbours (k–NN) algorithm is an instance–based or lazy learning

method which has no training phase (Aha et al., 1991). This method attempts

to predict the class of a new observation by locating k nearest observations or

neighbours in the training dataset. k–NN classification follows three steps:

1. Determining the value of k.
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2. Determining nearest neighbours of an observation in the test dataset. The

nearest neighbourhood is determined based on a Euclidean distance measure.

3. Determining the class using the class information of neighbours. The test

observation is assigned a class to which most of its nearest neighbours belong.

Advantages – The advantages of k–NN classifiers are: i) simple to imple-

ment, ii) analytically tractable, iii) highly adaptive to local information.

Disadvantages – The disadvantages are: i) requires large data storage, ii)

runs slowly, iii) biased by the value of k, iv) sensitive to outliers and noise for

small values of k, iv) larger values of k increase the computational complexity, v)

highly vulnerable to the curse of dimensionality, i.e., prediction accuracy degrades

for large–scale features as they dominate the distance metrics.

1.5.4 Support Vector Machine (SVM)

The support vector machine (SVM) is a supervised machine learning technique

used for classification and was first coined by (Cortes and Vapnik, 1995). Basic

SVMs work as binary classifiers separating inputs in only two classes, but the

design of multi–class SVM models are not rare. As a binary classifier, this method

attempts to classify observations by dividing the feature space into two subspaces.

This is done by finding an optimal hyperplane that separates the observations in

the training dataset in such a way that as many observations as possible belonging

to a class remain in the same subspace. SVM classifies an observation in the test

dataset based on its position relative to the optimal hyperplane.
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Figure 1.5: Depiction of an optimal hyperplane in SVM dividing a two-
dimensional feature space into two subspaces.

There will be multiple hyperplanes that could offer perfect separation of the

observations (Ben-Hur et al., 2008). SVM finds the optimal hyperplane based

on the concept of a margin (Figure 1.5). Given a binary classification problem

with classes a and b, the margin of a separating hyperplane H is the Euclidean

distance between the closest observation of class a and the closest observation of

class b to H. SVM attempts to choose an hyperplane with the maximum margin

(hard margin). The hyperplane with maximum margin is obtained by finding two

hyperplane Ha and Hb, such that:

1. Ha passes through at least one observation from class a.

2. Hb passes through at least one observation from class b.

3. There exist no observations between Ha and Hb in the training dataset, i.e.

they must be parallel.

4. The distance between Ha and Hb is the highest among all possible hyperplane

pairs.
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The training observations that lie on Ha and Hb are the only ones that are

required to define H and are called support vectors. Choosing the hyperplane in

this way lowers the expected generalisation error of the classification (Kotsiantis

et al., 2007). To classify an observation correctly, the above-mentioned hard mar-

gin approach of SVM requires the observations in the training dataset (original

feature space) to be linearly separable (correctly classified). In practice, data often

have noise and may not always be perfectly linearly separable. SVM employs soft

margin and kernel functions to resolve this issue. The idea of the soft margin is

to incorporate a penalty term to allow misclassification. The penalty term is used

to penalise the training observations that fall inside the margin. However, this

still needs the separating hyperplane to be linear, and often a better classification

accuracy is achieved by considering a non–linear boundary between classes.

To implement non–linear class boundaries, SVM utilises kernel functions that

map the training observations into a high dimensional feature space where the

training observations are linearly separable. The linear SVM classifier relies on the

computation of dot product f(x).f(y) between all (x, y) pairs of training observa-

tions. A kernel function k circumvents the increased computational complexity and

data overfitting of the explicit mapping of the training data into the high dimen-

sional feature space by replacing every dot product such that k(x, y) = f(x).f(y),

therefore allowing the maximum margin hyperplane to fit into the high dimensional

feature space. Common kernel functions include linear, polynomial and sigmoid
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kernels and the radial basis function (RBF). This works because a linear hyper-

plane constructed in the high dimensional feature space represents a non–linear

boundary in the original feature space (Cord and Cunningham, 2008).

Advantages – The advantages of SVMs are: i) high prediction accuracy, ii)

robust to noise and outliers, iii) less prone to overfitting, iv) good generalisation

ability even with smaller training data.

Disadvantages – The disadvantages are: i) memory intensive, ii) runs

slowly for both training and testing, iii) not suitable for larger datasets, iv) likely

to offer poor performance if the number of attributes is much larger than the num-

ber of observations, v) difficult to extend for multiclass classification, vi) need to

select a suitable kernel function, vii) it is also hard to determine which features

are most useful in the classification.

1.5.5 Decision Trees

A decision tree is a machine learning technique where a tree–like structure is used

as a model to classify an observation by learning simple decision rules inferred from

representative features (Breiman et al., 1984). A decision tree has three types of

nodes, namely root node, internal nodes and leaf nodes with each node representing

a feature. A root node is the one that has no incoming edges. Each internal node

consists of one incoming edge and two or more outgoing edges. However, a leaf or

terminal node, which has one incoming edge, but no outgoing edges, represents a

class label. All internal nodes along with the root node represent a set of disjoint
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Figure 1.6: Example of a decision tree. Here, squares represent the root as
well as internal nodes and circles represent leaf nodes. The text inside each
internal node denotes the feature that is used as a best cutpoint and the edges
denotes the feature values that are used to partition the observations in the

subspace of a node.

rules inferred from the values of features to separate the training observations and

each branch of the tree represents the decision (the outcome of the rules). A path

from the root node to a leaf node denotes a classification rule. Decision trees

classify an observation by sorting them down the tree starting from the root to

a leaf node. At first, it applies the decision rule linked to the root node to the

observation. The outcome of this rule selects the appropriate branch to follow.

This leads either to an internal node to employ another decision rule or to a leaf

node. The observation is assigned the class information associated with the leaf

node. Figure 1.6 shows an example of a decision tree.

A decision tree is built in a top–down manner starting with a root node. It
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involves repeated partitioning of the feature space into disjoint smaller subspace

containing training observations with similar feature values until a leaf node is

formed. In constructing the decision tree, for each node n, a decision must be made

to choose the best cutpoint for n. A cutpoint is the values of a feature f which

are used to split the subspace (characterised by n) into classes. The superiority

of a cutpoint is evaluated in terms of the purity of the induced subspace. A

subspace is called pure when all training observations in it are from the same

class. The best cutpoint is the one which gives the maximum purity or alternately

minimum impurity. A common approach to estimate impurity is the gain ratio.

Gain ratio (Equation 1.2) measures the amount of information gained from a

feature in classifying the training observations. It is computed on the basis of

intrinsic split information (Equation 1.3) and information gain (Equation 1.4).

Information gain is measured by entropy (Equation 1.5). The feature with the

maximum gain ratio is selected as the root node. Values of this feature are then

used to for subsequent partitions.

GainRatio(S, f) =
InfoGain(S, f)

SplitInfo(S, f)
(1.2)

SplitInfo(S, f) =
C∑
i=1

|Si|
|S|

log2
|Si|
|S|

(1.3)

InfoGainR(S, f) = Entropy(S)−
∑

v∈values(F )

|Sv|
|S|

Entropy(Sv) (1.4)

Entropy(S or Sv) =
C∑
i=1

− p(i)log2p(i) (1.5)



Chapter 1. Introduction 50

Here, S is the training observations in node n; Si is a subset of S containing

observations belonging to class i; Sv is a subset of S with value v of the feature f ;

|S| and |Sv| are the number of observations in S and Sv; p(i) is the proportion of

observations belonging to class i and C is the set of classes.

Another common estimate of the impurity is called the Gini index. This

computes the impurity of the training observations S in the node n using Equation

1.6. The impurity of a cutpoint is computed as the weighted sum of the impurities

of the two child nodes L and R (Equation 1.7).

Gini(n) = 1−
C∑
i=1

p(i)2 (1.6)

Ginisplit(n) =
|SL|
|S|

Gini(L) +
|SR|
|S|

Gini(R) (1.7)

Here, SL ⊆ S and SR ⊆ S are the training observations in child nodes L and R,

respectively; p(i) is the proportion of the training observations in S that belong

to class i.

The overall algorithm for constructing a decision tree is as follows:

1. Set the root node as the parent node.

2. Split the parent node at the feature f into child nodes based on the minimum

impurity.

3. Assign training observations to new child nodes.

4. Stop if all leaf nodes are pure. Else, repeat step 1 to 3 for each new child

node.
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Due to the repeated partitioning, larger decision trees are likely to overfit and

give poor generalisation accuracy. One way to lessen overfitting is not to grow

the decision tree to its full size. This can be achieved by pruning the tree which

decreases the size of the tree by removing tree nodes that do not provide additional

information (Kotsiantis et al., 2007). Moreover, this decreases the complexity of

the final classifier as well as increases the accuracy of the classification.

Advantages – The advantages of decision trees are: i) simple, ii) easy to

understand and interpret, ii) runs fast, iii) suitable for large–scale analysis, iv) can

handle irrelevant features, v) can handle missing values, vi) can handle non–linear

relationships.

Disadvantages – The main disadvantage of decision trees is they are prone

to overfitting without proper tree pruning. Also, finding the optimal decision tree

is a challenge.

1.5.6 Random Forest

An alternative to the single optimal classifier is the ensemble classifier which in-

cludes multiple suboptimal classifier or base learners. Rather than using the classi-

fication result produced by a single classifier, an ensemble classifies an observation

by aggregating the classification results of all base learners. This approach is par-

ticularly beneficial in situations where finding and choosing an optimal classifier

is infeasible (Ditterrich, 1997). In those classification problems, the ability of an
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ensemble classifier to approximate an optimal solution by combining a set of ap-

proximations can make it superior to that of a single best classifier. One of the

popular ensemble classifiers is the Random Forest (Breiman, 2001) which operates

by constructing multiple decision tree models at the training time. It is one of the

most accurate supervised learning methods in recent times. Each decision tree in

a Random Forest represents one class of observations that are being considered.

Decision trees are constructed during the learning process with the training data.

Random Forests mainly rely upon two parameters to control their growth:

numTrees, the number of decision trees to be built and numFeatures, the number

of random subset of features to assess at each tree node. Let numTrees = T

and numFeatures = m. Each of the T decision trees is constructed in a top–

down manner starting with a root node by selecting a set of N observations of

size n at random with replacement from the training dataset and selecting the

most significant features of these samples as the tree nodes. At each node a,

the m number of features is selected at random from n features to grow the tree

and the most significant feature that provides the best binary split on that node

is selected among all according to an objective function. Feature significance

is generally estimated using the Gini index (mentioned in section 1.4.6). This

significant feature splits node a into left (L) and right (R) child nodes with a set

of NL ⊆ N and NR ⊆ N samples in L and R nodes, respectively. This process

continues at each node until the decision tree cannot grow further.

To classify a new gene, the features of the gene are tested with each of the
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Figure 1.7: Example of a Random Forest classification. Here, x denotes a test
observation, n denotes the number of decision trees in the Random Forest, and
Classz denotes the classification given by the decision tree z. The final class

information of x is determined by counting the most votes.

decision trees present in the random forest. Each tree gives a classification score

or “vote” and the class with the most votes is selected as the class to which the

gene belongs (Figure 1.7).

Advantages – The advantages of Random Forests are: i) high level of ac-

curacy, ii) runs faster, iii) scale well with large datasets, iv) robust to outliers, v)

maintains accuracy while a large number of features are missing in the training

dataset, vi) easy to interpret class predictions, vii) resistant to overfitting.

Disadvantages – Random forests can occasionally suffer from overfitting

for noisy datasets.
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1.6 Are Gene Duplicates as Essential as Single-

tons?

Gene duplication may have an important role in determining gene essentiality.

Gene duplication is a frequent event in the evolution of organisms, especially for

multicellular eukaryotes, through which new genes and/or biological functions are

added to increase the genomic complexity (Zhang, 2003; Lynch and Conery, 2003).

It results in a single gene having multiple copies (paralogues) in the genome. Du-

plicated genes further undergo mutations over time that either cause the functional

loss in one copy or functional differences between them (Ohno, 1970). Understand-

ing the role of gene duplicates and their associations with phenotypic effects of

gene deletion, therefore, have received much attention.

Early studies on mouse found mild or even no phenotypes by knocking out one

copy of a duplicate gene (Joyner et al., 1991; Saga et al., 1992). This prompted the

hypothesis that discerning the function of each duplicate gene would be difficult

by knocking out individual genes because many duplicate genes are functionally

redundant (Thomas, 1993; Cooke et al., 1997). This opinion was reinforced by

some subsequent studies which revealed that duplicate genes could compensate

for the functional loss of their duplicate copies due to their overlapping function

and expression and thus, deleting a duplicate gene has little phenotypic effect

(Gu, 2003; Gu et al., 2003; Kamath et al., 2003; Conant and Wagner, 2004; Guan

et al., 2007; DeLuna et al., 2008). At least 25% of gene deletions showed no no-

ticeable phenotypic effect due to the presence of their duplicate gene copies in S.
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cerevisiae (Gu, 2003). Moreover, genome–wide single gene deletion experiments

demonstrated that 29% of singletons, compared to 12.4% of duplicates, are es-

sential to the viability of S. cerevisiae (Gu et al., 2003). Likewise, only 2.3% of

duplicate genes showed lethal phenotypes in C. elegans compared to 7.6% of sin-

gletons using a genome–wide gene knockdown experiment (Conant and Wagner,

2004), thereby confirming the tendency of duplicate genes to be less essential than

singletons.

However, further studies with mouse knockout phenotypes did not support

the expected trend of duplicate genes being less essential (Liao and Zhang, 2007;

Liang and Li, 2007). With proportions of ∼55% (Liao and Zhang, 2007) and

∼48% (Liang and Li, 2007) essential genes in both duplicates and singletons, it

was reported that mouse duplicate genes are just as critical as singletons. These

conflicting results in the mouse are further disputed in a recent study which found

duplicate genes as an important factor in the genetic robustness of human (Hsiao

and Vitkup, 2008).

The outcomes of previous studies question what factors govern essentiality

in singletons and duplicates. Xun Gu (2003) showed that in S. cerevisiae the

protein products of singleton genes are more likely to have high protein connec-

tivity, whereas duplicate proteins are less connected. The author rationalised this

observation claiming that since high protein connectivity means high functional

importance, the functionally critical genes are more likely to have low gene dupli-

cability. Two follow–up studies on S. cerevisiae (Gu et al., 2003) and C. elegans
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(Conant and Wagner, 2004) showed that the proportion of essential genes rises as

the protein sequence divergence increases between a duplicate gene and its closest

paralogue. In contrast, a separate study (Liang and Li, 2007) detected that mouse

gene essentiality is positively correlated with the existence of duplicate genes; also,

highly connected protein are more likely to have the high degree of gene dupli-

cability. However, these contradictory results could be the result of biases in the

mouse knockout dataset since mouse geneticists usually choose to report those

genes that show evident phenotypes in the knockout experiments.

By analysing the divergence in protein sequence, expression and evolutionary

conservation for approximately 3,900 targeted mouse genes, Liao and Zhang (2007)

rejected any potential biases exist in the knockout dataset, which led them to affirm

that mouse duplicate genes rarely compensate for each other. Although both of

the above-mentioned studies agreed on the essentiality of mouse duplicate genes,

these failed to rationalise why essential genes tend to be more duplicated in mouse,

while genes in yeast and nematode show the opposite trend.

Makino et al. (2009) discovered that the knockout dataset for mouse and

Drosophilla is greatly biased towards the presence of developmental genes and

genes derived from old duplications. They showed that developmental genes are

more likely to be essential than the non–developmental genes, irrespective of gene

duplication. In particular, the essentiality of developmental duplicates was higher

than the developmental singletons for both organisms. A subsequent study gave a

system–level explanation of this finding (Liang and Li, 2009). In addition, Makino
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et al. (2009) revealed that genes duplicated by a WGD event are more essential

than the ones from single gene duplication (SGD) events.

However, Su and Gu (2008) showed that the current mouse knockout dataset

is highly enriched in genes derived from old duplications, giving overestimated

essentiality in mouse duplicates. This study found that ancient duplicate genes

are more likely to be essential than singletons. In addition, Chen et al. (2012b)

reported the propensity of older genes to be more essential in mouse, regardless of

duplication status. It was also found that singletons are more likely to be essential

than duplicate genes of the same age. A very recent study further confirmed that

the effect of duplicate genes on the genetic robustness of mouse is duplication–

age dependent (Su et al., 2014). After ruling out the confounding effect of WGD

duplicates, protein–protein connectivity, coding–sequence conservation, and func-

tional bias, this study found that mouse singletons have a higher percentage of

essential genes than duplicates. Even though the bias–corrected data confirmed

the critical role of mouse duplicates in genetic robustness, it could not explain why

some duplicate gene copies are both essential and some are non–essential. Further

investigation is required to resolve this issue.

1.7 The Developmental Hourglass Model

One of the central concerns in developmental biology is how to formulate the re-

lationships between evolution and embryonic development. The biogenetic law of
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Ernst Haeckel (published in 1866) stated that embryogenesis recapitulates evolu-

tion. This is because, despite their divergent appearances, all animals develops

through an analogous number of developmental stages, starting from a single fer-

tilised egg, proceeding through cleavage, blastula, morula, gastrula and organogen-

esis stages, before the later developmental stages give the complex body structure

which leads to the adult form (Richardson and Keuck, 2002). Though it has been

accepted that embryogenesis cannot just be a recapitulation of evolution, no def-

inite consensus regarding the relationships of evolution with embryogenesis has

achieved yet.

The relationships between embryonic development and animal evolution can

be revealed from four laws of animal development proposed by Karl von Baer

(Baer, 1828). These laws state that: (1) common characteristics of the phylum

to which an embryo belongs develop earlier than the specialised characteristics;

(2) the special characteristics develop from the most common characteristics; (3)

animal embryos progressively become dissimilar from each other as development

proceeds; (4) the embryo of one animal does not resemble the adult form of another

animal. Overall, the third law suggested that embryos of different species from

the same phylum pass through a developmental phase during which they closely

resemble each other morphologically. They become different from each other pro-

gressively due to the advent of distinguishing features. This law remained unchal-

lenged until it was found unfit for early embryogenesis (Hazkani-Covo et al., 2005)

as the earlier stages often vary widely even among the closest species. Duboule



Chapter 1. Introduction 59

(1994) and Raff (1996) individually expanded this law by proposing a morpholog-

ical model during embryogenesis in terms of the morphological divergences in the

early embryogenesis, which has since become much acknowledged (Prud’Homme

and Gompel, 2010; Kalinka and Tomancak, 2012). It asserts that animal embryos

are divergent in morphology to other embryos of the same phylum at early and

late embryogenesis but they are morphologically similar at mid–gestation. This

morphological pattern during embryogenesis is called the developmental hourglass

model. The stage during mid–embryogenesis where embryos are morphologically

conserved is known as the phylotypic stage (Sander et al., 1983; Elinson, 1987)

or phylotypic period (Richardson, 1995). Molecular interpretations of the devel-

opmental hourglass model imply that embryos have most similar gene expression

patterns at the phylotypic stage.

Recently much attention has been paid to the hourglass model of develop-

ment in animal embryos. Initially, different studies have asserted different gene

features rationalising the developmental hourglass model (Davis et al., 2005; Irie

and Sehara-Fujisawa, 2007). Genes that are expressed in the phylotypic stage were

found to have highly similar protein sequences in mouse and human (Hazkani-Covo

et al., 2005). Recent studies succeeded in observing the presence of an hourglass

pattern also in transcriptomes for several vertebrates. A study on zebrafish re-

ported that genes expressed in mid–embryogenesis are evolutionarily older than

genes expressed early or late embryogenesis (Domazet-Los̆o and Tautz, 2010) when

plotting the the average of the phylogenetic age of genes (quantified by their
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“phylostrata”), weighted by their microarray signal intensity values across devel-

opmental time point. Moreover, a study on Drosophila (Kalinka et al., 2010)

demonstrated that genes that are expressed in mid–embryogenesis have the high-

est expression similarities. Likewise, Irie and Kuratani (2011) reported the highest

gene expression conservation between zebrafish, frog, chicken, and mouse, for genes

expressed in the presumptive phylotypic stage.

In contrast to the above-mentioned studies, a study on zebrafish did not ob-

serve the hourglass pattern with respect to gene age and expression (Piasecka et al.,

2013). The authors claimed that applying a standard log-transformation to the

microarray signal intensity values changes the overall pattern that Domazet-Los̆o

and Tautz (2010) found and indicates that older genes are expressed preferentially

in early development. This early conservation model was supported with respect

to gene duplication and new gene introduction that are the most rare for genes

expressed in early development. However, the authors found the hourglass pattern

at the regulatory level, with sequence of regulatory regions being most conserved

for genes expressed in mid–embryogenesis among all other properties like gene se-

quence conservation, gene age, gene orthology relationships and gene expression

conservation, in contrast to earlier studies. The authors claimed that both hour-

glass and early conservation models are valid for embryogenesis, but with respect

to different genomic features.

Furthermore, the hourglass model was also found to be hold for plant em-

bryogenesis in terms of gene age and sequence conservation (Quint et al., 2012).
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Similarly, a recent study of Drost et al. (2015) systematically investigated the

transcriptome of zebrafish, Drosophila and one plant species Arabidopsis thaliana.

The authors introduced three permutation tests, the reductive hourglass test, the

flat line test, and the reductive early conservation test, to assess then potential

hourglass patterns. The authors confirmed that the oldest genes are always ex-

pressed during the mid–development stages for each animal, even for plants, thus

recapitulating an hourglass pattern when considering the average evolutionary age

of transcriptome across developmental time–points.

In a number of recent studies, the novel evidence for the presence of the

developmental hourglass pattern has been favoured at the transcriptome level while

transcriptomic and evolutionary information were combined. These studies were

done for Drosophila (Domazet-Los̆o and Tautz, 2010; Kalinka et al., 2010; Ninova

et al., 2014), zebrafish (Domazet-Los̆o and Tautz, 2010) and plants (Quint et al.,

2012; Drost et al., 2015). Only one study (Irie and Kuratani, 2011) has observed

the hourglass pattern during mammalian development by examining the transcript

levels. However, more in depth studies are needed to confirm the existence of the

hourglass pattern in animal transcriptomes.

1.8 Research Aims and Objectives

Genomes of various organisms have been sequenced completely over the past

decade, but the roles and importance of a large number of genes present in those

genomes are still unknown. Some genes have a key role in organismal survival and
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development, whereas the functions of other genes may be useful but not critical

for an organism. Genes are called essential if an organism cannot survive and

develop to maturity unless these genes are functionally active. When mutated,

essential genes yield lethal phenotypes at an early stage of life. Identifying all the

essential genes, therefore, can reveal critical functions that are required during the

development of an organism.

Human essential gene identification is very important as it answers questions

about key cellular processes, tissue–specific functions and development which are

crucial for sustaining life. A greater understanding of the causes behind differ-

ent developmental abnormalities, birth defects and human diseases can come from

identifying those genes that are essential for normal development. Based on a sub-

set of experimentally validated essential and non–essential genes, researchers have

already established the plausibility of determining human essential genes from the

corresponding mouse orthologues because human and mouse have great similarity

in their genomes (Hughes, 2003). The task that remains is to recognise all those

genes that are absolutely indispensable for human development and survival.

Mammalian essential genes could be determined by either experimental tech-

niques or computational approaches. Mouse knockout experiments have already

evidenced useful in identifying mammalian essential genes (White et al., 2013),

however, the entirety of the mouse genome has not yet been experimentally ex-

amined. Computational methodologies offer a more rapid and low–cost means to

complement the laborious and time–consuming mouse knockout experiments in
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predicting mammalian essential genes. Previous studies have reported a number

of machine learning classifiers (computational models) that can make a reliable

prediction of essential genes in worm, bacteria and yeast by learning gene/pro-

tein features underlying gene essentiality (discussed in section 1.3). These studies

established that essential genes could differ from non–essential genes in a range

of gene/protein properties. Though two recent studies attempted to predict es-

sential genes in mouse (Yuan et al., 2012) and human (Yang et al., 2014) using

their sequence features, they had limited success. Except these, to date, no other

study has employed gene features to predict mammalian gene essentiality using

computational procedures. The outcome of prior studies gives us an indication

that mouse gene characteristics could also serve as effective measures to elucidate

mammalian gene essentiality, which is the main motivation towards the current

study. In particular, we investigated the following hypothesis:

Mammalian essential (lethal) and non–essential (viable) genes are differentiable

by their features.

To test this hypothesis, we seek to exploit a number of sequence-derived and

functional features of Mus musculus genes. In this research, a mouse gene is

considered as essential or lethal if the knockout mice cause lethality within 3 days

of birth when the gene is deleted. Most mouse mutants will have a time period in

which lethality occurs, so using a time frame of up to postnatal day 3 allows us to

capture those genes where the mutants are dying over a couple of days. All other

genes with non–lethal phenotypes are considered as non–essential or viable. We



Chapter 1. Introduction 64

aim to address which features are most correlated with mouse essential genes. As

we are concerned with determining essential and non–essential genes in the mouse

by learning their properties, it characterises a supervised classification problem.

Therefore, the main research question to be addressed in this study is:

Are machine learning classifiers able to classify and predict mouse essential genes

using sequence and functional features of mouse genes?

To answer the above research question, the objectives of this study are set as

follows:

• Collect mouse lethal and viable genes from the existing data sources.

• Investigate a wide range of gene/protein sequence and functional proper-

ties of mouse lethal and viable genes, which are easily obtainable from the

existing databases and web–based tools.

• Determine if some features significantly vary between lethal and viable genes.

If all features have a similar distribution between lethal and viable genes,

then they would not be able to characterise gene essentiality.

• Investigate the effect of culling by removing redundant proteins from our

datasets and check whether the observed features differing lethal and viable

genes are over–represented or not. Redundancy in the dataset might have

the potential to bias our analyses outcome.
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• Develop a machine learning classifier using sequence and functional prop-

erties to predict mouse essential genes. In this case, the classification per-

formance of different machine learning methods will be compared and the

method displaying the best performance among all will be chosen.

• Apply a feature selection method to select a subset of all relevant sequence

properties that can significantly predict essentiality without compromising

the prediction accuracy.

• Predict essentiality for mouse genes that have known status from experimen-

tal results, but not been included in training the classifier.

In addition, we aim to explore mouse genes to study the role of gene duplica-

tion on mammalian gene essentiality. Since duplicates with similar developmental

expression patterns tend to functionally compensate for each other, we will use the

expression profile of duplicate genes across mouse development to examine their

developmental co–expression similarities. Our hypothesis is:

Duplicate genes with similar co–expression across development are more likely to

be viable, and those with divergent expression patterns tend to be lethal.

Finally, we aim to investigate whether the morphological hourglass pattern

is also observed during mammalian development. For that, we will examine the

evolutionary age of mouse genes expressed at the early, phylotypic and late stages

across development. To our best knowledge, this is the first study where functional

and sequence–based gene properties are systematically investigated and used in
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developing a computational model to predict mammalian essential genes. In ad-

dition, the relationship between mouse gene essentiality and developmental co–

expression, and hourglass model as applied to mouse development are studied

within the context of gene essentiality. This research will ultimately aid in the

identification of candidate genes for genetic diseases and different developmental

abnormalities in human. We expect and believe that our study will serve as a

valuable resource for the mouse genetics research community to complement the

time-consuming and technically challenging mouse knockout experiments. More-

over, we hope to reveal new insights into the relationship of gene essentiality,

developmental expression, and gene duplication.

1.9 Thesis Outline

This thesis is organised into six chapters. Outlines of these chapters are given

below:

Chapter 1 introduces the background of this research, different machine

learning methodologies and an overview of research aims and objectives.

Chapter 2 covers all relevant methods to be followed in this study. Methods

for assembling mouse genes, removing redundant proteins, retrieving sequence–

based and functional (protein–protein interactions, GO terms) features, analysing

gene age index and statistical analysis are discussed in this chapter.
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Chapter 3 reports a number of sequence and functional features that differ

significantly between lethal and viable genes in mouse; therefore, it provides a

strong evidence of our research hypothesis. The correlations between these signif-

icant features and gene essentiality are also explained here.

Chapter 4 gives a description of the development of a Random Forest clas-

sifier based on the significant mouse gene features stated in Chapter 2. The con-

struction of training and test datasets is addressed here. In addition, a feature

selection method, which can select a subset of most important features among

all to improve the performance of the classifier, is discussed. Overall, this chap-

ter presents mouse essential genes prediction results achieved using the machine

learning classifier.

Chapter 5 deals with determining the relationships between mouse gene

essentiality and gene duplication. Results of the gene co–expression analysis across

13 stages of mouse development are discussed here. Moreover, the morphological

hourglass model in mouse development is addressed.

Chapter 6 synthesises the overall findings of this research and discusses

their implications and limitations. This chapter concludes with remarks on future

research directions.
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Materials and Methods

2.1 Dataset Preparation

2.1.1 Essential and Non–essential Mouse Gene Datasets

To construct the datasets for the current research, the phenotype information of

knockout mice was collected from the Mouse Genome Informatics (MGI) database

(Bult et al., 2008) (http://www.informatics.jax.org/phenotypes.shtml, accessed on

1 November 2013). We considered only those mouse genes that have known pheno-

type resulting from targeted (knockout) deletions. The phenotype of a mouse gene

was marked as essential or lethal if it is associated with any lethality annota-

tion in the MGI (including prenatal, perinatal and postnatal annotations) (Table

2.1). The term ‘prenatal lethality’ is a valid Mammalian Phenotype Ontology term

which is defined in MGI as death of the mice anytime between fertilization and

birth, whereas, ‘perinatal lethality’ is defined as death anytime between embryonic

68
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Table 2.1: Mammalian Phenotype (MP) annotations that were used for defin-
ing genes as either lethal or viable

Gene Type MP Term MP ID
Lethal prenatal lethality MP:0002080
Lethal perinatal lethality MP:0002081
Lethal postnatal lethality MP:0002082
Viable adipose tissue phenotype MP:0005375
Viable behaviour/neurological phenotype MP:0005386
Viable abnormal behaviour MP:0004924
Viable abnormal postnatal growth/weight/body size MP:0002089
Viable hearing/vestibular/ear phenotype MP:0005377
Viable homeostasis/metabolism phenotype MP:0005376
Viable abnormal immune system physiology MP:0001790
Viable abnormal skin morphology MP:0002060
Viable abnormal skin physiology MP:0005501
Viable abnormal touch/nociception MP:0001968
Viable premature aging MP:0003786
Viable slow ageing MP:0011614
Viable normal phenotype MP:0002873
Viable pigmentation phenotype MP:0001186
Viable taste/olfaction phenotype MP:0005394
Viable altered tumour pathology MP:0010639
Viable altered tumour susceptibility MP:0002166
Viable abnormal eye physiology MP:0005253

day E18.5 and postnatal day 1. The phenotype term ‘postnatal lethality’ refers

to premature death anytime between postnatal day 1 and three weeks of age. In

this study, any gene that produces lethality within 3 days of birth was considered

as lethal.

We used 18 phenotypic annotations to classify a single-gene knockout pheno-

type as non–essential or viable (Table 2.1). These are: adipose tissue pheno-

type, behaviour/neurological phenotype, abnormal behaviour, abnormal postnatal

growth/weight/body size, hearing/vestibular/ear phenotype, abnormal immune

system physiology, homeostasis/metabolism phenotype, abnormal skin morphol-

ogy, abnormal skin physiology, abnormal touch/nociception, premature aging, slow
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aging, normal phenotype, pigmentation phenotype, taste/olfaction phenotype, al-

tered tumor pathology, altered tumor susceptibility and abnormal eye physiology.

Since the majority of these terms refer to processes or tissues present only after

birth, homozygous knockouts of these genes are evidence of a viable phenotype.

We manually checked genes for viability that were linked to the “adipose tissue”,

“abnormal skin morphology” and “abnormal skin physiology” terms as these could

be applied to embryos. Our knockout datasets contained some ambiguous entries

that have been annotated as both lethal and viable in the MGI database. We

manually checked phenotypes of these overlapped entries against the published

literature and labelled them either as lethal or viable.

Each MGI gene symbol and identifier was further mapped to their corre-

sponding Ensembl gene ID (http://www.ensembl.org) (Hubbard et al., 2002),

UniGene expression clusters ID (http://www.ncbi.nlm.nih.gov/unigene) (Stanton

et al., 2003) and UniProt protein ID (http://www.uniprot.org/uniprot/) (Apweiler

et al., 2004). For some instances there were multiple UniProt protein IDs that cor-

respond to one gene. For some of these cases, only one protein had the longest

length and we included that in our dataset. For others, two or more protein IDs

were found to have longest length. In these cases, to avoid bias due to annotation

quality we included the longest length protein ID in our dataset that was marked

as ‘reviewed’ in the UniProt annotations. Mouse protein sequences in FASTA

format were also downloaded from UniProt for further investigation.
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2.1.2 Non–redundant or Culled Datasets

A protein sequence dataset is considered as redundant if it includes a pair of

proteins that are highly similar or homologous. A large number of techniques

are currently available for removing redundancy from the protein dataset. These

systems utilize different methods to determine redundancy and to select proteins

to remove.

PISCES

One of the widely used approaches to remove data redundancy is the PISCES

protein culling server (Wang and Dunbrack, 2005). This list–based approach uses

a combination of structure-based alignments (Shindyalov and Bourne, 1998) and

PSI–BLAST (Altschul et al., 1997) to compute sequence identities between protein

pairs. PSI–BLAST is used to calculate pairwise sequence identities when protein

pairs are very similar, whereas the structure-based alignment is applied to estimate

sequence identities at longer evolutionary distances for which PSI–BLAST shows

a sequence identity of 50% or less. PISCES generates non–redundant protein

datasets by removing proteins with at least 20% sequence identity from the entire

Protein Data Bank (PDB) (Berman et al., 2000) or from a list of protein sequences

provided by the user. PISCES first sorts the user provided protein list according

to the sequence length in descending order and removes redundancy from this list

using the following steps:

1. Find x, the topmost protein in the list that is not marked as ‘included’ or

‘excluded’.



Chapter 2. Materials and Methods 72

2. Mark x as being ‘included’.

3. Mark each subsequent sequence y in the list as ‘excluded’ if the sequence

identity between x and y is higher than the chosen cut–off value.

4. Repeat step 1 to step 3 until all proteins sequences in the list are checked.

5. Return the non–redundant list c with all proteins being flagged as ‘included’.

The non–redundant dataset generated by PISCES is biased towards keeping

longer length proteins since proteins sequences are sorted from largest to shortest

by their length.

LEAF

A recent alternative to PISCES is a graph–based approach called Leaf (Bull et al.,

2013) which relies on representing the similarity relationships between protein pairs

using an undirected graph. As an example, let G = (V,E) be an undirected graph

representing the redundant protein dataset. In the graphG, nodes V = {1, 2, ..., n}

represent proteins and edges E = {(Vi, Vj)|i, j ∈ V } represent connections between

protein Vi and Vj those have the sequence identity above a chosen cut–off. The

goal of the Leaf algorithm is to maximise the size of the non–redundant dataset.

This is done by approximating a largest possible (maximal) independent set within

the graph G, where an independent set I ⊆ V constitutes a list of nodes provided

that no two nodes are connected in the graph G. To generate a non–redundant

dataset, the Leaf algorithm repeatedly looks for cliques of different sizes in graph

G. A clique C ⊆ V of size n in G contains a total of n nodes all adjacent to

each other and at least one of these nodes does not have any edge connected to



Chapter 2. Materials and Methods 73

any other nodes outside of C. The algorithm starts with searching for a clique

of size 2 (n = 2) and the size is incremented by 1 in the subsequent iterations.

This process of searching cliques with increased size is continued until a clique is

found satisfying a certain threshold value or if no possible clique is found in G.

The threshold value is set to be the degree of the node with the highest number of

connections in G. Each time a clique is found, one node from the clique is chosen

arbitrarily and is added in the independent set. All other nodes of the clique are

then removed from G. If no clique is found, the node with the highest degree is

removed from G and the process of searching for clique continues with the newly

formed graph Gnew. According to Bull et al. (2013), the resultant non–redundant

datasets from Leaf are ∼10% bigger than those generated by PISCES without

compromising the quality.

