
Bio-mimetic Spiking Neural
Networks for unsupervised clustering

of spatio-temporal data

Katarzyna Weronika Kożdoń

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

November 14, 2021

2

3

I, Katarzyna Weronika Kożdoń, confirm that the work presented in this thesis

is my own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

Spiking neural networks aspire to mimic the brain more closely than traditional ar-

tificial neural networks. They are characterised by a spike-like activation function

inspired by the shape of an action potential in biological neurons. Spiking net-

works remain a niche area of research, perform worse than the traditional artificial

networks, and their real-world applications are limited.

We hypothesised that neuroscience-inspired spiking neural networks with

spike-timing-dependent plasticity demonstrate useful learning capabilities.

Our objective was to identify features which play a vital role in information pro-

cessing in the brain but are not commonly used in artificial networks, implement

them in spiking networks without copying constraints that apply to living organ-

isms, and to characterise their effect on data processing. The networks we created

are not brain models; our approach can be labelled as artificial life.

We performed a literature review and selected features such as local weight

updates, neuronal sub-types, modularity, homeostasis and structural plasticity. We

used the review as a guide for developing the consecutive iterations of the net-

work, and eventually a whole evolutionary developmental system. We analysed the

model’s performance on clustering of spatio-temporal data. Our results show that

combining evolution and unsupervised learning leads to a faster convergence on the

optimal solutions, better stability of fit solutions than each approach separately. The

choice of fitness definition affects the network’s performance on fitness-related and

unrelated tasks. We found that neuron type-specific weight homeostasis can be used

to stabilise the networks, thus enabling longer training. We also demonstrated that

networks with a rudimentary architecture can evolve developmental rules which

6 Abstract

improve their fitness.

This interdisciplinary work provides contributions to three fields: it proposes

novel artificial intelligence approaches, tests the possible role of the selected biolog-

ical phenomena in information processing in the brain, and explores the evolution

of learning in an artificial life system.

Impact Statement

Spiking neural networks (SNNs) are still a relatively small field and an unexplored

research area. Some of the main problems associated with spiking neural networks

are the need to develop a learning mechanism other than the standard backpropaga-

tion algorithm, and finding a balance between the network stability and plasticity.

The focus of this thesis is to addresses this unexplored research niche. Finding solu-

tions to these problems is vital for the SNNs to become an applied data processing

tool. We examined several selected neuroscience-inspired features such as local

weight updates, neuronal sub-types, modularity, homeostasis and structural plas-

ticity in the context of evolution, development and learning, and tested networks’

performance on an applied task. Overall, this work demonstrates that brain-inspired

mechanisms provide useful properties for information-processing algorithms such

as artificial neural networks, and should be explored more.

Publications, talks and posters

This work has been peer-reviewed [1, 2, 3, 4] and the papers were presented at

international conferences, and in the form of talks at the international level:

• Developmental Neural Networks Workshop, Conference on Artificial Life,

Newcastle, United Kingdom, 2019 [3];

• Conference on Artificial Life, Tokyo, Japan, 2018 [2];

• guest talk at the National Institute of Informatics, Tokyo, Japan, 2018;

• the IEEE Symposium Series on Computational Intelligence, Honolulu,

Hawaii, USA, 2017 [1].

8 Impact Statement

Talks at the national level included:

• Crick-University College London (UCL) Graduate Symposium, London, UK,

2019;

• The London Hopper Colloquium, London, UK, 2018 (finalist prize);

• UCL PhD Student Mini-conference, London, UK, 2018.

This research was also presented in the poster form at:

• UCL Neuroscience Symposium, London, UK, 2019;

• UCL Doctoral School Research Poster Competition, London, UK, 2019;

• Crick-UCL Graduate Symposium, London, UK, 2019;

• UCL Neuroscience Symposium, London, UK, 2018.

Professional affiliations

Directly as a result of presenting the above research, I was elected to be a board

member of the Emergent Research in Artificial Life society, and a student board

representative at the International Society for Artificial Life.

Teaching

I have also shared knowledge gained during this project while working as a teaching

assistant for the following UCL courses: Machine Learning for Domain Special-

ists (COMP0142), Cognitive Systems and Intelligent Technologies (COMP0014),

Robotics Programming (COMP105P), Principles of Programming (COMP101P),

and Systems training in Maths, Informatics and Computational Biology (SysMIC).

In 2019, I was named one of top three teaching assistants at the UCL Department

of Computer Science, and awarded a Postgraduate Teaching Assistant Award.

Public engagement

Artificial Intelligence has been a popular subject in the news and draws the at-

tention of the general public. An effort was made to engage in the public

Impact Statement 9

debate in a responsible manner, and promote scientifically-sound understand-

ing of this research field and related ethical concerns. The field of SNNs

in general and this research in particular was promoted in social media such

as Twitter (https://twitter.com/kasia kozdon) and through a designated web-

site (https://bioaiblog.wordpress.com), reaching a varied audience including re-

searchers, general public and journalist. This engagement lead to an interview with

National Geographic [5].

Acknowledgements

Firstly, I would like to thank Dr Peter Bentley for giving me support and guidance,

but also freedom to explore my ideas, and helping me to grow as an independent

researcher, and Dr QueeLim Ch’ng for stepping in and agreeing to act as my sec-

ondary supervisor, and for all his help during the intense final year of my project.

I would like to thank the members of the Intelligent Systems research group

and my colleagues at Braintree Ltd: Soo Ling, Vasily, Nikolay, Pete, Matthew,

Freddie, Arturo, Manal, Joy, Andrew, Manuel and Zheyu for their support and ca-

maraderie.

Big thank you to Nadine Mogford, Sarah Turnbull and JJ Giwa-Majekodunmi

for their massive help with all administrative and personal matters.

I would also like to thank my fellow PhD students, in particular, Andrea,

Havva, Iulia, Katt, Alessandra and Luba for company and support during our PhD.

Big thank you to my colleagues at Innatera Nanosystems who helped me to get

through the final stages of my PhD.

I would like to acknowledge The Artificial Life community, in particular, The

International Society for Artificial Life and Emergent Researchers in Alife group,

for providing an inspiring space for brainstorming and thinking outside the box.

I would also like to acknowledge the funding bodies that made my PhD possi-

ble: The Biotechnology and Biological Sciences Research Council and University

College London.

Last but not least, I would like to express my gratitude to my family: to my

parents and sibling for their unconditional support, to Lew for all the lovely mes-

sages. I would like to express my immense gratitude to Rupert for being a massive

12 Acknowledgements

source of everyday inspiration, strength and sanity checks; for celebrating all my

successes and helping me to turn other experiences into learning opportunities. For

providing calories, clean laundry, love and support throughout the harsh period of

corrections during a global pandemic.

Your support made this thesis possible.

Contents

List of Figures . 20

List of Tables . 26

Acronyms 29

1 Introduction 33

1.1 Hypothesis . 36

1.2 Objectives . 37

1.3 Scope of the project . 38

1.4 Thesis overview . 38

1.5 Publications . 39

2 Literature Review 41

2.1 Spiking in biological and artificial neurons 41

2.1.1 Information processing in the brain 41

2.1.1.1 Initialisation of an action potential 41

2.1.1.2 Dendritic computation 43

2.1.1.3 Neuron models 44

2.1.1.4 Single-compartmental neuron models 45

2.1.1.5 Multi-compartmental neuron models 46

2.1.2 Spiking in artificial neural networks 47

2.2 Excitatory and inhibitory neurons 49

2.3 Rate-based vs spike timing-based information encoding 51

2.4 Synaptic plasticity . 53

14 Contents

2.4.1 When does our learning start? 53

2.4.2 Synaptic plasticity in the brain 55

2.4.3 Unsupervised training in spiking neural networks 56

2.4.4 Supervised training in spiking neural networks 59

2.5 Structural plasticity . 63

2.5.1 Structural plasticity in the brain 63

2.5.1.1 Progressive mechanisms 63

2.5.1.2 Regressive mechanisms 66

2.6 Evolution and development . 67

2.6.1 Evolution of artificial neural network architectures 69

2.6.1.1 Direct encoding 69

2.6.1.2 Indirect encoding 71

2.6.1.3 The model of evolving neural aggregates 71

2.7 Modularity in neural networks . 72

2.7.1 Modularity in the brain . 72

2.7.2 Modularity in artificial neural networks 73

2.8 Homeostatic synaptic plasticity . 74

2.8.1 Homeostatic synaptic plasticity in the nervous system 74

2.8.2 Homeostatic plasticity implementations 76

2.9 Summary . 78

3 Methodology 79

3.1 Simulator selection . 80

3.2 Neuron model . 82

3.2.1 Implementation of electrophysiological parameters 84

3.3 Architecture . 85

3.4 Input data . 86

3.5 Training with spike-timing-dependent plasticity 87

3.6 Similarity measures and output interpretation 88

3.6.1 Distance metric . 88

3.6.2 Distance metric interpretation 89

Contents 15

3.6.3 Output interpretation with self-organising maps 90

3.6.4 Individual vs collective activity 91

3.7 Model assessment . 92

4 Spiking neural networks for unsupervised processing of spatio-

temporal patterns 95

4.1 Model description . 97

4.1.1 Neuron model and network architecture 97

4.1.2 Spike Timing-dependent Plasticity 97

4.1.3 Analysis . 98

4.1.4 Input data . 98

4.2 Experimental design: baseline characterisation 102

4.2.1 Experiment 1: Performance of standard Machine Learning

methods . 102

4.2.2 Experiment 2: Baseline characterisation of the spiking neu-

ron network . 103

4.2.3 Experiment 3: STDP: effects on spike train distances and

weights . 104

4.3 Experimental design: ensembles 105

4.3.1 Experiment 4: Clustering of spatio-temporal patterns 105

4.3.2 Experiment 5: Clustering of noisy inputs 106

4.3.3 Experiment 6: Clustering of incomplete inputs 107

4.3.4 Experiment 7: Clustering of superimposed inputs 107

4.4 Results: Baseline characterisation 107

4.4.1 Experiment 1: Performance of standard Machine Learning

methods . 107

4.4.2 Experiment 2: Characterisation of the spiking pattern 108

4.4.2.1 PCA of input and output spikes 112

4.4.2.2 VPD for the stripes data set 112

4.4.2.3 VPD for the shapes data set 117

4.4.2.4 Euclidean distance for the stripes data set 118

16 Contents

4.4.2.5 Euclidean distance for the shapes data set 118

4.4.3 Experiment 3: Effects of STDP on spike train distances and

weights . 121

4.5 Results: Feature reduction and ensembles 127

4.5.1 Experiment 4: Clustering of spatio-temporal patterns 127

4.5.1.1 Clustering of individual spikes 128

4.5.1.2 Clustering of collective spikes 129

4.5.1.3 Ensemble clustering 130

4.5.2 Experiment 5: Clustering of noisy inputs 132

4.5.3 Experiment 6: Clustering of incomplete inputs 138

4.5.4 Experiment 7: Clustering of superimposed inputs 143

4.6 Summary . 143

5 The evolution of training parameters for spiking neural networks with

Hebbian learning 147

5.1 Model description . 148

5.2 Experimental design . 152

5.2.1 Experiment 1: Search for learning parameters without sur-

vival of the fittest. 152

5.2.2 Experiment 2: Evolutionary optimisation of learning pa-

rameters . 153

5.2.3 Experiment 3: Evolution with different fitness criteria . . . 153

5.2.4 Experiment 4: Evolution with architectural inheritance . . . 154

5.2.5 Experiment 5: Evolutionary fitness in the absence of training 154

5.3 Results . 155

5.3.1 Experiment 1: Search for learning parameters without sur-

vival of the fittest. 155

5.3.2 Experiment 2: Evolution optimisation of learning parameters 155

5.3.3 Experiment 3: Fitness with different fitness definitions . . . 165

5.3.4 Experiment 4: Evolution with architectural inheritance . . . 169

5.3.5 Experiment 5: Evolutionary fitness in the absence of training 171

Contents 17

5.4 Summary . 173

6 Synaptic homeostasis in spiking neural networks 177

6.1 Introduction . 177

6.2 Model description . 179

6.3 Part 1: Stabilisation of network activity by normalising the sum of

weights . 180

6.3.1 Experimental design . 181

6.3.1.1 Experiment 1: Homeostasis of the total sum of

weights . 181

6.3.1.2 Experiment 2: Homeostasis of the sum of excita-

tory and inhibitory weights 182

6.3.2 Results . 183

6.3.2.1 Results 1: Homeostasis of the total sum of weights 183

6.3.2.2 Results 2: Homeostasis of the sum of excitatory

and inhibitory weights 186

6.3.3 Summary of part 1 . 188

6.4 Part 2: Stabilisation of network activity by scaling weights 189

6.4.1 Experimental design . 190

6.4.1.1 Experiments 3 and 4: weight adjustment as a

function of the output layers’ activity 190

6.4.1.2 Experiments 5 and 6: Weight adjustment as a

function of the whole network activity 191

6.4.2 Results . 192

6.4.2.1 Results 3: Multiplicative weight adjustment as a

function of spiking in the output layer 192

6.4.2.2 Results 4: Additive weight adjustment as a func-

tion of spiking in the output layer 194

6.4.2.3 Results 5: Multiplicative weight adjustment as a

function of spiking in the whole network 198

18 Contents

6.4.2.4 Results 6: Additive weight adjustment as a func-

tion of spiking in the whole network 201

6.4.3 Summary of part 2 . 203

6.5 Part 3: Stabilisation of network activity by scaling excitation and

inhibition . 206

6.5.1 Experimental design: Scaling of inhibition and excitation . . 206

6.5.2 Results 7: Scaling of inhibition and excitation 208

6.5.3 Summary of part 3 . 212

6.6 Chapter summary . 212

7 Conclusions and future work 217

7.1 Contributions . 217

7.2 Future Work . 223

7.2.1 Neuron models . 223

7.2.2 Data encoding and time-series data 224

7.2.3 Homeostasis . 224

7.2.4 Evolutionary approaches 224

7.2.5 Developmental rules . 225

7.2.6 Architecture analysis . 227

7.2.7 Reinforcement learning . 227

7.2.8 Sleep-wake cycle . 227

7.2.8.1 The synaptic homeostasis hypothesis 228

7.2.8.2 Sleep-wake cycle implementations 229

7.2.8.3 Implementation in our model 233

7.2.9 Closing statement . 233

Appendices 235

8 Appendices 235

A Evolution with different criteria 237

A.1 Introduction . 237

Contents 19

A.2 Experimental design . 237

A.3 Results . 241

A.4 Discussion . 242

B Implementation of different STDP functions 247

B.1 Methods: Implementation of different STDP functions 247

B.2 Results: Effects of STDP functions on model’s behaviour 249

B.3 Summary . 250

C Other clustering methods 253

C.1 Experiment description . 254

C.2 Results . 255

C.3 Summary . 255

D Evolution of developmental rules 261

D.1 Introduction . 261

D.2 Model description . 263

D.2.1 Networks with regressive plasticity 263

D.2.2 Evolution of developmental rules 264

D.3 Experimental design . 267

D.3.1 Regressive architectural plasticity 267

D.3.1.1 Experiment 1: Random pruning 267

D.3.1.2 Experiment 2: Conditional pruning 268

D.3.2 Evolution of developmental rules 269

D.3.2.1 Experiment 3: Output encoding in sparse plastic

networks . 270

D.3.2.2 Experiment 4: Development of networks with ar-

chitectural inheritance 270

D.4 Results . 271

D.4.1 Regressive architectural plasticity 271

D.4.1.1 Results 1: Random pruning 271

D.4.1.2 Results 2: Conditional pruning 274

20 Contents

D.4.2 Evolution of developmental rules 280

D.4.2.1 Results 3: Output encoding in sparse plastic net-

works . 280

D.4.2.2 Results 4: Development of networks with archi-

tectural inheritance 281

D.5 Summary . 290

E Training of Self Organising Maps 293

References 298

List of Figures

2.1 Action potential spike. 48

3.1 Spearman correlation for random number generator. 83

3.2 Network architecture . 86

4.1 Types of input data used. 100

4.2 Network training and output interpretation overview. 101

4.3 Performance of the MLP and LSTM on the shapes data set. 109

4.4 SNN dynamics. 110

4.5 Spike rasters in untrained SNN. 111

4.6 Principal Component Analysis (PCA) of input and output spike

trains in untrained SNNs . 113

4.7 Victor-Purpura distance (VPD) of output neurons in untrained SNN,

stripes data set. 114

4.8 VPD of input neurons in untrained SNN, shapes data set. 115

4.9 VPD of output neurons in untrained SNN, shapes data set. 116

4.10 Euclidean distances of spike trains in untrained SNN, stripes data set. 119

4.11 Euclidean distances of spike trains in untrained SNN, shapes data set.120

4.12 Mean VPD-based scores. 121

4.13 VPD-based scores throughout spike-timing-dependent plasticity

(STDP) training . 123

4.14 Individual Euclidean distance-based scores throughout STDP training124

4.15 Collective Euclidean distance-based scores throughout STDP training125

4.16 Weight changes throughout STDP training 126

22 List of Figures

4.17 Output spike counts throughout STDP training 127

4.18 self-organising map (SOM) clustering of individual SNN spikes by

spatial class. 130

4.19 SOM clustering of individual SNN spikes by temporal class. 131

4.20 SOM clustering of collective SNN spikes by spatial class. 132

4.21 SOM clustering of collective SNN spikes by temporal class. 133

4.22 SOM clustering summary. 133

4.23 SOM node composition, spatial classes. 134

4.24 SOM node composition, temporal classes. 135

4.25 SOM clustering for multiple networks. 135

4.26 Clustering of SNN spikes by spatial class in the presence of noise. . 136

4.27 Clustering of SNN spikes by temporal class in the presence of noise. 137

4.28 SOM node identity in the presence of noise. 138

4.29 Spike count for noisy data. 139

4.30 Clustering of SNN spikes by spatial class for incomplete data. . . . 140

4.31 Clustering of SNN spikes by temporal class for incomplete data. . . 141

4.32 Spike count for incomplete data. 142

5.1 Scores during the learning and evolutionary process without the sur-

vival of the fittest. 156

5.2 Parameters evolved without the survival of the fittest, stripes data set. 156

5.3 Performance of SNNs during optimisation including evolution and

unsupervised learning. 158

5.4 Clustering performance of SOM–SNNs. 160

5.5 Convergence of parameter values during the evolutionary process,

stripes data set. 161

5.6 Correlation of the evolved parameters. 161

5.7 Experiment 2: comparison of parameter values evolved in response

to different data sets. 162

5.8 Weight changes throughout evolution 163

5.9 Spike counts throughout evolution 164

List of Figures 23

5.10 Spike counts vs scores. 164

5.11 Spike counts vs scores. 165

5.12 Experiment 3: Relation between fitness definition and clustering

precision . 167

5.13 Experiment 3: Co-evolution of performance on fitness related and

unrelated tasks. 168

5.14 Experiment 3: comparison of parameter values evolved with differ-

ent fitness criteria, stripes data set. 168

5.15 Experiment 4: Performance with architectural inheritance. 170

5.16 Weight changes throughout evolution 171

5.17 Spiking activity throughout evolution with architectural inheritance. 172

5.18 Experiment 5: Performance in the absence of training. 173

6.1 Experiment 1: Analysis of synaptic weights in networks with global

weight normalisation. 184

6.2 Experiment 1: Analysis of spiking activity in networks with global

weight normalisation. 185

6.3 Experiment 1: Precision of networks with global weight normalisation186

6.4 Experiment 2: Analysis of synaptic weights in networks with neu-

ron type-specific weight normalisation. 187

6.5 Experiment 2: Analysis of spiking activity in networks with neuron

type-specific weight normalisation. 187

6.6 Experiment 2: Precision of networks with neuron type-specific

weight normalisation. 188

6.7 Experiment 3: Analysis of synaptic weights in networks with mul-

tiplicative output activity-based weight adjustment 193

6.8 Experiment 3: Analysis of spiking activity in networks with multi-

plicative output activity-based weight adjustment 195

6.9 Experiment 3: Precision of of networks with multiplicative output

activity-based weight adjustment. 196

24 List of Figures

6.10 Experiment 3: Precision of networks with multiplicative output

activity-based weight normalisation - summary. 196

6.11 Experiment 4: Analysis of synaptic weights in additive output

activity-based weight adjustment. 197

6.12 Experiment 4: Analysis of spiking activity in additive output

activity-based weight adjustment. 198

6.13 Experiment 4: Precision of networks with additive output activity-

based weight adjustment. 199

6.14 Experiment 4: Precision of networks with additive output activity-

based weight normalisation - summary. 199

6.15 Experiment 5: Analysis of synaptic weights in multiplicative global

activity-based weight adjustment. 201

6.16 Experiment 5: Analysis of spiking activity in multiplicative global

activity-based weight adjustment. 202

6.17 Experiment 5: Precision of networks with multiplicative global

activity-based weight adjustment. 202

6.18 Experiment 5: Precision of networks with multiplicative global

activity-based weight normalisation - summary. 203

6.19 Experiment 6: Analysis of synaptic weights in additive global

activity-based network stabilisation. 204

6.20 Experiment 6: Analysis of spiking activity in additive global

activity-based network stabilisation. 205

6.21 Experiment 6: Precision of networks with additive global activity-

based network stabilisation. 205

6.22 Experiment 6: Precision of networks with multiplicative global

activity-based weight normalisation - summary. 206

6.23 Experiment 7: Analysis of synaptic weights in networks with exci-

tation/inhibition scaling. 209

6.24 Experiment 7: Analysis of spiking activity in additive output

activity-based weight adjustment. 210

List of Figures 25

6.25 Experiment 7: Precision of networks with excitation/inhibition scal-

ing. 211

A.1 Relation between fitness definition and clustering precision 243

A.2 Analysis of synaptic weights. 244

A.3 Analysis of spiking activity. 245

B.1 Effects of STDP function on synaptic weights 250

B.2 Analysis of spiking activity. 251

B.3 Fitness of the model with defferent STDP functions. 252

C.1 Internal validation of SOM and DTW clustering algorithms. 256

D.1 Experiment 1: Analysis of synaptic weights in networks with

synaptic pruning. 272

D.2 Experiment 1: Analysis of spiking activity in networks with synap-

tic pruning. 272

D.3 Experiment 1: Precision of networks with synaptic pruning. 273

D.4 Experiment 2: Precision of networks with different pruning mech-

anisms. 275

D.5 Experiment 2: Analysis of synaptic weights in networks with

synaptic pruning. 278

D.6 Experiment 2: Analysis of synaptic weights in networks with

synaptic pruning. 279

D.7 Experiment 2: Analysis of spiking activity in networks with synap-

tic pruning. 279

D.8 Experiment 3: Individual encoding of the output vectors is associ-

ated with higher fitness . 281

D.9 Experiment 4: Combination of progressive and regressive plasticity

improves fitness . 283

D.10 Experiment 4: Architecture growth in plastic networks 284

D.11 Experiment 4: Genome evolution 286

26 List of Figures

D.12 Experiment 4: Synaptic properties of networks with architectural

plasticity . 288

D.13 Experiment 4: Connection types in networks with architectural

plasticity . 290

D.14 Experiment 4: Analysis of spiking activity in networks with synap-

tic pruning. 291

E.1 SOM error, spatial classes, stripes data set. 294

E.2 SOM error, spatial classes, stripes data set. 295

E.3 SOM error, spatial classes, shapes data set. 296

E.4 SOM error, spatial classes, stripes data set. 297

List of Tables

3.1 Neuron parameters . 85

4.1 Input parameters . 101

4.2 Grid search of SOM parameters 106

4.3 Performance of the MLP and LSTM 108

5.1 Explored initialisation ranges of STDP parameter 151

5.2 Permitted range for the STDP parameter values 151

5.3 Fitness during learning and evolutionary process without the sur-

vival of the fittest . 157

5.4 Experiment 2: Fitness during the evolutionary and learning Process 157

5.5 Experiment 3: Relation between fitness definition and clustering

precision . 166

5.6 Experiment 4: Fitness with architectural inheritance.g 170

5.7 Experiment 5: Fitness in the absence of training 172

6.1 Model hyperparameters . 180

6.2 Experiment 7: Directions of weight updates during scaling of exci-

tation and inhibition levels. 208

6.3 Summary of network stabilisation methods. 215

A.1 Electrophysiological properties of the neurons 238

A.2 Model hyperparameters . 239

A.3 Relation between fitness definition and clustering precision 243

C.1 Clustering quality analysis: connectivity 257

28 List of Tables

C.2 Clustering quality analysis: dunn 258

C.3 Clustering quality analysis: silhouette 259

D.1 Experiment 2: Comparison of network pruning methods. 276

Acronyms

aEIF adaptive exponential integrate-and-fire. 45, 77

AI Artificial Intelligence. 8, 33–35, 37, 38, 93

ALife Artificial Life. 35, 37

ANN artificial neural network. 33–36, 41, 44, 47, 48, 50, 52, 54, 55, 59, 60, 62,

67–74, 78–80, 83, 102, 147, 177, 217, 225, 226, 229, 231, 234, 263, 291

AP action potential. 36, 42, 43, 45, 51, 52, 55, 78, 87, 248, 270

BCM Bienenstock, Cooper and Munro. 76

BSE Ben’s Spiker Encoding. 52

CCP the Competing Conventions Problem. 70, 71

CGP Cartesian genetic programming. 69, 70

CNN convolutional neural network. 74, 222

DNN deep neural network. 36, 68

DTW dynamic time warping. 253–255

EA evolutionary approach. 39, 54, 67, 68, 80, 81, 146, 147, 149, 152–155, 159,

166, 169, 172–174, 177, 178, 218–220, 222, 224, 234, 238, 281, 283

EANN evolving artificial neural network. 69, 70

30 Acronyms

eLIF exponential leaky integrate-and-fire. 45, 82, 84–86, 89, 97, 103, 104, 109,

148, 179, 237

GA genetic algorithm. 68

GABA γ-amino-butyric acid. 49

GAN generative adversarial network. 33, 232

HSP homeostatic synaptic plasticity. 74, 77, 178, 221, 222, 224, 227, 263

IF integrate-and-fire. 45, 47

inhLTP inhibitory long-term potentiation. 238, 239

LE Latency Encoding. 48, 53

LIF leaky integrate-and-fire. 45, 47, 230, 232

LSTM Long Short-Term Memory. 95, 102, 103, 107, 108, 143, 145, 146, 218, 220

LTD long-term depression. 55, 57, 74–76, 231, 238, 239

LTP long-term potentiation. 55, 74–76, 231, 238, 239

MB mushroom body. 64, 65, 227, 266

MENA model of evolving neural aggregates. 71

mEPSCs miniature excitatory postsynaptic currents. 229

ML machine learning. 36, 79–81, 83, 91, 92, 95, 96, 102, 105, 112, 127, 149, 218,

228

MLP Multilayer Perceptron. 95, 102, 103, 107, 108, 143, 145, 146, 218, 220

MNIST dataset Modified National Institute of Standards and Technology dataset.

78

Acronyms 31

NEAT NeuroEvolution of Augmenting Topologies. 68, 70

NLP natural language processing. 33, 34

PAM partitioning around medoids. 253, 254

PCA Principal Component Analysis. 21, 88, 98, 103–105, 112, 113, 219

POE phylogenetic, ontogenetic and epigenetic. 54, 69, 219, 222, 225, 234, 261,

263, 291, 292

PSD Precise-Spike-Driven Synaptic Plasticity. 61, 62

ReLU Rectified Linear Unit. 102

REM rapid eye movement. 228

ReSuMe Remote Supervised Method. 61, 62, 69

RL reinforcement learning. 67, 68, 81

RNN recurrent neural network. 33, 73

ROE Rank Order Encoding. 52

RProp resilient propagation. 60

SD standard deviation. 102, 107, 113, 121, 126–128, 130–133, 135–142, 159, 163,

164, 171, 172, 184–188, 193, 196–199, 201, 202, 204, 205, 209–211, 215,

244, 245, 250–252, 271–291

SDM spike distance metric. 89–91, 96, 100, 104, 105, 121, 122, 126

SFE Step Forward Encoding. 53

SHY the synaptic homeostasis hypothesis. 228

32 Acronyms

SNN spiking neural network. 7, 9, 21, 22, 35–39, 41, 47–49, 51, 52, 56–62, 68,

73, 74, 76–83, 86–88, 90–93, 95–99, 102, 105–107, 110–138, 140, 141, 143–

152, 155, 159–161, 164, 165, 168–170, 172–175, 177, 178, 181, 182, 185,

186, 188–190, 197, 200, 203, 210, 212, 213, 215, 217–222, 227, 233, 234,

239, 241, 245, 248, 253, 254, 262, 263, 265, 268–270, 274, 281, 282, 291–

297

SOM self-organising map. 22, 26, 50, 91, 92, 96, 98, 100, 101, 105, 106, 127–137,

140, 141, 143, 145, 146, 149, 153, 159, 160, 165, 169, 170, 172, 173, 179,

185, 186, 188, 197, 200, 210, 213, 215, 218, 220, 239, 245, 248, 253–255,

270, 293–297

SOTA self-organising tree algorithm. 254

SS synaptic scaling. 67, 75–78, 191, 263, 264

SSim spike simulator. 69

STDP spike-timing-dependent plasticity. 21, 22, 25, 27, 36, 39, 49, 50, 52, 55–59,

62, 63, 68, 69, 76–81, 87–90, 95, 97, 104–106, 121–129, 131, 134, 144, 145,

148, 150–154, 157, 160, 163, 169, 172, 173, 178, 212, 214, 217–224, 230,

232–234, 238, 239, 241, 244, 245, 247–250, 252, 287, 291, 292

TBR Threshold-Based Representation. 53

TE Threshold Encoding. 52

TMWE Moving Window Encoding. 48, 53

UCL University College London. 8

UPGM unweighted pair group method. 254

VPD Victor-Purpura distance. 21, 60–62, 88, 89, 92, 98, 101, 103–105, 112, 114–

118, 121–123, 143, 144

WTA Winner Take All. 49, 50

1

Introduction

“Today more people are working on deep learning than ever before —-

around two orders of magnitude more than in 2014. And the rate of

progress as I see it is the slowest in 5 years. Time for something new.”

– François Chollet, 2018 [6]

During the last two decades, we have been observing a renewed interest in Ar-

tificial Intelligence (AI), especially in artificial neural network (ANN). Some refer

to this period as “the AI spring” [7]. Big tech companies published several stories

documenting AI achieving so-called “super-human” results in a variety of tasks. In

2016, AlphaGo defeated a world champion in the game of Go [8] – a task until

recently believed to be out of reach for AI. Only one year later, AlphaZero, a more

generic version of AlphaGo which did not contain domain knowledge other than the

rules of the game, outperformed state of the art programs in Go, Shogi and chess

[9].

The widely published successes of AI led to a subsequent boom in publica-

tions proposing new algorithms. However, it has been suggested that the success

of some of the novel solutions is due to factors such as better parameter tuning,

data pre-processing techniques, optimisation heuristics etc., rather than the algo-

rithms themselves [10]. Similar concerns regarding the meaningfulness of reports

of state-of the art performance of new algorithms have been raised for deep learn-

ing [11], recurrent neural networks for natural language processing (NLP) [12], and

generative adversarial networks [13].

34 1. Introduction

The reliance of ANN progress on the ever-growing number of network lay-

ers, computational power and data pools [14] has also been flagged as a distraction

from creating better algorithms [10]. AI research became focused on beating stan-

dard benchmarks, frequently through the brute force of using more computational

resources. DeepMind used 1920 CPUs and 280 GPUs in the AlphaGo vs Lee Sedol

game [15], whereas Nvidia used a 24-times bigger model for a 34% performance

gain on an NLP task [16]. Some researchers question whether this still qualifies as

research and is a demonstration of the superiority of one’s model, or is a demonstra-

tion of a budget size of the private companies [17]. Moreover, the fact that such large

amounts of resources are needed to train and run the networks, and only a limited

number of primarily private players has access to them, raises ethical concerns. Our

quest for more powerful computing and more data starts to resemble instrumental

convergence, a process where an intelligent agent pursues its goal regardless of the

negative consequences (e.g. environmental and data privacy concerns), grotesquely

resembling the concerns regarding AI turning the Earth into computronium [18] or

turning the universe into a paperclip factory [19] in order to achieve its goals.

Importantly, high resource use is also associated with a high carbon footprint.

Training some of the state of the art NLP algorithms costs hundreds of thousands

of dollars in cloud computing costs, and has a carbon footprint comparable to a

transatlantic return flight [20]; in practice, developmental pipelines include multiple

iterations of training and testing a new model.

Currently, both AI and climate change draw significant attention from the gen-

eral public. It is not surprising that articles discussing the impact of AI on the

environment are starting to appear in the press [21, 22], and declare some of the

AI practices to be questionable from an environmental point of view. If this trend

continues, flashy projects previously used by tech giant to boost public interest in

AI may turn public sentiment against it.

AI has previously undergone two bubble bursts commonly referred to as “AI

winters”. These periods were preceded by AI research breakthroughs which lead to

an increased interest in AI from governments, industry and the public. Inability to

35

deliver research results matching the timeline and size of the expectations, as well as

misinterpreted critique (e.g. in case of the infamous Minsky and Papert book [23],

as discussed in [19], page 22) lead to a decrease in funding and in effect number of

researchers working in the AI field.

As with the previous AI booms, there currently is a lot of unmet hype [24],

which may turn the spring into winter. Some other well-known cracks in AI’s great-

ness include lack of or poor explainability [25, 26], building-in of our own biases

into the models [27, 28, 29], and ill-intentioned use threatening privacy, democracy

and human rights [30, 31].

Taking the above into account, we propose that traditional ANNs are an equiva-

lent of finding a local minimum in the solution space. They have their well-deserved

space as a part of AI approaches, and they are particularly good at specific tasks,

but we should look for more diverse solutions to overcome the stagnation starting

to appear in this research field [6, 32], to counteract the trend for incremental per-

formance improvements achieved by increasing resource use, and to counteract the

possible bubble burst. Throughout its history, AI had ties to neuroscience and Ar-

tificial Life (ALife), and there appears to be a renewed interest in cross-pollination

between these fields [33, 34, 35, 36, 37].

The brain is an obvious source of inspirations for computationally-efficient

information-processing algorithms. Currently, ANNs are only very loosely inspired

by information processing in the brain, mainly in the visual system. Despite the

unquestionable achievements of AI and its “super-human” performance on specific

tasks, AI is far from achieving general cognitive abilities seen in humans. It requires

more data than humans receive during their lifetime. It is clear that the human brain

is optimised for working with sparse data, and for making new connections between

different data types. With each new experience, humans gain new insights without

overwriting the old ones. Moreover, the human brain has an astonishing capacity to

maintain high performance even in case of severe damage to the network [38].

SNNs, the third generation of neural networks [39], aspire to mimic the activ-

ity of biological neurons more closely than traditional ANNs, and to take advantage

36 1. Introduction

of the information contained in the temporal encoding of signals. They are charac-

terised by a spike-like activation function inspired by the shape of action potential

in biological neurons.

SNN-based approaches applied to deep neural networks were shown to reduce

the latency and the required amount of computational power [40, 41]. However,

attempts to translate ANNs into SNNs lead to performance loss due to the lack of

SNN-specific optimisation [42].

Despite their potential, SNNs remain a niche area of research; they do not

perform as well as traditional machine learning (ML) approaches, and their real-

world applications are limited. Due to their intrinsic properties discussed in 2.1.2,

SNNs are a promising tool for processing time-series data. However, these same

features also make them harder to train to successfully perform complex tasks which

non-spiking ANNs can be trained to complete [43]. Most attempts to improve the

performance of SNNs [44, 45, 41, 46] at least partly abandon the unsupervised

learning paradigm which was inspired by the brain [47]. It is therefore of benefit to

make advancements in the area of SNNs, exploring how learning may be affected

both positively and negatively using different neural features and mechanisms.

1.1 Hypothesis
The hypothesis examined in this report is as follows:

Neuroscience-inspired spiking neural networks with spike-timing-dependent

plasticity demonstrate useful learning capabilities.

We use the following definitions:

• Spiking neural network is any ANN with units using activation function

based on the dynamics of the neuronal action potential.

• Spike-timing-dependent plasticity (STDP) is a weight update method

where weight update is a function of the spike-timing of the neuronal pair.

• Neuroscience-inspired is defined as based on quantitative and qualitative re-

ports of processes observed in the brain, and on neuroscience theories aiming

1.2. Objectives 37

to explain how the brain works. Selected neuroscientific data and theory will

be implemented at the level of abstraction and detail suitable for the required

data-processing performance of the SNN.

• Useful learning capabilities is used to refer to qualitative and quantitative

features and improvements (compared to SNNs without the neuroscience-

inspired mechanisms) in the ability of the SNN to process data, e.g. amount

of data required to train the network, training speed, ability to generalise,

ability to handle noisy data, capacity for parallelisation of data processing

etc.

1.2 Objectives
The objective of this work is to identify optimisation and information processing

strategies reported to be utilised by the brain, and to implement them using SNN.

This interdisciplinary work provides contributions to three fields:

• proposes novel AI approaches;

• tests the possible role of the reported biological phenomena in information

processing in the brain;

• explores the evolution of learning in an ALife system.

The detailed objectives of this work are to:

1. critically evaluate neuroscience-inspired concepts currently used in SNNs;

2. based on neuroscience literature, identify features and mechanisms which

were reported to play a role in information processing in the brain but are

not used in SNNs; out of these, identify the most promising concepts to test

in SNNs;

3. determine the most suitable type of input data and tasks on which to test the

networks;

38 1. Introduction

4. assess the properties required from a software framework suitable for testing

novel neuroscience-inspired concepts in SNNs;

5. critically assess the existing frameworks and identify existing software to use,

and, if no appropriate software is identified, develop new software;

6. characterise the baseline properties of the framework used;

7. implement the selected novel features and mechanisms in the SNN;

8. examine the performance of networks with the novel features on the selected

task, e.g. SNN’s precision, training speed, ability to handle noise and missing

data, ability to generalise, resistance to catastrophic interference;

9. discuss the findings in the context of AI and neuroscience.

1.3 Scope of the project
The goal of this work is not to develop a model of biological neurons or networks,

but rather to explore the suitability of the brain’s information-processing algorithms

for use in SNNs. Only single-compartment neurons are used in this project, and

the role of neuronal morphology is not addressed. We looked at firing patterns of

individual neurons and populations; oscillatory patterns of circuits are not explicitly

implemented nor analysed.

When it comes to AI, our aim is primarily to identify new, promising

neuroscience-inspired concepts, and to characterise their effect on the performance

of SNNs. Thus, our focus is on proposing and understanding the mechanisms, and

not on achieving state-of-the-art performance in applied tasks.

1.4 Thesis overview
In this thesis, we first describe the core features of the nervous system, then discuss

existing SNN approaches, and contrast them with our biological knowledge. In

chapter 3, we discuss the approach taken. Chapters 4 to 6 contain details of the

model used, and descriptions of the individual experiments focusing on:

1.5. Publications 39

• baseline characterisation, processing of corrupted data, feature reduction and

parallel data processing using ensembles of SNNs (chapter 4);

• optimisation of training hyperparameters for SNNs using evolutionary ap-

proachs (EAs) (chapter 5);

• spiking homeostasis during STDP training (chapter 6).

Appendices provide further details and preliminary work on:

• comparison of different evolutionary fitness definitions (A)

• comparison of different STDP functions (B);

• comparison of different clustering methods (C);

• structural plasticity (D)

Contributions and limitations of this work and details of the future work were dis-

cussed in chapter 7.

1.5 Publications
The research described in this report has been published in the form of the following

peer-reviewed papers:

Katarzyna Kozdon and Peter Bentley. Wide Learning. In IEEE Symposium

Series on Computational Intelligence, pages 3183-3190, Honolulu, United States,

2017

Katarzyna Kozdon and Peter Bentley. The Evolution of Training Parameters

for Spiking Neural Networks with Hebbian Learning. the 2018 Conference on Ar-

tificial Life, pages 276-283, Tokyo, Japan, 2018

Katarzyna Kozdon and Peter Bentley. Normalisation of Weights and Firing

Rates in Spiking Neural Networks with Spike-Timing-Dependent Plasticity. In the

Developmental Neural Networks Workshop, the 2019 Conference on Artificial Life,

Newcastle, United Kingdom, 2019

40 1. Introduction

Katarzyna Kozdon and Peter Bentley. Architectural Plasticity in Spiking Neu-

ral Networks. the 2020 Conference on Artificial Life, pages 702-711, Newcastle,

United Kingdom, 2020

Details of talks and posters are listed in the Impact Statement at the beginning

of this thesis.

2

Literature Review

In this section, we review literature concerning the brain, including topics such as

the dynamics of membrane potential, neuron models, the role of excitation and in-

hibition, information encoding paradigms, functional and architectural plasticity.

Each section is followed by a description of analogue concepts concerning artificial

neural networks, and provides a critical comparison between information process-

ing in the brain and published implementations of spiking neural networks.

2.1 Spiking in biological and artificial neurons

2.1.1 Information processing in the brain

2.1.1.1 Initialisation of an action potential

Each neuron receives inputs through dendrites, then combines them in the neuronal

body (soma). If membrane potential reaches the firing threshold, AP is initialised

in the soma and travels along the output structure called axon. The gap between the

neuron and its target is called the synapse.

The number of synapses per neuron is estimated to be between 7000 [48] and

30,000 [49] in the human neocortex, and 800 in the mouse hippocampus [50]. The

number differs depending on cell type, brain structure and species; their quantifica-

tion is also affected by the technique used.

The neuronal membrane is polarised; in the resting state, the difference be-

tween the inside and outside of the neuron is typically around -70 mV [51]. This

equilibrium is maintained by ion pumps actively maintaining different ion concen-

42 2. Literature Review

trations inside and outside the cell. Inputs can decrease this difference and depo-

larise the membrane making the neuron more likely to fire (excitation), or increase

this difference and further polarise the neuron making it less likely to fire (inhibi-

tion) (excitation and inhibition are further described in subsection 2.2).

Once the potential reaches the threshold of about -55 mV, a rapid cascade of

events is facilitated by voltage-dependent passive ion channels which open and al-

low a rapid ion flow: a short-lived increase in the membrane potential to +40 mV,

followed by hyperpolarisation to -90 mV (refractory state) and restoration of the

resting membrane potential; the neuron is said to fire an action potential (AP). The

change in the internal state of the firing neuron is rapid – the whole process between

reaching the threshold to the restoration of the resting potential takes about 5 ms,

approximately identical every time, and has the appearance of a spike [52].

As the neuron spike reaches the “end” of one neuron, its synaptic terminals,

it releases chemical messengers called neurotransmitters into the synaptic clefts.

It was believed that each neuron releases a single type of a neurotransmitter, and

that the type of neurotransmitter released is determined during embryogenesis and

remains stable throughout life. However, new experimental results suggest the ex-

istence of phenotypic plasticity [53, 54].

The precise effect of the neurotransmitter depends on the type and density of

the receptors present on the postsynaptic membrane of the target neurons, as well

as on the molecular pathways active in the postsynaptic neuron, downstream from

the receptor. This means that despite AP firing being a binary event, there is a

potential for a lot of fine-tuning and heterogeneity in transferring the information

to target neurons. Additionally, the membrane potentials and times quoted above

are average values commonly found in neurons, a much wider range of parameters

has been reported [55]. Differences in the electrophysiological parameters are one

of the criteria used to define different neuronal subtypes [56, 57]. In summary,

the state inside the neuron is analogue and conveys the information about the past

inputs, the firing of an AP is binary (“all-or-none”), and the effect of the AP on the

target neuron depends on features such as the molecular pathway involved.

2.1. Spiking in biological and artificial neurons 43

2.1.1.2 Dendritic computation

For simplicity, the above introductory description did not go into the details of the

anatomy of a single neuron. However, neuronal behaviour has a strong spatial com-

ponent. Neuronal areas differ in their passive and active properties, depending on

factors such as ion channel types and their density, diameter of the component and

myelination. Dendrites with their wide range of arborisation patterns and non-linear

behaviours [58, 59] are a structure of a particular interest when it comes to studying

the links between anatomy and active conductance, and computation.

Complex and active dendritic computation was known for decades [60, 61],

although the experimental results were limited due to the small diameter of the

dendrites [59]. Dendritic computation was initially seen as potentially at odds with

the all–or–nothing propagation mechanism of AP, but was aligned by e.g. proposing

that excitation of a given segment of a neuron depends on a charge [62] (rather than

voltage or current), which is a function of the diameter.

Even passive properties of dendrites have a strong effect on the neuronal com-

putation (reviewed in [59, 63, 64]) by filtering high frequencies of the inputs (act as

a low pass filter); they are also a source of a current leak. Consequently, the signals

are attenuated and delayed as they travel along the dendrites. Furthermore, open-

ing of ion channels leads not only to a current injection but also locally changes the

electric properties of the dendritic membrane. The nearby inputs affect one another;

nearby inputs sum less linearly. The types and densities of these ion channels differ

between neuron types and dendritic areas, leading to a wide range of possible local

computation patterns.

Dendrites are also known to have active computational properties [59, 63, 64],

including dendritic APs which travel from the some to the dendrite (opposite to the

well-known APs travelling from the soma along the axon) [65]. The interaction

between the active dendrites and the soma can further give raise to internal activity

patterns, a form of a feedback mechanism between these structures. Active dendritic

computation also includes signal amplification.

Thanks to dendritic computation, a single neuron has been proposed to per-

44 2. Literature Review

form information processing such as spatio-temporal filtering, information selec-

tion, routing and multiplexing [66]. Dendritic computation has been indicated to

play a role in e.g. directional selectivity in the retina, coincidence detection in the

auditory system (reviewed in [63]). Without going into more details, it is clear that

there exists a vast richness of activity patterns within a single biological neuron.

Some of this richness can be captured by modelling the dendrites as multiple sig-

moidal units [67, 68]. Notably, a single biological neuron can also perform logical

XOR [69], a task which was so challenging for single-layer Perceptrons [23]. The

computational consequences of this richness of complex, non-linear behaviours will

be discussed in a later section (2.1.2).

2.1.1.3 Neuron models

Biological neuron models are primarily spiking neuron models. They can be divided

into two main categories based on the abstraction level they focus on:

1. Electrical models which simulate the relationship between the input current

and the membrane potential;

2. Pharmacological models which simulate chemical inputs and estimate firing

probability.

Artificial spiking neurons used in artificial neural networks primarily focus on mem-

brane potential and not detailed pharmacological pathways, therefore in this review

we focus on the former category of neuron models.

Additionally, two main types of models can be distinguished [70]:

• Single-compartmental models, which treat a neuron as a passive cable with

geometrically uniform electrical properties.

• Multi-compartmental models. Each biological neuron has multiple spe-

cialised structures such as dendrites, cell body and axons. Each of these can

be modelled as one or more compartments with unique electrical – and com-

putational – properties.

2.1. Spiking in biological and artificial neurons 45

2.1.1.4 Single-compartmental neuron models

Single-compartment neuron models (also refered to as point neurons) treat a neuron

as a single entity and do not take into account its spatial structure. Most popular

single-compartment neuron models include models following the integrate-and-fire

(IF) principle [71, 72, 73], and conductance-based models such as Hodgkin and

Huxley [52], and Izhikevich models [74]. Spiking neuron models which follow

the IF principle belong to the simplest and include neurons such as IF [71], leaky

integrate-and-fire (LIF) [72], exponential leaky integrate-and-fire (eLIF) [75, 76]

and adaptive exponential integrate-and-fire (aEIF) [73]. They lack both a true mech-

anism for spike generation and a relaxation variable which describes the return of

the membrane potential to the resting state; instead, reaching a certain threshold

is interpreted as a spike and leads to an automatic reset of the membrane poten-

tial. Because of this, the timing but not shape of an AP is used to convey informa-

tion. However, they have the basic features allowing neurons to communicate using

spike-timing.

The IF neurons accumulate inputs coming from all synapses until the firing

threshold is reached. This model is equivalent to an electric circuits with a parallel

resistor and capacitor. The IF neurons do not have time-dependent memory, and

never forget sub-threshold signals, which is inconsistent with biological observa-

tions. LIF model overcomes these limitations of the IF model by implementing a

“leak” of the sub-threshold inputs, which brings the membrane potential towards

the resting value. This model was further developed with the introduction of non-

linearity (eLIF); and spike adaptation mechanisms aEIF which can mimic different

spiking patterns seen in biological neurons with high accuracy [73].

Conductance based models describe the ion conductances and membrane ca-

pacitance of excitable neurons. These models can generate spikes, and some are

able to also model various firing patterns. Hodgkin and Huxley model was the first

detailed model of neuronal electrophysiology [52]. It uses a set of four non-linear

differential equations to describe the neuron as a circuit, and ionic mechanisms be-

hind the initiation and propagation of APs. This classical model has been extended

46 2. Literature Review

to include transition state theory of reaction rates [77]; the model has also been

simplified e.g. in the Fitzhugh-Nagumo model [78, 79] and in the Izhikevich model

[74] in order to enable modelling with limited computational resources. These two

models are systems of two differential equations, and have variables which describe

the sum of all ionic currents rather than each current individually; these simplified

models attempt to capture the qualitative dynamics of conductance-based models.

2.1.1.5 Multi-compartmental neuron models

As described previously, biological neurons have multiple specialised structures.

When modelling these compartments, dendrites are of a particular interest. They

have multiple features which are not captured by single-compartmental, uniform,

passive cable models:

• active conductance from non-linear ion channels (variable resistors);

• a tree-like structure with numerous bifurcations and differences in diameter

(and therefore resistance);

Multi-compartmental models try to capture these features of the neurons by divid-

ing the neuron into discrete cylindrical compartments with approximately internally

uniform features. Systems of differential equations are defined for the created com-

partments, where the membrane potential becomes a function of time, compartment,

and the neighbouring compartments. The previously described point models can be

adapted to describe the compartments.

Compartmental models allow to approximately reconstruct the anatomy of a

single neuron, and model its internal behaviour at a lower level of abstraction than

the point models. Examples include pyramidal neurons with ion channel popula-

tions defined per segment [80], where a local injection of a small current results in

a voltage change in the neighbouring dendritic branches but not the soma; a suffi-

ciently large input initiates a forward-travelling action potential in the soma but also

a back-propagating action potential targeting the dendrites. Such behaviours are not

captured by the point neuron models.

2.1. Spiking in biological and artificial neurons 47

2.1.2 Spiking in artificial neural networks

Spiking neural networks are the third generation of ANNs. In contrast to the first

generation using the McCulloch-Pitts threshold neuron [81] and the second gener-

ation using neurons with a continuous activation function such as - amongst others

- hyperbolic tangent and sigmoid [82], SNNs use a spike-shaped activation func-

tion [39]. It has been reported that SNNs can simulate feed-forward networks with

sigmoidal neurons [39], and that SNNs using temporal firing to convey information

have a larger computational power than networks with sigmoidal neurons [39].

SNNs are usually implemented using simpler models of biological neurons,

especially the IF family models. Similarly to biological neurons, artificial spiking

neurons accumulate inputs until their state reaches a threshold (fig. 2.1). Upon

reaching the firing threshold, the neuron transmits a signal which in turn will affect

the state of its target neurons. Features such as neurotransmitter type and details of

molecular pathways are usually not modelled.

In neuron models such as LIF, the accumulated input decreases with time if

the threshold is not reached. This dynamic of the signals within the neurons offers

a novel way of incorporating the temporal relations within the data set into the

network’s activity; leak forms a decaying memory of each individual neuron.

In typical SNN implementations, parameters such as firing threshold, resting

potential, hyperpolarisation potential etc are identical for all neurons; no neuronal

subpopulations with distinct characteristics are defined. Thus, SNNs usually do

not take the full advantage of function-related diversification that is seen in the

brain. Recent studies demonstrated that SNNs with heterogeneous parameters such

as membrane and membrane time constants had improved performance and robust-

ness to mistuning [83].

Even these simple models of spiking neurons have a range of computation-

ally useful features. Firing threshold is effectively an adjustable high pass filter;

SNNs can be seen as filter banks [84]. Subthreshold membrane potential and leak

are a memory of each individual neuron. Further, data can be encoded and de-

coded in multiple ways, ranging from ANN-compatible rate, through time-focused

48 2. Literature Review

approaches like Latency Encoding (LE) and Moving Window Encoding (TMWE)

[85, 86], to population codes [87]. These features make SNNs particularly suitable

for processing temporal and event-driven data from sensors [88].

Increasingly, the more complex multi-compartmental models are being ex-

plored in the context of SNNs. Models with dendritic compartments have been

shown to represent both learning error and normal activity within a single neuron

thus proposing a solution to the error assignment problem and allowing to approxi-

mate backpropagation [89, 90].

The increasing interest in more complex neuron models with dendritic com-

partments is also fuelled by the realisation that a single biological neuron performs

computation comparable to whole ANNs composed of point neurons [91, 92, 93] or

to standard signal processing methods, including low and band-pass filtering, nor-

malisation, gain control, saturation, amplification, multiplication and thresholding

[66, 64]. A recent study demonstrated that an ANN with 5 to 8 layers is required to

fit a model of a single multicompartmental cortical pyramidal neuron model [93].

Figure 2.1: Action potential spike. Neurons accumulate inputs until the firing threshold is
reached. The subsequent change in the internal state of the firing neuron is rapid and ap-
proximately identical every time, and has the appearance of a spike. Figure from Wikimedia
Commons.

2.2. Excitatory and inhibitory neurons 49

2.2 Excitatory and inhibitory neurons

In the brain, there exist two main classes of neurons: excitatory and inhibitory. Each

neuron shifts the membrane potential of all its target neurons in the same direction,

albeit with different strength [94]. It has been reported that 15-20% of neurons in

the cerebral cortex – the external brain layer found in mammals – are inhibitory

[95, 96].

Inhibitory neurons release the neurotransmitter γ-amino-butyric acid (GABA).

In contrast to excitatory glutamatergic cells, they tend to form local connections

and are thus also referred to as “interneurons”. Inhibitory feedback loops are a

frequently seen connectivity pattern: interneurons are excited by cells they inhibit.

The level of inhibition is proportional to the level of excitation and vice versa. In-

hibitory and excitatory neurons were also reported to follow different spike-timing-

dependent plasticity (STDP) rules than the excitatory neurons (see section 2.4.2).

Interestingly, during prenatal development, all neurons are excitatory [97]. The

inhibitory GABA-ergic neurons create synapses first and, due to reversed ion gra-

dients in the developing neurons, cause excitation. Reversal of the ion gradient

and synapse formation by the glutamatergic neurons take place in parallel. It has

been hypothesised that both too high and too low levels of excitation would have

detrimental effects on synaptogenesis in the developing brain, and this sequence of

events allows for the most fine-tuned balancing of activity levels [98].

Inhibition has been suggested to play a role in increasing temporal precision

of neural firing and in increasing signal to noise ratio in the auditory [99], olfactory

[100], and visual cortex [101, 102]. This effect is caused by a narrow temporal

window between the wave of excitation and the following inhibition, and is referred

to as the iceberg effect [101, 103]. Inhibition has also been reported to affect gain

control in e.g. the basal ganglia, olfactory circuits and cortex [104, 105, 103], and

thus help to balance senstitvity and efficiency.

In SNNs, inhibition is used in e.g. gain control and Winner Take All (WTA)

architectures. Gain control circuts change the relation between the input current and

neuron output frequency (the f-I curve), and include [103, 106]:

50 2. Literature Review

• additive / subtractive effects;

• multiplicative / divisive effects (change of the slope);

• non-linear.

It has been demonstrated that changes in the strengths of inhibitory synapses can

lead to switching between the above gain control regimes [106]. Further, hetero-

geneity within the excitatory and inhibitory neurons types has been proposed as a

gain control mechanism and affect the f-I curve [107]. Probability of connection

from inhibitory to excitatory population has been shown to be an important param-

eter for gain control in randomly connected networks [108].

WTA is another approach commonly using inhibition. They describe architec-

tures where one neuron is active in response to a certain stimulus; they have also

been expanded to treat a small population as one winner, also knowns as k-WTA or

soft WTA [109, 110]. Such states can emerge even in simple models of recurrent

networks with inhibition and excitation [110]. It has been proposed that WTA al-

lows signal amplification while maintaining the overall network stability [111], and

plays a role in e.g. multiple choice decision making [112].

Self-organising map (SOM) is a type of WTA architecture. In this thesis, we

used traditional non-spiking SOM. However, several different spiking implementa-

tions have been published. [113, 114] proposed a mixture of lateral excitation for

the nearest neigbours and lateral inhibition for more remote neurons, thus creating

a winning neighbourhood. [115] proposed an architecture with one-to-one con-

nectivity between an excitatory and an inhibitory layer, with all-but-one recurrent

connectivity between the inhibitory layer and the excitatory layer. Consequently,

all excitatory neurons except the one stimulating the winning inhibitory neuron are

silenced, thus creating a winning excitatory-inhibitory pair of neurons. STDP is

commonly used to train these architectures [116, 115].

ANNs implementations rarely distinguish between inhibitory and excitatory

neurons. Commonly used learning algorithms [117, 118] lead to the development

of neurons containing both inhibitory and excitatory outputs, which is biologically

2.3. Rate-based vs spike timing-based information encoding 51

implausible.

2.3 Rate-based vs spike timing-based information

encoding
Two main standard information encoding paradigms in the SNNs are rate-based

(frequency-based) and spike timing-based coding. In rate-based coding, informa-

tion is encoded by the number of APs within a certain time window, whereas spike

timing-based coding relies on the exact timing of each AP. It is worth noting that

these encoding paradigms are not mutually exclusive but rather differ by the level

of abstraction they deem sufficient for information encoding. Rates exist in precise

spike timing encoding regimes as correlates; therefore, a better question would be

not which code is used but which one is sufficient [119].

In rate-based encoding, the number of spikes in time can be defined in different

ways, including [119]:

• number of spikes in a single neuron within a certain time window;

• average number of spikes in a population of neurons;

• average number of spikes per experimental repeat.

Early neurophysiological experiments demonstrated that stimulus strength was re-

lated to spiking frequency of a sensory neuron [120]. Conversely, one of the ar-

guments against rate-based coding is the speed with which animals and humans

process data [121]: encoding information such as images and sounds with a firing

rate would require a significant level of redundancy in the system, and is estimated

to take longer than the experimentally observed speeds [122, 123].

Theta oscillation phase precession in the hippocampus is one of the most stud-

ies examples of temporal coding in the brain. The relationship between individual

spikes and oscillatory phase may play a role in e.g. sequence encoding and mem-

ory [124, 125, 126, 127]. In particular, phase precession with respect to the thetha

oscillation in the hippocampus [128] and entorhinal cortex [129, 130] have been

proposed to encode sequences of locations.

52 2. Literature Review

As stated above, frequency-based coding was deemed incompatible with the

sparsity and speed of some forms of sensory processing. Temporal coding in a form

of spike latency between the onset of the stimulus and AP was reported in the retina

[131].

Neurons of the standard ANNs of the first and second generation do not use

pulses and their output value is frequently maintained in the 0 to 1 range (for neu-

rons with logistic and sigmoid activation function) or -1 to 1 range (for neurons with

hyperbolic tangent activation function). This can be interpreted as normalised firing

frequency within a certain time-window [132]. This approach is more consistent

with the rate coding, and higher output corresponds with the higher firing rate.

SNNs using temporal [39] and rate-based [133] approach for information pro-

cessing and STDP have been published. Some SNNs implementations ignore the

temporal aspect of information coding and allow neurons to spike only once per

simulation [134, 44] thus limiting the applications of these networks. ANN to SNN

conversion is another context where rate-based encoding is used in SNNs. Here,

an ANN is trained with backpropagation and then its weights and biases are being

mapped onto an SNN as a firing frequency [135].

Rate-based encoding has energy and latency-related drawbacks. By definition,

a certain amount of time needs to pass to obtain spiking frequency, and multiple

spikes are required to encode different signals.

Multiple approaches for encoding data into spikes exist, including:

• Rank Order Encoding (ROE) [136]: an additional weight wo is defined for the

network, where o is the rank of spike time arrival. w takes a value between

0 and 1, and it is multiplied by the regular weight of a given pair of neurons

to discount later-arriving spikes. However, it is challenging to use ROE in an

applied data processing context: float or integer values describing data need to

be translated into order of spiking in the input neurons, which is not a simple

task [137].

• Ben’s Spiker Encoding (BSE) [138] and Threshold Encoding (TE): this type

of encoding algorithm uses a filtering threshold.

2.4. Synaptic plasticity 53

• Threshold-Based Representation (TBR) [139]: This method also uses a

threshold, but applied to the difference between inputs rather than their in-

dividual values. Spike happens if the absolute difference between the consec-

utive inputs exceeds the threshold. The direction of the difference determines

if the output of the neuron is excitatory (positive difference) or inhibitory

(negative). While this method proposes an interesting attention-like mecha-

nism, the ability of each neuron to produce excitatory and inhibitory outputs

is not biologically plausible. Additionally, this type of encoding leads to data

loss of sub-threshold inputs.

