37 research outputs found

    Computational Intelligence Applied to Financial Price Prediction: A State of the Art Review

    Get PDF
    The following work aims to review the most important research from computational intelligence applied to the financial price prediction problem. The article is organized as follows: The first section summarizes the role of predictability in the Neoclassical financial world. This section also criticizes the zero predictability framework. The second section presents the main computational intelligence techniques applied to financial price prediction. The third section depicts common features of revised works

    Applications of artificial neural networks in financial market forecasting

    Get PDF
    This thesis evaluates the utility of Artificial Neural Networks (ANNs) applied to financial market and macroeconomic forecasting. In application, ANNs are evaluated in comparison to traditional forecasting models to evaluate if their nonlinear and adaptive properties yield superior forecasting performance in terms of robustness and accuracy. Furthermore, as ANNs are data-driven models, an emphasis is placed on the data collection stage by compiling extensive candidate input variable pools, a task frequently underperformed by prior research. In evaluating their performance, ANNs are applied to the domains of: exchange rate forecasting, volatility forecasting, and macroeconomic forecasting. Regarding exchange rate forecasting, ANNs are applied to forecast the daily logarithmic returns of the EUR/USD over a short-term forecast horizon of one period. Initially, the analytic method of Technical Analysis (TA) and its sub-section of technical indicators are utilized to compile an extensive candidate input variable pool featuring standard and advanced technical indicators measuring all technical aspects of the EUR/USD time series. The candidate input variable pool is then subjected to a two-stage Input Variable Selection (IVS) process, producing an informative subset of technical indicators to serve as inputs to the ANNs. A collection of ANNs is then trained and tested on the EUR/USD time series data with their performance evaluated over a 5-year sample period (2012 to 2016), reserving the last two years for out of sample testing. A Moving Average Convergence Divergence (MACD) model serves as a benchmark with the in-sample and out-of-sample empirical results demonstrating the MACD is a superior forecasting model across most forecast evaluation metrics. For volatility forecasting, ANNs are applied to forecast the volatility of the Nikkei 225 Index over a short-term forecast horizon of one period. Initially, an extensive candidate input variable pool is compiled consisting of implied volatility models and historical volatility models. The candidate input variable pool is then subjected to a two-stage IVS process. A collection of ANNs is then trained and tested on the Nikkei 225 Index time series data with their performance evaluated over a 4-year sample period (2014 to 2017), reserving the last year for out-of-sample testing. A GARCH (1,1) model serves as a benchmark with the out-of-sample empirical results finding the GARCH (1,1) model to be the superior volatility forecasting model. The research concludes with ANNs applied to macroeconomic forecasting, where ANNs are applied to forecast the monthly per cent-change in U.S. civilian unemployment and the quarterly per cent-change in U.S. Gross Domestic Product (GDP). For both studies, an extensive candidate input variable pool is compiled using relevant macroeconomic indicator data sourced from the Federal Bank of St Louis. The candidate input variable pools are then subjected to a two-stage IVS process. A collection of ANNs is trained and tested on the U.S. unemployment time series data (UNEMPLOY) and U.S. GDP time series data. The sample periods are (1972 to 2017) and (1960 to 2016) respectively, reserving the last 20% of data for out of sample testing. In both studies, the performance of the ANNs is benchmarked against a Support Vector Regression (SVR) model and a Naïve forecast. In both studies, the ANNs outperform the SVR benchmark model. The empirical results demonstrate that ANNs are superior forecasting models in the domain of macroeconomic forecasting, with the Modular Neural Network performing notably well. However, the empirical results question the utility of ANNs in the domains of exchange rate forecasting and volatility forecasting. A MACD model outperforms ANNs in exchange rate forecasting both in-sample and out-of-sample, and a GARCH (1,1) model outperforms ANNs in volatility forecasting

