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Abstract

This thesis explores the intricate interplay of rational choice theory (RCT), brain
modularity, and artificial neural networks (ANNs) for modelling and forecast-
ing hourly rate fluctuations in the foreign exchange (Forex) market. While RCT
traditionally models human decision-making by emphasising self-interest and
rational choices, this study extends its scope to encompass emotions, recognis-
ing their significant impact on investor decisions. Recent advances in neuro-
science, particularly in understanding the cognitive and emotional processes
associated with decision-making, have inspired computational methods to em-
ulate these processes. ANNs, in particular, have shown promise in simulating
neuroscience findings and translating them into effective models for financial
market dynamics.
However, their monolithic architectures of ANNs, characterised by fixed struc-
tures, pose challenges in adaptability and flexibility when faced with data
perturbations, limiting overall performance. To address these limitations, this
thesis proposes a Modular Convolutional orthogonal Recurrent Neural Net-
work with Monte Carlo dropout-ANN (MCoRNNMCD-ANN) inspired by
recent neuroscience findings.
A comprehensive literature review contextualises the challenges associated
with monolithic architectures, leading to the identification of neural network
structures that could enhance predictions of Forex price fluctuations, such
as in the most prominently traded currencies, the EUR/GBP pairing. The
proposed MCoRNNMCD-ANN is thoroughly evaluated through a detailed
comparative analysis against state-of-the-art techniques, such as BiCuDNNL-
STM, CNN–LSTM, LSTM–GRU, CLSTM, and ensemble modelling and single-
monolithic CNN and RNN models. Results indicate that the MCoRNNMCD-
ANN outperforms competitors. For instance, reducing prediction errors in test
sets from 19.70% to an impressive 195.51%, measured by objective evaluation
metrics like a mean square error.
This innovative neurobiologically-inspired model not only capitalises on mod-
ularity but also integrates partial transfer learning to improve forecasting ac-
curacy in anticipating Forex price fluctuations when less data occurs in the
EUR/USD currency pair. The proposed bio-inspired modular approach, incor-
porating transfer learning in a similar task, brings advantages such as robust
forecasts and enhanced generalisation performance, especially valuable in
domains where prior knowledge guides modular learning processes. The pro-
posed model presents a promising avenue for advancing predictive modelling
in Forex predictions by incorporating transfer learning principles.



Acknowledgment

I am writing to express my most profound appreciation and gratitude to my
supervisors, Prof. Dr Mohamed Sedky and Dr Asma Patel, for their outstanding
guidance, support, and mentorship throughout my work under their super-
vision. Their unwavering commitment to my growth and development has
played a pivotal role in shaping my academic and professional journey. I am
truly fortunate to have had supervisors with exceptional expertise in their re-
spective fields. Their wealth of knowledge and willingness to share and impart
valuable insights have broadened my academic horizons. In addition, their
guidance has expanded my intellectual capabilities and inspired me to explore
new avenues of research and innovation.
Furthermore, I am deeply grateful for their constant encouragement and belief
in my abilities. Their constructive feedback and thoughtful guidance have
pushed me to surpass my limitations and strive for excellence. Their mentorship
has instilled in me a sense of perseverance and determination, empowering
me to tackle challenges with confidence and resilience. In addition to their
professional expertise, I am grateful for their unwavering support on a personal
level. Their approachability and willingness to lend an ear during professional
and personal matters have created a nurturing and conducive environment for
growth. Similarly, their genuine care and understanding have given me the
strength and encouragement to navigate through the ups and downs of my
PhD journey.
I would also like to thank the research team from Staffordshire University and
colleagues who collaborated and shared their knowledge and experiences. The
collective efforts and camaraderie have made this journey productive, enjoyable,
and memorable.
Last, I would like to express my heartfelt appreciation to my parents and
my lovely wife, Marianna, for their unwavering support, understanding, and
encouragement throughout this endeavour. Their love, efforts and belief in my
abilities have been the driving force behind my accomplishments.

ii



Publications

Bormpotsis, Sedky, and Patel (2023). Predicting Forex Currency Fluctuations
Using a Novel Bio-Inspired Modular Neural Network. Big Data and Cognitive
Computing, 7(3), 152.

iii



Contents

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures 1

List of Tables 4

1 Introduction 5
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Research Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Decoding Forex Market Dynamics . . . . . . . . . . . . . 15

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Incorporating Rational Choice Theory With Neuroscience and AI Sys-
tems 18
2.1 Rational choice theory (RCT) . . . . . . . . . . . . . . . . . . . . 20
2.2 Time Series Predictions . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Neuroeconomics, Computational Knowledge and Com-
plexity of the Forex Market . . . . . . . . . . . . . . . . . 24

2.2.2 Closing Price and Time Frame . . . . . . . . . . . . . . . 26
2.3 Brain Structure and Computational Representation . . . . . . . 27

2.3.1 Brain Behaviour under Financial Risk . . . . . . . . . . . 27
2.3.2 Brain Computational Systems Influenced by Neuroscience

Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Brain Modularity . . . . . . . . . . . . . . . . . . . . . . . 34

iv



Contents

2.3.4 Parallel Feature Extraction and Computational Represen-
tation of Brain Modularity . . . . . . . . . . . . . . . . . . 36

2.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 Transfer Learning Process in the Brain . . . . . . . . . . . 43
2.4.2 Computational Transfer Learning Approaches . . . . . . 43

2.5 Natural Language Processing in Financial Markets . . . . . . . . 47
2.5.1 Sentiment Analysis in Financial Markets . . . . . . . . . 49
2.5.2 Sentiment Analysis Effect of Twitter in Financial Markets 52

2.6 Overview of Machine and Deep Learning Financial Predictive
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Critical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.7.1 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.2 Hybrid and Ensemble Benchmark Models . . . . . . . . 64
2.7.3 Single Benchmark Models . . . . . . . . . . . . . . . . . . 65
2.7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Computational Properties of Neural Networks 67
3.1 ANN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Simple RNN Architecture . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1 LSTM Architecture . . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 GRU Architecture . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Orthogonal Initialization . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Bayesian Decision Theory in Finance . . . . . . . . . . . . . . . . 76
3.6 Gradient and Optimizers . . . . . . . . . . . . . . . . . . . . . . . 80

4 Proposed Novel Bio-inspired Model Architecture For Forex Market
Predictions 86
4.1 Module 1: Convolutional orthogonal RNN-MCD (CoRNNMCD) 89
4.2 Module 2: Convolutional orthogonal GRU-MCD (CoGRUMCD) 93
4.3 Parallel Feature Extraction and Concatenation . . . . . . . . . . 95
4.4 Module 3: Decision Making . . . . . . . . . . . . . . . . . . . . . 96
4.5 Modular Partial Transferring Learning . . . . . . . . . . . . . . . 98
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Modelling and Forecasting 102
5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.1 Forex Closing Prices . . . . . . . . . . . . . . . . . . . . . 103
5.1.2 Sentiment Data . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Design and Implementation . . . . . . . . . . . . . . . . . . . . . 106
5.2.1 Objective Evaluation Metrics . . . . . . . . . . . . . . . . 108

v



Contents

5.2.2 Benchmarks Models . . . . . . . . . . . . . . . . . . . . . 108
5.2.3 Single Benchmark Models . . . . . . . . . . . . . . . . . . 113
5.2.4 Modular Partial Transfer Learning . . . . . . . . . . . . . 119

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Conclusions and Future Research 126
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Limitations and Future Research . . . . . . . . . . . . . . . . . . 130

References 132

Appendices 151

vi



List of Figures

List of Figures

1.1 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 The Scopus and IEEE Xplore databases were investigated. The
flowchart details justifications for excluding studies from the
data extraction and quality assessment. . . . . . . . . . . . . . . 20

2.2 CNN models the sentences and the average word embeddings
read by humans experiencing fMRI [Acunzo, Low, and Fairhall
(2022)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 (A) The area of model nodes showed in a 3D semi-transparent
brain. (B) Four models exhibit different link directions between
the VMPFC and DLPFC. VMPFC, the ventromedial prefrontal
cortex; DLPFC, the dorsal lateral prefrontal cortex; AI [ Peng, Lei,
Xu, and Yu (2020)]. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Mental health evaluation using a CNN-LSTM model [Shafiei,
Lone, Elsayed, Hussein, and Guru (2020)]. . . . . . . . . . . . . . 32

2.5 (A) The neurons in the sentiment regions (BLA, aIC, and pIC),
which trigger (orange arrow) the MP (mainly PT-CStr) neurons
in the mPFC. Excited MP neurons exaggerate the signal by trig-
gering themselves. They further communicate the signal to the
downstream sMO neurons. In the sMO, excited L5a CT neurons
and L6 CT neurons also link (purple arrow) the TH (thalamus);
excited L5b PT-CSpi neurons innervate (light blue arrow) the
spinal cord. Each dashed circle symbolises one unit. Bottom: a
simple model of RNN. (B) An example of an innate RNN un-
folded by timeline. x, input; y, output; w, weight; h, hidden.
[Y. Wang and Sun (2021)]. . . . . . . . . . . . . . . . . . . . . . . 33

2.6 (a) The architectural structure of the RNN. (b) The model training
process. The grey blocks show the CNN layers; the orange blocks
show the RNN layers [ Shi, Wen, Zhang, Han, and Liu (2018)]. . 38

1



List of Figures

2.7 A linear ANN and a two-layer modular ANN, in which the input
is provided into two parallel, divided hidden layers [ Tzilivaki,
Kastellakis, and Poirazi (2019)]. . . . . . . . . . . . . . . . . . . . 39

2.8 ModAugNet model [Baek and Kim (2018)]. . . . . . . . . . . . . 40

2.9 transfer learning CNN (TL-CNN) model to forecast cognitive
deficiencies utilising brain structural connectome data acquired
at a period in very preterm infants [M. Chen et al. (2020)]. . . . . 45

2.10 Architecture of the Ensemble Model [Ajoku, Nwokonkwo, John-
Otumu, and Oleji (2021)]. . . . . . . . . . . . . . . . . . . . . . . 57

2.11 Architecture of the BiCuDNNLSTM-1dCNN [Kanwal, Lau, Ng,
Sim, and Chandrasekaran (2022)]. . . . . . . . . . . . . . . . . . 59

3.1 CNN Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 RNN Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 LSTM Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 GRU Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Proposed MCoRNNMCD-ANN. Part A) visualises the brain ar-
eas that impact investors’ decision-making. Part B) illustrates the
representation of the brain areas from the proposed MCoRNNMCD-
ANN model. Finally, in part C), the generated knowledge of
MCoRNNMCD-ANN is partially transferred to a new task, aim-
ing to fine-tune a modular ANN. . . . . . . . . . . . . . . . . . . 88

4.2 (A) Initial CNN Architecture (B) Orthogonal RNN-MCD Archi-
tecture. Replacement of Max-Pooling Layer by the Orthogonal
RNN-MCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 (A) Initial CNN Architecture (B) Orthogonal GRU-MCD Archi-
tecture. Replacement of Max-Pooling Layer by the Orthogonal
GRU-MCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Time-Based Analysis Framework . . . . . . . . . . . . . . . . . . 105

5.2 Caption for Figure 1 (cont.) . . . . . . . . . . . . . . . . . . . . . 112

5.2 MSEs of CLSTMs, CNN–LSTM, and the MCoRNNMCD–ANN
model: (a) CLSTM default; (b) CLSTM adjusted; (c) CNN–LSTM
adjusted; and (d) proposed MCoRNNMCD–ANN. . . . . . . . 113

5.3 Caption for Figure 1 (cont.) . . . . . . . . . . . . . . . . . . . . . 116

5.3 MSEs of LSTMs, GRU, and the MCoRNNMCD–ANN model:
(a) LSTM default; (b) LSTM adjusted; (c) GRU adjusted; and (d)
proposed MCoRNNMCD–ANN. . . . . . . . . . . . . . . . . . . 117

2



List of Figures

5.4 Caption for Figure 1 (cont.) . . . . . . . . . . . . . . . . . . . . . 118

5.4 Predictions of GRU and the MCoRNNMCD–ANN model: (a)
GRU adj. predictions whole time frame; (b) MCoRNNMCD–ANN
predictions whole time frame;(c) GRU adj. predictions shorter
time frame; and (d) MCoRNNMCD–ANN predictions shorter
time frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 MSEs of the MANNMCDANN model: (a) without (w/o) Trans-
fer Learning and (b) with Transfer Learning. . . . . . . . . . . . 121

5.6 Predictions of the MANNMCDANN model: (a) without (w/o)
Transfer Learning and (b) with Transfer Learning. . . . . . . . . 122

3



List of Tables

List of Tables

2.1 Existing work in deep learning models and future research direc-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2 Baseline models performance metrics in closing prices (CP) of
EUR/GBP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3 Baseline models performance metrics in sentiment scores of
EUR/GBP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4 Baseline models performance metrics in closing prices in CRNN
and sentiment scores in CGRU of EUR/GBP. . . . . . . . . . . . 63

2.5 Hybrid models’ performance metrics receive closing prices and
sentiment scores of EUR/GBP. . . . . . . . . . . . . . . . . . . . 64

2.6 Single models’ performance metrics receive closing prices and
sentiment scores of EUR/GBP. . . . . . . . . . . . . . . . . . . . 65

5.1 Top parameters extracted from grid search in closing prices (CP)
and sentiment (Sent) scores of EUR/GBP. . . . . . . . . . . . . . 106

5.2 MCoRNNMCD–ANN performance metrics in closing prices and
sentiment scores of EUR/GBP. . . . . . . . . . . . . . . . . . . . 108

5.3 MCoRNNMCD–ANN performance metrics against adjusted (adj.)
hybrid benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 MCoRNNMCD–ANN performance metrics against adjusted (adj.)
single benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 MANNMCDANN model loss before and after applying partial TL.120

B1 MCoRNNMCD-ANN Predicted Price Fluctuations. . . . . . . . 152

4



1. Introduction

1. Introduction

The chapter introduces the background of Forex and interdisciplinary fields
such as AI and RCT, the research motivation, the aim, objectives, and research
questions to be achieved. It reviews the methods used in this thesis to discover
and evaluate deep learning approaches for Forex price fluctuations. Finally, the
chapter deduces the dissertation structure.