• TMWE and Step Forward Encoding (SFE) [86]: are modifications of TBR.

TMWE uses a temporal window filter where the new input value is compared

with the input average in the time window. Conversely, SFE compares the

inputs with a baseline; the baseline is updated only in response to a success-

ful spike. In contrast to TBR, comparing inputs with the average/baseline

reduces data loss. However, TMWE is more computationally costly due to

the need to store input values during a given time window for each neuron;

both TMWE and SFE are likely to lead to more spikes than TBR thus a higher

computational cost of information encoding.

• LE [85]: data values are mapped onto a time window in order conversely

proportional to the value of the data point (small values before larger values).

The start of each time window is defined as the earliest possible spike arrival

time (e.g. due to hardware limitations in neuromorphic chips) and the end is

limited by the arrival time of the next batch of data.

2.4 Synaptic plasticity

2.4.1 When does our learning start?

At the level of an individual organism, learning can be defined as network changes

in response to a stimulus which last longer than the stimulus itself and are not passed

to the progeny. Some of these changes include:

54 2. Literature Review

• functional changes:

– changes in synaptic strengths;

– changes in neuronal excitability;

• structural changes:

– neurogenesis and (reduction in) neuronal death;

– synaptogenesis and synaptic pruning.

Learning based on data gathered during an organism’s lifetime is only one time-

scale of brain’s optimisation for data processing. We can talk about this optimisa-

tion in terms of three processes: evolution, development and learning. They take

place at different but interconnected time-scales; they are also referred to as the

phylogenetic, ontogenetic and epigenetic (POE) processes. It has been argued that

all three are necessary for intelligence to emerge [140].

The distinction between different processes is not always clear, especially in

the context of ANNs where e.g. evolutionary approachs (EAs) can be used in a

learning-like fashion to optimise network’s weights directly [141].

Learning and development can also be hard to distinguish, partly for histor-

ical reasons. Neurodevelopment is a term traditionally used to describe creation,

growth, and patterning of the nervous system from embryogenesis until adulthood

[51]. As the term “adulthood” is usually used to describe a stage after achieving

full body size or sexual maturity, it is not always possible to clearly identify this

phase in an artificial organism, especially in an ANN which is not embodied. After

adult neurogenesis and connection pruning were discovered, neurodevelopment is

also used to refer to plastic processes in the adult brain [142], making it harder to

distinguish from what was traditionally referred to as learning. Adult neurogenesis

in the adult human hippocampus measured under careful technical conditions was

reported in healthy subjects up to the ninth decade of life [143]. Nevertheless, it is

important to point out that adult neurogenesis in humans is primarily limited to the

olfactory bulb and dentate gyrus and remains a subject of debate [144, 145, 146].

More pronounced adult neurogenesis is known in other species [147, 148, 149, 150].

2.4. Synaptic plasticity 55

In this section, we focus on changes in synaptic strengths in the context of epi-

genesis. This type of synaptic plasticity is analogous to weight updates in ANNs,

which is currently the main form of learning in ANNs. Modelling changes in neu-

ronal excitability is outside the scope of this thesis and will not be reviewed. Struc-

tural changes are reviewed in section 2.6, primarily in the context of evolution and

development.

2.4.2 Synaptic plasticity in the brain

STDP is a mechanism which leads to changes in the synaptic strengths, where the

change is a function of the activity of the neighbouring neurons. Hebbian learning

is the most widely known form of STDP, and is commonly referred to as “fire

together, wire together” [47]. STDP is the main form of weight update in the brain

and it plays a major role in learning and homeostasis [51].

According to the experimental data [151, 152], if the presynaptic AP took

place up to 20 ms before the postsynaptic one, the connection between the neu-

rons strengthens, and this process is referred to as long-term potentiation (LTP).

Conversely, if the postsynaptic neuron fired up to 30 ms before the presynaptic one,

the connection weakens (long-term depression (LTD)), therefore in this case STDP

is temporally asymmetric. The size of the change is defined by a non-linear function

of the time difference between the spikes. Additionally, modification depends on

the cell type and the original strength of the synapse [151], as well as the timing of

the preceding spikes [153]. It has been reported that the strengthening of the con-

nection between a pair of neurons that fire together increases by 20-38% on average

[154].

Slightly different rules for updating synaptic strengths were observed when

inhibitory neurons (described in section 2.2) were involved. Reports are also not

consistent. In [151], no LTD and LTP was observed if the postsynaptic neuron was

inhibitory. When the presynaptic neuron was inhibitory, the connection between a

pair of neurons firing within 10 ms from each other strengthens irrespectively of the

order in which they fired [155]. However, asymmetric STDP weight update in in-

hibitory synapses was reported in the enthorhinal cortext [156]. Weight update was

56 2. Literature Review

shown to be a function of spike-time difference, where postsynaptic-presynaptic or-

dering led to strengthening of the synapse, and reverse order to a decrease of synptic

strength. Maximal effect was seen with spike-time difference around 10 ms. Given

the richness and ubiquity of inhibitory neurons, it is expected there multiple STDP

functions exist [157].

In silico experiments using a feed-forward spiking network suggest that in-

hibitory STDP helps to spatially restrict network-wide seizures, and helps to sta-

bilise the network’s activity.

Time window of STDP and phase differences between place cells signalling

adjacent space fields have similar order of magnitude [158, 159, 160]. Computa-

tional models linked STDP to oscillation and phase precession; [161] proposed that

Hebbian learning introduces phase precession and anti-Hebbian learning introduces

phase recession in oscillating networks. [162] demonstrated that a temporally asym-

metric STDP rule can lead to a rise of bidirectional connections between neurons

which fire during concurent theta oscillations, and asymmetric connections between

neurons which fire at consecutive theta phase.

2.4.3 Unsupervised training in spiking neural networks

Overall, biologically plausible learning is characterised by:

• local learning rules;

• one type of computation on what corresponds to the forward and backward

pass in backprop;

• asymmetric connections: brain is highly recurrent, but these connections are

not symmetric;

Unsupervised weight update methods for SNNs are inspired by the STDP rules

derived from biological experiments [132]. According to this approach, the activity

of a pair of neurons within a certain time window determines the strengthening

and weakening of the synapse between these neurons. In the most basic form of

Hebbian-like learning, if a spike in the presynaptic neuron is followed by a spike in

2.4. Synaptic plasticity 57

the postsynaptic neuron within a certain time window, the weight increases. Other

combinations of spike timings cause weight decrease (anti-Hebbian learning) [163,

164]. The precise shape of the function – the size of weight update depending on

the temporal difference between the spikes – is a subject of debate and different

shapes of STDP weight update function has been used in SNN [165]. The classical

rule is asymmetrical [152]; other rules include a modification to the classical rule

which aims to fit it to experimental data [166], symmetrical STDP window [151],

and symmetrical STDP with no LTD [167]. Even more shapes have been reported

in neurons of different species [168].

In its computationally simplest form, Hebbian-like learning uses winner-takes-

it-all rule according to which only the weight of the first postsynaptic neuron

to spike is updated [169]. According to a more biologically-plausible approach,

weight updates for all connections are calculated.

Two main ways of computing the weight update are additive [170]

wt1 = wt0 +a (2.1)

and multiplicative

wt1 = wt0 ·a (2.2)

where wt0 is weight value at time 0, wt1 is weight value at time 1 and a is the weight

update parameter [169]. The same rules are usually used in both excitatory and

inhibitory synapses, which is inconsistent with biological findings.

Repeated application of uni-directional weight update leads to the weight value

decreasing to 0 or increasing to infinity; it has been observed that SNNs with Heb-

bian learning frequently become silent or overactive [168, 171, 172]. This can be

alleviated using the multiplicative weight update, which is self-regulatory, or by

setting a permitted range for the weight values. An alternative solution implements

nonlinear superposition of multiple spikes [153, 173]. This approach is based on

biological reports of STDP induced by sets of spikes [153, 152]. Spike triplets are

composed of two presynaptic and one postsynaptic, or one presynaptic and two

58 2. Literature Review

postsynaptic spikes. The interval between two spikes in the same neuron deter-

mines the efficacy with which the presynaptic-postsynaptic pair of spikes affects

the synaptic weight.

Bohte et al. [87] extended basic Hebbian learning rules by implementing popu-

lation coding with local receptive fields akin to radial basis function. Here, each in-

dividual synapse was composed of multiple sub-synapses, each with its own weight.

When the presynaptic neuron fired, sub-synapses which took part in the activation

of the first firing postsynaptic neuron were strengthened. If temporal variation of

the sub-synaptic spikes in the post-synaptic neuron was large, their weights could

decrease to zero thus silencing neurons which contributed noise. This work used

the winner-takes-it-all rule which updates fewer weights per iteration, and is incon-

sistent with synaptic strength updates in the brain.

Bengio et al. proposed weight update based on the firing rate on the presynaptic

neuron and the temporal rate of change of activity of the postsynaptic neuron [133].

This method uses frequentist rather than temporal approach, and yielded results

similar to STDP. Biological reports suggest that frequentist coding is slower and

requires more redundancy than temporal coding, and is unlikely to be the main

form of information coding in the brain (see section 2.3).

STDP-based training was also used to train deep convolutional SNNs [174].

Each neuron was allowed to spike at most once, which restricts applications of this

approach. Winner-takes-it-all approach was used for the weight update, and the

order but not the time difference between spikes in a pair of neurons determined

the weight update. Additionally, neurons were organised into groups which shared

weights and therefore were sensitive to the same features; the updated weight of the

winner neuron was copied onto all weights in a given group. Whereas this is an

interesting use of STDP in convolutional SNN, the STDP rules used in the paper

are minimalistic and not consistent with our knowledge about the brain.

As mentioned in the previous sub-section, STDP is affected mostly by spike-

timing, but also by multiple other factors such as cell type and the original strength

of the synapse. However, SNN which implement all these mechanisms are uncom-

2.4. Synaptic plasticity 59

mon. It has not been systematically studied which of these mechanisms – or sets of

them – would be optimal and most computationally efficient for learning in SNN.

SNNs with STDP are frequently used in theoretical studies rather than applied

tasks [173], but have also previously been used to classify static images [175, 174,

42, 176] and movement [177, 178, 179].

Predictive coding is a weight update method rooted in the origins of research

on both learning in the brain and on backpropagation [180]. Predictive coding is

based on feed-forward sensory and error coding and feed-back conceptual processes

[181]. At each hierarchical level, conceptual process creates a prediction of the ac-

tivity of the previous layer and feeds it back; the difference between the prediction

and the actual activity acts as an error signal and is used to update the prediction.

Unlike backpropagation, predictive learning is based on local (inter-layer) error in-

formation, and does not require the knowledge of the ”correct” labels. It has been

demonstrated to approximate error backpropagation in non-spiking ANNs [182],

and automatic differentiation in arbitrary computational graphs [183]. Predictive

coding implementations which would in SNNs which could competitively perform

applied data processing tasks are still lacking.

2.4.4 Supervised training in spiking neural networks

This project focuses on unsupervised learning in SNNs with STDP. However, to

provide a fuller picture of the current state of SNN research and difficulties associ-

ated with implementing traditional supervised weight update methods in SNNs, we

performed a review of supervised learning approaches used in SNNs.

In SNNs, changes in weight values lead to non-linear changes in firing patterns;

SNNs have non-linear error gradients. Spiking activity is not directly differentiable

and therefore out-of-the-box backpropagation [117] is not used in SNNs. Instead,

an approximation of backpropagation and Hebbian learning-like methods based on

the networks’ parameters such as spike timing and neuronal membrane potential are

used for supervised learning.

There are three main reasons why out-of-the-box backpropagation is not used

in SNNs:

60 2. Literature Review

• Non-differentiability: In ANN supervised learning, during the backward pass,

differentiation is used to calculate the learning gradient. In SNNs, the deriva-

tive at the moment of the spike is 0. Additionally, simple differentiation does

not account for how inputs contributed to the neuronal state over time.

• Weight transport problem: backpropagation algorithm ”transports” informa-

tion about all synaptic weights to update each of the weights. However, bio-

logical neurons have access to information about the outputs of other neurons

they are connected to, and not to the information about synaptic weights in

the network as a whole. Backpropagation is therefore traditionally considered

as not biologically plausible. However, this view is being challenged. One of

the proposed variations of weight transport is feedback alignment [184], orig-

inally proposed in non-spiking ANNs. It uses a separate, randomly initialised

weight matrix during the backward pass. Values of these these backward-

pass synaptic weights do not change, but the synapses transport information

used to successfully update weights involved in the forward pass. SNNs with

multi-compartmental neuron models were also shown to be able to represent

both error and normal activity within a single neuron [89, 90].

One group of supervised algorithms includes SpikeProp [44], and its subse-

quent modifications [46] which use resilient propagation (RProp) and QuickProp

adapted for SNNs to make assumptions about the data and error surface. SpikeProp

adapts error-backpropagation [117] used in classical ANNs to transfer information

using spikes, and uses the Euclidean distance between the desired and actual spike

times to guide learning. To enable an analysis of cases with non-matching num-

ber of desired and actual spikes, SpikeProp uses the Victor-Purpura distance (VPD)

[185] (the minimum cost of transforming one firing pattern into another by adding,

removing and shifting the timing of the spikes). Difficulties caused by non-linearity

of the error function are overcome by replacing the standard gradient-based ap-

proach with a learning rule which maximises the smooth likelihood of a spike at

the desired time. This group of algorithms permits neurons to fire only once per

simulation thus not fully utilising the properties of SNNs, and not behaving in a

2.4. Synaptic plasticity 61

biologically-realistic way.

The Tempotron rule [134] is another gradient descent method which optimises

neurons to output single spikes. It was originally designed to perform a binary

classification tasks of spatio-temporal patterns. Tempotron network is trained on a

set of labelled examples. When an example is miss-classified, weights are updated

according to their contribution towards the highest postsynaptic membrane potential

of the incorrectly behaving output neuron. The timing of the output spikes does

not encode information, and thus Tempotron does not take advantage of the core

features of SNNs. Additionally, tempotron expanded from binary to multi-class

classification may suffer from non-convergence [186].

Unlike SpikeProp-type and Tempotron algorithms, Remote Supervised

Method (ReSuMe) [118], Chronotron [187], and the Precise-Spike-Driven Synaptic

Plasticity (PSD) rule [188] have been designed to supervise SNNs to output desired

trains of spikes.

ReSuMe uses a time-window rule inspired by Hebbian learning [47] combined

with the desired (supervisory) output, and does not use gradient-based methods. In

ReSuMe, excitatory synapses are strengthened if they produce a presynaptic spike

directly before the desired timing of a spike, and depressed if the presynaptic spike

arrives before the expected time. Rules for inhibitory synapses are reversed.

It is possible for ReSuMe to reverse synaptic weight thus effectively changing

the synapse’s excitatory or inhibitory identity irrespectively of the sign of other

outputs of the neuron, which is inconsistent with our understanding of biological

neurons (see 2.2).

Chronotron uses two supervised learning rules: analytically-derived E-learning

rule and heuristically-defined I-learning rule. E-learning provides higher memory

capacity, and was reported to exceed memory capacity of ReSuMe [187]. It adapts

the VPD to include neuronal membrane potential at the time of the spikes. E-

learning then uses gradient descent to minimise the error. However, because the

error function is not continuous, E-learning can be sub-optimal. Another drawback

is that weight update can take place only at the end of a trial as the actual firing

62 2. Literature Review

pattern is required to calculate the VPD.

Chronotron’s I-learning rule is more biologically-plausible. It uses synaptic

currents at the time of desired and actual spikes to guide weight update. Use of

current means that, unlike E-learning, I-learning can be used for online learning.

The PSD rule has been proposed for training SNNs to associate input patterns

with a desired output firing pattern, but unlike Chronotron’s E-learning, it does not

use gradient descent. Under certain conditions, it resembles ReSuMe [188], which

can be caused by the fact that they were both developed as different interpretations

of the Widrow-Hoff rule [189]. PSD rule was derived by converting spiking patterns

into analogue signals. Error is calculated based on the desired and actual output and

used to guide weight updates.

Equilibrium propagation [190] aims to propose a biologically-plausible back-

prop equivalent for SNNs (but can be applied to any computational energy-based

model based on the continuous Hopfield model). As in standard backprop, forward

pass performs inference, and backward pass is used to propagate the error deriva-

tives backwards through the network and encodes the gradient of the loss function.

Unlike backprop, equilibrium propagation uses the same kind of computation in

both passes - which makes it more bio-plausible. The authors also showed that the

weight updates correspond to STDP [190]. However, the required architecture is

not biologically-plausible and relies on forward/backward symmetric weights. The

model was also developed in the context of static inputs, and needs to be further

explored for time-varying inputs which are so abundant in case of the brain.

A mixture of unsupervised and supervised learning was proposed in [141],

combining Hebbian learning [47], frequency-dependent learning [191] and super-

vised ReSuMe [118]. The simplified version of the ReSuMe algorithm proposed in

this work does not change the sign of the synaptic weight.

SNNs trained using the above unsupervised and supervised approaches so far

failed to produce results comparable with the results produced by standard state-of-

the-art ANN in a variety of supervised and unsupervised tasks.

2.5. Structural plasticity 63

2.5 Structural plasticity

2.5.1 Structural plasticity in the brain

Connectivity is commonly understood as a network of physical connections be-

tween neurons. However, it is worth to clarify that three levels of connectivity can

be distinguished in the brain [192]:

• functional connectivity: time-dependent activity patterns indicating statistical

correlations between neurons or groups of neurons. These correlated neuronal

units can be spatially separated;

• effective connectivity: time-dependent causal relations between neurons or

groups of neurons;

• structural: a set of physical, anatomical connections creating brain structures

ranging from local circuits to inter-regional pathways.

Effective connectivity is related to STDP described in the previous section (section

2.4.2). Functional connectivity is outside the scope of this thesis, but of potential

interest in our future studies. Structural connectivity is the subject of this section.

In the brain, structural plasticity plays a role in memory and learning [193]. Two

directions of changes can be distinguished:

• progressive, i.e. neurogenesis and synaptogenesis;

regressive, i.e. neuronal death and synaptic pruning.

2.5.1.1 Progressive mechanisms

Growing networks, especially with limited resources, is not straightforward. Two

forms of connectivity scaling can be distinguished [194]: proportional and abso-

lute. The former maintains connections between all neurons as the network grows,

therefore, the increase in the number of connections is exponential. Absolute con-

nectivity scaling preserves the number of connections per neuron, thus the number

of connections scales linearly with the number of neurons. It is more economical

64 2. Literature Review

but restricts possible connectivity patterns. Data suggests that mammalian brains

undergo absolute scaling [195]. The evolutionary pressure to decrease the cost of

building, maintenance and running the brain means that the evolutionary increase

in the brain size is associated with a less dense connectome and modularisation.

There does not exist a unified model explaining the links between adult neu-

rogenesis, structural plasticity, the size of the brain, and the learning and memory

tasks animals face etc. However, animal studies suggest that certain combinations

of these features may be beneficial for different modes of learning. Comparative

studies indicate that there is an inverse relationship between the level of structural

plasticity and adult neurogenesis in various species [196]. Increased levels of adult

neurogenesis have been linked to more unstable environmental niches [197], which

require more re-learning, but also to small-brained animals with shorter life-span

such as rodents [149]. Conversely, large-brained, long-living species such as hu-

mans [198] and dolphins [199] have a lower level of adult neurogenesis, but a higher

level of structural plasticity.

Due to the complexity of the mammalian brain, we focused our literature re-

view on studies performed in insects. Similarly to mammals, adult neurogenesis

in insects in contained to specific brain regions [150]. Mushroom body (MB) is a

structure of particular interested; it is found in invertebrates such as insects, scor-

pions and spiders. While there is no consensus regarding which vertebrate brain

structure the MB is analogous to (it was proposed to be analogous to the human

hippocampus, cerebellum or piriform cortex), understanding the MB can provide

insights into general design principles of neural circuit involved in learning and

memory (discussed in [200, 201]): it is small (from 2500 neurons in the fruit fly to

200,000 neurons in the Periplaneta cockroaches), its architecture is relatively sim-

ple in comparison to other brain structures, and it receives mainly sensory inputs

(taste, smell, vision, and hearing) that can be understood in terms of environment

and life-style of various species. Studies in the fruit fly (Drosophila melanogaster)

[202] and the house crickets (Acheta domesticus) [203] suggest that MB plays a role

in olfactory learning and memory.

2.5. Structural plasticity 65

It is worth pointing out that the connection pattern of the MB is unusual for in-

vertebrates and resembles more complex vertebrate networks: invertebrate connec-

tomes are usually highly stereotyped; the MB connectome is composed of stereo-

typed cell groups and has defined rules for connections between neuron types, but

the connections between individual neurons are non-deterministic sand differ be-

tween individuals [200, 204, 205]. At the same time, encoding within an individual

organism is symmetrical across hemispheres, which suggests they are not random

[205]. Data suggests that these differences arise in response to experience [205].

Multiple species displays adult neurogenesis in the MB [206, 207, 203]. In

old house crickets, adult neurogenesis accounts for about 20% of Kenyon cells (a

cell type characteristic for the MB) [208]. All adult neurons seem to survive [209],

unlike in the mammals where a proportion of adult neurons undergoes apoptotic

death [210]. Sensory stimulation - both via environmental enrichment or direct

electrical neuronal stimulation - is sufficient to boost neurogenesis [211, 203, 209,

212]. However, the effect of environmental enrichment decreases with age, and

with time spent in the enriched environment. In the latter case, neurogenesis can be

boosted again by a sudden environmental change, even from enriched to standard

([209] and unpublished data reported in [203]). Inhibition of adult neurogenesis

leads to an impairment of olfactory learning and memory [148, 203]. In the moth

Agrotis ipsilon, adult neurogenesis was proposed to be involved in the maturation of

olfactory circuits, and increase the number of neurons processing sex pheromones

[206], but the effects of adult neurogenesis on learning have not been studied in this

species (reviewed in [150]).

Lack or low levels of adult neurogenesis were observed in insects which un-

dergo complete metamorphosis (although exceptions exist [207]). Importantly, MB

undergoes substantial remodelling during metamorphosis: a proportion of its neu-

rons loses their dendrites, which is followed by dendritic re-growth. Interestingly,

memories created before pupation can survive remodelling and into adulthood.

Adult neurogenesis was also reported in the olfactory system of crustaceans,

a subphylum related to insects [150]. It has been proposed that adult neurogene-

66 2. Literature Review

sis is an adaptation to migration and habitat changes these species experience. As

these species are long-lived, they are likely to experience benefits of adaptation

even though maturation of the new neurons takes weeks or months [213]. In the

mechano-sensory system, the same animals display the growth of the existing neu-

ronal branches but not adult neurogenesis. This difference was explained as follows

[213]:

• Mechano-sensory system corresponds with a continuous somatotopic repre-

sentation of the surrounding. Increase in the sensitivity and spatial resolution

can be achieved by increasing the density of the existing somatotopic repre-

sentation through growing new neuronal branches.

• Olfactory system detects discrete inputs which do not have clear relationships.

Increase in neuronal arborisation would improve sensitivity, but neurogenesis

is required to encode new odours without resolution loss.

The above hypothesis suggests that preference for neurogenesis vs synaptogenesis

may depend on the features of the data.

2.5.1.2 Regressive mechanisms

Synaptic pruning and neuronal cell death are two key regressive mechanisms con-

tributing towards maturation of brain circuits in vertebrates [214, 215]. Malfunc-

tions of the regressive mechanisms cause severe aberrations in the brain connectome

and can be lethal [216, 217]. In silico experiments suggest that pruning levels com-

parable with those seen in adult humans (40-60%) are associated with maximisation

of memory capacity [215]. Furthermore, in a system with limited resources, the op-

timal pruning strategy was to remove synapses which strengths values were close

to mean, and linearly scale the rest; however, this strategy is not biologically plau-

sible as it was leading to the loss of distinction between excitatory and inhibitory

neurons. When neuron types are preserved, the optimal approach involves pruning

of the weakest connections.

Pruning can be small-scale and a depend on neuronal activity and branch com-

petition, or large-scale and stereotyped (i.e. pruning patterns seen in a given species,

2.6. Evolution and development 67

irrespective of neuronal activity in an individual). Synaptic scaling (SS) [218] has

been suggested to play an important role in maintaining the function of the brain

during these major architectural changes.

Pruning is being increasingly used in ANNs - connections which do not

strongly contribute towards the correct results are removed - to improve general-

isation, speed of training and reduce the number of data points required [219, 220].

Neuronal death, together with neurogenesis, creates neuronal turnover [221,

222, 223], a feature that has not been explored in ANN. It has been reported that in

humans, 700 neurons are born in each hippocampal hemisphere per day, and that

there is a 1.5% yearly turnover in the renewing population [221].

While the precise role of cell turnover in the brain is not known, it has been hy-

pothesised that it plays a role in learning [222, 223]. The concept of neuron turnover

could be used to prevent ANNs from overfitting, and to adapt architecture to new

conditions. Results of simulations using a simplified, three-layer feed-forward non-

spiking networks suggest that the benefit of neuronal turnover increases with the

novelty of information being learned [224, 225].

2.6 Evolution and development

Biological evolution relies on the assumptions that there exists variability in some

hereditary features, and some variants of these features promote organism’s repro-

duction or survival (“survival of the fittest”) thus becoming more dominant in the

population. Inspired by nature, standard EAs work by creating a population of pos-

sible solutions, and then alternately assessing their fitness and further exploring the

most promising solution spaces by replacing a proportion of the population with

near-identical clones of the fittest solutions. It is worth contrasting that in biologi-

cal evolution, organism’s ability to reproduce is described as “fitness”, whereas EAs

use “fitness” (usually organism’s performance on a user-defined task) to determine

organism’s potential to reproduce [140].

Unlike supervised learning methods, EAs do not require sets of correct input-

output pairs. EAs more closely resemble reinforcement learning (RL) methods, and

68 2. Literature Review

are rapidly gaining popularity as a scalable alternative to RL in deep neural network

(DNN) training [226]. The solutions developed with EAs were more robust to pa-

rameter perturbations because EAs find a parameter space containing populations of

close to optimal solutions rather than a single set of optimal parameters [227]. EAs

with exploratory behaviour were shown to reduce the number of solutions stuck

in the local minima [228]. When it comes to SNNs, an EA directly developing

synaptic weights was demonstrated to reduce the complexity of the solutions in

memory-dependent tasks in a simulated 2D world [229].

In addition to using EAs as learning algorithms which train the synaptic

weights, it is also possible to use EAs to develop the whole architecture of a net-

work. NeuroEvolution of Augmenting Topologies (NEAT) [230] is one of the most

popular genetic algorithms for architecture development and relies on directly en-

coding every parameter of the network. It starts with a basic network and gradually

adds complexity to it, thus avoiding creating overly complex networks when in-

crease in the complexity does not improve fitness. It has been successfully used in

SNNs, adaptive ANNs [230], DNNs and neural Turing Machines [231].

In addition to using EAs to train or develop networks’ architecture, EAs have

also been used to develop networks’ learning methods. In this approach, EA sam-

ples the global parameter space and the neural network’s learning algorithm opti-

mises the proposed solutions through the local search [232]. EAs have been used

to develop the hyperparameters of backpropagation [117] and conjugate gradient

learning algorithms in traditional ANNs [232]. They also have been used to de-

velop learning rules in supervised ANNs [233].

In SNNs, EAs were used to adjust a STDP parameter for each synapse [234] as

well as develop parameters of a pre-determined Hebbian learning rule [235]. How-

ever, in the latter case, training had a fully supervised element in the form of setting

the input and output values to the desired values to direct Hebbian-like learning in

the hidden layer. In both cases, weights were initialised with new, random values

for each population and were not inherited.

In [141], a GA was used to evolve weights and architecture of a SNN (or, more

2.6. Evolution and development 69

precisely, a spike simulator (SSim)). However, a supervised learning component in

a form of ReSuMe is used, albeit in a combination with unsupervised STDP. The

presented network evolved using this approach consisted of only six neurons, which

raises concerns regarding the scalability of this approach.

2.6.1 Evolution of artificial neural network architectures

2.6.1.1 Direct encoding

Some of the first examples of evolving artificial neural network (EANN) include the

evolution of the connectome published by Miller et al. [236]. The genotype was a

binary array encoding the existence of a connection between a pair of neurons, with

weights being initialised randomly and fine-tuned using backpropagation. Genetic

operations included bit-flipping, mutation and crossover. These evolved topologies

were able to solve simple problems such as XOR, but their scalability and ability to

solve more complex was not tested in detail [140].

The first joint implementation of evolution and development was published by

Kitano et al. [237]. Here, the phenotype resembled Miller’s binary connectome

table, but the genotype contained rules for the network growth. The weights were

initialised randomly and learnt using backpropagation. Thus, this work included

evolution, development and learning, and is an early example of a POE process.

These networks performed better than Miller’s. However, the exact source of this

improvement is being disputed and may be caused by different initialisation proce-

dures rather than the evolutionary protocols [238].

Recently, it has been demonstrated that networks created using a combination

of evolution and development can overcome catastrophic forgetting and learn mul-

tiple classification tasks [239]. This first published attempt to evolve developmental

rules for multi-objective ANNs used Cartesian genetic programming (CGP) [236]

to find two sets of rules:

• Soma program: includes rules for cell change, replication and death.

• Dendritic program: creation, change and pruning of connections.

70 2. Literature Review

. Evolving artificial neural networks face problems such as a drop of fitness and the

Competing Conventions Problem (CCP) [240, 241](the latter is described below).

The initial decrease of fitness was reported after the insertion of new nodes or ver-

tices; it is statistically unlikely that the new structure is initialised with the optimal

values, and usually requires further weight adjustment. Fitness sharing [242] is a

way of tackling the problem of new solutions being removed from the population

before they have a chance to fine-tune through learning. In its simplest form, it di-

vides fitness of an organism by the number of the existing similar solutions, where

similarity can be defined at the level of genome or phenotype etc. This approach

increases the chances of new, unique solutions to remain in the population, and also

helps to preserve diversity.

CCP happens in case of cross-over and is caused by the existence of more than

one way of encoding a solution in an ANN. When directly encoding the connec-

tome, cross-over of non-related solutions frequently leads to degenerate networks,

even if each of the original combined solutions is functional [240, 241].

NEAT [243] was developed to deal with both problems mentioned above. It

employs genetic homology to determine safe cross-overs. It also uses speciation (a

form of fitness sharing) to protect solutions with a temporary drop in fitness, and

thus to preserve genetic diversity.

NEAT has been outperformed by CGP [244] on benchmark tasks such as

double-pole balancing task. CGP uses a two-dimensional grid of nodes (a directed

acyclic graph) to represent the network [245]. The user has more control over the

architecture, and decides the number of neurons and the maximum number of in-

coming connections each neuron receives; more than one input from the same neu-

ron is allowed. Evolution works with the genome in a form of a list of integers

encoding the precise connectivity pattern, as well as the activation functions and

weights. Unlike NEAT, most CGP implementations use mutations and do not use

crossover as it was reported to disrupt the sub-networks and decrease fitness. De-

spite working with small populations (originally 5), it was reported that the number

of fitness evaluations required byCGP can compare favourably to other genetic pro-

2.6. Evolution and development 71

gramming methods [245, 246, 247]. Interestingly, the genomes include non-coding

areas - silent genes which do not affect the phenotype but can be activated during

evolution.

Overall, direct encoding is commonly used to evolve ANNs architectures, de-

spite the problems associated with it, and despite the lack of biological plausibility.

2.6.1.2 Indirect encoding

Indirect encoding does not automatically solve CCP. When indirect encoding cor-

responds to sub-networks, cross-over can still have detrimental effects. However,

generative encoding tends to typically be designed to overcome CCP [140], and

classically includes recursions and interactions between variables. It allows easy

gene duplication, which, especially when combined with mutation, has the poten-

tial to increase the diversity of possible phenotypes while being more robust to loss

of functionality. A big advantage of generative encoding is its scalability. A small

set of rules (genotype) can be used to build even large networks (phenotype). A

smaller genome is advantageous as it corresponds with the search space evolution

is working with. Conversely, in direct encoding, the size of the genome scales with

the size of the network.

One of the early examples of generative encoding is cellular encoding [248].

In cellular encoding, evolution searches for a set of rules - mainly duplications and

modifications - enabling a multi-step network development. A network start with

the known number of input and output neurons, and one hidden node. From this

stub, a modular ANN is developed by adding simpler sub-networks.

2.6.1.3 The model of evolving neural aggregates

The model of evolving neural aggregates (MENA) approach [140, 249, 250] to de-

veloping ANNs is an intermediate abstraction level between direct and indirect ap-

proach. It defines unit types such as a neuron, synapse (n.b. weights are fine-tuned

during learning) and neuromodulators, but operates at the level of aggregates of

these units. Each aggregate is encoded by one gene, thus this encoding is modu-

lar at the level of the genome rather than the network. Genes can be duplicated

and/or differentiated. MENA avoids the scaling problem faced by direct encoding

72 2. Literature Review

and is more biologically-realistic. However, its performance on standard tasks such

as pole balancing is poor.

2.7 Modularity in neural networks

2.7.1 Modularity in the brain

The brain’s architecture is restricted by metabolic and physical constrains [251] –

each connection takes space, neurons need access to the non-neuronal support cells

etc. At the same time, higher intelligence scores in human subjects correlate with

shorter path lengths in the brain [252, 253], which suggests that efficient informa-

tion transfer correlates with intelligence. The optimal balance between these costs

and the benefits of connections in the brain is achieved through small-world con-

nectivity [254, 255]. Multiple connected hierarchical sub-networks characterised

by specific function, neuronal subtypes and connectivity have been identified in the

brain [256, 257, 258]. Brain regions are highly connected; even sensory brain re-

gions receive only a small proportion of their inputs from upstream sensors; in case

of primary visual cortex, 5-20% of inputs are “sensory”, while most come from

other cortical regions [259].

In silico experiments on the origins of network modularity [260] demonstrated

that ANNs evolved to maximise performance and minimise the number of connec-

tion develop modular architectures; conversely, modularity does not arise in ANNs

evolved only to maximise performance. These findings are consistent with mod-

ularity observed in the brain, which evolved to make the best use of limited re-

sources (wiring minimisation hypothesis) [261, 194]. Simulations also suggest that

the hierarchical, modular architecture of the brain leads to the emergence of com-

plex dynamics, robustness and rapid responses to external stimuli [262, 263, 264].

Modularity decreases redundancy of the network (existence of multiple similar sub-

structures able to fulfil the same function), but increases its degeneracy (the ability

of different configurations to achieve the same function) [140].

2.7. Modularity in neural networks 73

2.7.2 Modularity in artificial neural networks

When evolving modular architectures, it is worth remembering the differences be-

tween biological and artificial evolution: we can develop and test modules in isola-

tion, and assemble them as needed. Conversely, biological fitness works not only at

the level of the whole network but of a whole organism. Thus, it is worth to explore

the benefits of evolving bio-inspired modular networks while remembering that ar-

tificially designed processes may benefit from other approaches. Work published by

Miller et al. [244] highlights these discrepancies: the best evolved ANNs were non-

modular, and used 20% fewer neurons and connections than hand-crafted modular

networks. Similarly, Sporns [194] (page 130) noted that modularity of the brain may

be partly a product of physical and chemical mechanisms governing morphogen

gradients, and of morphogen concentration-dependent neuronal behaviours, rather

than purely a result of optimisation for performance. The emergence of modularity

in the brain is also related to the wiring minimisation hypothesis [260, 261, 194],

where the brain has to optimise for the performance, wiring cost and path length.

Spatial coordinates are not included in our model; the wiring cost, axonal conduc-

tance delays and volume-constraints are negligible in software-based implementa-

tions of ANNs. However, decreasing the path length between pairs of neurons may

be beneficial for efficient information processing [265].

In a stable fitness landscape, modularity may not emerge without including a

penalty for the number of connections in the fitness evaluation. Enforcing it may be

desirable, and produce algorithms which require fewer computational steps to pass

information between pairs of neurons, and are also better suited to translation into

hardware-based networks.

Modularity has also been modelled in the context of the environment and be-

haviour. The emergence of modularity was observed in networks evolving in a

changing environment [266], as well as networks with changing goals [267], but

only when the goals shared sub-goals.

SNNs with various architectures have been published. The simplest architec-

ture is feed-forward [268, 269, 270, 271]. Spiking networks with recurrent neural

74 2. Literature Review

network (RNN) architectures have also been published [229, 84]. Recurrent archi-

tecture is popular in more biologically-oriented simulations [272, 273], including

models which simulate the layered structure of the brain and cortical columns in

individual layers [274]. More recently, convolutional neural networks with spiking

neurons have been implemented [42, 174, 275].

In summary, the brain’s architecture is far from the feed-forward architecture

frequently seen in ANN. Modular SNNs combining different architectures are un-

common – this is in contrast with the brain, which is composed of multiple sub-

networks with task-specific architectures. SNN’s size and number of connections

are restricted by memory and computational power in a similar way to the brain be-

ing restricted by space and metabolic resources, therefore SNNs could benefit from

brain-inspired small-world architecture. SNNs with modular design could be used

to process data in a distributed (loosely coupled) or parallel (tightly coupled) way.

2.8 Homeostatic synaptic plasticity
Homeostatic plasticity mechanisms are mechanisms which stabilise some param-

eters around a set point. They allow networks to maintain and re-balance their

activity.

Mechanisms such as LTP and LTD are vital for learning, but on they own they

would lead to a powerful destabilisation of neuronal activity [168, 172]. Strength-

ening of the synapses would lead to the increased likelihood of postsynaptic firing,

whereas the weakening of the synapses would lead to their silencing and eventu-

ally a cascade of further downstream changes in the same direction. To preserve

its functionality, the nervous system has to constantly adapt to the changes taking

place during development and learning. At the same time, normalisation mecha-

nisms cannot simply counteract the changes as it would effectively lead to erasing

memories and undoing learning [276].

2.8.1 Homeostatic synaptic plasticity in the nervous system

A few known mechanisms may contribute towards homeostatic synaptic plastic-

ity (HSP), both at global [277] and local [278] level. Four main forms have been

2.8. Homeostatic synaptic plasticity 75

distinguished [276]:

• SS;

• adjustment of the levels of inhibition and excitation;

• basal firing rate homeostasis;

• plasticity of the neuronal membrane properties.

SS is understood best and is reviewed here. It has been observed that networks with

perturbed activity collectively adapt their synaptic strengths to restore average fir-

ing rate [218]. SS takes a form of multiplicative weight update of all its inputs as a

function of the neuron’s activity. The process relies on different molecular mecha-

nisms than LTP and LTD, usually occurs across all neuron’s synapses, has a longer

time-scale (hours to days [279]), and acts on a global scale. It has been reported

that synapses can be scaled up or down by 15-20% during one hour [279], which

is most likely the maximal scaling rate [280]. SS has been observed in vitro and in

vivo; however, most studies on its precise mechanism involved cultured hippocam-

pal, neocortical and spinal neurons, and the mechanisms involved in SS in other

brain regions and in vivo remain to be confirmed.

SS appears to be cell-type specific. It has been observed that reduced network

activity leads to scaling up of excitatory-excitatory synapses, but not excitatory-

inhibitory synapses [281], whereas increased network activity leads to strength-

ening of excitatory-inhibitory synapses. Consistently, the strengths of inhibitory

synapses are regulated in the opposite direction [282, 283]. However, not all

synapses are scaled [284], and some are scaled only during certain developmen-

tal time widows [285, 286].

Theoretical studies suggest that homeostatic plasticity has to take place on a

time scale that is slower than Hebbian plasticity to avoid oscillations and overshoot-

ing the set point [287]. On the other hand, homeostatic plasticity must happen at a

rate which allows keeping positive Hebbian feedback in check [288]. Thus, theoret-

ical studies suggest the need for homeostatic mechanism acting over different time

scales; however, experimental evidence is not conclusive.

76 2. Literature Review

Relevant to our project, it has been hypothesised that SS may be needed ”to

ensure that firing rates do not become saturated during developmental changes in

the number and strength of synaptic inputs, as well as stabilising synaptic strengths

during Hebbian modification and facilitating competition between synapses” [218].

As noted earlier, weight drift is a common problem in SNNs with Hebbian learning

[172, 168, 171]. Another attractive property of SS is stabilisation of neuronal activ-

ity without disrupting information storage and processing related to differences in

synaptic strengths.

2.8.2 Homeostatic plasticity implementations

One of the classical ways to tame Hebbian learning–induced bistability is the Bi-

enenstock, Cooper and Munro (BCM) model [289], which focuses on adapting

STDP rules. According to BCM, correlated presynaptic and postsynaptic spiking

leads to LTP if the postsynaptic rate is higher than threshold, and to LTD if the fir-

ing rate is lower. The threshold changes as a function of average postsynaptic firing

rate. However, there is no direct evidence that this mechanism exists in the brain.

Oja rule is another classical approach to stabilisation of networks with STDP,

and it extends Hebbian plasticity with a rule which scales down synaptic efficacy

as a function of the square of the firing rate. Miller et al. [172] looks at the role

of constraints in Hebbian learning. Importantly for implementations of weight nor-

malisation rules, he analysed the effects of multiplicative vs subtractive constraints

to Hebbian learning:

• Hebbian learning without constraints often leads to synapse saturation.

• Multiplicative constraints lead to the development of inputs with graded

strengths. It is expected to preserve correlations between inputs. Multiplica-

tive weight update may be suitable for modelling systems with changing rep-

resentations, e.g. adult cortical plasticity.

• Subtractive constraints lead to weight bi-stability (saturation or silencing). A

proportion of most correlated weights tends towards maximum, while oth-

ers towards minimum. The subtractive approach seems more appropriate for

2.8. Homeostatic synaptic plasticity 77

modelling dynamics of networks with multiple input layers, e,g. ocular dom-

inance in the visual cortex, as it preserves total synaptic strength and allows

weight differences to grow freely.

It is important to notice that neither method of constraining weights was deemed

superior; each has distinct properties and possible biological relevance.

It has been demonstrated that many mathematical models of HSP implement

HSP rate which is too high; lowering the rate leads to instability and oscillations,

suggesting that other components of HSP are missing [287].

In [290], bi-stability of the weights was overcome by the introduction of local

non-Hebbian plasticity (which counteracts changes in the firing frequency) and con-

solidation mechanisms, as well as slower homeostatic mechanisms which respond

to low firing rate by reducing the plasticity threshold. This homeostatic mecha-

nism differs from biological SS. The authors concluded that a diversity of plasticity

mechanisms is needed to prevent ensure network stability, and multiple mechanisms

working on different time scales act towards achieving shared functional goals. It is

possible that different setups could achieve stability with different or fewer plastic-

ity mechanisms, but overall this work indicated the potential of HSP in stabilising

SNNs.

Homeostasis linked to voltage-based STDP was implemented in [291]. In this

study, a recurrent network of aEIF neurons follows STDP rules where learning rate

is tied to a slow homeostatic process with a set point around long-term average

neuronal potential. The study reports the emergence of local receptive fields and

visual cortex-like connectivity.

Liang et al. [165] used Spike Response model with first-spike or count decod-

ing schemes, and different variants of STDP. Three weight normalisation rules were

proposed:

• Normalisation of the sum of the input weights. If the sum of weights reaches

the maximum permitted value, all weights are scaled to be equal or lower than

the bound.

• Normalisation of the sum of the squared input weights.

78 2. Literature Review

• Normalisation of the sum of the output weights. Strengthening of one of the

output synapses leads to weakening of others.

Performance of the network on the Modified National Institute of Standards and

Technology dataset (MNIST dataset) classification task under different normalisa-

tion regimes were analysed. Normalisation had a limited effect on the accuracy of

count encoding, but improved results obtained using first-spike encoding. This is

an interesting study, with systematic comparisons of different design choices. How-

ever, the normalisation methods do not take into account activity levels, and they

differ from SS rules described in the previous section.

Overall, models suggest that weight normalisation mechanisms are crucial for

preserving the functionality of SNN. However, little research exploring different

weight normalisation methods (including SS) in applied SNNs has been published.

2.9 Summary
ANNs in general and SNNs in particular are frequently referred to as “brain-inspired

algorithms”, but the similarity is superficial. ANNs implement information process-

ing by neuron-like units but do so using von Neumann architecture, which means

that computation is not parallel [292]. SNNs go a step further and use AP-like ac-

tivation function; some SNNs also use STDP-like local learning. However, other

features of the brain such as cell type diversity or architectural modularity are not

commonly implemented. Instead, attempts to improve the performance of SNNs

frequently focus on adapting standard solutions used in non-spiking ANNs.

SNNs have unique features which should be explored rather than tamed to fit

standard solutions and perform on standard tasks. The brain is an obvious source of

inspirations for computing using spikes. Evolution shaped biological brains, and an

evolutionary approach can be used to guide the selection of SNNs’ hyperparameters

and architectural development.

3

Methodology

We hypothesised that neuroscience-inspired spiking neural networks with spike-

timing-dependent plasticity demonstrate useful learning capabilities. To test this

hypothesis, we required a framework or a custom-made spiking neural network

(SNN) which is suitably flexible to allow us to merge machine learning (ML) and

new neuroscience concepts. In this chapter, we describe available software-based

frameworks, toolboxes and models for SNNs, and discuss the rationale behind dif-

ferent aspects of the SNN design we selected.

When developing our SNN, the main considerations were:

• The lack of rigorous and systematic analysis of the role of various design

features in artificial neural networks and SNNs in particular. Differences

in parameter tuning, data pre-processing techniques, optimisation heuristics,

higher computational budget bias comparisons between networks [10]. Thus,

careful consideration must be taken when making decisions based on pub-

lished experimental results.

• The lack of understanding of how the brain works, and its complexity. The

brain is a complex system with properties such as non-linearity in signal pro-

cessing [52], feedback loops linked to emergent behaviours such as oscilla-

tory patterns [293], and adaptation to both experience and pathological dam-

age [294]. We also have a limited knowledge regarding which processes are

optimal for information processing and thus relevant for bio-inspired ANNs

80 3. Methodology

implementations, and which are simply a result of evolutionary and physi-

cal constraints. Disruption of one aspect of neuronal behaviour affects other

processes, and thus our ability to study individual mechanisms in vivo and in

vitro is restricted. Moreover, experimental design is restricted by ethical and

technological constraints.

3.1 Simulator selection
There are several available tools for working with ANNs in general and with SNNs

specifically. This section evaluates their suitability for our project; this evaluation

took place in 2016. To provide the evidence for our hypothesis, we required a frame-

work which would let us build highly plastic, neuroscience-inspired networks, but

also let us train and test the networks on applied tasks. The tool had to contain

or allow the implementation of spiking neurons with spike-timing-dependent plas-

ticity (STDP), and neuroplasticity concepts such as neurogenesis, synaptogenesis,

neuronal death, and synaptic pruning. When it comes to the ability to implement

different types of neurons, distinction into excitatory and inhibitory neurons was a

requirement. We also required a tool which would let us work with ensembles of

networks as well as apply an evolutionary approach (EA) to the networks.

There exist two main types of tools which could be suitable for testing our

hypothesis: simulators of biological neurons such as Brian [295], NEST [296], and

Neuron [297]; and ML frameworks such as Torch [298].

SNN implementations are readily available in toolkits intended for modelling

biological neurons; these frameworks were also built with the intention of mod-

elling widely-understood neurodiversity, STDP, and structural plasticity. However,

these frameworks are primarily intended for simulating electrophysiology of neu-

rons rather than mapping input data onto the network and receiving interpretable

output. MUSIC interface [299], which allows information transfer to and from neu-

ron simulators, could be used to map real-world data onto the simulators.

The simulators do not have built-in concepts of training and testing; a method

for “freezing” the synaptic weights while testing the network would have to be

3.1. Simulator selection 81

added. The simulators are optimised for running neuronal models, but their speed

is not comparable to ML frameworks, and could lead to problems when using the

simulators for multiple training and testing cycles.

ML libraries available at the time when we were selecting the tools, did not

contain SNN and STDP implementation. Even currently, such implementations are

rare and not included in the core libraries [300, 301]. ML toolboxes also miss func-

tionality enabling explicit implementation of neuroplasticity (neurogenesis, neu-

ronal death, synaptogenesis and synaptic pruning). However, this could be over-

come by initialising some weights as silent and later updating them to simulate

neurogenesis and synaptogenesis, and by driving existing synaptic weights to 0 to

simulate neuronal death and synaptic pruning.

In all cases, the functionality required to work with ensembles and EA would

have to be added on the top of the existing tool.

Since the time we were selecting the tools for this project, many new tools such

as TensorFlow [302] became available, and neuron simulators were successfully

combined with ML tools. Amongst others, neuronal actor-critic architecture for

reinforcement learning (RL) was implemented in NEST and trained using OpenAI

Gym [303] environments. There have also been substantial developments in soft-

ware for SNN training with tools like Norse, Nengo and BindsNET [304, 305, 300].

However, based on the results of the review of the tools available at the time, we

decided to develop the framework from scratch. The available frameworks – at least

in theory – did not miss any functionality required to add the relevant SNN imple-

mentations, but adjusting the tools to allow testing of our hypothesis would have

required amount of work comparable to developing a new tool, and optimisation of

the design would have been restricted by the need to build on the top of tools which

were built for only a partially-compatible purpose.

We chose to implement our network from scratch using C programming lan-

guage. We developed an iteration-based simulator, where at each discrete time

step input mapping and neuronal state update was being applied according to Euler

method.

82 3. Methodology

During this project, we explored several neuroscience mechanisms and imple-

mented them in SNNs. These mechanisms exist together in the brain. However,

it was not known how each of them separately and in combination was going to

affect the activity of SNNs. Therefore, we followed the spiral software develop-

ment model [306], according to which software is developed in an iterative loop of

planning, development and evaluation.

3.2 Neuron model
We used the exponential leaky integrate-and-fire (eLIF) model [75, 76]. This model

was selected as one of the least computationally expensive models of spiking neu-

rons. Its simplicity allowed us to focus on the core of our hypothesis – testing

the effects of the selected neuroscientific mechanisms – in a comprehensible SNN

set-up. It captures the neuronal sub-threshold potentials and spike-timing in a sin-

gle equation while maintaining a low computational cost. It is worth noting that

eLIF without the adaptation term still does not account for the decrease in firing

rate over a prolonged activation period (spike-frequency adaptation). The neuronal

membrane potential is calculated using the following equation:

τ
du
dt

=−(u−urest)+∆T · exp(
(u−ϑ)

∆T
)+R · I (3.1)

where u is membrane potential at a given time point, urest is resting membrane

potential, ∆T is the “sharpness” parameter of the exponential nonlinearity, ϑ is

rheobase threshold, I is the injected current, R is resistance, τ is the membrane time

constant.

It cannot be excluded that more complex neuronal models would lead to the

emergence of different behaviours in the network. However, in the absence of any

prior knowledge regarding the existence and role of these effects, and because SNNs

themselves are complex, a comprehensible set-up was preferred for this exploratory

study.

In our SNNs, we specifically defined if a neuron was inhibitory or excitatory.

Inhibitory neurons in the brain have been reported to play a role in increasing the

3.2. Neuron model 83

Figure 3.1: Spearman correlation for random number generator. When initialising the
SNNs’ weights, we used Mersenne twister pseudo random number generator with experi-
ment repeat number as the seed. To confirm that the initialisations were not correlated, we
generated 1000 numbers for each seed (which was equal the repeat number) and analysed
their correlation. This random number generator was used e.g. when initialising weights

signal to noise ratio [99, 100, 101, 102] and in the stabilisation of the network

firing [156]. Both of these features are desirable in ANNs, but a strict separation of

neuronal types is not commonly implemented in ML.

If a neuron reaches its firing threshold, signal is passed to the connected post-

synaptic neurons. Neuronal connections are weighted, and weights are initialised

from a uniform distribution tied to a different seed number, with experimentally

defined weight ranges described in 4.4.2. As a cautionary measure, we examined

correlation between the numbers produced by the pseudo-random number generator

for all seeds used in our model to generate the initial weights. Spearman’s rank cor-

relation was also used to examine the potential presence of monotonic (linear and

not) relations between random numbers used in the experiments. The examination

revealed very low correlation (fig. 3.1.

The postsynaptic neurons integrate charge equal

Ii = weighti ·ai ·b (3.2)

where I is the input charge from neuron i, weight is synaptic weight. a describes

84 3. Methodology

if the input came from an inhibitory or excitatory neuron, and is equal to 1 or -1

respectively thus defining if the charge – and subsequently the change in the mem-

brane potential – is positive or negative. b is a weight scalar which was initially set

to 1; different values were experimentally explored later in the thesis.

After all neurons in one layer have been iterated over and the input were up-

dated, the same process is repeated in the next layer.

3.2.1 Implementation of electrophysiological parameters

We were interested in two sets of parameters (table 3.1): stereotyped, identical for

all neurons, and a set based on data collected in a subset of excitatory and inhibitory

neurons. The stereotyped values were based on the classical average values, and

were identical for excitatory and inhibitory neurons. The exact numbers were taken

from default values of the eLIF model in the Neurodynex package [70, 307].

Biological neurons display a wide range of electrophysiological properties, and

the existence of neuronal subpopulations with different properties is important for

the emergent behaviour of the nervous system.

Faithful modelling of multiple neuronal subtypes is outside the scope of this

project; however, we selected one class of excitatory and inhibitory neurons and

performed meta-analysis of the published data to calculate the electrophysiological

parameters reported for the two selected neuron classes.

In line with our hypothesis that neuroscience-inspired features provide useful

properties, we selected more biologically-relevant parameters for the neurons. We

reviewed information available in the Neuro Electro database [55]. When selecting

neuronal populations, we considered the following factors:

• Size of the neuronal population. Commonly known and abundant in the brain

neuron classes were preferred.

• Location of the neuron class. Classes reported in the hippocampus and cortex

were preferred as these regions are more relevant to the tasks we work on.

• Availability of the data. Classes with data on all parameters, and data from

multiple independent publications were preferred.

3.3. Architecture 85

Table 3.1: Neuron parameters. Stereotyped label refers to a generic neuron with commonly
used electrophysiological parameter values; both excitatory and inhibitory stereotyped neu-
rons use the same values. The exact numbers were taken from default values of the eLIF
model in the Neurodynex package [70, 307].
Excitatory and inhibitory labels refer to parameters which were calculated based on data
reported in the NeuroElectro database [55]; excitatory values were based on the medial en-
torhinal cortex III pyramidal cells and inhibitory neurons on the hippocampal CA3 interneu-
rons. In the absence of reliable rheobase data, we used the stereotyped values (brackets)

Neuron parameter Neuron type
stereotyped excitatory inhibitory

resting potential [mV] -65 -63.70, SD=5.54 -59.3, SD=10.7
firing potential [mV] -30 -45.80, SD=7.49 -33.3, SD=NA
rheobase [mV] -55 (-55) (-55)
reset potential [mV] -60 -64.3 -68.7
membrane time constant τ[ms] 12 16.70, SD=8.47 36.5, SD=12.8
membrane resistance [MΩ] 20 67.70, SD=71.32 133.3, SD=99.9

• Model organism used. We selected neuron classes with published data com-

ing from the same or related species.

Using the above criteria, we based the electrophysiological properties of our excita-

tory neurons on the medial entorhinal cortex layer III pyramidal cell, and inhibitory

neurons on the hippocampal CA3 interneurons. The number of recordings available

per parameter was between one (firing threshold, interneurons) and seventeen (rest-

ing potential, pyramidal neurons) at the time of our analysis (April 2018). Record-

ings were performed in rodents (mouse and rat). The obtained parameter values

are listed in table 3.1 (excitatory and inhibitory). It was not possible to correctly

calculate rheobase from the available information; the stereotyped value was used

in all cases.

3.3 Architecture
Neurons were connected forming a three-layer, fully-connected, feed-forward net-

work (fig. 3.2). The number of neurons in the input layer was data set-dependent.

The number of hidden and output neurons was kept constant.

As in the case of neuronal model selection, the above architecture was chosen

for its simplicity. Working with the classical feed-forward fully-connected network

86 3. Methodology

allowed us to establish and understand the baseline behaviour of the network before

we introduced structural plasticity into it.

Figure 3.2: Network architecture. Our baseline model uses a fully-connected feed-forward
architecture with one hidden layer. The number of neurons in the input layer was data
set-dependent. The number of hidden and output neurons was kept constant.

3.4 Input data

Intrinsic properties of SNNs make them particularly suitable for processing spatio-

temporal patterns [308]. To explore the potential of biologically-inspired SNNs,

we decided to design biologically-relevant time-series inputs. The spatio-temporal

patterns used in our study were inspired by the in vivo experiments on pattern and

movement direction recognition in rats [309], cats [310], and primates [311, 312],

during which the animals are placed in front of a screen and made to watch simple

geometric patterns such as stripes, circles and squares move on the screen while the

animals’ brain activity is being recorded.

Data was mapped onto the neurons at rate 1 kHz. Consequently, 1kHz was

also the upper bound of the input neuron firing rate (eLIF model does not have a

bursting mode). This firing rate is within the upper theoretical bounds associated

with biological neurons (assuming a 1 ms absolute refractory period).

3.5. Training with spike-timing-dependent plasticity 87

3.5 Training with spike-timing-dependent plasticity
STDP function determines the dynamics of weight changes in response to the ac-

tivity between a pair of neurons. We defined STDP rules separately for excitatory

and inhibitory neurons, in accordance with the published biological observations

[151, 154, 155, 156]. This separation of STDP rules is not common is SNNs, but

has been suggested to play a role in limiting epileptic seizure-like overactivation of

the network [156]. As SNNs struggle with signal silencing and oversaturation, we

decided to include this feature in our design.

We used the classical STDP function as described in [165], extended with a

symmetric weight update for pairs of neurons where the presynaptic neuron is in-

hibitory. For pairs of neurons with excitatory presynaptic neuron, change of weight

∆w was [165]:

∆w =

ALT P · exp(−

tpost− tpre

b1
), if tpost > tpre (3.3)

ALT D · exp(−
tpre− tpost

b2
), if tpost < tpre (3.4)

where parameters ALT P and ALT D determine the learning rates. tpre and tpost

are the times of the most recent action potentials in the presynaptic and postsynap-

tic neuron, respectively. The constants b1 and b2 regulate the decay rate, and had

values equal to b1 = 16.8 [ms] and b2 = 33.7 [ms], as in [313]. The equation 3.3

describes synaptic strengthening if the presynaptic neuron fired before the postsy-

naptic neuron (causal), whereas the equation 3.4 describes synaptic weakening for

pairs of neurons with a reversed spiking order.

For pairs of neurons where the presynaptic neuron is inhibitory, if the pair of

neurons fired within a set time window, the connection is always strengthened:

∆w = AinhLT P · exp(−
|tpost− tpre|

bs1
) (3.5)

AinhLT P is the symmetric learning rate. According to this approach, ∆w is a

function of the absolute time difference; it is an additive weight update. This is in

88 3. Methodology

contrast to multiplicative weight update where ∆w is a function of both the time

difference and the original weight value w.

Other STDP functions were explored in our preliminary experiments (Ap-

pendix B).

3.6 Similarity measures and output interpretation

3.6.1 Distance metric

Output of an SNN has a form of spike events with time stamps. There exist a few

approaches to quantitatively compare spike patterns [185]:

• Binning of spike trains to a selected time interval. Such data is then treated

as vectors, and distances between spike trains are calculated based on the

Euclidean distance between the vectors. Some of the methods used include

Principal Component Analysis (PCA) [314] and clustering [315]. Tradition-

ally, these methods suffered from a trade-off between temporal resolution and

data sparsity per bin. One of the proposed methods to overcome this trade-off

is to define the bin size in terms of the number of spike events rather than as

a unit of time [316].

• Parametric methods of spike train classification [317]. These overcome the

resolution problems of the binning methods but make intuitive understanding

of the temporal nature of the code harder [185].

• Spike trains as points (as in parametric methods), but with temporal features

such as interspike intervals used as features [318].

• Distance metric based on individual spikes [185]. The Victor-Purpura dis-

tance (VPD) uses a non-Euclidean distance-based similarity measure. The

distance is calculated for individual spike events (no binning, no vectorisa-

tion of spike trains). In [185], two methods are proposed: D spike which

compares spike timing, and D interval which compares the pattern of spike

intervals. Both of these metrics use a temporal coding precision parameter q;

if q = 0, the metrics collapse to a spike count. The reliance on precise spike

3.6. Similarity measures and output interpretation 89

timing manifests as an increase in the similarity measure as q increases (up

to a temporal resolution bound which depends on the noise in the system).

Distance between trains is calculated as a cost of making the trains identi-

cal by spike deletion (cost = 1), shifting (cost is based on q, and equal 0 if

q = 0), and insertion (cost = 1). The total distance takes a value between 0

and the difference in the spike count. For certain cases, VPD is considered

interchangeable with Van Rossum distance [319][320].