    Predicting stock price changes based on the limit order book: a survey

    Get PDF
    This survey starts with a general overview of the strategies for stock price change predictions based on market data and in particular Limit Order Book (LOB) data. The main discussion is devoted to the systematic analysis, comparison, and critical evaluation of the state-of-the-art studies in the research area of stock price movement predictions based on LOB data. LOB and Order Flow data are two of the most valuable information sources available to traders on the stock markets. Academic researchers are actively exploring the application of different quantitative methods and algorithms for this type of data to predict stock price movements. With the advancements in machine learning and subsequently in deep learning, the complexity and computational intensity of these models was growing, as well as the claimed predictive power. Some researchers claim accuracy of stock price movement prediction well in excess of 80%. These models are now commonly employed by automated market-making programs to set bids and ask quotes. If these results were also applicable to arbitrage trading strategies, then those algorithms could make a fortune for their developers. Thus, the open question is whether these results could be used to generate buy and sell signals that could be exploited with active trading. Therefore, this survey paper is intended to answer this question by reviewing these results and scrutinising their reliability. The ultimate conclusion from this analysis is that although considerable progress was achieved in this direction, even the state-of-art models can not guarantee a consistent profit in active trading. Taking this into account several suggestions for future research in this area were formulated along the three dimensions: input data, model’s architecture, and experimental setup. In particular, from the input data perspective, it is critical that the dataset is properly processed, up-to-date, and its size is sufficient for the particular model training. From the model architecture perspective, even though deep learning models are demonstrating a stronger performance than classical models, they are also more prone to over-fitting. To avoid over-fitting it is suggested to optimize the feature space, as well as a number of layers and neurons, and apply dropout functionality. The over-fitting problem can be also addressed by optimising the experimental setup in several ways: Introducing the early stopping mechanism; Saving the best weights of the model achieved during the training; Testing the model on the out-of-sample data, which should be separated from the validation and training samples. Finally, it is suggested to always conduct the trading simulation under realistic market conditions considering transactions costs, bid–ask spreads, and market impact

    Machine learning in stock indices trading and pairs trading

    Get PDF
    This thesis focuses on two fields of machine learning in quantitative trading. The first field uses machine learning to forecast financial time series (Chapters 2 and 3), and then builds a simple trading strategy based on the forecast results. The second (Chapter 4) applies machine learning to optimize decision-making for pairs trading. In Chapter 2, a hybrid Support Vector Machine (SVM) model is proposed and applied to the task of forecasting the daily returns of five popular stock indices in the world, including the S&P500, NKY, CAC, FTSE100 and DAX. The trading application covers the 1997 Asian financial crisis and 2007-2008 global financial crisis. The originality of this work is that the Binary Gravity Search Algorithm (BGSA) is utilized, in order to optimize the parameters and inputs of SVM. The results show that the forecasts made by this model are significantly better than the Random Walk (RW), SVM, best predictors and Buy-and-Hold. The average accuracy of BGSA-SVM for five stock indices is 52.6%-53.1%. The performance of the BGSA-SVM model is not affected by the market crisis, which shows the robustness of this model. In general, this study proves that a profitable trading strategy based on BGSA-SVM prediction can be realized in a real stock market. Chapter 3 focuses on the application of Artificial Neural Networks (ANNs) in forecasting stock indices. It applies the Multi-layer Perceptron (MLP), Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM) neural network to the task of forecasting and trading FTSE100 and INDU indices. The forecasting accuracy and trading performances of MLP, CNN and LSTM are compared under the binary classifications architecture and eight classifications architecture. Then, Chapter 3 combines the forecasts of three ANNs (MLP, CNN and LSTM) by Simple Average, Granger-Ramanathan’s Regression Approach (GRR) and the Least Absolute Shrinkage and Selection Operator (LASSO). Finally, this chapter uses different leverage ratios in trading according to the different daily forecasting probability to improve the trading performance. In Chapter 3, the statistical and trading performances are estimated throughout the period 2000-2018. LSTM slightly outperforms MLP and CNN in terms of average accuracy and average annualized returns. The combination methods do not present improved empirical evidence. Trading using different leverage ratios improves the annualized average return, while the volatility increases. Chapter 4 uses five pairs trading strategies to conduct in-sample training and backtesting on 35 commodities in the major commodity markets from 1980 to 2018. The Distance Method (DIM) and the Co-integration Approach (CA) are used for pairs formation. The Simple Thresholds (ST) strategy, Genetic Algorithm (GA) and Deep Reinforcement Learning (DRL) are employed to determine trading actions. Traditional DIM-ST, CA-ST and CA-DIM-ST are used as benchmark models. The GA is used to optimize the trading thresholds in ST strategy, which is called the CA-GA-ST strategy. Chapter 4 proposes a novel DRL structure for determining trading actions, which replaces the ST decision method. This novel DRL structure is then combined with CA and called the CA-DRL trading strategy. The average annualized returns of the traditional DIM-ST, CA-ST and CA-DIM-ST methods are close to zero. CA-GA-ST uses GA to optimize searches for thresholds. GA selects a smaller range of thresholds, which improves the in-sample performance. However, the average out-of-sample performance only improves slightly, with an average annual return of 1.84% but an increased risk. CA-DRL strategy uses CA to select pairs and then employs DRL to trade the pairs, providing a satisfactory trading performance: the average annualized return reaches 12.49%; the Sharpe Ratio reaches 1.853. Thus, the CA-DRL trading strategy is significantly superior to traditional methods and to CA-GA-ST