1.1 Background

The foreign exchange (Forex) market, a global and highly liquid financial mar-
ket for currency exchange, plays a critical position in international trade and
investment. Its continuous operation and substantial trading volume make it
an attractive choice for investors, leading to a growing number of individuals
transitioning from the stock market to Forex. It substantially influences contem-
porary international economies concerning economic expansion, global interest
rates, and financial equilibrium (Mai, Chen, Zou, & Li, 2018).

Researchers emphasised that due to the substantial magnitude of daily trans-
actions, investors and financial institutions possess the potential to yield sig-
nificant returns by accurately speculating and signifying fluctuations in Forex
exchange rates (Hayward, 2018). Computational advancements, such as Artifi-
cial Intelligence (AI) and its machine and deep learning subfields, are utilised in
the stock and Forex markets by providing traders with new ways to scrutinise
market data and seek to find potentially profitable trading options (Berradi,
Lazaar, Mahboub, & Omara, 2020; Ray, Khandelwal, & Baranidharan, 2018).
However, recent AI tendencies have revealed that the synergy between neu-
roscience, machine, and deep learning is necessary for more informed and
better-comprehended decision-making (Russin, O’Reilly, & Bengio, 2020).

Likewise, the convergence of neuroscience and economic theories, notably Ra-
tional Choice Theory (RCT), could present a compelling avenue for advancing
our understanding and potentially enhancing the predictive capabilities of AI
models in the complicated domain of Forex trading price directions (Awunyo-
Vitor, 2018; Pujara, Wolf, Baskaya, & Koenigs, 2015). RCT serves as a diverse
framework for understanding societal dynamics rooted in the assumption of
individual rationality. While offering descriptive clarity to societal issues, this
theoretical approach, particularly those previously poorly characterised, often
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1. Introduction

reveals the inherent indeterminacies in social relations and individual perspec-
tives. The indeterminacies RCT identifies extend to social choice, emphasising
the complexity of societal decision-making processes. The fundamental tenets
of RCT, revolving around individual rationality and the pursuit of optimal out-
comes, align seamlessly with utilitarianism to promote people’s wealth. RCT
provides a comprehensive lens through which to analyse societal behaviour and
decision-making by focusing on states of affairs and considering factors that
motivate individuals. RCT in financial markets, influencing investors’ economic
decision-making processes, constitutes a multifaceted cognitive phenomenon
intertwined with rational self-interest. Individuals navigate diverse financial
conditions in this intricate landscape to derive optimal net benefits (Arnott &
Gao, 2019). Furthermore, RCT illuminates how investors assimilate informa-
tion, exhibit demeanours across various social and economic contexts—notably
financial markets like Forex—and formulate trading strategies (Buskens, 2015).
Nevertheless, while RCT underscores the centrality of rationality in decision-
making, it is imperative to recognise that emotions influence investors’ choices
(Lerner, Li, Valdesolo, & Kassam, 2015).

Moreover, contemporary insights from neuroscience have contributed to ex-
plicating decision-making processes by elucidating the complex connections
between rational deliberation and emotional responses mediated by distinct
brain regions, such as the insular and prefrontal cortex (Lamm & Singer, 2010;
Rilling & Sanfey, 2011). This emerging understanding highlights the inter-
play between cognitive rationality and affective elements, providing a more
nuanced comprehension of how economic reasoning is constructed. Recent
studies indicated that behavioural facilitation in the human brain regions, such
as the amygdala and hippocampus, is related to emotions and memory re-
trieval (Eichenbaum, 2004; LaBar & Cabeza, 2006; Olsen, Moses, Riggs, & Ryan,
2012; Phelps & LeDoux, 2005; Roozendaal, McEwen, & Chattarji, 2009). The
amygdala and hippocampus correlate with cortical areas, such as the frontal
and temporal lobes, including brain parts like the striatum, insular, and pre-
frontal cortex (Pizzo et al., 2019). Current neuroscientific investigations imply
that these parts of the brain are accountable for the individuals’ procedural
learning, reasoning, and emotions and are likely crucial for decision-making
under financial risk conditions (Grossmann, 2013; Loued-Khenissi, Pfeuffer,
Einhäuser, & Preuschoff, 2020; McEwen et al., 2015; Price & Drevets, 2010; Ruis-
sen, Overgaauw, & De Bruijn, 2018; Tsukiura, Shigemune, Nouchi, Kambara, &
Kawashima, 2013).

AI algorithms, such as Artificial Neural Networks (ANNs), have emerged as a
powerful, innovative mechanism for simulating brain functions, such as self-
intuition and Natural Language Processing (NLP) linked with emotions, to
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1. Introduction

comprehend information processing and evaluate the possible contingencies
to arrive at optimal decision prospects (Abiodun et al., 2018; Fermin, Friston,
& Yamawaki, 2022). NLP techniques can be applied to financial textual data
to analyse sentiment. Sentiment analysis can help gauge the collective mood
of traders and investors, which, combined with economic indicators such as
closing, can better anticipate price market movements (Jing, Wu, & Wang, 2021).
Hence, traders and institutions increasingly use social media analytics tools
to track and analyse trends on platforms like Twitter to help traders make
informed decisions (Herrera, Constantino, Su, & Naranpanawa, 2022; C. Wang,
Shen, & Li, 2022). Moreover, different ANN types, such as Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks,
have been employed against traditional methods, such as Auto-regressive
Integrated Moving Average (ARIMA) and Support Vector Regression (SVR), in
contemplating the future price direction applied to a non-stationary time series
(Bathla, 2020; M, E.A., Menon, & K.P., 2018).

While ANNs and their refined techniques, including CNN and LSTM, have
demonstrated the capacity to recognise patterns and trends in financial markets,
investigating these methodologies reveals a crucial research problem. The
inherent monolithic architectures of these models pose substantial challenges,
complicating the pursuit of more effective pattern recognition in the complex
dynamics of financial markets defined below:

• Limited scalability and lack of flexibility: Monolithic architectures may be
more challenging to scale because they are not easily divided into shorter,
independent modules that can be developed and added to the architecture
as needed (Amer & Maul, 2019);

• Difficulty understanding and modifying the architecture: Monolithic
architectures can be challenging to understand, maintain, and change,
primarily as their size becomes more extensive. Thus, updating the ar-
chitecture as data or market conditions can be challenging (Ali, Sarwar,
Sharma, & Suri, 2019);

• Increased risk of failure: Because monolithic architectures are complex to
understand and modify, there is an increased risk of failure when making
changes to the architecture. Hence, fixing it can be computationally costly
and time-consuming (Yarushev & Averkin, 2018).

7



1. Introduction

1.2 Research Motivation

The motivation behind this thesis is to address the challenges and limitations
of the monolithic architectures mentioned above, adopting a bio-inspired ap-
proach that draws inspiration from the modularity in the human brain’s neural
pathways. Towards this direction, recent neuroscience-informed studies have
shown that designing computational models mimicking brain areas such as
the prefrontal cortex and anterior insula splitting a complex task into modules
can execute the task better by presenting adequate performance (Lydon-Staley,
Ciric, Satterthwaite, & Bassett, 2019; Morrone, Weber, Huynh, Luo, & Cornell,
2020; K.-J. Wang & Zheng, 2019).

To this end, this thesis seeks to design a novel neuro-informed Modular Neural
Network (MNN) utilising a CNN integrating RNNs represented in Chapter
4, attempting to simulate the brain topological modularity, where separate
neurons receive inputs from other cells across different levels of hierarchical
process memory (Shi et al., 2018; Tzilivaki et al., 2019). Thus, the proposed
bio-inspired MNN could be applied during high-risk financial decision-making
to handle price Forex fluctuations better against the monolithic architectures.

Furthermore, convolutional RNNs stability could be significantly improved
by utilising orthogonal kernel weight initialisation, tackling vanishing issues
coupled with Monte Carlo dropout to capture the uncertainty of the MNN,
enhancing further the outcomes of the network (Arjovsky, Shah, & Bengio, 2015;
Duan & Wang, 2016; Sadr, Gante, Champagne, Falcao, & Sousa, 2022). Finally,
the prior knowledge acquired from the proposed MNN of this thesis is partially
transferred to a relevant task under data scarcity, enhancing the generalisation
performance of ANNs (Cao, Jia, Ding, & Ding, 2021; Ding, Ding, Zhao, Cao, &
Jia, 2022; He et al., 2020; B. Li & Rangarajan, 2022).

In essence, the synthesis of neuroscience and economic theories such as RCT
discussed above holds the potential to enrich the development of bio-inspired
AI models tailored for Forex trading. By bridging the interval between the
cognitive and economic aspects of decision-making, this interdisciplinary ap-
proach may pave the way for more robust and suitable AI systems capable of
navigating the intricate landscape of financial markets.
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1. Introduction

1.3 Research Aim

This thesis aims to refine and optimise ANNs prediction accuracy in the Forex
market by proposing a novel modular neural network model. Furthermore, the
thesis delves into the intricate details of the MNN model, drawing inspiration
from the neuroscience dynamics of emotions and rationality in human decision-
making, mainly as interconnected with brain regions such as the insular and
prefrontal cortex.

1.4 Research Objectives

For the fulfilment of the research aim of this thesis, the objectives are:

• To conduct a comprehensive interdisciplinary literature review on neuro-
science advancements and computational models to shed light on Forex
forecasting.

• To propose a novel bio-inspired modular neural network in an effort to
better predict price fluctuations in exchange rates and investigate the
potential benefits of modularity in this context.

• To explore the advantages of incorporating a new adaptative mechanism
consisting of Monte Carlo dropout and orthogonal kernel initialisation
into recurrent layers within a convolutional modular network, replacing
the standard pooling layer of a typical and conventional CNN for pre-
dicting Forex price fluctuations. Assess their impact on prediction error,
uncertainty quantification, and the optimisation process.

• To conduct a comparative analysis between the proposed modular neural
network, monolithic single, ensemble and state-of-the-art hybrid architec-
tures, evaluating their performance in prediction error and their ability to
capture complex Forex market dynamics.

• To investigate how modular neural network architectures can leverage
knowledge gained from the proposed model to enhance the generalisation
capabilities of ANNs in Forex predictions under data scarcity conditions,
exploring techniques such as modular partial transfer learning.

9



1. Introduction

1.5 Research Questions

This thesis addresses three research questions (RQs) corresponding to the above-
mentioned objectives. These RQs are the following:

• RQ1: How do bio-inspired modular neural network architectures out-
perform monolithic ANN architectures in predicting price fluctuations in
exchange rates, considering decreasing prediction error and the ability to
capture complex market dynamics?

• RQ2: What are the potential benefits of incorporating Monte Carlo dropout
and orthogonal weight initialisation methods within modular neural
network architectures for predicting Forex price fluctuations regarding
improved prediction error, uncertainty quantification, and optimisation
process enhancement?

• RQ3: How can modular neural network architectures leverage knowl-
edge gained from the proposed model to improve the performance and
generalisation capabilities of ANNs in Forex predictions, particularly in
data scarcity scenarios in a similar task?

1.6 Research Design

The thesis adopts a positivist paradigm, a philosophical approach associated
with a deductive research method and a quantitative data analysis procedure.
The goal is to propose a novel bio-inspired modular neural network that may
contribute to the anticipation and knowledge of exchange rate price fluctuations
against state-of-the-art hybrid, ensemble and single monolithic architectures.
Positivism generally relies on the belief that understanding can be derived from
observable facts and their analysis as is correlated with the deductive method
(Park, Konge, & Artino, 2020). In a deductive approach, scholars start with a
theory or formulate research questions and then collect and analyse data to test
or confirm the idea. Furthermore, quantitative methods involve the collection
and analysis of numerical data. This could include statistical studies to identify
patterns or relationships. Hence, the research philosophy conducted in this
thesis employs a positivist philosophical paradigm, traditionally associated
with a deductive approach and quantitative method that can be used to compre-
hend and describe the aspects of financial decision market behaviour (Saunders,
Lewis, & Thornhill, 2019).

Furthermore, an interdisciplinary literature review (Chapter 2) is conducted
to identify the most relevant evidence in the context of recent neuroscience
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findings to inform the development of the proposed modular network (Chapter
4). In addition, related works in the machine and deep learning applications
in the context of financial market predictions were also reviewed, identifying
the most relevant for comparison with the proposed model. Finally, the use of
the quantitative methodology in this thesis involves the collection of scientific
data that is precise and based on measurement. The data was collected from
the Yahoo Finance API and the Twitter Streaming API for the EUR/GBP Forex
currency pair for two years (2018-2019).