We selected VPD as a measure of similarity to avoid the assumptions imposed by

the use of spike trains as vectors. Varying the q parameter allowed us to test if

the information was encoded only in the number of spikes or in their timing as

well. However, for experiments involving evolution of a population of networks

over multiple generations, Euclidean distance was preferred due to a lower compu-

tational cost.

VPD provides poor distance resolution for spike trains with low firing rates

[321] (due to the maximal distance value being a function of the spike count dif-

ference); for our model, we selected spike encoding and network parameters which

resulted in multiple spikes in the output neurons.

Some of the difficulties associated with a choice and interpretation of a spike

distance metric (SDM) are caused by neurons with more complex spiking be-

haviours, e.g. bursting, spike frequency adaptation etc [74, 322]. In this thesis,

we use eLIF neuron; these neurons are regular spiking neurons and therefore their

spiking patterns are easier to compare.

3.6.2 Distance metric interpretation

VPD is a classical method of calculating a temporally-sensitive difference between

spike trains, while Euclidean distance is a widely applied distance metric. However,

in both cases, the maximal distance and distance resolution is tied to the maximal

number of spikes in the compared trains. Given that STDP is known to be unstable

and to lead to a weight saturation or silencing, these SDMs alone could not be used

to interpret whether training is having a desirable effect. Therefore, we introduced

a score system derived from them:

90 3. Methodology

• Score values were between 0 and 1, with 0 being the worst and 1 the best

possible.

• Total score was the average of intra- and inter-class scores.

• SDM was the basis of the scoring system. It was scaled to 0 - 1 range by

calculating the maximal possible distance as the maximal possible number of

spikes in a train for a given data set (number of neurons x number of time

steps).

• The intra-class score was the inverse of the scaled SDM calculated for output

spike trains belonging to the same class. The inverse of SDM was used as the

goal was for same-class inputs to produce similar spike trains; lower distance

was more desirable.

• The inter-class score was the scaled SDM for output spike trains belonging to

different classes.

• The intra- and inter-class scores have the opposite relation to SDM and there-

fore to the number of spikes. Consequently, weight drift towards either spik-

ing saturation or silencing increases one of the scores but decreases the other

thus bringing the total score to 0.5 at best. This allowed us to use a SDM-

based metric throughout training in a way that is more resistant to weight

drift.

We used the score together with the stability of the network, i.e. resistance to sig-

nal saturation and network silencing, to guide our iterative network development

process. Once the initial parameters were established, we implemented the selected

new neuroscience-inspired mechanisms. Based on the results of each of these ex-

periments, we compared how each mechanism contributed to the SNN behaviour.

3.6.3 Output interpretation with self-organising maps

In case of fully unsupervised learning using STDP, the researcher does not control

weight updates, and training does not necessarily change the firing patterns in a

3.6. Similarity measures and output interpretation 91

way that is desired or expected by the researcher; it is not possible to explicitly train

individual output neurons to signal a particular input data class. However, we did

expect the firing patterns to convey information about the inputs, even if it was not

encoded in a way which was readily interpretable by humans.

In addition to using SDMs, the ability of the networks to encode differences

between input classes was decoded using self-organising maps, which were chosen

to for their simplicity, ability to perform clustering of vectors in an unsupervised

manner. The role of the SNNs may be harder to interpret because in the context of

SNN–SOM stack, but the desirability of the performance is easier to interpret using

the clustering accuracy metric.

SOMs were trained, then data was re-mapped onto the trained SOM and the

correctness of clustering was quantified and used to assess the network perfor-

mance.

Parameters of the SOMs (size, number of training iterations, learning rate and

learning rate decrease during training) were selected per data set. The parameters

were then fixed throughout our study to allow to meaningfully interpret the results

against a consistent benchmark. Improved clustering score correlated with the net-

works’ ability to produce more distinct output vectors in response to distinct input

classes.

3.6.4 Individual vs collective activity

Animal studies suggest that the brain uses populations of neurons rather than indi-

vidual neurons to encode information [323, 324, 325]. In a study which is particu-

larly relevant to our project, the researchers examined the activity neuronal popula-

tions in monkeys performing movement direction classification tasks [312]. During

this study, neurons were pooled into pseudo-populations (determined by the re-

searchers rather than biologically) and an, admittedly, very simple according to ML

standards supervised algorithm was able to classify movement direction based on

the average activity of the population.

Based on these reports, we designed a network with multiple output neu-

rons and interpreted the firing patterns in the context of simple population coding.

92 3. Methodology

Briefly, the output of an SNN was converted to a vector (with length equal the num-

ber of time steps) with the sum of spikes at a given time step. We referred to this

approach as “collective”. It was used with the Euclidean distance and SOM. Addi-

tionally, we looked at similarity between individual neurons. Here, the output of an

SNN was converted to a binary vector (with length equal the number of time steps ·

number of neurons) indicating if each neuron fired at a given time step. We referred

to this approach as “individual”. It was used with the Euclidean distance and VPD

.

3.7 Model assessment
When assessing the behaviour of our SNNs, we focused on the qualitative and quan-

titative performance of the networks as ML tools, and the comparison between the

networks and the brain.

During the initial development, we examined qualitative features of the net-

works such as their ability to train and process inputs without signal saturation and

silencing. The score described in the previous section was our main tool for quan-

tifying the performance of the SNNs. We analysed the baseline performance of the

networks, and how the score was changing during training. We then quantify their

performance on incomplete and noisy data.

The project aimed to implement neuroscience-inspired features in SNNs,

therefore we also examined whether the behaviour of the networks was consistent

with what we know about the brain. Our examination was guided by the criteria

proposed for the assessment of biological models [326]:

• integrative: multiple processes are implemented;

• intuitive: specialists from different fields can interpret the model;

• scalable: different levels of abstraction, time-scale and compartments are sup-

ported;

• qualitative: the model captures the topological and structural properties of the

system;

3.7. Model assessment 93

• quantitative: the dynamics can be measured.

Our SNN is an Artificial Intelligence (AI) tool rather than a brain model, therefore

networks which more closely mimicked the brain were not necessarily assessed as

better.

4

Spiking neural networks for

unsupervised processing of

spatio-temporal patterns

“Far from being able to accept the idea of the individuality and indepen-

dence of each nerve element, I have never had reason, up to now, to give

up the concept which I have always stressed, that nerve cells, instead of

working individually, act together [...]. However opposed it may seem to

the popular tendency to individualize the elements, I cannot abandon the

idea of a unitary action of the nervous system [...].”

– Camillo Golgi, 1906

The goal of this first chapter was to:

1. Examine the difficulty of the proposed tasks by statistical characterisation

of the data sets themselves, and establishing a performance baseline using

standard machine learning (ML) models like Multilayer Perceptron (MLP)

and Long Short-Term Memory (LSTM) networks.

2. Characterise the baseline behaviour of our spiking neural network (SNN)

model and enable an informed choice of parameters relating to the neuron,

weight initialisation, and spike-timing-dependent plasticity (STDP) for the

rest of this thesis.

96 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

3. Examine performance of SNN ensembles with the selected parameters and

scoring methods.

We also looked at the model in the context of ensembles, feature reduction and

processing of corrupted data.

In selected experiments, we also used a “stacked” model, SNN–self-organising

map (SOM). While this model reduced the interpretability of how the SNNs con-

tributed to the final result, the desirability of the obtained performance (clustering

accuracy) was easier to interpret than spike distance metric (SDM) and easier to

compare with the ML models. A similar approach of stacking a SNN and a non-

spiking ML model was published in [327]. SOM–SNN stacks (reverse stack order),

including models developed specifically for signals with noise, have also been pub-

lished since out initial work [328].

We were interested in ensembles because while SNNs mimic some aspects of

information processing in the brain, they fail to mimic the parallelisation of infor-

mation processing. One of the key reasons for this is the nature of the hardware

commonly used in computing [292]. While there is much research focused on tack-

ling this issue in hardware [329, 330], in this chapter we propose a software-based

model of an ensemble of unsupervised SNNs for parallel, distributed processing

of spatio-temporal data. Increasing the width of the network has been reported to

increase the performance of convolutional neural networks [331]. In case of un-

supervised SNNs, wide modular voter ensembles where each of the networks is

shown identical input and contributes towards the ensemble’s output were reported

to outperform individual classifiers [332]. Unlike classical ensembles in which the

activity of their components is averaged in some form [333], each of our networks

is given its own separate task to perform thus creating a “wide” SNNs where the

width is created by multiple networks.

The earlier version of this work was published in [1].

4.1. Model description 97

4.1 Model description

4.1.1 Neuron model and network architecture

We used exponential leaky integrate-and-fire (eLIF) neuron model [75, 76], which

has previously been used to develop computationally inexpensive models of the

cortex [334]. The membrane potential of each neuron was calculated as previously

described by equation 3.1.

In our SNNs, we specifically defined if a neuron was inhibitory or excita-

tory. After running preliminary experiments and testing networks with 0-50% of

inhibitory neurons, we determined the optimal percentage of inhibitory neurons to

be 15%, which is consistent with the 15-20% reported in the cortex [95, 96] and

hippocampus [335, 336].

We used neurons with one of the two sets of neurophysiological parameters:

stereotyped, identical for both excitatory and inhibitory neurons, and biologically-

inspired, different for excitatory and inhibitory neurons (“heterogeneous”). These

parameters were listed in table 3.1 in the Methods chapter.

We used a feed-forward architecture with the number of input neurons based on

the input data size (81 and 100 for the stripes and shapes data set, respectively), 50

hidden and 10 output neurons (fig. 3.2). Network size was based on the preliminary

experiments. The network was fully connected, although the synaptic weights could

decrease to 0 during training thus effectively silencing some of the synapses.

4.1.2 Spike Timing-dependent Plasticity

In this chapter, we used a previously published STDP function [165], with a mod-

ification for synapses with inhibitory pre-synaptic neurons. Weight update rules

for synapses with excitatory presynaptic neuron were described in equations 3.3

and 3.4, and for inhibitory presynaptic neurons in equation 3.5 in the Methods

chapter. Parameters ALT P and ALT D determined the learning rates, and in [165]

had values equal to ALT P = 0.0096 of wmax (the max permitted weight value) and

ALT D =−0.0053 of wmax. We initially used these published values, and scaled them

up based on the experimental results until a change in weights was observed during

98 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

our training protocol.

The parameter we introduced, AinhLT P, was a parameter describing learning

rate of a symmetric weight update (weight strengthening as a function of the abso-

lute time difference) when the presynaptic neuron was inhibitory. This parameter

was initially set to 0.0043 of wmax, which was the absolute difference of the previ-

ously published learning rates, to account for the symmetry of this weight update.

Training was performed for 1000 epochs, with testing carried out at 0, 1, 5, 10,

20, 50, 100, 200, 500 and 1000 epochs.

4.1.3 Analysis

Input and output spikes were analysed using Principal Component Analysis (PCA),

Victor-Purpura distance (VPD) (3.6.1) and Euclidean distance. VPD and Euclidean

distance was further interpreted using the scoring system described in 3.6.2. Briefly,

the score was the average of the distance between the input classes and inverse of the

distance within the classes. Applied performance was tested as accuracy achieved

using the SNN–SOMs stack.

We have also analysed weights and spike patterns. All experiments were per-

formed as 10 independent repeats, with random weights initialisation tied to a dif-

ferent seed number. Significance was calculated using the non-parametric Kruskal-

Wallis test [337] with post-hoc Dunn’s test [338](SciPy implementation [339]),

which does not assume normal data distribution.

4.1.4 Input data

During preliminary experiments, we used CIFAR-10 data set [340], a set of 60,000

low-resolution (32x32 pixel) RGB images from 10 categories. The network devel-

oped to cluster these images was composed of 3072 neurons in the input and hidden

layer (one for each pixel of each colour), and ten output neurons. There was an

all-or-none response in the output layer neurons, and weights were reaching binary

values (0 and max permitted). We tested different values of weights and rules with

different weight update values, however, we did not reach satisfying results with

this data set and it was subsequently not used in this thesis.

4.1. Model description 99

The possible drawback of using the CIFAR-10 data set for SNNs is that the

images are static. Additionally, the data set may have a too steep learning curve and

therefore not be the most suitable for illustrating early incremental improvements

in our model development.

We created our own generator of binary bitmaps which simulated sequences of

a movement. We used this input to develop and optimise our SNNs, and to test the

effects of the selected neuroscience-inspired algorithms on networks’ performance.

Two types of data sets were initially created: stripes and geometric shapes. Stripes

were selected as the simplest input, a homogeneous, repeating pattern (fig. 4.1 A,

table 4.1). The width of the stripe and gap was selected in a way which allowed a

distinction between movement direction (i.e. stripe of width 1 with a gap of width

1 would generate the same bitmap moving left and right - this was avoided). The

dimensions of the inputs were selected in such way that the same number of stripes

was present during all movement steps, as the stripes were entering and leaving the

visual field. One input sequence imitating stripe movement was composed of the

number of frames required to show the pattern without repeating (e.g. for stripe

width one and gap width 2, the number of frames needed is 3). The whole data

set was composed 12 items, based on the stripe orientation (horizontal or vertical),

movement direction (two per stripe orientation; up and down or left and right) and

the number of possible unique starting points (3). Admittedly, this was a very small

data set; nevertheless, it provided a useful starting point and allowed to explore

behaviour of SNNs and learning on simple task.

The second data set used geometric shapes (cross, circle, grid, rectangle)(fig.

4.1 B, table 4.1). The number of black pixels in each shape was the same to prevent

shape recognition simply due to pixel count differences. As the shapes differed

in height and width, during the experiments they were all mapped onto a visual

field of equal size, larger by 2 than maximal dimensions of the shapes to allow

movement mapping. During movement, shapes wrap around the edges. One input

sequence imitating a shape movement was composed of the maximal number of

frames required to show a full pattern without repetition. An example of one input

100 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

(A) Stripes. (B) Geometric shapes.

(C) Example of a movement sequence.

Figure 4.1: Types of input data used. Moving visual patterns were mapped onto the neurons
in the input layer. A) The first pattern type were horizontal stripes (moving up or down)
and vertical stripes (moving left or right) with dimensions 9x9 B) The seconds input type
included simple geometric shapes: cross, circle, grid and rectangle. Each of the shapes was
positioned randomly in a 10x10 “visual field”, and moved in one of four directions (left,
right, up, down). C) An example of a geometric shape moving up in the visual filed.

sequence is shown in fig. 4.1 C.

To map onto the input neurons, the bitmaps were vectorised. Each movement

frame corresponded to one input vector, and was mapped one pixel per one neuron

(fig. 4.2, step 1). The networks were then trained. During testing, the output was

vectorised at the individual or collective level, and interpreted using SDMs or SOM.

4.1. Model description 101

Table 4.1: Input parameters.

Input parameter Input type
stripes geometric shapes

data set size 12 1600
number of shapes 2 4
movement directions per pattern 2 4
unique placement per pattern 3 100
visual field size [height x width] 9x9 10x10
frames per movement sequence 3 10
stride 1 1
black pixels per frame 27 20
black stripe width 1 NA
white gap width 2 NA

Figure 4.2: Network training and output interpretation overview (one network is shown for
simplicity). 1. Input data in the form of a bitmap was mapped onto the input layer, one pixel
per one neuron. 2. Activated neurons spiked. During training, weights were updated. 3.
Output was interpreted at the level of individual firing (left arrow) or collective firing (right
arrow). 4. Output vectors were analysed using a distance metrics VPD and Euclidean (left
arrow) or clustering performance was analysed using SOM (right arrow). 5. Score based on
distances between and within classes was calculated.

102 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

4.2 Experimental design: baseline characterisation

4.2.1 Experiment 1: Performance of standard Machine Learn-

ing methods

Two selected standard (i.e. non-spiking) ML methods were trained using the stripes

and shapes data sets to allow baseline performance comparisons between spiking

and non-spiking solutions in terms of accuracy, training speed and the amount of

data required. The selected methods were:

• MLP, a standard, feed-forward artificial neural network (ANN) with Recti-

fied Linear Unit (ReLU) activation function. It had three neuronal layers,

where the size of the input layer corresponded to the input vector size (81 for

stripes, 100 for shapes), 50 hidden neurons and the number of output neurons

corresponding to the number of classes. MLP was implemented using the

scikit-learn library version 0.23.2 [341].

• LSTM, with 50 neurons in the LSTM layer, and with tanh feed-forward acti-

vation function and sigmoid recurrent activation function. This was followed

by a drop out layer with 20% of neurons being dropped during training to pre-

vent overfitting. The output layer was a dense layer with softmax. The LSTM

used Adam optimiser, and loss was defined as categorical cross entropy. The

LSTM was implemented using the Keras library version 2.3.1 [342].

Other parameters had default values. The two defined above architectures were

purposefully minimalistic to allow a fairer comparison with an SNN of a similar

size.

Two types of class labels were tested: spatial label (shape) and temporal label

(movement direction). The MLP and the LSTM networks were trained for 100

iterations. The train test split was 75-25 to provide at least one example per class in

this small test set.

Both methods were tested 10-fold using stratified shuffle split. The mean re-

sult and standard deviation (SD) were reported; for conditions with early stopping,

4.2. Experimental design: baseline characterisation 103

performance on the validation set was used to plot accuracy during each training

iteration.

The hypothesis was that both the MLP and the LSTM were going to be able

to identify inputs based on the spatial pattern, but the MLP was likely to perform

worse as inferring movement direction. It was also hypothesised that both types

of networks were likely to achieve worse results on the stripes data set; the task

appears to be easier but the size of the data set was likely to be insufficient.

4.2.2 Experiment 2: Baseline characterisation of the spiking

neuron network

Throughout this thesis, we used the eLIF neuron model. For this model, were were

interested in two sets of electrophysiological parameters: stereotyped, identical for

all neurons, and a set based on data collected in a subset of excitatory and inhibitory

neurons (as described in 3.2.1).

Here, we analysed the sub-threshold and spiking behaviour of neurons with

each of the sets of neuron parameters to confirm that the behaviour of our model was

consistent with the intended design, and to get a better insight into the parameter

selection. Neurons were stimulated with a current ranging from 0 to 2 nA (0, 0.02,

0.20, 2, 20, 40, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800 and 2000

pA) for 5 ms (analysis of charge integration and leak) and 1 second (firing rate

calculation). Membrane voltage was recorded for 10 ms and 1 s, respectively, at 10

µs time intervals (i.e. at every simulation step).

Examination of the behaviour of individual neurons was followed by examina-

tion of the network. The goal was to identify weight initialisation and data mapping

parameters which would ensure activity across all network layers while avoiding

saturation.

PCA, VPD and Euclidean distances were calculated for both data sets. Calcu-

lations were made for both input and output spikes to examine how processing by

the network affected the data.

For PCA, the first 12 principal components were calculated for the stripes data

set (the maximum range dictated by the size of the data set) and 100 for the shapes

104 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

data set. PCA was performed using the scikit-learn library version 0.23.2 [341].

VPD was calculated for all inter- and intra-class combinations within each

data set, for all pairs of output neurons. The selected SDM was spike distance

D spike [185], which uses a temporal coding precision parameter q. Distances were

calculated for three values of the parameter q:

• q = 0. No cost for shifting spikes; distance was a difference in the spike count,

irrespective of their timing.

• q = 1 kHz. This value matches our data mapping frequency and there-

fore is the inverse of the smallest meaningful time difference between two

(non-simultaneous) spikes in a feed-forward network architecture with non-

bursting eLIF neurons.

• q = infinity. The cost of shifting spikes was infinite and therefore distance

was the count of spikes with different spike timing. VPD with this value of q

is equivalent to Euclidean distance between a pair of spike trains.

Elephant library version 0.10.0 was used for the calculations [343].

As stated above, VPD can be equivalent to Euclidean distance. We further

explored Euclidean distance between pairs of output neurons with the same ID (e.g.

output neuron n in condition a, vs neuron n in condition b), and Euclidean distance

between the sum of output spikes calculated per time step. We refered to them as

“individual” and “collective” Euclidean distance, respectively. Unlike VPD, these

metrics were unable to account for a time window mismatch (e.g. a delay) between

two otherwise matching spike trains. However, it was important to explore the

suitability of such computationally inexpensive distance metrics because they would

be preferred for evolutionary experiments explored in Chapter 5.

4.2.3 Experiment 3: STDP: effects on spike train distances and

weights

STDP was applied to the networks. As described in section 3.5, we initially used the

published weight update parameters ALT P, ALT D and AinhLT P. These were incompat-

4.3. Experimental design: ensembles 105

ible with our simulation set up (the combination of time step, electrophysiological

constants and weight values), and did not lead to a change in weights. Consequently,

these parameters were scaled up by three orders of magnitude and were equal 9.6,

5.3 and 4.3 of wmax, respectively.

A stratified split was used to divide data into training (75%) and testing (25%)

sets with equal representation of each class. This resulted in 8 train and 4 test

samples for the stripes data set, and 1200 train and 400 test samples for the shapes

data set. We acknowledge that the size of the stripes data set was extremely small

and more consistent with one-shot learning experiments than with standard ML

training.

Training was performed for 1000 epochs, with testing carried out at 0, 1, 5, 10,

20, 50, 100, 200, 500 and 1000 epochs. Spiking in the test networks was examined

using PCA, VPD, and Euclidean distance and interpreted using our SDM-derived

scoring system (described in 3.6.2). We also analysed how weights changed in

respect to the initial parameters; analysis was performed for total weight value, and

per synapse type as defined by the presynaptic and post-synaptic neuron (excitatory-

excitatory, excitatory-inhibitory, inhibitory-excitatory, inhibitory-inhibitory).

4.3 Experimental design: ensembles

4.3.1 Experiment 4: Clustering of spatio-temporal patterns

We examined whether the spike data before and after training provides input class

information using a non-spiking method: SOM. The goal was to explore if cluster-

ing approaches other than VPD-based can benefit from

• Passing the data through SNNs. We compared SOM clustering accuracy of

the inputs vs outputs of an SNN.

• Applying STDP to SNNs. We compared SOM clustering accuracy before and

after training. Earlier experiments showed that some SNNs became silent at

1000 training epochs therefore here we used trained networks which under-

went 500 training epochs.

106 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Table 4.2: Grid search of SOM parameters for each data set. Selected parameters are shown
in bold

Stripes Shapes
number of neuron 4 4, 9, 16, 25, 36, 49
training iterations 5, 10, 20, 100 5, 10, 20, 100, 150, 200, 300
learning rate 0.2, 0.5, 1.0, 2.0 0.2, 0.5, 1.0, 2.0, 5.0
sigma 0.5, 1 0.5, 1.0, 3.0
neighbourhood Gaussian Gaussian
distance Euclidean Euclidean

First, we performed grid search to identify SOM parameters which produced sat-

isfying results. Grid search was performed on a single experimental repeat of our

earlier STDP experiment (4.2.3). Parameters included in the grid search are shown

in table 4.2. Based on this parameter search, we selected parameters which led

to the best results in clustering of the output neuron activity both by shape and

movement direction labels. Examples of the quantization and topographical errors

during training were shown in Appendix E. The output of the SOMs with the se-

lected parameters was then further analysed to identify how spatial (pattern type)

and temporal (movement direction) labels were distributed amongst the nodes.

The SOM was implemented using the MiniSOM library [344]

4.3.2 Experiment 5: Clustering of noisy inputs

To test whether SNNs can provide an advantage when noise is present in the data,

we replaced 0, 2, 5, 10, 25, 50, 75 and 100% percent of randomly chosen inputs with

random binary values. While the level of noise was kept constant throughout the

test, the exact pattern of noise was individually generated for each frame. Input and

output spike trains in response to each pattern were recorded, clustered using SOM,

and then the clustering was examined on their ability to correctly cluster patterns

containing noise as well as how closely this clustering map resembled that of the

noise-free data.

4.4. Results: Baseline characterisation 107

4.3.3 Experiment 6: Clustering of incomplete inputs

Similarly to the previous experiment, we examined the effects of SNNs processing

of incomplete data on clustering. The previously used patterns 0, 2, 5, 10, 25, 50,

75 and 95% of inputs removed at random, which corresponds to a proportional

decrease in the number of spikes in the input layer. A higher percentage of missing

data was not tested because our model was not designed to exhibit spontaneous

activity and the output layer was silent when few or no inputs were present. The

percentage of missing data was kept constant throughout each test but the exact

pattern of silencing was randomly generated for each frame.

4.3.4 Experiment 7: Clustering of superimposed inputs

As real-world data, such as audio data, often is a result of interference between mul-

tiple patterns, we combined inputs into pairs: one standard full-strength input was

superimposed over another standard input of varying strength. Superimposed input

pairs used were vertical stripes moving left and horizontal stripes moving upwards,

and vertical stripes moving right and horizontal stripes moving downwards. The

strength of one of the inputs was fixed at 100%, while the strength of the second

was set to 0, 2, 5, 10, 25, 50, 75 and 100%.

The spike trains were then clustered to determine if they contained the signa-

ture of the dominant pattern, either of the patterns, as well as how this performance

correlated with the strength of the second overlapped input.

4.4 Results: Baseline characterisation

4.4.1 Experiment 1: Performance of standard Machine Learn-

ing methods

As expected, the stripes data set turned to be challenging due to its small size (table

4.3). Small data set size also meant that resolution of accuracy was low, contributing

to a high SD.

The MLP achieved accuracy below a random guess. Interestingly, the LSTM

was able to deliver accuracy of 90% on the most challenging task of recognis-

108 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Table 4.3: Performance of the MLP and LSTM on the test set after 1 (“start”) and 200
(“end”) training iterations. Random guess would approximate 50% accuracy when classi-
fying spatial orientation of the stripes, and 25% on all other tasks. For the shapes data set,
performance on the validation set is shown in fig 4.3.

Task Accuracy [%]
MLP LSTM
start end start end

stripes, spatial 40.0, SD = 24.9 3.3, SD = 10.0 46.7, SD = 34.0 90.0, SD = 21.3
stripes, temporal 10.0, SD = 12.2 0.0, SD = 0.0 35.0, SD = 12.2 0.0, SD = 0.0
shapes, spatial 41.0, SD = 2.4 76.8, SD = 2.7 47.3, SD = 3.7 100.0, SD = 0.0
shapes, temporal 53.4, SD = 3.5 99.7, SD = 0.5 36.8, SD = 13.1 99.9, SD = 0.1

ing movement direction of the stripes, with only two examples of each movement

present in the training set.

In all cases, a better performance was achieved on the geometric shapes data

set, with all results above random guess and performance improving with time (ta-

ble 4.3 and fig. 4.3). Unexpectedly, the MLP performed better at the task requir-

ing classifying movement direction, which made it clear that “movement” can be

successfully inferred from the complete sequence presented to the MLP as a static

bitmap. The LSTM achieved a comparable performance on this task while inferring

the movement label from a sequence of individual frames. The LSTM also achieved

perfect score on the spatial shape recognition task.

Together, these two methods constituted an interesting baseline. The experi-

ments highlighted the ability of a very simple MLP to (given enough data) handle

“spatial” and “temporal” classification by working purely in the spatial domain, and

demonstrated that the LSTM can achieve near perfect score on these tasks given

enough data. The experiments also confirmed the challenge associated with the

small size of the seemingly simple stripes data set.

4.4.2 Experiment 2: Characterisation of the spiking pattern

We have also characterised the range of spiking frequencies achievable in our model

(fig. 4.4 D). Two plateaus are visible in the figure: the maximal firing frequency of

100 kHz where a neuron spikes at each simulated time step; 50 kHz spiking rate

where a neuron fires at every second time step. Below these firing rates, a change

4.4. Results: Baseline characterisation 109

MLP LSTM

Sp
at

ia
l

Te
m

po
ra

l

Figure 4.3: Performance on the validation set throughout training on the geometric shapes
data set. Validation set was not created for the other data set (stripes) due to a small data set
size, where only the test results were reported (table 4.3).

in the current value more clearly translated to a change in the spiking frequency.

Based on these results, we made two network design decisions:

• For reliability of data mapping, data was mapped onto the input neurons us-

ing currents which always resulted in at least one spike per input frame and

therefore for the highest mapped value (represented by a black pixel) input

current of 1000 pA was used. Frame mapping frequency was set to 1 kHz.

• Results of the current/rate response analysis indicate that spiking frequencies

below 50 kHz allow a better translation between a change in weight and the

spiking behaviour. This upper frequency bound was in practice lower, in

accordance with our previously stated goal of keeping firing rates below 1

kHz, and limited by the input mapping rate in the feed-forward network. This

data frequency mapping threshold was also the limit of neuronal firing rate

given that we used an eLIF neuron model (no bursting).

After characterising behaviour of individual neurons, we looked at the whole

110 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

(A) Stereotyped. (B) Excitatory.

(C) Inhibitory. (D) Spiking-current relation.

Figure 4.4: Voltage traces and spiking activity. A range of currents was applied to indi-
vidual neurons. A-C) Membrane potential in response to a current continuously applied
between 0 and 5 ms. These were plotted as scatter plots without a joining line to illustrate
the sampling resolution of the model. Mostly sub-threshold behaviours were selected; with
one exception of spiking in panel C, where neurons fired in response to lower current. D)
Spiking frequency in response to a given current applied for one second

network. The goal was to identify weight initialisation parameters which resulted

in firing in all layers while avoiding saturation, and then to characterise the prop-

erties of inputs and outputs. Weight initialisation parameters were selected from

the previously tested currents (0 to 2 nA) by identifying the highest weight setting

resulting in no output spikes and the lowest weights resulting in a maximal spiking

rate, and setting weight distribution to be uniform between these two extremes. The

settings differed depending on the neuron’s elecrophysiological parameters and not

on the data set. SNNs with stereotyped neurons had weights initialised between 0.2

pA and 2 pA, and SNNs with heterogeneous neurons to 0.01 pA and 0.4 pA. In both

cases, this led to sparse activity across the whole network (fig. 4.5).

4.4. Results: Baseline characterisation 111

Stripes Shapes
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.5: Spike rasters in untrained SNN. Spikes produced by input, hidden and output
neurons are shown in blue, black and red, respectively. Data examples were horizontal
stripes moving down (left column) and cross moving up (right column). Input data was
mapped at 1 kHz rate. Weights inside the network were initialised within 0.2 and 2 pA
range for stereotyped neurons, and between 0.01 and 0.4 pA for heterogeneous neurons.

112 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

4.4.2.1 PCA of input and output spikes

We analysed the inputs and outputs of the network using PCA. PCA analysis of the

stripes input data set showed that the first principal component explained 12.5% of

variability in the data, and the first 7 principal components explained 100% of it (fig.

4.6, top row). The increase in the percent of variability explained increased linearly

with the number of components, which is likely due to the spatial homogeneity of

the pattern.

Variability in the geometric shapes data set was harder to explain using the

PCA. The first component explained 6.25% of the variability, and 84.6% of it was

explained by 100 principal components, with each subsequent component explain-

ing less.

The above analysis, together with he results obtained using standard ML tech-

niques, indicated that the reasons why the data sets were difficult were different: the

challenge associated with the stripes data set was due to its small size; the challenge

associated with the shapes data set due to its dimensionality.

PCA analysis performed on output spikes showed that fewer principal compo-

nents were required to explain variance of the output than input spikes (fig. 4.6,

middle and bottom rows). Furthermore, the number of principal components re-

quired to explain 100% of variance was slightly lower in networks with stereotyped

than heterogeneous neurons (3 vs 4). While the decrease in the number spikes could

explain the decrease of the PCA required for inputs vs outputs, this explanation is

not sufficient to explain why the more active stereotyped networks had a lower count

of the principal components (spike counts were examined later in this chapter, fig.

4.17). These results suggest that even the untrained SNNs acted as a dimensionality

reduction mechanism.

4.4.2.2 VPD for the stripes data set

VPD analysis of the input spikes for the stripes data set was consistent with the

input mapping design: the number of spikes was the same (VPD = 0 for all input

pairs when q = 0). The timing of spikes differed but the average distances were

identical for all input pairs (VPD = 72.0 when q = 1 kHz, and VPD = 162 for q =

4.4. Results: Baseline characterisation 113

Stripes Shapes

In
pu

t
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.6: PCA of input and output spike trains (from networks with stereotyped and het-
erogeneous neurons) in untrained SNNs. Average of 10 independent repeats, bars indicate
SD.

114 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

q = 0 q = 1 kHz q = inf
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.7: VPD of output neurons in untrained SNN, stripes data set. Intra- and interclass
distances for networks with neurons with stereotypical neurophysiological parameters (top
row) neurons with bio-inspired neurophysiological parameters (bottom row). Average of 10
independent repeats. For each repeat, pairwise distance was calculated for all data instances.

inf)(data not shown as a figure).

On the other hand, distances between the output spike trains were diverse (fig.

4.7). Distances between the broad classes (horizontal vs vertical stripes, irrespective

of the movement direction) were not larger than differences between sub-classes

(meaning e.g. left vs right). For spike count-based distance (q = 0), the largest

distances were seen when comparing to vertical stripes; this input produced the

most different number of spikes from other classes but also had the largest sub-class

variability. These large distances could be explained by differences in the input

mapping: e.g. horizontal stripes resembled a “slider” moving over the neurons,

continuously stimulating the same neuron for longer, with a large overlap between

the consecutive time steps.

When comparing distances increasingly based on spike timing (q = 1 kHz and

inf), we observed a divergence between the SNNs with different neuron models:

distance relations between classes were retained in the SNNs with heterogeneous

neurons, whereas some of them were flipped in the SNNs with stereotyped neu-

4.4. Results: Baseline characterisation 115

(A) q = 0. (B) q = 1 kHz.

(C) q = inf.

Figure 4.8: VPD of input neurons in untrained SNNs, shapes data set. Intra- and interclass
distances for networks with neurons with stereotypical neurophysiological parameters and
bio-inspired neurophysiological parameters were identical, as designed, and therefore only
one figure is shown for both. Average of 10 independent repeats. For each repeat, pairwise
distances were calculated for all combinations of neurons.

rons, meaning that classes which were close in terms of the spike count were not

necessarily close in terms of spike timing.

Distances were also mostly lower for SNNs with heterogeneous neurons than

SNNs with stereotyped neurons, consistent with the fact that the former had fewer

spikes and that the max VPD value is bound by the number of spikes in a train.

116 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stereotyped Heterogeneous

q
=

0
q

=
1

kH
z

q
=

in
f

Figure 4.9: VPD of output neurons in untrained SNNs, shapes data set. Intra- and interclass
distances for networks with neurons with stereotypical neurophysiological parameters (left
column) and bio-inspired neurophysiological parameters (right column). Average of 10 in-
dependent repeats. For each repeat, pairwise distances were calculated for all combinations
of neurons.

4.4. Results: Baseline characterisation 117

4.4.2.3 VPD for the shapes data set

VPD analysis for the shapes data set involved 24 classes; we analysed distances

between all combinations of shapes (cross, ellipse, grid, rectangle) and movement

directions (up, down, left, right). VPD analysis of the input spikes for the stripes

data set was revealed more heterogeneity than for the stripes data set, despite being

designed to keep differences to minimum (fig. 4.8). The shapes data set was de-

signed with an identical number of active input neurons per movement frame for all

data samples, but different neurons were active and therefore the spike count-based

distance metric (VPD with q = 0) was non-zero; in accordance with the data set

design, VPD based on the exact spike timing (q = inf) was identical for all cases.

In contrast to the stripes data set where VPD for inputs were identical, the

shapes data set is associated with inter- and intra-class distance variability at the

input layer, with the largest distance being up to 2.4 times larger than the smallest.

There was no clear pattern to the variability, intra-class distances were not lower

than inter-class, therefore this variability did not have a character favourable for

clustering acording to these labels. Distances between spatial classes (shapes) were

comparable with distances between temporal classes (movement directions) for all

values of the parameter q.

VPD for the output layer were an order of magnitude lower (fig. 4.9); this

can be partly explained by the lower number of output than input spikes. Distances

between spatial classes (shapes) were comparable with distances between temporal

classes (movement directions) for all values of the parameter q. Intra-class distances

were not lower than inter-class. Distances associated with rectangles moving left

and right were amongst the highest; this could be due to some inputs acting more

or less like “sliders”, continuously stimulating neighbouring neurons, similarly to

results observed in response to vertical stripes (4.4.2.2). As with the stripes data set,

higher distances were seen in SNNs with stereotyped than heterogeneous neurons

and this could be explained by the lower produced spike count.

Overall, the VPD analysis of SNNs stimulated with the shapes data set showed

that there was no clear difference in spike train distances associated with temporal

118 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

and spatial data labels. This was in contrast to the initial assumptions that SNNs are

particularly suitable for working with temporal data; reasons for this could be the

feed-forward architecture and lack of training in the early stages of this project.

4.4.2.4 Euclidean distance for the stripes data set

We explored characterisation of spike train differences using less computationally

expensive Euclidean distance for pairs of spikes (“individual”) and the whole out-

put layer (“collective”) calculated for each time step. Distances in the input layer

(fig. 4.10, top row) reflected the intentional similarity between some features of the

input data. Individual distances were 0 within the sub-classes (diagonal), with dis-

tances increasing for between sub-classes and maximal between the classes. Clear

quantisation of the values reflects the spatial homogeneity of the data set. Interest-

ingly, Euclidean distances in the output layer were also increasing in order 1) within

a subclass, 2) within a class, 3) between classes, although without the same clear

quantisation as for the inputs (fig. 4.10, middle and bottom rows). Individual and

collective distances were comparable. Similarly to VPD, distances were lower in

the SNNs with heterogeneous parameters; this could be related to the lower number

of spikes.

4.4.2.5 Euclidean distance for the shapes data set

For the less homogeneous shapes data set, individual Euclidean distances in the

input layer reflected class/sub-class differences less clearly than in case of the stripes

data set (fig. 4.11, top row). Still, the distances were the lowest within a sub-class

(diagonal, starting from C U), higher within a class (diagonal, up to C U), and the

highest between classes. Collective distance was 0 for all inputs, consistently with

the data set design where identical number of inputs were activated at a given time

step.

Distances in the output layer did not capture class-based similarities, with some

preservation of only some of the similarities within a sub-class (fig. 4.11, middle

and bottom rows; within sub-class distances on the diagonal).

Overall, Euclidean distance captured class-related similarities better than VPD.

Based on this, collective Euclidean distance was preferred for longer simulations

4.4. Results: Baseline characterisation 119

Individual Collective
In

pu
ts

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.10: Euclidean distances of spike trains in untrained SNNs, stripes data set. Top
row: individual (per neuron per time step) and collective (per sum of spikes per time step)
distances between input spikes in networks with neurons with stereotypical neurophysiolog-
ical parameters and bio-inspired heterogeneous neurophysiological parameters were identi-
cal, as designed, and therefore only one figure is shown for both. Middle and bottom rows:
distances between output spiking patterns in networks with neurons with stereotypical neu-
rophysiological parameters and bio-inspired heterogeneous neurophysiological parameters,
respectively. Average of 10 independent repeats.

120 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Individual Collective
In

pu
ts

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.11: Euclidean distances of spike trains in untrained SNN, shapes data set. Top
row: individual (per neuron per time step) and collective (per sum of spikes per time step)
distances between input spikes in networks with neurons with stereotypical neurophysiolog-
ical parameters and bio-inspired neurophysiological parameters were identical, as designed,
and therefore only one figure is shown for both. Middle and bottom rows: distances between
output spiking patterns in networks with neurons with stereotypical neurophysiological pa-
rameters (left column) and bio-inspired neurophysiological parameters (right column). Av-
erage of 10 independent repeats. For each repeat, pairwise distance was calculated for all
data instances.

4.4. Results: Baseline characterisation 121

Figure 4.12: Mean VPD-based, and individual and collective Euclidean distance-based
scores after last training epoch; the scores changed less than 1% throughout all training
epochs. Detailed scores for sub-categories were shown in fig. 4.13, 4.14, and 4.15. Average
of 10 independent repeats, bars indicate SD.

performed in the subsequent chapters. Similarly to VPD, it performed comparably

on classes defined based on spatial and temporal features. Individual and collective

metrics were clearly different in the input layer, but not significantly different in the

output layer.

4.4.3 Experiment 3: Effects of STDP on spike train distances

and weights

We explored how STDP affected the SDM, and analysed changes in SNN parame-

ters such as weights and the number of spikes throughout the training.

The mean scores (average of the distances between classes and inverse of the

distances within the classes) remained constant (below 1% change) for all combi-

nations of data sets and electrophysiological parameters (fig. 4.12). 0.5 was the

score expected if inter and intra-class distances were the same and therefore no

class-based similarity was present; this was what we observed in case of the shapes

data set. The score was higher in case of the stripes data set, but the average score

also did not change response to STDP. Differences between the score metrics based

on VPD and Euclidean distances were not significant, which was likely due to the

min-max scaling applied to the distances.

122 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Next, we explored the reasons behind the above lack of score change, whether

positive or negative, in response to STDP. The split of the score components, intra-

and inter-class distances and scores for temporal and spatial labels for VPD, Eu-

clidean individual and Euclidean collecteve distance-based metrics were shown in

fig. 4.13, 4.14, and 4.15, respectively. None of the networks showed a desirable

learning pattern. In all cases, intra- and inter-class scores changed in the opposite

direction. The likely explanation was that there was a change in the number of out-

put spikes. A shift in the number of spikes would have the opposite effect on each

of these scores; an increase (decrease) in firing would lead to a decrease (decrease)

in the intra-class score and increase (decrease) in the inter-class score. The above

results led us to a hypothesis that networks stimulated with the stripes data set did

not suffer from a silencing weight drift.

We have also specifically looked at the scores in classes relating to spatial

(shape) vs temporal (movement direction) features. Here, the interesting behaviour

was again observed in the SNNs with stereotyped neurons, where temporal score

improved and spatial score decreased throughout training. No difference between

temporal and spatial scores was observed in response to the shapes data set.

The observed drifts in SDM-based scores hinted at a decrease in spiking ac-

tivity, with the possible exception of the SNNs with stereotyped neurons. Direct

examination of the weights showed a clear linear downward trend in all networks

(fig. 4.16). The drift was present in all types of synapses. For the stripes data

set, all types of synapses were affected equally, whereas synapses with inhibitory

presynaptic neurons were the least affected when the shapes data set was used (p <

0.05).

Differences in the size of the weight change between the data set types were

expected. The stripes data set included a total of 24 data frames per training

epoch whereas the shapes data set included 12000 frames at the same mapping

frequency. It would have been possible to match the duration of the training for the

two data sets; such matching would in turn raise questions regarding over-fitting

to the smaller stripes data set and therefore it would not lead to a “fair” compar-

4.4. Results: Baseline characterisation 123

Stripes Shapes

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.13: VPD-based scores throughout STDP training. Networks with stereotyped
or heterogeneous neurophysiological parameters underwent 1000 epoch of STDP training,
where one epoch contained all training data samples for either stripes or shapes data sets.
Depicted scores include similarity within a class (“Intra”), distinction between classes (“In-
ter”), and distinction between different temporal patterns (i.e. left vs right movement) and
spatial patterns (i.e. cross vs square). Average of 10 independent repeats.

ison either. However, a comparison of weight changes after the same number of

frames (1000 training epochs for the stripes and 2 training epochs for the shapes)

revealed a comparable weight drift (p > 0.07) and therefore that the length of an

individual data sample did not affect the overall weight drift. Neuron parameters

played a large role in the drift with the SNNs with heterogeneous neurons showing

substantially smaller weight change. In case of weight drift, this was a desirable

characteristic; however, this could also mean that these networks would be more

resistant to training.

The negative weight drift could affect the inter- and intra-class scores via

changes in the spiking activity of the output layer. To explore this potential link,

124 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stripes Shapes

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.14: Individual Euclidean distance-based scores throughout STDP training. Net-
works with stereotyped or heterogeneous neurophysiological parameters underwent 1000
epoch of STDP training, where one epoch contained all training data samples for either
stripes or shapes data sets. Euclidean distance was calculated between individual output
neurons. Depicted scores include similarity within a class (“Intra”), distinction between
classes (“Inter”), and distinction between different temporal patterns (i.e. left vs right move-
ment) and spatial patterns (i.e. cross vs square). Average of 10 independent repeats.

we examined the spiking activity of the output layer.

Throughout the training, there was no change in the average number of spikes

in the SNNs activated using the stripes data set (fig. 4.17, p > 0.1); however, this

result should be treated carefully due to high variability between the experimental

repeats. The lack of change in the average spike count was consistent with the

small size of the weight drift in these networks. However, it also suggested that

the changes in the intra- and inter-class scores in these networks (for networks with

stereotyped neuron parameters) were not based on the changes in the number of

spikes. As expected based on the previous analysis (4.4.2), the spike count was

4.4. Results: Baseline characterisation 125

Stripes Shapes

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.15: Collective Euclidean distance-based scores throughout STDP training. Net-
works with stereotyped or heterogeneous neurophysiological parameters underwent 1000
epoch of STDP training, where one epoch contained all training data samples for either
stripes or shapes data sets. Euclidean distance was calculated for the sum of all output
spikes per time step. Depicted scores include similarity within a class (“Intra”), distinction
between classes (“Inter”), and distinction between different temporal patterns (i.e. left vs
right movement) and spatial patterns (i.e. cross vs square). Average of 10 independent
repeats.

higher in networks with the stereotyped neuronal parameters.

A pronounced decrease in the spiking activity was observed in SNNs stimu-

lated using the shapes data set. At 1000 training epochs, no spiking activity was

observed in the SNNs with the stereotyped neuronal parameters. These observa-

tions confirmed the opposite direction of the link between the intra- and inter-class

scores vs spiking activity.

The initial spiking activity was lower in the SNNs with heterogeneous neuronal

parameters, but they had a higher spiking activity after 1000 training epochs. This

observation was consistent with the smaller weight drift observed in these networks.

126 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stripes Shapes

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.16: Weight changes throughout STDP training. Average of 10 independent re-
peats. Bars show SD.

Overall, STDP-driven weight-drift had opposite effect on intra- and inter-class

scores (with the exception of SNNs with stereotyped neurons stimulated with the

stripes data set).

In conclusion, the opposite trends in the intra- and inter-class scores and the

stability of the total score confirmed that the metric we proposed was suitable for

capturing class-related spike train similarity in a way which was resistant to changes

in the level of network activity; SDM alone would be prone to changing in response

to changes in the spiking activity levels making it hard to interpret changes in class-

related spike-train distances.

STDP alone did not lead to a desirable score changes. We observed a weight

drift which in some cases led to total silencing of the networks.

4.5. Results: Feature reduction and ensembles 127

Stripes Shapes

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.17: Output spike counts throughout STDP training. Average number of output
spikes per one output neuron for the duration of one data sample (3 ms for stripes, 10 ms
for shapes). Average of 10 independent repeats. Bars show SD.

4.5 Results: Feature reduction and ensembles
In the absence of STDP leading to a clear improvement in the spike-train distance-

based scores (our measure of similarity between the same and different data

classes), we explored if SNNs with and without STDP training provided other use-

ful data processing qualities such as feature reduction. Classical ML algorithm

SOM was trained and tested with output spikes from untrained SNNs and STDP

trained SNNs. For the SNN-SOM stacked model, we have additionally explored

performance on corrupted data.

4.5.1 Experiment 4: Clustering of spatio-temporal patterns

We explored the effects of passing the signal through an SNN with and without

STDP training on the clustering results achieved by SOMs. We examined both

data sets (stripes and shapes) and sets of electrophysiological neuronal parameters

(stereotyped and heterogeneous). Random guess would give 0.25 for both data

128 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

sets (there were four classes for both data sets, for both spatial and temporal class

labels); the exception was spatial clustering of the stripes data set (random guess

was 50%). Data was presented to SOM in one of the two formats: as a binary vector

of spikes from individual neurons for each time step (“individual”) or as the sum of

spikes for each time step (“collective”). While the first approach provided a better

resolution of the spike events, we hypothesised that SOM was likely to perform

better on collective data. The length of the input vector to a SOM determines its

dimensionality; each data point is treated as a separate dimension and therefore a

classical SOM compares each i-th element of a vector a to a corresponding i-th

element of a vector b. Collective data encoding reduced the dimensional separation

of the data points from dimensionality equal number of neurons · number of time

steps to number of time steps only.

4.5.1.1 Clustering of individual spikes

First, we examined individual encoding. Clustering of the input data showed clear

clustering of the spatial classes in the stripes data set (fig. 4.18, left column, dashed

line)(1.0, SD = 0.0). Separability of the shapes data set was lower (0.42, SD =

0.0)(fig. 4.18, right column, dashed line), but also clearly above the random guess.

For the output spikes (fig. 4.18 and fig. 4.23), at the beginning of the STDP training,

the corresponding clustering results of the output spikes were much lower for the

stripes data set showing that the SNN reduced class similarity of the original sig-

nal; at the same time, the results were still above a random guess (0.72 , SD = 0.19

and 0.68, SD = 0.22 for networks with stereotyped and heterogeneous parameters

respectively). STDP had negligible effects on the clustering results; this was ex-

pected given its limited effects on the weight values. In case of the shapes data set,

passing data through an SNN did not have a detrimental effect on clustering (p >

0.07 vs accuracy on input clustering). However, STDP led to a decrease in the clus-

tering score, with accuracy loss becoming significant after 500 training epochs (p

< 0.002 and p < 0.02 for networks with stereotyped and heterogeneous parameters

respectively).

In all cases (both data sets, neuron parameters, input and output clustering

4.5. Results: Feature reduction and ensembles 129

before and after STDP), worse clustering results were obtained for temporal, move-

ment direction-based classes. For the stripes data set, inputs were clustered with

0.67 accuracy (fig. 4.19, left column, dashed line), and shapes with accuracy of

0.39 (fig. 4.19, right column, dashed line). Passing data through an SNN did not

have a significant effect on accuracy (p > 0.15)(fig. 4.19 and fig. 4.24). Again,

STDP had no impact on clustering of the stripes data, but had a detrimental effect

on clustering of the shapes data (p < 0.03).

SNNs with heterogeneous neurons performed worse on the stripes data set, but

better for the shapes data set for both spatial and temporal class labels. They also

suffered a smaller performance decrease in response to STDP. These two obser-

vations cannot be explained by a difference in the number of spikes alone, given

that the heterogeneous networks had a lower pre-STDP but higher post-STDP spike

counts.

4.5.1.2 Clustering of collective spikes

Next, we looked at performance achieved when collective encoding was used as the

input to SOMs. In all cases, performance on the input spike trains was extremely

low (fig. 4.20 and 4.21). This initially surprising observation was explained by the

fact that the input data was was purposefully designed to have the same number of

spikes at each time step; this was previously confirmed using Euclidean distance

calculations (fig. 4.10 and fig. 4.11). With the above exception, clustering results

for collective encoding were not statistically different than for individual encoding,

which is consistent with the previously observed similarity between the Euclidean

distances for both of these encodings. It would be expected to see differences be-

tween the collective and individual approaches given the low expectation that the

i-th neuron in network a behaves similarly to the i-th neuron in network b. However,

our results were consistent and confirmed through multiple methods (Euclidean dis-

tance, SOM, including a preliminary exploration with a different implementation of

the toolbox). The possible factors at play could be characteristics of our data sets,

sparsity of the spiking activity etc.

Overall, this experiment demonstrated that even when the inputs were designed

130 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stripes Shapes
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.18: SOM clustering of individual SNN spikes by spatial class. Weighted f-1
performance of SOMs clustering of the outputs from SNNs throughout training. Yellow
dashed line indicates the same clustering metric applied to the input spikes. Classes were
based on shape type in the input signal. SNNs had either neurons with identical stereotyped
electrophysiological parameters, or heterogeneous neurons with bio-inspired parameters.
Two types of data sets were used: stripes and geometric shapes. Average of 10 independent
repeats; bars show SD.

to be highly similar, and indistinguishable at the level of spike counts per time step,

output spikes of the SNNs were containing enough information about input classes

to enable clustering results much above a random guess.

Results shown in fig. 4.18 to 4.21 were summarised in fig. 4.22.

4.5.1.3 Ensemble clustering

Next, we asked whether outputs from multiple SNNs would cluster by class. Over-

all, these clustering results were lower than when outputs of one SNN were clus-

tered by class (fig. 4.25). This decrease in accuracy was not significant for the

stripes data set (a highly homogeneous pattern), but was significant for the shapes

data set with individual spike data encoding (p < 0.05); these results also oscil-

lated around a random guess. For the collective encoding, accuracy achieved on the

4.5. Results: Feature reduction and ensembles 131

Stripes Shapes

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.19: SOM clustering of individual SNN spikes by temporal class. Weighted f-1
performance of SOMs clustering of the outputs from SNNs throughout training. Yellow
dashed line indicates the same clustering metric applied to the input spikes. Classes were
based on movement direction in the input signal. SNNs had either neurons with identical
stereotyped electrophysiological parameters, or heterogeneous neurons with bio-inspired
parameters. Two types of data sets were used: stripes and geometric shapes. Average of 10
independent repeats; bars show SD.

shapes data set was significantly better than individual encoding (p < 0.02). STDP

led to a slight increase in the accuracy for the stripes data set, although these results

were not significant.

The fact that accuracy obtained on the stripes data set by clustering collective

spike information from multiple networks was comparable to accuracy achieved

on clustering outputs from a single network indicated that multiple SNNs can be

used together, as an ensemble. However, results obtained with the shapes data set,

even if much better than chance, indicated a clear limitation of this approach. A

more successful STDP training protocol could be needed to achieve better ensemble

clustering results.

132 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stripes Shapes
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.20: SOM clustering of collective SNN spikes by spatial class. Weighted f-1 per-
formance of SOMs clustering of the outputs from SNNs throughout training. Yellow dashed
line indicates the same clustering metric applied to the input spikes. Classes were based on
shape type in the input signal. SNNs had either neurons with identical stereotyped elec-
trophysiological parameters, or heterogeneous neurons with bio-inspired parameters. Two
types of data sets were used: stripes and geometric shapes. Average of 10 independent
repeats; bars show SD.

4.5.2 Experiment 5: Clustering of noisy inputs

We hypothesised that another potential benefit of SNNs could be improving clus-

tering of corrupted data, such as data with noise. The stacked SOM-SNN model

showed resistance to noise when clustering the inputs by spatial features. Decrease

in performance became significant (p < 0.05) at noise level 50%, 75%, 50%, 100%

for the stripes data set with stereotyped and heterogeneous neuronal parameters, and

shapes data with stereotyped and heterogeneous neuronal parameters, respectively

(fig. 4.26). The initial slight improvement in accuracy in networks stimulated with

the stripes data set could be attributed to the fact that low levels of noise may intro-

duce more similarity within a data class (e.g. vertical stripes with movement offset

of 1) in this homogeneous data set.

4.5. Results: Feature reduction and ensembles 133

Stripes Shapes
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.21: SOM clustering of collective SNN spikes by temporal class. Weighted f-1
performance of SOMs clustering of the outputs from SNNs throughout training. Yellow
dashed line indicates the same clustering metric applied to the input spikes. Classes were
based on movement direction in the input signal. SNNs had either neurons with identical
stereotyped electrophysiological parameters, or heterogeneous neurons with bio-inspired
parameters. Two types of data sets were used: stripes and geometric shapes. Average of 10
independent repeats; bars show SD.

(A) Spatial. (B) Temporal.

Figure 4.22: SOM clustering summary, compilation of selected data from fig. 4.18 to 4.21.

134 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stereotyped Heterogeneous

In
pu

ts
O

ut
pu

ts

Figure 4.23: A random example of SOM node composition in a 7 x 7 SOM, spatial class
labels. Classes were based on shape type in the input signal. SNNs had either neurons
with identical stereotyped electrophysiological parameters, or heterogeneous neurons with
bio-inspired parameters.

Accuracy of clustering of the SNN outputs mostly resembled accuracy of clus-

tering of the input data (dashed yellow line). Significant differences were seen only

in SNNs with heterogeneous neurons stimulated with the stripes data set - for one

data point only (50% noise), suggesting the SNNs provided some additional re-

sistance to noise for mid-noise levels. Conversely, or the shapes data set, SNNs

with stereotyped neuronal parameters performed significantly worse than it could

be expected based on the accuracy of input data clustering. Performance of these

networks was also the most detrimentally affected by STDP-induced weight drift,

suggesting they may be the most prone to disturbances.

Performance on clustering spike trains by temporal features (fig. 4.27) gave

mostly inconclusive results in networks stimulated with the stripes data set, where a

4.5. Results: Feature reduction and ensembles 135

Stereotyped Heterogeneous
In

pu
ts

O
ut

pu
ts

Figure 4.24: A random example of SOM node composition in a 7 x 7 SOM, temporal
class labels. Classes were based on movement direction in the input signal. SNNs had
either neurons with identical stereotyped electrophysiological parameters, or heterogeneous
neurons with bio-inspired parameters.

(A) Spatial. (B) Temporal.

Figure 4.25: SOM clustering results with data from 10 SNNs used as an input. Average of
10 independent repeats; bars show SD.

136 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stripes Shapes
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.26: Clustering of SNN spikes by spatial class in the presence of noise. Weighted
f-1 performance of SOMs clustering of outputs from untrained or trained networks. Varying
amounts of noise were added to the data. Red dashed line indicates the same clustering met-
ric applied to the input spikes. Classes were based on shape type in the input signal. SNNs
had either neurons with identical stereotyped electrophysiological parameters, or heteroge-
neous neurons with bio-inspired parameters. Two types of data sets were used: stripes and
geometric shapes. Average of 10 independent repeats; bars show SD.

high level of variability was observed. For the shapes data set, networks showed re-

sistance to noise. Here, networks with heterogeneous neuronal parameters showed

most resistance, including ability to filter out some of the noise detrimental to the

input layer.

Overall, the above results showed that the SNNs can be used to work with

corrupted data. These results were mainly comparable with clustering of the input

data itself, and therefore the resistance was not so much provided by the SNNs but

more preserved by them.

We also looked at the preservation of the relationships between raw and cor-

rupted data by comparing if a given sample of corrupted data was assigned to the

exact same SOM node as the uncorrupted data sample. Here, a random guess would

4.5. Results: Feature reduction and ensembles 137

Stripes Shapes

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.27: Clustering of SNN spikes by temporal class in the presence of noise. Weighted
f-1 performance of SOMs clustering of outputs from untrained or trained networks. Varying
amounts of noise were added to the data. Classes were based on movement direction in
the input signal. SNNs had either neurons with identical stereotyped electrophysiological
parameters, or heterogeneous neurons with bio-inspired parameters. Two types of data sets
were used: stripes and geometric shapes. Average of 10 independent repeats; bars show
SD.

give 0.25 and 0.02 for the stripes and shapes data set, respectively. This baseline

came from the number of nodes in each SOM; we were matching a data sample to

one of the nodes rather than calculating clustering. Networks showed the ability

to preserve the characteristics of a given data sample, although a decrease in node

identity became significant with the addition of even 2% of noise (fig. 4.28). We

hesitated to interpret the statistical significance of this finding (raw vs corrupted

performance) as functionally important; in the absence of the noise, node identity

was by definition 100% with SD = 0, meaning that even a small decrease in node

identity was a statistically significant.

Lastly, we looked at how the addition of noise affected spike counts. Maximum

number of spikes per output neuron per input sample was 3 and 10 for the stripes

138 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stripes Shapes
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.28: SOM node identity in the presence of noise. SOM was trained on spikes
produced in response to noise-free data. SOM nodes associated with each noise-free data
sample were then compared with indexes to which noisy data was assigned. The figure
shows the proportion of identically assigned data samples. Average of 10 independent re-
peats; bars show SD.

and shapes data sets, respectively. The pattern of spiking saturation followed the

same pattern as a drop in accuracy in response to noise (fig. 4.29). Networks

with heterogeneous neuronal parameters – which were more resistant to noise –

had a lower spike count in response to uncorrupted data, and even with a random

(50%) input layer activity, activity in the output layer in these networks was not

fully saturated.

4.5.3 Experiment 6: Clustering of incomplete inputs

We next explored how missing data affected clustering. Missing data was function-

ally equivalent to silencing a proportion of input neurons. Conditions where lack

of data led to all networks becoming silent were not shown in the figures as their

accuracy cannot be meaningfully calculated.

When clustering inputs by spatial features, SNNs showed a lot of resistance to

4.5. Results: Feature reduction and ensembles 139

Stripes Shapes

In
pu

td
at

a
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.29: Spike count for noisy data. Top row: input data; middle row: output of SNNs
with stereotyped neuronal parameters; bottom row: output of SNNs with heterogeneous
neuronal parameters. Average of 10 independent repeats; bars show SD.

140 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stripes Shapes
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.30: Clustering of SNN spikes by spatial class for incomplete data. Weighted f-1
performance of SOMs clustering of outputs from untrained or trained networks. Varying
amounts of data were removed from each sample. Classes were based on shape type in
the input signal. SNNs had either neurons with identical stereotyped electrophysiological
parameters, or heterogeneous neurons with bio-inspired parameters. Two types of data sets
were used: stripes and geometric shapes. Average of 10 independent repeats; bars show
SD.

missing data (fig. 4.30, left column). This is perhaps unsurprising, given the ho-

mogeneous data set where removal of some data still leaves a very regular pattern.