In this study, redundancy was removed from our original lethal and viable

datasets by submitting the lethal and viable protein sequences in FASTA format

to both Leaf and PISCES that were locally installed. We used these programs to

get four sets of non–redundant lethal and viable proteins with protein pairs show-

ing the maximum sequence similarities of 20%, 40%, 60% and 80% respectively.

Protein sequences with < 20% identity are structurally very different implying

functional differences (Rost, 1999; Wood and Pearson, 1999) and therefore, we did

not generate non–redundant datasets by removing proteins with < 20% sequence

identities.
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2.1.3 Singletons and Duplicates

Mouse lethal and viable genes were labelled as singletons and duplicates from

prior annotations (Makino and McLysaght, 2010), from Ensemble (release 75)

gene trees of mouse gene families (Vilella et al., 2009) and from our own pro-

tein sequence similarity measure. Makino and McLysaght (2010) listed a set

of 9,059 duplicated gene pairs in the human genome. We retrieved mouse or-

thologues of these human genes using the Ensembl BioMart data–mining tool

(http://www.ensembl.org/biomart/martview/) (Smedley et al., 2009) with the

Ensembl release 75 dataset of the Homo sapiens genes (GRCh37.p13). Comparing

our lethal and viable mouse genes with these human orthologues of mouse dupli-

cates, we made three groups of duplicated gene pairs: lethal–lethal, lethal–viable

and viable–viable duplicates.

Furthermore, we downloaded BLAST+ software package from the NCBI web-

site and performed an all–against–all Blast search (Altschul et al., 1990) on our

local machine to detect mouse duplicates within our own datasets. We set up three

target databases comprising lethal, viable and lethal+viable (combined) protein

sequences to conduct the Blastp search. In accordance with prior studies (Chen

et al., 2012b; Makino and McLysaght, 2010), we inferred a mouse gene as a dupli-

cate if it has hits to other mouse genes within our datasets with E–values < 10−7.

We considered the best hit to be the closest paralogue of a duplicate gene. If a

gene had no Blastp hit within an E–value < 10−7 within a dataset, it was classified

as singleton. A mouse duplicate gene was further labelled as either a small–scale
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duplicate (SSD) or a whole–genome duplicate (WGD) gene. We labelled a mouse

duplicate gene in our dataset as a whole–genome duplicate if its human orthologue

is found within the 9,059 human duplicate pairs listed in Makino and McLysaght

(2010). All these human duplicate gene pairs are duplicates generated by WGD

mechanism. The rest of the mouse duplicate genes in our datasets were labelled

as small–scale duplicates.

2.1.4 All Mouse Genes Dataset

We used the MouseMine data warehouse (http://www.mousemine.org/mousemine)

(Motenko et al., 2015) to further compile a dataset comprising all mouse genes.

The MouseMine system integrates a major portion of mouse data from the MGI

database. This dataset also include all lethal and viable genes that we collected

(section 2.1.1). Mouse genes that were not labelled as either lethal or viable were

categorized as genes with unknown essentiality status. This dataset was used in

investigating the hourglass pattern in mouse (section 5.6).

2.2 Features Collection

We collected a number of gene and protein sequence based features to distinguish

lethal and viable phenotypes. Functional features like protein–protein interactions

(PPI) and gene ontology (GO) annotations were also considered as quantifiable

parameters to check whether they could offer differences between lethal and viable
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Table 2.2: List of sequence and functional features collected and various bioin-
formatics tools used for their retrieval

Features Bioinformatics Tools
Genomic features: gene length, % of GC content,
number of transcripts, number of exons, length of
exon and intron

Ensembl BioMart (Smedley et al.,
2009)

Gene expression UniGene (Stanton et al., 2003)
Evolutionary age Ensembl gene trees (Vilella et al., 2009)
Protein sequence features: protein length,
molecular weight, protein charge, isoelectric point,
amino acid composition

Pepstats (Rice et al., 2000)

Enzyme class UniProt (Apweiler et al., 2004)
Keywords: Glycoprotien, Phosphoprotein, Acety-
lation, Transcription

UniProt

Transmembrane domains UniProt
Subcellular locations UniProt, WoLF PSORT (Horton et al.,

2007)
Signal peptide SignalP 4.1 (Petersen et al., 2011),

UniProt
Protein–protein interaction (PPI) network
features

I2D database (version 2.3) (Brown
and Jurisica, 2007), Cytoscape (version
3.1.1) (Shannon et al., 2003)

Gene Ontology terms: biological process, cellular
component, molecular function

DAVID (version 6.8) (Huang et al.,
2007)

Protein Domain DAVID (version 6.8)

datasets. Analysis of these features ultimately helps us to highlight the character-

istics of essential genes and also reveal novel features for further study. Table 2.2

summarizes the sequence and functional attributes collected and the correspond-

ing tools that were used to extract them. The following subsections describe how

different features were obtained using existing tools and web services.

2.2.1 Genomic Properties

2.2.1.1 Gene sequence properties

Features including gene length (in base pair), % of GC content, number of tran-

scripts, number of exons, lengths of exons and introns were retrieved from the
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Ensembl release 75 database of Mus musculus genes, using the Ensembl BioMart

(Smedley et al., 2009) data mining tool. We used Ensembl gene IDs to get these

features. For genes with multiple transcripts, the longest length transcript was

assessed. A gene’s exon number and the total exon length were calculated con-

sidering its longest transcript. The intron length of a gene was calculated by

subtracting its total exon length from the corresponding gene length.

2.2.1.2 Gene expression

Raw expression data of mouse lethal and viable genes were obtained from the

NCBI UniGene database (Stanton et al., 2003) as expressed sequence tag (EST)

clusters using UniGene IDs. We retrieved EST clusters from 13 developmental

stages: oocyte, unfertilized ovum, zygote, cleavage, morula, blastocyst, egg cylin-

der, gastrula, organogenesis, fetus, neonate, juvenile and adult. Since the total

number of ESTs for a particular gene varies greatly between different develop-

mental stages, we corrected the raw data to get gene expression in the form of

transcripts per million (TPM). Equation 2.1 was used to estimate a TPM for the

ith gene at jth developmental stage.

TPM j
i = (Number of ESTs for ith gene / Total ESTs in jth stage)×106 (2.1)

TPMs were also transformed to their corresponding log values using Equation 2.2

to measure co–expression between every gene pair.

LTPMj
i

= loge(TPM
j
i + 1) (2.2)
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TPMs were also normalised within the range (0, 1) using Equation 2.3 dividing

each TPM data by the maximum TPM value. Since the value of these normalised

TPMs were too small, we further multiplied them by 10.

NTPMj
i

= (TPM j
i + 1)/max(TPM) (2.3)

We used the Euclidean and the Manhattan distance methods to calculate nu-

merical scores representing gene co–expression. This numerical distance value is

used to compare gene expression (LTPM) between every gene pair during devel-

opment. If a = (a1, a2, ..., a13) and b = (b1, b2, ..., b13) are two mouse genes having

expression across 13 developmental stages, then the Euclidean and Manhattan

distance between them are calculated by Equation 2.4 and 2.5, respectively. Small

scores (distances) reflect higher co–expression between genes. We considered both

log and normalised TPM data to calculate the Euclidean distance.

EucDis(a, b) =

√√√√ 13∑
i=1

(ai − bi)2 (2.4)

ManDis(a, b) =
13∑
i=1

|(ai − bi)| (2.5)

2.2.1.3 Evolutionary age

Evolutionary ages of mouse protein coding genes were determined by analysing

the Ensemble (release 75) gene trees of mouse gene families (Vilella et al., 2009).

These gene trees represent the evolutionary lineage of genes with their common

ancestors. Ensembl runs a orthology and paralogy gene prediction pipeline that
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Figure 2.1: The Ensembl gene tree for mouse gene Sox9 (highlighted in red).
Red squares symbolise duplication (paralogues) nodes, whereas blue squares

symbolize speciation (orthologues) nodes.

uses the TreeBeST method from the TreeFam methodology (Li et al., 2006) to

generate rooted phylogenetic trees. This pipeline merges tree topologies with

the corresponding species trees inferred from the NCBI taxonomy and generates

Ensembl genes trees with the tree internal nodes being annotated for duplication

or speciation events. Figure 2.1 shows a gene tree generated by Ensembl for the

mouse gene Sox9.

A program was developed and used to determine gene evolutionary ages from

these gene trees. We assigned two evolutionary ages to a mouse duplicate gene

of our datasets: the age of the most recent duplication (MRD) event and the age

of the evolutionarily most distantly related species, i.e., the age of the duplicate

common ancestor (DCA) that has an identified homologue to that gene. For
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singletons, we considered the age their single common ancestor (SCA).

2.2.2 Protein Sequence Properties

2.2.2.1 Simple sequence properties

We retrieved the length of our lethal and viable protein sequences by querying

the UniProtKB database with their UniProt IDs. A script in Python was devel-

oped to compute the percentage frequencies of each of the 20 amino acid residues

within protein sequences. We at first counted the number of occurrences of each

amino acid residues in a protein sequence and further divided this count by the

corresponding sequence length to obtain the frequency with which the amino acid

occurs in the sequence.

Pepstats (http://emboss.bioinformatics.nl/cgibin/emboss/pepstats) is a EM-

BOSS suite program (Rice et al., 2000) which outputs a report comprising statis-

tics of a number of properties about a FASTA formatted protein sequence. These

attributes include molecular weight, number of residues, charge, isoelectric point,

and amino acid composition. This program groups amino acids into nine cat-

egories: Tiny (A, C, G, S and T), Small (A, B, C, D, G, N, P, S, T and V),

Aliphatic (I, L and V), Aromatic (F, H, W and Y), Non–polar (A, C, F, G, I, L,

M, P, V, W and Y), Polar (D, E, H, K, N, Q, R, S, T and Z), Charged (B, D,

E, H, K, R and Z), Basic (H, K and R) and Acidic (B, D, E, Z). Pepstats was

used to evaluate these sequence properties for lethal and viable protein sequences.
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The program was run with the default parameters setting. A Python script was

written to extract features values from the output file generated by Pepstats.

2.2.2.2 Enzyme class and post–translational modifications

The Enzyme Commission (EC) numbering scheme is the most widely used method

for the numerical classification of enzymes. According to this scheme, enzymes are

categorized into six main classes based on enzyme–catalysed reactions.

• Class 1: Oxidoreductase – These enzymes catalyse oxidation or reduction

reactions

• Class 2: Transferase – These enzymes catalyse transfer of a functional

group, such as methyl, acyl and others, from one substance to another.

• Class 3: Hydrolase – These enzymes catalyse bond cleavage using water

(hydrolysis)

• Class 4: Lyase – These enzymes catalyse splitting bonds to be cleaved

• Class 5: Isomerase – These enzymes catalyse intramolecule change

• Class 6: Ligase – These enzymes catalyse the formation of new bonds

Each enzyme number is represented by a numerical format: a.b.c.d. Here,

‘a’ refers to any of the six classes the enzyme belongs; ‘b’ and ‘c’ refers to the

subclass and sub–subclass respectively; and ‘d’ refers to the rank of the enzyme

in its sub-subclass. In this study, primary EC numbers of mouse proteins were

obtained from the definition lines (DE) of UniProtKB annotations by submitting

UniProt IDs.
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UniProt entries are also labelled with different keywords that are classified into

ten categories. These categories of keywords include domain, post–translational

modification (PTM), biological process, coding sequence diversity, ligand, molecu-

lar function, cellular component, developmental stage, disease and technical terms.

Post–translational modifications are the covalent and enzymatic modifications of

the protein after the completion of its translation which resultant in mature pro-

tein products. A protein undergoes a PTM when a functional group (hydroxyl,

phosphate, alkyl and others) is covalently added to it. Phosphorylation and glyco-

sylation are the two most important post-translational modifications. In Uniprot,

‘glycoprotein’ and ‘phosphoprotein’ are the synonyms of glycosylation and phos-

phorylation processes. Within a phosphoprotein, phosphorylation occurs mainly

on serine (S), threonine (T) or tyrosine (Y).

Glycosylation is a major post-translational modification in which glycans co-

valently attach to proteins. Preassembled gylcans can attach to the nitrogen of

asparagine sidechain (N-linked glycoprotein) or to the hydroxyl oxygen on the

sidechains of serine or threonine (O-linked glycoprotein).

Acetylation is another common PTM in which proteins are post-transnationally

modified while an acetyl group is added a primary amine. For most of the proteins,

acetylation occurs on lysine residues.

Three post–translational modification (PTM) keywords ‘Glycoprotein’, ‘Phos-

phoprotein’ and ‘Acetylation’ were collected from the UniProtKB database for

each protein of our datasets. We included the N–linked glycoprotein only due to



Chapter 2. Materials and Methods 83

the fact that UniProt annotates glycoproteins with N-glycosylation sites, not with

O–glycosylation sites.

We also collected information about the keyword ‘Transcription’ from the

UniProtKB database. It is a keyword in the biological process category represent-

ing proteins involved in regulating the process of transcription.

2.2.2.3 Signal peptides

Protein signal peptides were predicted using the SignalP program version 4.1

(http://www.cbs.dtu.dk/services/SignaP/) (Petersen et al., 2011). This program

uses artificial neural network (ANN) and hidden Markov model (HMM) algorithms

to predict the amino acid composition and the cleavage site position of the signal

peptide. A script in Python was written to extract the HMM probabilities gener-

ated by SignalP which is considered as the measure for signal peptide prediction.

2.2.2.4 Transmembrane domain

We extracted the total number of transmembrane domains in each mouse protein

by querying the UniProtKB database. Transmembrane helices are annotated in

the UniProt feature table line (FT) as TRANSMEM. UniProt also outputs the

information about the transmembrane domain locations in a protein sequence.
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2.2.2.5 Subcellular location

Protein subcellular locations were predicted from sequence data using the WoLF

PSORT program (http://wolfpsort.org/) (Horton et al., 2007). This program was

chosen here as it can make prediction on any protein sequence. WoLF PSORT pre-

dicts subcellular locations on the basis of known sorting signals, functional motifs

and sequence features like amino acid composition. It outputs a report covering

predicted locations with different confidence levels. We submitted our FASTA

formatted lethal and viable protein sequences to WoLF PSORT and extracted the

confidence score for potential subcellular locations from the output report it gen-

erated. We found prediction scores for six subcellular locations: nucleus, cytosol,

plasma membrane, mitochondria, Golgi apparatus, peroxisome, and extracellular.

We assigned a score of zero to a subcellular location if no prediction is made for

that. We further collected information about all these six subcellular locations

from the UniProtKB database. This feature is annotated as SUBCELLULAR

LOCATION in the UniProt data file and is found in the comment lines (CC).

Value of a subcellular location was set to 1 if found; otherwise, it was set to 0.

2.2.3 Gene Ontology Terms and Protein Domains

GO terms were obtained by using the ‘Functional Annotation’ tool of the web

based application DAVID version 6.8 (https://david.ncifcrf.gov/home.jsp) (Huang

et al., 2007). It integrates gene functional annotations with intuitive graphical

displays to facilitate biological interpretations of any list of genes encoded by
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human, rat, mouse, or fly genomes. This program systematically associates a

query gene list to their corresponding GO terms and highlights only the most

pertinent terms among all along with their statistics. We downloaded the output

files that DAVID generated for our lethal and viable mouse gene lists and extracted

all possible GO terms for which the statistical test supported in DAVID has a p–

value < 0.05. The Pfam domain (Bateman et al., 2004) information for lethal and

viable proteins was also obtained from the DAVID functional annotation tool.

2.2.4 Protein–Protein Interactions

Mouse PPI data was downloaded from the Interologous Interaction Database

(I2D) version 2.3 (Brown and Jurisica, 2007) which is an integrated repository

of known, experimental and predicted PPIs for human, mouse, rat, fly, yeast

and worm genomes. To obtain high quality PPI data, we analysed all known

and predicted mouse PPIs. From these interactions two PPI networks were gen-

erated – Known(K) and Known–Predicted(KP). The network K contained ex-

perimentally verified mouse PPIs that I2D extracted from known PPI databases

including BioGrid Mouse, I2D–c Fiona MOUSE, BIND Mouse, Chen PiwiScreen,

DIP Mouse, I2D–c Mouse, IntAct Mouse, INNATEDB Mouse, KIM MYC, MGI,

MINT Mouse, WangEScmplx, WangEScmplxlow, and WangEScoIP. The network

KP contained all known interactions as well as predicted mouse PPIs based on

orthologous interactions in rat, human, yeast, worm, and fly.

We further divided K and KP networks as lethal–K, viable–K, lethal–KP
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and viable–KP networks to analyse lethal and viable proteins separately. Lethal

networks covered all interactions where one (or both) of the interacting part-

ners is a lethal protein, whereas viable networks included all interactions linked

to viable proteins. All self-interactions and duplicate interactions were removed

from these networks. Cytoscape (version 3.1.1) (Shannon et al., 2003) was fur-

ther used to visualize and analyse these PPI networks as a graph. The ‘network

analyser’ plugin of Cytoscape was used to determine network properties including

degree, the length of average shortest path (ASP), betweenness centrality, clus-

tering coefficient, and closeness centrality. We further determined four other net-

work properties including BottleNeck (BN), Edge Percolation Component (EPC),

Maximum Neighbourhood Component (MNC) and Density of Maximum Neigh-

bourhood Component (DMNC) by using a web-based service called Hub Object

Analyser (Hubba) (http://hub.iis.sinica.edu.tw/Hubba/) (Lin et al., 2008). This

system deciphers and visualizes hubs from the user-provided PPI networks. Query

proteins are ranked in Hubba based on their topological features. Hubba also gen-

erates a subgraph for the top n ranked (n ≤ 100) hub along with their identifier.

PPI networks are usually characterized as undirected graphs (Figure 2.2). As

an example, let G = (V,E) be an undirected graph representing a PPI network.

In the graph G, nodes V represent proteins and edges E = {(a, b)|a, b ∈ V } corre-

spond to observed interactions between protein a and protein b. In the following

paragraphs the definitions of each topological feature are given:
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Figure 2.2: A simple graph model of a protein–protein interaction network.
Here, the nodes represent proteins and edges represent the interaction between

two proteins.

Degree

The most elementary property of a protein a is its degree or connectivity, which

is the number of observed interactions a has to the other proteins in the network.

Average shortest path length (ASP)

The shortest path measures the path with the minimum number of edges between

proteins a and b. The average shortest path (ASP) length therefore refers to the

average over all shortest path length between all protein pairs.

Betweenness centrality (BC)

The betweenness centrality (BC) of a protein node a corresponds to the ratio of

shortest paths passing through a (Brandes, 2001; Joy et al., 2005) and is computed

as follows:

BC(a) =
∑

b6=c 6=a∈V

σbc(a)

σbc
(2.6)
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Here, σbc denotes the number of shortest paths between proteins b and c; and

σbc(a) denotes the number of shortest paths between b and c that goes through

protein node a.

Clustering coefficient (CCo)

The clustering coefficient (CCo) of protein a (Equation 2.7) measures the ratio

of the number of connections between all nodes within the neighbourhood of a

to the maximum number connections that could possibly present between them

(Barabasi and Oltvai, 2004).

CCo(a) =
2ebc

ka(ka − 1)
(2.7)

Here, ebc denotes the number of connections between all neighbours b and c of a;

and ka denotes the degree of a.

Closeness centrality (CC)

The closeness centrality (CC) of the protein a corresponds to the reciprocal of the

sum of average shortest path length between a and all the other nodes within the

network (Newman, 2005) (Equation 2.8). It measures how close a protein node is

to all the other nodes in the PPI network.

CCo(a) =
1∑

b 6=a d(a, b)
(2.8)

Here, d(a, b) is the length of the average shortest path between proteins a and b.
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Betweenness centrality, clustering coefficient and closeness centrality of each

protein node are represented by a value between 0 and 1 where an isolated protein

node has a value of 0 for these properties.

BottleNeck (BN)

Let, Tr be the shortest path tree derived from G considering protein node r ∈ V

as the root node. Protein b ∈ V is a bottleneck node if at least n/4 nodes have

its shortest path to r through b in Tr. The BottleNeck (BN) score of the protein

node b is defined to be the number of nodes r for which b is a bottleneck node in

Tr (Prz̆ulj et al., 2004).

Edge Percolation Component (EPC)

Let G′ is a graph which is constructed n times from G by randomly removing a

subset of edges. It is possible that proteins a and b are connected in G but not in

G′. The Edge Percolation Component (EPC) score (Chin and Samanta, 2003) of

the protein node a is computed using the following equation:

EPC(a) =
∑

b 6=a∈V

∑
for each G′

{
a and b are connected in G′ 1

else 0

n
(2.9)

Maximum Neighbourhood Component (MNC)

The Maximum Neighbourhood Component (MNC) of a protein a refers to the

size of the maximum connected component of the subnetwork induced by the
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neighbourhood of a (Lin et al., 2008).

Density of Maximum Neighbourhood Component (DMNC)

The Density of Maximum Neighbourhood Component (DMNC) for the protein a

is calculated using the following equation:

DMNC(a) =
EM

N e
(2.10)

Here, EM denotes the number of edges and N denotes the number of protein nodes

of MNC(a); e is a constant which is equal to 1.7.

2.3 Calculation of Transcriptional Age Index

The transcriptional age index (TAI) is a weighted mean of evolutionary ages for

a mouse developmental stage. Following the definition of TAI in (Domazet-Los̆o

and Tautz, 2010), Equation 2.11 was used to calculate TAI at the jth mouse

developmental stage.

TAIj =

∑n
i=1(agei × TPMi)∑n

i=1 TPMi

(2.11)

Here, n represents the total number of mouse genes expressed at the jth stage. For

the gene i in stage j, agei represents either the MRD or the DCA age and TPMi

is the gene expression value.
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Equation 2.11 can be alternatively written as:

TAIj = age1 ×
TPM1

TPM1 + TPM2 + ...+ TPMn

+ age2 ×
TPM2

TPM1 + TPM2 + ...+ TPMn

+ ...+ agen ×
TPMn

TPM1 + TPM2 + ...+ TPMn

= (age1 × exp1) + (age2 × exp2) + ...+ (agen × expn)

=
n∑

i=1

(agei × expi)

(2.12)

Here, (TPM1+TPM2+ ...+TPMn) represents the total gene expression, whereas

the ratio TPMi/(TPM1 + TPM2 + ... + TPMn) as symbolised by expi denotes

the expression frequency of gene i in the total gene expression at the stage j.

2.4 Statistical Analysis

To infer the relationship between gene features and essentiality, the first step is

to compare the distribution of these features between lethal and viable datasets.

Properties in both datasets were investigated in two ways. At first all features

were tested for normality using a one sample Kolmogorov–Smirnov Test (K–S

test) (Massey Jr, 1951). This non–parametric statistical method compares sample

values with a standard normal distribution. If this test gives the p–value (sta-

tistical significance value) < 0.05, it indicates the distribution of a feature is not

significantly different from the normal distribution. If a sequence property showed

a normal distribution, a two–sample t–test with unequal variance analysis was
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further applied to assess the feature–essentiality relationship. The t–test demon-

strates whether the mean value of one observation (lethal genes) is significantly

different from the mean value of the other observation (viable genes). The t–test

calculates a t–statistic, which is compared with a standard table of t–values at

95% confidence level.

The statistical significance of each feature was tested using the two–tailed

non–parametric Mann–Whitney U test (Mann and Whitney, 1947) when the data

distribution was not normal. It shows whether the median of lethal dataset is

significantly different from the median of viable datasets. This test assesses the null

hypothesis that two independent samples of observations have identical continuous

distributions with equal medians. This test calculates the probability of observing

the value of a statistic called U to accept or reject the null hypothesis. A p–value

< 0.05 rejects the null hypothesis. We also used the non–parametric Kruskal–

Wallis method (Kruskal and Wallis, 1952) to test the null hypothesis that more

than two independent variables come from identical continuous distributions with

equal medians.

We used the Chi–squared (χ2) test for features like GO annotations to check

whether the frequencies of a GO term in lethal and viable gene differ from each

other. This test compares the observed frequency of a particular feature with

the frequency that would be expected. Furthermore, we applied the Bonferroni

correction (Dunn, 1961) to calculate corrected p–values. It lowers the chances of

getting false positive results that are derived from multiple pairwise comparisons
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performed on a single dataset. All these statistical tests were carried out using

the statistics software package SPSS (Norusis, 1985) version 20.

The ANOVA test with Bonferroni correction was applied to evaluate statis-

tical significant difference in TAI and mean age values between different mouse

developmental stages. We applied a bootstrap approach (Efron, 1981) to establish

the confidence for TAI values at each mouse developmental stage. A population

of 1,000 resamples was constructed at each stage by randomly sampling (Vitter,

1985) the MRD and DCA age values of expressed genes. At each stage, we com-

puted 1,000 TAI values from corresponding resamples and estimated the standard

deviation of them to measure the degree to which these TAI values differ from the

TAI value of original sample.

2.5 Machine Learning

2.5.1 The Mammalian Essential Gene Prediction Classifier

In this study, the mammalian essential gene prediction problem was formulated

as a supervised binary classification problem. Given a mouse gene p, we intended

to predict the corresponding class y ∈ {lethal, viable}. We used Weka (version

3.6), a publicly available Java based machine learning software (Hall et al., 2009)

to implement the predictive classifier. Weka offers a collection of machine learning

algorithms and visualisation tools for data mining and predictive modelling tasks.

We used the Naive Bayes, J48 decision tree, Support Vector Machine (SVM) and
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Random Forest methods in Weka as classifiers. Classifiers were trained on fixed

number of mouse genes labelled as lethal or viable, each consisting of m features.

Each classifier generates a probability score representing gene essentiality. Sep-

arate test datasets were also created with gene features and known class labels

that have not been included in the training dataset. Calculating the proportion of

correctly predicted genes in these test datasets further validated the performance

of classifiers.

We chose Random Forest in Weka as our model of choice based on its predic-

tion accuracy. Random Forest (Breiman, 2001) is an ensemble classifier comprising

multiple decision tree models (section 1.5.6). These decision trees are constructed

during the learning process with the training data. Random Forests mainly rely

upon two parameters to control their growth: numTrees, the number of decision

trees in the forest to be built and numFeatures, the number of random subsets of

features to assess at each tree node. Let numTrees = T and numFeatures = m.

Each of the T decision trees is constructed in a top down manner starting with a

root node by selecting a set of N samples of size n at random with replacement

from the training dataset and selecting the most significant features of these sam-

ples as the tree nodes. At each node a, m number of features is selected at random

from n features to grow the tree and the most significant feature that provides the

best binary split on that node is selected among all according to a objective func-

tion. This significant feature splits node a into left (L) and right (R) child nodes

with a set of NL ⊆ N and NR ⊆ N samples in L and R nodes, respectively. This
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Figure 2.3: The flowchart for predicting mammalian essential genes from
sequence and functional properties of mouse genes using a Random Forest clas-

sification model.

process continues at each node until the decision tree cannot grow further.

To classify a new gene, the features of the gene are tested with each of the

decision trees present in the Random Forest. Each tree gives a classification score

or “vote” and the class with the most votes is selected as the class to which the

gene belongs. We set different values for numTrees and numFeatures parameters

to obtain the best–fit Random Forest classification model for our mouse genes.

Figure 2.3 shows the overall workflow of predicting mammalian essential genes

using Random Forest classifier.
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Figure 2.4: Confusion matrix in Weka, where a refers to positive class and b
refers to negative class.

2.5.2 Performance Measures

The performance of our classifier was evaluated by a 10–fold cross-validation anal-

ysis, where each training dataset was randomly partitioned into 10 equal parts

with 9 parts being used for model training (learning) and the remaining part be-

ing used for testing (validation). We used the cross–validation method to limit

overfitting of the classifier. A classifier overfits if its prediction accuracy is high

on the training dataset but is poor on the test dataset.

A prediction in a classification problem can either be a true positive (TP)

or false positive (FP), or true negative (TN) or false negative (FN). The perfor-

mance of the Random Forest classifier relied upon the total number of lethal genes

predicted correctly (TP), lethal genes predicted incorrectly (FN), viable genes pre-

dicted correctly (TN), viable genes predicted incorrectly (FP). A confusion matrix

predominantly represents it (Figure 2.4). Model performance was then evaluated

by the true positive rate (recall or sensitivity) – TPR, false positive rate – FPR,
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precision, F–measure, and the overall classification accuracy, as defined by the

following equations:

TPR(Recall or Sensitivity) =
TP

TP + FN
(2.13)

Specificity =
TN

TN + FP
(2.14)

FPR = 1− Specificity =
FP

FP + TN
(2.15)

Precision =
TP

TP + FP
(2.16)

F −measure =
2× TPR× Precision
TPR + Precision

(2.17)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.18)

The high classification accuracy (the proportion of the correctly predicted

instances) of a binary classifier is often a misleading performance measure for im-

balanced dataset with the number of instances in one class being larger than the

other class. A high accuracy could be achieved by predicting all instances be-

longing to the majority class. Therefore, despite this classifier potentially showing

high accuracy, its performance is highly deceiving due to its disregard for the in-

stances belonging to the minority class. TPR, FPR, Precision and F-measure give

unbiased and accurate measures of the classifier performance.

To further demonstrate the performance of our classifier, we generated the

receiver operating characteristics (ROC) curves by plotting the TPRs against the
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FPRs at various threshold settings. These present the probability of predicting

true positives as a function of the probability of predicting false positives (Huang

and Ling, 2005). The area under curve (AUC) of these ROC curves offers a good

estimate of the overall prediction performance of the classifier. The AUC measures

how well a binary classifier could accurately classify two groups. An AUC of 1

represents a perfect prediction; an AUC of 0.5 represents a random guess.

2.5.3 Feature Selection

A feature can be irrelevant, strongly relevant (removal of this reduces the overall

prediction accuracy), or weakly relevant (not sufficient alone for prediction). Fea-

ture selection, therefore, is a very important stage for the classification problem to

deal with datasets comprised of a large number features and to select informative

features. A number of feature selection algorithms are currently available whose

goal is to choose a much smaller set of features relevant for classification from

the larger datasets. We used the Information Gain feature selection filter (Info-

GainAttributeEval) in Weka, which select a subset of features from the pool of all

features (Han et al., 2011). This method estimates the worth (rank) of a feature

by measuring its information gain with respect to a classification target and out-

puts only the top ranked features on the basis of a predetermined threshold. The

information gain of a feature measures the amount of information obtained for a

class prediction by knowing the presence or absence of the feature in the dataset.

We further trained and test our classifier with these selected features (Figure 2.3).
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2.5.4 Discretisation

Discretisation is a process of transforming the numeric value of a continuous at-

tribute into nominal values or intervals. Many studies showed that some classifying

algorithms work better when the continuous features are discretised (Liu et al.,

2002). A prior study reported that discretisation makes learning faster and more

accurate (Dougherty et al., 1995). Accordingly, we used a supervised discretise at-

tribute filter implemented in Weka to discretise the continuous attributes of mouse

genes within the training and test datasets. We further developed our Random

Forest classifier using these discretised properties.
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Analysis of Mouse Essential

Genes based on Sequence and

Functional Features

3.1 Introduction

Essential genes are those whose presence is imperative for organism’s survival.

However, the set of genes that are absolutely vital to sustain life are still unknown

for most organisms (Juhas et al., 2011). In mammals, knowledge of essential genes

is required to understand development, maintenance of major cellular processes

and tissue–specific functions that are crucial for life. Mammalian essential genes

could be identified using existing experimental techniques, which include single

gene knockouts (Crawley, 1999; Giaever et al., 2002; Kobayashi et al., 2003), con-

ditional knockouts (Liu et al., 2000; Roemer et al., 2003), RNA interference (Cullen

and Arndt, 2005; Kamath et al., 2003), and transposon mutagenesis (Gallagher

100
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et al., 2007). Most of these conventional experimental techniques are time consum-

ing and expensive. Computational prediction, which relies on sequence properties

of a gene to evaluate essentiality, offers a fast and low cost alternative. In this

research, we hypothesised that mammalian essential (lethal) and non–essential

(viable) genes are distinguishable by various attributes.

We explored a wide range of sequence and functional features of mouse genes

in order to characterise lethal and viable genes in mammals. Some of these features

were previously found to be associated with essentiality in E. coli (Gustafson et al.,

2006; Deng et al., 2010) and S. cerevisiae (Jeong et al., 2003; Seringhaus et al.,

2006; Zhang et al., 2013). To be able to predict gene essentiality from these

sequence and functional properties, we must first confirm that some properties

are significantly different between lethal and viable groups. If all features are

same within the lethal and viable groups, then they could not be predictive of

essentiality. There should, therefore, be a number of features that differ between

lethal and viable genes. A feature might still be useful for prediction in conjunction

with other significant features even if it is not significantly different between the

lethal and viable groups. In this chapter, we report a number of gene and protein

features that vary significantly between lethal and viable genes in mouse. An

explanation of the relationship between these highly correlated features and gene

essentiality is also discussed here.
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3.2 Datasets

The Mouse Genome Informatics (MGI) database (Bult et al., 2008) incorporates

published gene data on mouse knockout phenotypes. We collected a total of 1,271

lethal and 4,378 viable mouse genes from MGI (accessed on 1 November, 2013)

based on phenotype annotations of knockout mice. A total of 1,335 genes had both

‘lethal’ and ‘viable’ annotations in the MGI database which we considered ambigu-

ous entries. To ensure that gene classifications were in agreement with our criteria

of lethality and viability, we manually studied each of these ambiguous genes with

the use of published experimental evidence. We further manually checked each

gene to ensure that our datasets contained only protein–coding genes. This gives

a total of 1,301 and 3,451 lethal and viable mouse genes, respectively.

However, the proteins encoded by these lethal and viable genes share signifi-

cant levels of sequence identity. The presence of multiple similar protein sequences

is a barrier in using a dataset effectively as it increases the size of the dataset; also

it could potentially create a bias towards any conclusions drawn from using the

dataset. We, therefore, used Leaf (Bull et al., 2013) and PISCES (Wang and

Dunbrack, 2005) (discussed in Chapter 2) to remove redundant proteins from our

datasets. Leaf uses a recent version of PSI–BLAST (version 2.2.25) to calculate

pair-wise sequence identities between all protein pairs. On the other hand, an older

version of PSI–BLAST (Altschul et al., 1997) method (version 2.2.10) is used in

PISCES. This version of BLAST in PISCES does not have the same level of ac-

curacy in finding sequence similarities as compared to Leaf. Thus, non-redundant
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Table 3.1: Numbers of lethal and viable mouse genes in culled datasets

Sequence Identity Lethal Viable
20% 479 1017
40% 961 2302
60% 1215 3106
80% 1291 3391

datasets from PISCES may contain some proteins that the newer BLAST meth-

ods consider to be too similar. So, we only considered the non–redundant datasets

provided by Leaf. Leaf also generates datasets that are 10% larger, even using the

same PSI–BLAST (Bull et al., 2013). We generated four culled or non–redundant

lethal and viable datasets from our original dataset where all proteins share se-

quence similarity less than a threshold of 20%, 40%, 60% or 80%. The numbers

of lethal and viable proteins retrieved for each identity threshold from Leaf are

summarised in Table 3.1.

3.3 Analysis of Genomic Features

The functionality of a gene may rely on its inherent sequence features at the

genomic level. Analysing these gene sequence based features may provide valuable

insights into their contributions to phenotypic fitness. This section covers results

of the analysis done with several genomic features that we examined to assess their

associations with gene essentiality.
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Figure 3.1: Distributions of total length of lethal and viable genes. Here,
L(N) and V(N) refer to lethal and viable genes in the non–culled dataset. L(xx)
and V(xx) define lethal and viable genes in the culled dataset where all coded
proteins share sequence similarity less than xx%. In this box plot, the top and
bottom of the box denote the upper and lower quartiles; the line inside the box

denotes the median; and individual points denote the outliers.

3.3.1 Gene Length and GC Content

Studies showed that gene selection during evolution can often be determined from

the nucleic acid composition of a genome (Knight et al., 2001). Also, proteins

show a trend of becoming longer in length throughout evolution (Lipman et al.,

2002). We, therefore, anticipated that genomic features like GC content and gene

length could be indicative of gene essentiality.