As mentioned above, this thesis proposed a bio-inspired modular neural net-
work compared with state-of-the-art and monolithic architectures. Additionally,
this thesis employs three objective evaluation metrics, namely Mean Squared
Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Squared Log-
arithmic Error (MSLE), to provide evidence of the proposed model performance
compared to the benchmark models given in Chapter 5.

Finally, this thesis investigates the EUR/USD exchange rate for one year (2020).
It collects data from the same APIs mentioned above, transferring the ac-
quired knowledge from the previous anticipation of the EUR/GBP pair to
the EUR/USD price fluctuations to a simple modular ANN. MSE, MAPE, and
MSLE have also been used to evaluate the performance of simple modular
ANNs with and without partial transfer learning. The thesis research outcomes
yielded price movement predictions for EUR/GBP and the EUR/USD exchange
rates. Figure 1.1 illustrates the research design of this thesis.
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Figure 1.1: Research Design

To manage the research questions, the research methodology of this thesis is
composed as follows:

• First, this thesis examined how sentiments in conjunction with the RCT,
used to model human decision-making linked with specific brain re-
gions, can be simulated with the help of recent computational intelligence-
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informed neuroscience findings. Moreover, this thesis explores if the
proposed modular neural network inspired by the brain can outperform
monolithic and state-of-the-art ANN architectures in forecasting price
fluctuations in Forex to address the research issues associated with RQ1.

• Second, this thesis has set a mechanism based on the potential benefits of
incorporating Monte Carlo dropout and orthogonal kernel initialisation
into recurrent layers within the proposed modular convolutional net-
work, replacing the standard pooling layers of a typical CNN to address
the research issues associated with RQ2 aiming to enhance the model
predictability performance in Forex price fluctuations.

• Finally, this thesis studied the application of modular partial transfer
learning techniques to suggest practical solutions to address the research
issues associated with RQ3 to improve the reliability and robustness of
modular ANN prediction models in the Forex market.

1.6.1 Modelling

As already discussed, potentially enriching the Forex predictive models may
require a combination of rationality and emotional awareness, as market trends
influence investors’ decisions in the face of anticipating potential losses or
gains. Therefore, this thesis established a framework consisting of mental
models for investor rationality and emotions based on deductive and proba-
bilistic inferences—conceptual models to comprehend mental models from the
determinants of the rationality and sentiments of investor decision-making.
Furthermore, AI systems endeavour to simulate conceptual models in complex
financial markets such as Forex in the light of more useful predictive outcomes.
Consequently, design potentially more accurate computational models to en-
hance the predictability and robustness of price movements in the Forex market.

To better comprehend the decision process of investors, the functions of the
ventromedial prefrontal cortex (vmPFC), a part of the prefrontal cortex in the
mammalian brain and anterior insula (AIC), could be incorporated into a mental
model creation for Forex trading divided into subtasks. For the first task, using
the vmPFC as a basis for rational thinking involved in decision-making can
create a guideline that a mental model would follow. The second task using the
anterior insula as a basis for sentiment processing associated with emotional
awareness and empathy can comprise emotional intellect in the mental model.
It is noteworthy that the vmPFC and the AIC have been investigated in Chapter
2 in detail, as it is crucial to understand their functions in financial decision-
making according to recent neuroscience findings.
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While the mental model provides a general understanding of how the brain
works, the conceptual model clarifies the different inputs, outputs, and con-
straints governing the model. Therefore, the conceptual model can be used after
the mental model to help develop a more structured approach to formalise the
mental model, defining the various components and establishing a framework
for analysis and development. For instance, the conceptual model can translate
the mental model, including two subtasks separating inputs. First, rational
decision-making that tracks exchange rate prices representing the vmPFC to
drive determinations based on market trends; second, employing techniques
such as sentiment analysis and accommodating its decision-making represent-
ing the AIC accordingly. These representations will consist of the inputs in the
machine model.

AI modelling converts the conceptual model’s outputs as inputs into the pro-
posed modular neural network that can be trained on the yielded Forex data
from Yahoo Finance (exchange rate prices) and Twitter streaming (sentiment
analysis) APIs. This procedure involves selecting appropriate algorithms, such
as CNN and RNN, as discussed and analysed further in Chapter 2. More-
over, the simulation of the conceptual models from the AI machine system
demonstrates proof of concept of how the proposed modular model of this
thesis supports learning about the rational thinking and emotional processing
of investors’ mental states, trying to address the complex non-linear problem
of predicting Forex price fluctuations. Finally, for a proof of concept imple-
mentation of the proposed modular neural network’s performance, this thesis
conducts a comparative analysis with state-of-the-art monolithic neural net-
works evaluated based on objective metrics such as MSE, MAPE, and MSLE,
as presented in Chapter 5. The state-of-the-art was chosen from Chapter 2 as
the benchmark for comparison with the proposed model of this thesis because
they were successful models in the field at the time of research and provided
comprehensive information to replicate their designs and parameters.

Furthermore, establishing baseline models is essential for effectively segmenting
the input domain in Forex predictions. These baselines serve as a reference point,
enabling synthesising the proposed bio-inspired modular architecture. Drawing
motivation from the literature presented in Chapter 2, the modular architecture
is strategically designed, leveraging insights from established baselines to
enhance the overall robustness and reliability of the predictive models. This
approach could ensure a comprehensive understanding of the input space,
laying the groundwork for more sophisticated and accurate predictive models
in the dynamic context of Forex market analysis. Finally, the Modular Partial
Transfer Learning technique is implemented in a relevant task under data
scarcity using pre-training modules of the proposed model to enhance the
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generalisation abilities of ANNs in Forex. Figure 1.2 illustrates the modelling of
this thesis.
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Figure 1.2: Modelling

1.6.2 Decoding Forex Market Dynamics

Financial markets are non-linear and subject to fluctuations due to many events,
such as political events, investor behaviour, and central banks, that can directly
or indirectly influence market trends. The impact of such events can be consid-
ered actively or passively over time, and there are several cases where market
predictions may fail. Nevertheless, sentiments are a major driving force in the
stock market, and historical stock market data can provide traces of the effect
of the public mood at a particular time. However, evaluating the factors and
their intensity can be challenging. Therefore, neuroscience-informed methods
integrated into the machine and deep learning complementing techniques may
enhance prediction performance. Moreover, hyperparameters and neural net-
work architectures can be crucial in deriving model complexity. Identifying
such complexity for various computational models can be a research direction
to learn inherent market patterns for reliable forecasting.
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Based on recent neuroscience findings and brain modularity, this thesis aims
to present a novel modular neural network that could effectively predict price
movement in the Forex market. The Forex market is highly dynamic, and
various economic and social factors can influence it. Modular architectures
can model these complex dependencies by allowing the design and training
of separate modules to different model factors that may impact the forex rates.
For example, one module can model economic indicators such as the closing
price of exchange rates, and another specialises in modelling sentiment scores
extracted from Twitter. Consequently, a more robust and accurate neural net-
work incorporating these modules’ output into a final decision model could
enhance Forex predictions.

Additionally, modular architectures can adjust more to changes in the forex
market because individual modules can be added, removed, or modified to
handle changing market conditions. This process can help the neural model stay
up-to-date and factual even as the market evolves, overcoming the monolithic
ANNs issues to address the Forex data. Finally, inspired by how the brain
restores memory and uses past information to pass into a new task aiming to
solve an issue, this thesis employs the transfer learning technique. Hence, the
knowledge acquired from the predictions of price fluctuations of the EUR/GBP
rate by the proposed model was assigned to a modular ANN to enhance the
predictions of the price movements of EUR/USD using less data than the
previous task.

1.7 Contributions

In this thesis, to address the limitations of the monolithic ANN architectures
yielding improved predictions in Forex price fluctuations, presenting the three
main contributions listed below:

• A novel modular neural network architecture inspired by rational choice
theory and cognitive neuroscience to model human decision-making in
Forex price fluctuation predictions. By incorporating modularity, ratio-
nality, and emotions, this thesis aims to represent a significant novelty,
pushing the boundaries of existing knowledge and providing new insights
into predictive modelling in the Forex domain.

• A new adaptation mechanism consists of Monte Carlo dropout and or-
thogonal kernel initialisation, incorporating it into a recurrent layer within
a convolutional modular network, replacing the traditional pooling lay-
ers. This novelty allows for the adaptive width of the recurrent layers
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to dynamically adjust its capacity based on the complexities of the Forex
data.

• A novel approach that utilises partial transfer learning in the context of
Forex prediction that mitigates the adverse effects of data scarcity by
effectively using information from previous comparable tasks. The newly
modular partially transferred knowledge could help capture complex
dynamics, improve prediction errors, and address the challenges posed
by data scarcity.

1.8 Thesis layout

The rest of this thesis is arranged as follows:

• Chapter 2 describes the RCT extended with emotions to model human
decision-making associated with brain regions that could be formulated
with the power of computational intelligence. Furthermore, it investigates
the relevant studies in neuroscience and AI, providing an overview of
related works in the machine and deep learning model applied to the
predictions of financial markets.

• Chapter 3 presents the foundation of ANNs and other innovative tech-
niques such as Monte Carlo dropout, orthogonal initialisation and gradi-
ent optimisers.

• Chapter 4 presents the proposed novel neuroscience-informed modular
architecture for Forex market predictions, incorporating Monte Carlo
dropout and orthogonal weight initialisation, utilising the modular partial
transfer learning technique to a relevant data-limited task.

• Chapter 5 presents the set-up of the proposed bio-inspired modular net-
work parameters and benchmark models, comparing their performance
based on their hourly closing price and sentiment scores inputs.

• Chapter 6 presents the thesis conclusion by summarising the main contri-
butions of this thesis, discussing the limitations of the work and glancing
at promising routes for future research.
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2. Incorporating Rational Choice
Theory With Neuroscience and AI
Systems

This chapter serves as a vast resource for understanding the integration of Ratio-
nal Choice Theory with recent neuroscience findings simulating AI Systems in
the context of Forex. The thesis advocates for adopting a semi-systematic review,
positioning it as a nuanced middle ground that transcends the rigidity of a fully
systematic approach while retaining the flexibility of a narrative approach in
the broad business research subject (Snyder, 2019). This recommendation is par-
ticularly pertinent in complex interdisciplinary fields, such as the intersection
of AI with Forex predictions, where a diverse array of research traditions en-
compass statistics, cognitive science, and computing. Semi-systematic reviews
and narratives have also proved sufficient to understand better complex areas
like NLP and the evidence supporting ML use across clinical trials (Weissler
et al., 2021; T. Zhang, Schoene, Ji, & Ananiadou, 2022). A critical analysis was
performed to foresee Forex hourly price fluctuations, selecting pertinent sources
from Yahoo Finance and Twitter Streaming APIs for the EUR/GBP currency
pair.

Moreover, this thesis considered 19,920 recovered bibliographic records, focus-
ing on renowned databases, including Scopus (n = 14,238) and IEEE Xplore (n
= 5682). Motivated by this study’s objective to revise the monolithic compu-
tational model, aiming to enhance the potential of neural networks for more
accurate predictions, the following targeted keyword searches were employed,
focusing on topics such as: “brain modularity”, “financial decisions under risk”,
“biologically inspired machine”, “rational choice theory for finance”, “transfer
learning process in the brain”, “transfer learning in nlp”, “transfer learning in
financial markets”, “transfer learning in risk analysis”, “machine learning for
Forex/stock predictions”, “deep learning for Forex/stock price predictions”,
“social media analysis for Forex/stock predictions”, “NLP for finance”, “neu-
roeconomics”, “artificial neural networks mimic brain”, “Twitter sentiment
analysis for Forex/stock markets”, “CNN for Forex/stock predictions”, and
“RNN for Forex/stock predictions”.
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The studies were reviewed by removing duplication (n=3791) using the Ref-
Works citation manager, scanning titles, authors, and DOI, and retaining 16,129
reports. After the screening process, by using exclusion criteria, such as non-
English language usage, titles, and the abstract being irrelevant to the thesis’s
aim, a subset of 967 studies were chosen. Behind the full-text screening, a more
thorough examination of the abstracts and the content of the remaining studies
applied, and 367 reports were selected as eligible.

The final inclusion criteria resulted in the choice of 160 studies that were iden-
tified as the most relevant investigations to this thesis’s aim of enhancing the
potential of neural networks for more accurate predictions in the context of
potentially better anticipating Forex hourly price fluctuations. These inclusion
criteria have been formulated as below:

• Bio-inspiration in Computational Models: Studies must showcase a con-
sideration or incorporation of bio-inspired elements and how they can be
applied in computational models.

• Relevance to Financial Predictions Using Neural Networks: Studies must
demonstrate direct relevance to applying neural networks for more accu-
rate predictions in financial markets, specifically focusing on Forex hourly
price fluctuations.

• Incorporation of NLP Methods in Financial Research: Selected Studies
should incorporate NLP methods, particularly in financial research and
predictions, including sentiment analysis, social media analysis, and ma-
chine learning for Forex/stock predictions.

• Transfer Learning in Financial Predictions: Studies should address the
application of transfer learning processes in the brain, particularly in
financial markets.