Drop in accuracy became significant only at 75% of missing data, when networks

became silent. At 50% data corruption level, these networks also provided a signif-

icant resistance to noise in comparison to clustering of the input data (p < 0.05).

Networks stimulated with the shapes data set did not have much resistance to

data corruption. They also performed worse than accuracy of input clustering (p <

0.05 for networks with heterogeneous neurons at 10% corruption, and p < 0.02 for

both types of networks at 25% corruption). This behaviour was caused by gradual

silencing of the networks; this data set had a more sparse input activity and any

further decrease was more impactful.

4.5. Results: Feature reduction and ensembles 141

Stripes Shapes

St
er

eo
ty

pe
d

H
et

er
og

en
eo

us

Figure 4.31: Clustering of SNN spikes by temporal class for incomplete data. Weighted
f-1 performance of SOMs clustering of outputs from untrained or trained networks. Varying
amounts of data were removed from each sample. Classes were based on movement direc-
tion in the input signal. SNNs had either neurons with identical stereotyped electrophysi-
ological parameters, or heterogeneous neurons with bio-inspired parameters. Two types of
data sets were used: stripes and geometric shapes. Average of 10 independent repeats; bars
show SD.

A similar pattern of resistance to missing data in networks stimulated with the

stripes data set, but not in the networks stimulated with the shapes data set was seen

when clustering inputs by temporal features (fig. 4.31). Due to the silencing of the

networks, we did not calculate node identity with uncorrupted data for this type of

data corruption.

Changes in the spike counts resembled the changes in accuracy (fig. 4.32). As

expected, networks with heterogeneous neuron had lower spike counts – but reached

silencing at the same time as networks with stereotyped neurons. The accuracy and

spike count results suggested that the heterogeneous, less active neurons provided

an advantage when dealing with additional, noise inputs but were not detrimental

when dealing with silencing.

142 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

Stripes Shapes

In
pu

td
at

a
St

er
eo

ty
pe

d
H

et
er

og
en

eo
us

Figure 4.32: Spike count for incomplete data. Top row: input data; middle row: output of
SNNs with stereotyped neuronal parameters; bottom row: output of SNNs with heteroge-
neous neuronal parameters. Average of 10 independent repeats; bars show SD.

4.6. Summary 143

4.5.4 Experiment 7: Clustering of superimposed inputs

4.6 Summary
The goal of the work described in this chapter was to develop a biologically in-

spired model of a network – a spiking network with activity-dependent plasticity –

that has a potential to perform clustering of spatio-temporal data. We aimed to char-

acterise the baseline characteristic of these networks, and identify the shortcomings

to addressed in the following chapters.

In this study, we used two types of simple spatio-temporal patterns as inputs:

moving stripes and geometric shapes, each with four sub-classes. Two standard

approaches, MLP and LSTM networks, were first used to establish a form of a

benchmark. Together, these two methods constituted an interesting baseline. The

experiments highlighted the ability of a very simple MLP to (given enough data)

handle “spatial” and “temporal” classification by working purely in the spatial do-

main, and demonstrated that the LSTM can achieve near perfect score on these tasks

given enough data. The experiments also confirmed the challenge associated with

the small size of the seemingly simple stripes data set.

We then moved to our SNN model. Based on the initial examination, we se-

lected the parameters and simulation protocol (e.g. initial weights, input mapping

time step) which led to sparse activity in the networks. We then characterised the

developed SNN model. Passing data through the untrained SNNs led to dimension-

ality reduction. While this is a simple and expected observation, we are not aware

of a paper which explicitly looked at dimensionality reduction in untrained SNNs.

Dimensionality reduction was explored using e.g. SNNs with unsupervised training

[171], and particular trained architectures like spiking SOM [113].

When analysing the spike trains using VPD, we observed that data classes

which were close in terms of the spike count were not necessarily close in terms of

spike timing, and that the results were affected by the neuron parameters alone. In

the untrained networks, VPD applied to the output spike trains was also not able to

capture data class similarities.

VPD distance was lower for the network outputs than inputs; this was linked

144 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

to a lower output spike count. The spike count-dependence of these findings high-

lighted that VPD alone was not a reliable metric for SNN clustering performance,

and confirmed the need for the scoring system we developed.

Euclidean distance more clearly than VPD reflected the similarities within the

data classes and dissimilarities between them. However, neither of the metrics

captured any class differences produced by the untrained SNNs in response to the

shapes data set. Distances related to classes based on spatial and temporal features

were similar, indicating that our model was not by default better at one of these data

types; this was in contrast to our initial assumption that the SNNs were likely to

perform better at temporal data.

Subsequently, we analysed clustering performance of our SNN model at the

beginning and throughout unsupervised training with STDP. We found that our

scoring system gave similar results irrespective of the used distance metric (VPD

or collective Euclidean distance). Therefore, the less computationally expensive

collective Euclidean distance-based score became our metric o choice in the subse-

quent chapters. The lack of significant difference between these metrics as well as

lack of preference for temporal vs spatial data features could be related to charac-

teristics of out data sets. While some of the labels were based on how the data was

changing in time, this change was continuous and uniform in time. Objects were

not appearing and disappearing; we did not try to detect coincidence etc. Data set

with more temporally heterogeneous features could lead to different findings.

Based on the scores, STDP did not change the network activity in a desir-

able direction. Networks stimulated with the stripes data set showed little change,

whereas networks stimulated with the shapes data set suffered from silencing weight

drift. However, the change was similar after correcting for the number of input data

frames, which indicated a general problem with our model being silenced with time

by STDP. We found that all types of synapses, irrespective of the neuron parameters,

were affected, but the overall drift was lower in the networks with heterogeneous,

less active neurons. We considered examining whether the spike count alone was

driving this difference. However, to reliably answer this question alone could take

4.6. Summary 145

at least a chapters given that the heterogeneous population itself had internal vari-

ability, with less active excitatory and and more active inhibitory neurons. While

such examination would be interesting, we decided it was outside the scope of this

thesis.

When examining clustering accuracy of the SNN–SOM stack, we found that

passing data through the SNNs had a detrimental effect on clustering of the stripes

but not shapes data sets. In both cases, performance was better than random guess.

STDP–caused weight drift had significantly detrimental effect on clustering accu-

racy.

Interestingly, when collective Euclidean decoding was used, there was no class

information in the input layer (by design), but the output spikes of the SNNs con-

tained enough information about input classes to enable clustering results much

above a random guess.

We further looked at an ensemble of ten independently trained, unsupervised

networks to process tasks in parallel. We demonstrated that the networks could be

used to process subsets of data independently of each other, and produce similar

spiking patterns in response to the same class of input. However, the performance

was worse than that of individual networks. Further improvements would be needed

to make this approach viable. Possibly, a successful STDP training protocol could

help. The SNN–SOM stack had a capacity to process noisy and incomplete data.

These results were mainly comparable with clustering of the input data itself, and

therefore the resistance was not so much provided by the SNNs but more preserved

by them. Notably, we used random noise and complete silencing of a proportion

of input neurons, which are extreme cases of data corruption as there was no link

between the corrupted values and the original data. Resistance to data corruption

has been previously observed in some SNNs [345, 176], and recent work explicitly

confirmed SNN robustness to spike jitter and deletion [346].

The clustering accuracy of the SNN–SOM stack on spatial clustering of the

small stripes data set was higher than accuracy MLP, but worse than SOM alone.

For temporal clustering, it was better than both MLP and LSTM; again, it was worse

146 4. Spiking neural networks for unsupervised processing of spatio-temporal patterns

than SOM alone. Therefore, these results were both indicating that unsupervised

learning (SOM) was better than supervised on this small data set, and that SNN

was not providing a benefit in this context. On the other hand, SOM and SNN–

SOM performed worse than MLP and LSTM on the larger shapes data set, but SNN

(untrained) did not have a detrimental effect. Where the SNN shined was collective

encoding, where equidistant inputs indistinguishable by the SOM were decoded by

the SNN into information about the input class. The SNN was able to reduce the

dimensionality of the input data, and output it in a format where collective encoding

did contain information about the input class.

When it comes to applied research, we anticipate that the suitability of the

SNN networks to perform user-defined tasks could be improved with supervision

[175, 45] and reinforcement [347]. To further explore the current set up, we tried to

identify better learning parameters via evolutionary approach (EA) and stabilise the

networks using homeostatic control (explored in the next chapters).

5

The evolution of training parameters

for spiking neural networks with

Hebbian learning

“Most species do their own evolving, making it up as they go along, which

is the way Nature intended. And this is all very natural and organic and

in tune with mysterious cycles of the cosmos, which believes that there’s

nothing like millions of years of really frustrating trial and error to give

a species moral fiber and, in some cases, backbone.”

– Terry Pratchett, 2009 [348]

Spiking neural network (SNN) and evolutionary approachs (EAs) are two clas-

sical methods which are currently undergoing a revival. In this study, we use an EA

to optimise learning hyperparameters of unsupervised SNNs. The earlier version

of this work has been published in [2]. While using EAs to develop artificial neu-

ral networks is not a new idea [232], they are classically used either as a training

method for developing networks’ weights or to develop the architecture of the net-

work. We aim to provide a proof of concept that EAs can be used to develop learning

hyperparameters of SNNs, and to develop a tool which will aid further exploration

of the full potential of SNNs with brain-inspired learning. Furthermore, we aim to

create a system in which both evolution and learning contribute to achieving the full

potential of the model, thus mimicking development of visual pattern recognition

148 5. The evolution of training parameters for spiking neural networks with Hebbian learning

reported in, amongst others, cats [310], primates [311] and humans [349], where

the evolved nervous system is optimised in response to early visual experience.

In chapter 4, the networks’ learning parameters based on the published val-

ues led to silencing of the networks. The same learning parameters gave differ-

ent results depending on the data set and neuron parameters used, indicating that

to identify suitable parameters, search would have to be performed separately for

each experimental set up. The need for adjusting the parameters was the conse-

quence of using spike-timing-dependent plasticity (STDP): during training, data

which strongly activates the network leads to the strengthening of the weights until

all neurons fire at all times, whereas data which weakly activates the network de-

creases the weights until the network becomes silent. To overcome this bottleneck

and to explore whether evolution might provide a useful alternative, in this work

we test automatically developing the STDP hyperparameters using an evolutionary

approach. The goal was to identify learning parameters which would lead to an im-

proved score on the input clustering task, examine the identified learning parameters

and how they affected the networks, and analyse the way in which several evolu-

tionary approaches (inheritance of genotype alone or both genotype and phenotype,

survival of the fittest etc) affect the results.

5.1 Model description

We use a previously described set-up (chapter 4, fig. 4.2) utilising fully-connected

three-layer feed-forward SNNs consisting of exponential leaky integrate-and-fire

(eLIF) [75, 76], 15% of which were inhibitory. Based on the results gathered in

the previous chapter, we used heterogeneous electrophysiological parameters (ta-

ble 3.1, Methods Chapter). Weights were initialised with random values, uniformly

distributed between 0.01 pA and 0.4 pA, and clamped between 0 and 0.8 pA (to pre-

vent changing the sign of the weight, and to allow a limited expansion of the weights

above the initial values). An STDP unsupervised algorithm was used to adjust the

weights, and the rules were defined separately for excitatory and inhibitory neu-

rons, in accordance with the published biological observations [151, 155]. Details

5.1. Model description 149

of our approach were described in 3.5. Briefly, for pairs of neurons with an exci-

tatory presynaptic neuron, the weight was strengthened (multiplied by the learning

parameter ALT D) if the postsynaptic neuron fired second, and weakened (multiplied

by the parameter ALT P) if it fired first.

However, for pairs of neurons where the presynaptic neuron was inhibitory,

if the pair of neurons fired within a set time window, the connection was always

strengthened - multiplied by the parameter AinhLT P.

The spiking activity of the output layer was represented as a vector of the sum

of spikes at a given time point (collective activity). Performance on the task was

assessed in several ways:

• Using collective Euclidean distance-based score (described in 3.6.2). This

method was used as a measure of evolutionary fitness and to more directly

examine the changes underlying the functional changes captured by self-

organising map (SOM).

• Using Kohonen maps (SOM), a classical clustering method. This method

was more computationally intensive, added an additional layer of training

and lowered the explainability of the model. However, it was helpful for

the assessment whether the SNNs had a potential to be useful in an applied

context as a part of a stacked machine learning (ML) model. This metric

therefore made the SNN model less easily interpretable from a mathematical

point of view, but it easier to interpret whether the behaviour was functionally

desirable, and the scale of this functional change. This method therefore was

used to the final results of the EA.

• As a change in the distribution of the learning parameters. E.g. whether their

values converged.

• As a level of spiking activity. We looked at the weight drift, and the corre-

sponding spiking activity to identify issues with silencing and saturation of

the network activity.

150 5. The evolution of training parameters for spiking neural networks with Hebbian learning

Throughout this study, we focused on the four main parameters – “genes” – which

affect STDP, namely ALT P, ALT D, AinhLT P, and the weight scalar b. As described

previously (3.5), ALT P, ALT D and AinhLT P parameters of our model defined the rate

of change of the weights in the STDP training paradigm. The scalar b was shared

by all weights. Its size multiplied by the weight correlated with the likelihood of

the target neurons to fire and, consequently, with the likelihood of the connections

being strengthened. b was set to 1 in the previous chapter. These “genes” were

epistatic – the phenotype they gave depended on the activity of the other genes.

Therefore, to avoid separating sets of values which performed well together, we

decided not to perform cross-over and instead we altered the genotype using only

mutation. However, we are not excluding the possibility that this model could be

adjusted to further benefit from the addition of cross-over.

At the beginning of the evolutionary process, we generated a population of

SNNs. Each network had one chromosome with four genes representing the learn-

ing parameters ALT P, ALT D and AinhLT P and the weight scalar b. The explored value

ranges for the scalar b were based on the previously tested range of values which

permitted spiking but did not lead to instant over-saturation of the signal (4.2.2);

an upper range of these values was examined, given the expected silencing of the

networks during training. For ALT P, ALT D and AinhLT P, the previously used values

of these parameters had a readily observable effect on the networks’ activity. In this

chapter, we explored parameter space below the previously used values, up to 1.0

corresponding to no change. The explored parameter ranges were listed in table 5.2.

Evolution was permitted to mutate these values outside these initial ranges.

During the training phase, weights were plastic. Sets of spatio-temporal pat-

terns were mapped onto the network’s input layer and weights were adjusted ac-

cording to the STDP rules, with weight changes being determined by the learning

parameters. The spatio-temporal patterns used were inspired by the in vivo exper-

iments on pattern recognition in rats [309], cats [310] and primates [311], during

which the animals were placed in front of a screen and made to watch simple ge-

ometric patterns such as stripes, circles and squares move on the screen while the

5.1. Model description 151

animals’ brain activity was being recorded.

After training, fitness was established using a set of 6 and 400 patterns for the

stripes and shapes data set, respectively. The selected patterns contained all possible

combinations of spatial and temporal features (shapes and movement directions).

SNNs were stimulated with the selected patterns (one ata a time), and the collective

spiking activity of the output layer in response to each pattern was used to calculate

Euclidean distance-based score. This score, based on the proximity of spike trains

produced in response to inputs of the same class, and inverse for different classes,

was used as fitness of each network.

From the second evolutionary generation onward, next generation was created

based on the fitness of the SNNs from the previous generation. The top third of the

networks was used to populate the next generation in one of two ways:

1. The parent’s genotype was cloned exactly.

2. One of the four genes was mutated. Two such different, mutated copies were

then used in the next generation.

Unless stated otherwise, parent’s architecture was not inherited, and the networks

underwent training in the next generation to allow the learning parameters to shape

the architecture.

The size of mutation was determined as

m =
x

generation
(5.1)

Table 5.1: Explored ranges of STDP parameter. Evolution was set to explore parameter
values withing the listed ranges. ALT P, ALT D and AinhLT P are a proportion of wmax.

Table 5.2: Permitted range for the STDP parameter values

Parameter Min value Max value
Discharge 0.5 2.0
ALT P 1.0 9.6
AinhLT P 1.0 5.3
ALT D 1.0 4.3

152 5. The evolution of training parameters for spiking neural networks with Hebbian learning

where in x = 1.0. This values was based on preliminary results where the smallest

meaningful change to a parameter was ≈ 0.01. Division by generation was used to

decrease the mutation size later in evolution, when parameter values were increas-

ingly approaching optimal values. The direction of the mutation could be positive

or negative and was selected randomly. New values were not bound by the initial

parameter value constraints listed in table 5.2.

Unless stated otherwise, the whole fittest third of the networks acted as parents

to the next generation. No minimal “survival score” for low fitness was used.

The above evolutionary rules were chosen to

1. Preserve good solutions and test them on a new data set to see if the organisms

could generalise.

2. Explore the hyperparameter space in the neighbourhood of fit solutions

through mutations.

As the hyperparameters affected the SNNs only during training, training had to take

place here, and it was not possible to test different genes but the same weights.

Due to a long duration of evolutionary simulations for the SNNs stimulated

with the larger shapes data set, this data set was used only in the selected, key

experiments in this chapter.

5.2 Experimental design

5.2.1 Experiment 1: Search for learning parameters without

survival of the fittest.

In the first experiment, we analysed the baseline effect of such features of EA as

a population and inheritance on the SNNs fitness (4.22). In this experiment a pop-

ulation of 30 SNNs – organisms with different genes was initialised, trained with

STDP, and then tested. 20 and 100 evolutionary generations were simulated for the

stripes and shapes data sets, respectively. Those numbers of generations were based

on the preliminary experiments and allowed for convergence. Fitness was defined

as the the collective Euclidean distance-based score for spatial features (clustering

5.2. Experimental design 153

by shape). However, organisms were not sorted according to fitness and parents

were selected at random. Our hypothesis was that some organisms in a randomly

generated population would perform better than our handcrafted model described

in the previous chapter. We also wanted to identify where this baseline was, which

would help to identify the role of survival of the fittest in achieving optimal so-

lutions. Given the lack of survival of the fitness, we expected the performance to

remain unchanged throughout the evolution; improvement of the performance was

the goal of the subsequent experiments.

5.2.2 Experiment 2: Evolutionary optimisation of learning pa-

rameters

This was the main experiment aiming to determine whether the collaboration of an

EA and STDP would lead to the development of an algorithm capable of clustering

input patterns by the direction in which they move, with a focus on improving clus-

tering performance while preventing weight drift. In this experiment, weights were

not inherited by the children. Thus, the children would only inherit the capacity to

learn but not the experience of their parents.

In each generation, best third of the networks gave raise to three child–copies

each in the next generation. One copy was an exact genetic clone, two contained a

mutation in one of the genes. We implemented a full generational turnover where

the parents themselves were removed from the population.

We examined the fitness (Euclidean distance-based), evolved parameters, per-

formance in combination with SOM, weights and spiking activity of these networks.

This would give us an indication regarding the potential improvement in perfor-

mance as well as a potential mechanism behind it.

5.2.3 Experiment 3: Evolution with different fitness criteria

Our preliminary experiments suggested that when the precision of clustering by

spatial features was used as the fitness measure, precision of clustering by move-

ment direction frequently decreased. In this experiment, we analysed the ability

of the model to evolve to perform different tasks, and how different fitness criteria

154 5. The evolution of training parameters for spiking neural networks with Hebbian learning

affected the model’s precision in tasks which were not used as the fitness measure.

As previously, a population of 30 networks was evolved for 20 generations. Fitness

score was defined either as the precision of clustering inputs by movement direction

or as the average precision of clustering the inputs by shape and movement direc-

tion (fitness score defined as the precision of clustering by spatial features was used

in the previous experiment). We examined the performance of the networks on all

three tasks (clustering by movement direction, shape and average).

5.2.4 Experiment 4: Evolution with architectural inheritance

The objective of this experiment was to determine the role of the inherited weights

developed by STDP vs inheritance of the learning hyperparameters evolved by the

EA in a population shaped by both evolution and training. In all previous exper-

iments, weights were not inherited by the children. In this experiment, children

inherited weights of their parents (even though sometimes those weights were then

modified by training).

5.2.5 Experiment 5: Evolutionary fitness in the absence of train-

ing

This experiment further explored the role of architecture on fitness. To test if a con-

sistent selection of fit child solutions alone was sufficient to develop increasingly fit

solutions, we used the setup of experiment 4 and turned training off. In this setup,

weights of the networks did not change. As the hyperparameters would affect the

networks’ performance through affecting STDP during training, the hyperparam-

eters were not affecting fitness either, and any increase in fitness was solely due

to the EA filling the population with organisms which had architectures better at

generalising and consistently performed well in tests.

5.3. Results 155

5.3 Results

5.3.1 Experiment 1: Search for learning parameters without

survival of the fittest.

In this experiment, parents were chosen at random, irrespective of their fitness.

Scores of the best and three best networks were significantly higher than the results

we previously achieved with hand-selected parameter values (fig. 5.1 and table 5.3,

vs previously presented 4.22). However, no further improvements were observed

during evolution, and best scores plateaued at 0.79 and 0.55 for the stripes and

shapes data sets, respectively. This dynamic was expected, and helped us to es-

tablish the baseline for a performance of a randomly distributed population against

which our further EA experiments could be measured.

Comparing best organisms in generation 0 to the previously achieved results,

improvement on the stripes data set was 33%, and shapes data set was 5%. Through-

out evolution, worst networks performed with accuracy around a random guess.

These findings indicated that even a rudimentary parameter search could be used to

successfully automate the identification of better learning parameters. This experi-

ment also demonstrated that fitness remained stable with random parent selection,

and therefore it would be expected that addition of other components to the EA

would lead to an improvement and an increase in fitness with time.

The evolved parameters did not converge and spanned the whole initialisation

range (fig. 5.2). During evolution, mutation did not lead to the parameters reaching

values outside the initial range. Again, these results provided a baseline for the

dynamics of our EA.

5.3.2 Experiment 2: Evolution optimisation of learning param-

eters

We examined the performance of evolved SNNs. Fitness was defined as Euclidean

distance-based score, where 0.50 indicated equidistance between inter- and intra-

class scores and was a form of a baseline; 1.0 would indicate that collective spike

trains within a class were perfectly identical and between classes were perfectly

156 5. The evolution of training parameters for spiking neural networks with Hebbian learning

Stripes Shapes

Sp
at

ia
l

Te
m

po
ra

l

Figure 5.1: Experiment 1: Scores during the learning and evolutionary process without
the survival of the fittest, stripes and shapes data sets. Spatial score was the measure of
evolutionary fitness

(A) ALT D, all repeats. (B) ALT D, single repeat.

Figure 5.2: Experiment 1: Parameters evolved without the survival of the fittest, stripes
data set. A representative hyperparameter was selected. A) Distribution of the hyperpa-
rameter ALT D across ten evolutionary repeats. B) The same hyperparameter ALT D, a single
evolutionary repeat plotted for clarity.

5.3. Results 157

Table 5.3: Experiment 1: Fitness during learning and evolutionary process without the
survival of the fittest.

Generation Best [%] Top 3 [%] Worst [%]
Stripes data set

1 0.88, SD=0.02 0.84, SD=0.05 0.50, SD=0.00
10 0.79, SD=0.10 0.79, SD=0.10 0.50, SD=0.00
20 0.79, SD=0.10 0.79, SD=0.10 0.50, SD=0.00

Shapes data set
1 0.55, SD=0.01 0.54, SD=0.01 0.50, SD=0.00
20 0.55, SD=0.02 0.54, SD=0.01 0.50, SD=0.00
100 0.55, SD=0.02 0.54, SD=0.01 0.50, SD=0.00

Table 5.4: Experiment 2: Fitness during the evolutionary and learning process

Generation Best [%] Top 3 [%] Worst [%]
Stripes data set

1 0.88, SD=0.01 0.85, SD=0.03 0.50, SD=0.00
10 0.89, SD=0.01 0.89, SD=0.01 0.86, SD=0.01
20 0.90, SD=0.01 0.90, SD=0.01 0.88, SD=0.02

Shapes data set
1 0.54, SD=0.02 0.54, SD=0.01 0.50, SD=0.00
20 0.60, SD=0.02 0.59, SD=0.02 0.57, SD=0.01
100 0.60, SD=0.02 0.59, SD=0.01 0.57, SD=0.01

different. Here, we saw a rapid increase in the scores during evolution, reaching a

plateau of 0.90 and 0.60 for the stripes and shapes data set, respectively (fig. 5.3 two

top rows, table 5.4). Only the worst networks in the first generation had a baseline

performance; they were removed from the population. There was also a clear cor-

relation between the spatial and temporal scores, with the values of temporal scores

lagging behind (fig. 5.3 bottom row).

In the previous chapter, networks trained with STDP reached the average score

of 0.59 and 0.50 for the stripes and shapes data set, respectively. These averages

did not change during training. In contrast, results achieved with evolution were

significantly better (comparing averages, from generation 2 onward). Unlike STDP

alone and evolution alone, evolution with training led to an improvement of the

scores. Overall, these were highly encouraging results.

158 5. The evolution of training parameters for spiking neural networks with Hebbian learning

Stripes Shapes

Sp
at

ia
l

Te
m

po
ra

l
C

or
re

la
tio

n

Figure 5.3: Experiment 2: Performance of SNNs during optimisation including evolution
and unsupervised learning. Fitness in networks which inherited learning hyperparameters
but not weights.

5.3. Results 159

Given the difficulty in interpreting the distance-based scores in terms of ap-

plied performance, we also evaluated how evolution affected performance of SOM

clustering the outputs of the evolved networks. Similarly to what we observed with

distance-based scores, clustering accuracy increased rapidly (fig. 5.4). Within 5

generations, the SNN–SOM stack achieved a perfect performance on clustering

stripes data set inputs by spatial labels (1.0, standard deviation (SD)=0.0) Increase

in clustering of the shapes data set was also rapid, but plateaued at 0.50.

We also looked at clustering of inputs by temporal feature, the metric which

was not use as evolutionary fitness. Here, the plateau was lower with 0.67 and 0.47

for the stripes and shapes data set, respectively.

Without evolution, the achieved weighted f-1 was 0.68 and 0.38 for spatial,

and 0.64 and 0.37 for temporal, for the stripes and shapes data set, respectively (as

previously shown in fig. 4.20 and 4.21, after 500 training epochs, as used here).

The above results showed that EA allowed the SNN–SOM stack to reach signifi-

cant improvements in clustering accuracy, in particular on fitness-related tasks; this

improvement in relation to fitness definition was captured better by SOM than the

previously examined Euclidean distance-based score.

Early evolution explored the whole permitted parameter range (fig. 5.5). With

time, all evolutionary repeats converged on a narrow range of values. With the

exception of the weight scalar, the evolved parameter values differed between the

experimental repeats.

Given that each evolutionary repeat found different parameters, we then asked

whether there was any universal pattern in the relationship between the evolved pa-

rameters. We examined whether there was a link between the evolved parameter

(values in the last generation) using Spearman rank correlation. We found a small

but statistically significant positive correlation between AinhLT P and ALT P (corre-

lation = 0.22, p < 0.001), and AinhLT P and ALT D (correlation = 0.18, p = 0.002),

but not between ALT P and ALT D (correlation = 0.07, p = 0.28). Given the contrary

nature of ALT P and ALT D, it was difficult to interpret why both of them positively

correlated with AinhLT P, but not with each other. It cannot be excluded this weak

160 5. The evolution of training parameters for spiking neural networks with Hebbian learning

Stripes Shapes
Sp

at
ia

l
Te

m
po

ra
l

Figure 5.4: Clustering performance of SOM and evolved SNNs which inherited learning
hyperparameters but not weights. Performance of the population stimulated with the stripes
data set. Top row: clustering by spatial labels (shape of the input). Bottom row: clustering
by temporal labels (movement direction).

correlation was a red herring, without an underlying functional significance. Visual

inspection of the data did not lead to a conclusive answer (fig. 5.6).

Next, we compared whether the SNNs developed different learning parameters

in response to the two data sets, stripes and shapes, and the corresponding training

regimes. For all four learning parameter, the values in the last generation were

significantly different (all below p < 0.02, fig. 5.7). Similarly to the stripes data

set, the values converged within each repeat of evolution, but weight scalar was

the only one which converged between the repeats. This further confirmed the key

importance and global optimality (per data set) of this parameter.

Given the previously observed weight drift, we asked whether the performance

improvement seen during evolution was due to preservation of weight strengths. We

looked at how post-STDP weights changed during evolution, as a proportion of their

original value (evolutionary generation 0, before STDP). In case of the stripes data

5.3. Results 161

(A) ALT P. (B) ALT D.

(C) AinhLT P. (D) Weight scalar.

Figure 5.5: Experiment 2: convergence of parameter values during the evolutionary process
with fitness defined as spatial score, stripes data set. Each colour indicates one of the 10
repeats.

(A) AinhLT P and ALT P. (B) AinhLT P and ALT D.

Figure 5.6: Experiment 2: correlation of the evolved parameters. A small but statistically
significant correlation was found between the AinhLT P and ALT P and AinhLT P and ALT D when
evolving SNNs to cluster stripes data set inputs by movement direction.

162 5. The evolution of training parameters for spiking neural networks with Hebbian learning

(A) ALT P. (B) ALT D.

(C) AinhLT P. (D) Weight scalar.

Figure 5.7: Experiment 2: comparison of parameter values evolved in response to stripes
and shapes data sets, parameter distribution in the last evolutionary generation. Fitness was
defined as Euclidean distance-based scores based on either spatial class labels. Each colour
indicated one of the 10 repeats. Dashed grey lines indicated initialisation range for each
parameter.

set, weights decreased slightly during training; the decrease was not significantly

different than without evolution (fig. 5.8, vs fig. 4.16). There was a slight restora-

tion of average weight values was observed as evolution progressed; these results

were not significant. Weight types with excitatory and inhibitory presynaptic neu-

rons seemed to be affected differently, with the latter being at a lower proportion of

their original average value, which could in turn suggest this was the reason for an

improved performance of the networks. However, the difference between average

weights with excitatory and inhibitory neurons was numerically small although sig-

nificant in the last generation. Overall, these results on the stripes data set suggested

that the role of evolution and link between the fitness and weights was more subtle.

5.3. Results 163

(A) Stripes data set. (B) Shapes data set.

Figure 5.8: Experiment 2: weight changes throughout evolution as a percent of initial
weights prior to STDP training. Average of 10 independent repeats. Bars show SD.

In case of the shapes data set, evolution led to a significant partial restoration

towards the pre-STDP weight values, reaching a plateau around 93% (fig. 5.8).

To check whether the changes in the weight values translated into a functional

difference in network activity, we examined spike counts thought evolution.

In the previous chapter, we examined the number of spikes in the output layer

produced in response to a single data input (fig. 4.17). At the end of STDP training,

the count was 0.78 and 0.60 for the stripes and shapes data set, respectively. Here,

with a population of evolved networks, the spike count became significantly higher

during evolution (p < 0.05 from generation 5 onward).

Here, during early in evolution, a wide range of spike counts was present in

response to both data sets (fig. 5.9). Throughout evolution, the spike counts con-

verged on intermediate values, which also correlated with higher scores (fig 5.10

and fig. 5.11). Notably, the spike counts were higher in the output than in the hid-

den layer, indicating that the hidden layer acted as a kind of signal amplifier. From

generation 5 onward, the spike count remained stable; both layers converged on a

similar mean spike count. The number of spikes per input in the hidden and output

layers was 1.59 and 1.68, and 0.98 and 1.07 in networks stimulated with the stripes

and shapes data set, respectively.

164 5. The evolution of training parameters for spiking neural networks with Hebbian learning

(A) Stripes data set. (B) Shapes data set.

Figure 5.9: Experiment 2: spike counts throughout evolution. Average number of output
spikes per one neuron in a given layer for the duration of one data sample (3 ms for stripes,
10 ms for shapes). Average of 10 independent repeats. Bars show SD.

Hidden layer Output layer

Sp
at

ia
l

Te
m

po
ra

l

Figure 5.10: Experiment 2: Spike counts vs spatial and temporal scores throughout evolu-
tion in networks stimulated with the stripes data set. Average number of output spikes per
one output neuron for the duration of one data sample was plotted against the score. Colours
indicated evolutionary generation. The shown SNNs were stimulated with the stripes data
set. Please note: there was a high marker overlap for later generations; population size fort
each generation was 30.

5.3. Results 165

Hidden layer Output layer

Sp
at

ia
l

Te
m

po
ra

l

Figure 5.11: Experiment 2: Spike counts vs spatial and temporal scores throughout evo-
lution in networks stimulated with the shapes data set. Average number of output spikes
per one output neuron for the duration of one data sample was plotted against the score.
Colours indicated evolutionary generation. Please note: there was a high marker overlap
for later generations; population size fort each generation was 30.

5.3.3 Experiment 3: Fitness with different fitness definitions

During all previous experiments, we defined evolutionary fitness as the precision of

input clustering by shape. Performance of SNN–SOM revealed the discrepancies

in performance on fitness-unrelated - superficially similar - task of clustering inputs

by movement direction. Here we changed our fitness criteria and examine how

different fitness definitions affected performance on both tasks.

Irrespective of the fitness definition, SNNs reached approximately the same

scores on fitness related and unrelated tasks (fig. 5.12, fig. 5.13, and table 5.5),

with plateau at 0.69, and between 0.87 and 0.90 for temporal and spatial clustering

scores, respectively. The evolved results were comparable despite a significantly

lower starting best temporal score in networks with fitness defined as temporal

scores.

166 5. The evolution of training parameters for spiking neural networks with Hebbian learning

Table 5.5: Experiment 3: Relation between fitness definition and clustering precision: evo-
lutionary fitness was defined as either performance on the movement-clustering task (tem-
poral), shape-clustering task (spatial) or average of the two. The table lists the average
precision of the best networks in the population. A population of 30 networks was stimu-
lated with the stripes data set, and evolved for 20 generations. N = 10.

Fitness measure Clustering task
Temporal Spatial Average

Temporal
Generation 1 0.63, SD=0.04 0.87, SD=0.01 0.75, SD=0.00
Generation 10 0.69, SD=0.00 0.89, SD=0.00 0.79, SD=0.00
Generation 20 0.69, SD=0.01 0.89, SD=0.01 0.79, SD=0.00
Spatial
Generation 1 0.68, SD=0.02 0.88, SD=0.01 0.75, SD=0.03
Generation 10 0.69, SD=0.01 0.89, SD=0.01 0.79, SD=0.00
Generation 20 0.69, SD=0.01 0.90, SD=0.01 0.79, SD=0.01
Average
Generation 1 0.68, SD=0.03 0.86, SD=0.05 0.77, SD=0.04
Generation 10 0.68, SD=0.03 0.87, SD=0.04 0.78, SD=0.04
Generation 20 0.69, SD=0.03 0.87, SD=0.04 0.78, SD=0.04

This low initial result was relevant to both for our initialisation set-up and

EA. For all fitness comparisons, networks were initialised from the same parameter

distributions; the existence of an outlier indicated that population size was not big

enough to guarantee the appearance of a near optimal solution in the first generation.

On the other hand, the evolved best temporal score was significantly better (p <

0.001, 10% score improvement), indicating that evolution was able to improve the

score and not only propagate a fit solution in the population. The evolved temporal

score was not significantly different from the score achieved by the networks with

fitness defined as spatial score. We cannot exclude the possibility that this lack of

difference in performance on fitness related and unrelated tasks was a side-effect of

the unusually low initial fitness in one of the groups.

We also checked whether different fitness definitions led to a development of

different learning parameters. Only the evolved ALT D was significantly different

(p < 0.001), with the weight scaling parameter again showing clear convergence

(fig.5.14).

5.3. Results 167

Fitness: temporal Fitness: average

a)
Te

m
po

ra
l

b)
Sp

at
ia

l
c)

Av
er

ag
e

Figure 5.12: Experiment 3: Relation between fitness definition and clustering precision:
evolutionary fitness was defined as the performance on the shape-clustering task (left col-
umn) and average precision of clustering inputs by shape and movement direction (right
column). Precision of clustering inputs by movement direction (a), shape (b) and average
precision (c) were calculated for both evolutionary approaches.

168 5. The evolution of training parameters for spiking neural networks with Hebbian learning

(A) Fittest networks. (B) Population averages.

Figure 5.13: Experiment 3: Co-evolution of performance on fitness related and unrelated
tasks. Three fittest organisms-SNNs from each generation were scored on the fitness-related
and un-related tasks. Each marker indicated average performance of one evolutionary gen-
eration; markers for later generations overlap. Please note the differences in x and y scales.

(A) ALT P. (B) ALT D.

(C) AinhLT P. (D) Weight scalar.

Figure 5.14: Experiment 3: comparison of parameter values evolved with different fit-
ness criteria, parameter distribution in the last evolutionary generation. Fitness was defined
as Euclidean distance-based scores based on either spatial or temporal class labels. Each
colour indicated one of the 10 repeats. Dashed grey lines indicated initialisation range for
each parameter. For the ease of comparison, results for “spatial” fitness (experiment 2) were
re-plotted here.

5.3. Results 169

5.3.4 Experiment 4: Evolution with architectural inheritance

In all previous experiments, only the STDP parameters (learning skills) were inher-

ited by the children. In this experiment, children inherited both weights (experience)

and the learning hyperparameters.

Fitness of best and top three networks was significantly different from the base-

line; with a similar average but larger deviation (experiment 2) (fig. 5.15 A, and

table 5.6). The average fitness of the population and fitness of the worst organism

were significantly lower than when architecture was not inherited; there also was

no improvement with time.

We further asked whether performance of the SNN–SOM stack remained the

same, if the SOM was able to compensate for the decrease in class signatures at

the spike level. Clustering performance in combination with SOM also decreased

significantly and showed a further decrease during first few generations (fig. 5.15 B,

C), resembling trend in the average population fitness. Results had a high variability

and were at the level of a random guess in case of clustering by temporal features.

Furthermore, these results indicated that whereas the hyperparameters evolved

in experiment 2 led to successful learning irrespective of the network’s weights, in-

heritance of architecture in combination with continued unsupervised learning did

not prove to be beneficial when all other elements of the set up were kept constant.

The surprising lack of benefits provided by treating architecture and learning pa-

rameters together as a set could be explained by the fact that these networks kept

being changed by STDP, which as we know can lead to undesirable effects such as

weight drift. If architecture was to be inherited, changes to the EA could be required

to evolve fit organisms. Such changes could include incomplete generation turnover

(unchanged, no longer training parents kept in the population instead of the popula-

tion being reset at each generation), and introduction of a “survival score” beneath

which organisms would not survive, even if they were in the fittest third of the pop-

ulation. While this set up would muddy the contributions of individual mechanisms

to the final fitness, our preliminary experiments suggested that it would be more

likely to lead to higher fitness at the end of evolution.

170 5. The evolution of training parameters for spiking neural networks with Hebbian learning

(A) Fitness. (B) Clustering, spatial.

(C) Clustering, temporal.

Figure 5.15: Experiment 4: Fitness with architectural inheritance. A) Euclidean distance-
based score which was used as evolutionary fitness of the population. B) Results of cluster-
ing inputs by spatial class by the SOM–SNN. C) Results of clustering inputs by temporal
class by the SOM–SNN.

Table 5.6: Experiment 4: Fitness with architectural inheritance.

Generation Best [%] Top 3 [%] Worst [%]
1 0.89, SD=0.13 0.86, SD=0.15 0.50, SD=0.00
10 0.90, SD=0.14 0.90, SD=0.14 0.89, SD=0.14
20 0.91, SD=0.14 0.91, SD=0.14 0.90, SD=0.14

5.3. Results 171

(A) Stripes data set.

Figure 5.16: Experiment 4: Weight changes throughout evolution. Average of 10 indepen-
dent repeats. Bars show SD.

To further identify the cause of the drastic difference between fitness with and

without architectural inheritance and confirm our hypothesis about a weight drift,

we examined the weights and spikes counts throughout evolution. Indeed, decrease

in all categories of weights became significant within 5 generations (p < 0.05 be-

tween the first and last generation; p < 0.02 between the last generation with and

without architectural (experiment 2)) (fig. 5.16). This decrease in weights also

translated into a significant decrease in the number of output spikes between gener-

ation 0 and 5, and in comparison to evolution without architectural inheritance (p <

0.001 for both comparisons)(fig. 5.17).

These results demonstrated that the cause behind the low performance of the

networks with architectural inheritance was weight drift and silencing of the net-

works. These results also signalled the limitations of the current method: the

evolved learning hyperparameters did not completely prevent weight drift, they only

delayed it to a duration of one generation (as demonstrated in experiment 2).

5.3.5 Experiment 5: Evolutionary fitness in the absence of train-

ing

To further examine the source of the increase in fitness of the population, we kept

selecting the architectures of the fittest organisms in each generation but did not

train them (kept them as unchanged clones). Fitness of the best performing network

172 5. The evolution of training parameters for spiking neural networks with Hebbian learning

(A) Spike count, stripes data set. (B) Silent, stripes data set.

Figure 5.17: Experiment 4: Spiking activity throughout evolution with architectural inher-
itance. A) Average number of output spikes per one output neuron for the duration of one
data sample (3 ms for stripes, 10 ms for shapes). B) Proportion of input samples where the
network did not fire even one spike in response. Shown in yellow was the current exper-
iment; experiment 2 without architectural inheritance was shown in black. Average of 10
independent repeats. Bars show SD.

Table 5.7: Experiment 5: Fitness in the absence of training

GenerationBest [%] Top 3 [%] Worst [%]
1 0.89, SD=0.13 0.86, SD=0.15 0.50, SD=0.00
10 0.90, SD=0.14 0.90, SD=0.14 0.89, SD=0.14
20 0.91, SD=0.14 0.91, SD=0.14 0.90, SD=0.14

was close to 0.90 in each generation (fig. 5.18 A, table 5.7), similarly to the plateau

achieved with other experiments; SD was an order of magnitude higher. We further

asked whether the distance-based score translated into a comparable accuracy on in-

put clustering by the SOM–SNN stack. Indeed, the obtained accuracy was identical

to the results previously achieved with STDP (fig. 5.18 B, C).

This fitness suggested that even without unsupervised STDP training, such fit

architectures existed in the population. Furthermore, EA successfully propagated fit

solutions and having children alone did increase the overall fitness of the population.

Training and mutation were not needed to create optimal solutions.

5.4. Summary 173

(A) Fitness. (B) Clustering, spatial.

(C) Clustering, temporal.

Figure 5.18: Experiment 5: Fitness in the absence of training. A) Euclidean distance-based
score which was used as evolutionary fitness of the population. B) Results of clustering
inputs by spatial class by the SNN–SOM. C) Results of clustering inputs by temporal class
by the SNN–SOM.

5.4 Summary

In this study, we tested a setup combining an EA for developing learning hyper-

parameters and SNNs trained with STDP. Previous attempts to adjust the hyper-

parameters using manual selection and random search were not successful. How-

ever, evolution enabled the SNN to achieve significantly higher performance on

the fitness-related; increase in performance on fitness-unrelated tasks was also ob-

served.

Importantly, the evolutionary process with survival of the fittest led to filling

the population with learning parameters which were performing well in multiple

generations and thus were better at generalising. Through the mutation process, it

further explored the parameter space in the neighbourhood of the promising solu-

tions. Both evolution and unsupervised training played a role in developing optimal

174 5. The evolution of training parameters for spiking neural networks with Hebbian learning

solutions thus working at both the level of identifying the fittest networks in the

population and learning in individual networks.

When detecting spatial features in the stripes data set, the EA arrived at near-

optimal solutions very early during the evolution and training process, which was

consistent with the proposed suitability of the SNNs for performing this type of

task, and with the previous observations that SNNs perform better than chance even

without training (chapter 4). The shapes data set proved to be more difficult, but

results achieved with evolutionary parameter search were significantly better than

performance achieved in the previous chapter.

The link between the genotype -– the learning hyperparameters – and pheno-

type was emergent and depended on the activity of the network, which in turn was

determined by both the genotype and experience. This makes our evolutionary ap-

proach unusual in comparison to standard EAs which directly evolve the weight,

and more closely resemble the process through which the brain developed. Indi-

vidual evolutionary repeats converged on different values of learning parameters

AinhLT P, ALT P and AinhLT P. However, the evolved values of the weight scaling pa-

rameter were similar not only between the evolutionary repeats but also between

the networks trained with different data sets. Furthermore, similar values of the

weight scaling parameter were evolved by networks with different fitness criteria

(experiment 3). These results indicated that weight scaling was a somewhat sepa-

rate parameter, with a narrower and universal optimal range. This key importance

could be explained by the fact that weight scaling affected the networks globally

(all weights were scaled), at all times, and could instantly lead to a total saturation

or silencing of the networks which could not be rescued by the learning parame-

ters. Conversely, the learning parameters affected the weights more selectively and

gradually; with more dependence on the activity that was initially provided by the

inputs data – and scaled by the weight scaling parameter.

Alternative explanation could be that evolution of good training parameters

was a slower and more difficult process. The initial fitness boost from the weight

scaling parameter led to filling the population with whatever values of the other

5.4. Summary 175

training parameters were present in the genome of the networks with best weight

scalars. This hypothesis could explain the lack of a clear benefit from training

(experiment 5). In our experiments, we assumed that it was necessary for the pa-

rameters to evolve together, however, to avoid such genetic high jacking of the

population, genetic variability could be boosted by the introduction of cross-over to

enrich the genetic variability of networks with the same values of the weight scal-

ing parameter, or by the introduction of a two-stage evolution where weight scalar

is evolved first, and other learning parameters are evolved in the second stage.

It has been proposed that non-inherited learning and heritable capacity to learn

can guide evolution by improving fitness and altering the search space in which

evolution operates [350, 351]. Moreover, human babies are believed to undergo

two main stages of brain optimisation [352]: the first one is developing what we

recognise as the human brain with the stereotyped patterns of neuronal pathways

(developed by evolution); the second is adapting neuronal weights in response to

experience, including learning from parents. Thus, our model of inheritance can be

said to contain also this second stage of development.

Overall, we believe that by automating development of learning hyperparam-

eters for SNNs, our model can replace informed and random search and overcome

short-term research bottlenecks, but more importantly, it is a tool which allows to

further test the unexplored potential of the brain-inspired unsupervised learning in

SNNs in what is the most natural way: through evolution.

6

Synaptic homeostasis in spiking

neural networks

(...) neurones are permanently different after an excitation from what they

were before, while nevertheless it cannot be disputed that, in general,

fresh excitations meet with the same conditions of reception as did the

earlier ones. It would seem, therefore, that neurones must be both influ-

enced and also unaltered, unprejudiced. We cannot off-hand imagine an

apparatus capable of such complicated functioning (...)

– Sigmund Freud, 1895

6.1 Introduction
Learning systems need to maintain a balance between plasticity and stability. In the

case of spiking neural networks, weight drift (silencing and saturation of spiking) is

a known problem which impedes learning by leading to either weight silencing or

saturation [172, 168, 171]. Results described in the previous chapters of this thesis

confirm that our model is also affected by weight drift, mainly by weight silencing.

Techniques such as L1 [353] and L2 [354] regularisation used to prevent excessive

weight growth and parameter overfitting in artificial neural networks are not directly

applicable to SNNs, because of the complex relationship between the weights and

spiking activity. In the previous chapter, we tested if evolutionary approach (EA)

could help to achieve better results, including identification of learning parameters

178 6. Synaptic homeostasis in spiking neural networks

which would avoid weight drift. While EA-identified learning parameters led to im-

provements in weight drift, they did not resolve it. We also performed preliminary

tests with three spike-timing-dependent plasticity (STDP) functions (Appendix B),

but these modifications of the weight update method alone did not prevent weight

drift either. The existence of weight drift was limiting the number of training iter-

ations which could be performed, and thus also our ability to use an evolutionary

approach.

Additional difficulties would arise when creating networks with plastic archi-

tecture, which was a mechanism we aimed to explore in the future (Appendix D).

What value should be assigned to new weights, associated either with new synapses

of existing neurons or with new neurons? The selected weight would not only affect

the capacity of the new connection to learn, but would also cause downstream ef-

fects which are hard to predict in a complex system and could be undesirable. Thus,

to utilise SNNs for data processing, we needed to identify methods preventing si-

lencing and saturation of spiking. Ideally, these methods should be applicable to

SNNs with changing numbers of neurons and synapses. These homeostatic mecha-

nisms could not simply counteract the changes as it would effectively lead to erasing

memories and undoing learning [276].

In this chapter, we examined a range of network stabilisation techniques, in-

spired by homeostatic synaptic plasticity (HSP) mechanisms reported in the brain

and described in section 2.8 of the Literature Review chapter.

We used three main approaches:

• Global weight stabilisation mechanisms with either:

– the sum of all weight values kept constant;

– the sums of excitatory and inhibitory weight values kept constant.

• Stabilisation of the spiking activity level:

– of the output neurons;

– of all neurons.

6.2. Model description 179

• activity-based adjustment of the level of inhibition and excitation (via selec-

tive weight scaling).

This chapter was divided into three sections, each focusing on one of the above

approaches.

6.2 Model description

Model set-up used in this chapter was summarised in table 6.1. Briefly, the networks

used the exponential leaky integrate-and-fire (eLIF) neuron model [75, 76], which

was described in 3.2 in more detail. Each network was composed of three feed-

forward, fully-connected layers with 100, 50 and 10 neurons. 80% of the neurons

were excitatory, and 20% were inhibitory. Learning parameters were selected based

on the values evolved in the previous chapter.

Input data had a form of bitmaps representing four different shapes moving in

one of four directions at the speed of one pixel per frame (shown previously in fig.

4.1). Each bitmap had 100 pixels, and each of the 10 frames constituting a single

data sample was shown for 1 ms. The shapes data set was chosen over the stripes

data set as the former was larger, more difficult and networks stimulated with it

and the corresponding training protocol had a greater weight drift - something we

aimed to tackle in this chapter. We hypothesised that stabilisation of these networks

through homeostasis would allow a longer duration of training and better results

for both the Euclidean distance-based scores and clustering in combination with

self-organising map (SOM).

Table 6.1 lists the details of the experimental setup, including the learning pa-

rameters. The parameters were selected based on values evolved in the previous

chapter. Given that the values converged within each evolutionary repeat but dif-

fered between the repeats, we selected parameters of one of the networks with the

highest fitness at the end of evolution. Taking average of the parameter values

from all evolutionary repeats would create a set of parameters which had not been

evolved, and would have been a novel combination.

180 6. Synaptic homeostasis in spiking neural networks

Table 6.1: Model hyperparameters used in chapter 6.

Neural networks
input neurons 100
hidden neurons 50
output neurons 10
Training and testing set-up
frames per training input 10
inputs per training cycle 1200
frames per testing input 10
inputs per testing cycle 400
time step 0.01 ms
Learning hyperparameters
ALT P 4.917
AinhLT P 1.914
ALT D 1.257
weight scalar 1.417
Electrophysiological parameters

excitatory inhibitory
resting potential [mV] -63.70 -59.3
firing potential [mV] -45.80 -33.3
rheobase [mV] -55 -55
reset potential [mV] -64.3 -68.7
membrane time constant τ[ms] 16.70 36.5
membrane resistance [MΩ] 67.70 133.3

6.3 Part 1: Stabilisation of network activity by nor-

malising the sum of weights

The simplest approach to network stabilisation was a global normalisation of the

sum of weights, irrespective of the nature of the neurons. In the case of our model,

a network with explicitly defined excitatory and inhibitory neurons, we could also

test a neuron type-dependent modification of this approach, and normalise the sums

of excitatory and inhibitory weights separately.

Using global weight normalisation, we expected to maintain the ability of the

network to increase and decrease a large proportion of weights, and to avoid si-

6.3. Part 1: Stabilisation of network activity by normalising the sum of weights181

lencing and saturation of the whole network; the learning potential of the network

would be preserved. However, individual weights could still become silent or satu-

rated, and this approach could lead to bi-stability of the weight values.

Separate normalisation of the sum of excitatory and inhibitory weights aimed

to preserve the balance between the two. However, the activity of each neuron

depends on the strengths and types of all incoming weights, therefore, this was

an indirect and global way of balancing excitation and inhibition and it was not

expected to stabilise the exact balance between these two at the functional level.

6.3.1 Experimental design

6.3.1.1 Experiment 1: Homeostasis of the total sum of weights

First, we tested if the simplest form of weight stabilisation, i.e. normalisation of the

total sum of weights, affects the emergence of silencing and saturation, and how it

affects SNNs’ performance on the input clustering task.

Normalisation was performed after each training input (10 frames). Based

on the observations made during work on the previous chapters and preliminary

experiments, we selected the stabilised sum of weights to be tied to the number of

all neurons (nn) in the network and equal:

wnorm = nn ·20 [nA] (6.1)

These results were based on experiments with networks with 160 neurons and 5500

synapses (the architecture used in all previous chapters). Additionally, it is worth

keeping in mind that the learning parameter weight scalar b was in practice scal-

ing this sum. For consistency with the previous chapters, we kept the exact same

software set-up where the scalar was implemented separately; given the parameter

value used, this effectively scaled wnorm to nn ·20 ·1.554 = nn ·31.08 [nA].

We tested weight homeostasis in the presence and absence of the weight cap

used in the previous chapters (where individual weight values were capped at twice

the max initialisation value). Capping was a handy way of restricting infinite

strengthening of synaptic weights, and it was used in all the previous chapters. How-

182 6. Synaptic homeostasis in spiking neural networks

ever, the cap value was another hyperparameter which had to be determined, and

ideally, the system should be able to self-balance without it; we hypothesised that in-

troduction of homeostasis of the sum of weights would result in such self-balancing.

Admittedly, this replaced a local hyperparameter with a global one (wnorm), but

would leave the networks a greater ability to adjust their weight distribution.

We analysed a population of 10 networks (as in chapter 4, to keep the vari-

ability constant for all experiments which did not use evolution). Network analy-

sis included the spiking activity in each layer, weight values and performance of

the networks. We also looked at “weight saturation”. It is worth remembering

that uncapped weights do not become saturated. However, for comparability, we

maintained this definition and marked weights with a value of 0.8 pA or above as

“saturated”.

Significance was calculated using Kruskal-Wallis test [337] with post-hoc

Dunn’s test [338].

6.3.1.2 Experiment 2: Homeostasis of the sum of excitatory and

inhibitory weights

Next, we hypothesised that separate preservation of the sum of weights of different

types would improve the stability of the network more than the preservation of the

total sum of weights. Thus, we normalised the sums of excitatory and inhibitory

weights separately.

When normalising the sum of excitatory and inhibitory weights, a proportion

of wnorm was assigned to each neuronal population: 80% of wnorm was assigned to

excitatory and 20% to inhibitory synapses; this corresponded to the proportion of

SNN neurons belonging to each class. wnorm remained the same as described by

equation 6.1, but was expanded as follows:

wnorm excit = nn excit ·20 [nA]

wnorm inhib = nn inhib ·20 [nA]

wnorm = wnorm excit +wnorm inhib

(6.2)

6.3. Part 1: Stabilisation of network activity by normalising the sum of weights183

where norm excit and norm inhib is the number of excitatory and inhibitory neu-

rons, respectively.

The rest of the experiment was carried out as previously.

6.3.2 Results

6.3.2.1 Results 1: Homeostasis of the total sum of weights

We hypothesised that weight normalisation reduces the proportion of silent and sat-

urated synapses, and that it can remove the need for capping the values of individ-

ual weights. Weight normalisation was performed by keeping the sum of weights

value constant throughout the evolution. Four set-ups were tested: networks with-

out bothm normalisation and weight capping (“control”), networks without nor-

malisation and with weight capping (“control capped”), networks with normalisa-

tion and without capping (“norm”), networks with normalisation and with capping

(“norm capped”).

Average weight values in the control networks with and without weight cap-

ping linearly decreased throughout training (p < 0.001 in training epochs 500 and

1000 vs pre-training and normalised,)(fig. 6.1 A). All types of synapses were com-

parably affected (fig. 6.1 B; networks with weight cap produced indistinguishable

figures and were therefore not explicitly included in the detailed plots). While the

drift was undesirable, these networks (with learning parameters evolved in the pre-

vious chapter) had lower drift than networks with hand-selected parameters (3.1%

difference, p < 0.05. See fig. 4.16, bottom right for comparison).

Networks with weight normalisation, as designed, had stable weight average

throughout the training. However, even with the stable average we observed dis-

crepancies and drift in different synapse types, with weight values increasing in

synapses with inhibitory presynaptic neurons, and decreasing for excitatory (fig.

6.1 C), which could translate into a drift in spiking activity.

Interestingly, weight capping seemed to have no effect on the results. This was

likely caused by the dominance of the silencing trend; weight drift was moving the

values away from the cap. We would expect the weight capping to have stronger

effects in networks affected by activity saturation.

184 6. Synaptic homeostasis in spiking neural networks

(A) Average weight values.
(B) Control.

(C) Norm.

Figure 6.1: Experiment 1: Analysis of synaptic weights in networks with global weight
normalisation. Four set-ups were tested: weight capping in the absence of normalisation
(“control capped”), no capping and no normalisation (“control”), normalisation with weight
capping (“norm capped”), normalisation without weight capping (“norm”). A) Average
weight values in networks with different normalisation protocols. B) Details of weight
values in control networks. C) Details of weight values in normalised networks. Weights
were normalised every 10 training iterations. Bars indicate SD. N = 10.

The proportion of silent and saturated synapses was 0 in all cases; while this

was desirable, weight drift would likely lead to their appearance with longer train-

ing.

We further looked at the spiking activity to examine whether the weight drift

led to silencing of the networks. A clear spiking activity drift was observed in the

control networks. In the output layer after 1000 training epochs, this decrease in

network activity became significantly lower than pre-training and in comparison to

normalised networks (p < 0.05 and p < 0.03, respectively). No significant spik-

ing activity drift was observed in the normalised networks, despite the changes in

the ration of inhibitory and excitatory weights. Therefore, at a functional level,

6.3. Part 1: Stabilisation of network activity by normalising the sum of weights185

(A) Hidden layer. (B) Output layer.

Figure 6.2: Experiment 1: Analysis of spiking activity in networks with global weight nor-
malisation in the hidden (A) and output (B) layers. Four set-ups were tested: weight capping
in the absence of normalisation (“control capped”), no capping and no normalisation (“con-
trol”), normalisation with weight capping (“norm capped”), normalisation without weight
capping (“norm”). Weights were normalised every 10 training iterations. Bars indicate SD.
Annotations correspond to control and norm groups. N = 10.

normalised networks behaved in a desirable way throughout the training.

Analysis of the spatial distance scores (which were used as a measure of fitness

in the previous chapter) showed that networks with the evolved parameters initially

trained, but were still prone to a score decrease with time (fig. 6.3). It is key to

remember that evolution did not select a solution we would design, but one that

was consistent with the evolutionary goal of having the highest score when fitness

was measured. Any fluctuations prior to it would not affect the survival of the solu-

tion. Networks with homeostasis initially significantly lagged behind the controls (p

< 0.001 at 100 training epochs), but reached a higher score overall (p < 0.02). In all

cases, SNN–SOM performed better than chance and improved with time. Networks

with homeostasis underwent an initial decrease in performance, but then recovered

and outperformed the controls. The pattern of clustering scores, the dips and recov-

eries, resembled the pattern of the distance-based scores but did not fully replicate

it. This was expected given the development of 2 dimensional clusters in the SOMs

and the use of Gaussian neighbourhood.

186 6. Synaptic homeostasis in spiking neural networks

(A) Spatial score. (B) SNN-SOM accuracy.

Figure 6.3: Experiment 1: Precision of networks with global weight normalisation. A)
Euclidean distance-based score quantifying clustering of spatial features. B) Weighted f-1
performance of the SNN–SOM stack on the same task. Bars show standard deviation (SD).

6.3.2.2 Results 2: Homeostasis of the sum of excitatory and in-

hibitory weights

In this experiment, we continued testing our hypothesis that weight normalisation

reduces the proportion of silent and saturated synapses and that it can remove the

need for capping the values of individual weights. We fine-tuned the set-up by

stabilising the sums of excitatory and inhibitory neurons’ weights constant, rather

than the total sum. This experiment shared the controls (“control capped” networks

without normalisation and with capped weights, and “control” networks without

normalisation and weight capping) with experiment 1, and the controls were re-

plotted on the graphs for the ease of comparison.

In networks with weight normalisation, average weight values remained sta-

ble throughout the experiment (fig. 6.4 A). Keeping the sums of inhibitory and

excitatory weights constant was sufficient to avoid weight drift in all four types of

synapses, although high variably between experimental repeats was observed (fig.

6.4 B).

Again, no silent or saturated weights were observed.

Spiking activity was stable in the networks with synaptic type-specific weight

normalisation (fig. 6.5). This stability was observed within each layer, even though

normalisation was performed at the network level. Differences between the nor-

6.3. Part 1: Stabilisation of network activity by normalising the sum of weights187

(A) Average weight values.
(B) Norm.