Our analysis showed that lethal genes tend to be longer in length compared

to viable genes while considering the entire (non-culled) dataset. This result was

also consistent for lethal and viable genes in the culled datasets. Figure 3.1 shows
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Figure 3.2: Distributions of the percentage of GC content in lethal and viable
genes. Here, L(N) and V(N) refer to lethal and viable genes in the non–culled
dataset. L(xx) and V(xx) define lethal and viable genes in the culled dataset
where all coded proteins share sequence similarity less than xx%. In this box
plot, the top and bottom of the box denote the upper and lower quartiles; the
line inside the box denotes the median; and individual points denote the outliers.

the comparison of the gene length distributions between lethal and viable genes for

non–culled and culled datasets. The Mann–Whitney U test (Mann and Whitney,

1947) had also supported this trend by showing that the differences in gene length

between lethal and viable genes are statistically significant. For the non–culled

dataset, Mann–Whitney U test gave a p–value of 7.9 × 10−8, which is < 0.0083

(Bonferroni–corrected p–value). For 20%, 40%, 60%, and 80% culled datasets,

p–values were 5.0× 10−6, 1.4× 10−8, 1.4× 10−9 and 1.8× 10−7, respectively.
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When the distributions of GC content in lethal and viable genes were ex-

amined, we observed that viable genes have a higher percentage of GC content

compared to lethal genes in both non–culled and culled datasets (Figure 3.2).

After being adjusted for multiple testing by the Bonferroni correction method,

the resulting p–value from the Mann–Whitney U test did not show the statis-

tical significance of this result for the non–culled dataset (Table 3.2). However,

differences in GC content distributions were statistically significant for the culled

dataset where all coded proteins have a sequence identity < 60%; this observation

was not statistically significant for other culled datasets (Table 3.2).

Table 3.2: Results from the analysis of several genomic features of lethal and
viable genes and the corresponding p-values from Mann–Whitney U test. The
median value of each feature was considered to remove the effect of outliers.
Highlighted cells in yellow represent statistically significant results based on the
Bonferroni corrected p–value of 0.0083; blue cells refer to either lethal or viable

genes where a feature shows a higher value.

Gene Sequence Features
Datasets GC content Transcript count Exon count Exon length Intron length

(%) (bp) (bp)

Non–culled
Lethal 46.46 4 11 3398 25341
Viable 47.16 2 8 2780 18563
p–value 0.009 4.74× 10−16 9.45× 10−16 1.18× 10−22 2.00× 10−06

culled(20%)
Lethal 46.34 4 10 2831 19226
Viable 46.82 2 7 2263 13761
p–value 0.091 1.27× 10−10 6.34× 10−09 2.18× 10−10 5.80× 10−05

culled(40%)
Lethal 46.21 4 11 3368 24928
Viable 46.98 2 8 2631.5 17667
p–value 0.009 1.81× 10−15 1.25× 10−20 9.10× 10−23 3.26× 10−07

culled(60%)
Lethal 46.22 4 11 3408.5 25964
Viable 47.08 2 8 2745.5 18309.5
p–value 0.001 4.47× 10−17 2.20× 10−18 2.72× 10−24 4.08× 10−08

culled(80%)
Lethal 46.445 4 11 3397.5 25332.5
Viable 47.145 2 8 2767 18534
p–value 0.013 5.50× 10−16 1.23× 10−15 1.22× 10−22 3.00× 10−06
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Figure 3.3: Distributions of the number of transcripts in lethal and viable
genes. Here, L(N) and V(N) refer to lethal and viable genes in the non–culled
dataset. L(xx) and V(xx) define lethal and viable genes in the culled dataset
where all coded proteins share sequence similarity less than xx%. In this box
plot, the top and bottom of the box denote the upper and lower quartiles; the
line inside the box denotes the middle quartile or the median; and individual

points denote the outliers.

3.3.2 Number of Gene Transcripts and Exons

Exons (coding regions) and introns (non–coding regions) are the two key sequence

elements that build up gene architecture. Alternative splicing produces multiple

transcripts, the translation of which contributes to multiple proteins encoded by a

single gene. Initially introns were thought to be ‘junk’ DNA. This notion has been

ruled out by several pieces of experimental evidence, which revealed that some

introns could be expressed in the form of non-coding RNAs (e.g. microRNAs and

small nucleolar RNAs). They may also play important functional roles in the

transcriptional activity of cells (Comeron, 2001). Hence, we expected that these

genomic properties could serve as key characteristics for essential genes.
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Figure 3.4: Distributions of the number of exons in lethal and viable genes.
Here, L(N) refers to lethal and V(N) refers viable genes in the non–culled
dataset. L(xx) and V(xx) define lethal and viable genes in the culled dataset,
respectively, where all coded proteins share sequence similarity less than xx%.
In this box plot, the top and bottom of the box denote the upper and lower
quartiles; the line inside the box denotes the middle quartile or the median; and

individual points denote the outliers.

Examining the number of transcripts of genes from the non–culled and culled

datasets revealed that lethal genes tend to have more transcripts than viable genes

(Figure 3.3). Differences in transcript number between lethal and viable genes were

also statistically significant (Table 3.2). To quantify whether or not the number

of exons could differentiate between lethal and viable genes, exon rank from the

longest transcript of genes was analysed here. We identified that lethal genes

have more exons than viable genes (Figure 3.4). This finding was also statistically

significant for non–culled and culled datasets (Table 3.2).
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Figure 3.5: Distributions of the total length of exons in lethal and viable
genes. Here, L(N) refers to lethal and V(N) refers viable genes in the non–
culled dataset. L(xx) and V(xx) define lethal and viable genes in the culled
dataset, respectively, where all coded proteins share sequence similarity less
than xx%. In this box plot, the top and bottom of the box denote the upper
and lower quartiles; the line inside the box denotes the middle quartile or the

median; and individual points denote the outliers.

3.3.3 Lengths of Exons and Introns

When the distributions of the length of exons of lethal and viable genes were

examined, we observed that lethal genes tend to have longer exon length than

viable genes (Figure 3.5). Our analysis also identified that introns are significantly

longer in lethal genes (Figure 3.6). The p–values in Table 3.2 also show that these

differences in exon and intron length between lethal and viable genes of the non–

culled and culled datasets are statistically significant.
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Figure 3.6: Distributions of the total intron length in lethal and viable genes.
Here, L(N) refers to lethal and V(N) refers viable genes in the non–culled
dataset. L(xx) and V(xx) define lethal and viable genes in the culled dataset,
respectively, where all coded proteins share sequence similarity less than xx%.
Top 5% lethal and viable genes with longest introns were excluded from the
datasets to make plots more readable. In this box plot, the top and bottom of
the box denote the upper and lower quartiles; the line inside the box denotes
the middle quartile or the median; and individual points denote the outliers.

3.3.4 Gene Expression

Gene expression is a way of quantifying if a particular gene is active in a biological

process. We, therefore, expected that genes with embryonic expression would be

more likely to be essential.

We obtained mouse gene expression data from the UniGene database (Stan-

ton et al., 2003) for 13 developmental stages including oocyte, unfertilized ovum,

zygote, cleavage, morula, blastocyst, egg cylinder, gastrula, organogenesis, fetus,
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Figure 3.7: Frequencies (%) of lethal and viable mouse genes in the non–culled
datasets that are expressed at 13 embryonic developmental stages.

neonate, juvenile and adult. Developmental expression data were found for 1,301

lethal and 3,409 viable genes. While comparing expressions of lethal and viable

genes in the non–culled dataset, we observed that lethal genes are expressed in

higher proportions compared to viable genes at almost every stage of mouse devel-

opment (Figure 3.7). However, the χ2 tests with the Bonferroni correction analysis

showed that these differences are not statistically significant at later stages of de-

velopment as all genes are nearly always expressed at those stages (Table 3.3).

Lethal genes were further found being highly expressed, whereas viable genes are

more likely to be found in the group with zero transcripts, while comparing dif-

ferences in gene expression distributions (Figure 3.8). These differences in devel-

opmental expression were also observed for culled datasets.
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Figure 3.8: Gene expression distributions of lethal (red) and viable (blue)
genes in the non–culled dataset across 13 stages of mouse development. Here,

the bin size is 50.
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Table 3.3: Differences in proportions of lethal versus viable mouse genes in
the non–culled dataset that are expressed across 13 embryonic developmental
stages. Highlighted cells in gray represent statistically insignificant results based

on the Bonferroni corrected p–value of 0.00385.

Developmental stages Lethal(%) Viable(%) p–value
Oocyte 42.01 20.86 3.59× 10−36

U ovum 26.27 10.50 5.96× 10−36

Zygote 35.33 17.84 2.95× 10−29

Cleavage 45.47 23.23 3.00× 10−36

Morula 43.63 19.71 2.21× 10−46

Blastocyst 59.75 30.36 1.23× 10−47

Egg Cylinder 22.35 8.30 6.01× 10−35

Gastrula 57.14 29.25 8.07× 10−45

Organogenesis 83.79 54.12 1.02× 10−30

Fetus 97.31 86.42 4.27× 10−04

Neonate 84.95 70.72 5.07× 10−07

Juvenile 92.40 87.80 0.135
Adult 95.93 94.05 0.562

3.3.5 Evolutionary Age

The evolutionary age of a gene represents the time that has passed since the

gene evolved from its ancestor either by duplication or speciation. Studies in

bacteria and yeast found essential genes to be evolutionarily more conserved than

non-essential genes (Jordan et al., 2002; Giaever et al., 2002; Gustafson et al.,

2006). We, therefore, expected that gene evolutionary age could be informative of

mammalian gene essentiality.

The evolutionary age reported in millions of years ago (MYA) were estimated

by analysing the Ensembl (release 75) gene trees (mentioned in section 2.2.1.3).

The age of the duplicate (most distant) common ancestor (DCA) or the most recent

duplication (MRD) event was assigned to each mouse duplicate gene. The age of

the single common ancestor (SCA) was assigned to each mouse singleton gene. We

observed 16 representative age groups for our mouse genes (Table 3.4A). We found
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Table 3.4: (A) Mouse age groups in million years ago (MYA) obtained from
the Ensembl (release 75) database (B) Statistical test results presenting lethal
versus viable mouse genes frequencies for different MRD age groups. (C) Statis-
tical test results presenting lethal versus viable mouse genes frequencies for dif-
ferent DCA age groups. These results are observed for the non–culled dataset.
Highlighted cells in yellow represent statistically significant results based on

Bonferroni corrected p–value of 0.003125.

(A)

Taxon Age
Murinae 25
Rodentia 77
Sciurognathi 78
Glires 86
Euarchontoglires 92
Eutheria 104
Theria 162
Mammalia 167
Amniota 296
Tetrapoda 371
Euteleostomi 400
Sarcopterygii 414
Vertebrata 535
Chordata 722
Bilateria 937
Opisthokonta 1215

(B)

MRD Lethal Viable
Age (%) (%) p–value
25 0.63 2.17 3.7× 10−4

77 0.00 0.09 0.286
78 0.00 0.06 0.383
86 0.24 0.06 0.104
92 0.55 0.51 0.858
104 11.60 11.23 0.737
162 1.25 2.80 2.3× 10−3

167 3.45 5.03 0.025
296 5.41 4.79 0.403
371 1.41 2.56 0.020
400 31.58 41.69 8.3× 10−7

414 1.80 2.74 0.070
535 13.48 14.80 0.290
722 4.00 3.25 0.219
937 15.67 6.08 4.8× 10−23

1215 8.93 2.14 6.6× 10−25

(C)

DCA Lethal Viable
Taxon Age (%) (%) p–value
Murinae 25 0.16 0.36 0.266
Rodentia 77 0.00 0.00 0
Sciurognathi 78 0.00 0.00 0
Glires 86 0.00 0.00 0
Euarchontoglires 92 0.00 0.00 0
Eutheria 104 0.39 1.36 4.5× 10−3

Theria 162 0.31 1.24 4.2× 10−3

Mammalia 167 0.39 1.13 0.019
Amniota 296 0.70 2.10 1.1× 10−3

Tetrapoda 371 0.16 1.13 1.4× 10−3

Euteleostomi 400 10.34 16.58 7.8× 10−7

Sarcopterygii 414 0.00 1.36 2.9× 10−5

Vertebrata 535 10.42 14.51 6.5× 10−4

Chordata 722 5.60 7.94 8.3× 10−3

Bilateria 937 52.72 41.01 7.8× 10−8

Opisthokonta 1215 18.82 11.28 3.1× 10−10

ages for 1,276 (98.1%) lethal and 3,358 (97.3%) viable genes from Ensembl. The

age of the oldest genes is approximately 1215 MYA, whereas the youngest genes
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belong to the class Murinae and are approximately 25 MYA old. We compared

the enrichment of lethal and viable genes in different age groups. We found that

lethal genes are older than viable genes for both non–culled and culled datasets

(Figure 3.9). We observed that a significantly greater percentage of lethal genes

have evolutionary age of 1215 and 937 MYA compared to viable genes in the non–

culled dataset (Table 3.4B and Table 3.4C). The majority of the viable genes are

400 MYA old. Also, viable genes are found in great proportions to have the age of

25 and 162 MYA while considering MRD ages (Table 3.4B). We further observed a

significantly greater percentage of viable genes that have DCA age of 296, 371, 414

and 535 MYA (Table 3.4C). We found similar trends for the culled datasets, which

further confirms that genes essential for mouse development are more ancient.

3.4 Analysis of Protein Sequence Features

Proteins are the mediators of different gene functions and thus, it is likely that gene

essentiality links to many other characteristics that could be gleaned from protein

sequence data. Prior research established that different physical, functional and

evolutionary properties of proteins can facilitate the prediction of gene essentiality

(Gustafson et al., 2006; Seringhaus et al., 2006; Palaniappan and Mukherjee, 2011;

Yuan et al., 2012). In this research, we explored a number of protein properties,

which are easily obtainable from mouse protein sequence data. It is necessary to

quantify how much information each of these properties carries with respect to

essentiality. This section covers results of the analyses done with several protein
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Figure 3.9: Proportions of lethal and viable genes for different age groups.
Here, ages of mouse duplicates were calculated based on the Most Recent Du-

plication (MRD) event (A) or the Duplicate Common Ancestor (DCA) (B).

sequence features to test their efficacy of distinguishing lethal genes from viable

genes in mouse.

3.4.1 Simple Sequence Features

When we investigated the lengths of lethal and viable protein sequences in the

non–culled dataset, we found that lethal proteins tend to have significantly longer

length than viable proteins (529aa versus 452aa (median length); p–value = 1.0×

10−21). We observed this significant difference in protein lengths also for culled

datasets. The estimated p–values for 20%, 40%, 60%, and 80% culled datasets

were 6.6 × 10−10, 3.8 × 10−21, 7.3 × 10−22 and 3.7 × 10−21, respectively. Figure
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Figure 3.10: Distributions of the length of proteins encoded by lethal and
viable genes. Here, L(N) refers to lethal and V(N) refers viable proteins in
the non–culled dataset. L(xx) and V(xx) define lethal and viable proteins in
the culled dataset, respectively, where all proteins share sequence similarity less
than xx%. Top 2% longest proteins were excluded from the datasets to make
plots more readable. In this box plot, the top and bottom of the box denote the
upper and lower quartiles; the line inside the box denotes the middle quartile

or the median; and individual points denote the outliers.

3.10 shows the distributions of protein lengths between lethal and viable proteins

within the non–culled and culled datasets.

We computed the amino acid frequencies from lethal and viable protein se-

quences. Table 3.5 shows differences in amino acid frequencies observed between

lethal and viable proteins in the non–culled dataset. Our investigation found that

proteins encoded by lethal genes in the non–culled dataset tend to have higher

proportions of Alanine, Aspartic acid, Glutamic acid, Lysine, Glutamine and Ser-

ine residues. Distributions of Lysine residues demonstrated the same trend for
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Table 3.5: Differences in 20 amino acid percentages observed between lethal
and viable mouse proteins in the non–culled dataset. Highlighted cells in yellow
represent statistically significant differences based on Bonferroni corrected p–
value of 0.0025; blue cells refer to lethal/viable proteins where that particular

amino acid is found in a higher proportion.

Amino acid Lethal Viable p–value
A 6.87 6.74 1.05× 10−03

C 1.88 2.08 1.92× 10−07

D 4.91 4.73 4.14× 10−07

E 6.68 6.22 6.48× 10−12

F 3.39 3.80 1.77× 10−17

G 6.43 6.49 0.280
H 2.48 2.39 0.005
I 4.06 4.24 3.20× 10−04

K 5.67 5.15 3.64× 10−14

L 9.31 10.00 2.69× 10−21

M 2.19 2.21 0.841
N 3.63 3.50 0.002
P 5.86 5.72 0.026
Q 4.48 4.25 3.78× 10−07

R 5.41 5.38 0.326
S 8.01 7.78 0.001
T 5.14 5.24 0.008
V 5.89 6.25 2.73× 10−12

W 1.01 1.31 8.84× 10−24

Y 2.73 2.83 0.019

all culled datasets. Lethal proteins in the 40%, 60% and 80% culled dataset

further had Aspartic acid, Glutamic acid and Glutamine residues in high propor-

tions compared to viable proteins (Table 3.6). Differences in these amino acids

were not statistically significant for the 20% culled dataset. Alanine and Serine

residues also showed their enrichment in lethal proteins for the 80% culled dataset,

whereas no statistically significant difference was found for Alanine in other culled

datasets. On the other hand, viable proteins were found to have higher propor-

tions of Leucine residues for non-culled and culled datasets (Table 3.5 and Table

3.6).

Viable genes were also found to be rich in Cysteine, Phenylalanine, Valine
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Table 3.6: Differences in amino acid frequencies observed between lethal and
viable mouse proteins in the culled datasets. Highlighted cells in yellow repre-
sent statistically significant differences based on Bonferroni corrected p–value of
0.0025; blue cells refer to lethal or viable proteins where the amino acid is found
in higher proportion. L(xx) refers to lethal and V(xx) refers to viable proteins
in the culled dataset, where all coded proteins share sequence similarity less

than xx%.

Amino Lethal Viable Lethal Viable
Acid (20) (20) p–value (40) (40) p–value
A 6.90 6.81 0.404 6.88 6.74 6.1× 10−3

C 1.95 2.07 0.028 1.85 2.09 1.7× 10−7

D 4.85 4.71 0.027 4.97 4.69 1.9× 10−9

E 6.64 6.30 4.0× 10−3 6.83 6.20 6.8× 10−13

F 3.79 3.94 0.132 3.47 3.79 5.6× 10−8

G 6.27 6.31 0.148 6.21 6.35 0.090
H 2.33 2.32 0.737 2.43 2.40 0.683
I 4.50 4.18 0.029 4.19 4.20 0.429
K 5.80 5.36 6.9× 10−5 5.81 5.14 7.9× 10−15

L 9.81 10.35 1.5× 10−3 9.52 10.18 3.2× 10−14

M 2.30 2.34 0.883 2.22 2.23 0.591
N 3.57 3.48 0.156 3.63 3.50 0.012
P 5.28 5.42 0.374 5.62 5.66 0.706
Q 4.28 4.25 0.353 4.50 4.34 2.3× 10−3

R 5.25 5.26 0.725 5.38 5.32 0.343
S 7.59 7.64 0.497 7.83 7.82 0.565
T 5.15 5.14 0.919 5.16 5.24 0.131
V 6.30 6.34 0.936 6.05 6.28 1.9× 10−4

W 1.17 1.36 0.017 1.03 1.32 5.9× 10−14

Y 2.99 2.84 0.346 2.72 2.80 0.078

Amino Lethal Viable Lethal Viable
Acid (60) (60) p–value (80) (80) p–value
A 6.81 6.74 0.010 6.87 6.74 1.1× 10−3

C 1.86 2.10 2.2× 10−8 1.86 2.08 8.1× 10−8

D 4.93 4.68 1.4× 10−9 4.91 4.71 1.4× 10−7

E 6.71 6.19 1.7× 10−13 6.68 6.20 3.3× 10−12

F 3.41 3.77 2.3× 10−14 3.39 3.79 9.2× 10−18

G 6.36 6.46 0.134 6.42 6.49 0.217
H 2.47 2.40 0.036 2.48 2.39 7.5× 10−3

I 4.09 4.18 0.038 4.05 4.22 3.5× 10−4

K 5.69 5.08 9.9× 10−16 5.66 5.13 2.6× 10−14

L 9.33 10.07 5.5× 10−22 9.32 10.00 7.8× 10−21

M 2.17 2.19 0.624 2.18 2.20 0.998
N 3.64 3.50 1.6× 10−3 3.63 3.5 4.8× 10−3

P 5.82 5.74 0.186 5.88 5.73 0.020
Q 4.46 4.28 4.1× 10−5 4.47 4.24 3.3× 10−7

R 5.41 5.36 0.294 5.41 5.37 0.257
S 7.99 7.83 0.017 8.02 7.80 1.6× 10−3

T 5.15 5.23 0.061 5.13 5.24 0.012
V 5.94 6.25 8.3× 10−9 5.88 6.25 1.3× 10−11

W 1.00 1.32 1.3× 10−23 1.00 1.31 9.1× 10−25

Y 2.74 2.81 0.122 2.72 2.82 0.024

and Tryptophan residues, but this trend was not consistent with the 20% culled

dataset. Viable proteins in the non–culled and 80% culled datasets further showed

Isoleucine residues in high proportions. No such result was observed for other
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Table 3.7: Median values of different protein features obtained from Pepstats
and the p–values of their distribution calculated using Mann–Whitney U test.
Highlighted cells in yellow represent statistically significant differences based on
Bonferroni corrected p–value of 0.0038; blue cells refers to either lethal or viable

proteins where it exhibits a higher value.

Protein Sequence Features
Datasets Molecular Aliphatic Aromatic Non-polar Polar Charged Basic Acidic

weight(Da) (%) (%) (%) (%) (%) (%) (%)

Non–culled
Lethal 59146.21 27.00 10.05 52.12 47.88 25.79 13.97 11.78
Viable 50446.09 27.81 10.75 53.73 46.27 24.53 13.26 11.03
p–value 3.3× 10−21 3.5× 10−13 3.7× 10−14 4.4× 10−27 4.6× 10−27 2.2× 10−18 2.1× 10−15 1.7× 10−13

culled(20%)
Lethal 48925.94 28.21 10.51 53.03 46.97 25.80 13.99 11.69
Viable 40326.80 28.36 10.82 54.04 45.96 24.65 13.37 11.02
p–value 4.1× 10−10 0.41 0.19 1.0× 10−04 1.0× 10−04 7.6× 10−05 4.8× 10−04 6.3× 10−04

culled(40%)
Lethal 60211.77 27.40 10.08 52.10 47.90 26.02 13.96 11.97
Viable 48362.45 27.96 10.67 53.68 46.32 24.47 13.26 10.98
p–value 3.2× 10−21 6.0× 10−06 4.0× 10−09 1.5× 10−20 1.6× 10−20 3.7× 10−19 5.5× 10−12 3.4× 10−16

culled(60%)
Lethal 60237.43 27.08 10.08 52.04 47.96 25.86 13.96 11.83
Viable 50057.85 27.81 10.69 53.76 46.24 24.39 13.23 10.96
p–value 1.3× 10−21 3.3× 10−11 2.3× 10−12 4.8× 10−28 5.1× 10−28 1.9× 10−21 1.9× 10−15 4.6× 10−17

culled(80%)
Lethal 59284.56 27.00 10.05 52.10 47.90 25.81 13.97 11.79
Viable 50479.42 27.78 10.73 53.74 46.26 24.50 13.24 11.01
p–value 1.1× 10−20 1.1× 10−12 1.4× 10−14 1.0× 10−27 1.1× 10−27 3.8× 10−19 8.6× 10−16 3.3× 10−14

culled datasets. Differences between lethal and viable datasets with respect to

proportions of other amino acids were not found to be statistically significant.

Protein average molecular weight, charge, isoelectric point and frequencies

of different amino acid categories were computed using the tool Pepstats (Rice

et al., 2000). Our analysis found that proteins encoded by lethal genes have

a significantly higher average molecular weight (MW) compared to proteins en-

coded by viable genes (Table 3.7). Differences in charge, isoelectric point, tiny

and small residues were not statistically significant. Lethal proteins were found

to have greater proportions of polar (Figure 3.11), charged (Figure 3.12), basic

(Figure 3.13) and acidic (Figure 3.14) amino acids. The results are meaningful

because these four amino acid groups are interconnected. The Mann-Whitney U

test further supported these observations for all datasets (Table 3.7).
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Figure 3.11: Distributions of the polar residues (%) between lethal and viable
proteins.

Figure 3.12: Distributions of the charged residues (%) between lethal and
viable proteins.
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Figure 3.13: Distributions of the basic residues (%) between lethal and viable
proteins.

Figure 3.14: Distributions of the acidic residues (%) between lethal and viable
proteins.
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Figure 3.15: Distributions of the aliphatic residues (%) between lethal and
viable proteins.

Figure 3.16: Distributions of the aromatic residues (%) between lethal and
viable proteins.



Chapter 3. Gene Essentiality based on Sequence and Functional Features 124

Figure 3.17: Distributions of the non-polar residues (%) between lethal and
viable proteins.

We observed that proteins encoded by viable genes have significantly higher

proportions of aliphatic (Figure 3.15), aromatic (Figure 3.16) and non-polar residues

(Figure 3.17). However, the Mann–Whitney U test showed that differences of

aliphatic (p–value = 0.419764) and aromatic (p–value = 0.191405) residues be-

tween lethal and viable proteins in the 20% culled datasets are not statistically

significant. Table 3.7 summarises all these results. For Figures 3.11–3.17, L(N)

refers to lethal and V(N) refers viable proteins in the non–culled dataset. L(xx)

and V(xx) define lethal and viable proteins in the culled dataset, respectively,

where all proteins share sequence similarity less than xx%. In this box plot, the

top and bottom of the box denote the upper and lower quartiles; the line inside

the box denotes the median; and individual points denote the outliers.
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3.4.2 Enzyme Class

Almost all cellular processes are dependent on the presence of enzymes at sig-

nificant levels. Enzymatic function thereby could be another measure of gene

essentiality. We extracted the annotations of six primary enzyme classes from the

UniProt database (Apweiler et al., 2004) and counted the number of lethal and vi-

able proteins belonging to each of these classes. In the non-culled datasets, 29.82%

(388/1301) of the total number of lethal proteins exhibit enzymatic activity com-

pared to 27.70% (956/3451) of viable proteins. The percentage of lethal genes

that are an enzyme was found to be 36.33% (174/479), 32.57% (313/961), 30.62%

(372/1215) and 29.82% (385/1291) for 20%, 40%, 60% and 80% culled datasets,

respectively, whereas these numbers are 32.05% (326/1017), 28.37% (653/2302),

27.95% (868/3106) and 27.87% (945/3391) for viable proteins. Figure 3.18 shows

the distribution of the six principal enzyme class numbers between lethal and vi-

able datasets for the non–culled dataset. We observed that lethal genes are rich

in Transferase (13.45% versus 10.08%, p–value = 1.81× 10−3) and Ligase (2.92%

versus 1.22%, p–value = 5.43× 10−5).

On the other hand, Hydrolases were found to be strongly associated with

viable proteins in the non–culled dataset (8.07% versus 10.92%, p–value = 5.9 ×

10−3). Table 3.8 shows that these observations were also consistent with the culled

datasets though for the 20% culled dataset, these differences were not statistically

significant. No statistically significant results were observed for Oxidoreductase,

Lyase and Isomerase enzymes.
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Figure 3.18: Percentages of lethal and viable proteins in the non–culled
dataset for different enzyme classes

Table 3.8: Differences in the frequencies of different enzyme class observed
between lethal and viable mouse proteins in the culled datasets. Highlighted
cells in yellow represent statistically significant differences based on Bonferroni
corrected p–value of 0.0083; blue cells refer to either lethal or viable proteins

where it exhibits a higher value.

Enzyme Classes
Datasets Oxidoreductase Transferase Hydrolase Lyase Isomerase Ligase

Culled(20%)
Lethal 6.05 12.94 10.02 2.92 1.46 2.92
Viable 5.99 9.63 12.58 1.17 1.37 1.27
p–value 0.966 0.068 0.177 0.017 0.897 0.027

Culled(40%)
Lethal 3.95 13.42 9.26 1.76 0.93 3.22
Viable 4.17 9.29 11.55 1.25 0.82 1.25
p–value 0.781 9.18× 10−04 0.070 0.264 0.754 1.60× 10−04

Culled(60%)
Lethal 3.45 13.82 8.06 1.39 0.74 3.12
Viable 3.76 9.52 11.59 1.15 0.70 1.19
p–value 0.632 1.06× 10−04 1.38× 10−03 0.521 0.909 1.40× 10−05

Culled(80%)
Lethal 3.40 13.55 7.90 1.31 0.69 2.94
Viable 3.77 10.05 11.02 1.12 0.67 1.20
p–value 0.558 1.26× 10−03 2.69× 10−03 0.579 0.944 4.45× 10−05

3.4.3 Post–translational Modifications

We investigated four different keywords (‘phosphoprotein’, ‘glycoprotein’, ‘acety-

lation’ and ‘transcription’) that are present in UniProt protein annotations. In

Uniprot, ‘glycoprotein’ and ‘phosphoprotein’ are the synonyms of glycosylation

and phosphorylation processes. In this study, these keywords were selected, as
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these are the most common PTMs and are important for controlling many fun-

damental cellular functions. Moreover, studies claimed that phosphorylation and

glycosylation are crucial for predicting protein functions (Jensen et al., 2003).

Protein phosphorylation is a very common PTM that occurs when a phos-

phate group from ATP is added, normally to a hydroxyl group of the protein. Pro-

tein phosphorylation plays crucial roles in regulating various cellular and metabolic

processes like cell differentiation, cell division, survival etc. Around 30% of all eu-

karyotic proteins are estimated to be phosphorylated (Mann et al., 2002). Our

investigation showed that lethal proteins within the non–culled dataset are more

likely to be phosphorylated than viable proteins. Statistical tests also showed the

significance of this result (51.42% versus 35.50%, p–value = 8.9 × 10−15). We

observed the same trend for culled datasets (Table 3.9).

Glycosylation is another major form of PTM. More than 50% of all proteins

are glycosylated (Apweiler et al., 1999). Glycoproteins are crucial for protein fold-

ing, solubility and localization (Weng et al., 2013). A large number of them are

secreted extracellular proteins or are cell membrane proteins and they, therefore,

have roles in transport and cell–cell interactions. UniProt only annotates gly-

coproteins with N–glycosylation sites. Table 3.9 shows the total percentage of

N–linked glycoproteins that were found in all lethal and viable datasets. We ob-

served that viable datasets contain significantly more N–linked glycoproteins than

lethal datasets.

Acetylated proteins in eukaryotes are those proteins that are post–translationally



Chapter 3. Gene Essentiality based on Sequence and Functional Features 128

Table 3.9: Frequencies (%) of different keywords in lethal and viable mouse
proteins and the corresponding p–values computed using the Chi–squared test.
Highlighted cells in yellow represent statistically significant results based on
Bonferroni corrected p–value of 0.0125; blue cells refer to either lethal or viable

proteins where it exhibits a higher value.

Keywords
Datasets Phosphoprotein Glycoprotein Acetylation Transcription

Non–culled
Lethal 51.42 21.29 28.90 27.82
Viable 35.50 38.19 12.75 11.45
p–value 8.93× 10−15 3.05× 10−19 4.51× 10−33 1.77× 10−36

Culled(20%)
Lethal 40.50 20.04 30.69 15.87
Viable 29.20 33.24 16.32 7.87
p–value 3.73× 10−04 9.86× 10−06 1.45× 10−08 7.80× 10−06

Culled(40%)
Lethal 52.65 21.12 31.32 21.23
Viable 32.71 38.10 13.64 9.56
p–value 6.29× 10−17 1.57× 10−14 2.84× 10−26 3.45× 10−17

Culled(60%)
Lethal 52.26 21.40 29.71 26.09
Viable 34.64 38.83 12.69 11.14
p–value 1.28× 10−16 9.33× 10−19 2.25× 10−33 1.65× 10−29

Culled(80%)
Lethal 51.51 21.15 28.89 27.73
Viable 35.39 38.40 12.59 11.47
p–value 5.66× 10−15 9.54× 10−20 1.76× 10−33 1.45× 10−35

modified by the addition of an acetyl group, mostly at the N–terminus. The acety-

lation process is important for gene expression and metabolism as acetyl groups

can cause genes and proteins to turn on and off. N–acetylated proteins also have

vital roles in regulating of protein–protein interactions (Arnesen, 2011). Our anal-

ysis revealed that proteins encoded by lethal genes are likely to be more acetylated

than proteins encoded by viable genes for all datasets (Table 3.9).

The keyword ‘transcription’ in UniProt annotates proteins that are involved in

controlling the process of transcription (transcription factors). Our investigation

found that lethal proteins in all datasets are more likely to be associated with

regulating the transcription of genes. Table 3.9 shows the Chi–squared test results,
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which further denote the statistical significance of this finding.

3.4.4 Signal Peptides

Signal peptides are short peptide sequences (usually 5–60 amino acids long) located

at the N-terminus of a large number of newly synthesised proteins. These signal

sequences control the targeting and translocation of the secreted or cell membrane

proteins. Signal peptides have different structures, but all are described by three

domains comprising a positively charged N–terminal region of 5–8 residues, fol-

lowed by a region of hydrophobic residues (crucial for protein targeting) and a

neutral polar C–region. Signal peptides mediate the protein translocation across

the ER membrane, where the C–region sequence motif is recognised by a signal

recognition particle (SRP) and cleaved off the protein by the signal peptidase en-

zyme; this cleaved sequence serves as the signal peptide. Signal peptides direct

proteins to different cellular locations (e.g. nucleus, mitochondria, endoplasmic

reticulum, endosome, Golgi apparatus) where proteins can carry out their func-

tions.

Our analysis with the signal peptide (computed using UniProt annotation and

SignalP servers (Petersen et al., 2011)) demonstrated that signal peptide motifs are

more frequent in proteins encoded by viable genes compared to proteins encoded

by lethal genes. The estimated p–value < 0.05 from the Chi–squared test, which

are summarised in Table 3.10, further confirmed these differences are statistically

significant.
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Table 3.10: Signal peptide count in lethal and viable proteins and the cor-
responding p-values computed using the Chi-squared test. Highlighted cells in
yellow represent statistically significant results; blue cells refer to viable proteins

where the signal peptide is observed as more frequent.

Datasets Lethal Viable Lethal(%) Viable(%) p–value
Non–culled 213 1004 16.37 29.09 1.23× 10−19

Culled(20%) 67 304 13.98 29.89 8.26× 10−09

Culled(40%) 151 698 15.71 30.32 8.84× 10−14

Culled(60%) 200 941 16.46 30.29 1.77× 10−15

Culled(20%) 210 993 16.27 29.28 4.08× 10−15

3.4.5 Transmembrane Domains

Integral membrane proteins are a form of membrane protein that are embedded in

the cell membrane. Most of these integral membrane proteins are transmembrane

proteins that extend through the lipid bilayer and span from the interior to the

exterior of the cell. Transmembrane proteins usually adopt a α–helical structure

while passing through the lipid bilayer one (single–pass proteins) or multiple times

(multiple–pass proteins). These helical segments that cross the lipid bilayer are

hydrophobic.

The hydrophilic regions of transmembrane proteins, located on either side

of the membrane, are exposed to water. Due to this structure, transmembrane

proteins can mediate cellular functions both inside and outside of the cell. Trans-

membrane proteins are important for cell–cell communication, maintenance of cell

structure, signalling, and ion transport. Many receptor proteins have a number of

α–helical transmembrane domains spanning the cell membrane. Thus, the pres-

ence of transmembrane domains in proteins encoded by lethal and viable genes

could be informative for functional annotation.
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Figure 3.19: Distributions of the number of transmembrane helices between
lethal and viable proteins in the non–culled (A) and culled datasets (B-E)

We found that our total viable dataset is significantly enriched in transmem-

brane proteins (p–value = 1.9 × 10−15). Approximately 20% of total lethal pro-

teins are found as transmembrane proteins, whereas the corresponding percentage

is approximately 34% for viable proteins. In addition, distributions of the num-

ber of transmembrane helices between lethal and viable mouse proteins demon-

strated that viable transmembrane proteins in the non–culled dataset tend to have

more transmembrane helices than lethal proteins (p–value = 2.6 × 10−21). The

same trend was true for all culled datasets and the differences were statistically

significant, with p–values (computed using the Mann–Whitney U test) of 0.029,
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2.7×10−12, 2.1×10−19 and 7.8×10−22 for 20%, 40%, 60% and 80% culled datasets,

respectively. Figure 3.19 displays the enrichment of viable proteins (for non–culled

and culled datasets) in a higher number of transmembrane domains.