• Methodology Contribution and Peer-Reviewed Validation: Studies must
contribute to the methodology, introducing new approaches, models,
or techniques relevant to enhancing the potential of neural networks in
financial predictions. Additionally, the selected articles must be peer-
reviewed reports from reputable publishers, ensuring the utilisation of
reliable and high-quality sources.

Figure 2.1 illustrates the study selection process that has been followed.
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Figure 2.1: The Scopus and IEEE Xplore databases were investigated. The flowchart details
justifications for excluding studies from the data extraction and quality assessment.

2.1 Rational choice theory (RCT)

Rational Choice Theory (RCT), a foundational concept in neoclassical economics,
asserts that individuals make decisions based on rational assessments of their
preferences and self-interest to optimise outcomes. Applied broadly in diverse
contexts, including financial markets, RCT analyses consumer behaviour, mar-
ket dynamics, game theory, and economic phenomena with the premise that
individuals act in a manner consistent with maximising their utility (Zey, 2015).
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Despite its wide-ranging applicability, RCT has faced criticism for its inherent
limitations. Detractors argue that the theory’s framework overlooks external
factors influencing decision outcomes, particularly emotions, which play a
significant role in financial decision-making (Lerner et al., 2015). In the broader
economic context, RCT’s reception indicates the evolving landscape in eco-
nomic thought. Criticism directed towards RCT aligns with a broader discourse
challenging the dominance of neoclassical economics and this discourse, em-
phasising the limitations of selfishness and equilibrium, thereby promoting the
diversification of economic theories. Behavioural economics, new institutional
economics, and other emerging perspectives exemplify this shift, signalling a
departure from neoclassical hegemony (Colander, Holt, & Rosser Jr, 2004).

However, proponents assert that RCT remains a valuable tool, offering a rea-
sonable basis for understanding economic decisions (Awunyo-Vitor, 2018). In
connecting RCT with neuroscience, recent studies shed light on the neural
mechanisms underlying this theory, notably emphasising the roles of the pre-
frontal cortex (Kroker et al., n.d.; Livet, 2010). Furthermore, Cecchi et al. (2022)
propose a correlation between heightened broadband gamma activity (BGA) in
the ventromedial prefrontal cortex (vmPFC) and dorsal anterior insula (daIns)
and fluctuations in mood. Elevated BGA in these regions is linked to heightened
or diminished moods, thereby influencing risk-taking behaviours by amplify-
ing the significance attributed to potential gains or losses in decision-making
processes. Furthermore, recent studies have shown that the vmPFC is acti-
vated during decision-making tasks involving uncertainty, such as those in the
financial markets (Dennison, Sazhin, & Smith, 2022).

This intersection of RCT with neuroscience highlights the intricate relationship
between cognitive processes and economic decision-making. The prefrontal
cortex’s involvement in mood regulation and risk perception underscores the
multifaceted nature of decision-making, acknowledging the impact of emotions
and neural states (De Martino, Kumaran, Seymour, & Dolan, 2006).

The AIC is another brain region activated during decision-making in financial
markets to be involved in the experience of emotions, such as ambiguity (M. Sri-
vastava, Sharma, Srivastava, & Kumaran, 2020). AIC has also been found to be
activated during the experience of regret, which can influence future decision-
making. For example, if an investor experiences regret after a poor investment
decision, this can activate the anterior insula, reducing risk-taking behaviour
in the future. Additionally, vmPFC connectivity changes are associated with
increased risk-taking after total sleep deprivation (Y. Wang, Dai, Shao, Wang, &
Zhou, 2022).
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The vmPFC and the AIC can be simulated by AI systems to analyse the brain
procedures, yielding more helpful information for its functionality in decision-
making (R. Li & Zhang, 2020; J. Zhang, Yin, Chen, & Nichele, 2020). Conse-
quently, this information can assist in modelling how decision-making applies
to Forex market anticipation. AI-based models can also incorporate regret-based
learning, considering past mistakes and modifying future decisions accordingly
(Fan, Zheng, & Li, 2022). Furthermore, AI subsets, such as machine learn-
ing (ML) and deep learning (DL) models, can improve investors’ decisions
in the Forex market by providing them with predictive models and identify-
ing patterns and relationships in data (Bag, Gupta, Kumar, & Sivarajah, 2021).
These models can help investors make more informed decisions by providing
estimates of future market movements and identifying patterns that are not
immediately obvious to human investors.

Similarly, deep learning networks can be beneficial in the context of natural
language processing (NLP), indicating topic-level representations of sentences
in brain regions such as the medial prefrontal cortex using CNNs and RNN
algorithms (Acunzo et al., 2022; V. & Bhattacharyya, 2022). By capturing their
complex relationships, these models can learn meaningful representations of
words, phrases, and sentences. This ability is crucial for language understand-
ing and sentiment analysis in the Forex market. Figure 2.2 illustrates the CNN
models of the sentences and the average word embeddings read by humans
experiencing fMRI.
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Figure 2.2: CNN models the sentences and the average word embeddings read by humans
experiencing fMRI [Acunzo et al. (2022)].

In conclusion, AI methods can attempt to denote the vmPFC and the AIC in the
decision-making of Forex investors by incorporating similar decision-making

22



2. Incorporating Rational Choice Theory With Neuroscience and AI Systems

processes and considering emotional factors (Christov-Moore, Reggente, Dou-
glas, Feusner, & Iacoboni, 2020; Qi, Khushi, & Poon, 2020). For instance, AI-
based models incorporating deep learning capabilities can attempt to mimic
the behaviour of the vmPFC in decision-making. In addition, computational
models that consider emotional factors such as stress or fear can attempt to
mimic the behaviour of the AIC. Accordingly, by simulating the behaviour of
vmPFC and AIC, AI-based models can provide potentially more accurate pre-
dictions and drive better decisions in the Forex market. Furthermore, it is worth
noting that recent investigations have demonstrated that cognitive biases and
emotions often influence human decision-making in financial markets rather
than only rational self-interest (Ahmad, 2020; Ishfaq, Nazir, Qamar, & Usman,
2020). Therefore, this has directed to the developing of AI techniques such as
NLP that enhance investor decision-making in financial markets, incorporating
emotions in the form of sentiment analysis Ren (2021).

As already been discussed, computational methods such as ANNs, CNN and
RNN models are utilised to model brain regions such as the vmPFC and AIC to
better understand rational behaviour in financial decision-making. Moreover,
CNN and RNN are applied in time series predictions to estimate the future
of Forex, as discussed below. However, computational models cannot fully
replicate the complexity of the human brain, instead some of its functions, and
there are still many challenges and limitations to be addressed and investigated.

2.2 Time Series Predictions

Forecasting using time series refers to using data sequences to measure the
same thing over some time. Time series can be described as a series of numeric
values, each with its time stamp represented by a group of labelled dimensions.
For instance, K. Chen et al. (2019) utilised a short-term electric load forecasting
model based on deep residual networks, focusing on capturing uncertainty
within the models. Therefore, Monte Carlo dropout was implemented in their
models to obtain the predictive probability, enabling probabilistic load forecast-
ing. Their findings revealed that incorporating MCD, their proposed model
achieves accurate results and demonstrates its effectiveness, outperforming
existing models in the field.

Moreover, collecting time series data enables researchers to investigate the
past, observe the present, and anticipate the future in financial markets (Zanc,
Cioara, & Anghel, 2019). For instance, the data can be analysed using forecast
approaches where the last hourly value can be utilised to estimate the value of
the following hour by the exact value. The standard prediction models for time
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series include linear or non-linear approaches. Due to the intricacy of the Forex
market, selecting a suitable method is essential in obtaining appropriate forecast
results when predicting Forex time series (Shiao, Chakraborty, Chen, Hua Li, &
Chen, 2019). Deep learning presents a unique computational learning technique
that has received growing attention for financial forecasting, considering the
difficulties in predicting the Forex changes (Aryal, Nadarajah, Kasthurirathna,
Rupasinghe, & Jayawardena, 2019). In the below sections, substantial research
has been conducted using time series-based approaches to explore how different
financial elements affect Forex price fluctuations from computational economic
and neuroscience points of view.

2.2.1 Neuroeconomics, Computational Knowledge and Com-

plexity of the Forex Market

The assortment of neuroeconomics and the computational basis knowledge
is a multi-interdisciplinary field combining computer science, economics, and
neuroscience to understand decision-making processes better (Rangel, Camerer,
& Montague, 2008). The Forex market is a complex dynamic system and the
highest liquid financial market in the world, making it a valuable subject for
study in this field. For example, the concept of bounded rationality could be
an essential element of the forex market (Jiang, Li, Mai, & Tian, 2022). This
notion refers to the idea that individuals have limited thinking abilities and
therefore do not always make the best rational decisions (Sáenz-Royo, Chiclana,
& Herrera-Viedma, 2022). Instead, they rely on heuristics or mental shortcuts,
such as rules of thumb or gut instincts, to make decisions. Likewise, this idea
explains why traders may make decisions that deviate from a purely rational
analysis of market conditions. For example, a trader may be influenced by
his emotions, such as sadness or happiness, or social interactions with other
traders. Another influential factor in the complexity of the forex market is the
presence of high levels of uncertainty (Hilbert & Darmon, 2020). This tension
could result from modifications in the European Central Bank (ECB) and the
Bank of England (BoE) policies. For example, if the ECB were to raise interest
rates, it could lead to an appreciation of the Euro instead of the British Pound
as investors seek higher returns on their investments. Conversely, if the BoE
were to lower interest rates, it could lead to a depreciation of the Pound against
the Euro.

The EUR/GBP currency pair representing is an interesting case for analysis
due to the unique economic and political factors that influence its value for the
impact of investors’ sentiment on exchange rates (Alvarez-Diez, Baixauli-Soler,
& Belda-Ruiz, 2019). For example, an event that has affected the sentiment
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towards the EUR/GBP pair was the United Kingdom’s determination to leave
the European Union, commonly referred to as Brexit. The uncertainty sur-
rounding the terms of the UK’s exit has caused fluctuations in the value of the
British Pound. For instance, in the months directed up to the UK’s original
exit date in March 2019, the Pound declined significantly against the Euro
as investors became wary of the potential negative consequences of Brexit.
The forenamed factors are often difficult to predict and can affect the trader’s
financial decision-making processes.

Hence, there is a need for state-of-the-art computational systems to deal with
specific characteristics of the problems that arise in the Forex market, such as
high complexity, nonlinearity, strong presence of noise, uncertainty and changes
in investor behaviour. Recent studies (Zhong & Enke, 2019) have shown that
the usefulness of machine learning algorithms is becoming increasingly high
in various industries, including financial market investment. This popularity
is because machine learning models do not need to make presumptions about
the data and can often yield more precise results than traditional econometric
and statistical models. For instance, ANNs can analyse multiple data variables
without assumptions, making them a powerful forecasting tool. Similarly, deep
neural network models are more effective than traditional linear models in
predicting financial markets (Nikou, Mansourfar, & Bagherzadeh, 2019). For
instance, LSTMs can identify non-linear relationships between the dynamics of
stock prices and the order book, which reflects the visible supply and demand
for a stock. The superiority of neural networks over linear models can be
attributed to their ability to accurately capture and represent these nonlinearities
(Sirignano & Cont, 2019).

Other studies (Sim, Kim, & Ahn, 2019) sought to predict the S&P 500 index
using the closing price and by choosing nine technical indicators: SMA, EMA,
ROC, MACD, Fast %K, Slow %D, Upper Band, and Lower Band as predictors.
In addition, a comparison between CNN, ANN and SVM has been conducted to
decide which models are more accurate. The results demonstrated the effective-
ness of CNN without using technical indicators compared to ANN and SVM
models. Moreover, they concluded that technical indicators were not suitable as
input features, as they presented similar behaviour to the moving pattern of the
closing price, which led to poor performance. Likewise, Lanbouri and Achchab
(2020) presented an LSTM network based on technical indicators to forecast
the price of Amazon stock on high-frequency. During the evaluation of the
LSTM performance, they conducted two experiments. The first experiment was
conducted without technical indicators, employing the Open, High, Low, and
Close (OHLC) prices and Volume. In the second one, they used five technical
indicators, the EMA12, EMA25, MACD, Bollinger Up and Bollinger Down, the
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OHLC prices, and the Volume. Their findings indicated that the closing price
was predicted accurately without using technical indicators as input features.
In the next section, the significance of the closing price will be examined in the
context of Forex predictions.

2.2.2 Closing Price and Time Frame

One of the most critical factors defining the success of an investment in the Forex
market is the ability to predict future market movements. The closing price is
the best indicator to anticipate Forex markets (C.-C. Chen, Kuo, Kuo, & Chou,
2015). In addition, the closing price is considered the most helpful indicator
to predict Forex markets because it is the price at which the call nears and
reflects the market’s general presumption. Furthermore, it is less susceptible
to manipulation than other indicators, such as the opening price, because it
reflects the prevailing market view at the end of the trading day.

The time frame of one hour works most suitable for anticipating financial
markets because it is a shorter time frame than daily or yearly forecasting
(Almasri & Arslan, 2018). Moreover, this shorter time frame allows for more
accurate predictions because it could capture the volatility and uncertainty
of the market. Besides, the hourly time frame is less affected by long-term
trends, such as interest rate changes, which can significantly impact daily or
weekly predictions. Likewise, the hourly time frame allows for more frequent
predictions and is more responsive to short-term market fluctuations. ML-
based models can also be used to predict the direction of currency prices rather
than conventional statistical tools. As a result, these models can help investors
to identify opportunities and manage risk more effectively (Khedr, Arif, El-
Bannany, Alhashmi, & Sreedharan, 2021).