Figure 6.4: Experiment 2: Analysis of synaptic weights in networks with neuron type-
specific weight normalisation. Weights were normalised every 10 training iterations; excita-
tory weights were normalised to 80% and inhibitory to 20% of the total sum, proportionally
to the number of neurons belonging to each class. Four set-ups were tested: weight capping
in the absence of normalisation (”control capped”), no capping and no normalisation (”con-
trol”), normalisation with weight capping (”norm capped”), normalisation without weight
capping (”norm”). A) Average weight values in networks with different normalisation pro-
tocols. B) Details of weight values in normalised networks. Bars indicate SD. N = 10.

(A) Hidden layer. (B) Output layer.

Figure 6.5: Experiment 2: Analysis of spiking activity in networks with neuron type-
specific weight normalisation in the hidden (A) and output (B) layers. Weights were nor-
malised every 10 training iterations; excitatory weights were normalised to 80% and in-
hibitory to 20% of the total sum, proportionally to the number of neurons belonging to each
class. Four set-ups were tested: weight capping in the absence of normalisation (”con-
trol capped”), no capping and no normalisation (”control”), normalisation with weight cap-
ping (”norm capped”), normalisation without weight capping (”norm”).

malised networks and control became significant within 100 training epochs (p <

0.001), sooner than for control vs networks with global weight normalisation.

Similarly to networks with global weight homeostasis in experiment 1, net-

works with synaptic type-specific homeostasis significantly lagged behind the con-

188 6. Synaptic homeostasis in spiking neural networks

(A) Spatial score. (B) SNN-SOM accuracy.

Figure 6.6: Experiment 2: Precision of networks with neuron type-specific weight nor-
malisation. A) Euclidean distance-based score quantifying clustering of spatial features.
B) Weighted f-1 performance of the SNN–SOM stack on the same task. Weights were
normalised every 10 training iterations; excitatory weights were normalised to 80% and
inhibitory to 20% of the total sum, proportionally to the number of neurons belonging to
each class. Four set-ups were tested: weight capping in the absence of normalisation (”con-
trol capped”), no capping and no normalisation (”control”), normalisation with weight cap-
ping (”norm capped”), normalisation without weight capping (”norm”). Markers indicate
the mean best score of the population, and bars show SD.

trol (p < 0.001 at 100 training epochs). However, they reached the best result so

far (p < 0.001 vs control, p < 0.05 vs experiment 1). These results indicated that

a better control over both the total sum of weights and the ratio of inhibitory to

excitatory weights could led to a more sustained training.

6.3.3 Summary of part 1

Global and neuron type-specific weight normalisation stabilised the sum of weight.

Weights did not reach the cap. Consequently, more weights could partake in split-

ting the sum of weights, had values above zero and avoided silencing. Overall,

weight stabilisation of the network was associated with a more stable firing rate in

the hidden and output layers, and the networks were more resistant to silencing.

When weights were normalised globally (experiment 1), networks with normalised

capped weights had the highest evolutionary fitness. Neuron type-specific normali-

sation (experiment 2) was associated with a more stable average firing than global

normalisation, and with higher fitness both before and after training: all networks

with neuron type-specific normalisation (experiment 2) were fitter than the networks

with globally normalised weights (experiment 1).

6.4. Part 2: Stabilisation of network activity by scaling weights 189

The above results confirmed our hypothesis that the introduction of the home-

ostasis of the sums of weights alleviated silencing and saturation of the network

activity. Stabilisation of the network activity was associated with improved fitness,

with the networks with neuron type-dependent weight homeostasis performing best.

6.4 Part 2: Stabilisation of network activity by scal-

ing weights

When stabilising SNNs, we ultimately aimed to preserve the ability of the network

to encode information using spikes. Weight normalisation was an indirect approach

to achieve this; a more direct approach would be to adjust the weights based on the

spiking activity of the network.

Spiking activity of the output layer neurons was our direct readout. It was de-

sired for the output neurons to fire sparsely (both activation of all neurons and total

silence are avoided, and the output layer fires sufficiently during the testing phase

in particular) so that multiple classes of input data could be encoded. Thus, we

could focus solely on adjusting weights as a function of spiking in the output layer.

Alternatively, as the activity of the output layer was a function of the activity of the

preceding layers, we could change the weights as a function of spiking of the whole

network. The first approach benefits from a direct focus on stabilising our readout.

However, spiking of the output layer may not provide enough detail to fine-tune the

weights of the whole network, or it may be beneficial to adjust the weights based on

the activity of the earlier layers, without waiting for the output layer to misbehave.

This second approach was less direct, but the breadth of observed behaviours was

likely to allow us to fine-tune stabilisation of the network. However, it also could

not be excluded that the relationship between spiking in the preceding layers and

the output layer is too complex to use the former to stabilise the latter.

190 6. Synaptic homeostasis in spiking neural networks

6.4.1 Experimental design

6.4.1.1 Experiments 3 and 4: weight adjustment as a function of the

output layers’ activity

In the next set of experiments, we tested if updating weights as a function of spiking

rate was a more suitable approach for stabilising SNNs than keeping the sum of

weights constant. Our previous experiments demonstrated that keeping the sum of

weights constant led to a stabilisation of spiking (subsections 6.3.2.1 and 6.3.2.2).

However, the relationship between the homeostatic target (the sum of weights) and

spiking was indirect. It could also be insufficient for non feed-forward architectures.

We hypothesised that homeostatic weight update defined as a function of spiking in

the output layer would allow better control over the spiking rate.

Weights were changed globally as a function of the number of spikes in the

output layer during training. As standard, we had 10 training iterations (image

frames) per data point, which meant that 10 output neurons can give between 0 and

100 spikes per data point, up to 10 per each iteration. It was crucial to have more

than 0 and fewer than 100 spikes per data point. Based on the previously examined

relationship between fitness and spike counts (fig. 5.10), we defined three target

activity windows as the average number of output spikes per 10 iterations:

• 8 to 12 spikes;

• 12 to 16 spikes;

• 16 to 20 spikes.

The middle window targeted the spike count with the highest expected performance.

If the number of spikes was below the permitted range, the weights were increased

globally; conversely, if the number of spikes exceeded the permitted range, weights

were decreased. We tested two approaches to changing the weights:

• Multiplicative (experiment 3): weights were changed proportionally to their

size. We tested changing weights by 1% and 5% of their value. This method

6.4. Part 2: Stabilisation of network activity by scaling weights 191

would affect the distribution of the weights. It was reported that synaptic

scaling (SS) relies on this form of weight homeostasis [218].

• Additive (experiment 4): a set amount ∆w was added or subtracted from each

weight. In order to align the magnitude of the update with the experiment

4, ∆w was set to 1% and 5% of the average initial value. Weights were not

permitted to decrease below 0. This method would allow to activate silent

synapses.

6.4.1.2 Experiments 5 and 6: Weight adjustment as a function of the

whole network activity

We hypothesised that it would be beneficial to scale weights before the output ac-

tivity reaches an undesirable rate, and that homeostatic weight update defined as a

function of spiking across the entire network - rather than only in the output layer

as in the experiment 3 - allows better control over stabilisation.

This experiment was performed in the same way as experiment 3, except for

the permitted spiking ranges being based on the sum of activities of the hidden and

output layers (the number of spikes in the input layer was constant by design).

With 560 neurons in the network (500 neurons in the input, 50 in the hidden

and 10 in the output layer), there could be between 400 spikes (if only the input

neurons fire, based on our input data composed of 40 black pixels per frame) and

1000 spikes per data point (if all neurons in the hidden and output layers fire during

all iterations as well). Unlike in the case of the output layer activity, it is harder to

select the desirable spiking range: we are interested not only in the average number

of spikes but also require enough activity in the network to activate but not saturate

spiking in the output layer. Based on this, we tested three permitted ranges of the

average number of spikes per 10 iterations:

• 39:59

• 59:79

• 79:99

192 6. Synaptic homeostasis in spiking neural networks

The middle window targeted the spike count with the highest expected performance.

These ranges were based on the previously examined relationship between fitness

and spike counts (fig. 5.10), and selected to force some spiking outside the in-

put layer while not saturating the activity. As with the experiments 3 and 4, we

tested multiplicative (experiment 5) and additive (experiment 6) weight normalisa-

tion methods.

6.4.2 Results

6.4.2.1 Results 3: Multiplicative weight adjustment as a function of

spiking in the output layer

Seven set-ups were tested: “control” without any homeostasis (same as in the pre-

vious experiments), networks with multiplicative homeostatic weight update equal

1% of the weight value and the permitted ranges of spikes in the output layer equal

8 to 12, 12 to 16, and 16 to 20, respectively, networks with homeostatic weight

update equal 5% of the weight value and the same permitted ranges of spikes.

In case of all normalised networks, weights decreased significantly within a

single training epoch (p < 0.002)(fig. 6.7 A). This decrease was more pronounced

in the normalised networks than the control, with up to 35% decrease in normalised

networks (5% update) targeting 8 to 12 spikes. At the same time, one training

epoch lead to a decrease of less than 0.1% in the control, reaching significance (p

< 0.001) only 4% at 500 epochs. Normalised networks remained stable between

training epochs 1 and 1000 (p > 0.8). This was in contrast to the weight drift

in the control. There appeared to be the expected trend of average weight values

increasing with the higher spike count target, but this led to significant differences

(p < 0.05) only between 1% update networks targeting 16 to 20 output spikes, and

5% update networks targeting 8 to 12 spikes.

Overall, this data showed that after the initial adjustment, normalised networks

remained stable as desired. Their lower than control weights average would not be a

problem on its own; spike counts and clustering score were going to be the decisive

metrics

6.4. Part 2: Stabilisation of network activity by scaling weights 193

(A) Average weight values. (B) 1% 16:20.

(C) 5% 8:12.

Figure 6.7: Experiment 3: Analysis of synaptic weights in networks with multiplicative
output activity-based weight adjustment. 1% ∆w and 5% ∆w with three permitted ranges
of spiking (3 to 8, 5 to 10, 5 to 20) were tested. A) Average weight values in networks with
different normalisation protocols. B, C) Details of weight values in selected normalised
network types (the only two significantly different types were shown). Median is marked
on each box; bars indicate SD.

We also looked at weights associated with different synapse types. Weights

with inhibitory presynaptic neurons were trending up, and weights with excitatory

presynaptic neurons were trending down (fig. 6.7 B, C). Overall, average values

associated with all types of synapses remained stable in comparison to the control.

Spiking activity mirrored the weight changes. One training epoch led to a

significant spiking decrease in the normalised networks, but the decrease did not

become significant in the control networks until the 100th epoch (fig. 6.8 A). Same

applied to the output layer. We previously observed that after the initial drop, weigh

values stabilised in all normalised networks; spiking stabilised only in networks

with 1% homeostatic weight update, but decreased significantly in networks with

194 6. Synaptic homeostasis in spiking neural networks

5% update (for targets 8 to 12 and 16 to 20, p < 0.005). With the exception of net-

works with 1% homeostatic weight update targeting 8 to 12 spikes, all normalised

networks were below their target range (fig. 6.8 C).

All networks showed a high degree of variability of spiking in the hidden and

output layers between experimental repeats, although variability was lower in the

normalised networks; it remained constant after the initial drop.

The above data indicated that weight adjustment in response to the output spike

counts was not sufficient to reach the targets, but the spiking levels changed linearly

with the increasing target windows. At the same time, this method avoided the

activity drift seen in the control and preserved network activity throughout training.

The initial drop in weight values and spiking activity was reflected in the scores

and and clustering precision (fig. 6.8), although the gradation in response to dif-

ferent spike targets was not replicated. All networks with homeostasis performed

worse than the controls and did not show the recovering trend seen in the previous

section.

6.4.2.2 Results 4: Additive weight adjustment as a function of spik-

ing in the output layer

Seven set-ups were tested: “control” without any homeostasis, networks with the

homeostatic additive weight update equal 1% of the average initialisation values

and the permitted ranges of spikes in the output layer equal 8 to 12, 12 to 16, and

16 to 20, respectively, networks with homeostatic weight update equal 1% of the

average initialisation values and the same permitted ranges of spikes.

Dynamics of weight changes with the additive weight update resembled what

we saw with the multiplicative update. After the initial decrease, weights remained

stable in networks with normalisation (p > 0.5)(fig. 6.11 A) but not in the control

networks (p > 0.001). Additive weight update led to a gradation of weight ranges

in line with the increasing target spike counts. In most cases, normalisation led to

similar outcomes. The exceptions were networks with 1% update targeting 8 to

12 spikes vs both 1% targeting 16 to 20, and 5% targeting 12:16. This indicated

that 1% update led to a more reliably different weight gradation. In comparison to

6.4. Part 2: Stabilisation of network activity by scaling weights 195

(A) Hidden layer. (B) Output layer.

(C) Output layer, zoom.

Figure 6.8: Experiment 3: Analysis of spiking activity in the hidden (A) and output (B)
layers of networks with multiplicative output activity-based weight adjustment. 1% ∆w and
5% ∆w with three permitted ranges of spiking (3 to 8, 5 to 10, 5 to 20) were tested. Red
lines in panel C indicated the borders of the target spike ranges. Discrepancies between the
y axis and normalisation labels come from the fact that y axis was consistently plotted per
neuron, whereas normalisation spiking targets were defined per network, i.e. multiplied by
exactly 10 for the output layer. Median is marked on each box; bars indicate SD, and dots
indicate outliers

the previously tested networks with multiplicative update, networks with additive

weight update had more variability.

For each normalisation protocol, weight changes were consistent amongst dif-

ferent synapse types (fig. 6.11 B-D).

When analysing the spiking activity, we were again able to see similarities

between networks with additive and multiplicative weight updates where after the

initial drop, activity plateaued in the networks with normalisation but not the con-

trols (fig. 6.12). However, 5% weight update was associated with variability high

enough to lead to significant fluctuations throughout training; 1% update provided

196 6. Synaptic homeostasis in spiking neural networks

Score SNN-SOM accuracy

1%
∆

5%
∆

Figure 6.9: Experiment 3: Precision of networks with 1% ∆w and 5% ∆w multiplicative
output activity-based weight adjustment. Bars show SD.

(A) Spatial score. (B) SNN-SOM.

Figure 6.10: Experiment 3: Precision of networks with multiplicative output activity-based
spiking normalisation - summary.

6.4. Part 2: Stabilisation of network activity by scaling weights 197

(A) Average weight values. (B) 1% 8:12.

(C) 1% 16:20. (D) 5% 12:16.

Figure 6.11: Experiment 4: Analysis of synaptic weights in additive output activity-based
weight adjustment. Seven set-ups were tested: control without weight homeostasis, net-
works with the additive weight update equal 1% of the average initialisation values and the
permitted number of spikes in the output layer between 8 to 12, 12 to 16 and 16 to 20, and
5% of the average initialisation values with the same permitted ranges of spike counts. A)
Average weight values in networks with different normalisation protocols. B-D) Details of
weight values in selected normalised network types (only significantly different types were
shown). Median is marked on each box, and bars show SD.

more stability. Activity gradation observed in response to the increasing spike tar-

gets was more reliable than for multiplicative weight update(p < 0.001 for all pairs

of increasing target), and activity of the output layer followed the pattern seen in

the hidden layer. However, the spiking targets were again missed suggesting the

insufficiency of adjusting the weights based on the activity of the output layer.

In contrast to experiment 3, performance in networks with the additive home-

ostatic update seemed more resistant to the initial weight decrease and showed a

recovering trend until some of the networks outperformed the control; SOM con-

tributed towards the recovery (p < 0.05) for SNN–SNN clustering scores in nor-

198 6. Synaptic homeostasis in spiking neural networks

(A) Hidden layer. (B) Output layer.

(C) Output layer, zoom.

Figure 6.12: Experiment 4: Analysis of spiking activity in additive output activity-based
weight adjustment. Seven set-ups were tested: control without weight homeostasis, net-
works with the additive weight update equal 1% of the average initialisation values and
the permitted number of spikes in the output layer between 3 to 8 and 5 to 10, and 1% of
the average initialisation values with the same permitted ranges of spike counts. Median is
marked on each box, and error bars show SD.

malised networks with 5% update targeting 16 to 20 spikes vs control at the end of

training)(fig. 6.13).

6.4.2.3 Results 5: Multiplicative weight adjustment as a function of

spiking in the whole network

Five set-ups were tested: “control” without any homeostasis, networks with multi-

plicative homeostatic weight update equal 1% of the weight value and the permitted

ranges of spikes in the hidden layer equal 39 to 59, 59 to 79 and 79 to 99; net-

works with homeostatic weight update equal 5% of the weight value and the same

permitted ranges of spikes.

6.4. Part 2: Stabilisation of network activity by scaling weights 199

Score SNN-SOM accuracy
1%

∆
5%

∆

Figure 6.13: Experiment 4: Precision of networks with additive output activity-based
weight adjustment. Seven set-ups were tested: control without weight homeostasis, net-
works with the additive weight update equal 1% of the average initialisation values and the
permitted number of spikes in the output layer between 8 to 12, 12 to 16 and 16 to 20,
and 5% of the average initialisation values with the same permitted ranges of spike counts.
Markers indicate mean best score of the population, and bars show SD.

(A) Spatial score. (B) SNN-SOM.

Figure 6.14: Experiment 4: Precision of networks with additive output activity-based spik-
ing normalisation - summary.

200 6. Synaptic homeostasis in spiking neural networks

Despite the fact that both output and global activity spike count targets were

based on the analysis of the same evolved SNNs, directly targeting the hidden layer

spike counts gave very different results (fig. 6.15 A). To start with, controls and

normalised networks started to differ only at the 1000th training epoch; the differ-

ence was significant for controls vs 1% weight update targeting 59 to 99 spikes, and

5% weight update targeting 79 to 99 spikes (p < 0.05). Networks stabilised accord-

ing to the hidden layer activity also did not face the initial activity drop, indicating

that these values were closer to the activity of the untrained networks. The activity

was very stable across the whole training duration, with a significant change affect-

ing only networks with 1% weight update targeting 79 to 99 spikes. Overall, these

results indicate high stability of the SNNs with this homeostatic protocol.

This stability was maintained within the individual synaptic types (fig. 6.15 B,

C).

Interestingly, the homeostatic protocol targeting hidden layer spike counts us-

ing the additive update resulted in significantly different hidden and output spiking

activity levels in all pairs of networks within a single training epoch (p < 0.01)(fig.

6.16). This pointed to a very strong effect this weight update protocol had on the

networks. Despite the seeming plateau, this protocol also led to significant fluc-

tuations in the activity of all networks throughout the training, although without

the significant silencing drift seen in the control. Again, the target values were not

reached.

There was a significant gradation in the scores developed by networks with

1% update (fig. 6.17). Significantly better scores were achieved by best normalised

network and the control (p < 0.02), and performance of the SNN–SOM was sig-

nificantly better than the control in networks with the two lowest spike targets. 5%

weight update led to a less gradation and different order of the scores. Two types

of of normalisation with the highest targets achieved scores significantly better than

the control (p < 0.005). However, performance of the SNN–SOM stack was similar.

The observed changes in the order of the scores of the networks with 1% (lower

better) and 5% (highest best) weight update could be explained by the differences

6.4. Part 2: Stabilisation of network activity by scaling weights 201

(A) Average weight values. (B) 1% 39:59.

(C) 1% 79:99.

Figure 6.15: Experiment 5: Analysis of synaptic weights in multiplicative global activity-
based weight adjustment. Seven set-ups were tested: control without weight homeostasis,
networks with the multiplicative weight update ∆w equal 1% of the original weight value
and the permitted number of spikes in the network between 39 to 59, 59 to 79, and 79 to 99,
and 5% ∆w with the same permitted ranges of spike counts. A) Average weight values in
networks with different normalisation protocols. B, C) Details of weight values in selected
normalised network types. Median is marked on each box, and bars show SD.

in the network activity, with lower activity in networks with 5% weight update vs

networks with 1% update and a matching spike target.

6.4.2.4 Results 6: Additive weight adjustment as a function of spik-

ing in the whole network

Five set-ups were tested: “control” without any homeostasis, networks with additive

homeostatic weight update equal 1% of the initial average value and the permitted

ranges of spikes in the hidden layer equal 39 to 59, 59 to 79 and 79 to 99, respec-

tively, networks with homeostatic weight update equal 5% of the initial average

value and the same permitted ranges of spikes.

202 6. Synaptic homeostasis in spiking neural networks

(A) Hidden layer. (B) Output layer.

Figure 6.16: Experiment 5: Analysis of spiking activity in multiplicative global activity-
based weight adjustment. Seven set-ups were tested: control without weight homeostasis,
networks with the multiplicative weight update equal 1% ∆w of the original weight value
and the permitted number of spikes in the network between 39 to 59, 59 to 79, and 79 to
99, and 5% ∆w with the same permitted ranges of spike counts. Median is marked on each
box, and bars show SD.

Score SNN-SOM accuracy

1%
∆

5%
∆

Figure 6.17: Experiment 5: Precision of networks with multiplicative global activity-based
weight adjustment. Seven set-ups were tested: control without weight homeostasis, net-
works with the multiplicative weight update equal 1% ∆w of the original weight value and
the permitted number of spikes in the network between 39 to 59, 59 to 79, and 79 to 99, and
5% ∆w with the same permitted ranges of spike counts. Markers indicate mean best score
of the population, and bars show SD.

6.4. Part 2: Stabilisation of network activity by scaling weights 203

(A) Spatial score. (B) SNN-SOM.

Figure 6.18: Experiment 5: Precision of networks with multiplicative global activity-based
spiking normalisation - summary.

SNNs with homeostasis developed weights which were mostly stable between

training epochs 0 and 1000 (one exception was 1% update targeting 79 to 99 spikes,

p < 0.05)(fig. 6.19). At the end of training, weights were significantly higher in

the protocols targeting 59 to 99 spikes in comparison to the control (p < 0.05).

With one exception, trained weights were similar in all networks with homeostasis

(exception: 1% update targeting 79 to 99 vs 5% update targeting 39:59, p < 0.05).

Overall, while these networks were stable throughout training, lack of significant

gradation could suggest this protocol was less reliable at scaling network activity.

All network types showed significant fluctuations of spiking activity through-

out the training (fig. 6.20). Despite non-significant differences in the values of

weights after training, the developed spiking patterns in the hidden and output lay-

ers differed significantly for all pairs of networks (p < 0.05). The target values were

again missed.

Performance of the networks with additive weight update resembled the pattern

seen with multiplicative update (experiment 5)(fig. 6.21), although significant per-

formance decrease was seen in in networks with 1% weight update and the highest

spike target. Overall, the size of the update had a higher effect on the performance

than the character of the update (additive or multiplicative).

6.4.3 Summary of part 2

Networks with homeostasis based on spike count targets missed the targets (based

on the median values). However, some of them developed desirable firing charac-

teristics: they were neither saturated nor silent, the firing was sparse, and the ac-

204 6. Synaptic homeostasis in spiking neural networks

(A) Average weight values. (B) 1% 79:99.

(C) 5% 39:59.

Figure 6.19: Experiment 6: Analysis of synaptic weights in networks with additive global
activity-based weight homeostasis. Seven set-ups were tested: control without weight
homeostasis, networks with the multiplicative weight update equal 1% of the average ini-
tialisation values and the permitted number of spikes in the network between 39 to 59, 59
to 79, and 79 to 99, and 5% of the average initialisation values ∆w with the same permitted
ranges of spike counts. A) Average weight values in networks with different normalisation
protocols. B, C) Details of weight values in selected normalised network types. Median is
marked on each box, and error bars show SD.

tivity levels plateaued suggesting that these networks are able to keep learning over

a larger number of training iterations. All tested set-ups produced networks with

highly variable levels of spiking indicating they are sensitive to the initial weight

values (which were random). Spiking in the output layer followed patterns seen in

the hidden layer.

Overall, most of the networks with weight scaling were not significantly better

than the control. In some cases, the initial drop in performance took place when

target spike counts (output spike targets) were much lower than the initial values.

Networks with additive weight update were better at recovering their performance.

6.4. Part 2: Stabilisation of network activity by scaling weights 205

(A) Hidden layer. (B) Output layer.

Figure 6.20: Experiment 6: Analysis of spiking activity in networks with additive global
activity-based weight homeostasis. Seven set-ups were tested: control without weight
homeostasis, networks with the multiplicative weight update equal 1% of the average ini-
tialisation values and the permitted number of spikes in the network between 39 to 59, 59
to 79, and 79 to 99, and 5% of the average initialisation values ∆w with the same permitted
ranges of spike counts. Median is marked on each box, and error bars show SD.

Score SNN-SOM accuracy

1%
∆

5%
∆

Figure 6.21: Experiment 6: Precision of networks with additive global activity-based
weight homeostasis. Seven set-ups were tested: control without weight homeostasis, net-
works with the multiplicative weight update equal 1% of the average initialisation values
and the permitted number of spikes in the network between 39 to 59, 59 to 79, and 79 to
99, and 5% of the average initialisation values ∆w with the same permitted ranges of spike
counts. Markers indicate mean best score of the population, and bars show SD.

206 6. Synaptic homeostasis in spiking neural networks

(A) Spatial score. (B) SNN-SOM.

Figure 6.22: Experiment 6: Precision of networks with multiplicative global activity-based
spiking normalisation - summary.

They were also able to recover weights which were silenced. Additive weight up-

date did not provide additional benefits in networks with global activity based home-

ostasis, where there was no initial drop in performance.

While the learning rate seen in the normalised networks varied from negative

to positive, a some of the networks had a sustained improvement in performance

during training (e.g. networks with the highest output spike target, selected net-

works with multiplicative global activity-based homeostasis, and selected networks

with inhibitory/excitatory scaling).

6.5 Part 3: Stabilisation of network activity by scal-

ing excitation and inhibition

6.5.1 Experimental design: Scaling of inhibition and excitation

In accordance with scaling of excitation and inhibition levels reported in the brain

[281, 282, 283], we implemented synapse type-dependent rather than just neuron

type-dependent scaling. We hypothesised that scaling each type of synapse individ-

ually and thus adjusting both weights and balance between excitation and inhibi-

tion, would allow us to fine-tune networks’ activity. We distinguished four types of

synapses:

• excitatory to excitatory;

• excitatory to inhibitory;

• inhibitory to excitatory;

6.5. Part 3: Stabilisation of network activity by scaling excitation and inhibition207

• inhibitory to inhibitory.

Scaling of excitation and inhibition cannot rely on persistent updating of a synapse

class in one direction - this would lead to synapse type-specific silencing and weight

explosion. For each type of weight scaling there has to exist the opposite, which

would allow rescuing the synapses if need be.

It has been reported that in the brain, excitatory to excitatory and excitatory to

inhibitory synapses are regulated in the opposite direction, and that the update is a

function of network activity [282, 283, 281]. Inspired by this, we designed weight

update rules which are synapse type-specific and network activity-dependent - the

rules are listed in table 6.2. Importantly, all weights are always updated (which, ad-

mittedly, is not fully consistent with biological reports [285, 286, 284]), and weight

updates implemented when activity levels are too high have the opposite direction

to updates implemented when activity levels are too low.

As in experiments 3-6, possible approaches include multiplicative and additive

weight updates, and target spiking activity can be defined at the level of a whole

network and output layer. In this experiment, we used the additive weight update to

enable recovery of silent synapses. Based on our earlier experiments (3-6), defin-

ing target spiking activity at the level of the output layer led to the initial drop in

performance if the target was much lower than the initial activity. Therefore here

we focused on the same definition of the target, which was our direct readout for

the clustering tasks. We wanted to test whether balancing excitation and inhibi-

tion would help to avoid the initial performance drop. We tested set-ups with the

following hyperparameters:

• ∆w equal 1% and 5%of the average initialisation values;

• output spike targets 8 to 12, 12 to 16 and 16 to 20.

As previously, weights were scaled after each training input, i.e. after 10 frames of

each training example.

208 6. Synaptic homeostasis in spiking neural networks

activity excit to excit excit to inhib inhib to excit inhib to inhib
too high ↓ ↑ ↑ ↓
too low ↑ ↓ ↓ ↑

Table 6.2: Experiment 7: Directions of weight updates during scaling of excitation and
inhibition levels. Depending on the network’s activity level and synapse type, synaptic
weight is increased (↑) or decreased (↓).

6.5.2 Results 7: Scaling of inhibition and excitation

Scaling of excitation and inhibition levels resulted in significantly different average

weights values in the networks with homeostasis within a single training epoch (p

< 0.001)(fig. 6.23 A). Decrease continued to be significant between the measured

time points, with only networks targeting 12 to 16 reaching a plateau (p > 0.54).

Interestingly, some of the normalised networks developed up to 3.5% (mean

value in networks with 8 to 12 target)(fig. 6.23 B) of silent weights after the first

training epoch, but then recovered, confirming the suitability of additive homeo-

static update to recover silent weights.

Coupled scaling of the individual synapse types was very clear, with a sig-

nificant increase increase in inhibition (excitatory to inhibitory, and inhibitory to

excitatory synapses) (fig. 6.23 C-E). Based on the analysis of the spike activity

(below), this was lead to overshooting the target, followed by a gradual correction.

After the first training epoch with normalisation, spiking activity was signifi-

cantly lower in all test cases than in the control (fig. 6.24). Spiking pattern in the

hidden layer was further decreased.

In comparison to the same output spike targets with additive weight update in

experiment 4, more variability was observed (p< 0.02 for all cases epoch 1 vs 1000).

Only cases with the highest target achieved plateau between epoch 500 and 1000 (p

> 0.28). This method showed low sensitivity to the weight update parameter, with

similar results obtained with both 1% and 5% weight updates (p<0.34).

Based on the results of weight and spiking activity changes, this method could

benefit from longer training duration, with a gradual correction towards the target.

Similarly to previously tested networks with homeostasis based on the activity

of the output layer, the initial drop in the activity of the networks had a negative im-

6.5. Part 3: Stabilisation of network activity by scaling excitation and inhibition209

(A) Average weight values. (B) Proportion silent.

(C) 1% 8:12. (D) 1% 12:16.

(E) 1% 16:20.

Figure 6.23: Experiment 7: Analysis of synaptic weights in networks with excita-
tion/inhibition scaling. Five set-ups were tested: control without weight homeostasis, net-
works with the additive weight update equal 1% of the average initialisation values and the
permitted number of output spikes in the network between 8 to 12, 12 to 16 and 16 to 20,
and ∆w equal 5% of the average initialisation values with the same permitted ranges of
spike counts. Median is marked on each box, and error bars show SD.

210 6. Synaptic homeostasis in spiking neural networks

(A) Hidden layer. (B) Output layer.

(C) Output layer, zoom.

Figure 6.24: Experiment 7: Analysis of spiking activity in networks with excita-
tion/inhibition scaling. Five set-ups were tested: control without weight homeostasis, net-
works with the additive weight update equal 1% of the average initialisation values and the
permitted number of spikes in the output layer between 8 to 12, 12 to 16 and 16 to 20, and
0.05 ∆w with the same permitted ranges of spike counts. Median is marked on each box,
and error bars show SD.

pact on their performance (fig. 6.25). However, these networks also showed some of

the sharpest recovery, with clear improvement over time in networks with medium

and high spike targets. Networks targeting the 12 to 16 spikes showed a slower

recovery than the networks with a higher target, but they also sustained the im-

provement and eventually achieved scores significantly better than other categories

(p < 0.05). While a similar performance pattern was observed in the SNN–SOM

stack, the comparison with the control did not lead to a significant result indicating

that the SOM decreased the difference in performance.

6.5. Part 3: Stabilisation of network activity by scaling excitation and inhibition211

Score SNN-SOM accuracy

1%
∆

5%
∆

Su
m

m
ar

y

Figure 6.25: Experiment 7: Precision of networks with excitation/inhibition scaling. Five
set-ups were tested: control without weight homeostasis, networks with the additive weight
update equal 1% of the average initialisation values and the permitted number of the output
spikes between 8 to 12, 12 to 16 and 16 to 20, and ∆w equal 5% of the average initialisation
values with the same permitted ranges of spike counts. Markers indicate mean best score of
the population, and bars show SD. Population size = 30, N = 10.

212 6. Synaptic homeostasis in spiking neural networks

6.5.3 Summary of part 3

The above results suggest that stabilising network activity by adjusting levels of

excitation and inhibition is a promising approach. We were able to train networks

which avoided saturation and were able to recover from silencing. In particular,

this approach allowed us to one of the highest scores amongst all normalisation

approaches.

6.6 Chapter summary
In this chapter, our first goal was to stabilise activity of SNNs to avoid signal si-

lencing and saturation, and consequently enable longer training. Table 6.3 con-

tains a summary of the results. For experiments 1-7, we identified the normalisa-

tion method associated with the highest scores after training. While this approach

allowed us to select methods which lead to the highest fitness within our experi-

mental constraints, some of the worse-performing networks could outperform them

networks during longer training.

Networks with homeostasis were mostly able to maintain stable weights.

Weights associated with inhibitory presynaptic neurons tended to be higher than

those associated with excitatory neurons, unless directly controlled. The consis-

tency of this finding throughout the thesis could be caused by the fact that STDP

rule associated with inhibitory presynaptic neurons lead to synaptic strengthening

for a pair of spikes within a time window, irrespective of the spike order. Therefore,

it could be possible to indirectly steer the excitation/inhibition balance by adjusting

the STDP window and symmetry [355].

Weights remained stable only at the level the homeostatic stability was defined.

By levels we mean the total sum (experiment 1), sums of excitatory and inhibitory

synapses (experiment 2) or ratios of inhibition and excitation (experiment 7). Other

sums and relations between them showed changed, e.g. in experiment 1 we ob-

served increase of inhibition and decrease of excitation. It was therefore important

to precisely define what was the parameter under homeostatic control.

SNNs with additive weight update were able to recover silent weights. Multi-

6.6. Chapter summary 213

plicative weight update led to a higher variability, possibly due to a higher depen-

dence on the initial values of the weights.

Spiking activity in networks with homeostasis was more stable than in the

controls. However, none of the networks met the directly-set spike-count targets,

irrespective of these being global or output spike targets; we looked at both median

and mean (box plots and summary table, respectively). By scaling the spike targets,

it was possible to achieve gradation of spiking activities. We have not explored the

limits of this response, but setting a higher spike count target could possible lead to

meeting our actual target.

Scores and SNN–SOM clustering performance of networks with homeostasis

differed significantly between and within most experiments. Best network per cate-

gory had similar or better performance vs the controls (as shown in table 6.3). The

exception were networks with multiplicative weight update targeting output spike

counts (experiment 3). These network suffered from the initial activity drop as the

target was much lower than the initial activity. Unlike networks with additive weight

update (suffering from the same drop), networks with multiplicative weight update

were unable to recover the performance. Networks with both types of weight up-

date had a similar final spike count, therefore spike count alone was not the decisive

factor when it comes to performance. Overall, it would be advisable to either align

the homeostatic spike target closer to the initial activity level, or use an additive

weight update.

Networks with activity levels closer to the targets were not necessarily per-

forming better; networks with excitatory/inhibitory scaling (experiment 7) had one

of the lowest spike counts but joint second best score. The targets were set based on

the activity levels achieved by the fittest networks in the previous chapter. However,

it cannot be excluded that final spike counts achieved after training and evolution

are not the best spike counts throughout training.

Overall, two homeostatic methods with the best scores had a form of homeo-

static update related to excitation and inhibition levels. Best results were achieved

when the sums of excitatory and inhibitory weights were kept constant (experi-

214 6. Synaptic homeostasis in spiking neural networks

ment 2); second best were achieved with excitatory/inhibitory scaling (experiment

7) which also had a steep learning rate. Both of these methods also targeted the out-

put spike counts. These results indicated that homeostatic control of excitation and

inhibition and the goal of maintaining the output spike count stable could be most

suitable for maintaining performance in networks which suffer from activity drift

due to a training method like STDP. The importance of excitation/inhibition is be-

ing increasingly identified in the brain at the level of areas [356, 357] and individual

neurons [358].

6.6. Chapter summary 215

E
xp

er
im

en
t

Fi
tt

es
t

Sc
or

e
C

lu
st

er
in

g
Sp

ik
in

g
W

ei
gh

ts
[%

st
ar

tin
g]

O
ve

ra
ll

ep
oc

h
1

ep
oc

h
10

00
ep

oc
h

1
ep

oc
h

10
00

ep
oc

h
1

ep
oc

h
10

00
ep

oc
h

1
ep

oc
h

10
00

co
nt

ro
l

ca
pp

ed
0.

58
,S

D
=

0.
02

0.
59

,S
D

=
0.

01
49

.2
,S

D
=

0.
02

0.
51

,S
D

=
0.

02
4.

3,
SD

=
1.

2
3.

6,
SD

=
1.

2
10

0,
SD

=
0.

9
92

,S
D

=
0.

9
7

co
nt

ro
l

0.
58

,S
D

=
0.

02
0.

59
,S

D
=

0.
01

49
.1

,S
D

=
0.

02
0.

51
,S

D
=

0.
02

4.
3,

SD
=

1.
2

3.
6,

SD
=

1.
2

10
0,

SD
=

0.
9

92
,S

D
=

0.
9

7

1
no

rm
0.

58
,S

D
=

0.
01

0.
6,

SD
=

0.
01

48
.6

,S
D

=
1.

4
52

.2
,S

D
=

1.
0

4.
3,

SD
=

1.
2

4.
31

,S
D

=
1.

2
99

.7
,S

D
=

0
99

.7
,S

D
=

0
3

2
no

rm
0.

58
,S

D
=

0.
01

0.
61

,S
D

=
0.

01
49

.4
,S

D
=

1.
21

54
.6

,S
D

=
0.

9
4.

28
,S

D
=

1.
2

4.
4,

SD
=

1.
2

99
.7

,S
D

=
0

99
.7

,S
D

=
0

3

3
no

rm
1%

12
:1

6
0.

55
,S

D
=

0.
07

0.
54

,S
D

=
0.

03
50

,S
D

=
8.

0
30

,S
D

=
5.

6
1.

1,
SD

=
0.

8
1.

05
,S

D
=

0.
8

68
.9

,S
D

=
5.

4
68

.9
,S

D
=

5.
8

7

4
no

rm
5%

16
:2

0
0.

57
,S

D
=

0.
12

0.
6,

SD
=

0.
09

49
.7

,S
D

=
16

.5
53

.9
,S

D
=

15
.7

1.
6,

SD
=

1.
2

1.
3,

SD
=

1.
2

74
.3

,S
D

=
9.

8
71

.2
,S

D
=

10
.8

3

5
no

rm
1%

59
:7

9
0.

58
,S

D
=

0.
01

0.
59

,S
D

=
0.

01
48

.5
,S

D
=

4.
0

52
,S

D
=

2.
8

4.
8

,S
D

=
1.

3
5

,S
D

=
1.

4
10

5.
4

,S
D

=
13

.6
10

6.
7

,S
D

=
13

.7
3

6
5%

59
:7

9
0.

53
,S

D
=

0.
11

0.
59

,S
D

=
0.

02
49

.5
,S

D
=

7.
0

52
.2

,S
D

=
7.

1
4.

5,
SD

=
1.

5
4.

7,
SD

=
1.

6
10

3.
8,

SD
=

16
.7

10
5.

1,
SD

=
18

3

7
no

rm
5%

12
:1

6
0.

59
,S

D
=

0.
03

0.
6,

SD
=

0.
05

46
.9

,S
D

=
14

.8
52

.9
,S

D
=

10
.4

1.
1

,S
D

=
1.

2
1.

6,
SD

=
1.

3
93

.8
,S

D
=

4.
1

88
.8

,S
D

=
3.

9
3

Ta
bl

e
6.

3:
Su

m
m

ar
y

of
ne

tw
or

k
st

ab
ili

sa
tio

n
m

et
ho

ds
.W

e
su

m
m

ar
is

ed
de

ta
ils

of
bo

th
co

nt
ro

ls
(w

ith
ca

pp
ed

an
d

un
ca

pp
ed

w
ei

gh
ts

).
Fo

re
xp

er
im

en
ts

1-
7,

w
e

id
en

tifi
ed

th
e

no
rm

al
is

at
io

n
m

et
ho

d
as

so
ci

at
ed

w
ith

th
e

hi
gh

es
ts

co
re

af
te

rt
ra

in
in

g.
Fo

re
ac

h
se

le
ct

ed
se

t-
up

,t
he

ta
bl

e
lis

ts
th

e
sc

or
e,

pr
ec

is
io

n
of

cl
us

te
ri

ng
in

pu
ts

by
th

e
SN

N
–S

O
M

st
ac

k;
av

er
ag

e
w

ei
gh

tv
al

ue
s

an
d

ou
tp

ut
sp

ik
e

co
un

tp
er

in
pu

t.
L

as
tc

ol
um

n
in

di
ca

te
s

if
th

e
de

ve
lo

pe
d

fe
at

ur
es

w
er

e
co

ns
is

te
nt

w
ith

th
e

go
al

(i
m

pr
ov

ed
pe

rf
or

m
an

ce
,r

ed
uc

tio
n

in
w

ei
gh

td
ri

ft
,a

vo
id

an
ce

of
sp

ik
in

g
sa

tu
ra

tio
n

an
d

si
le

nc
in

g)
.T

he
lo

w
es

ta
nd

hi
gh

es
t

va
lu

es
in

ea
ch

co
lu

m
n

w
er

e
hi

gh
lig

ht
ed

bl
ue

an
d

pi
nk

,r
es

pe
ct

iv
el

y.
SD

is
st

an
da

rd
de

vi
at

io
n.

7

Conclusions and future work

ASTONISHING, said Death. REALLY ASTONISHING. LET ME PUT

FORWARD ANOTHER SUGGESTION: THAT YOU ARE NOTHING

MORE THAN A LUCKY SPECIES OF APE THAT IS TRYING TO UN-

DERSTAND THE COMPLEXITIES OF CREATION VIA A LANGUAGE

THAT EVOLVED IN ORDER TO TELL ONE ANOTHER WHERE THE

RIPE FRUIT WAS.

– Terry Pratchett, 2012 [359]

7.1 Contributions
The objective of this work was to identify optimisation and information processing

strategies reported to be utilised by the brain, implement them in spiking neural

networks and asses their usefulness for data-processing.

In the first chapter, we provided a brief overview of the current state of the ar-

tificial neural network (ANN) research and its shortcomings. We then hypothesised

that neuroscience-inspired SNNs with spike-timing-dependent plasticity (STDP)

demonstrate useful learning capabilities. We defined “useful learning capabilities”

as qualitative and quantitative improvements in the ability of the SNNs to process

data, e.g. amount of data required to train the network, ability to process noisy data,

capacity for parallelisation of data processing etc. We then set the objectives and

the scope for this project.

In chapter 2, we provided an introduction to the relevant neuroscience back-

218 7. Conclusions and future work

ground. We performed a literature review to identify optimisation and informa-

tion processing strategies reported to be utilised by the brain but not commonly

used in SNNs. These features included local weight updates, modularity, neuronal

sub-types with a distinction between inhibitory and excitatory neurons, homeostatic

synaptic plasticity and structural plasticity. We identified the evolutionary approach

(EA) as a promising tool for developing SNNs.

Chapter 3 provided a review of the existing software tools (as of Summer

2016). Based on our survey, we decided to create our SNN from scratch. The rest

of the chapter described the main design decisions we made and provided literature-

based justifications.

Description of the baseline implementation of our a neuroscience-inspired

SNN was provided in chapter 4. In this chapter, we explored the baseline prop-

erties of our model such as spiking activity, and distances between trains of spikes

produced in response to different classes of inputs. We then characterised how ad-

dition of STDP changed these properties. We proposed two ways of quantifying the

performance of the networks:

• Euclidean distance-based score describing the spike train distances between

and within data classes. The proposed metric was a direct quantification of

the spiking activity and therefore allowed an easier interpretation of how our

experiments affected the network. In contrast to a pure spike distance, our

metric was resistant to spiking activity fluctuations, which was key given the

expected STDP-induced activity drift.

• Clustering performance of SNN–self-organising map (SOM) stack. While

this method provided less direct information about changes in the SNNs due

to the introduction of the SOM, it provided a clustering metric which was eas-

ier to interpret in the applied context and in comparison to standard machine

learning (ML) methods.

As a reference point, we used Multilayer Perceptron (MLP) of a size approximating

the size of our SNNs, Long Short-Term Memory (LSTM), a method developed

7.1. Contributions 219

more specifically for working with temporal data, Principal Component Analysis

(PCA). We also examined the properties of the input data itself.

We explored how the data corruption affected the SNNs. We also tested the

concept of modularity; we used an ensemble of SNNs to process biologically-

inspired spatio-temporal inputs, and examined if different, separately initialised and

trained networks preserved enough information about the inputs to allow clustering

of their outputs by the input class.

Chapter 5 explored the suitability of EA to adjust the learning parameters of the

SNNs. We worked with a population of SNNs over multiple generations, and used

an EA to optimise their learning hyperparameter to improve the Euclidean distance-

based scores. We examined the importance of experience inheritance (weights) vs

inheritance of the capacity to learn (learning hyperparameters), but also training,

and fitness definition.

Chapter 6 focuses on homeostatic synaptic plasticity. To alleviate signalling

saturation and silencing in the SNNs, we explored several network stabilisation

approaches. These approaches included: global weight stabilisation mechanisms

with either the sum of all weight values kept constant, or the sums of excitatory

and inhibitory weight values kept constant; stabilisation of the spiking activity level

of the output neurons, and of all neurons; activity-based adjustment of the level of

inhibition and excitation (via selective weight scaling.

Additionally, during our preliminary work included in the appendices, we com-

pared results obtained with different fitness definitions using an earlier model (Ap-

pendix A), compared different STDP functions (Appendix B), and performance of

several clustering algorithms (Appendix C), including algorithms designed specifi-

cally for time-series data.

In Appendix D, we explored the neuroscience-inspired mechanism of struc-

tural plasticity (recessive and progressive) in the context of evolution, development

and learning. We created a phylogenetic, ontogenetic and epigenetic (POE) sys-

tem to explore the use of evolution to develop SNN architecture indirectly through

optimising developmental rules. We hypothesise that a minimalistic evolutionary

220 7. Conclusions and future work

mechanism can be used to develop progressive architectural growth rules for SNNs

and that regressive mechanisms such as synaptic pruning are beneficial. First, we

tested whether the weight homeostasis mechanism developed in the chapter 6 could

be used to stabilise networks with plastic architecture, thus allowing us to train

them. We then developed a model of the evolution of SNNs which indirectly en-

codes networks’ developmental rules.

Our results showed that passing data through the untrained SNNs did not have

a significant detrimental effect on the shape clustering performance of a SOM. The

initial STDP implementation led to weight drift, and had a detrimental effect on the

clustering scores.

Our results suggested that feed-forward SNNs can be used as an ensemble to

process subsets of data independently of each other, and produce similar spiking

patterns in response to the same class of input even if the networks were initialised

with different random weights and were trained separately (4.5.1.3). Their ability

to train and process data independently of each other offers the possibility of easy

parallelisation and scalability of data processing. However, the performance was

worse than that of individual networks. Further improvements would be needed to

make this approach viable.

When working with corrupted data, we demonstrated that SOM clustering of

the SNNs outputs gave similar results as clustering of the inputs themselves. There-

fore, the resistance was not so much provided by the SNNs but more preserved by

them.

The SNN–SOM stack provided some accuracy improvements over MLP and

LSTM on the small stripes data set (although please keep in mind that the former

method was unsupervised, and the latter two supervised). However, the SNN it-

self lowered the performance of the SOM on the stripes data set; it did not have a

detrimental effect on the shapes data set. These results highlighted the difficulty of

training SNNs with STDP.

We then successfully used an EA to determine hyperparameters of the SNNs

and lower weight drift. Our results show that evolution lead to a fast convergence on

7.1. Contributions 221

the optimal solutions, better stability of fit solutions and higher fitness of the whole

population than the hand-crafted approach (section 5.3). The evolutionary process

led to filling the population with networks which were performing well in multiple

generations and thus were better at generalising. Inheritance of the evolved hyper-

parameters (learning skills) rather than the parent’s weights (experience) was the

key to successful learning, irrespective of the networks own weights. Interestingly,

even without training, SNNs performed very well indicating that evolutionary pa-

rameter search for the weight scaling parameter (the only parameter which showed

a universal convergence across the repeats and experimental setups) played a more

important role than STDP. The possible explanation was that the evolution of good

training parameters was a slower and more difficult process; before such parame-

ters were identified, the population was high-jacked by clones of the networks with

the optimal value of the weight scaling parameter. At the same time, parameters

evolved by the fittest networks were later used in chapter 6, where we observed

learning in the individual networks. This could be explained by heterogeneity of

the evolved solutions, where some evolved solutions (possible best solutions) led to

fitness improvement via training whereas others evolved training-free strategies.

We further demonstrated that evolution improved the performance of SNNs on

both fitness-related and unrelated tasks (section 5.3.3), irrespective of the fitness

definition. However, our preliminary experiments with the shapes data set indicated

that this observation may not be universally true, and improvement on fitness related

task may lead to a decrease in performance on other tasks.

We demonstrated that homeostatic synaptic plasticity (HSP) could be used to

stabilise the activity of SNNs, thus allowing longer training and evolution. Home-

ostasis, in particular, stabilisation of the inhibitory-excitatory balance with additive

weight update (section 6.5.2), improved the baseline fitness and learning capabili-

ties of our model. Our results demonstrated that homeostatic control of excitation

and inhibition and the goal of maintaining the output spike count stable could be

most suitable for maintaining performance in networks which suffer from activity

drift due to a training method like STDP.

222 7. Conclusions and future work

We showed that brain-inspired synaptic homeostasis could be used to stabilise

SNNs with architectural plasticity (Appendix D); the normalisation of the sums of

excitatory and inhibitory weights restored the firing activity and performance of

networks with regressive structural plasticity. Additionally, the removal of weak

weights improved the learning rate. Thus, pruning in combination with HSP can

be used to reduce the size of the SNNs and improve their learning rate without

performance loss. Our POE model demonstrated that it is possible for SNNs with

a rudimentary architecture to evolve developmental rules which improve their fit-

ness (section D.4.2); the combination of progressive and regressive plasticity was

associated with a significant fitness increase during evolution. Overall, the results

described in this thesis demonstrate that SNNs with biologically-inspired features

such as modularity, neuron sub-types, structural plasticity and synaptic homeostasis

have desirable and interesting properties, and that an EA can be successfully used

to develop their learning and developmental rules.

We initially selected the SNNs because of the claims of their computational

power [91, 92] and low energy potential [360, 88]. SNNs implementations on field-

programmable gate array were reported to be two orders of magnitude more effi-

cient than convolutional neural network (CNN)[361]. Ultimately, we decided not

to make claims on efficiency of the SNNs based our implementation which was not

optimised for speed and efficiency and was therefore difficult to compare with e.g.

tools such as TensorFlow developed by Google. Performing comparisons of com-

putational power and efficiency between standard and neuromorphic approaches is

still a developing area [362].

Computational resources of our model can be divided into three types: evolu-

tionary parameter search, training and inference. While individual networks were

fast to train and test on a personal laptop, evolution required substantial computa-

tional and memory resources. It was also less suitable for parallelisation because

generations had to be simulated one at a time.

Our choice of STDP as the training method meant multiple rounds of weight

updates per input item, unlike e.g. backpropagation which uses one update per item.

7.2. Future Work 223

At the same time, the cost of STDP-driven weight update was activity-dependent,

with the number of updates decreasing with network activity; therefore the compu-

tational cost of our model was changing throughout the thesis. The cost of training

and inference were also affected by factors such as the temporal resolution of the

simulation [363].

Our software was developed on standard von Neumann computer architecture.

To take advantage of brain-like parallelisation, our model would benefit from map-

ping onto designated neuromorphic chip.

7.2 Future Work
Below, we present an overview of the concepts we would like to explore in the

future.

7.2.1 Neuron models

In this thesis, we explored point neurons without the adaptive firing threshold. We

also introduced rudimentary populations by defining separate parameters and learn-

ing rules for excitatory and inhibitory neurons. These explorations were just the tip

of the neuron ice berg.

One of the simplest ways to refine our model would be to introduce a more

complex begavious within a point neuron. [364] distinguished two main types of

neurons:

• Regular spiking neurons with broad spikes and spike frequency adaptation.

• Fast spiking neurons with narrow spikes and limited spike frequency adapta-

tion.

Introduction of these neuron classes into our model would increase the range of

functions a small network can approximate.

Another simple way of enriching our model would be to create neurons with

heterogeneous parameters such as membrane and synaptic time constants (where

the parameters come from a set distribution). It has been demonstrated that such

heterogeneity helps to achieve robust learning, possibly by enabling computation

224 7. Conclusions and future work

across more time scales [83]. Heterogeneity within excitatory and inhibitory popu-

lations has also been proposed as a gain control mechanism [107].

Furthermore, we could examine the effects of the internal network state on

learning and structural development, e.g. by introducing spontaneous neuronal ac-

tivity [365]. Together with recurrent connections, these could give rise to oscillatory

activity within the model.

7.2.2 Data encoding and time-series data

It would be important to test out model with a wider range of data and task types. In

this thesis, we used binary data which was mapped as single spikes; input neurons

either received sufficient input to fire, or did not receive an input. Introduction of an

analogue input range would allow the neurons to signal input intensity by the firing

frequency. However, this would also make the network slower [121].

Our data contained spatial and temporal features, but these features themselves

were not changing in time. Objects were continuously present and moving at a

constant speed in one direction. Thus, even our simple data set could be made

more varied in time by e.g. making the objects disappear and re-appear, use a

changing speed and direction. This would also expand the range of tasks on which

the networks could be tested to e.g. signalling the degree of change.

7.2.3 Homeostasis

Our HSP method adjusted the weights based on the activity of neuronal populations

or the whole network. HSP can be introduced at the level of individual neurons

instead of the network, e.g. as firing rate homeostasis, or by stabilising the sum

of all incoming or all outgoing weights in each neuron [165]. Further, different

STDP rules can be explored in combination with the proposed homeostatic rules to

identify combinations most suitable for preserving both learning and stability [355].

7.2.4 Evolutionary approaches

The main body of this thesis used a very simple EA which fulfilled the role of a

parameter search and allowed a simple interpretation of the evolved results. This

EA could be extended with mechanisms such as:

7.2. Future Work 225

• Survival score. Organisms with score below the threshold would be removed

from the population, which would allow replenishing the population in case

of catastrophic mutations, and would be a source of additional novelty to the

evolving genomes.

• Incomplete population turnover. Parents would not be removed from the pop-

ulation but instead would remain in it, possibly undergoing further training.

• Cross-over, where two genomes swap some of the elements. This would in-

troduce novel genetic combinations from the pool of existing high-fitness so-

lutions.

• Novelty advantage. Solutions are rewarded for exploring a new area of the

solution landscape, even if the accuracy alone is not the highest. Such ap-

proach assists when there exists more than one objective [366]. Increasingly,

novelty search is a goal in itself when evolving solutions [367].

We have implemented incomplete population turnover and survival scores in our

preliminary work (Appendix D).

7.2.5 Developmental rules

Our static architecture, feed-forward network can be extended with the addition of

a multi-timescale learning system, where development of the architecture is part of

developing a solution. We explored plastic architectures in our preliminary work

(Appendix D), where we also showed that homeostatic rules we developed were

able to stabilise the activity of networks undergoing big architectural changes such

as growing and pruning.

Our POE system can be extended by the addition of neuronal death. This

would allow us to also investigate the role of neuronal cell turnover in learning and

memory [221, 222, 223]. The concept of neuron turnover could be used to prevent

ANNs from overfitting, and to adapt architecture to new conditions [224, 225].

The genome can be expanded by the addition of genes encoding pruning. It

would be interesting to test the evolutionary preference for different pruning modes,

226 7. Conclusions and future work

e.g. to enable the modification of an inherited architecture created based on a data

type which is no longer in use or an objective which no longer applies. The genotype

can also include switches allowing to turn plasticity on and off - we proposed that

progressive plasticity was beneficial early during growth, but found that a mech-

anism to stop an excessive growth is required during later network development

(D.5). The problem of excessive network growth could also be tackled by an intro-

duction of neuron and connection costs, in accordance with the wiring minimisation

hypothesis [194, 260, 261].

Furthermore, it has been reported that levels of plasticity change in the brain

during lifetime [142]. It would be interesting to refine our model to follows different

plasticity rules at different developmental time-points.

The concept of neuroplasticity has been linked to environmental enrichment

and unstable environmental niches [197, 203, 209, 211, 212, 224, 225]. We can

create environmental instability by changing the types of available data during evo-

lution; we can also change the fitness function by modifying the objective. It would

be especially interesting to use a changing environment and definition of evolution-

ary fitness to explore the concept of cognitive incrementalism [368] where complex

cognitive abilities are reached by a series of improvements by learning increasingly

complex tasks. Such a changing environment and objective create interesting evo-

lutionary pressures on the networks, and allow us to test if our model displays a

similar preference for novelty-induced plasticity.

Furthermore, we can explore the realm of spike-based information processing,

and create developmental rules that are a function of the spiking activity. Mor-

phology and activity in the brain are linked, and a similar linked approach was

suggested for evolving ANNs [369]: “Eventually, the aim is to create developmen-

tal networks of spiking neurons. This would allow models of activity dependent

development based on biological neurons to be abstracted and included in artificial

models”. However, the latter also noted that activity-dependent morphology means

that architectural changes have to take place during training thus making fitness

assessment harder.

7.2. Future Work 227

7.2.6 Architecture analysis

Architectural properties of the developed networks can be analysed using graph

theory. In particular, we want to examine what are the developed path lengths,

neighbourhood sizes etc. Using a graph-based approach would allow us to focus on

the link between developmental rules and modularity, and population-based coding

[325, 312]. Given that probability of connection from inhibitory to excitatory pop-

ulation has been shown to be an important parameter for gain control in randomly

connected networks [108], it would be interesting to examine the evolved inhibitory

and excitatory populations in the contaxt of gain control.

7.2.7 Reinforcement learning

Our model currently does not include reinforcement learning. Appetitive and aver-

sive learning plays a vital role in translating olfactory signals to behaviours in the

fruit fly’s mushroom body (MB). The dopaminergic neurons transmit reinforce-

ment signals, and their direct activation can replace an external reinforcement stim-

ulus [202, 370, 371]. These dopaminergic neurons are paired with distinct types

of mushroom body output neurons, together creating a stimulus-behaviour dictio-

nary. Reinforcement requires supervision, which we were trying to avoid; never-

theless, our system could be extended by adding dopaminergic-like reinforcement

signalling. Such inputs could also play a role of teacher signals [45]

7.2.8 Sleep-wake cycle

The concept of sleep is related to HSP (introduction of which we demonstrated to

be beneficial for SNNs) and is of particular interest to us. This subsection is going

to focus on the biological relevance of sleep and the potential of sleep-inspired

mechanisms to optimise SNNs.

Sleep is ubiquitous in the animal kingdom and has been observed in, amongst

others, nematodes, insects, fish, birds and mammals [372, 373]. It is usually char-

acterised by a recurrent and rapidly reversible reduction in response to stimuli, re-

duced muscle tone and specific body posture. In land mammals and birds, two

phases of sleep can be distinguished [373]:

228 7. Conclusions and future work

• Rapid eye movement (REM) sleep (paradoxical sleep). Eye movement is

accompanied by low muscle tone and propensity to dream.

• Non-REM sleep. Brain waves are slower and more synchronous than in REM

sleep. Dreams are rare, muscle tone is not significantly reduced.

Both the overall duration of sleep and the proportion of REM sleep decrease with

age.

Asymmetric sleep activity focused in one brain hemisphere has been observed

in birds and aquatic mammals [374, 373].

Sleep is associated with direct costs (decreased ability to detect and avoid dan-

ger), and the opportunity cost (inability to forage, procreate etc). Sleep deprivation

has severe physiological consequences, and was reported to cause death in rats in a

matter of weeks [375]. In humans, sleep deprivation was used as an interrogation

technique. The European Court of Human Rights ruled that forced sleep depriva-

tion breaches the European Convention of Human Rights; according to Amnesty

International “if used for prolonged periods of time it is torture” [376, 377].

Taking the above into account, it has been proposed that there exists evolution-

ary pressure to sleep, and benefits of sleep outweigh the costs. Below, we describe

the synaptic homeostasis hypothesis (SHY) [378], according to which sleep plays a

vital role in renormalisation of synaptic strengths, and discuss the existing models

and ML implementations of SHY.

7.2.8.1 The synaptic homeostasis hypothesis

Neuronal firing is metabolically expensive, and the brain’s energy supply limits its

maximum rate of computation [379]. To make the most of the energy, neuronal

communication should be sparse, and meaningful stimuli should be indicated by

coincidence of firing rather than silence [378] – this is consistent with neocortical

recordings [380]. Evidence suggests that the brain increases synaptic strengths in

the wake state, and decreases them during sleep:

• Molecular:

7.2. Future Work 229

– Levels of the GluA1-containing AMPA receptor linked to mediating fast

synaptic transmission are higher after wakefulness [381].