3.5 Analysis of GO Terms

Gene Ontology (GO) (Ashburner et al., 2000) is the most widely used scheme for

classifying gene functions. The GO consortium provides a set of controlled vocab-

ularies (ontology) to annotate the functional properties of gene and gene products

across all species. Gene functions are annotated by means of three aspects: (a)

molecular function (b) cellular component and (c) biological process. Molecular

functions refer to the biochemical activities of a gene, such as binding or signal

transducer activity. Cellular components correspond to different parts within a

cell where a gene product functions (e.g. nucleus, organelle, plasma membrane,

extracellular region). Biological processes refer to a set of molecular events reg-

ulated by one or more genes (e.g. cell division, DNA replication). This section

highlights results of the study done with different categories of GO annotations to

test whether their distributions can vary between lethal genes and viable genes.

3.5.1 Cellular Components

Eukaryotic cells are subdivided into several membrane-bound compartments, which

are functionally distinct. These include nucleus, cytoplasm, cytoskeleton, extracel-

lular space, plasma membrane, endoplasmic reticulum (ER), mitochondria, Golgi
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apparatus, lysosome, peroxisome, and vacuoles. Protein functions are closely re-

lated to the locations where they reside within a cell. Localisation information is al-

ready known to be crucial for predicting essential genes in prior studies (Gustafson

et al., 2006; Seringhaus et al., 2006; Acencio and Lemke, 2009). As an example,

eukaryotic proteins located in the nucleus are found to carry out essential functions

including DNA replication, mRNA synthesis and recombination. Subcellular loca-

tions, therefore, should be useful in predicting mouse essential genes in the current

study.

As mentioned in the method section (section 2.2.3), all GO terms were ex-

tracted from the DAVID functional annotation tool version 6.8 (Huang et al.,

2007) by submitting Ensembl IDs of mouse lethal and viable genes. A total of 225

cellular component GO terms for lethal genes and 149 terms for viable genes were

retrieved, of which 53 and 82 terms were found significant, utilising the Bonferroni

corrected p–value ≤ 0.05 from the functional annotation output of DAVID. Table

3.11 and 3.12 summarise these cellular component GO terms favoured for lethal

and viable genes, respectively. Results showed that majority of lethal genes are

intracellular. Terms most frequently associated with lethal genes include: ‘nu-

cleus’, ‘transcription factor complex’, ‘nucleoplasm’, ‘nucleolus’, and ‘intracellular

membrane–bounded organelle’. 57% of total lethal genes were found to be present

in the nucleus.

However, viable genes were mainly found as membrane bound. Most of the

viable genes were enriched for cellular component terms including ‘membrane’,
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Table 3.11: Top 45 cellular component GO terms associated with lethal mouse
genes. Information is generated using the functional annotation tool of David.

GO Term ID GO Term Annotation Count % Bonferroni
GO:0005634 nucleus 747 57.77 9.7× 10−95

GO:0005667 transcription factor complex 104 8.04 1.4× 10−50

GO:0005654 nucleoplasm 309 23.89 2.7× 10−50

GO:0005737 cytoplasm 682 52.74 9.4× 10−46

GO:0043234 protein complex 126 9.74 1.4× 10−27

GO:0005829 cytosol 239 18.48 5.9× 10−22

GO:0000790 nuclear chromatin 64 4.94 1.4× 10−20

GO:0005925 focal adhesion 77 5.95 5.6× 10−15

GO:0048471 perinuclear region of cytoplasm 103 7.96 4.9× 10−12

GO:0009986 cell surface 97 7.50 5.4× 10−12

GO:0005911 cell-cell junction 45 3.48 6.6× 10−10

GO:0043025 neuronal cell body 80 6.18 4.9× 10−09

GO:0043005 neuron projection 68 5.25 7.0× 10−09

GO:0005730 nucleolus 107 8.27 8.3× 10−08

GO:0030424 axon 60 4.64 1.1× 10−07

GO:0000785 chromatin 31 2.39 5.0× 10−07

GO:0030054 cell junction 90 6.96 2.0× 10−06

GO:0005694 chromosome 54 4.17 2.8× 10−06

GO:0043231 intracellular membrane-bounded organelle 93 7.19 3.0× 10−06

GO:0017053 transcriptional repressor complex 20 1.54 3.4× 10−06

GO:0045121 membrane raft 45 3.48 7.8× 10−06

GO:0090575 RNA polymerase II transcription factor complex 15 1.16 8.0× 10−06

GO:0005794 Golgi apparatus 129 9.97 9.9× 10−06

GO:0030027 lamellipodium 33 2.55 1.7× 10−05

GO:0016323 basolateral plasma membrane 37 2.86 3.5× 10−05

GO:0005657 replication fork 11 0.85 1.1× 10−04

GO:0005856 cytoskeleton 118 9.12 1.2× 10−04

GO:0005938 cell cortex 29 2.24 1.2× 10−04

GO:0043235 receptor complex 28 2.16 1.3× 10−04

GO:0070062 extracellular exosome 241 18.63 1.6× 10−04

GO:0005913 cell-cell adherens junction 47 3.63 1.8× 10−04

GO:0016605 PML body 23 1.77 2.2× 10−04

GO:0005819 spindle 25 1.93 3.2× 10−04

GO:0016580 Sin3 complex 9 0.69 5.6× 10−04

GO:0014704 intercalated disc 16 1.23 5.7× 10−04

GO:0005912 adherens junction 16 1.23 1.3× 10−03

GO:0005813 centrosome 56 4.33 1.7× 10−03

GO:0032993 protein-DNA complex 12 0.92 1.8× 10−03

GO:0000781 chromosome, telomeric region 18 1.39 2.8× 10−03

GO:0030426 growth cone 28 2.16 3.6× 10−03

GO:1990909 Wnt signalosome 7 0.54 4.5× 10−03

GO:0014069 postsynaptic density 36 2.78 4.9× 10−03

GO:0016363 nuclear matrix 21 1.62 5.0× 10−03

GO:0005876 spindle microtubule 13 1.01 6.3× 10−03

GO:0005790 smooth endoplasmic reticulum 11 0.85 7.1× 10−03
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Table 3.12: Top 45 cellular component GO terms associated with viable mouse
genes. Information is generated using the functional annotation tool of David.

GO Term ID GO Term Annotation Count % Bonferroni
GO:0016020 membrane 1794 52.30 1.7× 10−111

GO:0005886 plasma membrane 1298 37.84 2.1× 10−79

GO:0009986 cell surface 297 8.66 1.3× 10−65

GO:0005887 integral component of plasma membrane 426 12.42 8.7× 10−62

GO:0043025 neuronal cell body 249 7.26 7.3× 10−54

GO:0005615 extracellular space 503 14.66 4.2× 10−52

GO:0005576 extracellular region 549 16.01 5.4× 10−49

GO:0005829 cytosol 575 16.76 1.2× 10−47

GO:0009897 external side of plasma membrane 168 4.90 1.6× 10−43

GO:0045202 synapse 221 6.44 5.5× 10−42

GO:0030425 dendrite 206 6.01 1.2× 10−35

GO:0030424 axon 171 4.99 1.3× 10−35

GO:0045121 membrane raft 136 3.97 1.0× 10−33

GO:0043005 neuron projection 182 5.31 3.0× 10−33

GO:0005737 cytoplasm 1448 42.22 7.6× 10−30

GO:0070062 extracellular exosome 692 20.17 8.9× 10−30

GO:0016324 apical plasma membrane 145 4.23 1.3× 10−26

GO:0030054 cell junction 245 7.14 2.5× 10−26

GO:0048471 perinuclear region of cytoplasm 237 6.91 4.7× 10−25

GO:0045211 postsynaptic membrane 108 3.15 8.7× 10−24

GO:0014069 postsynaptic density 113 3.29 1.2× 10−23

GO:0016323 basolateral plasma membrane 102 2.97 1.6× 10−23

GO:0043197 dendritic spine 81 2.36 2.9× 10−21

GO:0043679 axon terminus 56 1.63 1.0× 10−18

GO:0043235 receptor complex 70 2.04 1.4× 10−16

GO:0043195 terminal bouton 61 1.78 2.8× 10−16

GO:0043234 protein complex 195 5.69 2.6× 10−15

GO:0043204 perikaryon 71 2.07 1.1× 10−14

GO:0042734 presynaptic membrane 47 1.37 1.2× 10−14

GO:0008021 synaptic vesicle 62 1.81 1.0× 10−12

GO:0005764 lysosome 115 3.35 7.0× 10−12

GO:0042383 sarcolemma 57 1.66 2.7× 10−11

GO:0005578 proteinaceous extracellular matrix 107 3.12 5.2× 10−10

GO:0043198 dendritic shaft 36 1.05 1.6× 10−09

GO:0005791 rough endoplasmic reticulum 37 1.08 3.3× 10−08

GO:0005901 caveola 42 1.22 6.2× 10−08

GO:0030141 secretory granule 49 1.43 1.7× 10−07

GO:0031225 anchored component of membrane 57 1.66 1.9× 10−07

GO:0005783 endoplasmic reticulum 317 9.24 2.2× 10−07

GO:0005768 endosome 153 4.46 2.2× 10−07

GO:0031012 extracellular matrix 95 2.77 2.4× 10−07

GO:0001750 photoreceptor outer segment 35 1.02 3.1× 10−07

GO:0031234 extrinsic component of cytoplasmic side of plasma membrane 35 1.02 5.2× 10−07

GO:0042995 cell projection 184 5.36 1.9× 10−06

GO:0001917 photoreceptor inner segment 28 0.82 1.9× 10−06

‘plasma membrane’, ‘cell surface’, ‘extracellular region’, ‘extracellular space’, and

‘lysosome’. A high percentage of lethal (52.7%) and viable (42.2%) genes were

also found being localised in the cytoplasm.

Subcellular locations were also analysed using the UniProt annotation and
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Table 3.13: Subcellular locations of all lethal and viable mouse proteins as
annotated in the UniProt database. p-values were computed using the Chi–

squared test. Here, the Bonferroni corrected p–value = 0.0041.

Cellular Components Lethal Viable Lethal(%) Viable(%) p–value
Nucleus 627 815 48.19 23.62 8.37× 10−43

Cytoplasm 433 1014 33.28 29.38 0.029
Plasma membrane 170 805 13.07 23.33 3.35× 10−12

Membrane (exculding plasma) 117 545 8.99 15.79 2.15× 10−8

Extracellular 95 504 7.30 14.60 2.58× 10−10

Mitochondrion 67 145 5.15 4.20 0.167
Endoplasmic Reticulum (ER) 70 192 5.38 5.56 0.810
Golgi 62 150 4.77 4.35 0.542
Lysosome 10 80 0.77 2.32 5.38× 10−4

Peroxisome 5 22 0.38 0.64 0.301
Cell Junction 78 199 6.00 5.77 0.770
Cell Projection 47 130 3.61 3.77 0.805

the WoLF PSORT tool (Horton et al., 2007) (see section 2.2.2.5). Table 3.13 sum-

marises the results of the UniProt analysis. We found that a significantly higher

proportion of viable proteins are likely to be localised in the plasma membrane

(23%), membrane (15%) and extracellular region (14%) compared to lethal pro-

teins. However, there is a notably high percentage of lethal proteins found within

the nucleus (48%) compared to 23% of viable proteins. All these results are sta-

tistically significant (p–value ≤ 0.05) and we observed the same trend for culled

datasets.

Subcellular location prediction results from WoLF PSORT are summarised

in Table 3.14. In this case, the most significant enrichment for lethal proteins

was again nucleus. We observed that 70% of total lethal proteins are located

in the nucleus compared to 49% of viable proteins. A high percentage of lethal

proteins were also found in the cytoplasm, but this result was not statistically

significant for the analysis done with the UniProt annotation. The analysis of



Chapter 3. Gene Essentiality based on Sequence and Functional Features 137

Table 3.14: Subcellular locations of all lethal and viable mouse proteins, which
were predicted by WoLF PSORT. p-values were computed using the Chi-square

test. Here, the Bonferroni corrected p–value = 0.0056.

Cellular Components Lethal Viable Lethal(%) Viable(%) p–value
Nucleus 921 1712 70.79 49.61 2.18× 10−18

Cytoplasm 700 1556 53.80 45.09 1.01× 10−4

Plasma membrane 307 1261 23.60 36.54 4.33× 10−12

Extracellular 353 1377 27.13 39.90 7.78× 10−11

Mitochondrion 321 890 24.67 25.79 0.496
Endoplasmic Reticulum (ER) 183 621 14.07 17.99 3.32× 10−3

Golgi 45 156 3.46 4.52 0.112
Lysosome 86 398 6.61 11.53 2.12× 10−6

Peroxisome 204 623 15.68 18.05 0.080

WoLF PSORT prediction results further confirmed the preferences for viable genes

to be membrane bound (36%) and extracellular (39%). Viable proteins were also

enriched for localisation to the endoplasmic reticulum (18%) and lysosome (11%)

as compared to lethal proteins.

All these analyses with cellular localisations indicate that a major compart-

ment for localisation of lethal proteins is the nucleus, whereas viable proteins are

more likely to be extracellular or membrane bound. Viable proteins are also more

likely to be located in the lysosome.

3.5.2 Biological Processes

A number of GO terms related to biological processes were examined in this study

analysing the functional annotation output of DAVID. A total of 1,575 biological

process terms were retrieved for lethal genes, with 1,777 terms for viable genes,

of which 323 terms for lethal and 315 terms for viable datasets were significant

meeting the Bonferroni corrected p–value ≤ 0.05. Table 3.15 summarises the top
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Table 3.15: Top 45 preferred GO terms for lethal mouse genes that are related
to biological processes. Information is retrieved using the functional annotation

tool of DAVID.

GO Term ID GO Term Annotation Count % Bonferroni
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 294 22.74 3.3× 10−105

GO:0001701 in utero embryonic development 156 12.06 7.3× 10−95

GO:0045893 positive regulation of transcription, DNA-templated 202 15.62 7.0× 10−84

GO:0006351 transcription, DNA-templated 365 28.23 3.5× 10−75

GO:0000122 negative regulation of transcription from RNA polymerase II promoter 217 16.78 5.9× 10−75

GO:0007507 heart development 130 10.05 5.4× 10−74

GO:0007275 multicellular organism development 255 19.72 1.5× 10−71

GO:0006355 regulation of transcription, DNA-templated 398 30.78 1.4× 10−69

GO:0010628 positive regulation of gene expression 112 8.66 1.0× 10−33

GO:0008284 positive regulation of cell proliferation 132 10.21 1.9× 10−33

GO:0043066 negative regulation of apoptotic process 135 10.44 4.4× 10−33

GO:0009887 organ morphogenesis 55 4.25 1.7× 10−29

GO:0045892 negative regulation of transcription, DNA-templated 131 10.13 3.6× 10−29

GO:0006357 regulation of transcription from RNA polymerase II promoter 105 8.12 7.9× 10−29

GO:0009952 anterior/posterior pattern specification 55 4.25 1.0× 10−28

GO:0001525 angiogenesis 78 6.03 4.6× 10−27

GO:0008285 negative regulation of cell proliferation 100 7.73 1.4× 10−26

GO:0003007 heart morphogenesis 41 3.17 1.6× 10−26

GO:0001568 blood vessel development 42 3.25 2.7× 10−25

GO:0001570 vasculogenesis 41 3.17 4.7× 10−25

GO:0001947 heart looping 39 3.02 1.3× 10−24

GO:0060021 palate development 45 3.48 1.3× 10−24

GO:0009790 embryo development 42 3.25 8.1× 10−23

GO:0030154 cell differentiation 143 11.06 1.0× 10−22

GO:0030324 lung development 51 3.94 2.3× 10−21

GO:0008283 cell proliferation 67 5.18 1.8× 10−20

GO:0060070 canonical Wnt signaling pathway 42 3.25 3.1× 10−20

GO:0045165 cell fate commitment 38 2.94 3.7× 10−20

GO:0001822 kidney development 51 3.94 6.0× 10−20

GO:0003151 outflow tract morphogenesis 33 2.55 2.4× 10−19

GO:0042475 odontogenesis of dentin-containing tooth 35 2.71 3.1× 10−19

GO:0030182 neuron differentiation 48 3.71 6.3× 10−18

GO:0030326 embryonic limb morphogenesis 34 2.63 9.0× 10−18

GO:0001889 liver development 44 3.40 1.6× 10−17

GO:0007389 pattern specification process 32 2.47 3.7× 10−17

GO:0007399 nervous system development 83 6.42 7.8× 10−17

GO:0001843 neural tube closure 40 3.09 1.6× 10−16

GO:0001666 response to hypoxia 58 4.49 1.9× 10−16

GO:0001707 mesoderm formation 25 1.93 2.4× 10−16

GO:0010629 negative regulation of gene expression 67 5.18 3.8× 10−16

GO:0010468 regulation of gene expression 73 5.65 4.4× 10−16

GO:0035115 embryonic forelimb morphogenesis 25 1.93 6.6× 10−16

GO:0001569 patterning of blood vessels 26 2.01 1.2× 10−15

GO:0001658 branching involved in ureteric bud morphogenesis 28 2.17 2.1× 10−15

GO:0030900 forebrain development 37 2.86 2.3× 10−15

45 biological process terms significantly favoured for lethal genes. Our analysis

showed that lethal genes are often involved in different developmental processes,

as expected, including ‘in utero embryonic development’, ‘embryonic development’,

‘heart development’, ‘blood vessel development’,‘nervous system development’,

‘brain development’ and ‘lung development’. Significant enrichment of the lethal



Chapter 3. Gene Essentiality based on Sequence and Functional Features 139

Table 3.16: Top 45 preferred GO terms for viable mouse genes that are related
to biological processes. Information is retrieved using the functional annotation

tool of DAVID.

GO Term ID GO Term Annotation Count % Bonferroni
GO:0006954 inflammatory response 208 6.06 1.3× 10−61

GO:0002376 immune system process 219 6.38 3.8× 10−61

GO:0007165 signal transduction 427 12.45 2.3× 10−38

GO:0042493 response to drug 182 5.31 1.9× 10−37

GO:0032496 response to lipopolysaccharide 124 3.62 3.5× 10−35

GO:0043065 positive regulation of apoptotic process 158 4.61 8.9× 10−29

GO:0045087 innate immune response 170 4.96 1.2× 10−24

GO:0007204 positive regulation of cytosolic calcium ion concentration 90 2.62 1.4× 10−24

GO:0045944 positive regulation of transcription from RNA polymerase II promoter 327 9.53 1.8× 10−24

GO:0042981 regulation of apoptotic process 105 3.06 1.9× 10−23

GO:0007568 aging 99 2.89 1.4× 10−22

GO:0006955 immune response 141 4.11 5.5× 10−22

GO:0006468 protein phosphorylation 212 6.18 8.2× 10−22

GO:0006915 apoptotic process 207 6.03 2.8× 10−20

GO:0019233 sensory perception of pain 56 1.63 3.5× 10−20

GO:0007155 cell adhesion 183 5.34 8.6× 10−20

GO:0006811 ion transport 207 6.03 2.6× 10−19

GO:0045471 response to ethanol 73 2.13 1.7× 10−17

GO:0006816 calcium ion transport 76 2.22 1.2× 10−16

GO:0002250 adaptive immune response 74 2.16 3.3× 10−16

GO:0007268 chemical synaptic transmission 86 2.51 4.5× 10−16

GO:0035556 intracellular signal transduction 151 4.40 3.9× 10−15

GO:0016310 phosphorylation 203 5.92 6.3× 10−15

GO:0042127 regulation of cell proliferation 100 2.92 1.0× 10−14

GO:0070374 positive regulation of ERK1 and ERK2 cascade 89 2.59 1.8× 10−14

GO:0010628 positive regulation of gene expression 148 4.31 1.9× 10−14

GO:0007613 memory 53 1.55 2.4× 10−14

GO:0001666 response to hypoxia 91 2.65 7.0× 10−14

GO:0071456 cellular response to hypoxia 60 1.75 7.8× 10−14

GO:0007200 phospholipase C-activating G-protein coupled receptor signaling pathway 42 1.22 2.6× 10−13

GO:0007166 cell surface receptor signaling pathway 95 2.77 2.6× 10−13

GO:0042632 cholesterol homeostasis 43 1.25 8.6× 10−13

GO:0050731 positive regulation of peptidyl-tyrosine phosphorylation 56 1.63 8.6× 10−13

GO:0032729 positive regulation of interferon-gamma production 38 1.11 8.6× 10−13

GO:0032355 response to estradiol 65 1.90 5.1× 10−12

GO:0008284 positive regulation of cell proliferation 178 5.19 9.4× 10−12

GO:0050728 negative regulation of inflammatory response 51 1.49 9.4× 10−12

GO:0008285 negative regulation of cell proliferation 138 4.02 1.5× 10−11

GO:0051384 response to glucocorticoid 52 1.52 1.9× 10−11

GO:0043066 negative regulation of apoptotic process 183 5.34 2.7× 10−11

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 54 1.57 6.7× 10−11

GO:0009612 response to mechanical stimulus 42 1.22 9.8× 10−11

GO:0051092 positive regulation of NF-kappaB transcription factor activity 58 1.69 1.2× 10−10

GO:0007193 adenylate cyclase-inhibiting G-protein coupled receptor signaling pathway 33 0.96 1.5× 10−10

GO:0050729 positive regulation of inflammatory response 41 1.20 1.6× 10−10

genes is also observed for processes related to ‘transcription’, ‘cell proliferation’,

‘cell differentiation’, ‘organ morphogenesis’, ‘cell division’, ‘DNA repair’, and ‘DNA

replication’. On the other hand, biological process terms favoured for viable genes

include ‘inflammatory response’, ‘signal transduction’, ‘ion transport’, ‘immune

response’, ‘response to drug’, ‘response to stimulus’, ‘behaviour’, ‘transmembrane
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transport’, ‘aging’ and ‘regulation of apoptotic process’ (Table 3.16).

3.5.3 Molecular Functions

Molecular functions refer to the biochemical activities of a gene. A number of

different GO terms related to molecular functions were analysed. Analysing the

annotation output generated by DAVID, a total of 265 terms for lethal genes and

105 terms for viable genes were retrieved. Based on the Bonferroni corrected p–

value ≤ 0.05, we considered 75 and 81 significant molecular function terms for

lethal (Table 3.17) and viable (Table 3.18) datasets, respectively. We found that

lethal genes are involved in ‘DNA binding’, ‘transcription factor activity’, ‘tran-

scription factor binding’, and ‘transferase activity’. Viable genes are more likely

to have the annotations of ‘signal transducer activity’, ‘ion channel activity’, ‘hy-

drolase activity’, ‘transporter activity’, ‘calcium ion binding’, ‘receptor binding’,

‘SH3 domain binding’, and ‘lipid binding’. A higher percentage of lethal and vi-

able genes were also found to be annotated as being involved in ‘protein binding’,

‘ATP binding’, ‘protein kinase binding’, and ‘protein kinase activity’.

3.6 Analysis of Protein Domains

Protein domains are spatially distinct structural and/or functional units of a pro-

tein. They carry out particular functions or interactions, thereby contributing

towards the overall functionality of a protein. Proteins can have single or multiple

domains. We obtained domain data for lethal and viable mouse protein analysing
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Table 3.17: Preferred GO terms for lethal mouse genes that are related to
molecular function. Information is retrieved using the functional annotation

tool of DAVID.

GO Term ID GO Term Annotation Count % Bonferroni
GO:0005515 protein binding 669 51.74 1.7× 10−121

GO:0003677 DNA binding 356 27.53 3.3× 10−71

GO:0043565 sequence-specific DNA binding 186 14.39 1.1× 10−62

GO:0003700 transcription factor activity, sequence-specific DNA binding 206 15.93 4.5× 10−51

GO:0003682 chromatin binding 131 10.13 8.1× 10−40

GO:0008134 transcription factor binding 108 8.35 5.4× 10−37

GO:0001077 transcriptional activator activity, RNA polymerase II core promoter proximal region 94 7.27 3.2× 10−36

GO:0000978 RNA polymerase II core promoter proximal region sequence-specific DNA binding 108 8.35 2.3× 10−35

GO:0044212 transcription regulatory region DNA binding 86 6.65 6.6× 10−35

GO:0046982 protein heterodimerization activity 109 8.43 3.3× 10−21

GO:0001228 transcriptional activator activity, RNA polymerase II transcription regulatory region 43 3.33 2.0× 10−18

GO:0001085 RNA polymerase II transcription factor binding 31 2.40 5.4× 10−17

GO:0019901 protein kinase binding 90 6.96 2.6× 10−16

GO:0032403 protein complex binding 79 6.11 7.5× 10−16

GO:0003705 transcription factor activity, RNA polymerase II distal enhancer 32 2.47 1.9× 10−15

GO:0019899 enzyme binding 80 6.19 3.2× 10−14

GO:0000979 RNA polymerase II core promoter sequence-specific DNA binding 31 2.40 3.6× 10−14

GO:0042826 histone deacetylase binding 38 2.94 1.2× 10−12

GO:0000977 RNA polymerase II regulatory region sequence-specific DNA binding 54 4.18 4.7× 10−12

GO:0042803 protein homodimerization activity 121 9.36 9.8× 10−12

GO:0008013 beta-catenin binding 32 2.47 1.2× 10−11

GO:0000981 RNA polymerase II transcription factor activity, sequence-specific DNA binding 46 3.56 3.1× 10−11

GO:0003713 transcription coactivator activity 47 3.63 4.1× 10−11

GO:0042802 identical protein binding 105 8.12 4.4× 10−11

GO:0000980 RNA polymerase II distal enhancer sequence-specific DNA binding 29 2.24 8.4× 10−11

GO:0046983 protein dimerization activity 47 3.63 2.2× 10−10

GO:0003690 double-stranded DNA binding 39 3.02 5.0× 10−10

GO:0001078 transcriptional repressor activity, RNA polymerase II core promoter proximal region 37 2.86 2.3× 10−09

GO:0001158 enhancer sequence-specific DNA binding 17 1.31 4.1× 10−09

GO:0001102 RNA polymerase II activating transcription factor binding 20 1.55 4.2× 10−09

GO:0046332 SMAD binding 23 1.78 4.6× 10−09

GO:0019904 protein domain specific binding 58 4.49 4.9× 10−09

GO:0031490 chromatin DNA binding 25 1.93 9.8× 10−09

GO:0004672 protein kinase activity 84 6.50 1.5× 10−08

GO:0016301 kinase activity 99 7.66 1.6× 10−08

GO:0005524 ATP binding 179 13.84 1.8× 10−08

GO:0016740 transferase activity 173 13.38 2.1× 10−08

GO:0002039 p53 binding 25 1.93 8.6× 10−08

GO:0001105 RNA polymerase II transcription coactivator activity 19 1.47 1.4× 10−07

GO:0047485 protein N-terminus binding 31 2.40 1.3× 10−06

GO:0003714 transcription corepressor activity 36 2.78 2.0× 10−06

GO:0019903 protein phosphatase binding 26 2.01 2.2× 10−06

GO:0070888 E-box binding 16 1.24 4.8× 10−06

GO:0046872 metal ion binding 323 24.98 6.2× 10−06

GO:0031625 ubiquitin protein ligase binding 51 3.94 7.1× 10−06

the functional annotation output of DAVID (mentioned in section 2.2.3). We

observed a total of 11 and 30 domains from the Pfam protein domain database

(Bateman et al., 2004) that are significantly enriched in lethal and viable proteins,

respectively. Domains such as homeobox, T–box, helix–loop–helix DND–binding
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Table 3.18: Preferred GO terms for viable mouse genes that are related to
molecular function. Information is retrieved using the functional annotation

tool of DAVID.

GO Term ID GO Term Annotation Count % Bonferroni
GO:0005515 protein binding 1242 36.21 3.3× 10−93

GO:0004871 signal transducer activity 259 7.55 1.4× 10−33

GO:0042803 protein homodimerization activity 293 8.54 1.8× 10−30

GO:0005216 ion channel activity 97 2.83 1.2× 10−25

GO:0005102 receptor binding 173 5.04 2.6× 10−24

GO:0019901 protein kinase binding 170 4.96 2.7× 10−19

GO:0004672 protein kinase activity 192 5.60 1.4× 10−18

GO:0046982 protein heterodimerization activity 188 5.48 8.1× 10−18

GO:0016301 kinase activity 221 6.44 9.6× 10−16

GO:0005125 cytokine activity 95 2.77 2.8× 10−14

GO:0042802 identical protein binding 215 6.27 3.1× 10−14

GO:0043565 sequence-specific DNA binding 198 5.77 4.1× 10−11

GO:0008083 growth factor activity 67 1.95 3.2× 10−10

GO:0004872 receptor activity 75 2.19 5.5× 10−10

GO:0002020 protease binding 58 1.69 6.5× 10−10

GO:0019899 enzyme binding 134 3.91 9.2× 10−10

GO:0008201 heparin binding 67 1.95 6.7× 10−09

GO:0008144 drug binding 54 1.57 4.4× 10−08

GO:0004896 cytokine receptor activity 30 0.87 4.8× 10−08

GO:0097110 scaffold protein binding 33 0.96 5.6× 10−08

GO:0005244 voltage-gated ion channel activity 59 1.72 8.1× 10−08

GO:0005516 calmodulin binding 72 2.10 2.9× 10−07

GO:0016787 hydrolase activity 384 11.20 3.5× 10−07

GO:0004713 protein tyrosine kinase activity 54 1.57 4.6× 10−07

GO:0017046 peptide hormone binding 25 0.73 9.3× 10−07

GO:0032403 protein complex binding 117 3.41 1.3× 10−06

GO:0044325 ion channel binding 53 1.55 1.6× 10−06

GO:0017124 SH3 domain binding 52 1.52 1.8× 10−06

GO:0005262 calcium channel activity 42 1.22 2.3× 10−06

GO:0005518 collagen binding 33 0.96 2.6× 10−06

GO:0005179 hormone activity 50 1.46 3.4× 10−06

GO:0004674 protein serine/threonine kinase activity 132 3.85 5.0× 10−06

GO:0016849 phosphorus-oxygen lyase activity 17 0.50 1.2× 10−05

GO:0004715 non-membrane spanning protein tyrosine kinase activity 27 0.79 1.6× 10−05

GO:0005178 integrin binding 45 1.31 1.9× 10−05

GO:0005524 ATP binding 367 10.70 4.0× 10−05

GO:0030165 PDZ domain binding 49 1.43 4.3× 10−05

GO:0005184 neuropeptide hormone activity 20 0.58 9.9× 10−05

GO:0016740 transferase activity 351 10.23 1.0× 10−04

GO:0046983 protein dimerization activity 68 1.98 1.1× 10−04

GO:0019900 kinase binding 41 1.20 1.4× 10−04

GO:0005164 tumor necrosis factor receptor binding 21 0.61 1.4× 10−04

GO:0004950 chemokine receptor activity 16 0.47 1.7× 10−04

GO:0004970 ionotropic glutamate receptor activity 15 0.44 2.2× 10−04

GO:0005234 extracellular-glutamate-gated ion channel activity 15 0.44 2.2× 10−04
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Table 3.19: Key domains from the Pfam database that are enriched for pro-
teins encoded by lethal mouse genes. Information is retrieved using the func-

tional annotation tool of DAVID.

Term ID Term Annotation Count % Bonferroni
PF00046 Homeobox domain 63 4.87 1.9× 10−17

PF00010 Helix-loop-helix DNA-binding domain 28 2.17 4.8× 10−07

PF07714 Protein tyrosine kinase 29 2.24 5.0× 10−05

PF00110 wnt family 11 0.85 8.7× 10−05

PF00907 T-box 10 0.77 3.8× 10−04

PF00008 EGF-like domain 19 1.47 7.1× 10−04

PF00105 Zinc finger, C4 type (two domains) 14 1.08 7.7× 10−03

PF00688 TGF-beta propeptide 10 0.77 8.8× 10−03

PF00104 Ligand-binding domain of nuclear hormone receptor 14 1.08 1.3× 10−02

PF00019 Transforming growth factor beta like domain 12 0.93 1.8× 10−02

PF00069 Protein kinase domain 49 3.79 1.9× 10−02

Table 3.20: Key domains from the Pfam database that are enriched for pro-
teins encoded by viable mouse genes. Information is retrieved using the func-

tional annotation tool of DAVID.

Term ID Term Annotation Count % Bonferroni
PF00001 7 transmembrane receptor (rhodopsin family) 162 4.72 4.3× 10−41

PF00017 SH2 domain 56 1.63 2.2× 10−14

PF07714 Protein tyrosine kinase 65 1.90 1.1× 10−12

PF00520 Ion transport protein 53 1.55 2.7× 10−10

PF00018 SH3 domain 49 1.43 2.4× 10−08

PF00069 Protein kinase domain 121 3.53 4.8× 10−08

PF00104 Ligand-binding domain of nuclear hormone receptor 28 0.82 4.1× 10−06

PF13895 Immunoglobulin domain 32 0.93 6.6× 10−06

PF00105 Zinc finger, C4 type (two domains) 26 0.76 4.2× 10−05

PF10613 Ligated ion channel L-glutamate- and glycine-binding site 15 0.44 5.6× 10−05

PF00060 Ligand-gated ion channel 15 0.44 5.6× 10−05

PF01582 TIR domain 16 0.47 1.2× 10−04

PF00211 Adenylate and Guanylate cyclase catalytic domain 16 0.47 1.2× 10−04

PF00619 Caspase recruitment domain 17 0.50 2.0× 10−04

PF02931 Neurotransmitter-gated ion-channel ligand binding domain 23 0.67 4.2× 10−04

PF02932 Neurotransmitter-gated ion-channel transmembrane region 23 0.67 4.2× 10−04

PF00229 TNF(Tumour Necrosis Factor) family 14 0.41 7.6× 10−04

PF00020 TNFR/NGFR cysteine-rich region 15 0.44 1.3× 10−03

PF00041 Fibronectin type III domain 49 1.43 1.3× 10−03

PF00045 Hemopexin 16 0.47 1.7× 10−03

PF00102 Protein-tyrosine phosphatase 21 0.61 2.3× 10−03

PF00433 Protein kinase C terminal domain 18 0.52 2.3× 10−03

PF00595 PDZ domain (Also known as DHR or GLGF) 45 1.31 5.3× 10−03

PF00413 Matrixin 15 0.44 6.2× 10−03

PF01471 Putative peptidoglycan binding domain 14 0.41 1.1× 10−02

PF00005 ABC transporter 24 0.70 1.4× 10−02

PF00019 Transforming growth factor beta like domain 19 0.55 2.0× 10−02

PF00130 Phorbol esters/diacylglycerol binding domain (C1 domain) 24 0.70 2.1× 10−02

PF00230 Major intrinsic protein 10 0.29 3.1× 10−02

PF00664 ABC transporter transmembrane region 14 0.41 4.2× 10−02
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domain, protein kinase domain and Zinc finger C4 type (zf–c4) domain (many

of which are found in transcription factors) showed a higher preference for lethal

proteins (Table 3.19). Domains including 7–transmembrane receptor, SH2, ion

transport, Fibronectin type III domain (fn3), and SH3 (many of which are found

in membrane proteins) were favoured for viable proteins (Table 3.20). Although

viable proteins were annotated with having protein kinase and zf–c4 domains,

these domains were more frequently found within lethal proteins.

3.7 Analysis of Protein–Protein Interactions

Protein–protein interactions (PPI) are intrinsic to almost all biological processes.

Since the majority of proteins interact with each other to expedite accurate func-

tionality, knowledge about their interactions is crucial to understand the molecular

mechanisms of cellular processes. A prior study found significant differences in PPI

network properties between the essential and non–essential genes of S. cerevisiae

and E. coli (Hwang et al., 2009). Network-based attributes were also found to

be fundamental to elucidate proteins activities within the cell in other studies

(Coulomb et al., 2005; Yang et al., 2014). We, therefore, expected that the study

of PPI networks would provide new insights into the essentiality of mouse proteins.