In conclusion, the closing price is the best indicator to utilise to anticipate Forex
markets because it reflects the market’s overall sentiment and is less susceptible
to manipulation than other indicators. The time frame of one hour (or hourly
forecasting) works best for anticipating Forex markets because it captures
the volatility and uncertainty of the market and is more responsive to short-
term market fluctuations. More recently, in terms of uncertainty estimation,
researchers exploit Monte Carlo dropout layers by validating the effectiveness of
the method of stock price prediction using convolutions and recurrent neurons
(Alghamdi, Alotaibi, & Rajgopal, 2021).

AI and machine learning models can enhance the prediction of Forex markets
by providing predictive models, identifying patterns, and reducing the impact
of cognitive biases and emotions on investment decisions. Combining these
methods can help investors create more knowledgeable choices and improve
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their performance in the Forex market. In contrast to the closing price, the
brain’s functionality under specific economic conditions and the computational
representation of different types of ANNs influenced by recent neuroscience
findings will be discussed in the next section. The main reveal is the importance
of using computational models in different domains that can be applied to
Forex markets, potentially boosting better anticipation of the Forex market.

2.3 Brain Structure and Computational Representa-

tion

Studying brain structure and its computational representation is a complex and
multidisciplinary field that draws on neuroscience, cognitive psychology, and
computer science knowledge. This field aims to understand how the brain pro-
cesses information and how this information can be illustrated algorithmically
(Kriegeskorte & Douglas, 2018). One of the critical areas of investigation in this
field is neural networks, which are computational models inspired by the brain’s
structure and function (Kriegeskorte, 2015). Neural networks contain artificial
neurons trained to perform specific tasks by adjusting the strengths of the con-
nections between them. Another vital area of study is cognitive architectures,
which are computational models that attempt to replicate the human brain’s
cognitive processes (Prieto et al., 2016). These models incorporate knowledge
from neuroscience to represent different aspects of human cognition, including
image recognition, natural language processing, and decision-making. The
study of brain structure and computational representation is a rapidly grow-
ing domain that can furnish new understandings into how the brain operates
and lead to the development of machine learning technologies to improve the
predictive performance of investors’ decision-making in Forex.

2.3.1 Brain Behaviour under Financial Risk

Frydman and Camerer (2016) highlighted the significance of financial decisions
in shaping people’s lives and the cognitive and neural procedures that influence
these decisions. For example, households make decisions that violate sound
financial principles, leading to underdiversified stock holdings. In addition,
investors tend to over-extrapolate from past returns and trade too often, while
top corporate managers, who are highly educated, make decisions that are
affected by overconfidence and personal history. Principles from cognitive
science can explain these behaviours by enabling more comprehensive and
better collaboration between mathematical modelling, cognitive and neural
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measures, and observed behaviour in the interdisciplinary study of financial
decision-making.

Tanaka, Yamamoto, and Haruno (2017) suggested that economic inequality can
critically affect human mood states. Furthermore, the parts of the brain, such
as the amygdala and the hippocampus, play a critical role in how people are
affected by economic inequality and influence how individuals make decisions
in risky situations. Yu, Mamerow, Lei, Fang, and Mata (2016) examined how age
affects naturalistic risk-taking behaviour to specify neural procedures in which
activity is linked. The regions observed were the bilateral striatum anterior in-
sula and ventromedial prefrontal cortex areas associated with decision-making
with emotion and value. The researchers uncovered that while these areas
showed similar activities in the younger and older studied groups, the vmPFC
showed different activities depending on the age when making decisions under
risks due to changes in their neural processing over time.

Moreover, the vmPFC is a region of the brain that is involved in a variety of
different psychological functions. These functions include decision-making,
regulation of emotions, and recognition of facial expressions (Hiser & Koenigs,
2018). In the same direction, Peng et al. (2020) aimed to understand the con-
nections between brain areas involved in a risk-taking task and to detect how
age differences between participants affected these connections while play-
ing the Balloon Analogue Risk Task. The brain activity data demonstrated
that young and older adults had similar neural patterns when making deci-
sions. However, their analysis also revealed that the connection between the
vmPFC, dorsolateral prefrontal cortex, and anterior insula was more robust in
older adults, meaning they could better make higher-quality decisions. Figure
2.3 shows the area of model nodes displayed in a 3D semi-transparent brain,
and the four models exhibit different link directions between the VMPFC and
DLPFC. VMPFC, the ventromedial prefrontal cortex; DLPFC, the dorsal lateral
prefrontal cortex; AI
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Figure 2.3: (A) The area of model nodes showed in a 3D semi-transparent brain. (B) Four
models exhibit different link directions between the VMPFC and DLPFC. VMPFC, the
ventromedial prefrontal cortex; DLPFC, the dorsal lateral prefrontal cortex; AI [ Peng et al.
(2020)].

Leong, Pestilli, Wu, Samanez-Larkin, and Knutson (2016) explored how indi-
viduals may display different attitudes towards risk, such as being unusually
attracted to gambles with a slight chance of winning large amounts. Using
a functional imaging technique indicated that the nucleus accumbens (NAcc)
and anterior insula (AIns) areas in the brain are likely connected to exhibiting
different risks. Furthermore, this connection correlated with an individual’s
preference for positively skewed gambles influences a person’s behaviour in
making uncertain decisions, meaning the person may weigh the risks and
bonuses before determining. More recently, Leong et al. (2021) found that the
AIns-NAcc tract was correlated with lower activity in the NAcc during antic-
ipation of no incentives. While followed up with adolescents two years later,
they could see a more robust connection of the AIns-NAcc tract was associated
with greater motivation.

Lau, Ozono, Kuratomi, Komiya, and Murayama (2020) explored people’s in-
terest in gambling through curiosity or a reward, and their brain activity was
monitored. Their experiments showed that when people accepted gambling,
their brain activity was higher in a particular area of their brain called the ven-
tral striatum than when they rejected it. Moreover, the activity spread to another
part of the brain called the brain dorsal striatum when they made a decision.
The neural substrates in different brain regions considering trust and risk in
digital financial decision-making have also been investigated (Carbo-Valverde,
Lacomba-Arias, Lagos-García, Rodriguez-Fernandez, & Verdejo-Román, 2020),
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exploring the relationship between neural responses, trust, risk, and financial
digitalisation decisions. They utilised functional magnetic resonance imaging
(fMRI) to investigate whether brain responses to the safety associated with
digitalised and non-digitalised financial transactions can explain differences
in adopting digital financial channels. Their study revealed that high and low-
frequency users of digital financial services show differences in brain procedure
and brain structure. Besides, high-frequency users of digital financial chan-
nels demonstrate improved brain activation functions in regions correlated to
emotional processing to the trust game.

This section investigated the influence of brain behaviour under financial risk.
In the next section, the effect of neuroscience on computational brain systems,
with a focus on understanding cognitive operations and behaviour, will be
discussed. Still, computational neuroscience findings are vital in understanding
how the nervous system processes information as conceivable connotations in
financial decision-making.

2.3.2 Brain Computational Systems Influenced by Neuroscience

Findings

In recent years, neuroscience has made significant strides in comprehending the
intricacies of the brain and how it processes information. Computational intelli-
gence methods are typically designed to mimic specific aspects of intelligence
observed in biological systems, such as brain function, species evolution, and
the social behaviour of populations. In addition, computational neuroscience
aims to understand how the nervous system processes information to provide
rise to cognitive operation and behaviour, and models play a crucial role in
achieving this goal. For example, deep neural networks (DNNs) have recently
dominated several domains of artificial intelligence and excel at forecasting neu-
ral responses to novel sensory stimuli with high accuracy (Kietzmann, McClure,
& Kriegeskorte, 2017). In this direction, CNNs have shown remarkable results
incorporating Monte Carlo dropout. For instance, Dürr et al. (2018) recognised
the exceptional performance of deep CNN in classifying image-based pheno-
types. However, real-world high-content screening (HCS) experiments revealed
that prior knowledge of all potential phenotypes could be impractical. There-
fore, they utilised a Monte Carlo dropout to establish uncertainty measures for
each phenotype prediction. They conclude that employing the MCD method
leads to a significant enhancement in model accuracy. Recently, Tousignant,
Lemaître, Precup, Arnold, and Arbel (2019) presented a deep 3D CNN with
parallel convolutional pathways for predicting future disability progression in
patients with Multiple Sclerosis, leveraging multi-modal brain Magnetic Reso-
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nance Images (MRI)data. Their framework demonstrates substantial predictive
capabilities. Further, they utilised Monte Carlo (MC) dropout to quantify the
uncertainty of the network in its output. Their findings show the effectiveness of
Monte Carlo dropout and suggest that clinicians use the associated uncertainty
estimates to consider which scans require additional examination.

Furthermore, to leverage the neuroscience information, researchers examined
which algorithms could better represent the regions of the brain and hence sim-
ulate their functions to the machines in an attempt to tackle different tasks. For
example, Lun, Yu, Chen, Wang, and Hou (2020) propose a deep CNN structure
for selecting the electrode pairs’ raw electroencephalography (EEG) signals over
the motor cortex region as hybrid samples without preprocessing or artificial
feature extraction operations. In their proposed structure, a 5-layer CNN is
applied to learn EEG features, a 4-layer max pooling is employed to reduce
dimensionality, and a fully connected (FC) layer is utilised for classification.
The motor imagination (MI) tasks are divided into four types and are used to
test the accuracy of their proposed approach. The results demonstrated that the
globally averaged accuracy on group-level classification could achieve 97.28%,
the area under the receiver operating characteristic (ROC) curve 0.997, and the
electrode pair on ten subjects dataset is FC3-FC4, with the highest accuracy
of 98.61%. Their proposed approach supplies a novel idea for facilitating the
creation of Brain-computer interface (BCI) methods, accelerating the clinical
application procedure. BCIs allow individuals to communicate by decoding
neural activity from brain areas, such as the motor cortex and translating it into
text in real-time. For instance, recently, Willett, Avansino, Hochberg, Hender-
son, and Shenoy (2021) developed an intracortical BCI that decodes attempted
handwriting movements from neural activity in the motor cortex. They used an
RNN decoding approach to train the BCI, and their study participant, who had
a spinal cord injury, could type at a swiftness of 90 textures per minute with
94.1% raw accuracy. These typing speeds exceeded those reported for any other
BCI and were analogous to typical smartphone typing speeds of people in the
participant’s age group. In addition, they could decode complete handwritten
sentences in real-time, enabling the participant with tetraplegia to communicate
by attempting to handwrite their intended message.

Shafiei et al. (2020) introduced an objective method for evaluating mental health
in cancer patients using a combination of CNN-LSTM models. They used data
recorded by TobiiPro eyeglasses from cancer patients and healthy individuals
while viewing artworks in an in-house gallery. Their proposed CNN-LSTM
was used to objectify evaluation and categorise the mental health metrics of
individuals. Results show that the model had a classification accuracy of
93.81%, 94.76%, and 95.00% for hope, anxiety, and mental well-being metrics,
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respectively. The researchers propose that their proposed model could be
employed for home-based mental health monitoring for patients after oncologic
surgery. Future work would include further verification of their model and
examining the consequences of specific surgery types. Figure 2.4 displays the
mental health evaluation using a CNN-LSTM model.
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Figure 2.4: Mental health evaluation using a CNN-LSTM model [Shafiei et al. (2020)].

Alamia, Gauducheau, Paisios, and VanRullen (2020) examined which of the
neural network architectures, namely feedforward and RNNs, is more appro-
priate to match human behaviour in artificial grammar learning as an essential
characteristic of language accession. The outcomes of their study revealed that
both methods could learn grammar after the sequential training such as hu-
mans accomplish. However, RNNs perform closer to humans than feedforward
ones, independently of the grammar complexity level. Hence, they suggested
that recurrent models are tighter to the human cognitive knowledge under-
lying language. Additionally, they supported the hypothesis that recurrent
architectures best model explicit understanding. However, they also noted that
further studies are needed to investigate ecological grammar to corroborate the
conclusion further.

Y. Wang and Sun (2021) investigated the formation of an innate RNN in the
native networks of the mammalian brain. The researchers uncovered that the
unidirectional connections form an RNN from three basic units: input units
arriving from emotion regions, a hidden unit in the medial prefrontal cortex
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(mPFC), and output units encountered at the somatic motor cortex (sMO).
Furthermore, they provided evidence that the neurons from the basal lateral
amygdala (BLA) and the insular cortex (IC) project to the mPFC motor-cortex-
projecting (MP) neurons, which form a local self-feedback loop and target
central projecting neurons of the sMO. Their study also notes that the innate
RNN may lack long-term memory-storage capability due to the vanishing issue
and may not be involved in complex sequential movements. Finally, their
study concludes that further research is needed to explore the local connectiv-
ity components linking pyramidal tract-type corticostriatal (PT-CStr) neurons
implicated in motivated behaviour with different types of interneurons to com-
prehend the innate RNN composition fully. Figure 2.5 illustrates the neurons in
the sentiment regions, which activate the MP neurons in the mPFC.
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Figure 2.5: (A) The neurons in the sentiment regions (BLA, aIC, and pIC), which trigger
(orange arrow) the MP (mainly PT-CStr) neurons in the mPFC. Excited MP neurons exaggerate
the signal by triggering themselves. They further communicate the signal to the downstream
sMO neurons. In the sMO, excited L5a CT neurons and L6 CT neurons also link (purple arrow)
the TH (thalamus); excited L5b PT-CSpi neurons innervate (light blue arrow) the spinal cord.
Each dashed circle symbolises one unit. Bottom: a simple model of RNN. (B) An example of an
innate RNN unfolded by timeline. x, input; y, output; w, weight; h, hidden. [Y. Wang and Sun
(2021)].