– Changes in the amount of activated (phosphorylated) GluA1-containing

AMPA receptors and associated enzymes are consistent with net synap-

tic potentiation during wake state and depression during sleep [381].

• Electrophysiological:

– The frequency (presynaptic component strength) and amplitude (post-

synaptic component’s response strength) of miniature excitatory postsy-

naptic currents (mEPSCs) are lower after sleep and higher after a few

hours of a wake time. After sleep deprivation, they decrease after sleep

is allowed [382].

– Mean firing rate of cortical neurons increases during prolonged wake

period, and decreases during sleep [383].

• Structural:

– The number of dendritic spines in the visual system neurons in the fruit

fly increases during wake time, and returns to the baseline if flies are

allowed to sleep [384].

– In adolescent mice, there is a net increase in the number of dendritic

spines during wake time, and net decrease during sleep [385]. It is inde-

pendent of light conditions and circadian timing.

7.2.8.2 Sleep-wake cycle implementations

Despite the immense importance of sleep in the brain and the need for weight nor-

malisation in ANNs, sleep-inspired synaptic normalisation is rarely implemented in

ANNs. Majority of implementations are theoretical neuroscience models not focus-

ing on data science applications. Hill et al. [386] uses a simple model composed of

360 neuron-like elements in two layers, and performs a behavioural human study,

to test two sleep-inspired mechanisms:

230 7. Conclusions and future work

1. Synapses which were active during wake are again strengthened by the same

amount during sleep. This resulted in the reduction of error but not variability,

and resembled the results of volunteers who had two learning sessions without

sleep in between.

2. Sleep uniformly decreases synaptic strengths by 15%. This approach resulted

in a reduction of both mean error and variability, and resembled results of

volunteers who had two learning sessions separated by a period of sleep.

The above findings are of some interest, especially in the context of the behavioural

study. However, the model was very simplistic. “Neurons” were integrative, and

fired with an increasing probability based on the sum of inputs, but there was no

threshold per se. They did not maintain the memory of the previous iterations, and

STDP was not implemented. The above findings may not be transferable to models

using leaky integrate-and-fire (LIF) neurons, and may not reliably model biological

mechanisms.

Olesce et al. [387] uses biologically-detailed Hodgkin-Huxley neurons, and

sleep is implemented as a change to the parameter values describing the dynamics

of receptors and neurotransmitters. The architecture was inspired by the thalamo-

cortical circuit; each of the multiple layers is additionally divided into sublayers.

STDP rules are identical for excitatory and inhibitory neurons. As intended, there

was a nett increase of synaptic strengths during the wake, and decrease during sleep.

Synaptic renormalisation was associated with the consolidation of memories by

making them more resistant to interference, and with the restoration of the capacity

to learn. However, the biological complexity of this model may not be relevant for

applied information processing, but leads to increased computational costs. There is

no proof that this particular architecture and neuronal diversity has a positive effect

on performance, and the network has not been tested using any standard, applied

task.

A two-part study [388, 389] on the benefits of sleep on memory consolida-

tion and integration implements learning rules based on the timing and spatial co-

localisation of feed-forward and feedback connections, and levels of neuromodula-

7.2. Future Work 231

tors. Each dendritic tree is divided into domains, and levels of the neuromodulator

change as a function of sleep / wake state. The network has a minicolumn-like

organisation, with groups of highly connected neurons.

• During the wake, synaptic potentiation dominates. long-term potentiation

(LTP) takes place if feed-forward and feedback inputs are persistently re-

ceived in the same part of the dendritic tree, the neuron is highly activated,

and neuromodulators are present. Lack of feedback activity leads to long-

term depression (LTD).

• During sleep, neuromodulator levels decrease. Strong neuronal activation by

matching feed-forward and feedback inputs protects synapses in that dendritic

domain. Neuronal firing concurrent with a mismatch of the feed-forward and

feedback inputs leads to LTD.

The authors conclude that synaptic downregulation during sleep is sufficient to ex-

plain the benefits of sleep on memory consolidation and integration. These find-

ings may not be transferrable to ANN with different architectures and learning

rules. However, implementing distinct dendritic domains increases the computa-

tional costs. The networks were trained on pair-wise sequences of stimuli, and the

aim was to develop connections between neurons encoding the sequential steps.

This task has limited applications.

The sleep-wake algorithm (also known as the Helmholtz machine) proposed by

Hinton et al. [390] focuses on solving a task and not on modelling biology. It is an

unsupervised learning algorithm implemented in a multilayer network of stochastic

neurons, and aims to produce concise, accurate representations of the inputs.

• The bottom-up pass represents the wake state and input recognition. Inputs

are processed into their representations.

• Top-down pass represents sleep and is generative. Neurons from a higher

layer take the representations from the layer below, and reconstructs a higher

level representation. The aim of learning is to increase the probability of

producing the correct representations in the higher layers.

232 7. Conclusions and future work

This approach in some way resembles generative adversarial networks, but has little

relation to the biological sleep-wake cycle. It does not implement synaptic home-

ostasis, spiking and STDP either.

Thiele et al. [391] implemented a network of excitatory and inhibitory LIF

neurons. The architecture is highly recurrent and modular, and STDP is used to up-

date weights. This type of network frequently suffers from the clustering of strong

weights, saturated feedback loops and the emergence of attractor states – sleep-wake

cycle-inspired mechanism is implemented to prevent it.

• During the wake, inputs are mapped onto the network, and all plastic synapses

update according to their normal rules.

• During sleep, no external inputs are introduced. Instead, input neurons are

randomly selected to fire. The direction of STDP is reversed – this is intended

to prevent the formation of too strong feedback loops and attractor states.

Homeostatic weight normalisation is also applied at regular time intervals.

The network was trained to perform the relational inference, which was previously

developed as an abstract model of cortical computation. The network learns the

function A + B = C. The above set up lead to prevention of weight clustering,

stabilisation of the network dynamic and improved inference handling.

Because of the use of both computationally inexpensive set-up and biologically

inspired learning rules, work published by Thiele et al. is the most relevant for our

hypothesis. However, it implements weight updates only for excitatory synapses.

This work could be extended by merging it with other neuroscience-inspired mech-

anisms, and the performance of the network tested using more applied tasks.

In summary, sleep seems to play a vital role in the optimisation of computation

in the brain. Learning should take place during wake state when the organism inter-

acts with the environment, and it should be based on synaptic potentiation. Neurons

need to re-normalise to reduce the metabolic requirements and preserve selectiv-

ity and learning capacity. This can take place during sleep, and use spontaneous

firing to sample the brain’s knowledge [378]. However, sleep-wake cycle inspired

7.2. Future Work 233

algorithms are uncommon in SNNs. Biological data and theoretical results suggest

that sleep-inspired synaptic homeostasis may help to solve problems related to the

restoration of the capacity to learn, signal/noise ratio, the emergence of attractor

states etc.

7.2.8.3 Implementation in our model

SNNs with STDP suffer from weight drift, where networks can become completely

silent if input strength is low and pairs of neurons only very infrequently fire to-

gether; conversely, strong inputs can lead to the strengthening of all weights and

indiscriminate firing of all neurons.

The synaptic homeostasis hypothesis proposes that sleep is required to renor-

malise synaptic strengths in the brain [378]. According to this theory, synaptic

renormalisation during sleep is required to minimise energy and resource require-

ments in the brain, as well as restore neuronal selectivity. These objectives are in

line with our objectives relating to SNNs optimisation.

We can implement sleep/wake cycles during training. During the wake phase,

inputs would be mapped onto the network and weights will be updated according to

the STDP rules. Two main approaches could be tested:

• Inputs are mapped onto the network. Weights are not being updated according

to the STDP rules, but they are uniformly scaled up or down depending on

the activity level of the network.

• No input is being mapped onto the network. Weight values are scaled so that

their sum remains constant.

7.2.9 Closing statement

The obvious limitation of this thesis was the impossibility to implement all pro-

cesses which take place in the brain; the current state of the art technology is far

from allowing one to run a complete brain simulation, and we still do not fully un-

derstand how the brain works. Nevertheless, we achieved promising results by ex-

ploring the selected novel biologically-inspired mechanisms with the tools available

at the time. Our work included a highly interdisciplinary literature review, which

234 7. Conclusions and future work

we used as a guide for developing the consecutive iterations of a SNNs model with

STDP, optimising it using EA, and stabilising using homeostasis, and eventually

a whole biologically-inspired POE system which has provided substantive novel

evidence to support the hypothesis of this work.

We believe that the brain offers a multitude of learning and memory mecha-

nisms which have not yet been explored in ANNs. The key to benefiting from this

inspiration is finding the right level of abstraction. The Wright brothers’ plane was

inspired by the birds: not by the obvious flapping, but by the subtle aerodynamics

of the curvature and tilting of the wings. We believe the same approach can be taken

in SNN research and this thesis provides some of the first steps towards this goal.

8

Appendices

“Good science ends when you become more attached to your solution

than to the problem.”

– Lana Sinapayen, 2018 [392]

The appendices contain additional details of the experiments in the main body

of the thesis, but also results of some preliminary explorations with methodology

which differs from the main body of the thesis. Implementation of some of the pre-

liminary experiments differed in details such as neuron model, network architecture

etc, from the main experiments. Differences were described in each section.

Appendix A

Evolution with different criteria

A.1 Introduction
In the main body of the thesis, we explored evolution with different fitness defini-

tions (5.3.3). We defined fitness as the ability of the networks to capture spatial or

temporal features, or their average. We found that fitness definition had a limited

impact on the scores, and that scores in all categories were always increasing. How-

ever, during our preliminary experiments, we found a contrary behaviour, where

improvement on fitness-related task was correlated with performance decrease on

fitness-unrelated task. In the appendix, we described our preliminary findings, dis-

cussed how the methodology differed from the main body of the thesis, and what

could cause the opposite conclusions.

A.2 Experimental design
We used the exponential leaky integrate-and-fire (eLIF) neuron model

τ
dV
dt

=−(V −Vrest)+∆t · exp(
(V −Vspike)

∆t
)+R · I (A.1)

Where V is membrane potential at a given time point, Vrest is resting membrane

potential, Vspike is firing threshold, I is the injected current, R is resistance, τ is the

membrane time constant.

Electrophysiological parameters were based on biological reports and listed in

table A.1.

238 Appendix A. Evolution with different criteria

Table A.1: Electrophysiological properties of the neurons. Values were calculated based
on data reported in the NeuroElectro database [393]; excitatory values were based on the
medial entorhinal cortex III pyramidal cells and inhibitory neurons on the hippocampal CA3
interneurons.

Feature Excitatory Inhibitory
resting potential [mV] -63.70, SD=5.54 -59.3, SD=10.7
firing threshold [mV] -45.80, SD=7.49 -33.3, SD=NA
resistance [mΩ] 67.70, SD=71.32 133.3, SD=99.9
membrane time constant τ [ms] 16.70, SD=8.47 36.5, SD=12.8

Each network was composed of 500 input neurons, 50 hidden neurons and 10

output neurons. Weights were initialised with values between 0 and 1, and their

plasticity restricted to values 0 to 4.

Four STDP weight update rules were defined.

1. For pairs of neurons where the presynaptic neuron is inhibitory and postsy-

naptic excitatory, if the target neuron fires within the same iteration, an iter-

ation before or after the inhibitory neuron, the connection between them is

strengthened by 50%.

2. When a neuron and its target fire within the same iteration, the synaptic

weight is doubled.

3. If the target neuron fires one iteration after the presynaptic one, their synapse

is strengthened by 10%.

4. If the postsynaptic neuron fires but the presynaptic does not, the synaptic

weight between them is decreased by 70%.

One training cycle consisted of 20 patterns, each being shown for five frames. The

data set used was a subset of the shapes data set, mapped one frame per 1 ms time

step.

We used an EA with rules more complex than in the main thesis. A population

of 12 networks was evolved for 10 generations (number of repeats = 5). Evolution

acted on the learning hyperparameters: LTP, inhLTP, LTD and weight scalar. The

A.2. Experimental design 239

Table A.2: Model hyperparameters used in experiment 1. Some parameters were modified
in later experiments (see experimental design section).

Neural networks
input neurons 500
hidden neurons 50
output neurons 10
Training and testing set-up
frames per training input 10
inputs per training cycle 20
frames per testing input 50
inputs per testing cycle 16
time step 0.02 s
SOM
Number of nodes (nn) 9
Training iterations 200
alpha 0.05, 0.01
Electrophysiological parameters
Feature Excitatory Inhibitory
resting potential [mV] -63.70, SD=5.54 -59.3, SD=10.7
firing threshold [mV] -45.80, SD=7.49 -33.3, SD=NA
resistance [mΩ] 67.70, SD=71.32 133.3, SD=99.9
membrane time constant τ [ms] 16.70, SD=8.47 36.5, SD=12.8
Evolution constraints

min max
LTP 0.001 0.1
inhibitory long-term potentiation (inhLTP) 0.001 0.1
LTD 0.001 0.1
discharge 0.06 5.0

first three parameters were determining the size of the STDP update; weight scalar

was a multiplier of all weights, identical for all weights. Evolutionary fitness was

defined as precision of input clustering by the SNN–SOM stack. Each SOM had 9

nodes. Parameters such as the number of training iterations and alpha were selected

based on our preliminary experiments and were kept constant during SNN develop-

ment and subsequent testing of the selected neuroscientific concepts. SOM training

was not a part of SNN optimisation.

During testing, fitness was established using a set of sixteen patterns containing

all possible combinations of shape and direction, then by creating a SOM with

spiking activities of the SNN in response to each pattern, and calculating clustering

precision of each network.

From the second generation onwards, next generation was created based on the

fitness of the SNNs from the previous generation. The top third of the networks was

used to populate the next generation in one of three ways:

240 Appendix A. Evolution with different criteria

1. The parent was retained. Both the learning hyperparameters and weights re-

mained the same (the latter required the child not to undergo training between

its creation and fitness assessment).

2. The hyperparameters remained the same but the child underwent a round of

training thus potentially changing its weights.

3. One of the four hyperparameters was mutated and the child underwent train-

ing in order for the change of the learning parameters to influence the weights.

The size of mutation was determined as

m =
x

generation
(A.2)

where in x = 0.05 to balance the size of the change in all generations with the

range of the values each parameter can take (range for all is ≈ 1, based on earlier

experiments, the smallest meaningful change is ≈ 0.001). The direction of the

change was selected randomly. New values were not bound by the initial parameter

value constraints listed in table A.2.

If any of the organisms in the best third of the population had fitness lower than

50 (lower than an average randomly-generated organism, but still above random

guess), it was removed from the genetic pool and the slots which would belong to

its three children were initialised with different random values instead.

The division into the three above categories was chosen to

1. Preserve good solutions and test them on a new data set to see if the organisms

could generalise.

2. Retain fit hyperparameters while taking advantage of the possibility of train-

ing improving the fitness even further.

3. Explore the hyperparameter space in the neighbourhood of fit solutions.

Networks with precision scores below 45% were destroyed and replaced with new

randomly created networks.

A.3. Results 241

As the hyperparameters affected the SNNs only during training, training had

to take place here, and it was not possible to test different hyperparameters but the

same weights.

We defined evolutionary fitness as either the ability to cluster the inputs by

spatial features (shape), temporal features (movement direction) or the average of

the two. We analysed the model’s precision, weights, and firing activity. The student

t-test was used to compare the results.

A.3 Results
First, we analysed networks with fitness defined as clustering inputs by movew-

ment direction. The precision of clustering inputs by movement direction slightly

increased during evolution and was 45.5%, SD = 1.19 in generation 0, and 47.75,

SD = 3.35 in generation 9 for the best network (p = 0.193, fig. A.1, table A.3).

Average precision was 39.23%, SD = 0.81 in generation 0, and 44.60%, SD = 1.44

in generation 9 (significant increase, p = 0.000).

Precision of clustering inputs by shape was higher, but it decreased during

evolution. Best network reached 46.5%, SD = 3.35 in generation 0, and 42.75%,

SD = 3.35 in generation 9 (p = 0.115). On average, precision of clustering by shape

was 40.31%, SD = 2.24 in generation 0, and 40.31%, SD = 1.33 in generation 9.

Synaptic weight average increased above the initialisation range (0 to 1) within

the first generation, indicating rapid STDP-induced weight strengthening (fig. A.2

A). Weight average showed slight fluctuation but remained relatively stable through-

out evolution, but the range increased. The proportion of silent synapses increased

slightly (fig. A.2 B) from 0, SD=0.0 in generation 0 to 0.05, SD=0.11. Proportion of

saturated synapses increased from 0.36, SD=0.23 in generation 0 to 0.44, SD=0.26

in generation 9 (fig. A.2 C).

Spiking activity in the input layer was consistent throughout evolution, but the

activity of neurons in the hidden and output layer had significantly decreased (fig.

A.3).

When fitness was defined as the precision of input clustering by shape (fig.

242 Appendix A. Evolution with different criteria

A.1, left column, and table A.3), we observed no significant changes in clustering

precision for both direction and shape. Similarly, when fitness was defined as the

average precision on both tasks (fig. A.1, right column, and table A.3), precision

did not change significantly.

For all definitions of fitness (as movement-direction-clustering in experiment

3; as shape-clustering and as average in this experiment), precision was higher for

clustering by shape than by movement direction. Within 10 generations, slight im-

provements were observed for all types of clustering when fitness was defined as the

precision of clustering by shape and as average precision of clustering by direction

and shape. This is in contrast with our previous observations where an increase in

fitness (defined as movement direction clustering) was associated with a decreased

performance on the other (shape-clustering) task.

This difference in how fitness definition affects performance on the fitness-

unrelated task can be made consistent by comparing how much the fitness changed

during evolution. In set-ups where fitness did not change significantly, there was

no significant change on the fitness-unrelated task. Overall, fitness defined based

on movement direction clustering is the only one associated with a significant im-

provement during evolution; it is also the only one associated with a significant

performance decrease on the fitness-unrelated task.

A.4 Discussion

We demonstrated how the selection of a fitness measure affected the performance

of the networks on both fitness-related and unrelated task. Fitness defined as the

precision of clustering inputs by movement direction lead to improved performance

on this task but decreased the precision of shape-clustering. Conversely, fitness de-

fined as the precision of clustering inputs by shape, and as the average precision

achieved on both tasks did not lead to a significant improvement in performance on

those tasks, but performance on the non-fitness-related task remained stable as well.

This precision data showed that fitness defined as clustering inputs by movement di-

rection had a stronger evolutionary impact and lead to learning, and that the ability

A.4. Discussion 243

fitness: direction fitness: shape fitness: average
a)

di
re

ct
io

n
b)

sh
ap

e
c)

av
er

ag
e

Figure A.1: Relation between fitness definition and clustering precision: evolutionary fit-
ness was defined as the performance on the shape-clustering task (left column) and average
precision of clustering inputs by shape and movement direction (right column). Precision
of clustering inputs by movement direction (a), shape (b) and average precision (c) were
calculated for both evolutionary approaches. A population of 12 networks was evolved for
10 generations. N = 5.

Table A.3: Relation between fitness definition and clustering precision: evolutionary fitness
was defined as either performance on the movement-clustering task, shape-clustering task
or average of the two. The table lists the average precision of the best networks in the
population.

Fitness measure Clustering task
Direction Shape Average

Direction
generation 0 45.5, SD=1.19 46.5, SD=3.35 46.0, SD=2.27
generation 9 47.75, SD=3.35 42.75, SD=3.35 45.255, SD=3.35
Shape
generation 0 44.97, SD=1.43 48.13, SD=2.93 46.55, SD=2.19
generation 9 46.75, SD=2.63 49.00, SD=2.40 47.89, SD=2.52
Average
generation 0 45.63, SD=1.17 48.50, SD=2.05 47.0, SD=1.61
generation 9 46.63, SD=2.24 49.69, SD=5.51 48.16, SD=3.88

244 Appendix A. Evolution with different criteria

(A) Average weight values. (B) Proportion of silent synapses.

(C) Proportion of saturated synapses.

Figure A.2: Analysis of synaptic weights. Median is marked on each box; error bars
indicate SD. A population of 12 networks was evolved for 10 generations. N = 5.

to perform fitness-unrelated tasks may be negatively correlated with fitness. This

preference for movement suggested that the model had features required for pro-

cessing time-series data, but mights have lacked features necessary to distinguish

spatial patterns (shapes which do not change).

As stated earlier, these findings were contradicting findings from chapter 5.

The comparison and identification of the key reasons was not straightforward given

the numerous differences in the methodology. Given the consistency of the findings

(more preliminary experiments were performed and eventually not included in the

thesis, with the stripes and shapes data sets), we found it important to at least discuss

the potential reasons the discrepancies.

Some of the key factors would be how fitness was defined, what was inherited,

and how it affected the networks. In the main thesis, fitnes was based on Euclidean

distance based scores, a direct readout of the spike train distances; networks in-

herited Learning parameters affecting STDP function based on literature. Here,

A.4. Discussion 245

(A) Input layer. (B) Hidden layer.

(C) Output layer.

Figure A.3: Analysis of spiking activity. Median is marked on each box; error bars indicate
SD. Population of 12 networks was evolved for 10 generations. N = 5.

fitness was based on SNN–SNN performance. An indirect measure of changes in

the networks, dependent on SOM training and parameters. The networks inherited

learning parameters affecting a custom STDP function. Additionally, they also in-

gerited architecture. This meant inheriting the history of the networks, as shaped

by previous parameter values and multiple STDP training iterations, and lead to a

silencing activity drift. In contrast to the main thesis, the networks also showed a

preference for clustering of the temporal rather than spatial features.

Based on the above, our hypothesis would be that there was a difficulty mis-

match between the temporal and spatial tasks. The protocol used in the appendix led

to a better performance on temporal tasks, even prior to evolution. When temporal

tasks were used as the fitness metric, we saw an improvement. However, the same

training protocol could be insufficient for the harder task. Consequently it would be

harder for evolution to improve performance via the survival of the fittest if training

did not create reliably and reproducibily fitter organisms.

246 Appendix A. Evolution with different criteria

Architectural inheritance could also be a factor. These could include factors

beneficial for temporal feature recognition or detrimental for spatial feature recog-

nition. To confirm this hypothesis, further experiments on the developed activity

patterns and spike train distances in the networks with and without architectural

inheritance would have to be performed.

Data set and task definition itself are also key factors in how fitness improve-

ment may affect performance on other tasks. In summary, a holistic assessment of

multiple factors related to tasks definition, training and evolution would be needed

to assess what dynamics other future set ups would be likely to display.

Appendix B

Implementation of different STDP

functions

STDP function determines the dynamics of weight changes. In our preliminary

experiments, we observed weight drift, including both saturation and silencing of

synapses. The weight drift prevented us from performing longer evolutionary ex-

periments (data not published). Weight drift became more pronounced with time,

thus limiting the number of training epochs and evolutionary generations the net-

works can experience while still learning. In this chapter, we asked whether simply

changing the STDP function could alleviate the problem. We tested different STDP

functions and analysed their effects on weights, especially weight silencing and

saturation.

B.1 Methods: Implementation of different STDP

functions
STDP function described in A.2 was used in the preliminary experiments showing

both saturating and silencing weight drift. ∆w was a function of both the time

difference and the original weight value w. When describing the results, we refer to

this approach as ”baseline”.

Here, we also adapted the classical STDP function as described in [165]. When

describing the results, we refer to this approach as STDP 1. Parameters Apre and

Apost which determine the learning rates in the original equation were replaced with

248 Appendix B. Implementation of different STDP functions

our learning hyperparameters ALT P, ALT D, and a separate equation with parameter

AinhLT P was developed for inhibitory neurons.

For excitatory neurons:

∆w =

ALT P · exp(−

tpost− tpre

b1
), if tpost > tpre (B.1)

ALT D · exp(−
tpre− tpost

b2
), if tpost < tpre (B.2)

The equation B.1 described synaptic strengthening if the postsynaptic neuron

fired after or at the same time as the presynaptic neuron, whereas the equation B.2

describes synaptic weakening for pairs of neurons with a reversed spiking order.

For inhibitory neurons:

∆w = AinhLT P · exp(−
|tpost− tpre|

bs1
) (B.3)

where tpre and tpost are the times of the most recent action potentials in the presy-

naptic and postsynaptic neuron, respectively. The constants b1 and b2 regulate the

decay rate, and had values equal to b1 = 16.8 [ms] and b2 = 33.7 [ms], as reported

in [313].

According to this approach, ∆w was a function of the time difference and not

the weights. This was in contrast to the baseline approach.

We also modified the above equation to tie the weight update to the weight

value. In this case, weight delta described in equations B.1, B.2 and B.3 was mul-

tiplied by the current weight. When describing results, we refer to this approach as

STDP 2.

A population of 12 networks was evolved for 10 generations. The experiment

was performed as described in the previous section A, with accuracy defined as

performance of the SNN–SOM stack.

B.2. Results: Effects of STDP functions on model’s behaviour 249

B.2 Results: Effects of STDP functions on model’s

behaviour
As confirmed by our previous experiment, weight values, the number of spikes and,

consequently, the precision of our model all decreased with time. In this experiment,

we examined if different STDP weight update rules can alleviated the problem of

weight drift.

Over the 10 generations, we did not observe a significant increase in the av-

erage weight value in networks with the classical STDP equation (“STDP1”), but

observed an increase in weight variability (from 1.92, SD = 0.79 to 2.26, SD =

1.10, p = 0.058) and baseline (from 2.37, SD=0.94 to 2.40, SD = 1.23, p = 0.871).

However, we observed a significant decrease for the classical function with mul-

tiplicative weight update (“STDP2”) (from 2.09, SD = 0.82 to 1.74, SD = 0.96, p

= 0.035). Counterintuitively, networks with STDP1 had a significantly higher pro-

portion of silent synapses (0.19, SD= 0.1 in the last generation) than networks with

STDP2 (0.00, SD = 0.02, p = 0.00) and baseline (0.05, SD = 0.12, p = 0.00).

A significant increase in the proportion of saturated synapses was observed

with STDP1 (p = 0.00) from 0.09 (SD = 0.09) to 0.27 (SD = 0.23). Other increases

were not significant; for STDP2 (p = 0.307) from 0.23 (SD = 0.20) to 0.28 (SD =

0.26), and for the baseline (p = 0.08) from 0.36 (SD = 0.23) to 0.44 (SD = 0.26).

In all cases, we observed a significant decrease in the spiking activity of the hidden

and output layers.

A decrease in the precision of clustering inputs by movement direction and

shape was observed when using the classical STDP1 equation and its modifica-

tion STDP2 (fig. B.1), but a significant improvement was observed in the baseline

STDP.

These results showed that the choice of STDP function alone significantly af-

fected the activity of the network. A significant decrease in spiking was observed

in all test conditions, including those where the average weight values increased

with time. Fitness increased only in networks with our baseline STDP rules. These

findings suggested that our initial definition of STDP rules may be the most suitable

250 Appendix B. Implementation of different STDP functions

(A) Average weight values. (B) Proportion of silent synapses.

(C) Proportion of saturated synapses.

Figure B.1: Effects of STDP function on synaptic weights. A population of 12 networks
was evolved for 10 generations. N = 5. Median is marked on each box; error bars indicate
SD.

for the model, but the problem of weight drift remains to be solved.

B.3 Summary
To overcome the weight drift problems, we compared three STDP functions and

tested their effects on the behaviour of the networks. The tested STDP functions

lead to a different pattern of changes in the average weight values, the proportion of

silent and saturated synapses. However, none of the tested STDP functions was able

to prevent the weight drift. A more in depth and systematic study on how individ-

ual STDP design decisions (function shape, symmetry, additive vs multiplicative

update) affect the networks and with what sensitivity would be useful. We con-

cluded that irrespective of the STDP function choice, further work on parameter

optimisation and homeostatic mechanisms was required.

B.3. Summary 251

(A) Input layer. (B) Hidden layer.

(C) Output layer.

Figure B.2: Analysis of spiking activity. A population of 12 networks was evolved for 10
generations. N = 5. Median is marked on each box; error bars indicate SD.

252 Appendix B. Implementation of different STDP functions

(A) Movement direction. (B) Shape.

(C) Average.

Figure B.3: Fitness of the model with defferent STDP functions. A population of 12 net-
works was evolved for 10 generations. N = 5. Error bars indicate SD.

Appendix C

Other clustering methods

Clustering algorithms developed for static data are used for analysing time series

data because of the wide availability of their implementations and the speed of data

processing [394]. In the thesis, we adapted a conventional clustering algorithm,

SOM to process the output vectors of our SNNs. However, to take the full advan-

tage of the temporal properties of SNNs, we decided to test clustering algorithms

developed specifically for time series data.

Dynamic time warping (DTW) is one of the most popular methods for cal-

culating distances between time series data; it calculates the optimal non-linear

alignment between pairs of series. DTW is particularly suitable when the timing

or tempo differ between series: it is an elastic measure, and a single point in one

series can be matched with multiple or no time points in the other series. DTW is a

shape-based method and is suitable for short time series.

In addition to the SOM and DTW clustering methods that we were specifically

interested in, we took advantage of the existing packages to automatically test a

broader range of popular clustering algorithms (all described in [395]):

• K-means: an iterative method which minimises the sum of squares for a given

number of clusters;

• partitioning around medoids (PAM): a technique similar to k-means but con-

sidered more robust due to use of additional dissimilarity measures;

• Clara: an algorithm which implements PAM on several sub-datasets; it runs

254 Appendix C. Other clustering methods

faster than PAM on large datasets;

• unweighted pair group method (UPGM): an agglomerative hierarchical al-

gorithm generating a dendrogram. Initially, each observation is placed in a

separate cluster, and then clusters are successively merged;

• Diana: a divisive hierarchical algorithm which initially places all observations

in a single cluster;

• Fanny: an algorithm with fuzzy clustering where each observation can belong

to multiple clusters;

• model-based: a statistical model which fits a mixture of Gaussian distribu-

tions to the data. Each component of the mixture represents a cluster;

• self-organising tree algorithm (SOTA): an algorithm with a divisive hierarchi-

cal binary tree structure.

C.1 Experiment description
To identify clustering algorithm which would be most suitable for the analysis of

an SNN model, we analysed internal clustering quality of 10 clustering algorithms;

dataset included 80 samples of spiking patterns labelled based on movement di-

rection used as the input data. Algorithms PAM, UPGM, Diana, k-means, SOTA,

model-based, Clara and Fanny were analysed using the clValid package for R [395].

These algorithms were implemented using the default settings. Additionally, we

wrote an extension of the package to analyse clustering quality of SOM with the

previously selected parameters, and DTW [396, 397], which was not included in

the ClValid package. We tested set-ups with the number of clusters between 4 and

12.

We analysed the internal coherence of the clusters using three commonly used

measures [395]:

• Connectivity: it identifies each point’s nearest neighbour and checks if these

two points belong to the same cluster. It takes values between 0 and infinity,

C.2. Results 255

and should be minimised.

• Silhouette width: a function of average distances between an observation i

and other observations in the same cluster, and of average distance to obser-

vations in the nearest neighbouring cluster. It takes values between -1 and 1,

and should be maximised.

• Dunn index: a ratio of the smallest distance between observations not belong-

ing to the same cluster and the largest intra-cluster distance. It takes values

between 0 and infinity, and should be maximised.

Otherwise the experimental set up was as described in the previous appendices. As

a reminder, the shapes data set used was composed of 80 items.

C.2 Results
SOM is a classical clustering algorithm, and it was our first algorithm of choice

when we created the model. We designed an experiment to review this choice and

compare it against several other clustering algorithms, including algorithms explic-

itly designed for time-series data.

Clustering quality achieved using SOM and DTW was consistently better or

comparable to that of the other eight algorithms (tables C.1, C.2 and C.3, fig. C.1).

SOM and DTW had a lower non-convergence rate than the other algorithms. How-

ever, connectivity index of SOM was more stable than connectivity index of DTW;

SOM had the best connectivity index value for all clustering tests with 7 or more

clusters. Performance of SOM and DTW measured using Dunn’s index depended

on the number of clusters and no clear favourite could be identified. DTW had more

favourable silhouette measure for most clusters. Overall, it was not clear whether

SOM or DTW performed better. Based on all cluster quality measures, 7 clusters

may be preferred for SOM, and 10 for DTW.

C.3 Summary
We tested ten clustering algorithms, including the DTW algorithm explicitly de-

signed for time-series data. We concluded that both SOM and DTW were suitable

256 Appendix C. Other clustering methods

Figure C.1: Internal validation of SOM and DTW clustering algorithms.

for clustering of the spiking patterns produced by our model.

C.3. Summary 257

Ta
bl

e
C

.1
:C

lu
st

er
in

g
qu

al
ity

an
al

ys
is

:c
on

ne
ct

iv
ity

(t
o

be
m

in
im

is
ed

)

N
um

be
ro

fc
lu

st
er

s
4

5
6

7
8

9
10

11
12

SO
M

12
.4

6
15

.8
0

17
.3

0
17

.3
0

17
.3

0
15

.8
0

19
.2

9
19

.3
0

19
.3

0
D

T
W

8.
79

11
.7

2
14

.6
4

17
.5

7
20

.5
0

23
.4

3
26

.3
6

29
.2

9
32

.2
2

PA
M

14
.3

0
15

.8
0

17
.3

0
19

.3
0

22
.2

3
25

.1
5

28
.0

8
31

.0
1

33
.9

4
U

PG
M

13
.5

9
15

.4
6

17
.3

0
19

.2
9

22
.5

8
25

.6
6

28
.5

0
31

.0
0

33
.0

0
D

ia
na

13
.4

4
13

.4
4

17
.3

0
19

.3
0

22
.2

3
86

.1
5

11
8.

08
13

9.
18

15
4.

78
k-

m
ea

ns
15

.8
0

15
.8

0
17

.3
0

19
.3

0
N

A
N

A
N

A
N

A
N

A
SO

TA
14

.3
0

17
.3

0
17

.3
0

19
.3

0
N

A
N

A
N

A
N

A
N

A
m

od
el

-b
as

ed
14

.3
0

17
.3

0
19

.3
0

N
A

N
A

N
A

N
A

N
A

N
A

C
la

ra
14

.3
0

15
.8

0
17

.3
0

19
.3

0
22

.2
3

25
.1

5
28

.0
8

31
.0

1
33

.9
5

Fa
nn

y
14

.3
0

15
.8

0
17

.3
0

19
.3

0
N

A
N

A
N

A
N

A
N

A

258 Appendix C. Other clustering methods

Table
C

.2:
C

lustering
quality

analysis:dunn
(to

be
m

axim
ised)

N
um

berofclusters
4

5
6

7
8

9
10

11
12

SO
M

0.85
0.96

1.20
1.20

1.20
0.96

inf
inf

inf
D

T
W

0.80
1.17

1.00
0.83

1.06
0.89

2.00
inf

N
A

PA
M

0.85
0.96

1.20
inf

N
A

N
A

N
A

N
A

N
A

U
PG

M
0.85

0.96
1.20

inf
N

A
N

A
N

A
N

A
N

A
D

iana
0.85

0.96
1.20

inf
N

A
N

A
N

A
N

A
N

A
k-m

eans
0.85

0.96
1.20

inf
N

A
N

A
N

A
N

A
N

A
SO

TA
0.85

0.85
1.20

inf
N

A
N

A
N

A
N

A
N

A
m

odel-based
0.85

0.70
0.70

N
A

N
A

N
A

N
A

N
A

N
A

C
lara

0.85
0.96

1.20
inf

N
A

N
A

N
A

N
A

N
A

Fanny
0.85

0.96
1.30

inf
N

A
N

A
N

A
N

A
N

A

C.3. Summary 259

Ta
bl

e
C

.3
:C

lu
st

er
in

g
qu

al
ity

an
al

ys
is

:s
ilh

ou
et

te
(t

o
be

m
ax

im
is

ed
)

N
um

be
ro

fc
lu

st
er

s
4

5
6

7
8

9
10

11
12

SO
M

2.
12

1.
51

2.
21

4.
42

4.
01

2.
04

3.
70

3.
36

5.
74

D
T

W
2.

60
2.

95
3.

89
4.

51
4.

52
5.

51
5.

15
5.

48
5.

79
PA

M
0.

95
0.

95
0.

95
0.

95
0.

15
0.

15
0.

15
0.

15
0.

15
U

PG
M

0.
86

0.
93

0.
95

0.
95

0.
86

0.
86

0.
86

0.
86

0.
86

D
ia

na
0.

93
0.

93
0.

95
0.

95
0.

15
0.

15
0.

15
0.

15
0.

15
k-

m
ea

ns
0.

87
0.

95
0.

95
0.

95
N

A
N

A
N

A
N

A
N

A
SO

TA
0.

95
0.

95
0.

95
N

A
N

A
N

A
N

A
N

A
N

A
m

od
el

-b
as

ed
0.

95
0.

95
0.

94
N

A
N

A
N

A
N

A
N

A
N

A
C

la
ra

0.
95

0.
95

0.
95

0.
95

0.
15

0.
15

0.
15

0.
15

0.
15

Fa
nn

y
0.

95
0.

95
0.

95
0.

95
N

A
N

A
N

A
N

A
N

A

Appendix D

Evolution of developmental rules

“After reviewing the many shapes assumed by neurons, we are now in a

position to ask whether this diversity [...] has been left to chance and

is insignificant, or whether it is tightly regulated and provides an advan-

tage to the organism. [...] all of the morphological features displayed

by neurons appear to obey precise rules that are accompanied by use-

ful consequences. What are these rules and consequences? [...] all of

the various conformations of the neuron and its various components are

simply morphological adaptations governed by laws of conservation for

time, space, and material.”

– Santiago Ramon y Cajal, 1899 [261]

D.1 Introduction
Learning based on data gathered during an organism’s lifetime is only one time-

scale of brain’s optimisation for data processing. We can talk about this optimisation

in terms of three processes: evolution, development and life-long learning, also

referred to as phylogenetic, ontogenetic and epigenetic (POE) ([398]). They take

place at different but interconnected time-scales. It has been argued that all three

are necessary for intelligence to emerge ([140]).

POE processes lead to changes in the brain architecture in one of two direc-

tions: progressive, e.g. through neurogenesis and synaptogenesis ([399, 400]) and

regressive, e.g. through neuronal death and synaptic pruning ([214, 401]).

262 Appendix D. Evolution of developmental rules

Evolutionary origins of the brain are not clear - the brain is a soft tissue and

therefore less likely to be fossilised [402]. Based on the rare preserved specimens,

the emergence of the central nervous system has been traced back to more than 500

million years ago [403]. Our neuro-evolutionary knowledge is largely limited to

the volume and major structures of the brains. Even less is known about noogen-

esis, the emergence and evolution of learning and intelligence. The sparsity of the

evolutionary data forces us to rely on the comparative analysis of modern species.

However, no matter how many species we compare, they all emerged from the same

evolutionary process. Our sample size of evolutionary processes is equal to 1, which

is not something any scientist likes to rely on. Furthermore, brain evolution was re-

stricted by various spatial and metabolic constraints that are not directly relevant

when developing a data processing tool.

Neurodevelopment is a term traditionally used to describe creation, growth,

and patterning of the nervous system from embryogenesis until adulthood ([51]).

As the term “adulthood” is usually used to describe a stage after achieving full

body size or sexual maturity, it is not always possible to clearly identify this phase

in an artificial organism. After adult neurogenesis and connection pruning were

discovered, neurodevelopment is also used to refer to plastic processes in the adult

brain ([142]), making it harder to distinguish from what was traditionally referred

to as learning.

Pruning ([404, 405, 406]), neurogenesis ([407, 408]) and synaptogenesis

([406]) have previously been implemented in spiking neural network (SNN) mod-

els. Their joint implementations in spiking POE systems are uncommon, but such

models receive an increasing interest. In particular, evolved plastic artificial neu-

ral networks (EPANNs) ([409]), recreate evolution in silico to automatically create

and optimise learning agents. Unlike many other neuro-evolutionary approaches,

EPANNs aim to create plastic networks capable of continuous learning rather than

an optimised final product. This process can be further extended with an explicit

developmental mechanism, akin to artificial embryology ([230, 239, 369]).

The nervous system has to constantly adapt to the changes taking place dur-

D.2. Model description 263

ing development and learning to preserve its functionality. A few known mecha-

nisms may contribute towards homeostatic synaptic plasticity (HSP), both at global

([277]) and local ([278]) level. Synaptic scaling (SS) ([218]) has been suggested

to play an important role in maintaining the function of the brain during major ar-

chitectural changes. Spiking neural network (SNN) models lacking homeostasis

experience silencing and saturation, which impedes learning ([168, 171]). Some of

the SNN homeostasis implementations proposed stabilisation of the sum of weights

([165, 3]).

Here, we explored the neuroscience-inspired mechanism of structural plasticity

(recessive and progressive) in the context of evolution, development and learning.

We created a POE system to explore the use of evolution to indirectly develop SNN

architecture through optimising developmental rules. The use of evolutionary algo-

rithms offer an alternative to relying on the sparse evolutionary data and a history

of a single evolutionary process.

We hypothesised that a minimalistic evolutionary mechanism can be used to

develop progressive architectural growth rules for SNNs and that regressive mech-

anisms such as synaptic pruning are beneficial. It has been previously shown that

pruning lowers the computational cost and data required to train artificial neural net-

works ([219, 410]). The first goal of this chapter was to use the weight homeostasis

mechanism developed in chapter (6.3.1.2 and 6.3.2.2) and test whether it stabilised

networks with plastic architecture thus allowing us to train them. The second and

main goal of this chapter was to develop a model of the evolution of SNNs which

indirectly encoded networks’ developmental rules.

This work was published in [3] and [4].

D.2 Model description

D.2.1 Networks with regressive plasticity

The model was based on a population of feed-forward SNNs which evolved their

learning parameters. The networks were stabilised using a homeostatic mechanism

where the sums of excitatory and inhibitory synapses were kept constant (similarly

264 Appendix D. Evolution of developmental rules

to 6.3.1.2 and 6.3.2.2). Their sum was a function of the number of neurons in the

network which belonged to each category. SS [218] has been suggested to play an

important role in maintaining the function of the brain during major architectural

changes.

In this chapter, the model was extended by the addition of regressive plasticity

in the form of synaptic pruning. Pruning was implemented according to one of the

three approaches:

• Random: a constant proportion of connections was removed at random during

training. This approach was used to disrupt the networks.

• Synaptic-strength-dependent: connections whose weight values were below

a set threshold were removed during training, with the caveat that the number

of the pruned connections was capped to avoid a rapid network destabilisa-

tion and to allow the homeostatic mechanisms to adapt the network to the

architectural change gradually. In silico studies suggested that synaptogene-

sis followed by removal of weak connections improved network performance

[411].

• Synaptic activity-dependent pruning: connection were removed if a pair of

connected neurons did not fire within a given time-window. This approach

was inspired by the reports of coordinated firing protecting connections from

pruning [412, 413].

Additionally, connections were pruned only if the neuron would have at least one

input and output left after pruning; this was to allow a clearer interpretation of how

the removal of synapses (edges) affects the networks and to limit effects of neuron

(node) removal. The effects of neuron removal would be especially influential in

our model as the sum of weights is a function of the number of neurons.

D.2.2 Evolution of developmental rules

The main focus of this chapter was a model using an indirect encoding of genera-

tive rules to instruct the network’s development. This approach was reported to be

D.2. Model description 265

beneficial because a small genome can encode even a large network, and because

the solution space which evolution has to search is smaller [140].

An evolutionary approach was used to evolve networks’ growth rules. The

chromosome contained four genes:

• probability of neurogenesis;

• probability of forward synaptogenesis;

• probability of recurrent synaptogenesis;

• probability of horizontal synaptogenesis;

As probabilities, the values of these genes are constrained between 0 and 1. Neu-

rogenesis was restricted to the hidden layer; growing the input layer from scratch

would change the amount of information available to the networks, whereas chang-

ing the number of the output neurons would make it harder to reliably compare the

performance of the networks (which is based on clustering of the output vectors)

within and between generations. Extending neurogenesis to all layers would be

a valid and interesting approach, but during this project, we decided to focus on

the role of internal architecture, without changing the amount of input and output

information.

At the beginning of evolution, a population of networks was created, and their

weight and gene values were initialised with random values within the permitted

range. As described previously, networks are trained and tested using 20 x 25 pixel

binary bitmaps containing one of four geometric patterns: cross, ellipse, grid and

rectangle, with data set size being 80. From the second generation onward, next

generation was created based on the fitness of the SNNs from the previous gen-

eration. Networks were ordered according to their fitness (defined as the ability to

cluster the inputs by the movement direction), and the top fittest half of the networks

were used to populate the next generation as follows:

1. Parent A was selected from the top quarter of the networks and parent B from

the second top quarter. The parents’ genes remained the same.

266 Appendix D. Evolution of developmental rules

2. Parent A gave rise to a child-clone. In the child, one randomly selected gene

was mutated by adding or subtracting a value between 0.001 and 1.0. The

obtained new gene value was constrained to the 0 to 1 range.

3. Parents A and B gave rise to a child who inherits a combination of their

genes. The gene combination was created using a randomly selected cross-

over point; the beginning of the chromosome up to the cross-over point came

from one of the parents (A or B at random), the rest from the other parent.

This approach was based on our preliminary experiments, and selected for its suit-

ability to both preserve best phenotypes and provide a source of novelty throughout

the evolution. If the fitness of parent A was lower than 40% (lower than an aver-

age randomly-generated organism, but still above random guess), population slots

assigned to the parent A, parent B (which by default had an even lower fitness) and

their children were re-initialised.

The proposed encoding of growth rules was indirect and minimalistic; it was

likely to lead to the creation of networks with the same genome developing differ-

ent architectures. If only the chromosomes were inherited, evolution would select

growth rules which most reliably created fit networks but did not necessarily create

similar architectures.

The current agreement is that the brain’s architecture is indirectly encoded in

the genome; this encoding is far more detailed than our four-gene one. The mush-

room body (MB) has clearly defined neuronal types and rules on connections be-

tween the types, but connections between individual neurons are non-deterministic,

and odour encoding by the individual MB output neurons differs between animals

[205, 204]. Data suggests that these differences arise in response to experience

[205].

Despite its indirectness, it reliably encodes core architectural features; chil-

dren have brain structures similar to their parents, and the key features of the brain

architecture are passed down the evolutionary tree. The development of brain struc-

tures which evolved to deal with types of tasks a given organism type is likely to

encounter in a given ecological niche lowers the requirement for experience-based

D.3. Experimental design 267

learning an organism needs to perform during its life-time. In our model, we ap-

proximated this inheritance of experience without increasing the complexity of our

genome by making the children inherit architecture of one of their parents.

This model also included regressive plasticity in the form of synaptic-strength-

dependent synaptic pruning described above.

D.3 Experimental design

D.3.1 Regressive architectural plasticity

D.3.1.1 Experiment 1: Random pruning

The first goal was to test whether weight homeostasis developed in chapter 6 en-

abled us to work with networks with plastic architectures. Consequently, we tested

how keeping the sums of excitatory and inhibitory neurons constant affected per-

formance of networks with changing connectomes.

We destabilised the networks by pruning random connections. To better un-

derstand the relationship between pruning and normalisation, we did not use the

evolutionary approach: survival of the fittest would alleviate the effects of prun-

ing. Instead, a population of 200 networks was initialised and observed for several

training and testing cycles. A cycle was defined as follows:

1. prune a proportion (1% or 5%) of synapses at random;

2. train the networks;

3. normalise the connections. Normalisation of the sum of excitatory and in-

hibitory synapses was used (experiment 2, subsection 6.3.2.2).

4. test the networks.

This cycle was repeated 20 times, meaning that the networks underwent the same

number of training cycles they would during 20 evolutionary generations and the

results can more easily be compared with the experiments described earlier in the

previous chapter.

268 Appendix D. Evolution of developmental rules

D.3.1.2 Experiment 2: Conditional pruning

We hypothesised that pruning of connections in SNNs with weight homeostasis

would create smaller networks without the loss of precision. We examined two

approaches:

• synaptic strength-dependent pruning. Synapses were pruned if they were

weaker than 0.01;

• synaptic activity-dependent pruning. Synapses were pruned if the pair of neu-

rons did not fire together during a whole training session (200 frames).

During preliminary experiments, other hyperparameters were tested (weight values

of 0.05 and 0.001, and time-windows of 10 and 50 iterations), and guided the above

hyperparameter choice as leading to gradual network pruning. For synaptic activity-

dependent pruning, we selected a time-window that was short enough to allow grad-

ual pruning during each organism’s life, and long enough to provide representative

information about the firing of each neuronal pair. For synaptic strength-dependent

pruning, we selected to prune weights that fell within the weakest 0.5% of the initial

weights (which were initialised at random in the range 0-2). No more than 1% of

weights were pruned per training sub-cycle (one shape moving for 10 frames) to

create a gradual pruning process, and to allow weight homeostasis to re-balance the

remaining weights.

Details of control network training, testing and evolution are as described in

sections 6.2 and 6.3.1.2, except for the number of evolutionary generations which

was increased to 200 (from 0 to 199) to allow sufficient time for architectural plas-

ticity. Test networks with synaptic pruning used one of two starting architecture

sources:

• the first generation (generation 0) of evolved control networks.;

• the last generation (generation 199) of evolved control networks.

The rationale between using these two architecture sources was to compare how

pruning affects the networks if it is applied to naive networks and is a part of their

D.3. Experimental design 269

training and evolution from the very beginning vs how pruning affects networks that

already underwent a period of training.

As previously, control networks were a subject to the survival of the fittest, with

the fittest third of the organisms used to repopulate next generation; fittest organ-

isms which had fitness lower than 0.45 were re-initialised. Pruned networks were a

subject of survival of the fittest, but they were not re-initialised if their fitness was

low to avoid repeated replacement of pruned architectures with fresh not-pruned

ones.

All networks kept the sums of excitatory and inhibitory connections constant,

as described in chapter 6.3.2.2. Network’s performance was stabilised using keep-

ing the sum of excitatory and inhibitory weights constant, as described in the previ-

ous chapter, in particular in subsections 6.3.1.2 and 6.3.2.2. We tested how pruning

affects the performance of the networks, their weight properties and spiking pat-

terns. Significance was calculated using the Kruskal-Wallis test. The goal was to

at least maintain the performance of the networks while decreasing their size, and

to understand how pruning connections in this complex system affects the weight

values.

D.3.2 Evolution of developmental rules

We hypothesised that an evolutionary approach can be used to develop growth rules

for SNNs, and that the ability to prune some of the inherited connections is benefi-

cial to the organism.

Learning hyperparameters were based on values evolved by the fittest networks

in our preliminary experiments, and set constant. The values were:

• weight scalar = 4.571

• ALT P = 0.052

• AinhLT P = 0.005

• ALT D = 0.033

270 Appendix D. Evolution of developmental rules

We initialised a population of 40 organisms, and let it evolve the growth hy-

perparameters over 200 generations. The networks were initialised with only one

hidden neuron connected to 50% of input and output neurons at random. The num-

ber of input and output neurons was as previously (500 and 10 respectively).

D.3.2.1 Experiment 3: Output encoding in sparse plastic networks

First, we examined which type of output encoding was suitable for sparsely con-

nected, plastic networks. As described in chapter 3.6.3 and shown in fig. 4.2, these

output vectors could be created at two levels of abstraction:

1. the sum of all action potentials at a given time point (collective firing);

2. a binary vector tracking each output neuron separately throughout the time

(individual firing).

We have previously shown there was no significant performance difference between

networks using collective vs individual firing patterns (fig. 4.22). As collective en-

coding was more computationally efficient, we used it in chapters 5 to 6. However,

here we hypothesised that individual encoding might provide more information in

sparsely connected, plastic network. To test this hypothesis, evolution was set up

as described above, and the test conditions differed only by the encoding of the

output activity vector. The output vectors were clustered using a self-organising

map (SOM) to give a performance score of the network. The score was used as a

measure of evolutionary fitness.

D.3.2.2 Experiment 4: Development of networks with architectural

inheritance

Next, we hypothesised that an evolutionary approach could be used to generate de-

velopmental rules for SNNs with hereditary architectures. Two populations of 40

network were evolved over 200 generations: one population with progressive archi-

tectural plasticity as described above, and one with the addition regressive plastic-

ity in the form of synaptic strength-dependent pruning described in section D.3.1.2.

Briefly, connections were pruned if they were weaker than 0.01. Output activity of

the networks was encoded as individual firing.

D.4. Results 271

We analysed their genotypes and phenotypes (the evolved architectures, activ-

ity and performance on the clustering tasks).

D.4 Results

D.4.1 Regressive architectural plasticity

D.4.1.1 Results 1: Random pruning

To test if weight normalisation could stabilise networks with architectural plasticity,

we destabilised networks by randomly removing a proportion of connections. Nor-

malisation was designed to keep the average weight values constant throughout the

experiment (fig. D.1 A). In both control and pruned networks, normalisation was

also associated with a significantly higher proportion of silent synapses (fig. D.1

B), and a significantly lower proportion of strong weights (fig. D.1 C) (p < 0.001

for all comparisons between normalised and the relevant control set-ups).

Weight differences translated into differences in the spiking patterns; the nor-

malised networks had an activity pattern significantly from their controls, irrespec-

tive of connection pruning (fig. D.2).

Normalisation lead to a significant fitness improvement in pruned networks

(fig. D.3, top row). For 1% pruning, fitness of the normalised networks was 52.1%

(standard deviation (SD) = 0.05), whereas fitness of the pruned networks without

normalisation was 45.8 (SD = 0.01, p = 0.001). Similarly, for 5% pruning, fitness

of the normalised networks was 51.9% (SD = 0.03), and fitness of the pruned net-

works without normalisation was 46.5 (SD = 0.02, p = 0.001). Fitness of the pruned

networks improved with time if their weights were normalised, and decreased in

the absence of normalisation. Fitness of the pruned networks with normalisation

was not significantly different from the fitness of their normalised controls without

pruning. These results demonstrate that normalisation rescued fitness of the pruned

networks.

Differences in performance on the shape-clustering task were less pronounced,

and were significant only between normalised control without pruning (con-

trol norm) and pruned networks without normalisation (p = 0.03 for both 1% and

272 Appendix D. Evolution of developmental rules

(A) Average weight values. (B) Proportion of weights equal 0.

(C) Proportion of weights ≥ 4.

Figure D.1: Experiment 1: Analysis of synaptic weights in networks with synaptic pruning.
Median is marked on each box; error bars indicate SD.

(A) Hidden layer. (B) Output layer.

Figure D.2: Experiment 1: Analysis of spiking activity in networks with synaptic pruning.
Median is marked on each box, error bars indicate SD and dots mark the outliers.

D.4. Results 273

M
ov

em
en

td
ir

ec
tio

n
Sh

ap
e

Av
er

ag
e

]

Figure D.3: Experiment 1: Precision of networks with synaptic pruning. Left columns
shows precision changes throughout at all training cycles; right column shows results of the
first and last cycle for the ease of comparison. Pruning was performed per round, leading
to the final loss of 19% and 66% of synapses in networks with 1% and 5% pruning rate,
respectively. Clustering inputs by movement direction was the measure of evolutionary
fitness. Markers show mean best score of the population, bars show SD.

5% pruning).

Overall, the above results suggested that even simple normalisation methods

based on maintaining a constant sum of neuron type-specific weights achieve highly

promising results in networks with simple plastic architectures. Normalisation was

able to stabilise spiking pattern and rescue fitness.

274 Appendix D. Evolution of developmental rules

D.4.1.2 Results 2: Conditional pruning

We tested five different set-ups: control SNNs (“ctr”), SNNs with synaptic

strength-dependent pruning using control architecture from generation 0 and 199

(“prune weak” and “prune weak2”), and synaptic activity-dependent pruning using

control architecture from generation 0 and 199 (prune unused and prune unused2).

Pruning did not have a significant effect on fitness (fig. D.4, top row, and table D.1).

In both generation 0 and 199, fitness differences between the control and test cases

were not significant (p = 0.46, and p = 0.99 respectively). Fitness of all networks im-

proved with time. However, significant improvement between generation 0 and 199

was observed only in prune weak (57.38%, SD = 3.7 in generation 0; 64.0%, SD =

8.1 in generation 199, p = 0.01) and prune unused (56.38%, SD = 4.19 in generation

0; 63.61%, SD = 7.72 in generation 199, p = 0.009). Significant improvement was

observed in the control during early evolution (generations 0 to approx. 85), but

this was followed by a decrease in fitness. Therefore, networks which were pruned

throughout their whole evolution (prune weak and prune unused) had the highest

fitness in generation 199, and showed the most consistent improvement over time.

The performance difference between the control and test networks on the shape

clustering task was not significant (p = 0.33 for generation 0, and p = 0.77 for gen-

eration 199) (fig. D.4, middle row, and table D.1). We observed a decrease in

performance on the shape clustering task. This decrease in performance was sig-

nificant for prune weak (49.8%, SD = 2.4 in generation 0; 41.3%, SD = 2.9 in

generation 199, p = 0.003) and prune unused2 (48.8%, SD = 0.0 in generation 0;

46.7%, SD = 2.0 in generation 199, p = 0.05). Prune weak had the highest average

fitness throughout evolution; it had the highest performance on the shape-clustering

task in generation 0, but the lowest in generation 199 (8.5% decrease). These re-

sults suggest that pruned SNNs develop task-specific activity under evolutionary

pressure, and that performance on the fitness-related task comes at the expense of

their ability to learn other tasks. These findings are consistent with our previous

observations in networks without pruning (table 6.3).

To better understand how pruning affects the properties of the networks, we

D.4. Results 275

M
ov

em
en

td
ir

ec
tio

n
Sh

ap
e

Av
er

ag
e

]

Figure D.4: Experiment 2: Precision of networks with different pruning mechanisms. Five
set-ups were tested: network evolution in the absence of pruning (“ctr”), synaptic weight-
dependent pruning initialised with architecture of generation 0 control (“prune weak”),
synaptic weight-dependent pruning initialised with architecture of generation 199 control
(“prune weak2”), synaptic activity-dependent pruning initialised with architecture of gen-
eration 0 control (“prune unused”), synaptic activity-dependent pruning initialised with ar-
chitecture of generation 199 control (“prune unused2”). Markers indicate mean best score
of the population, bars show SD. Clustering inputs by movement direction was the measure
of evolutionary fitness. Population size = 30, n = 10.

276 Appendix D. Evolution of developmental rules

Set-up Movement clustering [%] Shape clustering [%] Weights
generation 0 generation 199 generation 0 generation 199 count change [%]

ctr 54.1, SD = 4.8 61.4, SD = 12.7 48.9, SD = 1.2 46.6, SD = 3.3 25000 , SD = 0.0 0.0
prune weak 57.4 , SD = 3.7 64.0 , SD = 8.1 49.8 , SD = 2.4 41.3 , SD = 2.9 7450 , SD = 7184 70.2
prune weak2 55.3, SD = 10.2 60.1, SD = 13.7 48.1 , SD = 2.0 47.0, SD = 3.4 11446, SD = 6912 54.2
prune unused 56.4, SD = 4.2 63.6, SD = 7.7 49.5, SD = 1.7 47.9 , SD = 4.4 18272, SD = 5496 26.9
prune unused2 53.3 , SD = 9.0 59.4 , SD = 12.1 48.8, SD = 0.0 46.7, SD = 2.0 18345, SD = 5555 26.6

Table D.1: Comparison of network pruning methods tested in experiment 2. For each
selected set-up, the table lists precision of clustering by movement direction (fitness) and
by shape; percent of pruned weights and silent weights. The lowest and highest values in
each column were highlighted blue and pink respectively. SD is standard deviation.

examined their weights. Before pruning, networks had 25000 weights. This num-

ber decreased to the mean of 18272 (27% decrease, SD = 5496) in prune unused

and 18345 (27% decrease, SD = 54555596) in prune unused2 (fig. D.5 A, and table

D.1). Pruning levels were higher in prune weak (7450 weights, 70% decrease, SD

= 7184) and prune weak2 (11446 weights, 54% decrease, SD = 6912). Compari-

son of the last ten generations showed a continuation of a significant pruning trend

in prune unused and prune unused2 (p = 0.05 and p = 0.04 respectively). This

data shows that (for our selected hyperparameters) pruning levels were significantly

higher for synaptic weight-dependent pruning than for synaptic activity-dependent

pruning; however, a significant pruning trend was still present at the end of evolu-

tion in the latter case.

Average weight values increase with pruning (fig. D.5 B), which is consistent

with the behaviour expected when the sums of excitatory and inhibitory weights are

kept constant but their number decreases. In generation 199, the average ranged

from 2.2 (SD = 0.0) for control to 31.6 (SD = 96.0) for prune weak.

Proportion of silent weights (weight ≤ 0.001) in generation 199 was signifi-

cantly different (p < 0.001) for all comparisons (fig. D.5 C), and ranged from 0.20

(SD = 0.22) for prune unused to 0.41 (SD = 0.30) for prune unused2. Proportion of

silent weights was significantly decreasing at the end of evolution in prune weak2

(p = 0.02 for generation 179 vs 199); proportion of silent weights stabilised in other

tested cases.