Mouse protein–protein interaction data was obtained from the I2D database

(Brown and Jurisica, 2007), which is a database of known and predicted protein

interactions for human, mouse, rat, fly, yeast and worm genomes. The PPI data



Chapter 3. Gene Essentiality based on Sequence and Functional Features 145

was examined with the intention of learning whether the lethal PPI networks dif-

fer in their network properties from their viable counterparts. We analysed both

known and predicted mouse PPIs to assure high quality PPIs. As mentioned in

section 2.2.4, two PPI networks namely Known (K) and Known–Predicted (KP)

were constructed from all mouse PPIs. After removing self and duplicate interac-

tions, the network lethal–K contained 3,988 protein nodes and 8,074 interactions;

the network viable–K included 4,879 protein nodes and 9,624 interactions. The

network lethal–KP consisted of 12,001 nodes and 73,426 interactions, whereas

the corresponding numbers are 11,686 and 75,040 for the viable–KP network. We

computed 9 network properties for each lethal and viable protein to recognise their

importance in each of the PPI networks. Lethal and viable proteins were found

to have differences in these network properties from our analyses. We could not

estimate network properties for 403 (30%) lethal and 1,622 (47%) viable proteins

in the PPI network K because no known interaction was found for them. For KP

network, these numbers were 61 (4.69%) and 371 (10.75%), respectively. Hence,

lethal proteins are more likely to participate in PPIs than viable proteins.

Our results demonstrated that lethal proteins have more interactions (higher

degrees) than viable proteins in both K (p–value = 8.2×10−16) and KP (p–value =

4.1×10−63) interaction networks (Figure 3.20). The mean degree of lethal proteins

was higher than viable proteins for K (10.47 versus 6.41) and KP (57.68 versus

27.97). The average shortest path (ASP) length is an indicator of a protein node’s

efficiency in transporting information on a PPI network (mentioned in section
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Figure 3.20: Degree distributions of lethal and viable proteins involved in the
Known (A) and Known–Predicted (B) PPI networks. The bin size is 5 in (B)

2.2.4). We observed that the ASP length of lethal proteins tend to be shorter

than the ASP length of viable proteins (Figure 3.21). The Mann–Whitney U test

further confirmed that this difference is statistically significant for both K (p–

value = 8.6×10−26) and KP (p–value = 1.2×10−260) networks. The betweenness

centrality is an indicator of the centrality of a protein node in the PPI network.

Our analysis demonstrated that the betweenness centrality of lethal proteins in

each of the interaction network is significantly higher than that of viable proteins

with p–values of 1.9× 10−15 and 3.2× 10−12, respectively (Figure 3.22).
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Figure 3.21: Length of average shortest path (ASP) of lethal and viable pro-
teins in the Known (A) and Known–Predicted (B) protein–protein interaction

(PPI) networks.

Figure 3.22: Betweenness centrality of lethal and viable proteins in the Known
(A) and Known–Predicted (B) protein–protein interaction (PPI) networks. In
each box plot, the top and bottom of the box denote the upper and lower
quartiles; the line inside the box denotes the middle quartile or the median; and

individual points denote the outliers.
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Figure 3.23: Closeness centrality of lethal and viable proteins in the Known
(A) and Known–Predicted (B) protein–protein interaction (PPI) networks. In
each box plot, the top and bottom of the box denote the upper and lower
quartiles; the line inside the box denotes the middle quartile or the median; and

individual points denote the outliers.

We also found significantly higher clustering coefficient values for lethal pro-

teins in K (p–value = 9.7× 10−4) and KP (p–value = 1.2× 10−39) networks com-

pared to viable proteins. Furthermore, subsequent analyses demonstrated that

lethal proteins tend to have significantly high closeness centrality than viable pro-

teins (Figure 3.23). This difference was statistically significant for both networks

with p–values of 1.3× 10−28 and 5.8× 10−266.

We also wanted to identify protein nodes with a large number of interac-

tions (hubs) in the PPI network. Cytoscape does not provide this functional-

ity, so we used the Hub object Analyser (Hubba) (Lin et al., 2008) to explore

four additional network properties including BottleNeck (BN), Edge Percolation

Component (EPC), Maximum Neighbourhood Component (MNC) and Density of

Maximum Neighbourhood Component (DMNC). These properties define probable
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Figure 3.24: BottleNeck (BN) of lethal and viable proteins in the Known (A)
and Known–Predicted (B) protein–protein interaction (PPI) networks.

hubs in the PPI network. Our investigation demonstrated that lethal proteins tend

to have high BN in both K and KP networks (Figure 3.24). We further found

that EPC and MNC of lethal proteins are significantly higher than that of viable

genes. Table 3.21 shows the statistical significance of these differences. Although

lethal proteins exhibited high DMNC in the K network, the same trend was not

observed for the KP network.

Table 3.21: Distributions of four network properties including BottleNeck
(BN), Edge Percolation Component (EPC), Maximum Neighbourhood Compo-
nent (MNC) and Density of Maximum Neighbourhood Component (DMNC)
between lethal and viable proteins. The Bonferroni corrected p–value in the
Mann–Whitney U test is 0.0125. Here, mean rank, a parameter of the Mann–
Whitney U test, indicates which protein group holds higher values for a network

property.

Network Properties
Network BN EPC MNC DMNC

Known(K)
Lethal (Mean Rank) 1521.85 1519.73 1485.79 1441.51
Viable (Mean Rank) 1286.50 1287.54 1304.21 1325.95
p–value 1.02× 10−17 4.58× 10−13 5.57× 10−10 7.20× 10−05

Known–Predicted(KP)
Lethal (Mean Rank) 2467.60 2682.56 2685.01 2146.61
Viable (Mean Rank) 2036.86 1950.32 1949.33 2166.09
p–value 9.05× 10−39 3.07× 10−68 2.42× 10−69 0.641
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3.8 Discussion

Essential genes are crucial for organism’s survivable and development. The abil-

ity to determine essential genes in mammals is one of the fundamental aspects of

development biology as it facilitates understanding of cellular, developmental and

vital tissue-specific processes and functions. Existing experimental methods (Gi-

aever et al., 2002; Cullen and Arndt, 2005; Roemer et al., 2003; Gallagher et al.,

2007) are accurate for identifying mammalian essential genes, but most of them

are not always feasible to execute due to massive investment of resources and

time. Computational approaches, which exploit gene properties to characterise

essentiality, are a fast and low cost alternative to these conventional experimental

techniques.

Our research is based on the hypothesis that mammalian essential (lethal) and

non-essential (viable) genes are distinguishable by their properties. If all properties

are similar between lethal and viable datasets, then these cannot be of value in

determining gene essentiality. Our dataset (non–culled) contained a total of 1,301

lethal and 3,451 viable mouse genes, which were obtained from the Mouse Genome

Informatics (MGI) database considering the knockout mouse phenotypes. The

presence of multiple copies of similar proteins could bias our overall analysis; we

thereby remove redundant proteins from our dataset and generated non–redundant

or culled datasets. Our aim was to assure that the key features differentiating lethal

and viable genes are not over-representative though it remains likely that these

hallmark features follow similar trends for both non–culled and culled datasets.



Chapter 3. Gene Essentiality based on Sequence and Functional Features 151

We studied a wide range of gene and protein properties of Mus musculus genes

that are representative of different aspects of mouse biology so that we could quan-

tify their abilities to differentiate lethal genes from viable genes. Some of these

features have been found to be correlated with essentiality in yeast or bacteria

in prior studies but have not been studied in mammals. Our investigation was

focused on those features that are easily attainable from existing databases and

web-based tools. These properties fall into three categories: (1) genomic prop-

erties, which are based on gene sequence data. This group also include features

like evolutionary age and gene expression; (2) protein sequence properties, which

can be estimated from protein sequence data. This covers features like amino

acid composition, enzyme class, post-translational modifications, signal peptide

and transmembrane domain; (3) functional properties, which facilitate biological

interpretations of gene functionality. These include gene ontology (GO) annota-

tions and protein–protein interactions (PPIs). Our investigation confirmed that

many of these properties are strongly associated with essentiality. These features

were also found to be interrelated, which implies that they are not independent

of each other. We identified a total of 75 features that offer significant differences

between lethal and viable genes (based on the p–value of statistical tests). These

significant features are summarised as follows:

• Genomic features:

– Feature based on gene sequence gene length, the number of transcripts,

the number of exons, the length of exons and length of introns.
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– Evolutionary age.

– Features based on gene expression expressions at 11 developmental

stages including oocyte, unfertilized ovum, zygote, cleavage, morula,

blastocyst, egg cylinder, gastrula, organogenesis, fetus and neonate.

• Protein sequence features: protein length, frequencies of residues (Ala-

nine, Aspartic acid, Cysteine, Phenylalanine, Isoleucine, Glutamic acid, Ly-

sine, Glutamine, Serine, Leucine, Valine, Tryptophan, polar, charged, basic,

acidic, aliphatic, aromatic and non-polar), molecular weight, enzyme classes

(Transferase, Ligase and Hydrolases), post-translational modifications (phos-

phoprotein, glycoprotein, acetylation and transcription), signal peptide and

transmembrane helices.

• Features based on Gene Ontology: localisation at the nucleus, plasma

membrane, extracellular region and lysosome, numerous terms linked to

embryonic development and fundamental cellular processes including terms

linked to embryonic development, transcription, cell morphogenesis, cell dif-

ferentiation, immune response, cell communication, transporter activity and

signal transducer activity.

• Features based on protein–protein interaction (PPI) network topol-

ogy: degree, the average shortest path length, closeness centrality, between-

ness centrality, clustering coefficient, BottleNeck and Maximum Neighbour-

hood Component in PPI networks.
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3.8.1 Genomic Features and Gene Essentiality

We observed that mouse lethal genes are more likely to be longer in length, and

have more transcripts than viable genes. Lethal genes also tend to exhibit more

exons and have a longer exon length. These results are in agreement with a

prior study (Budagyan and Loraine, 2004) which showed that longer genes with

a large number of exons tend to exhibit a higher degree of alternative transcripts

compared to smaller genes with fewer exons. These properties of lethal genes show

that the functions they perform involve complex proteins having multiple domains

and diverse cellular or tissue specialisations. Lethal genes also had a significantly

longer length of introns and a low percentage of GC content compared to viable

genes. A low GC content in lethal genes is consistent with a prior study (Gazave

et al., 2007) which showed that intron length varies inversely with GC content. A

recent study also claimed a strong negative correlation of GC content with exon

and intron lengths in six mammalian genomes including human, chimpanzee, cow,

dog, mouse and rat (Zhu et al., 2009). GC content is also correlated with gene

length (Duret et al., 1995) and recombination (Montoya-Burgos et al., 2003) in

mammalian genomes.

Gene expression data over 13 stages of mouse development showed that lethal

genes are expressed in greater proportions at all early developmental stages com-

pared to viable genes. This result makes sense because mouse genes which are

expressed at early stages of development are more likely to be lethal as their

disruption could affect all downstream events, thereby resulting in more severe
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phenotypes. This result also agrees with prior studies which showed that house-

keeping genes are likely to be highly expressed (Vinogradov, 2004; Liao and Zhang,

2006).

We also observed that lethal genes are older than viable genes. A significantly

higher percentage of lethal genes have the evolutionary age of 1215 and 937 MYA.

However, most of the viable genes are 400 MYA old. This result supports the

notion that essential genes are evolutionarily more conserved than non–essential

genes (Giaever et al., 2002; Jordan et al., 2002). This result is further explained by

a previously reported observation that essential and highly expressed genes evolve

slowly than non–essential genes (Drummond et al., 2005). Overall, this analysis

indicates that older mouse genes are more likely to be indispensable for funda-

mental cellular processes. Lethal genes might be undergoing positive selection to

retain their functionality, giving a lower mutation rate.

3.8.2 Protein Features and Gene Essentiality

We further checked whether gene essentiality might be correlated with different

features derived from protein sequences. We found that proteins encoded by lethal

genes tend to be longer in length and have greater molecular weight than proteins

encoded by viable genes. This result is in agreement with a prior study which

stated that functionally essential proteins are more evolutionarily conserved and

conserved proteins are, in general, longer in length (Lipman et al., 2002). Longer
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proteins may possibly have multiple domains to contribute diverse cellular func-

tionalities (Brocchieri and Karlin, 2005) and our analysis with GO terms and

protein domains further support this fact (see section 3.8.4).

Lethal proteins were found to have A, D, E, K, Q and S residues in great pro-

portions. These residues are polar, which suggests that lethal proteins are unlikely

to be located in membranes. In contrast, viable proteins have higher proportions

of C, F, I, L, V and W residues. These residues are hydrophobic which indicates

the tendency of viable proteins of being membrane proteins. In addition, C is

often found in the SS bonds in extracellular proteins. The result of L residue

follows a previous study which suggests that Leucine correlates negatively with

the likelihood of being lethal (Yuan et al., 2012). The enrichment of K residues in

lethal proteins agrees with our findings that they are likely to be more acetylated,

as proteins are acetylated on lysine residues (Henriksen et al., 2012). The enrich-

ment of acetylated proteins in lethal datasets implies that they are imperative for

regulating protein–protein interactions, gene expression and metabolic processes.

Lethal proteins are likely to have more polar, charged, basic and acidic

amino acids, whereas viable proteins have more aliphatic, aromatic and non-polar

residues. A possible reason behind the enrichment of polar, charged and basic

residues in lethal proteins is that they are less likely to be membrane proteins.

Similarly, the presence of non-polar residues in high proportions for viable pro-

teins is linked to their propensity to be located in membranes. Signal peptide

motifs are found to be more frequent in viable proteins agreeing with our result
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that viable proteins are more likely to be secreted (see section 3.8.3).

Lethal datasets are found being enriched in Ligase and Transferase among all

classes of enzyme. This result is consistent with biological process terms analysis,

as it reveals that lethal genes are greatly involved in regulating DNA replication,

DNA repair and transferase activity. In contrast, the enrichment of Hydrolases in

viable datasets makes sense, as Hydrolases are functionally less critical. Ligases

also perform more complex chemistry than Hydrolases.

We demonstrated that lethal proteins are likely to be more phosphorylated as

expected, as phosphoproteins are crucial for almost all cellular processes including

cell differentiation, gene transcription and cell division (Puente et al., 2006). Our

analysis with the GO terms of biological processes further confirmed the connection

of lethal genes in controlling these fundamental processes. In addition, a greater

number of N–glycosylated proteins in the viable datasets suggests their propensity

to mediate cell–signalling following prior studies (Yan et al., 2002; Weng et al.,

2013). The subcellular localisation analysis also confirms this result. Furthermore,

the significant enrichment of the keyword ‘transcription’ in lethal datasets implies

that a great proportion of lethal proteins function as transcription factors. Anal-

ysis of the GO–based annotations also established this result showing that lethal

proteins are greatly engaged in gene transcription.

Our results further revealed the abundance of transmembrane proteins in the

viable datasets. In addition, viable protein showed to have a greater number

of transmembrane helices compared to lethal proteins. This result makes sense
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because viable proteins tend to have a significantly high percentage of non–polar

residues and a low percentage of polar residues, thereby are more likely to be

hydrophobic. This result is further explained by their roles in cell communication,

transport and signal transduction.

3.8.3 Differences in Subcellular Locations

Gene products are confined to different subcellular compartments to carry out

their specific functions. Subcellular localisation can, therefore, provide useful in-

formation for gene essentiality. Localisation information has already recognised as

a significant attribute for essential genes in bacteria and yeast (Gustafson et al.,

2006; Seringhaus et al., 2006; Acencio and Lemke, 2009; Deng et al., 2010). Ac-

cordingly, our analysis demonstrated that proteins encoded by lethal genes are

more likely to be intracellular. The majority of these proteins are located in the

nucleus. This result conforms to the fact that almost one–third of the eukaryotic

nuclear proteins are encoded by essential genes and are responsible for carrying

out vital cellular processes like DNA replication, DNA repair and transcription

(Kumar et al., 2002; Zhang and Zhang, 2008). Our analysis of biological processes

further confirms this result. In addition, we found that lethal proteins are enriched

for DND–binding domain, protein kinase domain, helix–loop–helix (HLH), home-

obox, and Zinc finger, C4 type (zf–c4) protein domains. Many of these domains

are found in transcription factors, which agrees with our finding that lethal genes
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are nuclear localised. Proteins encoded by viable genes tend to be secreted (ex-

tracellular). The enrichment of signal peptide cleavage sites, fibronectin type III

(fn3) domain and signal transducer activity conforms to this result. In addition,

we found that a greater proportion of viable proteins are frequently located in

membranes. Their enrichment in non-polar residues and contribution to transport

activity further justifies this result. In addition, viable proteins are found being

enriched for Src Homology 2 (SH2), Src Homology 2 (SH3), and ion transport

domains. This further agrees with our finding that viable genes are membrane

bound as these domains are mainly found in membrane proteins.

3.8.4 Differences in Biological Processes and Molecular

Functions

We expected that the potential enrichment of a number of Gene Ontology (GO)

(Ashburner et al., 2000) terms would be different between lethal and viable datasets.

Our analysis showed that lethal genes are more likely to be involved in embryonic

development, heart development, nervous system development, blood vessel de-

velopment, brain development’ and lung development. These cellular processes

are indispensable for the progressive development of an embryo or fetus. This

result is expected because lethal proteins are enriched in T–box domains, which

are vital for heart development. In addition, we observed a significant enrichment

of lethal genes in cell morphogenesis, cell division, cell proliferation, DNA repli-

cation, cell differentiation, DNA repair and transcription, which are crucial for
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life. The presence of homeobox domain further confirms their vital role in mor-

phogenesis. Moreover, the enrichment of protein kinase domain agrees with their

involvement in transcription, cell differentiation and embryonic development. In

contrast, viable genes were associated with cellular processes like ion transport,

signal transduction, apoptosis, behaviour, and immune response.

Unlike viable genes, lethal genes showed DNA binding activity, transcription

factor activity, transferase activity, transcription factor binding and ATP binding

activity. The presence of HLH protein domains indicates their involvement in

DNA binding activity. However, viable genes were found to be significantly linked

to transporter activity, hydrolase activity, transmembrane transporter activity,

ion channel activity, signal transducer activity, and receptor binding. This result

makes sense because viable proteins are enriched in SH2 protein domains, which

aids in signal transduction activity. Also, viable genes were greatly found for

lipid binding activity. This is consistent with viable gene products tending to be

transmembrane proteins.

3.8.5 PPI Networks and Essentiality

The correlation between PPI networks and gene essentiality has already been es-

tablished in bacteria (Gustafson et al., 2006; Hwang et al., 2009; Deng et al.,

2010), yeast (Chen and Xu, 2005; Saha and Heber, 2006; Gustafson et al., 2006;

Hwang et al., 2009; Acencio and Lemke, 2009; Zhong et al., 2013), fly (Hahn and

Kern, 2005), and human (Goh et al., 2007; Yang et al., 2014), but not in mouse.
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The most significant properties of PPI networks that we found to be linked to

mouse essential genes are: degree, average shortest path (ASP) length, between-

ness centrality, closeness centrality and clustering coefficient. The enrichment of

high degree proteins in the lethal dataset indicates that proteins encoded by mouse

lethal genes are more likely to be hubs in the PPI network (He and Zhang, 2006).

This result conforms to the fact that highly connected proteins or hubs tend to be

essential and evolve slowly (Yu et al., 2004; Kim et al., 2006), and their absence

disrupts cell viability (Jeong et al., 2001).

Lethal proteins having a significantly shorter length of ASP implies that they

communicate with each other quickly in the PPI network. Lethal proteins with

high betweenness centrality characterise their propensity to be bottlenecks in in-

teraction networks. The link between lethal proteins and larger closeness centrality

suggests that lethal genes can quickly transfer information in the PPI network.

Furthermore, high values of clustering coefficient indicate that many of the inter-

acting partners of lethal proteins are also interact with each other. In addition,

we found significant enrichment of BN, EPC and MNC for lethal proteins. These

results further justify that lethal proteins function as hubs in interacting networks.

We conclude that essential genes in mouse play crucial roles in PPI networks.

3.9 Summary

We found a large number of features that show significant differences between

lethal and viable mouse genes. To our best knowledge, this is the first study
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where topological, biological and sequence-based gene properties have been sys-

tematically investigated in the mouse genome. These features are interrelated and

they represent different aspects of mouse gene essentiality. Many of these features

are found to be associated with essentiality in previous studies. In addition to that,

we identified a number of novel features that also showed a strong connection with

essentiality. These features include the number of transcripts, number of exons,

exon length, intron length, post-translational modifications like phosphorylation,

N–glycosylation, acetylation, transferase and ligase enzymatic function, develop-

mental gene expression, and enrichment of numerous key cellular processes. These

results validate our research hypothesis by showing that mouse essential and non-

essential genes are distinguishable by various sequence and functional properties.

We, therefore, suggest that these features could offer valuable insight into the

mammalian gene essentiality. These features can further be used in developing a

machine learning model, which may potentially enable us to predict mammalian

essential genes with high precision.



Chapter 4

Mammalian Essential Gene

Prediction

4.1 Introduction

Essential gene identification has already been achieved for various organisms through

different experimental techniques namely single gene knockouts (Crawley, 1999;

Giaever et al., 2002; Kobayashi et al., 2003), conditional knockouts (Liu et al.,

2000; Roemer et al., 2003), RNA interference (Cullen and Arndt, 2005; Kamath

et al., 2003), and transposon mutagenesis (Gallagher et al., 2007). Each of these

experimental methodologies assaying gene essentiality is time–consuming and re-

source intensive, and also limited to few species. A complement to these existing

experimental techniques is computational approaches, which have already shown

their ability to predict essential genes accurately at a reduced effort and cost

(Zhang et al., 2016).

162
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Due to the availability of genome sequences and functional genomics data,

previous studies deciphered the associations of different gene characteristics with

the experimentally determined essential genes. These gene features were subse-

quently used in developing computational models to make reliable predictions of

essential genes in worm, bacteria and yeast (Gustafson et al., 2006; Seringhaus

et al., 2006; Hwang et al., 2009; Deng et al., 2010; Yang et al., 2014). In addi-

tion, a prior study showed the feasibility of predicting essential genes in mouse

using their features (Yuan et al., 2012). However, this study had limited success

and it failed to justify why these features are imperative for essentially. Accord-

ingly, we assembled a wide range of sequence and functional properties of mouse

genes from diverse data sources to further characterise lethal (essential) and vi-

able (non–essential) genes in mouse, which should ultimately lead us to infer gene

essentiality in human since mouse and human demonstrate high level of similarity

in their genomes. We anticipated that various features would differentiate lethal

and viable genes.

In Chapter 3, it was established that a large number of features including

genomic features, protein sequence features, GO terms and protein–protein inter-

action (PPI) network features, differ significantly between lethal and viable genes

in mouse. These features are interrelated and signify different aspects of mouse

gene essentiality. If all features were identical within the lethal and viable datasets,

then they could not be used to predict gene essentiality. Integrating these statis-

tically significant features in developing a computational model should in turn
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enable us to predict mammalian essential genes with high precision. We, there-

fore, aim to develop a machine learning classifier using these hallmark features to

address to what extent mouse lethal and viable genes can be predicted from their

sequence and functional attributes.

This chapter presents a number of Random Forest classifiers, which were de-

veloped and trained to predict whether a mouse gene better fits the profile of a

lethal gene or viable gene on the basis of sequence and functional features. The

selection of training and test datasets is discussed here. We evaluated the predic-

tive power of our classifier based on cross–validation and observed high prediction

accuracy. Further validation of our model performance was achieved by predicting

lethal and viable genes in separate test datasets, confirming its ability to learn

traits associated with gene essentiality. Moreover, the most relevant features were

selected from the pool of all features by applying a feature selection method and

the Random Forest classifier was further trained with these selected features. Fea-

ture selection also confirmed our classifier’s capability in predicting gene essentially

without compromising the high prediction accuracy.
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4.2 Results

4.2.1 Datasets Generated

4.2.1.1 Features describing mouse genes in the datasets

In Chapter 3, we reported a large number of gene and protein features that exhibit

significant differences between lethal and viable mouse genes. These gene proper-

ties were used to generate training and test datasets of our mammalian essential

gene prediction classifier. We used 102 features with the corresponding class label

to describe each mouse gene in the training and test datasets. These features are

as follows:

• Genomic features:

– Gene length; percentage of GC content; the number of transcripts; the

number of exons; the length of exons and length of introns (section

2.2.1.1)

– The oocyte, unfertilized ovum, zygote, cleavage, morula, blastocyst,

egg cylinder, gastrula, organogenesis, fetus, neonate, juvenile and adult

developmental stages expression level (section 2.2.1.2)

– Evolutionary age based on most recent duplication (section 2.2.1.3)

• Protein sequence features:

– Protein sequence length; the proportions of 20 amino acid residues;

the proportions of polar, charged, basic, acidic, aliphatic, aromatic and

non–polar residues; molecular weight (section 2.2.2.1)

– Presence of six enzyme classes (section 2.2.2.2)
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– Presence of post–translational modifications (phosphoprotein, glyco-

protein, acetylation) and transcription (section 2.2.2.2)

– Presence of a signal peptide (section 2.2.2.3)

– The number of transmembrane helices (section 2.2.2.4)

– Localisation at the nucleus, cytoplasm, plasma membrane, extracellular

region, Golgi apparatus, endoplasmic reticulum, membrane (exclud-

ing plasma), mitochondrion, peroxisome, lysosome, cell junction and

cell projection; localisation score of nucleus, cytoplasm, plasma mem-

brane, extracellular region, Golgi apparatus, mitochondrion, endoplas-

mic reticulum, mitochondria, peroxisome, and lysosome predicted by

WoLF PSORT (section 2.2.2.5)

• Protein–protein interaction (PPI) network based features:

– The number of interactions (degree), the length of average shortest

path, betweenness centrality, closeness centrality, clustering coefficient,

topological coefficient, BottleNeck, Edge Percolation Component (EPC),

Maximum Neighbourhood Component (MNC) and Density of Maxi-

mum Neighbourhood Component (DMNC) for both Known (K) and

Known–Predicted (KP) (section 2.2.4)

4.2.1.2 Training and testing datasets

Our original dataset containing 1,301 lethal and 3,451 viable mouse genes is an

imbalanced dataset as the number of viable genes is much bigger than the number

of lethal genes. Studies showed that imbalanced datasets degrade the classification

performance of machine learning classifiers due to their bias towards classifying

instances belonging to the majority class (Visa and Ralescu, 2005) . We, therefore,

constructed three balanced training datasets containing equal number of lethal and
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viable mouse genes, each consisting of 102 gene features. We could not find some

features for a number of genes. Those missing entries were assigned the numeric

value of −1. Each training and test dataset covers different subsets of lethal and

viable genes as a result of random selection. Genes in test datasets were not

included in training our classifier. The following strategies were used to generate

balanced datasets.

• Balanced training dataset (train–01) and balanced test dataset

(test–b): These training and test datasets consist of equal number of lethal

and viable mouse genes. We created these datasets by including all the 1,301

lethal genes along with a randomly selected 1,301 viable genes. The training

dataset is then created by randomly selecting 1,040 (80%) genes from each

class. The remaining 261 (20%) genes from each class were used to create

the test dataset. Figure 4.1 shows the overall workflow.

• Balanced training dataset (train–02) and unbalanced test dataset

(test–u01): This training dataset contains equal number of lethal and vi-

able mouse genes. However, the test dataset contains more viable genes

compared to the number of lethal genes. We randomly selected 1,040 (80%)

lethal genes from 1,301 lethal genes. All of these 1,040 lethal genes were

included in the training dataset. The remaining 261 (20%) lethal genes were

used to create the test dataset. We further randomly selected 2,760 (80%)

genes from 3,451 viable genes. The remaining 691 (20%) viable genes were

included in the test dataset. Moreover, for viable genes we selected 1,040
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Figure 4.1: The workflow of generating the balanced train–01 and test–b
datasets.

Figure 4.2: The workflow of generating the balanced train–02 dataset and
unbalanced test–u01 dataset.

genes from the pool of 2,760 viable genes. These genes were also included in

the training dataset. Figure 4.2 shows the overall workflow.

• Balanced training dataset (train–03) and unbalanced test dataset

(test–u02): This training dataset also consists of equal number of lethal
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Figure 4.3: The workflow of generating the balanced train–03 dataset and
unbalanced test–u02 dataset.

and viable mouse genes, whereas these numbers are unequal for the test

dataset. In this case, 80% (1,040) lethal genes were randomly selected from

the pool of 1,301 lethal genes. The remaining 20% lethal genes were included

in the test dataset. From 3,451 viable genes, we randomly selected a total

of 1,040 genes (equal to the size of lethal genes in the training dataset). The

remaining 2,411 viable genes were included in the test dataset. Figure 4.3

shows the workflow of generating these datasets.

We further retrieved a total of 229 and 803 newly annotated lethal and vi-

able mouse genes from the International Mouse Phenotyping Consortium (IMPC)

(http://www.mousephenotype.org), who are generating and characterising new

mouse knockouts on a large–scale. After we retrieved our mouse gene dataset

from the MGI database, these targeted mouse genes were then published. In this

newly annotated gene list, a lethal gene is defined as a gene knockout causing

lethality before the weaning stage, whereas we defined lethal genes as those that

produce lethality prior to postnatal day 3 in single gene knockout experiments.
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Even though the classification of lethality in this newly annotated lethal list is

slightly different from our definition, we sought to use this list along with the new

viable list as a blind test dataset (test–new) to evaluate the performance of our

classifier.

4.2.2 Selection of the Mammalian Gene Prediction Model

Our aim is to construct a machine learning classifier that could accurately classify

mouse lethal (essential) and viable (non–essential) genes using their sequence and

functional properties. The Naive Bayes, decision tree, Support Vector Machine

(SVM) and Random Forest have been widely used in sequence-based prediction

of essential genes for various organisms (Acencio and Lemke, 2009; Hwang et al.,

2009; Yuan et al., 2012) (section 1.4). Among all of these machine–learning meth-

ods, Random Forest has already been found to outperform due to the following

reasons:

• High level of prediction accuracy

• Robust. Therefore, it has the ability to accurately make predictions even

the data has missing values.

• Can accommodate very large datasets and runs faster

• Faster in training

• Resistant to overfitting

We further sought to validate its superiority in predicting mouse genes in our

datasets. Hence, we used Weka (Hall et al., 2009) to develop these four classifiers
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Figure 4.4: Lethal gene prediction performance of the Naive Bayes, J48 de-
cision tree, SVM and Random Forest classifiers on balanced training datasets

train–01 (A), train–02 (B) and train–03 (C).

to predict gene essentiality in mammals (section 2.5.1). The Naive Bayes, J48

decision tree, SVM and Random Forest methods in Weka were developed with

default parameters using three balanced training datasets and their prediction

performance were evaluated based on a 10–fold cross validation method (section

2.5.2). Comparing the AUC values of the ROC curves (Huang and Ling, 2005),

we again confirmed that the Random Forest classifier demonstrates the best per-

formance (Figure 4.4 and 4.5; Table 4.1). Based on this observation, we selected

Random Forest as our mammalian gene prediction classifier.
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Figure 4.5: Viable gene prediction performance of the Nave Bayes, J48 de-
cision tree, SVM and Random Forest classifiers on balanced training datasets

train–01 (A), train–02 (B) and train–03 (C)

Table 4.1: AUC values obtained from the 10–fold cross validation of the Naive
Bayes, J48 decision tree, SVM and Random Forest classifiers trained and eval-

uated on train–01, train–02 and train–03 datasets.

Training Datasets
Classifiers train–01 train–02 train–03
Naive Bayes 0.722 0.701 0.687
Random Forest 0.922 0.909 0.913
J48 0.877 0.875 0.877
SVM 0.824 0.822 0.825
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4.2.3 Prediction of Mammalian Essential Genes using the

Random Forest Classifier

The Random Forest is an ensemble classifier, which was first implemented in 2001

(Breiman, 2001) and since then it has been found as a highly accurate classifica-

tion model in a number of studies (Bureau et al., 2005; Acencio and Lemke, 2009;

Yuan et al., 2012). It operates by building multiple decision trees during training

time. Each of these decision trees denotes prediction of a class. Two parame-

ters regulate the growth of Random Forests: numTrees, the number of decision

trees to be considered to grow the forest and numFeatures, the number of ran-

domly selected features to evaluate at each tree node (section 2.5.1). The default

value of numTrees is 10 in Weka. However, the default value of numFeatures is

log2(numberoffeatures) + 1, which is log2(102) + 1 = 7 in this study. We trained

the Random Forest classifier on the training datasets with different numTrees

(50, 100, 150, 200, 250, 300, 350, 400, 450, 500) and numFeatures (7, 10, 15, 20,

25, 30, 35, 40, 45, 50) values and choose the optimal values of these parameters.

4.2.4 Classifier trained on train–01 dataset and evaluated

on test–b test dataset

In this case, at first, we developed a Random Forest classifier (RF–1) by 10–fold

cross validation on the balanced train–01 dataset setting the missing attribute

values to 1. Here, the best combination of parameter values giving the highest

cross-validation accuracy was numTree = 200 and numFeatures = 20 (Table
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Table 4.2: Accuracy of Random Forest classifiers trained on the train–01
dataset with different combination of numTrees and numFeatures values.

numTrees
numFeatures 50 100 150 200
5 86.53 87.54 87.93 87.69
7 87.93 87.69 87.78 87.83
10 88.50 88.70 88.60 88.79
15 89.13 89.51 89.61 89.18
20 89.95 89.75 89.95 90.10

Table 4.3: 10-fold cross validation performance of the Random Forest classifier
(RF–1) trained and evaluated on the train–01 dataset setting missing attribute

entries to -1.

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.838 0.963
FP Rate 0.037 0.162
Precision 0.958 0.856
F–Measure 0.894 0.907
AUC 0.961 0.961

4.2). The cross–validation accuracy of this classifier was 90.10% (1874/2080) with

872 true–positives (TPs), 168 false–negatives (FNs), 1002 true–negatives (TNs)

and 38 false–positives (FPs) predictions. We also evaluated the predictive power

of this classifier by different performance measures. Table 4.3 lists their values in

detail by class. In addition, ROC curves were generated to confirm the classifier

performance (Figure 4.6).

Predicting mouse genes in the balanced test–b dataset with a high accuracy

of 90.99% (475/522) further validates the performance of the RF–1 classifier.

Table 4.4 displays the performance evaluation in detail. ROC curves of predicting

lethal and viable mouse genes in the test–b dataset are shown in Figure 4.7.

Weka uses ‘?’ symbol to represent the missing attribute values. Thus, we
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Figure 4.6: ROC curves for the lethal (A) and viable (B) genes prediction on
the train–01 dataset (cross–validation) by the RF–1 classifier

Figure 4.7: ROC curves for predicting lethal (A) and viable (B) genes in the
test–b dataset by the RF–1 classifier.

Table 4.4: Prediction of lethal and viable mouse genes in the test–b dataset
using the RF–1 classifier. (A) The confusion matrix highlighting the number

of TPs, FNs, TNs and FPs. (B) Different performance measures.

(A)

Predicted
Genes Lethal Viable

Actual
Lethal 219 42
Viable 5 256

(B)

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.839 0.981
FP Rate 0.019 0.161
Precision 0.978 0.859
F–Measure 0.903 0.916
AUC 0.962 0.962

further developed a Random Forest classifier (RF–1′) on the balanced train–01

dataset setting the missing attribute values to ‘?’. The cross–validation accu-

racy of this classifier was 87.74% (1825/2080) with 829 true–positives (TPs), 211
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Table 4.5: 10-fold cross validation performance of the Random Forest clas-
sifier (RF–1′) trained and evaluated on the train–01 dataset setting missing

attribute entries to ‘?’.

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.797 0.958
FP Rate 0.042 0.203
Precision 0.950 0.825
F–Measure 0.867 0.887
AUC 0.951 0.951

Figure 4.8: ROC curves for the lethal (A) and viable (B) genes prediction on
the train–01 dataset (cross–validation) by the RF–1′ classifier setting missing

attribute entries to ‘?’

false–negatives (FNs), 996 true–negatives (TNs) and 44 false–positives (FPs) pre-

dictions. Table 4.5 displays the performance evaluation in detail. ROC curves of

these cross-validation analysis are shown in Figure 4.8.

Predicting mouse genes in the balanced test–b dataset with a high accuracy

of 86.59% (452/522) further validates the performance of the RF–1′ classifier.