By understanding the neural processes in the brain that underlie decision-
making, researchers can potentially design computational models that more
accurately replicate human behaviour, as presented above. This experience can
be especially useful in finance, where accurately predicting market movements
and investor behaviour can be challenging. Furthermore, this knowledge can
inform and influence the development of ANNs to model Forex time series
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data. However, there are limitations to conventional ANNs when it comes to
modelling time series data. One such area for improvement is the inability
to effectively handle long-term dependencies or patterns over an extensive
time frame. Recent neuroscience findings have shed light on how the brain
can handle long-term dependencies to inform the development of ANNs for
modelling time series data. One such approach is the benefit of recurrent neural
networks designed to process sequential data. However, due to the highly
complex economic environments such as the Forex market, monolithic neural
network architectures such as single CNNs and RNNs can be challenging
to modify or adapt once trained since any network changes can affect the
entire system. Moreover, even a small change to the data can affect the entire
monolithic architecture. Thus, neural architectures inspired by the brain could
suggest better performance capabilities than monolithic neural networks. For
instance, modularity in the brain is responsible for optimising the information
capability in the brain’s neural paths. Therefore, the brain’s modularity allows
humans and animals to gain further knowledge without forgetting earlier
obtained knowledge. The following section will examine the application of
modular neural networks and their usefulness against monolithic architectures
from computational neuroscience and financial views.

2.3.3 Brain Modularity

The human brain network is modular, dividing cognitive tasks such as visual
perception or language processing into sub-tasks, aiming to perform them eas-
ier (Bertolero, Yeo, Bassett, & D’Esposito, 2018; Sporns & Betzel, 2016). Kelkar
and Medaglia (2018) revealed that brain modularity is crucial to the human
brain’s functioning and evolution. The human brain’s modular architecture
balances specialised and integrated processing, providing functional robustness
and adaptability. Short-range connections facilitate local processing, while a
few long-range connections are maintained to enhance interregional communi-
cation and information transfer. Long-distance links are also disproportionately
obeyed along the brain’s lengthiest axis, enabling transmission from the anterior
frontal cortex to the visual cortex. Hence, evolutionary selection has favoured
economic, modular brain networks that supply vigorous, flexible, and adaptive
processing throughout the lifespan and over evolutionary time. As a result, the
human brain’s modularity is a pervasive, dynamic, and essential phenomenon
for cognitive functions and overall survival. Recent studies suggested that
brain network modularity alterations in cognitive performance prosecuting
working memory and reasoning processes are essential in understanding indi-
vidual divergences in learning (Baniqued, Gallen, Kranz, Kramer, & D’Esposito,
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2019; Chaddock-Heyman et al., 2021). Cognitive abilities are indicated in the
vmPFC and the AIC, including emotions and the ability to plan under risk pro-
cess(Adolphs, 1999; (Bud) Craig, 2009; Christopoulos, Tobler, Bossaerts, Dolan,
& Schultz, 2009; Falk et al., 2018; Mohr, Biele, & Heekeren, 2010; Nieuwenhuis
& Takashima, 2011); observing high modular variability in the insular regions.
The existence of von Economo neurons defines the insula (VENs) (Butti, Santos,
Uppal, & Hof, 2013), which are accelerated communicating circuits within the
brain (X. Chen et al., 2021). Moreover, it is likely that the VENs relay informa-
tion related to decision-making or awareness (Allman et al., 2010; Cauda et al.,
2013). Researchers suggested that the cortical brain regions vary fundamentally
in their position, having a specific contribution to economic choices, which is
mainly determined by the inputs of each region, (Yoo & Hayden, 2018). The
modular approach to operating neuroanatomy of economic decision-making
confirms the actions of economic choices, such as comparing values, in the
regional architecture of the brain (Padoa-Schioppa, 2011; Rangel & Hare, 2010).

Findings from neuroscience have shown that brain modularity is crucial in learn-
ing and decision-making. Therefore, this study proposes a novel MCoRNNMCD-
ANN model, inspired by recent neuroscience discoveries, which enables ac-
curate and robust predictions of challenging price movements in the Forex
market. Sharwood Smith (2019) presents a comparison of two frameworks for
understanding the relationship between cognition and the brain: the neuroe-
mergentist framework proposed by Hernandez et al. (2019) and the Modular
Cognition Framework (MCF), also known as Modular Online Growth and Use
of Language (Truscott & Smith, 2004). The comparison aims to demonstrate
that the evidence for emergentist and dynamic traits in cognitive development
and processing can also be understood as the result of a modular mind with a
stable set of independent systems that are in place at birth. The MCF approach
highlights the collaboration between modular systems and how they adapt to
solve a constant flow of tasks. The MCF perspective on bilingual development
and behaviour is also discussed, specifically how more than one language can
coexist in one mind and the cognitive benefits of bilingualism. The commentary
concludes by suggesting that emphasising the contrasts between these frame-
works may obscure possible similarities and that further research is needed
to integrate these perspectives better to understand the mind’s and brain’s
functioning.

Fermin et al. (2022) revealed that the insula, a region of the brain that receives a
vast amount of interoceptive information from visceral organs, has specialised
modules that form parallel networks with the prefrontal cortex and striatum
to form higher-order interoceptive representations. These representations are
compelled and context-dependent to support habitual, model-based and ex-
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ploratory control of visceral organs and physiological processes. Their Insula
Hierarchical Modular Adaptive Interoception Control (IMAC) model suggests
that the insula’s parallel connections with PFC sub-regions, the striatum, and
neuromodulatory input from the dopaminergic system play a role in the emer-
gence of unconscious emotions, conscious feelings and the rise of visceral
dysfunctions observed in depression.

The study of parallel feature extraction is discussed further in the next section,
as the structure of the proposed MCoRNNMCD-ANN has been influenced and
inspired by the recent neuroscience findings, as also referred to in section 1.2 of
this thesis.

2.3.4 Parallel Feature Extraction and Computational Represen-

tation of Brain Modularity

Parallel feature extraction procedure has been utilised in many scientific fields,
such as neuroscience and natural language processing. This procedure is a
critical phase in the machine learning process, as it involves selecting the
most informative and relevant features from the data, which can improve
the performance of a machine learning model. Additionally, parallel feature
extraction can enable more sophisticated and computationally intensive feature
extraction techniques, leading to more accurate predictions (Farsi, Amayri,
Bouguila, & Eicker, 2021).

One way to achieve parallel feature extraction is by using a modular neural
network, which can be represented as a multi-head model. A multi-head model
consists of multiple parallel branches, each responsible for extracting a spe-
cific feature from the input data. This architecture allows the model to extract
multiple features simultaneously rather than sequentially. Additionally, each
branch can be optimised independently, receiving inputs and improving the
model’s overall performance. Various computational models, such as CNNs,
have been utilised to model parallel feature techniques. For example, Dai and
Jonnagaddala (2018) examined the effectiveness of CNNs in forecasting psychi-
atric conditions. Their study saw that CNNs could provide accurate results in
classifying the symptom severity, even without the need for advanced feature
engineering or feature selection. They have also explored the impact of parallel
CNN architectures with different filter region sizes, improving performance.
More specifically, the error of CNN was decreased by 0.004 and, with an MAE
of 0.644, surpassed that of NBM and C4.5 with an MAE of 0.660 and 0.716,
respectively. Finally, their analysis emphasised the challenges of parameter
optimisation and obtaining high-quality embeddings as critical factors that
affect the performance of CNNs. Future research will address these challenges
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and investigate better representation technologies to capture the syntax and
semantics of the content.

CNNs can form a computational method to model cortical representation and
organisation for spatial visual processing. However, Shi et al. (2018) investigated
how to overcome the limitation of CNNs to understand better the brain pro-
cesses temporal information in vision. They found that CNN can be extended
with RNN, including recurrent connections that allow spatial representations
to be remembered and accumulated over time. The RNN also agreeably pre-
dicted cortical responses to natural movie stimuli than the traditional CNNs,
particularly in areas of the visual cortex responsible for processing temporal
information. Additionally, the RNN ware able to improve performance in ac-
tion recognition while maintaining its ability in image recognition, making it a
valuable model for developing brain-inspired AI systems that can continuously
learn and expand capabilities. Finally, the researchers suggested that this ap-
proach could help understand and model other perceptual or cognitive systems
beyond vision, such as natural language processing, memory, and planning.
Figure 2.6 illustrates the architectural structure of the RNN and CNN layers. It
is worth noting that the findings from this analysis regarding the CNN weak-
ness to understand better the brain processes temporal information inspired
the proposed MCoRNNMCD-ANN to integrate the RNN model into the CNN.
However, in the MCoRNNMCD-ANN, the pooling layers have replaced the
RNN, as discussed in Chapter 4 and by using natural language processing as
the researcher suggested.
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Figure 2.6: (a) The architectural structure of the RNN. (b) The model training process. The grey
blocks show the CNN layers; the orange blocks show the RNN layers [ Shi et al. (2018)].

Yao, Zhang, Zhou, and Liu (2019) developed a deep learning model for image
classification that combines two types of neural networks. More specifically,
their model uses a parallel system that combines a CNN and an RNN for image
feature extraction and a unique perceptron attention mechanism to unite the
features from both networks. Their proposed model also utilised a switchable
normalisation method and targeted dropout regularisation technique to im-
prove its performance and robustness. Their findings have shown that their
suggested method outperforms current state-of-the-art methods based on CNN,
demonstrating the benefits of using a parallel structure.

Neuroscientists have also examined computational brain modularity to explain
brain functionalities. For example, Tzilivaki et al. (2019) investigated that
complex, non-linear dendritic computations necessitate the development of
a new theory of interneuron arithmetic. Using thorough biophysical models,
they foresaw that the dendrites of FS basket cells in both the hippocampus
and the prefrontal cortex are supralinear and sublinear. Furthermore, they
compared a Linear ANN, in which the input from all dendrites is linearly
merged at the cell body, and a two-layer modular ANN, in which the input is
fed into two parallel, separated hidden layers. Despite that, the linear ANN
exhibited relatively good performance; the two-layer modular ANN surpassed
the respective linear ANN, which failed to illustrate the variance assembled
by discrepancies in the input area. Hence, they recommended that a two-layer
ANN that deems both dendritic nonlinearities is considerably better for FS
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basket cells than the currently considered linear point neuron. This two-layer
modular ANN inspired this thesis’s proposed MCoRNNMCD-ANN design.
Figure 2.7 illustrates a linear ANN and the two-layer modular ANN.
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Figure 2.7: A linear ANN and a two-layer modular ANN, in which the input is provided into
two parallel, divided hidden layers [ Tzilivaki et al. (2019)].

More recently, Flesch, Juechems, Dumbalska, Saxe, and Summerfield (2022)
uncovered that the “rich” learning approach, which structures the hidden units
to prioritise relevant features over irrelevant ones, results in neural coding
patterns consistent with how the human brain processes information. Addition-
ally, they found that these patterns evolve as the task progresses. For example,
when they trained deep CNNs on the task using the “rich” learning method,
they discovered that it induced structured representations that progressively
transformed inputs from a grid-like structure to an orthogonal structure and
eventually to a parallel structure. These non-linear, orthogonal and parallel
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representations demonstrated a vital element of their research, as they suggest
that the neural networks can code for multiple, potentially contradicting tasks
effectively.

In financial markets, Gradojevic, Gencay, and Kukolj (2009) investigated whether
a non-parametric modular neural network (MNN) can value the S&P 500 Euro-
pean call options. The MNN method showed superior out-of-sample pricing
performance compared to an array of parametric and non-parametric mod-
els, observing that the average mean squared prediction errors (MSPE) can be
reduced between 12% and 70%, in comparison to the basic MNN model. In con-
clusion, they revealed that modularity improves the generalisation properties
of standard feed-forward neural networks, suggesting that the performance of
MNNs can be further investigated in highly volatile markets. Baek and Kim
(2018) proposed a framework, ModAugNet, which consists of two modules,
integrating a novel data augmentation technique for stock market index fore-
casting. Their model consists of a prediction LSTM module and an overfitting
prevention LSTM module. Two representative stock market data, the S&P500
and the Korea Composite Stock Price Index 200 (KOSPI200), are used to as-
sess the proposed model’s performance. Their findings demonstrate that the
proposed ModAugNet-c had a lower test error than a monolithic deep neural
network, an RNN and SingleNet, a comparable model without an overfitting
prevention LSTM module. For example, compared to SingleNet’s correspond-
ing S&P 500 forecasting errors, the test MSE, MAPE and MAE decreased to
54.1%, 35.5%, and 32.7%, respectively. Similarly, compared to SingleNet’s cor-
responding KOSPI200, the forecasting errors decreased to 48%, 23.9%, and
32.7%, respectively. However, a drawback of their study was that they did
not view other types of information, such as news, investors’ sentiment, and
macroeconomic characteristics. Figure 2.8 displays the ModAugNet model.