As described above (section D.3), pruning was not permitted to remove all in-

puts / outputs of a neuron; all neurons remained connected. Therefore, we analysed

D.4. Results 277

how many neurons had only one input / output left at the end of evolution. The

number of neurons with a single input range from 18 (SD = 17) in prune unused to

31 in prune weak2 (SD = 15) (fig. D.5 D). The number of neurons with a single

output range from 11 (SD = 18) in prune unused2 to 93 (SD = 137) in prune weak2

(fig. D.5 E). Prune weak2 had the highest number of these neurons, but it also

underwent more pruning. Overall, the proportion of neurons with a single input /

output was small (< 2%).

We also analysed balance between excitation and inhibition. All networks kept

the sums of excitatory and inhibitory synapses constant, but the proportions of con-

nections targeting excitatory and inhibitory neurons was a subject to plastic change.

Therefore, we looked at the sum of weights belonging to split into four categories

based on the identity of presynaptic and postsynaptic neuron: excitatory-excitatory,

excitatory-inhibitory, inhibitory-excitatory and inhibitory-inhibitory. Significant

change during evolution was observed for the ratio of excitatory-excitatory to

excitatory-inhibitory connections in case of control, prune weak, prune unused and

prune unused2 (p < 0.05)(fig. D.6 A and B). The ratio of inhibitory-excitatory

to inhibitory-inhibitory connections changed significantly in control, prune weak,

prune unused and (p < 0.001)(fig. D.6 C and D). The direction of the change was

not consistent between different test cases. These results suggest that balance be-

tween excitation and inhibition changes during evolution, and that the networks do

not tend towards the same ratio.

During evolution, spiking in the hidden layer changed significantly in all cases

except prune unused2 (fig. D.7 A), and spiking in the output layer changed sig-

nificantly in all cases (p < 0.001)(fig. D.7 B). Despite the seeming convergence of

spiking levels, spiking remained significantly different in all compared pairs, except

control vs prune unused in the hidden layer, and control vs prune weak in the out-

put layer. In all cases, spiking levels plateaued and networks maintained a desirable

level of sparse spiking without saturation and silencing.

278 Appendix D. Evolution of developmental rules

(A) Sum of synapses. (B) Average weight values.

(C) Proportion of weights equal 0. (D) Number of neurons with one input.

(E) Number of neurons with one output.

Figure D.5: Experiment 2: Analysis of synaptic weights in networks with synaptic pruning.
Median is marked on each box; error bars indicate SD.

D.4. Results 279

(A) Excitatory-excitatory. (B) Excitatory-inhibitory.

(C) Inhibitory-excitatory. (D) Inhibitory-inhibitory.

Figure D.6: Experiment 2: Analysis of synaptic weight values in networks with synaptic
pruning. Error bars indicate SD.

(A) Hidden layer. (B) Output layer.

Figure D.7: Experiment 2: Analysis of spiking activity in networks with synaptic pruning.
Error bars indicate SD.

280 Appendix D. Evolution of developmental rules

D.4.2 Evolution of developmental rules

D.4.2.1 Results 3: Output encoding in sparse plastic networks

The subsequent experiments were performed in networks with evolvable develop-

mental rules. First, we tested our hypothesis that in sparsely-connected plastic net-

works with recurrent connections individual encoding provides significantly more

information than collective encoding.

Individual encoding was associated with an initial fitness increase followed by

a decrease (fig. D.8, top row); in effect, performance difference between genera-

tion 0 and 199 was not significant (52.5%, SD = 5.71 vs 53.63%, SD = 4.70, p =

0.57). Collective encoding was associated with a small but significant fitness de-

crease (47.25%, SD = 2.49 vs 45.0%, SD = 0.00, p = 0.007). Individual encoding

had a significantly higher fitness throughout evolution (p = 0.02 and p = 0.001 in

generation 0 and 199 respectively). Interestingly, networks with collective encod-

ing performed identically from generation 38 onward. This is likely due to parent

selection rules between ties: the parent is selected based on its number and not ran-

domly. The general poor performance of the networks with collective encoding led

to a repeated selection of the same fittest parents and in consequence a loss of vari-

ability in the population with time. Cross-over was happening between identical

parents (therefore was meaningless) and mutation alone did not suffice to introduce

enough variability to translate genetic variability to a performance difference.

Collective vs individual performance on the shape clustering task (fig. D.8,

middle row) was not significantly different (55.63%, SD = 2.22 vs 57.0%, SD =

2.38, p = 0.2 in generation 0, and 48.75%, SD = 0.0 vs 47.625%, SD = 2.80, p = 0.1

in generation 199), albeit scores had different distribution: as with fitness, collective

encoding was associated with a lack of diversity. In case of both encodings, the

average performance on the two tasks did not significantly change during evolution

(fig. D.8, bottom row).

The above results showed that the properties of the output changed after the

introduction of architectural plasticity and recurrencies, and that the individual en-

coding was associated with higher fitness. Consequently, we used the individual en-

D.4. Results 281

M
ov

em
en

td
ir

ec
tio

n
Sh

ap
e

Av
er

ag
e

Figure D.8: Experiment 3: Individual encoding of the output vectors is associated with
higher fitness in networks with plastic architecture. Two set-ups were tested: network evo-
lution using collective encoding of the output, and network evolution using individual en-
coding of the output. Markers indicate mean best score of the population, bars show SD.
Clustering inputs by movement direction was the measure of evolutionary fitness. Popula-
tion size = 40, n = 10.

coding of the output vectors in the subsequent experiments presented in this chapter.

D.4.2.2 Results 4: Development of networks with architectural in-

heritance

Next, we tested the hypothesis that an evolutionary approach (EA) can be used to

develop growth rules for SNNs, and that the ability to prune some of the inherited

connections is beneficial to the organism. An EA was used to develop indirect con-

282 Appendix D. Evolution of developmental rules

nectivity rules in a population of 40 networks over 200 generations. The networks

inherited both the architecture and developmental rules from their parents. Two

set-ups were tested: progressive plasticity, and a combination of progressive and

regressive plasticity (weak connections are pruned). The former reuses data from

experiment 3 “individual” and analyses it in a greater detail.

There was no significant fitness difference between the two tested condition

(fig. D.9, top row); however, the differences increased with time (p = 47 in gen-

eration 0, p = 0.13 in generation 199). Both set-ups show a sharp initial increase

in fitness followed by a gradual decrease. Combination of progressive and regres-

sive plasticity lead to a significant fitness increase between generations 0 and 199

(50.0, SD = 3.63 in generation 0, 54.84, SD = 3.92 in generation 199, p = 0.02).

No significant improvement was recorded for progressive plasticity alone; it was

also associated with a lower fitness in generation 199, despite its higher fitness in

generation 0 (52.5, SD = 5.71 in generation 0, 53.63, SD = 4.70 in generation 199,

p = 0.57).

For both conditions, precision of shape clustering displayed a sharp initial de-

crease (fig. D.9, middle row). Precision of the progressive set-up decreased from

57.0 (SD = 2.38) in generation 0 to 47.63 (SD = 2.80) in generation 199 (p = 0.001).

Precision of the progressive-regressive set-up decreased from 55.75 (SD = 4.50) in

generation 0 to 48.60 (SD = 4.10) in generation 199 (p < 0.001). There was no

initial difference between the two conditions, and they became even more similar

with time (p = 0.36 in generation 0, p = 0.75 in generation 199).

When comparing the average precision on both clustering tasks (movement

direction and shape)(fig. D.9, bottom row), there were no significant differences

between generation 0 and 199, and between the test conditions.

The above results suggest that combining progressive and regressive fitness

improved the initial learning rate; however, the performance decreases with time.

Fitness of the SNNs with evolvable architecture was lower than fitness of SNNs

with fixed architecture (D.1, control “ctr”). As before, increase in fitness happened

at the expense of performance on the other task - the sum of precisions remained

D.4. Results 283

M
ov

em
en

td
ir

ec
tio

n
Sh

ap
e

Av
er

ag
e

]

Figure D.9: Experiment 4: In networks with architectural inheritance, combination of pro-
gressive and regressive plasticity is associated with a higher learning rate on the fitness-
related task. An EA was used to develop networks’ growth rules. Two set-ups were tested:
networks with evolvable progressive plasticity (“progr”) and networks with evolvable pro-
gressive plasticity and non-evolvable pruning of weak connections (“progr + regr”). Mark-
ers indicate mean best score of the population, bars show SD. Clustering inputs by move-
ment direction was the measure of evolutionary fitness. Population size = 40, n = 10.

constant.

Next, we analysed the architectural properties of the networks (phenotypes),

and their genotypes.

Each network had four genes describing the probability of neurogenesis in the

hidden layer, feed-forward synaptogenesis, horizontal synaptogenesis and recurrent

synaptogenesis. As the values were averaged between the networks and evolution-

284 Appendix D. Evolution of developmental rules

(A) Number of hidden neurons. (B) Number of neurons with one input.

(C) Number of neurons with one output.

Figure D.10: Experiment 4: Architecture growth in plastic networks. Two set-ups were
tested: networks with evolvable progressive plasticity (“progr”) and networks with evolv-
able progressive plasticity and non-evolvable pruning of weak connections (“progr + regr”).
A) Number of neurons in the hidden layer. Probability of neurogenesis was genetically
encoded. Networks were initialised with a single hidden neuron and were able to add neu-
rons into the hidden layer only. B) Number of single-input neurons. New neurons were
initialised with a single input; in networks with regressive pruning, weak connections were
removed providing there was at least one input left. C) Number of single-output neurons.
New neurons were initialised with a single output; in networks with regressive pruning,
weak connections were removed providing there was at least one output left. Markers show
mean values, and error bars indicate SD. Population size = 40, N = 10.

ary repeats, they were expected to oscillate around 0.5, unless there was a preference

for certain values.

Neurogenesis probability did not change significantly during evolution (fig.

D.11A). In networks with progressive plasticity it ranged from the average of 0.46

(SD = 0.12) in generation 0 to 0.64 (SD = 0.15, p = 0.28) in generation 199. Net-

works with mixed plasticity had average values ranging from 0.52 (SD = 0.05) in

generation 0 to 0.41 (SD = 0.69, p = 0.37) in generation 199. There was no signifi-

cant difference between the values evolved by the two set-ups (p = 0.19).

D.4. Results 285

Evolution selected networks with high probability of feed-forward synapto-

genesis (fig. D.11B). In the networks with progressive plasticity, the probability

changed significantly from the average of 0.49 (SD = 0.04) in generation 0 to 0.74

(SD = 0.22, p = 0.002) in generation 199. Networks with mixed plasticity showed

an increase from the average of 0.48 (SD = 0.04) in generation 0 to 0.78 (SD = 0.26,

p = 0.008) in generation 199. The difference between the two tested conditions was

not significant (p = 0.69).

In both tested conditions, there was an evolutionary preference for networks

with a higher probability of horizontal synaptogenesis (fig. D.11C). This trend was

significant in case of networks with mixed plasticity, where the probability changed

from 0.49 (SD = 0.03) in generation 0 to 0.73 (SD = 0.2, p = 0.023) in generation

199.

There also was an evolutionary preference for networks with a higher probabil-

ity of recurrent synaptogenesis (fig. D.11D). the probability changed significantly

from the average of 0.49 (SD = 0.04) in generation 0 to 0.73 (SD = 0.25, p = 0.08) in

generation 199. Networks with mixed plasticity showed an increase from the aver-

age of 0.50 (SD = 0.05) in generation 0 to 0.63 (SD = 0.30, p = 0.008) in generation

199. However, this trend was not statistically significant.

The above results suggest that networks with higher probabilities of neuroge-

nesis and synaptogenesis were preferred during evolution.

The average number of neurons in the hidden layer significantly increased with

time (fig. D.10A). However, after generation 150, there was a slight decrease in the

number of neurons caused by the removal of unfit networks from the population.

All networks were initialised with 1 hidden neuron; at the end of generation 0, the

average number of hidden neurons in networks with progressive plasticity was equal

100 (SD = 60) in generation 0 and 3494 (SD = 1651) in generation 199 (p < 0.001).

the average number of hidden neurons in networks with progressive plasticity was

equal 100 (SD = 60), and in networks with both types of plasticity, the average

neuron count was equal 102 (SD = 58) in generation 0 and 4271 (SD = 1266) in

generation 199 (p < 0.001). The difference between the tested conditions was not

286 Appendix D. Evolution of developmental rules

(A) Neurogenesis. (B) Feed-forward synaptogenesis.

(C) Horizontal synaptogenesis. (D) Recurrent synaptogenesis.

Figure D.11: Experiment 4: Values of genes encoding developmental rules. Four genes
were used to encode the probabilities of growth during each iteration A) neurogenesis, B)
feed-forward synaptogenesis, C) horizontal synaptogenesis, D) recurrent synaptogenesis.
Error bars indicate SD. Population size = 40, N = 10.

significant in generation 0 (p = 0.06), but increased in generation 199 (p < 0.001).

We also examined neuronal connectivity. As a reminder, the single hidden

neuron was initialised with inputs from half of the input neurons, and outputs to

half of the output neurons; each new neuron was initialised with a single input

and output. New feed-forward, recurrent and horizontal connections were created

according to the indirect genetic instructions, and in the case of networks with both

progressive and regressive plasticity, weak connections were pruned, but at least

one input and output had to remain.

The number of neurons with only a single input increased during evolution (fig.

D.10B), but displayed a downward trend from generation 100 onward; this trend

resembles changes in the number of hidden neurons. For networks with progressive

plasticity, the number of such neurons was 101 (SD = 59) in generation 0 and 1333

(SD = 960) in generation 199 (p < 0.001). For networks with both progressive and

D.4. Results 287

regressive plasticity, the number of such neurons was 103 (SD = 58) in generation 0

and 1461 (SD = 1211) in generation 199 (p < 0.001). Differences between the two

tested conditions were not significant (p > 0.6). The fact that regressive plasticity

did not have a significant effect on the number of neurons with only one input

and that the number of hidden neurons followed the same trend as the number of

neurons with a single input suggest that the presence of neurons with a single input

was caused by addition of new neurons rather than pruning.

The number of neurons with a single output followed the same trend as neu-

rons with a single input (fig. D.10C). The only exception was that in generation

199 there was a significant difference between the tested conditions; networks with

progressive plasticity had on average 1355 (SD = 955) single-output neurons, and

networks with mixed plasticity had 2392 (SD 1314, p < 0.001). These results sug-

gest that pruning of weak synapses had a significant effect on the number of outputs

but not inputs. This is likely due to activity differences between the layers and sub-

sequently the spike-timing-dependent plasticity (STDP) patterns (the mapped data

always activate a proportion of neurons in the input layer).

In the case of both tested set-ups, the number of synapses significantly in-

creased with time (fig. D.12A). For progressive plasticity, the mean number of

synapses per network was equal 454 (SD = 121) in generation 0 and 16104 (SD =

11159) in generation 199 (p < 0.001). For a combination of progressive and re-

gressive plasticity, the mean number of synapses per network was equal 458 (SD =

118) in generation 0 and 16451 (SD = 7617) in generation 199 (p < 0.001). Inter-

estingly, the difference between the two cases was not significant (p = 0.7 and p =

0.2 in generation 0 and 199, respectively).

In the case of a combination of progressive and regressive plasticity (fig.

D.12A, “progr + regr”), there was a sharp transient increase in the number of

synapses between generations 160 and 170. The increase was caused by two net-

works whose synapse count was two orders of magnitude higher than the average

(above 1.4 million). They were removed from the population because of their low

evolutionary fitness: because of the high synaptic count, individual weight values

288 Appendix D. Evolution of developmental rules

(A) Sum of synapses. (B) Average weight values.

(C) Proportion of weights equal 0.

Figure D.12: Experiment 4: Synaptic properties of networks with architectural plasticity.
Markers show mean values, and error bars indicate SD. Population size = 40, N = 10.

were very low, and 99.3% of the synapses were silent. Therefore, homeostasis of

the sum of weights indirectly forces the network to avoid excessive growth. This

was an interesting illustration of self-regulation of the system and removal of unfit

networks during evolution.

The increase in the number of synapses during evolution was associated with a

decrease in the average weight values - this was caused by the sum of weights being

kept constant (fig. D.12B). For progressive plasticity, the mean weight value was

equal 141.49 (SD = 27.74) in generation 0 and 34.24 (SD = 16.23) in generation

199 (p < 0.001). For a combination of progressive and regressive plasticity, the

mean weight value was equal 140.27 (SD = 26.06) in generation 0 and 32.96 (SD =

11.58) in generation 199 (p < 0.001).

As discussed above, the increase in the number of synapses combined with the

homeostasis of the sum of weights led to an increase in the number of silent weights.

This observation was confirmed by the direct analysis of the proportion of silent

D.4. Results 289

synapses (fig. D.12C). For progressive plasticity, the proportion of silent synapses

was equal 0.0 (SD = 0.001) in generation 0 and 0.59 (SD = 0.09) in generation 199

(p < 0.001). Similarly, for progressive plasticity, the proportion of silent synapses

was equal 0.0 (SD = 0.001) in generation 0 and 0.57 (SD = 0.03) in generation 199

(p < 0.001). These results suggest that the network size has increased, but its large

proportion is inactive.

Networks were initialised with only feed-forward connections, but the chro-

mosomes encoded their probability of synaptogenesis of three types: feed-forward,

horizontal and recurrent. The number of all synaptic types increased with time (fig.

D.13 A-C). For networks with progressive plasticity, the number of feed-forward

connections was equal 455 (SD = 122) in generation 0 and 10170 (SD = 5535) in

generation 199 (p < 0.001, a two folders of magnitude increase)(fig. D.13 A). Sim-

ilarly, for networks with both progressive and regressive plasticity, the number of

feed-forward connections was equal 458 (SD = 118) in generation 0 and 12020 (SD

= 5718) in generation 199 (p < 0.001, a two folders of magnitude increase). The

difference between the two tested conditions was significant in generation 199 (p <

0.001). As discussed before, the transient increase seen around generation 160 was

caused by networks which were subsequently removed from the population due to

low fitness.

The increase in the number of horizontal connections also was significant. For

networks with progressive plasticity, the number of feed-forward connections was

equal 0 (SD = 0) in generation 0 and 4676 (SD = 5019) in generation 199 (p <

0.001)(fig. D.13 B). For networks with mixed plasticity, the number of feed-forward

connections was also equal 0 (SD = 0) in generation 0 and 5585 (SD = 4013) in gen-

eration 199 (p < 0.001)(fig. D.13 B). The difference between the tested conditions

was significant (p < 0.001).

The number of recurrent connections increased from 0.0 (SD = 0.0) in genera-

tion 0 in both tested conditions to 4257 (SD = 4464) in networks with progressive

plasticity and 2728 (SD = 2274) in networks with mixed plasticity. As with other

connection types, the difference between the conditions was significant in genera-

290 Appendix D. Evolution of developmental rules

(A) Feed-forward. (B) Horizontal.

(C) Recurrent. (D) Pruned.

Figure D.13: Experiment 4: Connection types in networks with architectural plasticity.
Markers show mean values, and error bars indicate SD. Population size = 40, N = 10.

tion 199 (p < 0.001).

Weak connections were pruned in networks with mixed plasticity. The number

of pruned connections in each generation fluctuated during evolution, and ranged

from 0 (SD < 4) in generations 0 to 19, to 168 (SD = 116) in generation 59. These

results suggest that only a small proportion of total and weak connections were

pruned, despite a high proportion of connections being silent. This is consistent

with a high number of neurons having only one input or output, a condition which

was protecting their connections from being removed.

D.5 Summary
In this chapter, we explored the neuroscience-inspired mechanism of structural plas-

ticity (recessive and progressive) in the context of evolution, development and learn-

ing.

First, we confirmed that synaptic homeostasis helped to stabilise networks with

D.5. Summary 291

(A) Hidden layer. (B) Output layer.

Figure D.14: Experiment 4: Analysis of spiking activity in networks with synaptic pruning.
Markers show mean values, and error bars indicate SD. Population size = 40, N = 10.

architectural plasticity. We removed a proportion of network connections at random

which led to a fitness decrease. The normalisation of the sums of excitatory and in-

hibitory weights restored the firing activity and performance of networks. These

findings were of practical interest: pruning network weights is re-gaining atten-

tion as a mechanism which lowers the computational cost and data required to train

ANNs [219, 410], but pruning implementation in SNNs are uncommon ([405, 404]).

Our findings suggested that brain-inspired synaptic homeostasis can be used to re-

store performance in pruned SNNs.

Secondly, we explored if synaptic strength-dependent and activity-dependent

pruning mechanisms can be used to create smaller networks without the loss of

precision. Again, networks with a combination of pruning and weights homeosta-

sis maintained their fitness. Removal of weak weights improved the learning rate.

Homeostasis of the sums of excitatory and inhibitory weights did not translate into

general weight stability of connections belonging to the four excitatory-inhibitory

types. Different pruning methods led to distinct activity levels but all tested cases

retained stable activity levels.

Next, we created a POE system to explore the use of evolution to develop SNNs

architecture indirectly through optimising developmental rules. Synaptic weights

were tuned using STDP and homeostatic synaptic plasticity. We first confirmed that

in SNNs with structural plasticity, sparse connectivity and recurrent connections,

an individual encoding of the output layer spiking is more suitable than collective

292 Appendix D. Evolution of developmental rules

encoding. Individual encoding was associated with a positive initial learning rate

and significantly higher fitness during the whole evolution. This was in contrast to

our previous findings in fully-connected feed-forward networks.

Our POE model demonstrated that it is possible for SNNs with a rudimentary

architecture to evolve developmental rules which improve their fitness; the com-

bination of progressive and regressive plasticity was associated with a significant

fitness increase during evolution. However, fitness decreased with time. An uncon-

trolled network growth likely caused the drop in fitness: we observed that home-

ostasis of the sum of weights meant that a significant proportion of weights in large

networks was silent, and eventually the networks failed to provide meaningful spik-

ing patterns. Additionally, evolution selected networks with high synaptogenesis

probability. These genes were likely beneficial at the beginning of evolution but

deepened problems with excessive growth in later generations. A possible solution

to the excessive network growth would be to introduce mechanisms which limit

the size of the networks, e.g. by introducing a connection cost. Alternatively, the

model could be refined by the inclusion of changing levels of plasticity during de-

velopment, as it was reported in the brain [142].

The elements shared between the work published by Miller et al. [239, 369]

and our work include the hypothesis that evolution and development can be useful

for creating neural architectures, the biologically-inspired approach and the use of

classification tasks. However, our work used a spiking neuron model with STDP

and thus contains all three elements defining POE systems: evolution, development

and learning.

Overall, the results described in this chapter demonstrated that SNNs with

biologically-inspired mechanisms such as architectural plasticity and synaptic

homeostasis have desirable features. However, the plasticity rules required a fur-

ther refinement.

Appendix E

Training of Self Organising Maps

SOMs and SNN–SOM stacks were used to to quantify similarity of spike trains as-

sociated with different data classes. Details of the SOMs used were described in 4.3.

Here, we showed a representative, randomly selected example of error throughout

SOM training. Quantisation error was computed as the average distance between

each input sample and its best matching unit. Topographical error examined a wider

neighbourhood: two best-matching neurons for each sample were identified. An er-

ror was flagged when these neurons two were not adjacent. The total score was

calculated as the ratio of the number of errors and the number of sample.

294 Appendix E. Training of Self Organising Maps

Stereotyped Heterogeneous

In
pu

ts
O

ut
pu

ts

Figure E.1: A random example of SOM error in a 2 x 2 SOM, spatial class labels for the
stripes data set. Classes were based on shape type in the input signal. SNNs had either neu-
rons with identical stereotyped electrophysiological parameters, or heterogeneous neurons
with bio-inspired parameters.

295

Stereotyped Heterogeneous

In
pu

ts
O

ut
pu

ts

Figure E.2: A random example of SOM error in a 2 x 2 SOM, temporal class labels for the
stripes data set. Classes were based on movement direction in the input signal. SNNs had
either neurons with identical stereotyped electrophysiological parameters, or heterogeneous
neurons with bio-inspired parameters.

296 Appendix E. Training of Self Organising Maps

Stereotyped Heterogeneous

In
pu

ts
O

ut
pu

ts

Figure E.3: A random example of SOM error in a 7 x 7 SOM, spatial class labels for
the shapes data set. Classes were based on shape type in the input signal. SNNs had
either neurons with identical stereotyped electrophysiological parameters, or heterogeneous
neurons with bio-inspired parameters.

297

Stereotyped Heterogeneous

In
pu

ts
O

ut
pu

ts

Figure E.4: A random example of SOM error in a 7 x 7 SOM, temporal class labels for the
stripes data set. Classes were based on movement direction in the input signal. SNNs had
either neurons with identical stereotyped electrophysiological parameters, or heterogeneous
neurons with bio-inspired parameters.

References

[1] Katarzyna Kozdon and Peter Bentley. Wide Learning. In IEEE Symposium

Series on Computational Intelligence, pages 3183–3190, Honolulu, 2017.

IEEE.

[2] Katarzyna Kozdon and Peter Bentley. The Evolution of Training Parameters

for Spiking Neural Networks with Hebbian Learning. The 2018 Conference

on Artificial Life, pages 276–283, 2018.

[3] Katarzyna Kozdon and Peter Bentley. Normalisation of Weights and Firing

Rates in Spiking Neural Networks with Spike-Timing-Dependent Plasticity.

In Developmental Neural Networks Workshop, the 2019 Conference on Arti-

ficial Life, Newcastle, United Kingdom, 2019.

[4] Katarzyna Kozdon and Peter J Bentley. Architectural Plasticity in Spiking

Neural Networks. In The 2020 Conference on Artificial Life, pages 702–711,

Cambridge, MA, 7 2020. MIT Press.

[5] Maya Wei-Haas. What Trump’s new AI initiative does — and doesn’t —

mean, 2019.

[6] François Chollet. Today more people are working on deep learning than ever

before — around two orders of magnitude more than in 2014. And the rate

of progress as I see it is the slowest in 5 years. Time for something new.

[Twitter], 2018.

[7] Heather Havenstein. Spring comes to AI winter, 2 2005.

300 References

[8] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John

Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine

Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Master-

ing the game of Go with deep neural networks and tree search. Nature,

529(7587):484–489, 2016.

[9] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,

Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George

van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game

of go without human knowledge. Nature, 550(550(7676)):354–359, 10 2017.

[10] Zachary C Lipton and Jacob Steinhardt. Troubling Trends in Machine Learn-

ing Scholarship. ArXiv e-prints, 7 2018.

[11] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Pre-

cup, and David Meger. Deep Reinforcement Learning that Matters. In

Thirthy-Second AAAI Conference On Artificial Intelligence (AAAI), 2018.

[12] Gábor Melis, Chris Dyer, and Phil Blunsom. On the State of the Art of

Evaluation in Neural Language Models. DeepMind, pages 1–10, 2017.

[13] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier

Bousquet. Are GANs Created Equal? A Large-Scale Study. ArXiv e-prints,

11 2017.

[14] Dario Amodei and Danny Hernandez. AI and Compute, 2018.

[15] Economist. Artificial intelligence and Go Showdown. The Economist,

418(8980):81, 2016.

References 301

[16] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared

Casper, and Bryan Catanzaro. Megatron-LM: Training Multi-Billion Param-

eter Language Models Using Model Parallelism. ArXiv e-prints, 9 2019.

[17] Gregory Barber. Artificial Intelligence Confronts a ’Reproducibility’ Crisis,

2019.

[18] Léon Bottou, Jonas Peters, Peters Ch, Joaquin Quiñonero-Candela, Denis X

Charles, D Max Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard,

and Ed Snelson. Counterfactual Reasoning and Learning Systems: The

Example of Computational Advertising. Journal of Machine Learning Re-

search, 14:3207–3260, 2013.

[19] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2009.

[20] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy

Considerations for Deep Learning in NLP. In Proceedings ofthe 57th Annual

Meeting ofthe Association for Computational Linguistics, pages 3645–3650,

Florence, Italy, 2019. Association for Computational Linguistics.

[21] Karen Hao. Training a single AI model can emit as much carbon as five cars

in their lifetimes - MIT Technology Review, 2019.

[22] John Naughton. Can the planet really afford the exorbitant power demands

of machine learning?, 2019.

[23] Marvin Minsky and Seymour Papert. Perceptrons; an introduction to com-

putational geometry. MIT Press, 1969.

[24] Gary Marcus. An Epidemic of AI Misinformation, 2019.

[25] Amina Adadi and Mohammed Berrada. Peeking Inside the Black-Box: A

Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6:52138–

52160, 2018.

302 References

[26] Brent Mittelstadt, Chris Russell, and Sandra Wachter. Explaining explana-

tions in AI. In FAT* 2019 - Proceedings of the 2019 Conference on Fairness,

Accountability, and Transparency, pages 279–288, 2019.

[27] Rachel K.E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman,

Stephanie Houde, Kalapriya Kannan, Pranay Lohia, Sameep Mehta, Alek-

sandra Mojsilovic, Seema Nagar, Karthikeyan Natesan Ramamurthy, John

Richards, Diptikalyan Saha, Prasanna Sattigeri, Moninder Singh, Kush R.

Varshney, and Yunfeng Zhang. Think Your Artificial Intelligence Software

Is Fair? Think Again. IEEE Software, 36(4):76–80, 7 2019.

[28] Anya Prince and Daniel Schwarcz. Proxy Discrimination in the Age of Arti-

ficial Intelligence and Big Data. Iowa Law Review (Forthcoming), 5, 2020.

[29] Jake Silberg and James Manyika. Notes from the AI frontier : Tackling bias

in AI (and in humans). McKinsey Global Institute, pages 1–8, 2019.

[30] Dirk Helbing, Bruno S. Frey, Gerd Gigerenzer, Ernst Hafen, Michael Hagner,

Yvonne Hofstetter, Jeroen Van Den Hoven, Roberto V. Zicari, and Andrej

Zwitter. Will democracy survive big data and artificial intelligence? In

Towards Digital Enlightenment: Essays on the Dark and Light Sides of the

Digital Revolution, pages 73–98. Springer International Publishing, Cham,

2018.

[31] Steven Feldstein. How artificial intelligence is reshaping repression. Journal

of Democracy, 30(1):40–52, 2019.

[32] Tom Simonite. A Sobering Message About the Future at AI’s Biggest Party

— WIRED, 2019.

[33] Adam H. Marblestone, Greg Wayne, and Konrad P. Kording. Toward an

integration of deep learning and neuroscience. Frontiers in Computational

Neuroscience, 10(SEP):1–41, 2016.

References 303

[34] Shimon Ullman. Using neuroscience to develop artificial intelligence. Sci-

ence, 363(6428):692–693, 2019.

[35] Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and

Matthew Botvinick. Neuroscience-Inspired Artificial Intelligence, 2017.

[36] Lana Sinapayen. Introduction to Artificial Life for People who Like AI. The

Gradient, 11 2019.

[37] Vermont Complex Systems Centre. ALIFE 2020 Conference Vermont Com-

plex Systems Center at UVM, 2019.

[38] Margaret B Pulsifer, Jason Brandt, Cynthia F Salorio, Eileen P.G. Vining,

Benjamin S Carson, and John M Freeman. The Cognitive Outcome of Hemi-

spherectomy in 71 Children. Epilepsia, 45(3):243–254, 3 2004.

[39] Wolfgang Maass and Thomas Natschläger. Network: Computation in Neural

Systems Networks of spiking neurons can emulate arbitrary Hopfield nets in

temporal coding Networks of spiking neurons can emulate arbitrary Hopfield

nets in temporal coding. Network: Comput. Neural Syst, 8(97):355–371,

1997.

[40] Clément Farabet, Rafael Paz, Jose Pérez-Carrasco, Carlos Zamarreño-

Ramos, Alejandro Linares-Barranco, Yann LeCun, Eugenio Culurciello,

Teresa Serrano-Gotarredona, and Bernabe Linares-Barranco. Compari-

son between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-

Dynamic-Pixel ConvNets for Visual Processing. Frontiers in Neuroscience,

6(APR), 2012.

[41] Peter O’Connor, Daniel Neil, Shih Chii Liu, Tobi Delbruck, and Michael

Pfeiffer. Real-time classification and sensor fusion with a spiking deep belief

network. Frontiers in Neuroscience, 7(7 OCT):178, 2013.

[42] Peter U. Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu,

and Michael Pfeiffer. Fast-classifying, high-accuracy spiking deep networks

304 References

through weight and threshold balancing. In 2015 International Joint Confer-

ence on Neural Networks (IJCNN), volume 2015-Septe, pages 1–8. IEEE, 7

2015.

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-

jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis

Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,

and Demis Hassabis. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529–533, 2015.

[44] Sander Bohte, Joost Kook, and La PoutrHan. SpikeProp: Backpropagation

for Networks of Spiking Neurons. In European Symposium on Artificial Neu-

ral Networks, pages 419–424, Bruges, 2000. European Symposium on Arti-

ficial Neural Networks.

[45] Filip Ponulak and Andrzej Kasiński. Supervised learning in spiking neural

networks with ReSuMe: sequence learning, classification, and spike shifting.

Neural computation, 22(2):467–510, 2010.

[46] S. McKennoch, Dingding Liu Dingding Liu, and L.G. Bushnell. Fast Mod-

ifications of the SpikeProp Algorithm. The 2006 IEEE International Joint

Conference on Neural Network Proceedings, pages 3970–3977, 2006.

[47] D. O. Hebb. Organization of behavior. New York: Wiley. Journal of Clinical

Psychology, 6(3):307–307, 7 1950.

[48] Bente Pakkenberg, Dorte Pelvig, Lisbeth Marner, Mads J Bundgaard, Hans

Jørgen G Gundersen, Jens R Nyengaard, and Lisbeth Regeur. Aging and the

human neocortex. Experimental gerontology, 38(1-2):95–9, 1 2003.

[49] Javier DeFelipe, Lidia Alonso-Nanclares, and Jon I. Arellano. Microstruc-

ture of the neocortex: Comparative aspects, 2002.

References 305

[50] Shaul Druckmann, Linqing Feng, Bokyoung Lee, Chaehyun Yook, Ting

Zhao, Jeffrey C. Magee, and Jinhyun Kim. Structured Synaptic Connectivity

between Hippocampal Regions. Neuron, 81(3):629–640, 2 2014.

[51] Eric Kandel and James Schwartz. Principles of Neural Science, Fifth Edition.

McGraw Hill Professional, 2013.

[52] A L Hodgkin and A F Huxley. A quantitative description of membrane cur-

rent and its application to conduction and excitation in nerve. The Journal of

physiology, 117(4):500–44, 8 1952.

[53] Laura N Borodinsky, Yesser Hadj Belgacem, Immani Swapna, and Ed-

uardo Bouth Sequerra. Dynamic regulation of neurotransmitter specification:

Relevance to nervous system homeostasis, 3 2014.

[54] Michaël Demarque and Nicholas C Spitzer. Neurotransmitter phenotype

plasticity: An unexpected mechanism in the toolbox of network activity

homeostasis, 1 2012.

[55] Shreejoy Tripathy and Richard Gerkin. Listing of electrophysiology proper-

ties currently indexed, 2016.

[56] Shreejoy J. Tripathy, Lilah Toker, Brenna Li, Cindy Lee Crichlow, Dmitry

Tebaykin, B. Ogan Mancarci, and Paul Pavlidis. Transcriptomic corre-

lates of neuron electrophysiological diversity. PLoS Computational Biology,

13(10):e1005814, 10 2017.

[57] Cathryn R Cadwell, Athanasia Palasantza, Xiaolong Jiang, Philipp Berens,

Qiaolin Deng, Marlene Yilmaz, Jacob Reimer, Shan Shen, Matthias Bethge,

Kimberley F. Tolias, Rickard Sandberg, and Andreas S Tolias. Electrophys-

iological, transcriptomic and morphologic profiling of single neurons using

Patch-seq. Nature Biotechnology, 34(2):199–203, 2016.

306 References

[58] Hermann Cuntz, Friedrich Forstner, Alexander Borst, and Michael Häusser.

One rule to grow them all: A general theory of neuronal branching and its

practical application. PLoS Computational Biology, 6(8):e1000877, 8 2010.

[59] I. Segev and M. London. Untangling dendrites with quantitative models.

Science, 290(5492):744–750, 2000.

[60] Wilfrid Rall. Branching dendritic trees and motoneuron membrane resistiv-

ity. Experimental Neurology, 1(5):491–527, 11 1959.

[61] Yu. I. Arshavskii, M. B. Berkinblit, S. A. Kovalev, V. V. Smolyaninov, and

L. M. Chailakhyan. The role of dendrites in the functioning of nerve cells.

Dokludy Akademii Nauk SSSR, pages 994–997, 1965.

[62] Alwyn C Scott. Information processing in Dendritic Trees. Mathematical

Biosciences, 18(1-2):153–160, 1973.

[63] Michael, London, and Michael Häusser. Dendritic computation. Annual

Review of Neuroscience, 28:503–532, 2005.

[64] Christof Koch and Idan Segev. The role of single neurons in information

processing. Nature Neuroscience, 3(11s):1171–1177, 2000.

[65] Greg Stuart, Nelson Spruston, Bert Sakmann, and Michael Häusser. Action

potential initiation and backpropagation in neurons of the mammalian CNS.

Trends in Neurosciences, 20(3):125–131, 3 1997.

[66] Alexandre Payeur, Jean Claude Béı̈que, and Richard Naud. Classes of den-

dritic information processing. Current Opinion in Neurobiology, 58:78–85,

10 2019.

[67] Jackie Schiller and Yitzhak Schiller. NMDA receptor-mediated dendritic

spikes and coincident signal amplification. Current Opinion in Neurobiology,

11(3):343–348, 6 2001.

References 307

[68] Alon Polsky, Bartlett W. Mel, and Jackie Schiller. Computational subunits

in thin dendrites of pyramidal cells. Nature Neuroscience, 7(6):621–627, 6

2004.

[69] Albert Gidon, Timothy Adam Zolnik, Pawel Fidzinski, Felix Bolduan,

Athanasia Papoutsi, Panayiota Poirazi, Martin Holtkamp, Imre Vida, and

Matthew Evan Larkum. Dendritic action potentials and computation in hu-

man layer 2/3 cortical neurons. Science, 367(6473):83–87, 1 2020.

[70] Wulfram Gerstner, Werner Kistler, Richard Naud, and Liam Paninski. Neu-

ronal Dynamics: from single neurons to networks and models of cognition.

Cambridge University Press, 2014.

[71] L F Abbott. Lapicque’s introduction of the integrate-and-fire model neuron

(1907). Brain Research Bulletin, 50(5-6):303–304, 1999.

[72] Henry Tuckwell. Introduction to Theoretical Neurobiology. Cambridge Uni-

versity Press, 1988.

[73] Romain Brette and Wulfram Gerstner. Adaptive Exponential Integrate-and-

Fire Model as an Effective Description of Neuronal Activity. Journal of

Neurophysiology, 94(5):3637–3642, 2005.

[74] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions

on Neural Networks, 14(6):1569–1572, 2003.

[75] Victor J Barranca, Daniel C Johnson, Jennifer L Moyher, Joshua P Sauppe,

Maxim S Shkarayev, Gregor Kovačič, and David Cai. Dynamics of the expo-

nential integrate-and-fire model with slow currents and adaptation. Journal

of computational neuroscience, 37(1):161–80, 8 2014.

[76] Nicolas Fourcaud-Trocme, David Hansel, Carl Van Vreeswijk, and Nicolas

Brunel. How spike mechanisms determine response to fluctuating inputs.

The Journal of Neuroscience, 23(37):11628–11640, 2003.

308 References

[77] Michael Forrest. Can the Thermodynamic Hodgkin-Huxley Model of

Voltage-Dependent Conductance Extrapolate for Temperature? Computa-

tion, 2(2):47–60, 5 2014.

[78] Richard FitzHugh. Impulses and Physiological States in Theoretical Models

of Nerve Membrane. Biophysical Journal, 1(6):445–466, 7 1961.

[79] J. Nagumo, S. Arimoto, and S. Yoshizawa. An Active Pulse Transmission

Line Simulating Nerve Axon*. Proceedings of the IRE, 50(10):2061–2070,

10 1962.

[80] Etay Hay, Sean Hill, Felix Schürmann, Henry Markram, and Idan Segev.

Models of neocortical layer 5b pyramidal cells capturing a wide range of

dendritic and perisomatic active properties. PLoS Computational Biology,

7(7):1002107, 7 2011.

[81] W S McCulloch and Walter Pitts. A Logical Calculus of the Idea Immanent

in Nervous Activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[82] Wolfgang Maass, Eduardo D Sontag, and Georg Schinitger. On the compu-

tational power of sigmoid versus Boolean threshold circuits. In Foundations

of Computer Science, pages 767–776, 1991.

[83] Nicolas Perez-Nieves, Vincent C. H. Leung, Pier Luigi Dragotti, and Dan

F. M. Goodman. Neural heterogeneity promotes robust learning. bioRxiv,

page 2020.12.18.423468, 12 2020.

[84] Wolfgang Maass and Henry Markram. On the computational power of

circuits of spiking neurons. Journal of Computer and System Sciences,

69(4):593–616, 2004.

[85] Zihan Pan, Jibin Wu, Malu Zhang, Haizhou Li, and Yansong Chua. Neural

population coding for effective temporal classification, 2019.

[86] Nikola Kasabov, Nathan Matthew Scott, Enmei Tu, Stefan Marks, Neelava

Sengupta, Elisa Capecci, Muhaini Othman, Maryam Gholami Doborjeh,

References 309

Norhanifah Murli, Reggio Hartono, Israel Espinosa-Ramos, Lei Zhou, Fa-

had Bashir Alvi, Grace Wang, Denise Taylor, Valery Feigin, Sergei Gulyaev,

Mahmoud Mahmoud, Zeng-Guang Guang Hou, Jie Yang, Josafath Israel

Espinosa-Ramos, Lei Zhou, Fahad Bashir Alvi, Grace Wang, Denise Taylor,

Valery Feigin, Sergei Gulyaev, Mahmoud Mahmoud, Zeng-Guang Guang

Hou, and Jie Yang. Evolving spatio-temporal data machines based on the

NeuCube neuromorphic framework: Design methodology and selected ap-

plications. Neural Networks, 78:1–14, 6 2016.

[87] Sander M Bohte, Joost N Kok, and Han La Poutré. Error-backpropagation in

temporally encoded networks of spiking neurons, 2002.

[88] Michael Pfeiffer and Thomas Pfeil. Deep Learning With Spiking Neurons:

Opportunities and Challenges. Frontiers in Neuroscience, 12, 10 2018.

[89] João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Den-

dritic cortical microcircuits approximate the backpropagation algorithm.

ArXiv e-prints, 10 2018.

[90] Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep

learning with segregated dendrites. eLife, 6, 2017.

[91] Panayiota Poirazi, Terrence Brannon, and Bartlett W. Mel. Pyramidal neuron

as two-layer neural network. Neuron, 37(6):989–999, 3 2003.

[92] Brendan A Bicknell and Michael Häusser. A synaptic learning rule for ex-

ploiting nonlinear dendritic computation. Neuron, 109, 10 2021.

[93] David Beniaguev, Idan Segev, and Michael London. Single cortical neurons

as deep artificial neural networks. Neuron, 109(17):2727–2739, 9 2021.

[94] Corey Kelsom and Wange Lu. Development and specification of GABAergic

cortical interneurons. Cell & bioscience, 3(1):19, 4 2013.

[95] Setsuko Sahara, Yuchio Yanagawa, Dennis D M O’Leary, and Charles F

Stevens. The fraction of cortical GABAergic neurons is constant from near

310 References

the start of cortical neurogenesis to adulthood. The Journal of neuroscience :

the official journal of the Society for Neuroscience, 32(14):4755–61, 4 2012.

[96] C Beaulieu, Z Kisvarday, P Somogyi, M Cynader, and A Cowey. Quantita-

tive distribution of gaba-immunopositive and -immunonegative neurons and

synapses in the monkey striate cortex (area 17). Cerebral Cortex, 2(4):295–

309, 1992.

[97] Yehezkel Ben-Ari. Excitatory actions of GABA during development: The

nature of the nurture, 9 2002.

[98] Y. Ben-Ari. The GABA excitatory/inhibitory developmental sequence: A

personal journey, 10 2014.

[99] Guangying K. Wu, Robert Arbuckle, Bao-hua Liu, Huizhong W. Tao, and

Li I. Zhang. Lateral Sharpening of Cortical Frequency Tuning by Approxi-

mately Balanced Inhibition. Neuron, 58(1):132–143, 4 2008.

[100] Cindy Poo and Jeffry S. Isaacson. Odor Representations in Olfactory Cortex:

”Sparse” Coding, Global Inhibition, and Oscillations. Neuron, 62(6):850–

861, 6 2009.

[101] Matteo Carandini and David Ferster. Membrane potential and firing rate in

cat primary visual cortex. Journal of Neuroscience, 20(1):470–484, 2000.

[102] Bao hua Liu, Ya tang Li, Wen pei Ma, Chen jie Pan, Li I Zhang, and

Huizhong Whit Tao. Broad inhibition sharpens orientation selectivity by ex-

panding input dynamic range in mouse simple cells. Neuron, 71(3):542–554,

2011.

[103] Katie A. Ferguson and Jessica A. Cardin. Mechanisms underlying gain mod-

ulation in the cortex. Nature Reviews Neuroscience, 21(2):80–92, 2 2020.

[104] Jennifer Brown, Wei-Xing Pan, and Joshua Tate Dudman. The inhibitory

microcircuit of the substantia nigra provides feedback gain control of the

basal ganglia output. eLife, 3:e02397, 5 2014.

References 311

[105] Shawn R. Olsen and Rachel I. Wilson. Lateral presynaptic inhibition medi-

ates gain control in an olfactory circuit. Nature, 452(7190):956–960, 4 2008.

[106] Jorge F. Mejias, Alexandre Payeur, Erik Selin, Leonard Maler, and André

Longtin. Subtractive, divisive and non-monotonic gain control in feedfor-

ward nets linearized by noise and delays. Frontiers in Computational Neuro-

science, 8(FEB):19, 2014.

[107] Jorge F. Mejias and AndrÃ© Longtin. Differential effects of excitatory and

inhibitory heterogeneity on the gain and asynchronous state of sparse cortical

networks. Frontiers in Computational Neuroscience, 8:107, 9 2014.

[108] Eduardo Serrano, Thomas Nowotny, Rafael Levi, Brian H Smith, and Ramón

Huerta. Gain Control Network Conditions in Early Sensory Coding. PLoS

Computational Biology, 9(7):1003133, 2013.

[109] Wolfgang Maass. On the computational power of winner-take-all. Neural

Computation, 12(11):2519–2535, 11 2000.

[110] Yanqing Chen. Mechanisms of winner-take-all and group selection in neu-

ronal spiking networks. Frontiers in Computational Neuroscience, 11:20, 4

2017.

[111] Ueli Rutishauser, Rodney J. Douglas, and Jean-Jacques Slotine. Collective

Stability of Networks of Winner-Take-All Circuits. Neural Computation,

23(3):735–773, 3 2011.

[112] Moran Furman and Xiao Jing Wang. Similarity Effect and Optimal Control

of Multiple-Choice Decision Making. Neuron, 60(6):1153–1168, 12 2008.

[113] Berthold Ruf and Michael Schmitt. Self-organization of spiking neurons

using action potential timing. IEEE Transactions on Neural Networks,

9(3):575–578, 1998.

[114] Timothy Rumbell, Susan L. Denham, and Thomas Wennekers. A spiking

self-organizing map combining sTDP, oscillations, and continuous learning.

312 References

IEEE Transactions on Neural Networks and Learning Systems, 25(5):894–

907, 2014.

[115] Hananel Hazan, Daniel Saunders, Darpan T. Sanghavi, Hava Siegelmann,

and Robert Kozma. Unsupervised learning with self-organizing spiking neu-

ral networks, 2018.

[116] Johan Mes, Ester Stienstra, Xuefei You, Sumeet S. Kumar, Amir Zjajo, Carlo

Galuzzi, and Rene Van Leuken. Neuromorphic self-organizing map design

for classification of bioelectric-timescale signals. Proceedings - 2017 17th

International Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation, SAMOS 2017, 2018-Janua:113–120, 4 2018.

[117] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 323(6088):533–536, 10

1986.

[118] Filip Ponulak. ReSuMe -New Supervised Learning Method for Spiking Neu-

ral Networks. Technical Report, 2005.

[119] Romain Brette. Philosophy of the spike: Rate-based vs. Spike-based theories

of the brain. Frontiers in Systems Neuroscience, 9(November):151, 11 2015.

[120] E. D. Adrian. The impulses produced by sensory nerve-endings. The Journal

of Physiology, 62(1):33–51, 10 1926.

[121] Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-based strate-

gies for rapid processing. Neural Networks, 14(6-7):715–725, 2001.

[122] W Bair and C Koch. Temporal precision of spike trains in extrastriate cortex

of the behaving macaque monkey. Neural computation, 8(6):1185–202, 8

1996.

[123] Pamela Reinagel and R Clay Reid. Temporal Coding of Visual Information

in the Thalamus. The Journal of N, 20(14):5392–5400, 2000.

References 313

[124] Markus Siegel, Melissa R. Warden, and Earl K. Miller. Phase-dependent neu-

ronal coding of objects in short-term memory. Proceedings of the National

Academy of Sciences of the United States of America, 106(50):21341–21346,

12 2009.

[125] Ueli Rutishauser, Ian B. Ross, Adam N. Mamelak, and Erin M. Schuman.

Human memory strength is predicted by theta-frequency phase-locking of

single neurons. Nature, 464(7290):903–907, 3 2010.

[126] Jorge Jaramillo and Richard Kempter. Phase precession: a neural code un-

derlying episodic memory? Current Opinion in Neurobiology, 43:130–138,

4 2017.

[127] Salman E. Qasim, Itzhak Fried, and Joshua Jacobs. Phase precession in

the human hippocampus and entorhinal cortex. Cell, 184(12):3242–3255,

6 2021.

[128] John O’Keefe and Michael L. Recce. Phase relationship between hippocam-

pal place units and the EEG theta rhythm. Hippocampus, 3(3):317–330, 7

1993.

[129] Eric T Reifenstein, Richard Kempter, Susanne Schreiber, Martin B Stemm-

ler, and Andreas V.M. Herz. Grid cells in rat entorhinal cortex encode phys-

ical space with independent firing fields and phase precession at the single-

trial level. Proceedings of the National Academy of Sciences of the United

States of America, 109(16):6301–6306, 2012.

[130] Torkel Hafting, Marianne Fyhn, Tora Bonnevie, May Britt Moser, and Ed-

vard I. Moser. Hippocampus-independent phase precession in entorhinal grid

cells. Nature, 453(7199):1248–1252, 6 2008.

[131] Tim Gollisch and Markus Meister. Rapid neural coding in the retina with

relative spike latencies. Science, 319(5866):1108–1111, 2 2008.

314 References

[132] Jilles Vreeken. Spiking neural networks , an introduction. Computing,

7(3):1–5, 2002.

[133] Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, and

Yuhuai Wu. STDP-Compatible Approximation of Backpropagation in an

Energy-Based Model. Neural Computation, 29(3):555–577, 3 2017.

[134] Robert Gütig and Haim Sompolinsky. The tempotron: A neuron that learns

spike timing-based decisions. Nature Neuroscience, 9(3):420–428, 3 2006.

[135] Alexander Kugele, Thomas Pfeil, Michael Pfeiffer, and Elisabetta Chicca.

Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural

Networks. Frontiers in Neuroscience, 14:439, 5 2020.

[136] Simon Thorpe and Jacques Gautrais. Computational Neuroscience. In

James M. Bower, editor, Computational Neuroscience, chapter Rank Order,

pages 113–118. Springer US, Boston, MA, 1998.

[137] Francesco Galluppi and Steve Furber. Representing and decoding rank order

codes using polychronization in a network of spiking neurons. In Proceed-

ings of the International Joint Conference on Neural Networks, volume 2011,

pages 943–950, San Jose, 2011. IEEE.

[138] Benjamin Schrauwen and Jan Van Campenhout. BSA, a Fast and Accurate

Spike Train Encoding Scheme. In Proceedings of the International Joint

Conference on Neural Networks, volume 4, pages 2825–2830, 2003.

[139] Balint Petro, Nikola Kasabov, and Rita M. Kiss. Selection and Optimization

of Temporal Spike Encoding Methods for Spiking Neural Networks. IEEE

Transactions on Neural Networks and Learning Systems, 31(2):358–370, 2

2020.

[140] K. Downing. Intelligence Emerging:Adaptivity and Search in Evolving Neu-

ral Systems. MIT Press, 2015.

References 315

[141] J David Schaffer. Initial Experiments Evolving Spiking Neural Networks

with Supervised Learning Capability. In Procedia Computer Science, vol-

ume 114, pages 184–191, 2017.

[142] Dan Harvey. Sanes, Thomas A. Reh, and William A. (William Anthony) Har-

ris. Development of the nervous system. Academic Press, Burlington, 2012.

[143] Elena P. Moreno-Jiménez, Miguel Flor-Garcı́a, Julia Terreros-Roncal, Al-

berto Rábano, Fabio Cafini, Noemı́ Pallas-Bazarra, Jesús Ávila, and Marı́a

Llorens-Martı́n. Adult hippocampal neurogenesis is abundant in neurologi-

cally healthy subjects and drops sharply in patients with Alzheimer’s disease.

Nature Medicine, 25(4):554–560, 4 2019.

[144] Peter A Appleby, Gerd Kempermann, and Laurenz Wiskott. The role of ad-

ditive neurogenesis and synaptic plasticity in a hippocampal memory model

with grid-cell like input. PLoS Computational Biology, 7(1):1001063, 2011.

[145] Gerd Kempermann, Fred H. Gage, Ludwig Aigner, Hongjun Song, Mau-

rice A. Curtis, Sandrine Thuret, H. Georg Kuhn, Sebastian Jessberger,

Paul W. Frankland, Heather A. Cameron, Elizabeth Gould, Rene Hen,

D. Nora Abrous, Nicolas Toni, Alejandro F. Schinder, Xinyu Zhao, Paul J.

Lucassen, and Jonas Frisén. Human Adult Neurogenesis: Evidence and Re-

maining Questions. Cell Stem Cell, 23(1):25–30, 7 2018.

[146] Jason S. Snyder. Recalibrating the Relevance of Adult Neurogenesis. Trends

in Neurosciences, 42(3):164–178, 3 2019.

[147] Myriam Cayre, Jordane Malaterre, Sophie Scotto-Lomassese, Aicha Aouane,

Colette Strambi, and Alain Strambi. Hormonal and sensory inputs regulate

distinct neuroblast cell cycle properties in adult cricket brain. Journal of

Neuroscience Research, 82(5):659–664, 12 2005.

[148] Sophie Scotto-Lomassese, Colette Strambi, Alain Strambi, Aicha Aouane,

Roger Augier, Geneviève Rougon, and Myriam Cayre. Suppression of Adult

316 References

Neurogenesis Impairs Olfactory Learning and Memory in an Adult Insect.

Journal of Neuroscience, 23(28):9289–9296, 2003.

[149] Mercedes F. Paredes, Shawn F. Sorrells, Jose M. Garcia-Verdugo, and Arturo

Alvarez-Buylla. Brain size and limits to adult neurogenesis, 2 2016.

[150] Anabel R. Simões and Christa Rhiner. A cold-blooded view on adult neuro-

genesis, 6 2017.

[151] Guo-Qiang Bi and Mu-Ming Poo. Synaptic Modifications in Cultured Hip-

pocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and

Postsynaptic Cell Type. The Journal of neuroscience : the official journal of

the Society for Neuroscience, 18(24):10464–10472, 1988.

[152] Guo Qiang Bi and Huai Xing Wang. Temporal asymmetry in spike timing-

dependent synaptic plasticity. Physiology and Behavior, 77(4-5):551–555,

2002.

[153] Robert C. Froemke and Yang Dan. Spike-timing-dependent synaptic modifi-

cation induced by natural spike trains. Nature, 416(6879):433–438, 3 2002.

[154] Henry Markram, Joachim Frotscher, and Bert Sakmann. Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science,

275(5297):213, 1997.

[155] James A. D’amour and Robert C. Froemke. Inhibitory and excitatory spike-

timing-dependent plasticity in the auditory cortex. Neuron, 86(2):514–528,

2015.

[156] Julie S. Haas, Thomas Nowotny, and H.D.I. D.I. I Abarbanel. Spike-Timing-

Dependent Plasticity of Inhibitory Synapses in the Entorhinal Cortex. Jour-

nal of Neurophysiology, 96(6):3305–3313, 12 2006.

[157] Daniela Gandolfi, Albertino Bigiani, Carlo Adolfo Porro, and Jonathan

Mapelli. Inhibitory Plasticity: From Molecules to Computation and Beyond.

International Journal of Molecular Sciences, 21(5):1805, 3 2020.

References 317

[158] Guo-qiang Bi and Mu-ming Poo. Synaptic Modifications in Cultured Hip-

pocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and

Postsynaptic Cell Type. The Journal of Neuroscience, 18(24):10464–10472,

12 1998.

[159] William E. Skaggs, Bruce L. McNaughton, Matthew A. Wilson, and Carol A.

Barnes. Theta phase precession in hippocampal neuronal populations and the

compression of temporal sequences. Hippocampus, 6(2):149–172, 1996.

[160] Naoyuki Sato and Yoko Yamaguchi. Relationship between an Input Se-

quence and Asymmetric Connections Formed by Theta Phase Precession

and STDP. In Advances in Neuro-Information Processing, pages 186–193.

Springer, 2009.

[161] Gerhard Goos, Juris Hartmanis, Jan Van, Leeuwen Editorial Board, David

Hutchison, Takeo Kanade, Josef Kittler, Jon M Kleinberg, Friedemann Mat-

tern, Eth Zurich, John C Mitchell, Moni Naor, Oscar Nierstrasz, Bernhard

Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y Vardi,

and Gerhard Weikum. LNCS 4131 - Artificial Neural Networks . . . ICANN

2006. Springer Verlag, 2006.

[162] Daniel Bush, Andrew Philippides, Phil Husbands, and Michael O’Shea. Dual

coding with STDP in a spiking recurrent neural network model of the hip-

pocampus. PLoS Computational Biology, 6(7):34, 7 2010.

[163] Karri P. Lamsa, Joost H. Heeroma, Peter Somogyi, Dmitri A. Rusakov, and

Dimitri M. Kullmann. Anti-hebbian long-term potentiation in the hippocam-

pal feedback inhibitory circuit. Science, 315(5816):1262–1266, 3 2007.

[164] Werner M. Kistler. Spike-timing dependent synaptic plasticity: a phe-

nomenological framework. Biological Cybernetics, 87(5-6):416–427, 12

2002.

318 References

[165] Zhengzhong Liang, David Schwartz, Gregory Ditzler, and O. Ozan Koylu-

oglu. The impact of encoding— decoding schemes and weight normalization

in spiking neural networks. Neural Networks, 108:365–378, 2018.

[166] H. D. I. Abarbanel, R Huerta, and M I Rabinovich. Dynamical model of long-

term synaptic plasticity. Proceedings of the National Academy of Sciences,

99(15):10132–10137, 2002.

[167] Rajiv K. Mishra, Sooyun Kim, Segundo J. Guzman, and Peter Jonas. Sym-

metric spike timing-dependent plasticity at CA3-CA3 synapses optimizes

storage and recall in autoassociative networks. Nature Communications,

7(1):11552, 12 2016.

[168] L F Abbott and Sacha B. Nelson. Synaptic plasticity: Taming the beast.

Nature Neuroscience, 3(11s):1178–1183, 2000.

[169] Hélène Paugam-Moisy and Sander Bohte. Computing with Spiking Neuron

Networks. In Handbook of Natural Computing, volume 1-4, pages 335–376.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[170] Emmanuel Daucé. Toward STDP-based population action in large networks

of spiking neurons. In the 22th European Symposium on Artificial Neu-

ral Networks, Computational Intelligence and Machine Learning (ESANN

2014), number 22 in European Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning, pages 29–34, Bruges,

2014. ESANN.

[171] Erkki Oja. Simplified neuron model as a principal component analyzer. Jour-

nal of Mathematical Biology, 15(3):267–273, 1982.

[172] Kenneth D Miller and David J C Mackay. The Role of Constraints in Hebbian

Learning. Neural computation, 6:100–126, 1994.

[173] Thomas Nowotny, Valentin P Zhigulin, Allan I Selverston, Henry D I Abar-

banel, and Mikhail I Rabinovich. Enhancement of synchronization in a hy-

References 319

brid neural circuit by spike-timing dependent plasticity. The Journal of neu-

roscience : the official journal of the Society for Neuroscience, 23(30):9776–

85, 2003.