Table 4.6 displays the performance evaluation in detail. ROC curves of predicting

lethal and viable mouse genes in the test–b dataset are shown in Figure 4.9.
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Table 4.6: Prediction of lethal and viable mouse genes in the test–b dataset
using the RF–1′ classifier. (A) The confusion matrix highlighting the number

of TPs, FNs, TNs and FPs. (B) Different performance measures.

(A)

Predicted
Genes Lethal Viable

Actual
Lethal 201 60
Viable 10 251

(B)

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.770 0.962
FP Rate 0.038 0.230
Precision 0.953 0.807
F–Measure 0.852 0.878
AUC 0.942 0.942

Figure 4.9: ROC curves for predicting lethal (A) and viable (B) genes in the
test–b dataset by the RF–1′ classifier.

4.2.5 Classifier trained on train–02 dataset and evaluated

on test–u01 test dataset

We further developed a Random Forest classifier (RF–2) on the balanced training

dataset train–02 using 10–fold cross validation. In this case, the best combina-

tion of parameters values giving the highest cross–validation accuracy was again

numTree = 200 and numFeatures = 20 (Table 4.7). The overall cross–validation

accuracy of this classifier was 90.05% (1873/2080) with 852 TPs, 182 FNs, 1015

TNs and 25 FPs predictions. Table 4.8 demonstrates the high classification per-

formance of RF–2 classifier by means of different performance metrics. Moreover,

ROC curves were generated to confirm its high prediction capability (Figure 4.10).



Chapter 4. Mammalian Essential Gene Prediction 178

Table 4.7: Accuracy of Random Forest classifiers trained on the train–02
dataset with different combination of numTrees and numFeatures values.

numTrees
numFeatures 50 100 150 200
5 86.77 86.92 86.92 87.01
7 87.40 87.78 87.88 87.45
10 89.18 88.36 88.41 88.65
15 89.23 89.32 89.27 89.56
20 89.71 89.9 90.04 90.05

Table 4.8: 10–fold cross validation performance of the Random Forest classifier
(RF–2) trained and evaluated on the train–02 dataset.

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.825 0.976
FP Rate 0.024 0.175
Precision 0.972 0.848
F–Measure 0.892 0.907
AUC 0.961 0.961

Figure 4.10: ROC curves for the lethal (A) and viable (B) genes prediction
on the train–02 dataset (cross–validation) by the RF–2 classifier.

Furthermore, we validated superiority of the RF–2 classifier by classifying lethal

and viable mouse genes in the test–u01 dataset with an accuracy of 94.96%

(904/952). Table 4.9 shows the confusion matrix along with performance metrics.

ROC curves of predicting lethal and viable mouse genes in the test–u01 dataset

are shown in Figure 4.11.

Furthermore, we developed another Random Forest classifier (RF–2′) on



Chapter 4. Mammalian Essential Gene Prediction 179

Table 4.9: Prediction of lethal and viable mouse genes in the test–u01 dataset
using the RF–2 classifier. (A) The confusion matrix highlighting the number

of TPs, FNs, TNs and FPs. (B) Different performance measures.

(A)

Predicted
Genes Lethal Viable

Actual
Lethal 233 28
Viable 20 671

(B)

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.893 0.971
FP Rate 0.029 0.107
Precision 0.921 0.960
F–Measure 0.907 0.965
AUC 0.968 0.968

Figure 4.11: ROC curves for the lethal (A) and viable (B) genes prediction
on the test–u01 dataset (cross–validation) by the RF–2 classifier.

Table 4.10: 10–fold cross validation performance of the Random Forest clas-
sifier (RF–2′) trained and evaluated on the train–02 dataset.

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.780 0.958
FP Rate 0.042 0.220
Precision 0.949 0.813
F–Measure 0.856 0.879
AUC 0.945 0.945

the balanced train–02 dataset setting the missing attribute values to ‘?’. The

cross–validation accuracy of this classifier was 86.87% (1807/2080) with 811 true–

positives (TPs), 229 false–negatives (FNs), 996 true–negatives (TNs) and 44 false–

positives (FPs) predictions. Table 4.10 displays the performance evaluation in

detail. ROC curves of these cross-validation analysis are shown in Figure 4.12.
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Figure 4.12: ROC curves for the lethal (A) and viable (B) genes prediction
on the train–02 dataset (cross–validation) by the RF–2′ classifier.

Table 4.11: Prediction of lethal and viable mouse genes in the test–u01
dataset using the RF–2′ classifier. (A) The confusion matrix highlighting the

number of TPs, FNs, TNs and FPs. (B) Different performance measures.

(A)

Predicted
Genes Lethal Viable

Actual
Lethal 216 45
Viable 29 662

(B)

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.828 0.958
FP Rate 0.042 0.172
Precision 0.882 0.936
F–Measure 0.854 0.947
AUC 0.958 0.958

The superiority of the RF–2′ classifier was further validated by classifying

lethal and viable mouse genes in the test–u01 dataset with an accuracy of 92.23%

(878/952). Table 4.11 shows the confusion matrix along with performance metrics.

ROC curves of predicting lethal and viable mouse genes in the test–u01 dataset

are shown in Figure 4.13.
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Figure 4.13: ROC curves for the lethal (A) and viable (B) genes prediction
on the test–u01 dataset (cross–validation) by the RF–2′ classifier.

Table 4.12: 10–fold cross validation performance of the Random Forest clas-
sifier (RF–3) trained and evaluated on the train–03 dataset.

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.877 0.974
FP Rate 0.026 0.123
Precision 0.971 0.888
F–Measure 0.922 0.929
AUC 0.967 0.967

4.2.6 Classifier trained on train–03 dataset and evaluated

on test–u02 test dataset

In this case, 10–fold cross validation was used to develop a Random Forest clas-

sifier (RF–3) on the train–03 dataset. Here, the best combination of parame-

ters values giving the highest cross-validation accuracy was numTree = 200 and

numFeatures = 50. This classifier gave the overall cross–validation accuracy of

92.56% (1925/2080) with 812 TPs, 128 FNs, 1013 TNs and 27 FPs predictions. Ta-

ble 4.12 determines the high classification capability of RF–2 classifier by means

of different performance metrics. ROC curves further confirmed this result (Figure

4.14).

Additionally, predicting lethal and viable mouse genes in the test–u02 dataset
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Figure 4.14: ROC curves for the lethal (A) and viable (B) genes prediction
on the train–03 dataset (cross–validation) by the RF–3 classifier.

Table 4.13: Prediction of lethal and viable mouse genes in the test–u02
dataset using the RF–3 classifier. (A) The confusion matrix highlighting the

number of TPs, FNs, TNs and FPs. (B) Different performance measures.

(A)

Predicted
Genes Lethal Viable

Actual
Lethal 216 45
Viable 69 2342

(B)

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.828 0.971
FP Rate 0.029 0.172
Precision 0.758 0.981
F–Measure 0.791 0.976
AUC 0.962 0.962

Figure 4.15: ROC curves for the lethal (A) and viable (B) genes prediction
on the test–u02 dataset (cross–validation) by the RF–3 classifier.

with an accuracy of 95.73% (2558/2672) validated the superiority of the RF–3

classifier. Table 4.13 shows the confusion matrix along with performance metrics.

ROC curves of predicting lethal and viable mouse genes in the test–u02 dataset

are shown in Figure 4.15.
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Table 4.14: 10–fold cross validation performance of the Random Forest clas-
sifier (RF–3′) trained and evaluated on the train–03 dataset.

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.778 0.969
FP Rate 0.031 0.222
Precision 0.962 0.814
F–Measure 0.860 0.885
AUC 0.952 0.952

Figure 4.16: ROC curves for the lethal (A) and viable (B) genes prediction
on the train–03 dataset (cross–validation) by the RF–3′ classifier.

We further developed a new Random Forest classifier (RF–3′) on the balanced

train–03 dataset setting the missing attribute values to ‘?’. The cross–validation

accuracy of this classifier was 87.26% (1817/2080) with 809 true–positives (TPs),

231 false–negatives (FNs), 1008 true–negatives (TNs) and 32 false–positives (FPs)

predictions. Table 4.14 displays the performance evaluation in detail. ROC curves

of these cross-validation analysis are shown in Figure 4.16.

Predicting lethal and viable mouse genes in the test–u02 dataset with an

accuracy of 94.61% (2528/2672) also validated the superiority of the RF–3′ clas-

sifier. Table 4.15 shows the confusion matrix along with performance metrics.

ROC curves of predicting lethal and viable mouse genes in the test–u02 dataset

are shown in Figure 4.17.
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Table 4.15: Prediction of lethal and viable mouse genes in the test–u02
dataset using the RF–3′ classifier. (A) The confusion matrix highlighting the

number of TPs, FNs, TNs and FPs. (B) Different performance measures.

(A)

Predicted
Genes Lethal Viable

Actual
Lethal 189 72
Viable 72 2339

(B)

Class
Performance Measures Lethal Viable
TP Rate (Recall) 0.724 0.970
FP Rate 0.030 0.276
Precision 0.724 0.970
F–Measure 0.724 0.970
AUC 0.940 0.940

Figure 4.17: ROC curves for the lethal (A) and viable (B) genes prediction
on the test–u02 dataset (cross–validation) by the RF–3′ classifier.

4.2.7 Predicting essentially of genes in the test–new dataset

The test–new test dataset consists of a number of targeted mouse genes that are

recently annotated by the International Mouse Phenotyping Consortium (IMPC),

in which 229 genes are lethal (targeted genes die before the weaning stage) and 803

genes are viable. We further evaluated the performance of RF–1, RF–2, RF–3,

RF–1′, RF–2′ and RF–3′ classifiers with this test dataset. The RF–1 classifier

gave the overall accuracy of 65.21% (673/1032) with 32 TPs, 197 FNs, 641 TNs

and 162 FPs. The RF–2 classifier gave the accuracy of 61.43% (673/1032) with

22 TP, 207 FNs, 612 TNs and 191 FPs. The prediction accuracy of the RF–3

classifier was 56.49% with 34 TPs, 195 FNs, 549 TNs and 254 FPs. The RF–1′
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Table 4.16: Prediction of lethal and viable mouse genes in the test–new
dataset using RF–1, RF–2, RF–3, RF–1′, RF–2′ and RF–3′ classifiers.

Classifiers Gene Class TP Rate (Recall) FP Rate Precision F–Measure AUC

RF–1
Lethal 0.14 0.20 0.16 0.15 0.46
Viable 0.79 0.86 0.76 0.78 0.46

RF–2
Lethal 0.09 0.23 0.10 0.10 0.44
Viable 0.76 0.90 0.74 0.75 0.44

RF–3
Lethal 0.14 0.31 0.11 0.13 0.35
Viable 0.68 0.85 0.60 0.58 0.35

RF–1′
Lethal 0.17 0.09 0.35 0.23 0.58
Viable 0.91 0.82 0.79 0.85 0.58

RF–2′
Lethal 0.18 0.08 0.37 0.25 0.59
Viable 0.91 0.81 0.79 0.85 0.59

RF–3′
Lethal 0.16 0.07 0.40 0.23 0.59
Viable 0.93 0.83 0.79 0.85 0.59

classifier gave the overall accuracy of 74.51% (769/1032) with 41 TPs, 188 FNs,

728 TNs and 75 FPs. The RF–2′ classifier gave the accuracy of 75.09% (673/1032)

with 43 TP, 186 FNs, 732 TNs and 71 FPs. However, the prediction accuracy of

the RF–3′ classifier was 75.96% with 38 TPs, 191 FNs, 746 TNs and 57 FPs.

Table 4.16 shows the values of different performance metrics of these analyses.

All six classifiers showed poor prediction performance on the test–new dataset,

especially predicting lethal mouse genes. This is likely to be partly due to the def-

inition of lethality for the newly annotated lethal genes in the test–new dataset

differing from our definition of lethal genes. Also, we did not find information

about many gene features of these genes from the existing data sources. Correct-

ing these missing features might improve the overall prediction performance.
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4.3 Correcting Features having Missing Values

While analysing gene features, we found that there was no information about the

Known (K) protein–protein interaction (PPI) network (section 2.2.4) based fea-

tures for 40% mouse genes. In addition, 8% mouse genes did not have information

for 24 features including evolutionary age, the Known–Predicted (KP) PPI net-

work based topological features (10 features) and developmental gene expression

(13 features). These missing feature entries were set to −1 and ‘?’ while construct-

ing the training and test datasets. Though our Random Forest classifiers (RF–1,

RF–2, RF–3, RF–1′, RF–2′ and RF–3′) showed great accuracy for predicting

mouse genes even with these missing values, we expected that correcting them

could further improve the performance of our classifiers. Therefore, we replaced

the missing values of the above-mentioned features in the train–01, train–02 and

train–03 datasets with their mean value using the ReplaceMissingV alues filter

in Weka.

Hence, 10–fold cross validation was used to develop three new Random Forest

classifiers RF–4, RF–5 and RF–6 on the corrected train–01, train–02 and

train–03 datasets, respectively. The parameter settings remained the same of

RF–1, RF–2 and RF–3 classifiers.

The cross-validation accuracy of RF–4 classifier was 89.81% (1868/2080)

with 862 TPs, 178 FNs, 1006 TNs and 34 FPs. The cross–validation accuracy

of RF–5 classifier was 90.01% (1874/2080) with 857 TPs, 183 FNs, 1017 TNs

and 23 FPs. However, RF–6 classifier gave an overall cross–validation accuracy
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Table 4.17: 10–fold cross validation performance of Random Forest classifiers
RF–4, RF–5 and RF–6 trained and evaluated on the corrected train–01,

train–02 and train–03 datasets, respectively.

Classifiers Gene Class TP Rate (Recall) FP Rate Precision F–Measure AUC

RF–4
Lethal 0.82 0.03 0.96 0.89 0.96
Viable 0.96 0.17 0.85 0.90 0.96

RF–5
Lethal 0.82 0.22 0.97 0.89 0.95
Viable 0.97 0.17 0.84 0.90 0.95

RF–3
Lethal 0.85 0.01 0.98 0.91 0.96
Viable 0.98 0.14 0.92 0.92 0.96

of 92.16% (1917/2080) with 893 TPs, 147 FNs, 1024 TNs and 16 FPs. Table

4.17 demonstrated the cross–validation performance of RF–4, RF–5 and RF–6

classifiers by means of different metrics.

Furthermore, we validated superiority of these classifiers by classifying lethal

and viable mouse genes in the corrected test–b, test–u01 and test–u02 datasets

with an accuracy of 90.80% (474/522), 93.80% (893/952) and 94.61% (2528/2672)

for RF–4, RF–5 and RF–6 classifiers, respectively. Table 4.18 shows the high

classification capability of these classifiers by means of confusion matrix and differ-

ent performance metrics. ROC curves are shown in Figure 4.18. The adjustments

of missing attributes, in general, improved the performance of our classifiers.

Table 4.18: Prediction of lethal and viable mouse genes in different test
datasets using RF–4, RF–5 and RF–6 classifiers. (A) Confusion matrices
highlighting the number of TPs, FNs, TNs and FPs. (B) Different performance

measures.

(A)

Predicted
RF–4, test–b RF–5, test–u01 RF–6, test–u02

Genes Lethal Viable Lethal Viable Lethal Viable

Actual
Lethal 220 41 230 31 219 42
Viable 7 254 28 663 102 2309
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(B)

Classifiers Test Datasets Gene Class TP Rate (Recall) FP Rate Precision F–Measure AUC

RF–4 test–b
Lethal 0.843 0.027 0.969 0.902 0.966
Viable 0.973 0.157 0.861 0.914 0.966

RF–5 test–u01
Lethal 0.881 0.041 0.891 0.886 0.971
Viable 0.959 0.119 0.955 0.957 0.971

RF–6 test–u02
Lethal 0.839 0.042 0.682 0.753 0.959
Viable 0.958 0.161 0.982 0.970 0.959

Figure 4.18: ROC curves for predicting lethal (A, C, E) and viable (B, D, F)
genes in test–b (A, B), test–u01 (C, D) and test–u02 (E, F) datasets by the

RF–4, RF–5 and RF–6 classifiers.

We further assessed the performance of RF–4, RF–5 and RF–6 classifiers in

predicting mouse genes of the test–new dataset. The prediction accuracies were

73.35% (757/1032; TP = 44, FN = 185, TN = 713, FP = 90), 73.06% (754/1032;

TP = 47, FN = 182, TN = 707, FP = 96), 72.86% (752/1032; TP = 51, FN = 178,

TN = 701, FP = 102) for RF–4, RF–5 and RF–6 classifiers, respectively. These
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new classifiers also showed poor performance on predicting lethal genes in the

test–new dataset, however, the performance has improved compared to previous

test–new analysis (section 4.3.4).

4.4 Integration of Discretisation

Discretisation maps a continuous feature to nominal values or intervals. Usage

of nominal features has been shown to improve the performance of some classifi-

cation methods (Liu et al., 2002). Studies have also demonstrated that discreti-

sation facilitates faster learning and leads more accurate prediction (Dougherty

et al., 1995). Following the correction of missing values, we, therefore, applied the

Filtered classifier method in Weka to build Random Forest classifier with training

and test datasets being passed through a supervised discretise attribute filter to

discretise mouse gene features. We developed three new Random Forest classifier

RF–7, RF–8 and RF–9 on the corrected and discretised train–01, train–02 and

train–03 datasets, respectively. The previous parameter settings demonstrated

the best performance.

The cross–validation accuracy of RF–7 classifier was 88.61% (1843/2080)

with 868 TPs, 172 FNs, 975 TNs and 65 FPs. The RF–8 classifier showed the

cross–validation accuracy of 89.57% (1863/2080) with 869 TPs, 171 FNs, 994 TNs

and 46 FPs. However, RF–9 classifier gave an overall cross–validation accuracy

of 89.13% (1854/2080) with 866 TPs, 174 FNs, 988 TNs and 52 FPs. Table
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Table 4.19: 10–fold cross validation performance of Random Forest classifiers
RF–7, RF–8 and RF–9 trained and evaluated on the corrected and discretised

train–01, train–02 and train–03 datasets, respectively.

Classifiers Gene Class TP Rate (Recall) FP Rate Precision F–Measure AUC

RF–7
Lethal 0.835 0.063 0.930 0.880 0.949
Viable 0.938 0.165 0.850 0.892 0.949

RF–8
Lethal 0.836 0.044 0.950 0.889 0.950
Viable 0.956 0.164 0.853 0.902 0.950

RF–9
Lethal 0.833 0.050 0.850 0.885 0.947
Viable 0.950 0.167 0.850 0.897 0.947

4.19 demonstrated the cross-validation performance of RF–7, RF–8 and RF–9

classifiers by means of different metrics.

RF–7, RF–8 and RF–9 classifiers further exhibited great performance by

classifying lethal and viable mouse genes in the corrected and discretised test–b,

test–u01 and test–u02 datasets with an accuracy of 89.46% (467/522, 91.07%

(867/952) and 93.11% (2488/2672), respectively. Table 4.20 shows classification

performance of these classifiers by means of different metrics. ROC curves are

shown in Figure 4.19.

Furthermore, we evaluated the performance of RF–7, RF–8 and RF–9 clas-

sifiers in predicting mouse genes of the test–new dataset. The prediction accura-

cies were 66.96% (691/1032; TP = 72, FN = 157, TN = 619, FP = 184), 69.77%

(720/1032; TP = 61, FN = 168, TN = 659, FP = 144) and 66.96% (691/1032;

TP = 64, FN = 165, TN = 627, FP = 176) for RF–7, RF–8 and RF–9 classi-

fiers, respectively. These results indicate that our Random Forest classifiers had

difficulty in classifying mouse genes in the test–new dataset. The performance

of our classifiers on the other datasets indicate that the poor prediction accuracy
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on the test–new dataset is more likely due to the way lethal genes defined in the

dataset.

Overall, these three classifiers built on discretised data exhibited lower pre-

diction accuracy among all other Random Forest classifiers trained in our study.

4.5 Feature Selection using Information Gain

Accurate and reliable classification mainly relies upon the predictive strength of

the quantifiable features used to train the classifier. Features may provide little

or no information at all, or may be correlated to others, or they may be useful

when integrated with other features. It is not always best to use all features

to train a classifier. Usage of a subset of features can lower overfitting of the

classifier, can improve classification accuracy and can speed up the overall training

Table 4.20: Prediction of lethal and viable mouse genes in different test
datasets using RF–7, RF–8 and RF–9 classifiers. (A) Confusion matrices
highlighting the number of TPs, FNs, TNs and FPs. (B) Different performance

measures.

(A)

Predicted
RF–7, test–b RF–8, test–u01 RF–9, test–u02

Genes Lethal Viable Lethal Viable Lethal Viable

Actual
Lethal 223 38 223 38 207 54
Viable 17 244 47 644 130 2281

(B)

Classifiers Test Datasets Gene Class TP Rate (Recall) FP Rate Precision F–Measure AUC

RF–7 test–b
Lethal 0.854 0.065 0.929 0.890 0.954
Viable 0.935 0.146 0.865 0.899 0.954

RF–8 test–u01
Lethal 0.854 0.068 0.826 0.840 0.956
Viable 0.932 0.146 0.944 0.938 0.956

RF–9 test–u02
Lethal 0.793 0.054 0.614 0.692 0.937
Viable 0.946 0.207 0.977 0.961 0.937
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Figure 4.19: ROC curves for predicting lethal (A, C, E) and viable (B, D, F)
genes in test–b (A, B), test–u01 (C, D) and test–u02 (E, F) datasets by the

RF–7, RF–8 and RF–9 classifiers.

process. Hence, feature selection is imperative for the classification problem to

handle datasets with a large number of features and to select informative features

among all features. We, therefore, sought to use feature selection methods to

improve classification accuracy by significantly reducing the number of features

needed to accurately identify essential genes.

A number of feature selection methods are presently available to choose a

smaller set of features from larger datasets. A feature could be strongly relevant,

weakly relevant or irrelevant. Feature selection methods return a set of all relevant

features that gives the best predictive accuracy. A set comprising of all relevant
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features is more informative on the importance of features for classification. The

Information Gain feature selection algorithm (Kira and Rendell, 1992) was found

to be efficient for handling large datasets and selecting all relevant informative

features (Lee and Lee, 2006). This filter method scores the features of training

dataset using information gain and selects only top scored features satisfying a

threshold. The information gain of a feature measures how important the feature

is with respect to a classification target. A widely used measure of information

gain is Shannon entropy (Shannon, 2001). Wrapper methods (Kohavi and John,

1997) are another form of feature selection algorithms for selecting all relevant

features. They choose useful features in relation to the chosen classifier. They use

the classifier to score feature subsets according to their predictive strength. The

classifier is trained using each new subset and further tested on a hold–out set.

Counting the number of false classifications made on the hold–out set (the error

rate) provides the score for the respective feature subset. Genetic algorithms are

one of the common wrappers which search for a best subset of features giving the

highest classification accuracy. Though these methods are effective for selecting

all informative features (Maldonado and Weber, 2009; Kursa and Rudnicki, 2011),

they require greater computational efforts and time. Thus, we used the Informa-

tion Gain feature selection method to select all relevant features for classifying

mouse genes in our training datasets.

We applied the InfoGainAttributeEval filter in Weka as an Information Gain

feature selection method to select a subset of most informative mouse gene features
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among all features in the training datasets. The threshold value was set as 0.01,

i.e., only those features were selected whose information gain was greater than

0.01. The default threshold was −1.79 in Weka. We then developed Random

Forest classifiers based on this set of selected features.

The Information Gain method selected 65 significant features from the pool

of all features present in the corrected train–01 dataset. Table 4.21 shows top 30

of these features, which are sorted in descending order with respect to the corre-

sponding information gain value. The average shortest path (ASP) length within

the Known–Predicted (KP) PPI network came on top of the list, making it the

most important feature for the classifier. Developmental expression, localisations

at nucleus, other PPI network features, gene age, exon length and transcript count

were also present in the list of the selected features.

We trained a Random Forest classifier (RF–10) on this reduced train–01

dataset using 10 fold cross–validation. The cross–validation accuracy was 90.72%

(1887/2080) with 889 TPs, 151 FNs, 998 TNs and 42 FPs. Predicting mouse genes

in the test–b dataset further confirmed the high prediction accuracy (92.53%,

483/522) of this classifier with 230 TPs, 31 FNs, 253 TNs and 8 FPs. Table

4.22 demonstrates performance of this classifier by means of different metrics.

Our cross validation analyses showed that the classifier RF–10 provided more

accurate classification compared to RF–1, RF–4 and RF–7 classifiers (trained

on all features).

From the corrected train–02 dataset, the Information Gain method output
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Table 4.21: Top 30 features selected from the train–01 dataset using the
information gain feature selection method

Information Gain Gene Features
0.5637 ASP (KP PPI Network)
0.5562 Closeness Centrality (KP PPI Network)
0.1345 Organogenesis (Transcript/Million)
0.1046 Fetus (Transcript/Million)
0.0851 TC (KP PPI Network)
0.0834 EPC (KP PPI Network)
0.0811 Blastocyst (Transcript/Million)
0.0773 MNC (KP PPI Network)
0.0697 Degree (KP PPI Network)
0.0694 DMNC (KP PPI Network)
0.0678 Gastrula (Transcript/Million)
0.0601 Nucleus (UniProt)
0.0591 ASP (Known PPI Network)
0.0586 Closeness Centrality (Known PPI Network)
0.0547 Oocyte (Transcript/Million)
0.0542 Morula (Transcript/Million)
0.0519 Nuclues (WoLF PSORT Score)
0.0511 Cleavage (Transcript/Million)
0.0504 BN (KP PPI Network)
0.0425 BC (Known PPI Network)
0.0398 Neonate (Transcript/Million)
0.0395 Clustering Coefficient (KP PPI Network)
0.0385 Acetylation
0.0378 Transcription
0.0378 TC (Known PPI Network)
0.0364 Age
0.0339 Glycoprotein
0.0330 BN (Known PPI Network)
0.0330 Zygote (Transcript/Million)
0.0326 Degree (Known PPI Network)

Table 4.22: Performance metrics of the RF–10 classifier trained on selected
features of the train–01 dataset and evaluated on the test–b dataset.

Datasets Gene Class TP Rate (Recall) FP Rate Precision F–Measure AUC

train–01
Lethal 0.855 0.040 0.955 0.902 0.964
Viable 0.960 0.145 0.869 0.912 0.964

test–b
Lethal 0.881 0.031 0.966 0.922 0.971
Viable 0.969 0.119 0.891 0.928 0.971

61 features those found most relevant among all. Table 4.23 lists top 30 of these

features sorted in descending order with respect to information gain. We further

developed a Random Forest classifier (RF–11) on this reduced dataset. This
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Table 4.23: Top 30 features selected from the train–u01 dataset using the
information gain feature selection method

Information Gain Gene Features
0.5479 ASP (KP PPI Network)
0.5478 Closeness Centrality (KP PPI Network)
0.1148 Organogenesis (Transcript/Million)
0.0939 Fetus (Transcript/Million)
0.0832 TC (KP PPI Network)
0.0813 EPC (KP PPI Network)
0.0779 Blastocyst (Transcript/Million)
0.0755 Degree (KP PPI Network)
0.0741 MNC (KP PPI Network)
0.0632 ASP (Known PPI Network)
0.0612 Gastrula (Transcript/Million)
0.0612 Closeness Centrality (Known PPI Network)
0.0536 Morula (Transcript/Million)
0.0503 BC (Known PPI Network)
0.0498 BN (KP PPI Network)
0.0474 Oocyte (Transcript/Million)
0.0461 Nuclues (WoLF PSORT Score)
0.0447 Nucleus (UniProt)
0.0424 Age
0.0410 Cleavage (Transcript/Million)
0.0384 DMNC (KP PPI Network)
0.0380 Egg Cylinder (Transcript/Million)
0.0372 Zygote (Transcript/Million)
0.0359 Clustering Coefficient (KP PPI Network)
0.0352 Acetylation
0.0341 Unfertilized Ovum (Transcript/Million)
0.0334 Neonate (Transcript/Million)
0.0317 Transcription
0.0314 BN (Known PPI Network)
0.0299 TC (Known PPI Network)

Table 4.24: Performance metrics of the RF–11 classifier trained on selected
features of the train–02 dataset and evaluated on the test–u01 dataset.

Datasets Gene Class TP Rate (Recall) FP Rate Precision F–Measure AUC

train–02
Lethal 0.856 0.029 0.967 0.908 0.963
Viable 0.971 0.144 0.871 0.918 0.963

test–u01
Lethal 0.912 0.054 0.865 0.888 0.970
Viable 0.946 0.088 0.966 0.956 0.970

classifier built on selected features had the cross–validation accuracy of 91.35%
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Table 4.25: Top 30 features selected from the train–u02 dataset using the
information gain feature selection method

Information Gain Gene Features
0.5653 Closeness Centrality (KP PPI Network)
0.5603 ASP (KP PPI Network)
0.1140 Organogenesis (Transcript/Million)
0.0970 Fetus (Transcript/Million)
0.0861 TC (KP PPI Network)
0.0756 MNC (KP PPI Network)
0.0746 Degree (KP PPI Network)
0.0731 Blastocyst (Transcript/Million)
0.0708 EPC (KP PPI Network)
0.0593 Gastrula (Transcript/Million)
0.0549 Morula (Transcript/Million)
0.0546 Closeness Centrality (Known PPI Network)
0.0489 Nucleus (UniProt)
0.0472 Oocyte (Transcript/Million)
0.0455 BN (KP PPI Network)
0.0444 Age
0.0433 Acetylation
0.0413 Cleavage (Transcript/Million)
0.0398 ASP (Known PPI Network)
0.0396 DMNC (KP PPI Network)
0.0380 BC (Known PPI Network)
0.0359 Neonate (Transcript/Million)
0.0347 BN (Known PPI Network)
0.0340 Egg Cylinder (Transcript/Million)
0.0305 Transcription
0.0295 Clustering Coefficient (Known PPI Network)
0.0293 Degree (Known PPI Network)
0.0292 MNC (Known PPI Network)
0.0283 Clustering Coefficient (KP PPI Network)
0.0279 Nuclues (WoLF PSORT Score)

(1900/2080) with 890 TPs, 150 FNs, 1010 TNs and 30 FPs. We further vali-

dated the performance of this classifier by predicting mouse genes in the test–

u01 dataset with 93.70% (892/952), where TPs, FNs, TNs and FPs were 238,

23, 654 and 37, respectively. Table 4.24 shows different performance measures of

this analysis. Our cross validation analyses demonstrated that the classifier RF–

11 provided more accurate classification compared to RF–2, RF–5 and RF–8

classifiers.
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Table 4.26: Performance metrics of the RF–12 classifier trained on selected
features of the train–03 dataset and evaluated on the test–u02 dataset.

Datasets Gene Class TP Rate (Recall) FP Rate Precision F–Measure AUC

train–03
Lethal 0.851 0.032 0.964 0.904 0.964
Viable 0.968 0.149 0.867 0.915 0.964

test–u02
Lethal 0.828 0.039 0.699 0.758 0.958
Viable 0.961 0.172 0.981 0.971 0.958

Furthermore, the Information Gain method selected 55 most informative fea-

tures from the corrected train–03 dataset out of 102 features (top 30 features

in Table 4.25). The closeness centrality feature of the Known–Predicted (KP)

PPI network was present on top of the list, making it the most significant feature

for the classifier. A Random Forest classifier (RF–12) was then developed on

this reduced dataset. The cross–validation accuracy of this classifier was 90.96%

(1892/2080) with 885 TPs, 155 FNs, 1007 TNs and 33 FPs. Predicting mouse

genes in the test–u02 dataset further validated the great classification capabil-

ity of this classifier. The overall accuracy on the test–u02 dataset was 94.84%

(2534/2672) in which TP = 216, FN = 45, TN = 2318 and FP = 93. Table 4.26

illustrates the classification efficiency of the RF–12 classifier by means of different

performance measures.

4.6 Discussion

Determining essential genes in mammals is a key concern of development biology as

it facilitates understanding of cellular, developmental and vital tissue-specific pro-

cesses and functions. Experimental methods for essential gene identification are
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accurate, but usually require immense investment of time and resources. Com-

putational methods circumvent these experimental constraints and offer accurate

prediction of essential genes from their characteristics at a much reduced time and

cost.

In Chapter 3, we found a number of gene features that significantly vary be-

tween lethal (essential) and viable (non–essential) genes in mouse. We, therefore,

proposed a number of Random Forest classifiers to predict gene essentiality from

these hallmark features. We sought to address to what extent these sequence and

functional attributes can predict mouse lethal and viable genes. We constructed

three training datasets to train Random Forest classifiers, which contained equal

number of mouse lethal and viable genes, each comprised of 102 features. Balanced

training datasets were used, as imbalanced datasets could lower the classification

performance by making more false positive predictions. In addition, we made three

separate test datasets to validate the performance of our classifiers. Mouse genes

in the test datasets were not included in classifier training. Our Random Forest

classifiers, which were built on all 102 gene features demonstrated high accuracy of

∼91% and AUC of ∼0.963, suggesting that lethal and viable genes are highly pre-

dictable from their characteristics. The prediction of mouse genes in test datasets

with accuracy of ∼93% and AUC of ∼0.964 further confirmed the superiority of

our classifiers.

Our classifiers showed poor performance on predicting lethal genes in the

test–new dataset containing mouse genes annotated recently by the IMPC. The
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poor performance on this test dataset is attributed to differences in the class

labelling since IMPC defines the lethal gene as a gene knockout causing lethality

before the weaning stage. In contrast, we defined lethal genes as those that produce

lethality prior to postnatal day 3 in single gene knockout experiments. We further

checked whether the feature distributions in the test–new dataset (for each class)

differ from the training data. The difference of different features between lethal

and viable genes in this test dataset are listed in AppendexA. We have found

many of the important features including gene length, exon length, intron length,

proportions of aliphatic, polar and non–polar residues, molecular weight, protein

length, MNC, proportion of Transferases and Hydrolases, and plasma membrane

score, which offered statistically significant differences for genes in the training

dataset, were not anymore statistically different in the test–new dataset. This

is expected as many of the lethal genes present in this test dataset would have

been included in the viable dataset if they were labelled based on the criteria that

we used for defining lethal genes. In addition, for gene length, intron length, and

proportions of serine and alipahtic residues, we observed opposite trend, whereas

for all other features, the trends were consistent with that of the training dataset.

We believe this is due to the fact that membership of certain genes in the lethal

dataset may have influenced the overall pattern that were observed. Additional

information of the time when the lethality occurs for these mouse genes may

help us to better understand the source of the discrepancy that we have observed

from the test–new dataset. We also believe that this result does not necessarily
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undermine the efficacy of our model rather it highlights the problem of addressing

the issue of gene essentiality without a global standard.

Our proposed classifiers showed the highest classification performance com-

pared to the AUC values of 0.803 (Yang et al., 2014), 0.782 (Yuan et al., 2012), 0.9

(Deng et al., 2010) and 0.773 (Acencio and Lemke, 2009) in previous studies. The

other performance measures including recall, precision and F–measure also proved

the high performance of our classifiers. Correcting missing values of gene features

in the datasets further improved the classification accuracy of our classifiers (AUC

= ∼0.965). Though we expected to further refine classifier performance through

discretisation, it slightly lowered the accuracy of our Random Forest classifiers

(AUC = ∼0.949), suggesting that our classifiers work best with numeric features

rather than nominal features. Besides the advantages of using the Random Forest

method, one probable reason for getting such a high performance could be the

accuracy of lethal and viable gene assignments in our datasets.

Furthermore, in order to further improve classification performance and to

speed up the training process, we used the Information Gain feature selection

algorithm which selected a subset of features from training datasets (65, 61 and 55

features from train–01, train–02 and train–03 datasets, respectively) based on

information gain. Further development of Random Forest classifiers with selected

features demonstrated the highest prediction accuracy (AUC = ∼0.971). This

result suggests that the reduced subset of features is more informative to accurately

predict gene essentiality. The information gain score of all selected features showed
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that the most informative feature among all is either average shortest path (ASP)

length or the closeness centrality within the Known–Predicted (KP) PPI network.