    Machine learning-based algorithms to knowledge extraction from time series data: A review

    Get PDF
    To predict the future behavior of a system, we can exploit the information collected in the past, trying to identify recurring structures in what happened to predict what could happen, if the same structures repeat themselves in the future as well. A time series represents a time sequence of numerical values observed in the past at a measurable variable. The values are sampled at equidistant time intervals, according to an appropriate granular frequency, such as the day, week, or month, and measured according to physical units of measurement. In machine learning-based algorithms, the information underlying the knowledge is extracted from the data themselves, which are explored and analyzed in search of recurring patterns or to discover hidden causal associations or relationships. The prediction model extracts knowledge through an inductive process: the input is the data and, possibly, a first example of the expected output, the machine will then learn the algorithm to follow to obtain the same result. This paper reviews the most recent work that has used machine learning-based techniques to extract knowledge from time series data

    Adaptive Algorithms For Classification On High-Frequency Data Streams: Application To Finance

    Get PDF
    Mención Internacional en el título de doctorIn recent years, the problem of concept drift has gained importance in the financial domain. The succession of manias, panics and crashes have stressed the nonstationary nature and the likelihood of drastic structural changes in financial markets. The most recent literature suggests the use of conventional machine learning and statistical approaches for this. However, these techniques are unable or slow to adapt to non-stationarities and may require re-training over time, which is computationally expensive and brings financial risks. This thesis proposes a set of adaptive algorithms to deal with high-frequency data streams and applies these to the financial domain. We present approaches to handle different types of concept drifts and perform predictions using up-to-date models. These mechanisms are designed to provide fast reaction times and are thus applicable to high-frequency data. The core experiments of this thesis are based on the prediction of the price movement direction at different intraday resolutions in the SPDR S&P 500 exchange-traded fund. The proposed algorithms are benchmarked against other popular methods from the data stream mining literature and achieve competitive results. We believe that this thesis opens good research prospects for financial forecasting during market instability and structural breaks. Results have shown that our proposed methods can improve prediction accuracy in many of these scenarios. Indeed, the results obtained are compatible with ideas against the efficient market hypothesis. However, we cannot claim that we can beat consistently buy and hold; therefore, we cannot reject it.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Gustavo Recio Isasi.- Secretario: Pedro Isasi Viñuela.- Vocal: Sandra García Rodrígue

    Predicting Forex Currency Fluctuations Using a Novel Bio-inspired Modular Neural Network

    Get PDF
    This thesis explores the intricate interplay of rational choice theory (RCT), brain modularity, and artificial neural networks (ANNs) for modelling and forecasting hourly rate fluctuations in the foreign exchange (Forex) market. While RCT traditionally models human decision-making by emphasising self-interest and rational choices, this study extends its scope to encompass emotions, recognising their significant impact on investor decisions. Recent advances in neuro- science, particularly in understanding the cognitive and emotional processes associated with decision-making, have inspired computational methods to emulate these processes. ANNs, in particular, have shown promise in simulating neuroscience findings and translating them into effective models for financial market dynamics. However, their monolithic architectures of ANNs, characterised by fixed struc- tures, pose challenges in adaptability and flexibility when faced with data perturbations, limiting overall performance. To address these limitations, this thesis proposes a Modular Convolutional orthogonal Recurrent Neural Net- work with Monte Carlo dropout-ANN (MCoRNNMCD-ANN) inspired by recent neuroscience findings. A comprehensive literature review contextualises the challenges associated with monolithic architectures, leading to the identification of neural network structures that could enhance predictions of Forex price fluctuations, such as in the most prominently traded currencies, the EUR/GBP pairing. The proposed MCoRNNMCD-ANN is thoroughly evaluated through a detailed comparative analysis against state-of-the-art techniques, such as BiCuDNNL- STM, CNN–LSTM, LSTM–GRU, CLSTM, and ensemble modelling and single- monolithic CNN and RNN models. Results indicate that the MCoRNNMCD- ANN outperforms competitors. For instance, reducing prediction errors in test sets from 19.70% to an impressive 195.51%, measured by objective evaluation metrics like a mean square error. This innovative neurobiologically-inspired model not only capitalises on modularity but also integrates partial transfer learning to improve forecasting ac- curacy in anticipating Forex price fluctuations when less data occurs in the EUR/USD currency pair. The proposed bio-inspired modular approach, incorporating transfer learning in a similar task, brings advantages such as robust forecasts and enhanced generalisation performance, especially valuable in domains where prior knowledge guides modular learning processes. The proposed model presents a promising avenue for advancing predictive modelling in Forex predictions by incorporating transfer learning principles
    corecore