LSTM LSTM

FCFC

LSTM LSTM

FC

... LSTMLSTM ...

Input

Prevention Module Prediction Module

Figure 2.8: ModAugNet model [Baek and Kim (2018)].
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Likewise, Lee and Kim (2020) proposed a new stock market forecasting frame-
work called NuNet to improve the accuracy of predictions of S&P500, KOSPI200,
and FTSE100 prices. NuNet is an end-to-end integrated neural network com-
prising two feature extractor modules: a super-high dimensional market in-
formation feature extractor and a target index feature extractor. The market
feature extractor uses a combination of CNN and ConvLSTM layers to extract
features. The target index feature extractor uses two layers of stacked LSTM to
learn the temporal patterns of the target index. The outputs of each module are
then concatenated for feature fusion and connected to fully connected layers
to predict the closing price of the target index. Additionally, a mini-batch tech-
nique called trend sampling is suggested to sample more current data during
training. Results show that NuNet outperforms all baseline models, including
the SingleNet (Baek & Kim, 2018) and the SMA in the three indexes.

Other studies have also investigated the success of applying modular archi-
tectures in different domains. For example, Ma, Zhang, Du, Ding, and Sun
(2019) proposed a parallel architecture to predict metro ridership in large-scale
networks. Their model consists of two modules, a CNN and a bi-directional
long short-term memory network (BLSTM), responsible for extracting spatial
and temporal features, respectively. The two networks are concatenated and fed
into a fully connected network for metro ridership prediction. Their proposed
model was tested on the Beijing metro network and outperformed traditional
statistical models, deep learning architectures and sequential structures such as
ANN, RNN, CNN–BLSTM, SAR, OLS, ARIMA, DMVST-Net, and sequential
CNN–BLSTM. As a result, Metro authorities can use their model to effectively
allocate resources and improve service in overcrowded areas and daily opera-
tional management.

Duthie and Budzynska (2018) presented an approach for analysing the ethos
(character of the speaker) in natural language text, particularly in UK par-
liamentary debates. They design a deep modular recurrent neural network
(DMRNN) utilising proven methods from argument mining and sentiment
analysis to develop an ethos mining pipeline. The pipeline can extract infor-
mation about ethos reliably and robustly, with a macro-F1 score of 0.83 for
ethotic statement extraction and 0.84 for polarity annotation. The researchers
also apply this pipeline to an analysis of the political landscape, called ethos
analytics, to find evidence of the strong impact of ethos in comprehending the
dynamics of governments. Future work contains further enriching resources
and technology for ethos mining and analytics. In textual dialogues, Chatterjee
et al. (2019) suggested a novel deep learning-based approach to detect emotions
such as happiness, sadness, and anger. Their system combines both semantic
and sentiment-based representations for more accurate emotion detection. The
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evaluation of their approach revealed that it surpasses conventional machine
learning techniques such as Support Vector Machines (SVM), Decision Trees,
Naive Bayes and various deep learning models such as CNN and RNN. More
specifically, they proposed a deep learning-based model that uses two paral-
lel LSTM layers to learn semantic and sentiment feature representations and
encode sequential patterns in the user utterance. These two feature replicas
are then concatenated and passed to a fully connected network, which models
relations between these features and outputs likelihoods per emotion class.
Their approach could enhance the performance of real-world chatbots and
other textual-dialogue-based applications.

This section explored brain modularity’s applicability in neuroscience and the
financial markets. An effort is made to emphasise the importance of modularity
in designing and learning in ANNs. Moreover, using a multi-head model in
the Forex market can be particularly beneficial as it allows the model to extract
multiple features simultaneously, such as economic indicators and sentiment
analysis. As a result, these features can be combined to predict future market
movements accurately. In the next section, other techniques, such as transfer
learning, can improve learning from the knowledge that computational models
yielded from the financial predictions domain by transferring information in
a related domain. Furthermore, this information transfer could enhance the
performance of simple forms of ANNs that train with fewer data in the related
field of financial predictions, such as Forex.

2.4 Transfer Learning

Transfer learning refers to the capability of a system, be it a biological brain
or a computational model, to leverage knowledge gained from one domain
to improve performance in a related field. For example, the brain can extract
underlying patterns, principles, or representations from one task and apply
them to another, enhancing learning performance.

In computational models, transfer learning is also used to improve the gen-
eralisation performance of another model on relevant tasks with fewer data.
By leveraging knowledge learned from the pre-training phase, the model can
form with a better initial understanding of the problem, requiring less training
data to execute competently. Transfer learning in computational models often
involves transferring learned weights, representations, or feature extractors
from one model to another. In the following two sections, 2.4.1 and 2.4.2, the
application of the transfer learning method from a biological and computational
matter is presented.
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2.4.1 Transfer Learning Process in the Brain

Researchers showed that the hippocampus and vmPFC support the appearance
of conceptual knowledge and its impact on choice behaviour, utilising this
knowledge to solve complex decision problems. Moreover, they revealed that
the ability to transfer prior knowledge into novel tasks is a shaping characteristic
of human intelligence (Kumaran, Summerfield, Hassabis, & Maguire, 2009).
More recently, studies showed that across rodents and humans during new
learning, prior knowledge enhances cortical activation and cortico–cortical
functional connectivity (Bein, Trzewik, & Maril, 2019). Furthermore, Bein,
Reggev, and Maril (2020) proposed that when the information is supported
by prior knowledge, learning novel associations leads to asymmetric cortical
effects, a concept related to the human cognitive function (Kong et al., 2018).
This concept is a consequence of the asymmetry we likely have in language
and many other higher cognitive specialisations. The mnemonic processes in
our brains build long-term knowledge and, more specifically, how different
phases of memory formation, such as encoding, consolidation, retrieval, and
reconsolidation (Van Kesteren & Meeter, 2020). Consolidation of memories is
the advanced transfer of memories into a state where they stay stable over a
long-lasting time interval (Luboeinski & Tetzlaff, 2021).

Utilising the transfer learning technique to a computational model could sim-
plify the efforts to develop a model from scratch by applying the algorithms
within one domain to another. Furthermore, a model trained on a task with
much data, applied on another task with less data available, has recently led
to significant advancements in machine learning and fields such as natural
language processing. In the below section, the computational approaches of
transfer learning explore the potential enrichment in forecasting the perfor-
mance of computational models in cognitive processes and financial markets.

2.4.2 Computational Transfer Learning Approaches

Transfer learning (TL) is an approach that allows the use of data from unrelated
or partially related tasks to improve the performance of a model in a new task.
For example, in Forex and AI, TL can be used to forecast future currency trends
by leveraging prior knowledge from historical currency data.

Predicting currency trends is challenging, as it involves analysing vast historical
data and identifying patterns that can indicate future trends. In addition,
traditional machine learning algorithms, such as linear regression, need help to
capture the complexity of currency markets. Deep learning has been presented
to be a decisive tool for analysing time-series data. Computational models,
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such as CNNs and RNNs, can explore large amounts of historical data and
identify patterns that indicate future trends. These models are also able to
adapt to changes in the market and can improve their predictions over time.
However, even with deep learning, predicting currency trends still needs to
be improved. One of the main problems of deep learning in this context is the
need for extensive data portions, which is expensive and time-consuming. By
leveraging prior knowledge from historical currency and sentiment data, TL
can improve the performance of deep learning models and reduce the need for
supplemental data.

In TL, a model trained on a source task can transfer its knowledge to perform
a target task with fewer data. This process can be designed by adjusting the
model’s parameters to suit the target task’s characteristics better. In conclusion,
TL, in combination with deep learning, can be a robust toolset for predicting
currency trends. TL allows for the reuse of prior knowledge from historical
currency data and can improve the performance of deep learning models. Thus,
it can lead to more accurate predictions and a reduced need for additional data.
Below will be presented as either computational primarily utilised in neuro-
science and finance to understand better how TL can enhance generalisation
performance.

H. Li, Parikh, and He (2018) aimed to improve the early diagnosis of neurologi-
cal disorders by using advanced machine learning algorithms and resting-state
functional Magnetic Resonance Imaging (fMRI) data with autism spectrum
disorder (ASD) classification as the target task. The researchers proposed a
deep transfer learning neural network (DTL-NN) framework that utilises pre-
viously collected healthy subject data from existing databases to enhance the
classification of brain functional connectivity patterns for new disease tasks.
The DTL-NN approach was compared to traditional deep neural networks, and
support vector machine models demonstrated adequate performance. Further-
more, the DTL-NN approach consistently improved across multiple data and
consistently identified discriminatory functional connectivity patterns associ-
ated with ASD. The authors finally indicated that their approach could help
improve diagnosis for rare neurological disorders where investigating large
cohorts is challenging.

M. Chen et al. (2020) proposed a method for the early identification of cognitive
deficits in very preterm infants by analysing brain structural connectome data
from diffusion tensor imaging (DTI) scans taken at term-equivalent age. The
researchers utilised deep CNN and the transfer learning technique to achieve
this. Their analysis included 110 infants and found that the proposed transfer
learning enhanced the convolutional neural network (TL-CNN) model. More-
over, their TL-CNN performed better than other models, such as LR, SVM,
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DNN, CNN and TL-DNN, predicting cognitive assessment scores for both
cognitive deficit classification and continuous cognitive score prediction tasks.
The consequences of their study suggested that deep learning models may be
an effective method to predict later neurodevelopmental effects in very preterm
infants at term-equivalent age and help determine the brain regions that are
most indicative of cognitive deficit. Figure 2.9 shows the transfer learning CNN
(TL-CNN) model.
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Figure 2.9: transfer learning CNN (TL-CNN) model to forecast cognitive deficiencies utilising
brain structural connectome data acquired at a period in very preterm infants [M. Chen et al.
(2020)].

Kraus and Feuerriegel (2017) decision examined deep neural networks for
financial decision support, specifically regarding stock market predictions based
on company disclosures. The researchers found that deep learning methods,
such as RNNs, are better equipped to handle the complexity and ambiguity of
natural language in financial disclosures. Moreover, RNNs performed better
than traditional machine learning approaches such as Ridge regression, Lasso,
Elastic net, Random forest, SVM, AdaBoost and Gradient boosting. Their study
also explores transfer learning, showing the significance where the network is
pre-trained on a different corpus, which results in higher directional accuracy
in predicting stock price movements in response to financial disclosures. The
study’s results highlight the potential of deep learning for financial decision
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support and suggest that it could be a valuable tool for investors and automated
traders. However, the study also notes that the configuration of deep neural
networks is challenging and requires extensive parameter tuning for promising
results.

Merello, Ratto, Oneto, and Cambria (2019) compared feed-forward neural
networks (FFNNs) by applying regression and classification approaches to
forecast the prices for ten companies from the Nasdaq Index using stock and
textual data. The data was obtained from Yahoo Finance, Nasdaq News and
Google Finance, with the time duration between two posterior samples to be
selected hourly. In order to manage the issue of data scarcity, they used transfer
learning. They concluded that regression access derived better results against
classification approaches, and the employment of transfer learning proved
effective in heightening the prediction performance.

To address the data scarcity and to choose the optimal features’ selection as
inputs to anticipate the KOSPI 200 and the S&P 500 prices for five companies,
Nguyen and Yoon (2019) used an LSTM based on transfer learning. Historical
closing price data retrieved from the Yahoo financial website for six years. This
study indicated that deep transfer learning outperformed the baselines of SVM,
RF, and KNN models. For future research, Nguyen proposed implementing
numerical and sentiment data to enhance the predictability performance of the
models.

Cen and Wang (2019) investigated the usefulness of the LSTM model in pre-
dicting crude oil price fluctuations. They proposed using a transfer learning
technique to improve the conventional application field of LSTM, such as NLP,
where a large portion of data is a consensus training accuracy of LSTM. Conse-
quently, transfer learning will increase the accuracy of oil market price predic-
tion. Their study evaluated the predictive ability of their proposed LSTM model
on the West Texas Intermediate and Brent crude oil prices by decomposing the
time series into intrinsic mode functions using the ensemble empirical mode
decomposition method. Results show that their proposed LSTM model can
detect the main fluctuation characteristics of crude oil prices for different fluctu-
ation frequency levels. Furthermore, transfer learning enhances performance in
terms of forecast accuracy.

This section presented that the acquired knowledge from the computational
models is transferred to a related domain, such as in financial predictions, by
enhancing their generalisation performance. As already discussed in Chapter 1
and the above sections of Chapter 2, decision-making is affected by the emotions
of the investors, and not only the rationality of the decisions plays the final role
in their choices. Therefore, the following section will discuss natural language
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processing techniques considering simulating investors’ emotions by presenting
many aspects of the sentiment analysis incorporated into the financial market’s
anticipation.