Gene expression level at different developmental stages (including oocyte, zygote,

cleavage, morula, egg cylinder, organogenesis, fetus, neonate, adult) was found to

be highly informative. The highly relevant features for subcellular localisation were

nucleus, extracellular region and plasma membrane. Gene evolutionary age was

also found being highly informative. Moreover, almost all PPI network features

including degree, betweenness centrality (BC), clustering co–efficient, BottleNeck

(BN), Edge Percolation Component (EPC) showed their efficiency in providing

more information for gene essentiality. Other informative features were: post–

translational modifications, signal peptide, gene length, protein length, molecular

weight, proportion of a number of amino acid residues (including W, L, F, K, V,

E, non–polar, polar, basic, aromatic, charged), exon length and transcript count.

These results generally support what has established in Chapter 2, where these

selected features were found to significantly differentiate lethal genes from viable

genes. Overall, these results indicate that the integration of feature selection

technique in the Random Forest classifier outperforms the predictability of mouse

lethal and viable genes by all features.
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4.7 Summary

In this study, we proposed a novel Random Forest classifier incorporating feature

selection algorithm and missing value correction technique to predict mouse es-

sential genes from their sequence and functional properties. To the best of our

knowledge, this is the first study where topological, biological and sequence–based

gene properties have been systematically used to develop a classifier that can pre-

dict essential genes in the mouse genome. The proposed Random Forest classifier

successfully predicted mouse essential genes with high precision. It shows higher

prediction capability than other classifiers established in prior studies to predict

essential genes in bacteria, yeast and mouse. This study will ultimately lead us

to predict essential genes in human due to the high similarity between mouse and

human genomes.



Chapter 5

Gene Duplication, Mammalian

Essentiality and the Hourglass

Model

5.1 Introduction

Gene duplication and mammalian gene essentiality

Gene duplication is a key evolutionary event in multicellular eukaryotes (Lynch

and Conery, 2003), which potentially generates new genes (paralogues), with new

biological functions (Ohno, 1970; Long et al., 2003). There has been much interest

in understanding the roles of duplicate genes and their correlations with pheno-

typic changes resulting from the gene deletion. As mentioned earlier (section 1.1),

genes are considered as essential or lethal if they generate lethal phenotypes when

mutated or deleted. However, non–essential genes may be useful but not criti-

cal and their deletion produce less deleterious phenotypes. Prior studies reported

204
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that the functional loss of deleting a duplicate gene could be compensated by the

existence of its close paralogue in the same genome with overlapping function and

expression (Gu, 2003; Gu et al., 2003; Conant and Wagner, 2004; Guan et al., 2007;

Dean et al., 2008; DeLuna et al., 2008). Moreover, genome–wide gene knockdown

or knockout experiments in C. elegans (Kamath et al., 2003; Conant and Wagner,

2004) and S. cerevisiae (Gu et al., 2003) showed that duplicate genes are con-

siderably less essential than singletons (single–copy genes). However, studies in

mouse knockout phenotypes (∼4000 genes) reported that the proportion of essen-

tial genes between singletons and duplicates is similar, therefore, mouse duplicate

genes are just as essential as singletons (Liang and Li, 2007; Liao and Zhang, 2007).

This trend in mouse was subsequently contradicted in a study where the authors

observed an important role of human duplicate genes in genetic robustness (Hsiao

and Vitkup, 2008). Overall, these results do not provide any consensus about the

relationship between essentiality and gene duplication in mammals.

Liao and Zhang (2007) investigated several factors, including divergence in

protein sequence, divergence in expression and evolutionary conservation between

a duplicate gene and its closest paralogue that might bias the proportion of es-

sential gene being similar between mouse singletons and duplicates. The authors

did not find any significant data bias, which led them to conclude that functional

compensation between mouse duplicates is rare. On the contrary, Liang and Li

(2007) observed high protein connectivity for mouse duplicate genes compared to

mouse singletons. The authors claimed that functionally critical genes are more
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likely to be duplicated, since high protein connectivity implies high functional sig-

nificance, further highlighting mouse duplicate genes being more essential. Their

analysis could not justify why functionally essential genes are more likely to be du-

plicated in mouse, while yeast genes had the opposite trend (Prachumwat and Li,

2006). Moreover, results of these two studies (Liang and Li, 2007; Liao and Zhang,

2007) could be susceptible to potential data biases because researchers prefer to

report those genes that show discernible phenotypes in the knockout experiments.

Therefore, knockout datasets are likely to under–represent gene knockouts with

no phenotypic change even though the experiments have actually taken place.

One study (Makino et al., 2009) found that the mouse knockout dataset is bi-

ased towards genes involved in development and genes duplicated by whole genome

duplication (WGD) events. The authors further demonstrated that developmen-

tal genes tend to be more essential than non–developmental genes, regardless of

being singletons or duplicates. WGD duplicates were more likely to be essential

than genes derived from single gene duplication (SGD) in this study. In addition,

studies (Su and Gu, 2008; Su et al., 2014) found that genes derived from recent

duplications were under–represented in the mouse knockout dataset, leading to

overestimation of essentiality frequency in duplicates. The overall proportion of

mouse essential genes became significantly lower in duplicates compared to that

in singletons after correcting these biases (Su and Gu, 2008; Makino et al., 2009).

Furthermore, when evolutionary age was considered, Chen et al. (2012b) ob-

served that older mouse genes were more prone to be essential irrespective of being
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singletons or duplicates. The authors also reported that singletons are more likely

to be essential than duplicates, presumably because recently duplicated genes are

more likely to retain shared functions and expressions. Su et al. (2014) further

confirmed that the contribution to functional compensation by mouse duplicate

genes is duplication–age dependent. Explanations of all prior analyses could not

address why some duplicate pairs are both essential, some are both non–essential

and some are mixed. We sought to further investigate this issue to understand the

correlation between gene duplication and essentiality in mammals.

The hourglass model during mammalian development

Embryogenesis is the most critical phase of mammalian development, which co-

ordinates the progressive transformation of a single fertilized egg into a complex

multicellular organism. It has been observed that embryos from the same phyla

are morphologically more divergent at early and late embryogenesis stages but

morphologically conserved during mid–embryogenesis. This morphological pat-

tern during embryogenesis is called the hourglass model of development (Duboule,

1994; Raff, 1996). The stage at mid–gestation, where embryos are similar in mor-

phology to other embryos of the same phyla, is known as the phylotypic stage

(Sander et al., 1983; Elinson, 1987) or phylotypic period (Richardson, 1995). Re-

cently much attention has been paid to determine the developmental hourglass

model (Abzhanov, 2013; Piasecka et al., 2013; Irie and Kuratani, 2014; Drost

et al., 2015). Molecular interpretations of this model suggest that gene expression
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patterns between organisms are most similar at the phylotypic stage. Previous

studies (Domazet-Los̆o and Tautz, 2010; Piasecka et al., 2013; Drost et al., 2015)

reported that genes expressed at the phylotypic stage tend to have an older evolu-

tionary origin than genes expressed in early or late development, thus forming an

hourglass pattern when transcription age is plotted against developmental time.

Support for the hourglass model of developmental gene expression has been shown

for multiple organisms, including fungi (Cheng et al., 2015), plants (Quint et al.,

2012; Drost et al., 2015), Drosophila (Domazet-Los̆o and Tautz, 2010; Kalinka

et al., 2010; Ninova et al., 2014), and zebrafish (Domazet-Los̆o and Tautz, 2010).

Only one study (Irie and Kuratani, 2011) has found the hourglass pattern during

mammalian development by investigating the transcriptome. This inspired us to

further examine the existence of the developmental hourglass model in mammals.

In this chapter, we investigated the relationships between gene essentiality

and gene duplication in mouse. Our analysis found that evolutionary age as well

as mode of gene duplication is strongly linked to mouse gene essentiality. It is likely

that duplicates with similar developmental expression patterns are more likely to

functionally compensate for each other. Hence, we explored the expression profile

similarities for duplicates across 13 stages of mouse development. Our hypothesis

was that duplicates with similar developmental co–expression are more likely to

be viable, whereas duplicates without similar developmental co–expression are

more likely to be lethal. Apart from that, the morphological hourglass model in

mouse development is also addressed in this chapter. To determine whether the
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hourglass pattern exists in mammalian embryos, we assessed the evolutionary age

of genes expressed at the early, phylotypic and late stages in mouse development.

Prior studies of conserved patterns of gene expression in mouse embryos (Irie and

Kuratani, 2011; Bogdanović et al., 2016) have identified the phylotypic period as

corresponding to the developmental stages of gastrula and organogenesis, and we

adopted this definition for our study. We found evidence that the morphological

hourglass pattern does exist in mouse development.

5.2 Results

5.2.1 Datasets

As mentioned in section 3.2, we obtained 1,301 lethal and 3,451 viable mouse

genes from the MGI database (Bult et al., 2008) examining the phenotype infor-

mation of knockout mice. Our dataset shows the same trend of (White et al.,

2013) with viable genes being more common than lethal genes in mouse. We fur-

ther retrieved a total of 22,944 protein–coding mouse genes from the MouseMine

system (Motenko et al., 2015). After excluding 4,752 genes of known essentiality

status and also the non–mouse genes, we found 16,960 mouse genes with unknown

essentiality. Furthermore, we retrieved gene expression data as transcripts per

million (TPM) from the UniGene database (Stanton et al., 2003) for 1,301 lethal,

3,409 viable and 14,599 unknown genes over 13 stages of mouse development.
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Table 5.1: Proportion of mouse genes in different datasets. Here, All(%)
refers to the proportion of singletons and duplicates. Lethal(%) and Viable(%)

represent proportions of each gene type in singletons and duplicates

Genes All All(%) Lethal Lethal(%) Viable Viable(%)
Singleton 852 17.94 282 33.10 570 66.90
Duplicate 3900 82.12 1019 26.13 2881 73.87
Total 4749 1301 3451

From the Blastp search (Altschul et al., 1990) and Ensembl gene tree analyses

(see section 2.1.3), we obtained 1,019 lethal duplicates and 2,881 viable duplicate

genes (Table 5.1). In agreement with (Chen et al., 2012b), we demonstrated

that lethal genes originating from duplicates (26.13%) are considerably lower in

proportion than those originating from singletons (33.10%), with a p–value =

4.82× 10−4. In addition, we obtained 143 lethal–lethal, 962 viable–viable and 491

lethal–viable mouse duplicate pairs within our dataset whose human orthologue

duplicate pairs are listed in a previous study (Makino and McLysaght, 2010).

Moreover, we found 2,223 small–scale duplicates (lethal: 500; viable: 1,723) and

1,834 whole–genome duplicates (lethal: 489; viable: 1,345).

5.2.2 Lethal Genes and Singleton genes have Older Evolu-

tionary Age

A recent study of Chen et al. (2012b) reported that evolutionary age of genes is

greatly linked to gene essentiality. The authors showed that knockout genes with

earlier phyletic origin tend to be more essential in yeast and mouse, regardless of

being singletons or duplicates. To confirm this result, we analysed the evolutionary

age of mouse genes that were expressed over development. We considered two ages
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Table 5.2: Number of lethal and viable genes in different categories expressed
at 13 stages of mouse development

Developmental stages
All Singletons Duplicates

Lethal Viable Lethal Viable Lethal Viable
Oocyte 534 693 162 121 372 572
Unfertilized ovum 336 347 88 57 248 290
Zygote 450 591 125 108 325 483
Cleavage 576 774 163 145 413 629
Morula 553 653 164 114 389 539
Blastocyst 760 1009 221 173 539 836
Egg cylinder 281 284 76 52 205 232
Gastrula 725 974 205 172 520 802
Organogenesis 1070 1805 263 303 807 1502
Fetus 1243 2873 279 461 964 2412
Neonate 1086 2361 255 381 831 1980
Juvenile 1180 2920 275 493 905 2427
Adult 1225 3127 280 513 945 2614

for mouse duplicates: the age of the duplicate common ancestor (DCA) and the

age of the most recent duplication (MRD) (section 2.2.1.3). However, the age of

non–duplicated genes (singletons) was estimated based on the age of their single

common ancestor (SCA). Table 5.2 shows the total numbers of lethal and viable

genes that are expressed at different developmental stages. As mentioned in the

section 2.2.1.3, mouse gene ages (Table 3.4A) were estimated as millions of years

(MYA) from the Ensembl (release 75) gene trees of mouse gene families (Vilella

et al., 2009). We found DCA ages for 1,297 (99.69%) lethal and 3,435 (99.54%)

viable genes, and MRD ages for a total of 1,276 (98.07%) lethal and 3,357 (97.28%)

viable genes.

We compared the differences in different age groups between lethal and viable

datasets. We found that majority of lethal singleton genes have evolutionary ages

between 1215 and 937 MYA, and that they are older than lethal duplicates, viable

singletons and viable duplicates (Figure 5.1). This result was observed from the
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Figure 5.1: Percentages of lethal and viable genes for different age groups.
Here, ages of mouse duplicates were calculated based on the Duplicate Common
Ancestor (DCA) or Most Recent Duplication (MRD). For singleton genes, the

age of their single common ancestor (SCA) was used.

analyses of both DCA and MRD age. We further examined proportions of mouse

genes in different age groups that are expressed across 13 developmental stages

and found that DCA gives much older ages than MRD (Figure 5.2). This is

understandable because MRD only considers the most recent duplication event,

while DCA accounts for the age of the most distant common ancestor. Moreover,

analysing the evolutionary age of all lethal and viable genes expressed at each

developmental time point revealed that lethal genes are more likely to be older

than viable genes, irrespective of whether the duplicate gene age was calculated

based on the DCA (Figure 5.3) or MRD (Figure 5.4). A greater percentage of

lethal genes have evolutionary age between 1215 and 937 MYA. However, a greater

percentage of viable genes were found to be between 400 and 535 MYA old. Table
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Figure 5.2: Percentages of expressed genes for SCA+DCA (A) and
SCA+MRD (B) mouse gene ages over 13 stages of mouse development. Here,
ages of mouse duplicates were calculated based on the Duplicate Common An-
cestor (DCA) or Most Recent Duplication (MRD). For singleton genes, the age

of their single common ancestor (SCA) was used.

5.3 shows the statistical significance of these observations.

Furthermore, analysis with singletons and duplicates over developmental stages

confirmed that expressed mouse singletons have an older evolutionary age than
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Figure 5.3: Percentages of lethal and viable genes for SCA+DCA mouse gene
ages that are expressed over 13 developmental stages. Here, age of mouse dupli-
cates and singletons was calculated based on the Duplicate Common Ancestor

(DCA) and single common ancestor (SCA), respectively.

mouse duplicates expressed at the same stage of development (Figure 5.5). More-

over, lethal singletons are more likely to be older than viable singletons, lethal

duplicates and viable duplicates expressed at the same stage of development.

Overall, our investigation demonstrated that lethal and singleton genes for
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Figure 5.4: Percentages of lethal and viable genes for SCA+MRD mouse
gene ages that are expressed over 13 developmental stages. Here, age of mouse
duplicates and singletons was calculated based on the Most Recent Duplication

(MRD) and single common ancestor (SCA), respectively.

mouse development are more ancient than viable and duplicate genes, which re-

confirms what Chen et al. (2012b) established.
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Table 5.3: Chi–squared test results highlighting differences between lethal
and viable mouse gene proportions for different age groups at 13 developmen-
tal stages. Here, highlighted cells in yellow shows the statistically significant

differences.

Developmental stages Age 400 535 722 937 1215

Oocyte
DCA 0.014 0.023 0.175 0.205 9.9× 10−04

MRD 3.9× 10−06 0.025 0.670 4.1× 10−05 9.5× 10−11

Unfertilized ovum
DCA 0.593 0.162 0.014 0.020 0.743
MRD 4.8× 10−04 0.167 0.742 6.2× 10−04 7.9× 10−04

Zygote
DCA 0.221 0.056 0.095 0.345 2.4× 10−03

MRD 1.2× 10−04 0.105 0.387 4.8× 10−04 4.2× 10−07

Cleavage
DCA 0.019 0.004 0.266 5.4× 10−03 0.028
MRD 3.8× 10−06 0.099 0.203 4.2× 10−09 9.6× 10−07

Morula
DCA 0.181 0.132 0.099 0.284 0.017
MRD 3.1× 10−05 0.004 0.722 2.5× 10−06 2.2× 10−06

Blastocyst
DCA 3.3× 10−05 4.4× 10−03 7.0× 10−03 1.7× 10−04 7.6× 10−03

MRD 3.4× 10−08 0.082 0.755 1.2× 10−09 1.2× 10−10

Egg cylinder
DCA 0.751 0.384 0.623 0.987 0.179
MRD 0.028 0.788 0.204 0.317 0.013

Gastrula
DCA 8.8× 10−04 0.031 4.5× 10−03 4.4× 10−03 2.4× 10−03

MRD 5.3× 10−07 0.307 0.938 2.1× 10−09 1.5× 10−09

Organogenesis
DCA 2.0× 10−03 3.1× 10−04 7.9× 10−03 2.8× 10−04 3.2× 10−04

MRD 3.1× 10−07 0.039 0.265 7.2× 10−10 1.0× 10−14

Fetus
DCA 1.4× 10−05 1.5× 10−03 0.013 1.9× 10−05 1.7× 10−07

MRD 5.3× 10−08 0.183 0.261 1.6× 10−18 7.5× 10−22

Neonate
DCA 4.0× 10−04 1.2× 10−03 1.1× 10−03 1.5× 10−05 1.1× 10−06

MRD 8.1× 10−08 0.176 0.530 4.3× 10−18 3.1× 10−19

Juvenile
DCA 5.3× 10−06 2.4× 10−03 0.016 3.2× 10−06 5.5× 10−08

MRD 5.3× 10−08 0.077 0.145 9.5× 10−21 7.9× 10−23

Adult
DCA 2.6× 10−06 2.3× 10−03 8.8× 10−03 1.3× 10−06 1.7× 10−08

MRD 4.8× 10−08 0.241 0.405 1.7× 10−22 9.1× 10−24
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Figure 5.5: Percentages of lethal singletons, lethal duplicates, viable singletons
and viable duplicates for different age groups across 13 stages of mouse devel-
opment. Here, age of mouse duplicates and singletons was calculated based on

DCA, MRD and SCA ages, respectively.
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5.3 Small Scale Duplicates (SSDs) are Older than

Whole Genome Duplicates (WGDs)

In a given genome, duplicate genes can be generated either by small–scale (mostly

single gene) duplication (SSD) or large–scale duplication events. The most ex-

treme large–scale gene duplication event is the whole genome duplication (WGD)

yielding the duplication of the entire genome. Previous studies already revealed a

distinct difference between duplicate genes in yeast resulting from SSD and WGD

mechanisms (Hakes et al., 2007; Fares et al., 2013), with WGD–derived genes being

less essential and functionally more similar than SSD–derived genes. In addition,

the authors demonstrated that the deletion of duplicate genes derived through

WGD process produces less deleterious effects. We subdivided mouse duplicate

genes in our datasets as SSD duplicates and WGD duplicates (mentioned in section

2.1.3) to examine their differences in evolutionary age over development.

Comparing different MRD age groups between small–scale and whole–genome

duplicates expressed at each developmental time point revealed that genes dupli-

cated by SSD tend to be older than those duplicated by WGD (Figure 5.6). A

significantly greater proportion of genes duplicated by SSD were found to have

evolutionary ages between 1215 and 937 MYA. A majority of the WGD genes

were 535 and 400 MYA old. Table 5.4 shows the statistical significance of these

observations. Moreover, we observed that lethal SSDs are more likely to be older

than viable SSDs, lethal WGDs and viable WGDs (Figure 5.7). The similar trend

was also observed while considering DCA age for mouse duplicates (Figure 5.8).
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Figure 5.6: Percentages of small–scale duplicates (SSD) and whole–genome
duplicates (WGD) for different age groups across 13 developmental stages. Here,
age of mouse duplicates was calculated based on the Most Recent Duplication

(MRD) event.
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Table 5.4: Chi–squared test results highlighting most significant differences
between SSD and WGD gene proportions for MRD age groups across 13 devel-

opmental stages.

Developmental stages
Age

400 414 535 722 937 1215
Oocyte 2.8× 10−7 0.336 0.014 0.982 2.2× 10−15 1.1× 10−7

Unfertilized ovum 5.9× 10−6 0.465 0.039 0.909 6.6× 10−9 2.9× 10−4

Zygote 4.4× 10−7 0.816 0.033 0.821 1.9× 10−11 1.4× 10−6

Cleavage 8.5× 10−7 0.755 0.002 0.148 2.9× 10−13 3.4× 10−8

Morula 1.8× 10−5 0.439 0.041 0.199 6.9× 10−11 6.4× 10−9

Blastocyst 1.0× 10−5 0.881 7.7× 10−6 0.727 1.3× 10−16 1.3× 10−9

Egg cylinder 6.4× 10−4 0.973 0.008 0.957 9.1× 10−6 8.4× 10−5

Gastrula 3.6× 10−8 0.449 8.4× 10−5 0.088 1.9× 10−16 6.7× 10−10

Organogenesis 9.9× 10−10 0.544 1.3× 10−6 0.136 2.5× 10−24 2.9× 10−12

Fetus 3.6× 10−10 0.977 1.6× 10−10 0.031 1.0× 10−26 2.7× 10−13

Neonate 1.9× 10−9 0.766 8.9× 10−11 0.149 2.7× 10−27 2.5× 10−12

Juvenile 4.7× 10−10 0.449 6.3× 10−10 0.021 2.7× 10−25 6.43× 10−13

Adult 2.4× 10−12 0.501 2.6× 10−11 0.007 1.6× 10−26 5.4× 10−13
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Figure 5.7: Percentages of lethal SSD, lethal WGD, viable SSD and viable
WGD genes for different age groups across 13 stages of mouse development.
Here, age of mouse duplicates was calculated based on the Most Recent Dupli-

cation (MRD) event.
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Figure 5.8: Percentages of lethal SSD, lethal WGD, viable SSD and viable
WGD genes for different age groups across 13 stages of mouse development.
Here, age of mouse duplicates was calculated based on the Duplicate Common

Ancestor (DCA).

5.4 Developmental Expression Patterns

Differences in gene expression (TPM) patterns of lethal, viable, singleton and

duplicate genes were compared over 13 stages of mouse development to address

the following questions:

• Do expression patterns of lethal and viable mouse gene vary over embryonic

development?

• Do expression patterns of mouse singleton and duplicate vary over embryonic

development?

• Do duplicate pairs where both genes are lethal show a greater divergence in

developmental expression patterns?
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Figure 5.9: Frequencies (%) of lethal, viable, singleton and duplicate mouse
genes expressed at 13 stages of mouse embryonic development

This analysis revealed that a significantly greater proportion of lethal genes

are expressed than viable genes at almost every developmental stage. Similarly,

we found a higher proportion of expressed singletons than duplicate genes during

development. Figure 5.9 shows the proportions of lethal, viable, singleton and du-

plicate genes that are expressed at different developmental stages. The Bonferroni

corrected Chi–squared test did not find statistical significance of these differences

at later developmental stages, presumably because all genes are nearly always ex-

pressed at these stages (Table 3.3 and Table 5.5). Viable and duplicate genes were

often found in the group with zero transcripts while looking at differences in gene

expression distributions.

We further examined the differences in developmental expressions between
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Table 5.5: Differences in proportions of expressed mouse singleton and dupli-
cate genes. Highlighted cells in yellow represent statistically significant differ-

ences based on Bonferroni corrected p–value of 0.00385.

Developmental stages Singleton(%) Duplicate(%) p–value
Oocyte 34.38 24.65 1.5× 10−10

Unfertilized ovum 17.57 13.76 2.3× 10−3

Zygote 28.15 20.48 6.4× 10−7

Cleavage 38.06 25.92 6.1× 10−12

Morula 33.11 23.62 1.3× 10−8

Blastocyst 49.47 34.12 2.4× 10−14

Egg cylinder 16.44 10.68 3.5× 10−7

Gastrula 47.22 32.88 2.7× 10−13

Organogenesis 70.65 59.01 5.1× 10−6

Fetus 91.22 88.69 0.406
Neonate 78.30 73.19 0.071
Juvenile 91.29 88.16 0.315
Adult 95.95 93.99 0.543

Table 5.6: Differences in proportions of lethal singleton versus lethal duplicate
and viable singleton versus viable duplicate mouse genes. The p–value for the
Bonferroni correction is 0.00385. Highlighted cells in yellow represent statisti-
cally significant differences based on Bonferroni corrected p–value of 0.00385.

Developmental stages
Lethal Viable

Singleton(%) Duplicate(%) p–value Singleton(%) Duplicate(%) p–value
Oocyte 50.60 36.63 1.4× 10−4 24.58 19.66 0.008
Unfertilized ovum 30.48 23.63 0.018 9.88 10.82 0.479
Zygote 41.04 31.75 0.007 20.72 17.06 0.037
Cleavage 54.38 39.88 1.8× 10−4 28.67 21.75 3.7× 10−4

Morula 52.39 38.13 1.3× 10−4 21.81 19.19 0.146
Blastocyst 72.91 51.50 1.0× 10−6 35.90 28.77 1.4× 10−3

Egg cylinder 24.70 20.88 0.171 11.45 7.60 9.4× 10−4

Gastrula 67.73 50.50 5.8× 10−5 34.94 27.61 6.7× 10−4

Organogenesis 89.04 80.50 0.101 59.88 52.58 0.014
Fetus 98.01 96.88 0.844 87.59 86.35 0.756
Neonate 89.04 82.38 0.208 72.29 70.53 0.594
Juvenile 96.61 89.75 0.205 88.92 87.44 0.694
Adult 98.80 94.13 0.403 94.22 93.99 0.957

those singleton and duplicate genes that are lethal. We observed a greater per-

centage of lethal singletons being expressed at different developmental stages (es-

pecially during oocyte, cleavage, morula, blastocyst and gastrula) compared to

lethal duplicates. In addition, a significantly high percentage of viable singleton

genes were shown to be expressed in four crucial stages: cleavage, blastocyst, egg

cylinder, and gastrula. We summarise these results in Figure 5.10 and Table 5.6.
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Figure 5.10: Frequencies (%) of lethal singleton, lethal duplicate, viable single-
ton and viable duplicate mouse genes expressed at 13 stages of mouse embryonic

development

5.5 Developmental Co–expression Analysis

Since duplicate genes often exhibit different patterns of gene expression (Gu et al.,

2002; Makova and Li, 2003), it is likely that the similarity of their expression pro-

files could mediate the functional compensation. Therefore, we examined the

expression profiles of lethal and viable mouse gene pairs in 13 developmental

stages to test the hypothesis that duplicates with developmental co–expression

are more likely to be viable and duplicates without developmental co–expression

are more likely to be lethal. To investigate all plausible duplication paths, we made

three distinct gene pairs from our lethal and viable datasets, namely lethal–lethal,

lethal–viable and viable–viable gene pairs. We used the Manhattan and Euclidean

distance methods (described in section 2.2.1.2) to compute the expression differ-

ence (co–expression) between each mouse gene and its pair from their expression
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Figure 5.11: Differences in co–expression between all gene pairs within a
class of essentiality over 13 embryonic developmental stages. Co–expression
was computed using the Manhattan (A) and Euclidean (B) distance method.

across 13 developmental stages and consequently, developed three co–expression

matrices (lethal–lethal: 1301 × 1301; viable–viable: 3451 × 3451; lethal–viable:

1301 × 3451). Figure 5.11 shows the distributions of lethal–lethal, viable–viable

and lethal–viable gene co–expression. As small Manhattan and Euclidean dis-

tances refer to higher co–expression, we observed that lethal–lethal gene pairs

tend to have lower co–expression compared to viable–viable pairs. Analysis of

co–expression between minimum distance gene pairs further showed the low devel-

opmental co–expression for lethal–lethal gene pairs (Manhattan distance: p–value

= 5.49× 10−152; Euclidean distance: p–value = 8.83× 10−133). Figure 5.12 shows

the distributions of co–expression between minimum distance pairs.

Furthermore, we obtained lethal–lethal, lethal–viable and viable–viable dupli-

cate gene pairs comparing our lethal and viable gene lists with the human ortho-

logues of mouse duplicates listed by Makino and McLysaght (2010), which include

9,057 human duplicate pairs. All the human duplicate pairs listed in (Makino



Chapter 5. Duplication, Mammalian Essentiality and the Hourglass Model 229

Figure 5.12: Differences in co–expression between all minimum distance gene
pairs within a class of essentiality over 13 embryonic developmental stages. Co–
expression was computed using the Manhattan (A) and Euclidean (B) distance

method.

and McLysaght, 2010) were the whole–genome duplicate pairs. We used these

duplicate pairs as we assumed that the orthologous mouse genes were duplicates

as well, which was then confirmed by our BLAST searches. In addition, it was

not possible to directly recompute WGD pairs from the recent release of the En-

sembl database. Investigating the Manhattan and Euclidean distances between

these gene pairs concluded that developmentally co–expressed duplicates are more

likely to be viable (Manhattan distance: p–value = 2.15 × 10−9; Euclidean dis-

tance: p–value = 2.26×10−8). Figure 5.13 displays the co–expression distribution

of this analysis.

In addition, we conducted all–against–all Blastp searches to detect duplicate

pairs within our datasets. A mouse gene was considered as a duplicate if it had

hits to other mouse genes within our datasets with E–value < 107. For each

query protein sequence its closest mouse paralogue was identified. Using lethal
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Figure 5.13: Differences in developmental co–expression between all gene pairs
obtained from (Makino and McLysaght, 2010). These are mouse orthologues
of human genes. Co–expression were computed using the Manhattan (A) and

Euclidean (B) distance method.

proteins as queries and lethal proteins as a database, we found 535 (41%) lethal–

lethal duplicates. Using viable proteins as queries and viable proteins as database,

we obtained 1,748 (52%) viable–viable duplicates. Moreover, a total of 2,489

(52%) lethal–viable or viable–lethal duplicates were found from the complete gene

lists. Analysis of developmental co–expression within each class of these gene

pairs further revealed that viable–viable duplicate pairs tend to have more similar

expression during development, whereas lethal–lethal duplicate pairs tend to have

greater divergence of expression (Manhattan distance: p–value = 2.35 × 10−34;

Euclidean distance: p–value = 1.57× 10−30), with lethal–viable pairs in between.

Figure 5.14 shows this observation.

We further labelled 173 lethal–lethal, 546 lethal–viable and 649 viable–viable

gene pairs duplicated by SSD among all duplicate pairs obtained from the Blast

search. A total of 194 lethal–lethal, 520 lethal–viable and 343 viable–viable WGD
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Figure 5.14: Differences in co–expression over embryonic developmental stages
for duplicate gene pairs obtained by the Blast search. Co–expression were com-

puted using the Manhattan (A) and Euclidean (B) distance method.

Figure 5.15: Differences in co–expression for SSD (A–B) and WGD (C–D)
duplicate gene pairs over embryonic developmental stages. Co–expression were
computed using the Manhattan (A, C) and Euclidean (B, D) distance method.
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Table 5.7: Statistical test results signifying similar co–expression between
viable–viable duplicate pairs with respect their duplication mode.

Duplicate Gene Pair
p–value

Manhattan Distance Euclidean Distance
SSD 5.22× 10−9 5.38× 10−8

WGD 1.50× 10−5 4.70× 10−5

gene pairs were identified. Analysis of the Manhattan and Euclidean distances

between these gene pairs showed that viable–viable gene pairs have more similar

co–expression during development irrespective of their duplication mode (Figure

5.15). Table 5.7 shows the statistical significance of this result. However, SSD

pairs are more likely to have greater divergence of expression compared to WGD

pairs.

Moreover, Euclidean distance analysis on the normalised expression data (see

section 2.2.1.2) further showed that duplicate gene pairs whereby both members

are lethal tend to have a lower level of co-expression during development than

pairs with at least one viable member (Figure 5.16).

All these analyses validate our hypothesis that duplicate gene pairs with closer

developmental co–expression are more likely to be viable.

5.6 Evidence for the Developmental Hourglass

Pattern in Mammals

As mentioned earlier (section 2.2.1.2), our analysis exploited experimental mouse

expression data from NCBI UniGene database (Stanton et al., 2003) stratified into

13 developmental stages. A total of 19,310 mouse genes (including lethal, viable
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Figure 5.16: Differences in developmental co–expression for duplicate gene
pairs obtained from the Blast search (A), (Makino and McLysaght, 2010) (B),
all SSD pairs (C) and WGD pairs (D). Here, Co–expression were computed using
the Euclidean distance method. Euclidean distance were measured considering

the normalised expression data

and unknown genes) had UniGene cluster expression data, which were used to

define their developmental expression pattern. The evolutionary age reported in

millions of years ago (MYA) of the duplicate common ancestor (DCA) or the most

recent duplication (MRD) event was assigned to each mouse duplicate gene. Non–

duplicated genes were assigned the age of their single common ancestors (SCA).

The oldest genes were approximately 1215 MYA old, whereas youngest genes

belonged to the class Murinae and were approximately 25 MYA old. Previous

studies (Domazet-Los̆o and Tautz, 2010; Piasecka et al., 2013; Drost et al., 2015)
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demonstrated that genes expressed in mid–development (the phylotypic stage) are

more likely to have an older evolutionary origin than genes expressed in early

and late development, thereby reporting an developmental hourglass pattern. We

reconfirmed that this pattern is found during mouse development by comparing

differences in ages between early, phylotypic and late stages in mouse development.

Adopting the definition of the phylotypic period in mouse from previous studies

(Irie and Kuratani, 2011; Bogdanović et al., 2016), we labelled all developmen-

tal stages before gastrula as the early developmental period and all stages after

organogenesis as the late developmental period of mouse. The phylotypic period

thus comprised two stages: gastrula and organogenesis. We observed that mouse

gene expression patterns do conform to an hourglass shape while plotting the mean

evolutionary ages for all mouse genes expressed at each developmental time point,

regardless of whether the evolutionary age of duplicated genes is calculated based

on the DCA (Figure 5.17A) or MRD (Figure 5.17B).

This initial analysis did not factor in gene expression levels when assign-

ing the mean evolutionary age to each developmental time point. Prior studies

(Domazet-Los̆o and Tautz, 2010; Drost et al., 2015) of the hourglass model used

the transcriptional age index (TAI), which multiplies gene age by expression level

at each developmental stage, to produce a weighted index of evolutionary age. TAI

was defined as the mean evolutionary age of a transcriptome at a given develop-

mental stage (Domazet-Los̆o and Tautz, 2010). We also calculated the TAI values

for each stage of mouse development to determine if weighting by expression level
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Figure 5.17: Mammalian gene expression exhibits a developmental hourglass
pattern. Plotting the mean mouse gene age against developmental time points
reveals an hourglass pattern. Here, ages of mouse duplicates were calculated
based on the Duplicate Common Ancestor (DCA, panel A) or Most Recent
Duplication (MRD, panel B). For singleton genes, the age of their single common

ancestor (SCA) was used.

would affect our observations. The higher the value of TAI, the older the evolu-

tionary origin of the gene is. Figure 5.18A and Figure 5.18B show TAI profiles for

(SCA+DCA) and (SCA+MRD) age along with the corresponding standard devi-

ation estimated by the bootstrap analysis. Use of DCA and MRD ages in the TAI

calculation again revealed an hourglass pattern of mammalian gene expression.

Concerns have been raised that calculating the TAI results in a bias towards

an older evolutionary age, as housekeeping genes expressed at high levels tend to

be more ancient (Piasecka et al., 2013). A method to mitigate this bias involves

removing the top 10% of most highly expressed genes from the TAI calculations.

When we applied this modification to our calculations, we again observed that

both the DCA ages (Figure 5.18C) and MRD ages (Figure 5.18D) conformed to

an hourglass pattern.
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Figure 5.18: Transcriptional age index (TAI) analysis. Calculating the
transcriptional age index (TAI) reveals a developmental hourglass pattern for
SCA+DCA mouse gene ages (A) and for SCA+MRD mouse gene ages (B).
Removing the top 10% of the most highly expressed genes does not affect the
hourglass pattern for SCA+DCA (C) or SCA+MRD (D) gene ages. Error bars
represent the standard deviation of TAI (A–D), estimated by bootstrap error
calculations. The y–axis represents taxon gene age groups in millions of years

(MYA) before present.