[174] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J Thorpe, and

Timothée Masquelier. STDP-based spiking deep convolutional neural net-

works for object recognition. Neural Networks, 99:56–67, 3 2018.

[175] Jun Hu, Huajin Tang, K. C. Tan, Haizhou Li, and Luping Shi. A Spike-

Timing-Based Integrated Model for Pattern Recognition. Neural Computa-

tion, 25(2):450–472, 2 2013.

[176] Taras Iakymchuk, Alfredo Rosado-Muñoz, Juan F Guerrero-Martı́nez,

Manuel Bataller-Mompeán, Jose V Francés-Vı́llora, JJ Lovelace, JT Rickard,

KJ Cios, M Ambard, B Guo, D Martinez, A Bermak, A Bouganis,

M Shanahan, F Alnajjar, K Murase, JA Perez-Carrasco, B Acha, C Serrano,

L Camunas-Mesa, T Serrano-Gotarredona, B Linares-Barranco, J Botzheim,

T Obo, N Kubota, S Ratnasingam, TM McGinnity, H Fang, Y Wang,

J He, W Gerstner, WM Kistler, E Arguello, R Silva, C Castillo, M Huerta,

Y Ishikawa, S Fukai, R Lorenzo, R Riccardo, C Antonio, E Painkras,

LA Plana, J Garside, S Temple, F Galluppi, C Patterson, DR Lester,

AD Brown, SB Furber, J Schemmel, A Grubl, S Hartmann, A Kononov,

C Mayr, K Meier, S Millner, J Partzsch, S Schiefer, S Scholze, T Schoe-

nauer, S Atasoy, N Mehrtash, H Klar, B Schrauwen, JV Campenhout,

KL Rice, MA Bhuiyan, TM Taha, CN Vutsinas, MC Smith, W Maass,

Rossum MCWV, G-Q GQ Bi, GG Turrigiano, DT Pham, MS Packianather,

EYA Charles, H Paugam-Moisy, G-Q GQ Bi, M-M Poo, LM Martinez, J-

M Alonso, P Foldiak, MP Young, JA Perez-Carrasco, B Zhao, C Serrano,

B Acha, T Serrano-Gotarredona, S Chen, and B Linares-Barranco. Simpli-

fied spiking neural network architecture and STDP learning algorithm ap-

plied to image classification. EURASIP Journal on Image and Video Pro-

cessing, 2015(4):4, 12 2011.

320 References

[177] Peter U Diehl and Matthew Cook. Learning and Inferring Relations in Cor-

tical Networks. CoRR, abs/1608.0, 8 2016.

[178] Andrew Nere, Umberto Olcese, David Balduzzi, and Giulio Tononi. A Neu-

romorphic Architecture for Object Recognition and Motion Anticipation Us-

ing Burst-STDP. PloS one, 7(5), 2012.

[179] Zhijun Yang, Alan Murray, F. Worgotter, Katherine Cameron, Vasin Boon-

sobhak, Florentin Wörgötter, Katherine Cameron, and Vasin Boonsobhak.

A Neuromorphic Depth-from-Motion Vision Model with STDP Adaptation.

IEEE Transactions on Neural Networks, 17(2):482–495, 3 2006.

[180] James L. McClelland and David E. Rumelhart. An interactive activation

model of context effects in letter perception: I. An account of basic findings.

Psychological Review, 88(5):375–407, 9 1981.

[181] Rajesh P.N. Rao and Dana H. Ballard. Predictive coding in the visual cor-

tex: A functional interpretation of some extra-classical receptive-field effects.

Nature Neuroscience, 2(1):79–87, 1999.

[182] James C.R. R. Whittington and Rafal Bogacz. An approximation of the error

backpropagation algorithm in a predictive coding network with local hebbian

synaptic plasticity, 5 2017.

[183] Beren Millidge, Alexander Tschantz, and Christopher L Buckley. Predictive

coding approximates backprop along arbitrary computation graphs, 2020.

[184] Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Ak-

erman. Random synaptic feedback weights support error backpropagation

for deep learning. Nature Communications, 7(1):13276, 12 2016.

[185] Jonathan D Victor and Keith P Purpura. Nature and precision of temporal

coding in visual cortex: a metric-space analysis. Journal of neurophysiology,

76(2):1310–26, 1996.

References 321

[186] Robert Urbanczik and Walter Senn. A gradient learning rule for the tem-

potron. Neural Computation, 21(2):340–352, 2 2009.

[187] Rǎzvan V. Florian. The chronotron: A neuron that learns to fire temporally

precise spike patterns. PLoS ONE, 7(8):e40233, 8 2012.

[188] Qiang Yu, Huajin Tang, Kay Chen Tan, and Haizhou Li. Precise-Spike-

Driven synaptic plasticity: Learning hetero-association of spatiotemporal

spike patterns. PLoS ONE, 8(11):e78318, 2013.

[189] Bernard Widrow and Michael A. Lehr. 30 Years of Adaptive Neural Net-

works: Perceptron, Madaline, and Backpropagation. Proceedings of the

IEEE, 78(9):1415–1442, 1990.

[190] Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging

the gap between energy-based models and backpropagation. Frontiers in

Computational Neuroscience, 11, 2017.

[191] H Markram, Y Wang, and M Tsodyks. Differential signaling via the

same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A,

95(9):5323–8, 4 1998.

[192] Olaf Sporns. Networks of the Brain. The MIT Press, 2011.

[193] Wei Deng, James B. Aimone, and Fred H. Gage. New neurons and new

memories: how does adult hippocampal neurogenesis affect learning and

memory? Nature reviews. Neuroscience, 11(5):339–50, 5 2010.

[194] Olaf Sporns and Richard F Betzel. Modular Brain Networks. Annual review

of psychology, 67:613–40, 2016.

[195] Kechen Zhang and Terrence J. Sejnowski. A universal scaling law between

gray matter and white matter of cerebral cortex, 2000.

[196] Luca Bonfanti. Adult neurogenesis 50 years later: Limits and opportunities

in mammals, 2016.

322 References

[197] Gerd Kempermann. New neurons for ’survival of the fittest’. Nature Reviews

Neuroscience, 13(10):727, 9 2012.

[198] Nader Sanai, Thuhien Nguyen, Rebecca A. Ihrie, Zaman Mirzadeh, Hui-Hsin

Tsai, Michael Wong, Nalin Gupta, Mitchel S. Berger, Eric Huang, Jose-

Manuel Garcia-Verdugo, David H. Rowitch, and Arturo Alvarez-Buylla.

Corridors of migrating neurons in the human brain and their decline during

infancy. Nature, 478(7369):382–386, 10 2011.

[199] Nina Patzke, Muhammad A. Spocter, Karl Æ. Ae Karlsson, • Mads, F Ber-

telsen, Mark Haagensen, Richard Chawana, Sonja Streicher, Consolate

Kaswera, Emmanuel Gilissen, Abdulaziz N. Alagaili, • Osama, B Mo-

hammed, Roger L. Reep, Nigel C. Bennett, Jerry M. Siegel, • Amadi,

O Ihunwo, Paul R. Manger, Muhammad A. Spocter, Karl Æ. Ae Karls-

son, Mads F. Bertelsen, Mark Haagensen, Sonja Streicher, Á N C Bennett,

Consolate Kaswera, Emmanuel Gilissen, Abdulaziz N. Alagaili, Á O B Mo-

hammed, Roger L. Reep, Jerry M. Siegel, Richard Chawana, Sonja Streicher,

Consolate Kaswera, Emmanuel Gilissen, Abdulaziz N. Alagaili, Osama B.

Mohammed, Roger L. Reep, Nigel C. Bennett, Jerry M. Siegel, Amadi O.

Ihunwo, and Paul R. Manger. In contrast to many other mammals, cetaceans

have relatively small hippocampi that appear to lack adult neurogenesis.

Brain Structure and Function, 220(1):361–383, 1 2015.

[200] Toshihide Hige. What can tiny mushrooms in fruit flies tell us about learning

and memory? Neuroscience Research, 129:8–16, 2018.

[201] Martin Heisenberg. What do the mushroom bodies do for the insect brain?

An introduction. Learning and Memory, 5(1-2):1–10, 1998.

[202] Yoshinori Aso, Igor Siwanowicz, Lasse Bräcker, Kei Ito, Toshihiro Kitamoto,

and Hiromu Tanimoto. Specific dopaminergic neurons for the formation of

labile aversive memory. Current Biology, 20(16):1445–1451, 8 2010.

References 323

[203] Myriam Cayre, Sophie Scotto-Lomassese, Jordane Malaterre, C. Strambi,

and Alain Strambi. Understanding the Regulation and Function of Adult

Neurogenesis: Contribution from an Insect Model, the House Cricket. Chem-

ical Senses, 32(4):385–395, 5 2007.

[204] Yoshinori Aso, Daisuke Hattori, Yang Yu, Rebecca M Johnston, Nirmala A

Iyer, Teri-TB Ngo, Heather Dionne, LF Abbott, Richard Axel, Hiromu Tani-

moto, and Gerald M Rubin. The neuronal architecture of the mushroom body

provides a logic for associative learning. eLife, 3:e04577, 12 2014.

[205] Toshihide Hige, Yoshinori Aso, Gerald M Rubin, and Glenn C Turner.

Plasticity-driven individualization of olfactory coding in mushroom body

output neurons. Nature, 526(7572):258–262, 10 2015.

[206] Marie-Cecile Dufour and Christophe Gadenne. Adult neurogenesis in a moth

brain. The Journal of Comparative Neurology, 495(5):635–643, 4 2006.

[207] Myriam Cayre, Colette Strambi, Pierre Charpin, Roger Augier, Mark R.

Meyer, John S. Edwards, and Alain Strambi. Neurogenesis in adult insect

mushroom bodies. Journal of Comparative Neurology, 371(2):300–310, 7

1996.

[208] Jordane Malaterre, Colette Strambi, Ann Shyn Chiang, Aicha Aouane, Alain

Strambi, and Myriam Cayre. Development of cricket mushroom bodies.

Journal of Comparative Neurology, 452(3):215–227, 10 2002.

[209] Sophie Scotto Lomassese, Colette Strambi, Alain Strambi, Pierre Charpin,

Roger Augier, Aicha Aouane, and Myriam Cayre. Influence of environmen-

tal stimulation on neurogenesis in the adult insect brain. Journal of Neurobi-

ology, 45(3):162–171, 11 2000.

[210] Manfred Biebl, Christiana M. Cooper, Jürgen Winkler, and H. Georg Kuhn.

Analysis of neurogenesis and programmed cell death reveals a self- renewing

capacity in the adult rat brain. Neuroscience Letters, 291(1):17–20, 9 2000.

324 References

[211] M. Cayre, J. Malaterre, S. Scotto-Lomassese, G.R. Holstein, G.P. Martinelli,

C. Forni, S. Nicolas, A. Aouane, C. Strambi, and A. Strambi. A role for nitric

oxide in sensory-induced neurogenesis in an adult insect brain. European

Journal of Neuroscience, 21(11):2893–2902, 6 2005.

[212] Sophie Scotto-Lomassese, Colette Strambi, Aicha Aouane, Alain Strambi,

and Myriam Cayre. Sensory inputs stimulate progenitor cell proliferation in

an adult insect brain. Current Biology, 12(12):1001–1005, 6 2002.

[213] Manfred Schmidt. The olfactory pathway of decapod crustaceans - An in-

vertebrate model for life-long neurogenesis. In Chemical Senses, volume 32,

pages 365–384. Narnia, 5 2007.

[214] Pierre Vanderhaeghen and Hwai Jong Cheng. Guidance molecules in axon

pruning and cell death., 2010.

[215] Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Neuronal regulation: A

mechanism for synaptic pruning during brain maturation. Neural Computa-

tion, 11(8):2061–2080, 1999.

[216] Francesco Cecconi, Gonzalo Alvarez-Bolado, Barbara I Meyer, Kevin A

Roth, and Peter Gruss. Apaf1 (CED-4 homolog) regulates programmed cell

death in mammalian development. Cell, 94(6):727–737, 9 1998.

[217] Keisuke Kuida, Tarik F Haydar, Chia Yi Kuan, Yong Gu, Choji Taya, Ha-

jime Karasuyama, Michael S.S. Su, Pasko Rakic, and Richard A Flavell.

Reduced apoptosis and cytochrome C-mediated caspase activation in mice

lacking Caspase 9. Cell, 94(3):325–337, 8 1998.

[218] Gina G. Turrigiano, Kenneth R. Leslie, Niraj S. Desai, Lana C. Rutherford,

and Sacha B. Nelson. Activity-dependent scaling of quantal amplitude in

neocortical neurons. Nature, 391(6670):892–896, 2 1998.

[219] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal Brain Damage,

1990.

References 325

[220] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compress-

ing Deep Neural Networks with Pruning, Trained Quantization and Huffman

Coding. In International Conference on Learning Representations, San Juan,

Puerto Rico, 10 2016.

[221] Kirsty L. Spalding, Olaf Bergmann, Kanar Alkass, Samuel Bernard, Mehran

Salehpour, Hagen B. Huttner, Emil Boström, Isabelle Westerlund, Céline

Vial, Bruce A. Buchholz, Göran Possnert, Deborah C. Mash, Henrik Druid,

and Jonas Frisén. Dynamics of Hippocampal Neurogenesis in Adult Humans.

Cell, 153(6):1219–1227, 6 2013.

[222] Fernando Nottebohm. Neuronal replacement in adult brain. Brain Research

Bulletin, 57(6):737–749, 4 2002.

[223] Jos Prickaerts, Guido Koopmans, Arjan Blokland, and Arjan Scheepens.

Learning and adult neurogenesis: Survival with or without proliferation?,

2004.

[224] R Andrew Chambers and Susan K Conroy. Network modeling of adult neuro-

genesis: Shifting rates of neuronal turnover optimally gears network learning

according to novelty gradient. Journal of Cognitive Neuroscience, 19(1):1–

12, 1 2007.

[225] R Andrew Chambers, Marc N Potenza, Ralph E Hoffman, and Willard

Miranker. Simulated apoptosis/neurogenesis regulates learning and mem-

ory capabilities of adaptive neural networks. Neuropsychopharmacology,

29(4):747–758, 4 2004.

[226] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever.

Evolution Strategies as a Scalable Alternative to Reinforcement Learning.

Molecular systems biology, 12(7):878, 3 2017.

[227] Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O Stanley. ES is more

than just a traditional finite-difference approximator. In Proceedings of the

326 References

Genetic and Evolutionary Computation Conference on - GECCO ’18, pages

450–457, New York, New York, USA, 2018. ACM Press.

[228] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman,

Kenneth O. Stanley, and Jeff Clune. Improving Exploration in Evolution

Strategies for Deep Reinforcement Learning via a Population of Novelty-

Seeking Agents, 12 2017.

[229] Keren Saggie, Alon Keinan, and Eytan Ruppin. Spikes that count: Rethink-

ing spikiness in neurally embedded systems. Neurocomputing, 58-60:303–

311, 2004.

[230] K.O. Stanley, B.D. Bryant, and Risto Miikkulainen. Evolving adaptive neu-

ral networks with and without adaptive synapses. The 2003 Congress on

Evolutionary Computation, 2003. CEC ’03., 4(2):2557–2564, 2003.

[231] Rasmus Boll Greve, Emil Juul Jacobsen, and Sebastian Risi. Evolving Neural

Turing Machines for Reward-based Learning. In Proceedings of the 2016

on Genetic and Evolutionary Computation Conference - GECCO ’16, pages

117–124, 2016.

[232] Richard K. Belew, John McInerney, and Nicol N. Schraudolph. Evolving

Networks: Using the Genetic Algorithm with Connectionist Learning. Arti-

ficial Life II, 10:511–547, 1992.

[233] David J Chalmers. The evolution of learning: An experiment in genetic con-

nectionism. Proceedings of the 1990 Connectionist Models Summer School,

pages 1–20, 1990.

[234] Dario Floreano and Francesco Mondada. Evolution of plastic neurocon-

trollers for situated agents. From Animals to Animats 4: Proceedings of

the Fourth International Conference on Simulation of Adaptive Behavior,

4:402–410, 1996.

References 327

[235] Jonathan Baxter. The Evolution of Learning Algorithms for Artificial Neural

Networks. Complex systems: From biology to computation, page 313–326,

1992.

[236] Geoffrey F. Miller, Peter Todd, and Shailesh U. Hegde. Designing neural net-

works using genetic algorithms. In the International Conference on Genetic

Algorithms, pages 379–384, Fairfax, Virginia, USA, 1989. Morgan Kauf-

mann Publishers Inc.

[237] H. Kitano. Designing Neural Networks using Genetic Algorithms with Graph

Generation System. Complex Systems, 4:461–476, 1990.

[238] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: From

architectures to learning, 2008.

[239] Julian F Miller, Dennis G Wilson, and Sylvain Cussat-Blanc. Evolving De-

velopmental Programs That Build Neural Networks for Solving Multiple

Problems. In Genetic and Evolutionary Computation XVI, pages 137–178.

Springer, Zurich, 2019.

[240] David J Montana and Lawrence Davis. Training Feedforward Neural Net-

works Using Genetic Algorithms. In Proceedings of the 11th International

Joint Conference on Artificial intelligence, volume 1, pages 762–767, 1989.

[241] Nicholas J Radcliffe. Genetic set recombination and its application to neural

network topology optimisation. Neural Computing & Applications, 1(1):67–

90, 1993.

[242] R I Bob McKay. Fitness Sharing in Genetic Programming. In Proceedings of

the Genetic and Evolutionary Computation Conference GECCO 2000, vol-

ume 4, pages 435–442, 2000.

[243] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks

through augmenting topologies. Evolutionary Computation, 10(2):99–127,

2002.

328 References

[244] Julian Miller, Dominic Job, and Vesselin Vassilev. Principles in the Evolu-

tionary Design of Digital Circuits Part I. Genetic Programming and Evolv-

able Machines, 1(3):259–288, 2000.

[245] Julian Francis Miller. Cartesian Genetic Programming. In Julian Francis

Miller, editor, Cartesian Genetic Programming, Natural Computing Series,

chapter 2, pages 17–34. Springer-Verlag, Berlin, Heidelberg, 2011.

[246] James Alfred Walker and Julian Francis Miller. The automatic acquisition,

evolution and reuse of modules in Cartesian genetic programming. IEEE

Transactions on Evolutionary Computation, 12(4):397–417, 8 2008.

[247] Julian Francis Miller. An empirical study of the efficiency of learning

boolean functions using a Cartesian Genetic Programming approach. Pro-

ceedings of the Genetic and Evolutionary Computation Conference, 2:1135–

1142, 1999.

[248] Frédéric Gruau. Automatic Definition of Modular Neural Networks. Adap-

tive Behavior, 3(2):151–183, 9 1994.

[249] Keith L Downing. The Baldwin Effect in developing neural networks. In

Proceedings of the 12th Annual Genetic and Evolutionary Computation Con-

ference, GECCO ’10, pages 555–562, 2010.

[250] Keith L Downing. Supplementing evolutionary developmental systems with

abstract models of neurogenesis. In Proceedings of GECCO 2007: Genetic

and Evolutionary Computation Conference, pages 990–996, 2007.

[251] Beth L Chen, David H Hall, and Dmitri B Chklovskii. Wiring optimiza-

tion can relate neuronal structure and function. Proceedings of the National

Academy of Sciences, 103(12):4723–4728, 3 2006.

[252] Martijn P van den Heuvel, Cornelis J Stam, René S Kahn, and Hilleke E

Hulshoff Pol. Efficiency of functional brain networks and intellectual perfor-

References 329

mance. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 29(23):7619–7624, 2009.

[253] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils

Homer, Gabor Marth, Goncalo Abecasis, and Richard Durbin. The Sequence

Alignment/Map format and SAMtools. Bioinformatics (Oxford, England),

25(16):2078–9, 8 2009.

[254] D J J Watts and S H H Strogatz. Collective dynamics of ’small-world’ net-

works. Nature, 393(6684):440–442, 1998.

[255] Ed Bullmore and Olaf Sporns. The economy of brain network organization.

Nature Reviews Neuroscience, 13(5):336–349, 5 2012.

[256] Yong He, Jinhui Wang, Liang Wang, Zhang J. Chen, Chaogan Yan, Hong

Yang, Hehan Tang, Chaozhe Zhu, Qiyong Gong, Yufeng Zang, and Alan C.

Evans. Uncovering intrinsic modular organization of spontaneous brain ac-

tivity in humans. PLoS ONE, 4(4):e5226, 4 2009.

[257] Zhang J. Chen, Yong He, Pedro Rosa-Neto, Jurgen Germann, and Alan C.

Evans. Revealing modular architecture of human brain structural networks

by using cortical thickness from MRI. Cerebral Cortex, 18(10):2374–2381,

10 2008.

[258] David Meunier, Renaud Lambiotte, Alex Fornito, Karen D Ersche, and Ed-

ward T Bullmore. Hierarchical modularity in human brain functional net-

works. Frontiers in neuroinformatics, 3:37, 2009.

[259] Rodney J. Douglas, Christof Koch, Misha Mahowald, Kevan A.C. Martin,

and Humbert H. Suarez. Recurrent excitation in neocortical circuits. Science,

269(5226):981–985, 8 1995.

[260] Jeff Clune, Jean Baptiste Mouret, and Hod Lipson. The evolutionary origins

of modularity. In GECCO 2013 - Proceedings of the 2013 Genetic and Evo-

330 References

lutionary Computation Conference Companion, volume 280, page 23. The

Royal Society, 3 2013.

[261] Santiago Ramon y Cajal. Histology of the Nervous System of Man and Ver-

tebrates. Oxford University Press, New York, New York, USA, 10 1995.

[262] John M Beggs. The criticality hypothesis: How local cortical networks

might optimize information processing. Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences,

366(1864):329–343, 2008.

[263] Mikail Rubinov, Olaf Sporns, Jean Philippe Thivierge, and Michael Breaks-

pear. Neurobiologically realistic determinants of Self-Organized criticality in

networks of spiking neurons. PLoS Computational Biology, 7(6):e1002038,

6 2011.

[264] P A Robinson, J A Henderson, E Matar, P Riley, and R T Gray. Dynam-

ical reconnection and stability constraints on cortical network architecture.

Physical Review Letters, 103(10), 2009.

[265] Marcus Kaiser and Claus C. Hilgetag. Nonoptimal Component Placement,

but Short Processing Paths, due to Long-Distance Projections in Neural Sys-

tems. PLoS Computational Biology, 2(7):e95, 7 2006.

[266] Hod Lipson, Jordan B. Pollack, and Nam P. Suh. On the origin of modular

variation, 2002.

[267] Nadav Kashtan and Uri Alon. Spontaneous evolution of modularity

and network motifs. Proceedings of the National Academy of Sciences,

102(39):13773–13778, 9 2005.

[268] Qiang Yu, Huajin Tang, Jun Hu, and Kay Chen Tan. Rapid Feedforward

Computation by Temporal Encoding and Learning with Spiking Neurons. In

Intelligent Systems Reference Library, volume 126. Springer, 10 2017.

References 331

[269] Lyle N. Long. An adaptive spiking neural network with Hebbian learning. In

2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS),

pages 17–23. IEEE, 4 2011.

[270] Evangelos Stromatias and John S Marsland. Supervised learning in Spik-

ing Neural Networks with limited precision: SNN/LP. In Proceedings of

the International Joint Conference on Neural Networks, volume 2015-Septe,

2015.

[271] Simei Gomes Wysoski, Lubica Benuskova, and Nikola Kasabov. Adaptive

Spiking Neural Networks for Audiovisual Pattern Recognition. In Neural In-

formation Processing, volume 4985 LNCS, pages 406–415. Springer Berlin

Heidelberg, Berlin, Heidelberg, 11 2008.

[272] Robert R. Kerr, Anthony N. Burkitt, Doreen A. Thomas, Matthieu Gilson,

and David B. Grayden. Delay Selection by Spike-Timing-Dependent Plastic-

ity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs.

PLoS Computational Biology, 9(2):e1002897, 2 2013.

[273] Matthieu Gilson, Anthony N. Burkitt, David B. Grayden, Doreen A

Thomas, and J Leo Van Hemmen. Emergence of network structure due to

spike-timing-dependent plasticity in recurrent neuronal networks. I. Input

selectivity-strengthening correlated input pathways. Biological Cybernetics,

101(2):81–102, 2009.

[274] Jun Hu, Huajin Tang, K.C. Tan, and Haizhou Li. How the Brain Formu-

lates Memory: A Spatio-Temporal Model. IEEE Computational Intelligence

Magazine, 11(2):56–68, 5 2016.

[275] Davide Zambrano and Sander M Bohte. Fast and Efficient Asynchronous

Neural Computation with Adapting Spiking Neural Networks. ArXiv e-

prints, 2016.

332 References

[276] Kevin Fox and Michael Stryker. Integrating Hebbian and homeostatic plas-

ticity: Introduction. Philosophical Transactions of the Royal Society B: Bio-

logical Sciences, 372(1715), 2017.

[277] Gina G. Turrigiano. The Self-Tuning Neuron: Synaptic Scaling of Excitatory

Synapses, 2008.

[278] Lily MY Yu and Yukiko Goda. Dendritic signalling and homeostatic adapta-

tion, 2009.

[279] Keiji Ibata, Qian Sun, and Gina G. Turrigiano. Rapid Synaptic Scaling In-

duced by Changes in Postsynaptic Firing. Neuron, 57(6):819–826, 3 2008.

[280] Gina G Turrigiano. The dialectic of Hebb and homeostasis. Philosophical

Transactions of the Royal Society B: Biological Sciences, 372(1715), 2017.

[281] Lana C. Rutherford, Sacha B. Nelson, and Gina G. Turrigiano. BDNF has

opposite effects on the quantal amplitude of pyramidal neuron and interneu-

ron excitatory synapses. Neuron, 21(3):521–530, 1998.

[282] J Huupponen, S M Molchanova, T Taira, and Sari E Lauri. Susceptibility for

homeostatic plasticity is down-regulated in parallel with maturation of the

rat hippocampal synaptic circuitry. Journal of Physiology, 581(2):505–514,

6 2007.

[283] Valerie Kilman, Mark C W van Rossum, and Gina G Turrigiano. Activ-

ity deprivation reduces miniature IPSC amplitude by decreasing the number

of postsynaptic GABA(A) receptors clustered at neocortical synapses. The

Journal of neuroscience : the official journal of the Society for Neuroscience,

22(4):1328–37, 2 2002.

[284] Jimok Kim and Richard W Tsien. Synapse-Specific Adaptations to Inactivity

in Hippocampal Circuits Achieve Homeostatic Gain Control while Dampen-

ing Network Reverberation. Neuron, 58(6):925–937, 6 2008.

References 333

[285] Arianna Maffei, Kiran Nataraj, Sacha B. Nelson, and Gina G. Turrigiano. Po-

tentiation of cortical inhibition by visual deprivation. Nature, 443(7107):81–

84, 9 2006.

[286] Arianna Maffei and Gina G Turrigiano. Multiple Modes of Network Home-

ostasis in Visual Cortical Layer 2/3. Journal of Neuroscience, 28(17):4377–

4384, 2008.

[287] Friedemann Zenke and Wulfram Gerstner. Hebbian plasticity requires com-

pensatory processes on multiple timescales. Philosophical Transactions of

the Royal Society B: Biological Sciences, 372(1715):20160259, 3 2017.

[288] Friedemann Zenke, Guillaume Hennequin, and Wulfram Gerstner. Synaptic

Plasticity in Neural Networks Needs Homeostasis with a Fast Rate Detector.

PLoS Computational Biology, 9(11):e1003330, 11 2013.

[289] E L Bienenstock, L N Cooper, and P W Munro. Theory for the development

of neuron selectivity: orientation specificity and binocular interaction in vi-

sual cortex. The Journal of neuroscience : the official journal of the Society

for Neuroscience, 2(1):32–48, 1 1982.

[290] Friedemann Zenke, Everton J Agnes, and Wulfram Gerstner. Diverse synap-

tic plasticity mechanisms orchestrated to form and retrieve memories in spik-

ing neural networks. Nature communications, 6:6922, 4 2015.

[291] Claudia Clopath, Lars Büsing, Eleni Vasilaki, and Wulfram Gerstner. Con-

nectivity reflects coding: a model of voltage-based STDP with homeostasis.

Nature Neuroscience, 13(3):344–352, 3 2010.

[292] John Backus. Can programming be liberated from the von Neumann style?:

a functional style and its algebra of programs. Communications of the ACM,

21(8):613–641, 8 1978.

334 References

[293] Erol Başar, Canan Başar-Eroglu, Sirel Karakaş, and Martin Schürmann.

Gamma, alpha, delta, and theta oscillations govern cognitive processes. In-

ternational Journal of Psychophysiology, 39(2-3):241–248, 1 2000.

[294] Eve Marder and Jean Marc Goaillard. Variability, compensation and home-

ostasis in neuron and network function, 7 2006.

[295] Dan F.M. Goodman and Romain Brette. The brian simulator, 9 2009.

[296] Jochen Martin Eppler, Robin Pauli, Alexander Peyser, Tammo Ippen, Abi-

gail Morrison, Johanna Senk, Wolfram Schenck, Hannah Bos, Moritz Helias,

Maximilian Schmidt, Susanne Kunkel, Jakob Jordan, Marc-Oliver Gewaltig,

Claudia Bachmann, Jannis Schuecker, Sacha Albada, Tiziano Zito, Moritz

Deger, Frank Michler, Espen Hagen, Hesam Setareh, Luis Riquelme, Ali

Shirvani, Renato Duarte, Rajalekshmi Deepu, and Hans Ekkehard Plesser.

NEST 2.8.0. Zenodo, 9 2015.

[297] Nicholas Carnevale and Michael L. Hines. The NEURON Book. Cambridge

University Press, 2005.

[298] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular

machine learning software library, 2002.

[299] Mikael Djurfeldt, Johannes Hjorth, Jochen M. Eppler, Niraj Dudani,

Moritz Helias, Tobias C. Potjans, Upinder S. Bhalla, Markus Diesmann,

Jeanette Hellgren Kotaleski, and Örjan Ekeberg. Run-time interoperabil-

ity between neuronal network simulators based on the MUSIC framework.

Neuroinformatics, 8(1):43–60, 3 2010.

[300] Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Devdhar Patel, Darpan T.

Sanghavi, Hava T. Siegelmann, and Robert Kozma. BindsNET: A Machine

Learning-Oriented Spiking Neural Networks Library in Python. Frontiers in

Neuroinformatics, 12, 12 2018.

References 335

[301] Daniel Saunders, Hananel Hazan, Darpan Sanghavi, and Hassaan Khan.

spikeTorch. https://github.com/djsaunde/spiketorch, 2017.

[302] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek G Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-

den, Martin Wicke, Yuan Yu, Xiaoqiang Zheng, and Google Brain. Ten-

sorFlow: A System for Large-Scale Machine Learning. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI ’16),

pages 265–284, 2016.

[303] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. CoRR,

abs/1606.0, 6 2016.

[304] Christian Pehle and Jens Egholm Pedersen. Norse - A deep learning library

for spiking neural networks, 2021.

[305] Daniel Rasmussen. NengoDL: Combining deep learning and neuromorphic

modelling methods. ArXiv e-prints, 5 2018.

[306] Barry W Boehm, T R W Defense, Systems Group, Harry W Boehm, T R W

Defense, and Systems Group. A Spiral Model of Software Development and

Enhancement. Computer, 21(May):61–72, 1987.

[307] Wulfram Gerstner, Werner Kistler, Richard Naud, and Liam Paninski. Neu-

ronal Dynamics: Python Exercises.

[308] J J Hopfield and Carlos D Brody. What is a moment? Transient synchrony

as a collective mechanism for spatiotemporal integration. Proceedings of the

National Academy of Sciences of the United States of America, 98(3):1282–

1287, 2001.

336 References

[309] Biju B Thomas, Magdalene J Seiler, Srinivas R Sadda, Peter J Coffey, and

Robert B Aramant. Optokinetic test to evaluate visual acuity of each eye

independently. Journal of Neuroscience Methods, 138:7–13, 2004.

[310] D H Hubel and T N Wiesel. The period of susceptibility to the physiolog-

ical effects of unilateral eye closure in kittens. The Journal of physiology,

206(2):419–36, 2 1970.

[311] Paul D. Wilson and Austin H. Riesen. Visual development in rhesus mon-

keys neonatally deprived of patterned light. Journal of Comparative and

Physiological Psychology, 61(1):87–95, 1966.

[312] Diego Mendoza-Halliday and Julio C. Martinez-Trujillo. Neuronal popula-

tion coding of perceived and memorized visual features in the lateral pre-

frontal cortex. Nature Communications, 8:15471, 6 2017.

[313] Guo-Qiang Bi and Mu-Ming Poo. Synaptic Modification by Correlated

Activity: Hebb’s Postulate Revisited. Annual Review of Neuroscience,

24(1):139–166, 2001.

[314] L. M. Optican and B. J. Richmond. Temporal encoding of two-dimensional

patterns by single units in primate inferior temporal cortex. III. Information

theoretic analysis. Journal of Neurophysiology, 57(1):162–178, 1987.

[315] M. N. Chee-Orts and L M Optican. Cluster method for analysis of transmitted

information in multivariate neuronal data. Biological Cybernetics, 69(1):29–

35, 1993.

[316] Jay Hegdé and David C. Van Essen. Temporal dynamics of shape analysis in

macaque visual area V2. Journal of Neurophysiology, 92(5):3030–3042, 11

2004.

[317] John C. Middlebrooks, Ann E. Clock, Li Xu, and David M. Green.

A panoramic code for sound location by cortical neurons. Science,

264(5160):842–844, 1994.

References 337

[318] P. E. Rapp, I. D. Zimmerman, E. P. Vining, N. Cohen, A. M. Albano, and

M. A. Jiménez-Montaño. The algorithmic complexity of neural spike trains

increases during focal seizures. Journal of Neuroscience, 14(8):4731–4739,

1994.

[319] M. C.W. Van Rossum. A novel spike distance. Neural Computation,

13(4):751–763, 2001.

[320] Benjamin Schrauwen and Jan Van Campenhout. Linking non-binned spike

train kernels to several existing spike train metrics. Neurocomputing, 70(7-

9):1247–1253, 3 2007.

[321] Eero Satuvuori and Thomas Kreuz. Which spike train distance is most suit-

able for distinguishing rate and temporal coding? Journal of Neuroscience

Methods, 299:22–33, 4 2018.

[322] Eugene M Izhikevich, Joseph A Gally, and Gerald M Edelman. Spike-timing

dynamics of neuronal groups. Cerebral Cortex, 14(8):933–944, 2004.

[323] Mark J Schnitzer and Markus Meister. Multineuronal firing patterns in the

signal from eye to brain. Neuron, 37(3):499–511, 2003.

[324] Arno Onken, PPCR Karunasekara, Christoph Kayser, and Stefano Panzeri.

Understanding neural population coding: information-theoretic insights from

the auditory system. Advances in Neuroscience, 2014(907851):1–14, 10

2014.

[325] Stefano Panzeri, Jakob H. Macke, Joachim Gross, and Christoph Kayser.

Neural population coding: Combining insights from microscopic and mass

signals, 3 2015.

[326] Daniel Machado, Rafael S. Costa, Miguel Rocha, Isabel Rocha, Bruce Tidor,

and Eugénio C. Ferreira. A Critical Review on Modelling Formalisms and

Simulation Tools in Computational Biosystems. In Distributed Computing,

338 References

Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted

Living, volume 5518, pages 1063–1070. Springer Berlin Heidelberg, 2009.

[327] Ali Safa, Federico Corradi, Lars Keuninckx, Ilja Ocket, Andre Bourdoux,

Francky Catthoor, and Georges G.E. Gielen. Improving the Accuracy of

Spiking Neural Networks for Radar Gesture Recognition Through Prepro-

cessing. IEEE Transactions on Neural Networks and Learning Systems,

2021.

[328] Jibin Wu, Yansong Chua, Malu Zhang, Haizhou Li, and Kay Chen Tan. A

spiking neural network framework for robust sound classification. Frontiers

in Neuroscience, 12(NOV):836, 11 2018.

[329] Eustace Painkras, Luis A. Plana, Jim Garside, Steve Temple, Francesco

Galluppi, Cameron Patterson, David R. Lester, Andrew D. Brown, and

Steve B. Furber. SpiNNaker: A 1-W 18-Core System-on-Chip for Massively-

Parallel Neural Network Simulation. IEEE Journal of Solid-State Circuits,

48(8):1943–1953, 8 2013.

[330] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy,

Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo,

Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar

Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk,

Rajit Manohar, and Dharmendra S. Modha. A million spiking-neuron inte-

grated circuit with a scalable communication network and interface. Science,

345(6197), 2014.

[331] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. Pro-

cedings of the British Machine Vision Conference 2016, pages 1–87, 5 2016.

[332] Yoonsik Shim, Andrew Philippides, Kevin Staras, Phil Husbands, NK Lo-

gothetis, and AS Tolias. Unsupervised Learning in an Ensemble of Spik-

ing Neural Networks Mediated by ITDP. PLOS Computational Biology,

12(10):e1005137, 10 2016.

References 339

[333] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross vali-

dation and active learning, 1994.

[334] Michael N. Shadlen and William T. Newsome. The variable discharge of

cortical neurons: Implications for connectivity, computation, and informa-

tion coding. Journal of Neuroscience, 18(10):3870–3896, 5 1998.

[335] M Megı́as, Zs Emri, T F Freund, and A I Gulyás. Total number and distri-

bution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal

cells. Neuroscience, 102(3):527–540, 2001.

[336] Attila I Gulyá, Manuel Megı́as, Zsuzsa Emri, and Tamá F Freund. Total

Number and Ratio of Excitatory and Inhibitory Synapses Converging onto

Single Interneurons of Different Types in the CA1 Area of the Rat Hippocam-

pus. The Journal of Neuroscience, 19(22):10082–10097, 1999.

[337] W Kruskal and W Wallis. Use of Ranks in One-Criterion Variance Analysis.

Journal of the American Statistical Association, 47(260):583–621, 1952.

[338] Olive Jean Dunn. Multiple Comparisons Using Rank Sums. Technometrics,

6(3):241–252, 8 1964.

[339] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren

Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua

Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric

Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.

Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,

Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,

Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, Aditya Vi-

jaykumar, Alessandro Pietro Bardelli, Alex Rothberg, Andreas Hilboll, An-

dreas Kloeckner, Anthony Scopatz, Antony Lee, Ariel Rokem, C. Nathan

Woods, Chad Fulton, Charles Masson, Christian Häggström, Clark Fitzger-

ald, David A. Nicholson, David R. Hagen, Dmitrii V. Pasechnik, Emanuele

340 References

Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Felix Lenders, Florian Wil-

helm, G. Young, Gavin A. Price, Gert-Ludwig Ingold, Gregory E. Allen,

Gregory R. Lee, Hervé Audren, Irvin Probst, Jörg P. Dietrich, Jacob Sil-

terra, James T Webber, Janko Slavič, Joel Nothman, Johannes Buchner,

Johannes Kulick, Johannes L. Schönberger, José Vinı́cius de Miranda Car-

doso, Joscha Reimer, Joseph Harrington, Juan Luis Cano Rodrı́guez, Juan

Nunez-Iglesias, Justin Kuczynski, Kevin Tritz, Martin Thoma, Matthew

Newville, Matthias Kümmerer, Maximilian Bolingbroke, Michael Tartre,

Mikhail Pak, Nathaniel J. Smith, Nikolai Nowaczyk, Nikolay Shebanov,

Oleksandr Pavlyk, Per A. Brodtkorb, Perry Lee, Robert T. McGibbon, Ro-

man Feldbauer, Sam Lewis, Sam Tygier, Scott Sievert, Sebastiano Vigna,

Stefan Peterson, Surhud More, Tadeusz Pudlik, Takuya Oshima, Thomas J.

Pingel, Thomas P. Robitaille, Thomas Spura, Thouis R. Jones, Tim Cera,

Tim Leslie, Tiziano Zito, Tom Krauss, Utkarsh Upadhyay, Yaroslav O.

Halchenko, and Yoshiki Vázquez-Baeza. SciPy 1.0: fundamental algorithms

for scientific computing in Python. Nature Methods, 17(3):261–272, 3 2020.

[340] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.

. . . Science Department, University of Toronto, Tech. . . . , pages 1–60, 2009.

[341] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine Learning in {P}ython. Journal of Machine Learning Research, pages

2825–2830, 2011.

[342] François Chollet. Keras, 2015.

[343] Michael Denker, Alper Yegenoglu, and Sonja Grün. Collaborative HPC-

enabled workflows on the HBP Collaboratory using the Elephant framework.

In Neuroinformatics, page 19, Montreal, Canada, 2018.

References 341

[344] Giuseppe Vettigli. MiniSom: minimalistic and NumPy-based implementa-

tion of the Self Organizing Map, 2018.

[345] Qiang Yu, Rui Yan, Huajin Tang, Kay Chen Tan, and Haizhou Li. A Spiking

Neural Network System for Robust Sequence Recognition. IEEE Transac-

tions on Neural Networks and Learning Systems, 27(3):621–635, 3 2016.

[346] Seongsik Park, Dongjin Lee, and Sungroh Yoon. Noise-Robust Deep Spiking

Neural Networks with Temporal Information. ArXiv e-prints, 4 2021.

[347] Răzvan V. Florian. Reinforcement Learning Through Modulation of Spike-

Timing-Dependent Synaptic Plasticity. Neural Computation, 19(6):1468–

1502, 6 2007.

[348] Terry Pratchett. Reaper Man: A Novel of Discworld”. Harper Collins, 2009.

[349] Amy Kalia, Luis Andres Lesmes, Michael Dorr, Tapan Gandhi, Garga Chat-

terjee, Suma Ganesh, Peter J Bex, and Pawan Sinha. Development of pattern

vision following early and extended blindness. Proceedings of the National

Academy of Sciences, 111(5):2035–2039, 2 2014.

[350] J. Mark Baldwin. A New Factor in Evolution. The American Naturalist,

30(354):441–451, 1896.

[351] Geoffrey E Hinton and Steven J Nowlan. How Learning Can Guide Evolu-

tion. Complex Systems, 1:495–502, 1987.

[352] Bruce E Wexler. Review Article Neuroplasticity , cultural evolution

and cultural difference. World Cultural Psychiatry Research Review,

1(Summer):11–22, 2010.

[353] Robert Tibshirani. The LASSO method for variable selection in the Cox

model. Statistics in Medicine, 16(4):385–395, 1997.

[354] Kamal Nigam, John Lafferty, and Andrew Mccallum. Using Maximum En-

tropy for Text Classification. IJCAI-99 Workshop on Machine Learning for

Information Filtering, pages p. 61– 67, 1999.

342 References

[355] Florence I. Kleberg, Tomoki Fukai, and Matthieu Gilson. Excitatory and

inhibitory STDP jointly tune feedforward neural circuits to selectively prop-

agate correlated spiking activity. Frontiers in Computational Neuroscience,

8(MAY):53, 5 2014.

[356] Michael Okun and Ilan Lampl. Instantaneous correlation of excitation and in-

hibition during ongoing and sensory-evoked activities. Nature Neuroscience,

11(5):535–537, 5 2008.

[357] Mingshan Xue, Bassam V. Atallah, and Massimo Scanziani. Equaliz-

ing excitation–inhibition ratios across visual cortical neurons. Nature,

511(7511):596–600, 7 2014.

[358] Daniel Maxim Iascone, Yujie Li, Uygar Sümbül, Michael Doron, Hanbo

Chen, Valentine Andreu, Finola Goudy, Heike Blockus, Larry F. Abbott,

Idan Segev, Hanchuan Peng, and Franck Polleux. Whole-Neuron Synaptic

Mapping Reveals Spatially Precise Excitatory/Inhibitory Balance Limiting

Dendritic and Somatic Spiking. Neuron, 106(4):566–578, 5 2020.

[359] Terry Pratchett. A Blink of the Screen: Collected Shorter Fiction. Doubleday,

2012.

[360] Giacomo Indiveri and Timothy K. Horiuchi. Frontiers in Neuromorphic En-

gineering. Frontiers in Neuroscience, 5, 2011.

[361] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking Deep Convolu-

tional Neural Networks for Energy-Efficient Object Recognition. Interna-

tional Journal of Computer Vision, 113(1):54–66, 5 2015.

[362] Johan Kwisthout and Nils Donselaar. On the computational power and com-

plexity of Spiking Neural Networks. Proceedings of the Neuro-inspired Com-

putational Elements Workshop, pages 1–7, 3 2020.

[363] Sergio Valadez Godinez, Juan Humberto Sossa Azuela, and Raul Santi-

ago Montero. How the Accuracy and Computational Cost of Spiking Neuron

References 343

Simulation are Affected by the Time Span and Firing Rate. Computación y

Sistemas, 21(4), 1 2018.

[364] Xiaoxuan Jia, Josh Siegle, Corbett Bennett, Sam Gale, Daniel Denman,

Christof Koch, and Shawn Olsen. High-density extracellular probes reveal

dendritic backpropagation and facilitate neuron classification. bioRxiv, page

376863, 7 2018.

[365] Heiko J Luhmann, Anne Sinning, Jenq Wei Yang, Vicente Reyes-Puerta,

Maik C Stüttgen, Sergei Kirischuk, and Werner Kilb. Spontaneous neuronal

activity in developing neocortical networks: From single cells to large-scale

interactions, 2016.

[366] Jean-Baptiste Mouret. Novelty-Based Multiobjectivization. In New Hori-

zons in Evolutionary Robotics, pages 139–154. Springer, Berlin, Heidelberg,

2011.

[367] Joel Lehman and Kenneth O. Stanley. Abandoning Objectives: Evolu-

tion Through the Search for Novelty Alone. Evolutionary Computation,

19(2):189–223, 6 2011.

[368] Andy Clark. Mindware : an introduction to the philosophy of cognitive sci-

ence. Oxford University Press;, 2001.

[369] Julian F Miller, Dennis G Wilson, and Sylvain Cussat-Blanc. Evolving Pro-

grams to Build Artificial Neural Networks. In Andrew Adamatzky and Viv

Kendon, editors, Emergence, Complexity and Computation Book 35, pages

23–71. Springer, 2020.

[370] Chang Liu, Placais Pierre Yves, Nobuhiro Yamagata, Barret D. Pfeiffer,

Yoshinori Aso, Anja B. Friedrich, Igor Siwanowicz, Gerald M. Rubin,

Thomas Preat, and Hiromu Tanimoto. A subset of dopamine neurons sig-

nals reward for odour memory in Drosophila. Nature, 488(7412):512–516, 8

2012.

344 References

[371] Yoshinori Aso, Andrea Herb, Maite Ogueta, Igor Siwanowicz, Thomas Tem-

plier, Anja B. Friedrich, Kei Ito, Henrike Scholz, and Hiromu Tanimoto.

Three Dopamine pathways induce aversive odor memories with different sta-

bility. PLoS Genetics, 8(7):e1002768, 7 2012.

[372] Alex C Keene and Erik R Duboue. The origins and evolution of sleep. The

Journal of Experimental Biology, 221(11):jeb159533, 2018.

[373] Patrick McNamara, Robert A. Barton, and Charles L. Nunn. Evolution of

sleep: Phylogenetic and functional perspectives, volume 9780521894. Cam-

bridge University Press, 2009.

[374] O.I. Lyamin L.M. Mukhametov and G. Polyakova I. lnterhemispherie

asynehrony of the sleep EEG in northern fur seals. The Journal of experi-

mental biology, 216(Pt 10):1757, 8 1984.

[375] Allan Rechtschaffen and Bernard M. Bergmann. Sleep deprivation in the rat

by the disk-over-water method. Behavioural Brain Research, 69(1-2):55–63,

7 1995.

[376] Amnesty International. Torture — Amnesty International.

[377] The Sidney Morning Herald. Sleep deprivation is torture: Amnesty, 2006.

[378] Giulio Tononi and Chiara Cirelli. Sleep and the Price of Plasticity: From

Synaptic and Cellular Homeostasis to Memory Consolidation and Integra-

tion, 2014.

[379] David Attwell and Alasdair Gibb. Neuroenergetics and the kinetic design of

excitatory synapses, 11 2005.

[380] Alison L Barth and James F A Poulet. Experimental evidence for sparse

firing in the neocortex. Trends in Neurosciences, 35:345–355, 2012.

[381] Vladyslav V Vyazovskiy, Chiara Cirelli, Martha Pfister-Genskow, Ugo Fara-

guna, and Giulio Tononi. Molecular and electrophysiological evidence for

References 345

net synaptic potentiation in wake and depression in sleep. Nature Neuro-

science, 11(2):200–208, 2 2008.

[382] Z.-W. Liu, Ugo Faraguna, Chiara Cirelli, Giulio Tononi, and X.-B. Gao. Di-

rect Evidence for Wake-Related Increases and Sleep-Related Decreases in

Synaptic Strength in Rodent Cortex. Journal of Neuroscience, 30(25):8671–

8675, 2010.

[383] Vladyslav V Vyazovskiy, Umberto Olcese, Yaniv M Lazimy, Ugo Faraguna,

Steve K Esser, Justin C Williams, Chiara Cirelli, and Giulio Tononi. Cortical

Firing and Sleep Homeostasis. Neuron, 63(6):865–878, 2009.

[384] Daniel Bushey, Giulio Tononi, and Chiara Cirelli. Sleep and synaptic home-

ostasis: Structural evidence in Drosophila. Science, 332(6037):1576–1581,

6 2011.

[385] Stephanie Maret, Ugo Faraguna, Aaron B Nelson, Chiara Cirelli, and Giulio

Tononi. Sleep and waking modulate spine turnover in the adolescent mouse

cortex. Nature Neuroscience, 14(11):1418–1420, 2011.

[386] Sean Hill, Giulio Tononi, and M. Felice Ghilardi. Sleep improves the vari-

ability of motor performance. Brain Research Bulletin, 76(6):605–611, 2008.

[387] Umberto Olcese, Steve K Esser, and Giulio Tononi. Sleep and Synaptic

Renormalization: A Computational Study. J Neurophysiol, 104:3476–3493,

2010.

[388] Andrew Nere, Atif Hashmi, Chiara Cirelli, and Giulio Tononi. Sleep-

dependent synaptic down-selection (I): Modeling the benefits of sleep on

memory consolidation and integration. Frontiers in Neurology, 4 SEP:143, 9

2013.

[389] Atif Hashmi, Andrew Nere, and Giulio Tononi. Sleep-dependent synaptic

down-selection (II): Single-neuron level benefits for matching, selectivity,

and specificity. Frontiers in Neurology, 4 OCT:148, 10 2013.

346 References

[390] G Hinton, Peter Dayan, B Frey, and R Neal. The wake-sleep algorithm for

unsupervised neural networks. Science (New York, NY), 268:1158–1161,

1995.

[391] Johannes Thiele, Peter Diehl, and Matthew Cook. A wake-sleep algorithm

for recurrent, spiking neural networks. CoRR, abs/1703.0, 3 2017.

[392] Lana Sinapayen. Good science ends when you become more attached to your

solution than to the problem. [Twitter], 2018.

[393] Shreejoy Tripathy and Richard Gerkin. Electrophysiological values of max-

imum firing rate across neuron types from literature, 2016.

[394] T. Warren Liao. Clustering of time series data - A survey, 2005.

[395] Guy Brock, Susmita Datta, Vasyl Pihur, and Somnath Datta. clValid: An

R Package for Cluster Validation. Journal of Statistical SoftwareSoftware,

25(4), 2008.

[396] Alexis Sardá-Espinosa. Comparing time-series clustering algorithms in r us-

ing the dtwclust package, 2017.

[397] Pablo Montero and José A. Vilar. TSclust : An R Package for Time Series

Clustering. Journal of Statistical Software, 62(1), 2014.

[398] Moshe Sipper, Eduardo Sanchez, Daniel Mange, Marco Tomassini, Andres

Pérez-Uribe, and André Stauffer. A phylogenetic, ontogenetic, and epige-

netic view of bio-inspired hardware systems. IEEE Transactions on Evolu-

tionary Computation, 1(1):83–97, 1997.

[399] Irmgard Amrein, Karin Isler, and Hans Peter Lipp. Comparing adult hip-

pocampal neurogenesis in mammalian species and orders: Influence of

chronological age and life history stage. European Journal of Neuroscience,

34(6):978–987, 9 2011.

References 347

[400] Chet C. Sherwood and Aida Gómez-Robles. Brain Plasticity and Human

Evolution. Annual Review of Anthropology, 46(1):399–419, 10 2017.

[401] Lawrence K. Low and Hwai Jong Cheng. Axon pruning: An essential step

underlying the developmental plasticity of neuronal connections, 9 2006.

[402] John Rafferty. Endocranial cast, Encyclopaedia Britannica, 2009.

[403] Tae Yoon S. Park, Ji Hoon Kihm, Jusun Woo, Changkun Park, Won Young

Lee, M. Paul Smith, David A.T. Harper, Fletcher Young, Arne T. Nielsen,

and Jakob Vinther. Brain and eyes of Kerygmachela reveal protocerebral

ancestry of the panarthropod head. Nature Communications, 9(1), 2018.

[404] Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. STDP-Based Pruning

of Connections and Weight Quantization in Spiking Neural Networks for

Energy-Efficient Recognition. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 38(4):668–677, 4 2019.

[405] Yuhan Shi, Leon Nguyen, Sangheon Oh, Xin Liu, and Duygu Kuzum. A soft-

pruning method applied during training of spiking neural networks for in-

memory computing applications. Frontiers in Neuroscience, 13(APR):405,

4 2019.

[406] Matthew Frazier and Worthy Martin. Effects Of Real-time Synaptic Plasticity

Using Spiking Neural Network Architecture, 2014.

[407] Yusuke Tabata and Masaharu Adachi. A Spiking Network of Hippocampal

Model Including Neurogenesis. In Advances in Neuro-Information Process-

ing, pages 14–21, Auckland, New Zealand, 2008. Springer.

[408] Nikola Kasabov. Evolving spiking neural networks for spatio- and spectro-

temporal pattern recognition. Neural networks : the official journal of the

International Neural Network Society, 41:188–201, 2013.

348 References

[409] Andrea Soltoggio, Kenneth O Stanley, and Sebastian Risi. Born to learn: The

inspiration, progress, and future of evolved plastic artificial neural networks,

2018.

[410] Michael H. Zhu and Suyog Gupta. To prune, or not to prune: Exploring the

efficacy of pruning for model compression. In 6th International Conference

on Learning Representations, ICLR 2018 - Workshop Track Proceedings, 10

2018.

[411] Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Synaptic Pruning in Devel-

opment: A Computational Account. Neural Computation, 10(7):1759–1777,

10 1998.

[412] Susana Cohen-Cory. The developing synapse: Construction and modulation

of synaptic structures and circuits, 2002.

[413] Moritz Helias, Stefan Rotter, Marc Oliver Gewaltig, and Markus Diesmann.

Structural plasticity controlled by calcium based correlation detection. Fron-

tiers in Computational Neuroscience, 2(December):7, 2008.

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Hypothesis
	Objectives
	Scope of the project
	Thesis overview
	Publications

	Literature Review
	Spiking in biological and artificial neurons
	Information processing in the brain
	Initialisation of an action potential
	Dendritic computation
	Neuron models
	Single-compartmental neuron models
	Multi-compartmental neuron models

	Spiking in artificial neural networks

	Excitatory and inhibitory neurons
	Rate-based vs spike timing-based information encoding
	Synaptic plasticity
	When does our learning start?
	Synaptic plasticity in the brain
	Unsupervised training in spiking neural networks
	Supervised training in spiking neural networks

	Structural plasticity
	Structural plasticity in the brain
	Progressive mechanisms
	Regressive mechanisms

	Evolution and development
	Evolution of artificial neural network architectures
	Direct encoding
	Indirect encoding
	The model of evolving neural aggregates

	Modularity in neural networks
	Modularity in the brain
	Modularity in artificial neural networks

	Homeostatic synaptic plasticity
	Homeostatic synaptic plasticity in the nervous system
	Homeostatic plasticity implementations

	Summary

	Methodology
	Simulator selection
	Neuron model
	Implementation of electrophysiological parameters

	Architecture
	Input data
	Training with spike-timing-dependent plasticity
	Similarity measures and output interpretation
	Distance metric
	Distance metric interpretation
	Output interpretation with self-organising maps
	Individual vs collective activity

	Model assessment

	Spiking neural networks for unsupervised processing of spatio-temporal patterns
	Model description
	Neuron model and network architecture
	Spike Timing-dependent Plasticity
	Analysis
	Input data

	Experimental design: baseline characterisation
	Experiment 1: Performance of standard Machine Learning methods
	Experiment 2: Baseline characterisation of the spiking neuron network
	Experiment 3: STDP: effects on spike train distances and weights

	Experimental design: ensembles
	Experiment 4: Clustering of spatio-temporal patterns
	Experiment 5: Clustering of noisy inputs
	Experiment 6: Clustering of incomplete inputs
	Experiment 7: Clustering of superimposed inputs

	Results: Baseline characterisation
	Experiment 1: Performance of standard Machine Learning methods
	Experiment 2: Characterisation of the spiking pattern
	PCA of input and output spikes
	VPD for the stripes data set
	VPD for the shapes data set
	Euclidean distance for the stripes data set
	Euclidean distance for the shapes data set

	Experiment 3: Effects of STDP on spike train distances and weights

	Results: Feature reduction and ensembles
	Experiment 4: Clustering of spatio-temporal patterns
	Clustering of individual spikes
	Clustering of collective spikes
	Ensemble clustering

	Experiment 5: Clustering of noisy inputs
	Experiment 6: Clustering of incomplete inputs
	Experiment 7: Clustering of superimposed inputs

	Summary

	The evolution of training parameters for spiking neural networks with Hebbian learning
	Model description
	Experimental design
	Experiment 1: Search for learning parameters without survival of the fittest.
	Experiment 2: Evolutionary optimisation of learning parameters
	Experiment 3: Evolution with different fitness criteria
	Experiment 4: Evolution with architectural inheritance
	Experiment 5: Evolutionary fitness in the absence of training

	Results
	Experiment 1: Search for learning parameters without survival of the fittest.
	Experiment 2: Evolution optimisation of learning parameters
	Experiment 3: Fitness with different fitness definitions
	Experiment 4: Evolution with architectural inheritance
	Experiment 5: Evolutionary fitness in the absence of training

	Summary

	Synaptic homeostasis in spiking neural networks
	Introduction
	Model description
	Part 1: Stabilisation of network activity by normalising the sum of weights
	Experimental design
	Experiment 1: Homeostasis of the total sum of weights
	Experiment 2: Homeostasis of the sum of excitatory and inhibitory weights

	Results
	Results 1: Homeostasis of the total sum of weights
	Results 2: Homeostasis of the sum of excitatory and inhibitory weights

	Summary of part 1

	Part 2: Stabilisation of network activity by scaling weights
	Experimental design
	Experiments 3 and 4: weight adjustment as a function of the output layers' activity
	Experiments 5 and 6: Weight adjustment as a function of the whole network activity

	Results
	Results 3: Multiplicative weight adjustment as a function of spiking in the output layer
	Results 4: Additive weight adjustment as a function of spiking in the output layer
	Results 5: Multiplicative weight adjustment as a function of spiking in the whole network
	Results 6: Additive weight adjustment as a function of spiking in the whole network

	Summary of part 2

	Part 3: Stabilisation of network activity by scaling excitation and inhibition
	Experimental design: Scaling of inhibition and excitation
	Results 7: Scaling of inhibition and excitation
	Summary of part 3

	Chapter summary

	Conclusions and future work
	Contributions
	Future Work
	Neuron models
	Data encoding and time-series data
	Homeostasis
	Evolutionary approaches
	Developmental rules
	Architecture analysis
	Reinforcement learning
	Sleep-wake cycle
	The synaptic homeostasis hypothesis
	Sleep-wake cycle implementations
	Implementation in our model

	Closing statement

	Appendices
	Appendices
	Evolution with different criteria
	Introduction
	Experimental design
	Results
	Discussion

	Implementation of different STDP functions
	Methods: Implementation of different STDP functions
	Results: Effects of STDP functions on model’s behaviour
	Summary

	Other clustering methods
	Experiment description
	 Results
	Summary

	Evolution of developmental rules
	Introduction
	Model description
	Networks with regressive plasticity
	Evolution of developmental rules

	Experimental design
	Regressive architectural plasticity
	Experiment 1: Random pruning
	Experiment 2: Conditional pruning

	Evolution of developmental rules
	Experiment 3: Output encoding in sparse plastic networks
	Experiment 4: Development of networks with architectural inheritance

	Results
	Regressive architectural plasticity
	 Results 1: Random pruning
	Results 2: Conditional pruning

	Evolution of developmental rules
	Results 3: Output encoding in sparse plastic networks
	Results 4: Development of networks with architectural inheritance

	Summary

	Training of Self Organising Maps
	References