Visually, the overall mean and TAI profile of MRD and DCA age shows an

hourglass shape, whereby mouse genes expressed in middle stages of development

have older ages compared to genes expressed in the early or later stages. Although

all of our analysis showed the existence of an hourglass pattern in the mouse

developmental expression data, we were surprised to find that in every analysis

the evolutionarily oldest genes are not expressed at the defined phylotypic stage
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(gastrula and organogenesis). The mean age analysis demonstrated that genes

expressed during organogenesis are likely to be younger than those expressed at

the egg cylinder stage (DCA age: ANOVA p–value = 7.50 × 10−13; MRD age:

ANOVA p–value = 1.56× 10−8). Using the TAI, we found that older genes were

expressed during the egg cylinder stage than at the organogenesis stage (DCA age:

ANOVA p–value = 5.44 × 10−92; MRD age: ANOVA p–value = 1.10 × 10−304).

Similar findings were seen when the top 10% of most highly expressed genes were

removed from the TAI dataset (DCA age: ANOVA p–value = 1.18×10−242; MRD

age: ANOVA p–value = 5.82 × 10−168). In addition, plotting the distribution

of gene ages at each developmental stage confirms that the egg cylinder stage is

enriched for the oldest genes (Figure 5.19 and 5.20). Thus, we find that oldest

mouse genes are expressed prior to the phylotypic stage of development.

It has been proposed that genes expressed at the phylotypic stage encode

essential functions, and thus will be less tolerant to mutation (Irie and Kuratani,

2014). We, therefore, investigated the proportion of lethal (essential) and viable

(non–essential) genes expressed at each stage of mouse development. We found

that the developmental stage expressing the greatest proportion of essential genes

is the egg cylinder stage, rather than the phylotypic stages of gastrulation and

organogenesis (Figure 5.21). Overall, the egg cylinder stage is more likely to be

enriched for the oldest and essential genes.
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Figure 5.19: Distributions of SCA+DCA gene age over 13 stages of mouse
development. The youngest and oldest genes are 25 MYA and 1215 MYA old,

respectively.
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Figure 5.20: Distributions of SCA+MRD gene age over 13 stages of mouse
development. The youngest and oldest genes are 25 MYA and 1215 MYA old,

respectively.
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Figure 5.21: (A) Percentage of expressed mouse genes that are lethal (essen-
tial) and viable (non–essential) for each developmental stage. (B) Proportion
of lethal (essential) and viable (non–essential) mouse genes that are expressed
at each developmental stage. A gene is considered as expressed at a particular

developmental stage if it has a non–zero TPM value for that stage.

5.7 Discussion

The relationship between duplication and essentiality for

mammalian genes

In model organisms like worm, yeast and mouse, phenotypic effects of single–gene

deletion were examined on a genome–wide scale. Of particular interest are essential

genes, whose deletion or mutation results in lethal phenotypes. Many expressed

genes, which have critical molecular functionality, are non–essential. For this, it

is plausible that the functional loss of gene deletion could be compensated by the

presence of a duplicate gene in the same genome with similar expression and func-

tion. Gene duplication is a frequent event in eukaryotes, which is the origin of

such functional redundancy. There has been enduring interest in understanding

the correlations among gene function, phenotypic changes caused by gene deletion,
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and gene duplication. A priori, duplicated genes are reported less likely to be es-

sential than non-duplicated genes (singletons) in yeast (Gu et al., 2003). However,

studies in mouse knockouts did not confirm this expected trend, where singletons

were just as essential as duplicated genes (Liang and Li, 2007; Liao and Zhang,

2007). This contradictory observation can only partly be explained by some ex-

perimental biases. It cannot highlight the factors that mediate some duplicates

being essential, some being non–essential.

We herein investigated in detail the contribution of mouse duplicate gene to

essentiality. We report that duplicate genes in mouse indeed tend to be less es-

sential than singletons. We analysed the evolutionary age of mouse genes to test

whether knockout genes with an early evolutionary origin are more likely to be es-

sential. Evolutionary age analysis confirms results from a prior study (Chen et al.,

2012b) that lethal (essential) genes are more ancient than viable (non–essential)

genes. In addition, it is observed that genes with older evolutionary origins are

always more likely to be essential, regardless of being singletons or duplicates. We

further report that lethal and singleton genes are more likely to be expressed during

development. Expressed singletons were found to have an older evolutionary ori-

gin than duplicates expressed at the same stage of development. Moreover, genes

duplicated by small–scale duplication (SSD) events were found being more likely

to be older than those duplicated by the whole–genome duplication (WGD). We

also explored the effects of expression profile similarities between duplicate gene

pairs across 13 stages of mouse development on the functional compensation. We
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hypothesised that duplicated gene pairs with similar developmental co-expression

tend to be viable, otherwise lethal. Consistent with our hypothesis, we found that

mouse duplicate gene pairs whereby both members are lethal tend to have diver-

gent expression patterns during development than pairs with at least one viable

member. The greater similarity in expression during development between viable

duplicate pairs suggests that they contribute more to functional redundancy than

lethal duplicates, irrespective of their duplication mode.

However, we have used the Manhattan and Euclidean distance to measure the

expression profile similarities between duplicate gene pairs. As we were concerned

that the analysis associated with the Euclidean distance could be affected to a

great extent by the scale of the data, the distance was calculated based on the

logged expression data as well as on the data which were normalised within the

range (0, 1) dividing each expression data by the maximum TPM value. As we are

comparing between two different dataset comprising of gene expression values, we

need to use normalisation techniques that are independent of the values present

in the data. That is why, we could not apply other normalisation techniques, such

as the correlation coefficient, unit length scaling or subtracting the mean across

conditions in our study to scale the expression data. We need to normalise values

across both the datasets to keep the scaling right. That is why, the way we scaled

our data is a valid normalisation technique for our analysis.
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Mammalian hourglass pattern

The hourglass model of development predicts that genes with the oldest evolution-

ary origin are expressed at the phylotypic stage in many species. Here, we report

that in mouse embryos, the oldest genes are not expressed at the morphologically

defined phylotypic stage, but instead at an earlier time point. This earlier time

point, the egg cylinder stage, also expresses the greatest proportion of essential

genes. As essential genes have been noted to possess an older evolutionary origin,

it is logical to find that the stage with the oldest genes also contains the greatest

proportion of essential genes. Our findings question whether morphological simi-

larities amongst species of the same phyla are universally encoded by the oldest,

most conserved and essential functions.

Our findings may be due to specific features of mammalian development. In

the early stages of mammalian development, the embryo consists of cells of two

lineages: the epiblast, which will form the embryo, and the trophoblast, which will

contribute to the placenta. Given that the placenta is a mammalian innovation,

genes that are expressed in the trophoblast would be expected to have a younger

evolutionary age. Developmental stages up to and including the blastocyst stage

include genes expressed in both cell lineages, and thus include genes with a recent

evolutionary origin. At the egg cylinder stage we see an increase in the number

of expressed genes with the oldest evolutionary age. At this developmental time

point the mouse embryo acquires a dramatically different morphological shape,

with a simultaneous increase in cell proliferation (Skreb et al., 1991; Bedzhov
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et al., 2014b), dependent on the highly conserved mTOR and TGFbeta pathways

(Bedzhov et al., 2014a). Thus, the shift in TAI at the egg cylinder stage may arise

from a requirement for evolutionarily conserved genes regulating cell proliferation.

We also considered whether genes expressed throughout development (found

in all 13 stages analysed) could influence the hourglass pattern. We found a total

of 291 genes that are expressed at all 13 stages, with an average age of 912 MYA

when using the DCA age and an average age of 591 MYA when using the MRD

age. The average age of these genes is beyond the range of variation at most

developmental time points, suggesting that these universally expressed genes are

not a strong source of the pattern detected.

5.8 Summary

Our analysis demonstrated that developmental co–expression and gene evolution-

ary age contribute towards determining essentiality of duplicated mouse genes. In

addition, we found that singleton genes in mouse are more likely to be essential

and older than duplicates. These results reveal new insights into the relationship

of gene essentiality, developmental expression, and gene duplication. Moreover,

we did find evidence that mouse genes expressed in early and late gestation have a

more recent evolutionary origin than those expressed in mid-gestation. However,

we found that the genes with the oldest evolutionary origin were not expressed at

the defined mammalian phylotypic stage, but instead at the egg cylinder stage,

prior to the mammalian phylotypic stage. Future studies on the mechanisms of
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generating morphological patterns during development are needed to determine

whether mammalian structures are programmed by evolutionarily older genes at

early developmental time points, or whether the conserved morphology of the

mouse phylotypic stage is not achieved by expression of the most ancient genes.



Chapter 6

Discussion

Identification of essential genes in mammals is one of the central concerns of de-

velopmental biology as it assists in the identification of key cellular processes and

tissue-specific functions that are crucial for life. Existing methods for mammalian

essential gene identification mostly rely on mouse knockout experiments (White

et al., 2013), which require great time and cost to carry out. In contrast, compu-

tational methods, which use gene attributes to evaluate essentiality, offer a rapid

and low-cost means of predicting essential genes (Zhang et al., 2016). In this re-

search, we aimed to characterise and predict essential (lethal) and non–essential

(viable) genes in the mouse in terms of genomic features, protein sequence–based

features, gene expression, evolutionary age and protein–protein interaction (PPI)

information. Similar studies have been undertaken to determine human disease

genes (Kondrashov et al., 2004), human drug targets (Bakheet and Doig, 2009;

Bull and Doig, 2015), bacterial drug targets (Bakheet and Doig, 2010), and to
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identify features of essential genes in bacteria, yeast and mouse (Saha and Heber,

2006; Gustafson et al., 2006; Seringhaus et al., 2006; Hwang et al., 2009; Acencio

and Lemke, 2009; Yuan et al., 2012). Many features are found to be associated

with gene essentiality in the mouse. A novel machine learning based computational

method is subsequently developed using these gene features which allows for pre-

dicting mouse genes that are essential for the survival of embryos during gestation.

In addition, we explored the expression profile of mouse singletons and duplicate

genes to study their relation with mouse gene essentiality. Our final study aimed

to examine the existence of the morphological hourglass pattern during mouse

development.

This chapter summarises the overall findings of this thesis and discusses their

relevance. This chapter concludes with highlighting some limitations and future

research directions.

6.1 Discriminating Features between Mouse Es-

sential and Non–essential Genes

The success of predicting essential genes based on gene features mainly depends on

the prediction influence of these quantifiable features. If all features are compara-

ble between the lethal and viable gene groups, then they cannot distinguish gene

essentiality. Hence, there needs to be numerous characteristics that are divergent

between lethal and viable genes. We identified a total of 75 features that dis-

criminate lethal and viable genes with statistical significance (Chapter 3). These



Chapter 6. Discussion 248

features, expressing different traits of mouse biology, are interrelated. Many of

these features are compatible with those of previous studies on yeast and bacteria,

but have not been verified in mammals yet. In addition to previously evidenced

features, we found a number of important novel features that are strongly related

to essential genes.

We found a number of genomic features for which lethal and viable genes had

significantly different values: lethal genes are shown to be significantly longer in

length and have a higher number of transcripts, a higher number of exons and

longer length of exons compared to viable genes. A probable explanation could

be that the functions they perform may involve different complex proteins that

could possibly have multiple domains to contribute diverse cellular functionalities

(Brocchieri and Karlin, 2005). Lethal genes also tend to have a significantly longer

length of introns and a lower GC content. Intron and exon length is known to vary

inversely with GC content (Gazave et al., 2007; Zhu et al., 2009). GC content also

has correlation with gene length (Duret et al., 1995).

In terms of evolutionary age, we observed that lethal genes are more ancient

than viable genes. This result corresponds to a previously reported fact that es-

sential genes are evolutionarily more conserved (Giaever et al., 2002; Jordan et al.,

2002). This is because essential genes are likely to be involved in basic cellular

processes, therefore the negative selection acting on them is more severe than for

non–essential genes. Moreover, a significantly greater proportion of lethal genes

are found to be expressed at the earlier stages of mouse development compared
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to viable genes. This result makes sense as mouse genes, expressed during ear-

lier development, will be required for further viability of the embryo and therefore

might produce more severe phenotypes if mutated. Lethal genes are further shown

to exhibit a high level of gene expression. This is logical since more expression

means more protein molecules around to have a larger effect. This result is also

supported by previous studies which showed that highly expressed genes are likely

to be essential and evolve slowly (Pál et al., 2003; Drummond et al., 2005).

We observed that lethal genes are more likely to have critical roles in different

cellular processes that are central to life. These include the development of em-

bryo, tissue, heart, nervous system, brain, lung, respiratory tube and blood vessel,

cell morphogenesis, cell division, cell proliferation, cell differentiation, DNA repli-

cation, DNA repair and transcription regulation. These results are consistent with

the finding that lethal proteins are frequently localised to the nucleus. In addi-

tion, lethal genes have a tendency to perform functions related to protein binding,

DNA binding, ATP binding and nucleic acid binding. In contrast, viable genes

are more likely to perform those functions that are related to a cells response to

its environment (e.g. transporter activity, signal transducer activity, lipid binding

and immunoglobulin binding) and to participate in processes like regulation of

apoptosis, behaviour, cell communication, ion transport, cell signalling, immune

system development, homeostasis and response to stress.

Another set of features that distinguished lethal and viable genes is the cellu-

lar components of their protein products. One noticeable trend is the localisation
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of a greater proportion of lethal proteins in the nucleus. Results from annotations

(from the UniProt database and GO terms analysis) and WoLF PSORT predic-

tions confirmed this. This is reasonable, because proteins involved in essential

cellular processes such as DNA replication, transcription and DNA repair mostly

locate in the nucleus (Kumar et al., 2002). In contrast, viable proteins are mostly

extracellular or membrane–bound. The high proportion of viable genes in the ex-

tracellular region is consistent with the presence of signal peptide cleavage sites

and fibronectin type III (fn3) domain in their sequence and also by their signal

transducer activity. The fn3 protein domain is an evolutionarily conserved domain

that is generally found in animal proteins, especially in extracellular proteins. Its

main function is to mediate cell–cell signaling or interactions. The high percent-

age of membrane–bound viable proteins is further confirmed by the presence of a

larger number of transmembrane helices. Since most membrane proteins partic-

ipate in transport and metabolic related processes, this explains why membrane

proteins are more likely to be non–essential. These processes are not critical for

the survival of embryo. Viable proteins are also more likely have Src Homology

2 (SH2), Src Homology 3 (SH3), ion transport, and Epidermal Growth Factor

(EGF) domains. This further establishes the propensity of viable proteins being

membrane–bound as these evolutionary conserved protein domains are common

constituents of membrane proteins.

We observed many of the protein sequence features were associated with
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mouse lethal genes. The significant features were: long protein length; high molec-

ular weight; high frequencies of A, D, E, K, Q and S amino acids; high frequencies

of polar, charged and basic residues; low frequencies of aliphatic, aromatic and

non-polar residues. Lethal proteins have the tendency of being longer in length be-

cause essential proteins are evolutionarily more conserved and conserved proteins

are mostly longer (Lipman et al., 2002). In addition, longer proteins mean more

possible domains to mediate a wider range of functions and more protein–protein

interactions. Moreover, the presence of more polar, charged and basic residues

reflects why lethal proteins tend not to be membrane–bound. Furthermore, lethal

proteins are more likely to function as Ligase and Transferase enzymes, whereas

viable proteins are mostly functionally less critical Hydrolase enzymes. Ligases

and Transferases perform more complex chemistry than Hydrolases.

In terms of post–translational modifications, we found that lethal proteins are

more likely to be phosphorylated and acetylated. This is reasonable, as phospho-

proteins have critical roles in almost all cellular processes and acetylated proteins

are important for regulating gene expression and protein–protein interactions (Ar-

nesen, 2011). Lethal proteins are also likely to have the zinc finger, C4 type (zf–C4)

domain, which correlates with their likelihood to function as transcription factors.

Most occurrences of the zf–C4 domain are found within the DNA–binding regions

of many nuclear receptors that function as transcription factors.

Similarly to yeast and bacteria, mouse essential genes are shown to play crucial

roles in the protein–protein interaction (PPI) networks. The dominant network
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features for lethal proteins are: high degree, short average shortest path (ASP)

length, high values of closeness centrality, betweenness centrality, clustering co-

efficient, BottleNeck (BN), Edge Percolation Component (EPC) and Maximum

Neighbourhood Component (MNC). The correlation between highly connected

proteins (high degree) and gene essentiality have already been reported in previ-

ous research (Yu et al., 2004; Kim et al., 2006). Shorter ASP length and high

values of closeness centrality and clustering coefficient shows that lethal proteins

can quickly transfer information to other reachable protein nodes in the PPI Net-

work. Moreover, high values of betweenness centrality, BN, EPC and MNC signify

the likelihood of lethal proteins to function as hubs or bottleneck.

The presence of similar protein sequences might potentially bias decisions

drawn from using a dataset. Therefore, redundant proteins were removed from our

lethal and viable datasets using different levels of sequence similarities to verify

the importance of the features distinguishing lethal and viable genes in the original

dataset. Analysis of non–redundant datasets confirmed the trends seen on the full

dataset. Overall, this part of the study is concluded with validating our research

hypothesis that, mammalian essential genes are significantly different from non–

essential genes by a number of features. This dependency on various features

implies that multiple aspects of biology unite to make a gene either essential or

non–essential.
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6.2 Performance of Essential Gene Prediction

Given a large number of sequence and functional characteristics that vary between

lethal and viable genes in mouse, we aimed to use them to construct a supervised

machine learning based computational method that could accurately determine

whether a mouse gene better fits the profile of a lethal gene or viable gene. Our

target was to complement the existing experimental techniques with in silico pre-

dictions of gene essentiality. Machine learning methods utilise the features of a

gene group to learn patterns that are specific to that group and make predictions

on the basis of that.

We constructed three balanced training datasets using 102 features with an

equal number of lethal and viable genes in order to achieve a better generalisation,

as there are fewer lethal genes than viable genes. Imbalanced data, in general, de-

crease the performance of machine learning algorithms (Visa and Ralescu, 2005).

We assessed the potential effectiveness of different candidate machine learning

methods to select the one that demonstrates the best performance for our data. A

gene essentiality classifier, therefore, has been built using the Random Forest algo-

rithm (Breiman, 2001) as it has the highest level of prediction accuracy (Chapter

4). In order to make an unbiased prediction about a mouse gene, we used 10–

fold cross–validation to assess the performance of our classifier. Cross–validation

mitigates the potential for overfitting (Kohavi, 1995). Our classifier has achieved

an accuracy of ∼91% and AUC (area under the ROC curve) of ∼0.963, proving

its competence in predicting genes essential for mouse development. In addition,
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this classifier has successfully made predictions for a separate dataset of known

mouse genes that were not included in the training datasets. With a classification

accuracy of ∼93% and AUC of ∼0.964, our Random Forest classifier has further

proven its efficacy. Moreover, adjustments were made on missing PPI network

based properties for some mouse genes, consequently this slightly enhanced the

classification power of our classifier (AUC = ∼0.965).

The Information Gain feature selection method was further applied to select

a subset of most salient features for accurately classifying lethal and viable genes.

The use of a subset of features can speed up the classifier building process and

can further improve the classification performance. The Random Forest classi-

fier built on these selected features shows the highest accuracy (AUC = ∼0.971)

amongst the ones developed using all features. The selected feature set empha-

sises the importance of PPI network based features, gene expression levels across

development, localisation at the nucleus, gene length, exon length, a number of

transcripts, protein length, proportions of polar, basic, and charged residues, gene

age, acetylation and phosphorylation for the prediction of gene essentiality. All

these features have been shown to significantly discriminate between lethal and

viable genes in this research.

Our proposed computational method built on combining the Random Forest

algorithm, the information gain feature selection filter and data pre–processing

techniques, has displayed substantially better performance in predicting essential

genes compared to previous studies (Acencio and Lemke, 2009; Deng et al., 2010;
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Yuan et al., 2012; Yang et al., 2014). This classifier is robust as it has the ability

to accurately classify genes even the data has missing values. In addition, it runs

faster and is resistant to overfitting. Our classifier is also inherently adaptive,

capable of incorporating any available experimental or sequence–derived proper-

ties. Besides the benefits of using the Random Forest and the feature selection

technique, the high classification performance could be due to the improved accu-

racy of the training datasets because each mouse gene was correctly labelled after

manual checking. Moreover, the predictability of gene essentiality has increased

due to the integration of PPI network based features, developmental gene expres-

sion, evolutionary age, post–translational modifications and some other dominant

features that have been evidenced to greatly associated with gene essentiality in

previous studies. We suggest that future prediction of mouse essential genes, and

by extrapolation human essential genes, will stand a higher chance of success if

our classifier is used.

We expect our classifier to serve as a valuable resource for the mouse ge-

netics research community in optimising the time–consuming and costly mouse

knockout experiments. Due to the genome similarities between mice and humans,

our prediction results might facilitate the identification of human genetic disease

candidates and potential drug targets. Biologists detect common chromosomal

regions in members of a family affected by a genetic disease to confirm genetic

linkage to that chromosomal region. This is achieved by comparing the DNA of

the people affected by the disease to the DNA of the people not affected by the
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disease. These linked chromosomal regions may contain a large number of genes

associated with the disease. Experimental verification is necessary to identify with

certainty which gene/genes cause the disease progression. But, instead of carrying

out knockout experiments for all these genes, biologists may choose to start with

a small set of genes that are more likely to be causing the disease. Our model can

be used to minimise the set of the candidate genes for experimental verification.

If the disease affects development or viability for the affected individuals, then

essential genes predicted by our model can be tested first to find their association

with the disease. If the disease is mild (not affecting development or viability),

non–essential genes can be tested first to find their association with disease. In

both cases, the other set of genes can be tried out if the first set of genes does not

reveal any association with the disease. This way, essentiality prediction through

our model can help reduce the cost of experimental verification in identifying the

cause of genetic diseases.

Moreover, our proposed work might allow developmental biologists to study

the function of genes to comprehend how an embryo develops into a mature or-

ganism. By definition, the genes we predict as essential will be crucial during

embryonic development. As deficiencies in developmental genes are often con-

nected to birth defects, our findings will be informative for the biologists to gain

insight into different congenital birth defects.
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6.3 Correlation between Gene Essentiality and

Duplication

Previously, a number of studies have attempted to understand the function of gene

duplicates and their associations with phenotypic changes caused by gene deletion.

By inference, it is reasonable to guess that genes with duplicates are less likely to

be essential due to their analogous function and expression, and thus deleting a

duplicate gene could result in mild or even no phenotypic effect. Support for the

propensity of gene duplicates to be less essential has been shown for S. cerevisiae

(Gu et al., 2003) and C. elegans (Conant and Wagner, 2004). However, it was

observed that duplicate genes and singletons are equally likely to be essential in

mouse (Liao and Zhang, 2007; Liang and Li, 2007). Contrarily, it was found that

duplicate genes have critical roles in the genetic robustness of human (Hsiao and

Vitkup, 2008). This contradiction questions what factors define essentiality in

singletons and duplicates.

We herein showed that the proportion of mouse lethal genes among single-

tons is much higher than among duplicates. This indicates that, similarly to other

organisms, duplicate genes in mouse are less likely to be essential than single-

tons. Further analysis with evolutionary age revealed that lethal genes are pre-

dominantly older than viable genes. In particular, genes with older evolutionary

origins are more probable to be essential, irrespective of their duplication status.

This result matches a recent analysis by (Chen et al., 2012b). In addition, we

observed that lethal genes and singletons are more prone to be expressed across
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development. These genes tend to have an older evolutionary origin compared

to viable and duplicate genes expressed at the same stage of development. After

investigating the mode of duplication, we found that duplicate genes generated by

the SSD event tend to be more ancient than those generated by the WGD. This

is reasonable as WGD–derived genes are functionally more similar and are less

critical than SSD–derived genes (Hakes et al., 2007; Fares et al., 2013).

Moreover, by investigating expression level similarities across development,

we observed that mouse duplicate pairs with similar developmental co–expression

are more likely to be viable and those with divergent expression patterns tend

to be lethal. This is reasonable, as duplicate genes often overlap in function and

expression. Overall, these results indicate that evolutionary age and expression

level similarities over development are crucial for expressing gene essentiality in

the mouse. All these findings express new insights into the correlations of gene

essentiality, gene expression across embryonic development, and evolution.

6.4 Existence of the Hourglass Model in Mouse

Development

In the gene essentiality prediction study, we observed that evolutionary origin

and gene expression levels are two critical factors to indicate the potential roles

of mouse genes during embryonic development. This promoted us to examine

the existence of the hourglass model of morphological divergence for the mouse.

The developmental hourglass model proposes that embryos from the same phylum
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have a mid–gestation stage (phylotypic stage) where embryos are morphologi-

cally conserved. Recent studies on multiple organisms have demonstrated that

genes expressed at the phylotypic stage tend to have an older evolutionary origin

than genes expressed in early or late development, thus producing an hourglass

pattern while plotting mean age of transcripts against developmental time–point

(Domazet-Los̆o and Tautz, 2010; Drost et al., 2015). We examined the evolution-

ary age of mouse genes expressed at 13 developmental stages to see if this pattern

holds in the mouse. We considered the phylotypic period as corresponding to

gastrula and organogenesis stages based on prior evidence.

We found that in mouse embryos, genes expressed in early and late stages of

development are evolutionarily younger than those expressed in mid–embryogenesis,

thus recapitulating an hourglass pattern. However, the oldest genes are not ex-

pressed at the predefined phylotypic stage, but instead at the egg cylinder stage.

At this earlier stage we also observed a greater proportion of expressed genes that

are essential for mouse embryonic development. It is reasonable that the stage

with the oldest genes also includes a higher proportion of essential genes, as es-

sential genes are likely to have an older evolutionary origin. This result raises the

question of whether the oldest and evolutionarily most conserved essential genes,

in general, encode morphological similarities amongst species of the same phylum.
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6.5 Limitations

Despite the promising findings, this research still has some limitations. Our pro-

posed computational method for predicting mouse essential genes produces a small

number of false positive and false negative errors despite the very high predic-

tion performance. One expected cause for these errors is that the computational

method depends entirely on the feature dataset we compiled that may contain

some noise. We assembled these features from the publicly available databases

and prediction tools that could have erroneous feature information in them. The

performance of the predictor also depends on the quality and completeness of the

training dataset. A subset of all mouse genes was used to train the computational

model that may not capture the unusual patterns of some of the remaining mouse

genes. In these scenarios, our computational model tries to provide prediction

based on the available information and may not be 100% accurate as expected.

Moreover, the computational method provides a complimentary (rather than alter-

native) step in deciding the candidate genes for rigorous experimental validation.

Also, we used expressed sequence tag (EST) counts to measure the expression

levels of mouse genes in terms of transcripts per million (TPM) across 13 stages of

embryonic development. EST data is limited to low coverage of genes in a genome.

ESTs only measure the highly expressed genes, are semi-quantitative, and different

developmental time points have very different EST library coverage, which impacts

the power to measure expression. The RNA–seq data, which quantifies large

dynamic range of expression levels, might become a better estimate for expression
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profiles if attainable for all 13 developmental stages. To the best of our knowledge,

no such RNA–seq dataset of specific developmental stages is available for the mouse

at the moment.

6.6 Future Work

Our computational method provides a complimentary step in deciding the candi-

date genes for the rigorous experimental validation. We tried to make use of all the

attainable features related to different aspects of mouse biology for the develop-

ment of our computational model. It is always possible to add new features (when

becomes available) to our existing model that may contribute to improved clas-

sification accuracy. In addition to that, changing the feature selection technique

might substantially improve the prediction performance. Studies have shown that

wrapper methods are best suited for selecting relevant features amongst all the

existing feature selection approaches (Maldonado and Weber, 2009; Kursa and

Rudnicki, 2011), though these require greater computational efforts. These wrap-

per methods select useful features in relation to the chosen classifier. We expect

to apply this technique in future to verify whether it offers further improvement.

However, only 4,766 mouse genes are annotated as essential or non–essential,

leaving approximately 17,000 genes to annotate. Future work may include gen-

erating predictions for these mouse genes lacking experimental annotations and

performing experimental validation on a small set of predicted genes to verify

the performance of our classifier. We will further study these predicted genes to
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learn and understand the cellular processes that may be absolutely fundamental

for essentiality. We will investigate whether these biological processes are highly

conserved across other organisms or are specific to mammals only. The scope our

research is not limited to only mouse and can easily be extended to other organisms

if the knockout phenotypic data become available for such analyses. Moreover, we

will investigate the developmental co–expression of duplicate gene pairs for other

vertebrate organisms. It will be interesting to see whether the conclusions made

in mouse hold in general for other organisms if data become available. Also, in

light of recent availability of RNA–seq data for human (Gerrard et al., 2016), we

plan to investigate whether the developmental hourglass pattern exists in human

embryos.



Bibliography

Abzhanov, A. (2013). von baer’s law for the ages: lost and found principles of

developmental evolution. Trends in Genetics, 29(12):712–722.

Acencio, M. L. and Lemke, N. (2009). Towards the prediction of essential genes

by integration of network topology, cellular localization and biological process

information. BMC Bioinformatics, 10(1):1–18.

Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance–based learning algo-

rithms. Machine Learning, 6(1):37–66.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990).

Basic local alignment search tool. Journal of Molecular Biology, 215(3):403–410.
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AppendixA

Table A.1: Differences in gene and protein sequence-based features of lethal and
viable genes in the test–new dataset.

Properties Lethal(median) Viable(median) p–value

Gene Length 22458 25039 0.297
GC content (%) 45.69 46.30 0.15
Transcript count 4 3 5.0× 10−03

Exon count 11 9 4.7× 10−05

Exon length 2909 2867 0.204
Intron length 18849 21863 0.265
Age 937 400 1.9× 10−24

MW 55591.59 48584.91 0.075
Protein length 508 434 0.078
Aliphatic 28.61 28.04 0.267
Aromatic 10.12 10.71 0.013
NonPolar 52.52 52.97 0.115
Polar 47.48 47.03 0.117
Charged 26.81 25.55 0.001
Basic 14.11 13.70 0.020
Acidic 12.17 11.48 0.001
A 7.14 6.74 0.039
C 1.85 1.97 0.003
D 5.05 4.71 0.006
E 7.08 6.49 0.001
F 3.56 3.75 0.067
G 5.83 6.23 0.056
H 2.41 2.48 0.032
I 4.38 4.26 0.603
K 5.74 5.26 4.1× 10−04

L 10.06 10.17 0.296
M 2.27 2.06 0.001
N 3.33 3.33 0.976
P 5.12 5.48 0.049
Q 4.37 4.37 0.336
R 5.60 5.59 0.756
S 7.33 7.99 0.001
T 4.90 5.06 0.174
V 6.29 6.11 0.324
W 0.97 1.25 9.7× 10−05

Y 2.80 2.68 0.484
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Table A.2: Differences in proportions of lethal and viable mouse genes in the
test–new dataset expressed across 13 embryonic developmental stages.

Developmental stages Lethal(%) Viable(%) p–value

Oocyte 48.03 25.90 1.0× 10−07

U Ovum 29.69 12.83 3.1× 10−08

Zygote 42.36 20.05 2.5× 10−09

Cleavage 55.90 28.27 3.2× 10−10

Morula 58.95 24.16 1.9× 10−16

Blastocyst 70.31 34.99 5.9× 10−13

Egg Cylinder 26.20 9.09 1.9× 10−10

Gastrula 66.81 31.76 9.8× 10−14

Organogenesis 91.70 60.40 3.5× 10−07

Fetus 97.38 85.68 0.096
Neonate 89.52 67.87 1.0× 10−07

Juveline 96.94 83.56 0.055
Adult 97.82 94.40 0.640

Table A.3: Distributions of network properties between lethal and viable genes
in the test–new dataset.

Network properties Lethal(median) Viable(median) p–value

ASP (Known) 4.13 4.67 0.003
BC (Known) 0.01 0 0.022
Closeness centrality (Known) 0.22 0.17 0.005
Clustering Coefficient (Known) 0 0 0.005
Degree (Known) 2 1 0.002
BN (Known) 1 0 0.030
EPC (Known) 1.86 1.42 6.7× 10−04

MNC (Known) 1 1 0.118
DMNC (Known) 0 0 0.005
ASP (Known-Predicted) 2.98 3.23 4.9× 10−49

BC (Known-Predicted) 0.00 0.00 2.6× 10−14

Closeness centrality (Known-Predicted) 0.34 0.31 4.9× 10−50

Clustering coefficient (Known-Predicted) 0 0 2.6× 10−15

Degree (Known-Predicted) 20 5 1.0× 10−17

BN (Known-Predicted) 6 2 1.4× 10−12

EPC (Known-Predicted) 23.40 43.66 3.6× 10−03

MNC (Known-Predicted) 1 1 8.7× 10−05

DMNC (Known-Predicted) 0 0 5.9× 10−12



Bibliography 288

Table A.4: Differences in the frequencies of different keywords and enzyme
classes observed between lethal and viable mouse proteins in the test–new

dataset.

Properties Lethal(median) Viable(median) p–value

Glycoprotein 6.11 16.81 1.7× 10−04

Phosphoprotein 39.74 21.17 8.3× 10−07

Acetylation 30.57 9.22 2.3× 10−14

Transcription 10.48 6.48 0.049
Signal peptide 3.49 14.94 1.4× 10−05

Transmembrane domain 13.54 21.67 0.014
Oxidoreductase 4.80 3.61 0.419
Transferase 6.99 5.98 0.588
Hydrolase 9.61 8.72 0.691
Lyase 0.44 0.50 0.906
Isomerase 0 0.37 0.355
Ligase 5.68 1.87 0.002

Table A.5: Subcellular locations of all lethal and viable mouse proteins in the
test–new dataset.

Cellular components Lethal(median) Viable(median) p–value

Nucleus (UniProt) 28.82 16.69 6.3× 10−16

Cytoplasm (UniProt) 25.76 20.80 8.2× 10−12

Plasma (UniProt) 4.80 10.34 1.3× 10−18

Membrane (UniProt) 6.55 11.71 2.6× 10−13

Extracellular (UniProt) 2.62 6.85 1.5× 10−12

Mitochondrion (UniProt) 12.66 4.36 0.015
ER (UniProt) 3.93 4.73 8.2× 10−06

Golgi (UniProt) 5.68 3.11 0.016
Lysosome (UniProt) 0.87 1.99 1.1× 10−04

Peroxisome (UniProt) 0.44 0.87 4.4× 10−04

CellJunction (UniProt) 1.75 2.86 0.021
CellProjection (UniProt) 3.06 2.62 0.720
Nuclues (WoLF PSORT) 71.62 59.78 0.045
Cytoplasm (WoLF PSORT) 69.43 58.53 0.062
Plasma (WoLF PSORT) 23.14 30.39 0.072
Extracellular (WoLF PSORT) 24.02 34.99 0.010
Golgi (WoLF PSORT) 2.62 2.74 0.923
ER (WoLF PSORT) 11.35 13.33 0.464
Mitochondria (WoLF PSORT) 38.43 33.87 0.303
Peroxisome (WoLF PSORT) 10.04 13.95 0.150
Lysosome (WoLF PSORT) 3.06 7.10 0.030
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All the associated source codes and data will be made publicly available once the

manuscripts describing the experimental results will get accepted for the publica-

tion.

Data Files Submitted with this Thesis in a CD

File Name Description
Lethal GeneList.xlsx All lethal (essential) genes
Viable GeneList.xlsx All viable (non–essential) genes
Singleton–Duplicate GeneLists.xlsx All singleton and duplicate genes labelled as

lethal or viable
SSD–WGD GeneLists.xlsx All small–scale and whole–genome duplicated

genes labelled as lethal or viable
DCA Age AllGene.xlsx Genes expressed at each stage and their DCA

age
MRD Age AllGene.xlsx Genes expressed at each stage and their MRD

age
GenesExpressedAllStage.xlsx Genes expressed at all stages
Top10%Genes Removed DCAAnalysis.xlsx Top 10% of most highly expressed genes re-

moved for analysis shown in Figure 5.17C
Top10%Genes Removed MRDAnalysis.xlsx Top 10% of most highly expressed genes re-

moved for analysis shown in Figure 5.17D
train-01Dataset.csv Dataset used to train RF–1 classifier
train-02Dataset.csv Dataset used to train RF–2 classifier
train-03Dataset.csv Dataset used to train RF–3 classifier
test-bDataset.csv Dataset used to assess the efficacy of RF–1

classifier
test-u01Dataset.csv Dataset used to assess the efficacy of RF–2

classifier
test-u02Dataset.csv Dataset used to assess the efficacy of RF–3

classifier
test-newDataset.csv Newly annotated lethal and viable mouse

genes published by the IMPC
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