2.5 Natural Language Processing in Financial Mar-

kets

NLP is a field of study that concentrates on the relations between computers and
human languages. NLP aims to allow computers to comprehend, interpret, and
generate human language. The connectivity between NLP and the brain refers
to the effort to understand the workings of the human brain when processing
language and to use this understanding to improve NLP algorithms. Research
in this area seeks to uncover the underlying computational principles of the
brain’s language processing capabilities and to replicate them in NLP models.
For example, Caucheteux and King (2022) compared deep language models to
identify the computational principles behind their ability to generate brain-like
representations of sentences. It analysed the brain responses to 400 sentences
in 102 subjects using functional magnetic resonance imaging (fMRI) and mag-
netoencephalography (MEG) and tested how the algorithms mapped onto the
brain responses. The outcomes demonstrated that the parallel between the
algorithms and the brain primarily relies on their ability to predict words from
context. This likeness shows the rise and maintenance of perceptual, lexical, and
compositional replicas within each cortical region. Their study concluded that
modern language algorithms partially converge towards brain-like solutions,
delivering a favourable path for comprehending the foundations of natural
language processing. NLP also has a wide range of applications, and one area
where it is seeing increasing use is finance and Forex.

NLP has yet to be considerably applied to Forex prediction compared to other
approaches such as linear regression, neural networks, and time-series analysis.
Regardless, NLP is typically utilised to analyse and process textual data. Since
Forex prediction mainly involves analysing numerical time-series data, there
may be different choices for this domain (Islam, Hossain, Rahman, Hossain, &
Andersson, 2020; Sezer, Gudelek, & Ozbayoglu, 2020). Furthermore, NLP can
analyse enormous quantities of unstructured data, such as news articles. This
analysis can help professionals extract relevant information and insights that
aid decision-making. For example, an NLP-based system might be utilised to
analyse news articles about a particular company to determine its sentiment
and prospects. A system like this can be especially useful in an industry where
information constantly changes. Traditional analysis methods, such as financial
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statements and performance metrics, may only tell part of the story. In Forex,
NLP can also analyse news from social media posts related to currency markets
to identify trends and potentially make trading decisions. Given the increasing
interconnectedness of global financial markets, it is becoming increasingly
important for traders to fast and accurately analyse a wide range of information
to make informed decisions. NLP can help facilitate this process by providing a
more comprehensive view of relevant information and trends. Recent trends in
NLP have shown the success of large language models (LLMs) in various NLP
tasks. However, this success is not a guarantee against simpler models.

The performance of a model depends on various factors, such as the task, the
size and quality of the dataset, and the specific architecture of the model. For
instance, Ezen-Can (2020) investigated implementing a pre-trained BERT model
and a simple bidirectional LSTM model for intent classification using a small
dataset collected for building chatbots. The author wanted to answer whether
using a large language pre-trained model like BERT would perform better than
simple models, especially when the dataset is small. The outcomes revealed
that the simple bidirectional LSTM model outperformed the pre-trained BERT
model in accuracy. The LSTM model also had faster training times compared to
the BERT model. The author concluded that the model chosen should be based
on the specific task and dataset rather than just choosing the most popular
model. The results also indicated that BERT overfitted more than the simple
LSTM model for smaller datasets.

NLP techniques are utilised to automatically label input text data based on
predefined rules to identify the polarity of user sentiment called rule-based
systems. These systems can provide a sentiment score that can express the emo-
tional state of the individuals. Well-known rule-based systems are presented
below.

Sentiment Lexicons

Rule-based lexicons are dictionaries that contain rules for identifying specific
words or phrases in the text. These lexicons are often utilised for parts-of-speech
tagging, named entity recognition, and sentiment analysis. The rules in a rule-
based lexicon may be established on regular expressions, word patterns, or
other criteria.

Well-known lexicons that are used for sentiment analysis on Twitter:

• SentiWordNet (Baccianella, Esuli, Sebastiani, et al., 2010): SentiWordNet
is a lexical resource that assigns a positive or negative sentiment score
to each synset (a set of synonyms) in WordNet. It can be employed to
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determine the sentiment of a given text by summing the sentiment scores
of the words in the text.

• AFINN (Nielsen, 2011): AFINN is a lexicon of a list of English words rated
for valence with an integer between -5 and 5.

• VADER (Valence Aware Dictionary and sEntiment Reasoner) (Hutto &
Gilbert, 2014): VADER is a rule-based sentiment analysis lexicon attuned
explicitly to social media sentiments.

• TextBlob (Loria et al., 2018): TextBlob is a Python library providing a
simple API for text data. It includes several features for natural language
processing, including part-of-speech tagging, noun phrase extraction,
sentiment analysis, and more.

NLP techniques such as sentiment analysis in finance and Forex will persist
in expanding in the forthcoming years as more and more professionals recog-
nise its value. Furthermore, as NLP technology improves, it will become an
increasingly important tool for professionals looking to make knowledgeable
decisions in an increasingly complicated and fast-paced world. However, it is
essential to note that NLP is not a magic bullet and has to be employed with
other breakdown methods, such as ANNs. While NLP can provide valuable
insights, it is ultimately up to the user to interpret and act on this information in
a way that is appropriate for their specific investment goals and circumstances.
The sentiment analysis application in financial markets such as in Forex is
presented in the following section.

2.5.1 Sentiment Analysis in Financial Markets

Sentiment analysis in finance uses natural language processing and compu-
tational linguistics techniques to identify, extract, and quantify the sentiment
expressed in financial texts. Sentiment analysis includes diagnosing financial
news articles, earnings call transcripts, social media posts, and other types of
financial communication to understand the sentiment of market participants
and predict market movements. There are many potential applications for sen-
timent analysis in finance, including stock market prediction, risk management,
and investment decision-making. By understanding the sentiments of market
participants, investors and financial institutions can make more knowledgeable
decisions and improve their financial performance. Overall, sentiment analysis
in finance is a rapidly growing field with significant potential to improve our
understanding of financial markets and make better investment decisions. Com-
bining NLP and neural networks can be a potent tool for Forex rate prediction
because it allows for integrating a broad scope of data sources.
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Sohangir, Petty, and Wang (2018) investigated whether lexicon-based techniques
can enhance the performance of sentiment extraction from social media data
in financial markets. They used three lexicon-based methods, namely, VADER,
SentiWordNet, and TextBlob, to analyse data from StockTwits tweets and com-
pared the results to machine learning methods such as logistic regression, linear
SVM, and Naive Bayes for classification. Their study revealed that the lexicon-
based approaches outperformed machine learning methods regarding accuracy
and that VADER was the best lexicon method for predicting StockTwits users’
sentiment. Consequently, utilising lexicon-based methods like VADER can
improve the accuracy of sentiment analysis and is faster than the forenamed
machine learning techniques.

Other researchers (Seifollahi & Shajari, 2019) proposed an embedded word
sense disambiguation (WSD) method for Forex market prediction in an already-
designed model that utilises the WordNet and SentiWordNet lexicons. The
sentiment analysis applied to the news headlines from marketwatch.com by
anticipating the directional movement of the EUR/USD exchange rate. They
concluded that detecting many words can hone sentiment analysis. However,
one of the challenges of the proposed WSD method was the enormous amount
of time needed to execute the algorithm. For future investigation, they proposed
to foresee the prices as an alternative to directional movement and the usage of
social media platforms.

Souma, Vodenska, and Aoyama (2019) applied deep learning methods by train-
ing RNN with LSTM units to forecast the financial news sentiments. They
utilised the Thomson Reuters News Archive and the Thomson Reuters Tick His-
tory datasets. The global vectors (GloVe) are employed as a word representation
method. The polarity, i.e., positive or negative sentiment, has been delineated
based on the log return of the ratio between the average price for one minute
before and one minute behind the news was acknowledged. They concluded
that the model was in place to estimate the positive or negative news. Mohan,
Mullapudi, Sammeta, Vijayvergia, and Anastasiu (2019) compared models such
as the RNN-LSTM, ARIMA, and Facebook Prophet (FB prophet), aiming to
enhance the prediction accuracy of the stock values of the S&P 500. Textual
information and stock prices were collected with a web scraper. Their findings
indicated that the RNN model outperformed the ARIMA and FB prophet in
price anticipations. However, one limitation of their study was that the models
could have performed better in events where markets presented high or low
volatility.

Sirimevan, Mamalgaha, Jayasekara, Mayuran, and Jayawardena (2019) pro-
posed LSTM-RNN to analyse particular sources and employed lexicons such as
TextBlob to extract the sentiment scores. This approach achieved highly accu-
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rate predictions for one-day, seven-day, fifteen-day and thirty-day time-frames,
providing insight for investors and companies to track their performance in
the Dow Jones 30 index. Additionally, beta values for stock market data and
macroeconomic variables such as exchange and gold rates will be studied. Like-
wise, Shahi, Shrestha, Neupane, and Guo (2020) compare the performance of
LSTM and GRU models for the Nepal Stock Exchange - Agricultural Develop-
ment Bank Limited (NEPSE-ADBL) market forecasting, focusing on the impact
of comprising financial news sentiments using the VADER lexicon. Their study
encountered that both LSTM and GRU are circumstantial in stock anticipation
when using only stock market features as input and that integrating sentiment
scores improves the performance of both models for stock price predictions. In
addition, their study suggests that using LSTM-News and GRU-News models,
which require more computation power, yields better results. Finally, as a future
direction, they propose a cooperative deep-learning architecture incorporating
LSTM-News and GRU-News models that could be used as an expert system to
recommend the best forecasting dynamically.

Researchers have also used rule-based methods alongside AI to investigate a
crucial aspect of fake reviews. For example, using deep learning approaches,
Sadiq et al. (2021) proposed a framework for predicting the authenticity of
numeric ratings on the Google Play Store. Their method consists of two stages.
In the first phase, the polarity of reviews is estimated using sentiment analysis
tools such as TextBlob and VADER to construct ground truth. In the second
phase, star ratings are anticipated from the text format of reviews after training
deep learning models such as CNN, LSTM, RNN, BiLSTM, and GRU on the
ground truth obtained by VADER. The framework results are then compared
with the actual ratings of the apps on the Google Play Store to find any mismatch
between the user reviews and user ratings. The best-performing model, CNN,
showed a classification accuracy of 89% against the LSTM, RNN, BiLSTM, and
GRU and robust results of 82%, 89% and 86% in terms of precision, recall and f1
score, respectively.

Kumar, De, and Roy (2020) developed a hybrid Recommendation System (RS)
for movies to minimise the impact of limitations such as the need for previous
user history and habits to perform the task. Their RF consisted of collaborative
filtering (CF) and content-based filtering (CBF) jointly with sentiment analysis
of tweets from microblogging sites. The purpose of using movie tweets was
to understand current trends, public opinion, and user reactions to movies.
Experiments conducted using public databases have yielded promising results.
After preprocessing, the text extracted from tweets was used for sentiment
analysis by applying the VADER rules-based method. The results showed that
VADER performance was better than the other methods, such as Naive Bayes,
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TextBlob, PTWE, and Attention models, which used bidirectional LSTM and
IMDB rating.

Twitter is also one of the primary sources in which text data is acquired to
extract investors’ sentiments. Therefore, the following section will discuss its
effect on financial markets like Forex.

2.5.2 Sentiment Analysis Effect of Twitter in Financial Markets

Twitter is an influential social media platform with a reputation as a source
of breaking news and real-time information. In recent years, there have been
assumptions about whether or not Twitter could affect stock market decisions.
While it is difficult to pinpoint any specific factor as the sole driver of market
movements, it is worth examining how Twitter could influence the stock market.

Twitter could affect stock market decisions through the dissemination of infor-
mation. As a real-time platform that allows users to share news and updates,
Twitter can quickly spread information about a company or industry (Duz Tan
& Tas, 2021). For example, suppose a company announces positive earnings or
a new product launch on Twitter. In that case, this information could attract
the attention of investors and drive up the company’s stock price. On the other
hand, if unfavourable information is shared on Twitter, it could drive down the
stock price. In addition, Twitter could influence stock market decisions through
sentiment analysis. Analysing the sentiment of tweets about a particular com-
pany or industry makes it possible to get a sense of how the market reacts to
specific events or developments. Investors could use this analysis to decide
whether to buy or sell a particular stock.

Regarding the potential influence of Twitter on the Forex market, the platform
could serve as a means of communication and information spread (Bianchi,
Gómez-Cram, Kind, & Kung, 2023). For example, if a central bank announces
a change in monetary policy on Twitter, this could impact the value of the
country’s currency. Similarly, if a government official tweets about a significant
economic development or event, this could affect the Forex market.

The impact of sentiment analysis from various data sources such as Twitter,
Google Search Trends, e- News headlines have been investigated in an effort
for researchers to understand the financial markets better. In this domain, Aasi,
Imtiaz, Qadeer, Singarajah, and Kashef (2021) suggested a Multivariate Mul-
tistep output long-short term memory (MMLSTM) to investigate the impact
of sentiment analysis on the prediction of Apple Inc stock, utilising the daily
closing price, Twitter data, news headline, and Google trends. Furthermore,
they compared the MMLSTM model against the ARIMA, Random Forest and
other LSTM models, outperforming them. Their findings revealed that the pro-
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posed MMLSTM method improved the MSE by 65% compared to the ARIMA
and Random Forest models. Moreover, Cavalli and Amoretti (2021) suggested
a novel approach based on the one-dimensional CNN (1D-CNN) to predict
the bitcoin trend, utilising multiple information, such as daily historical val-
ues, financial indicators and oscillators, and sentiment data. In addition, they
employed the Valence Aware Dictionary and sEntiment Reasoner (VADER) to
obtain the sentiment score from Twitter. Their findings showed that the pro-
posed 1D-CNN model outperformed the other methods of the baseline (Greaves
& Au, 2015), logistic regression, SVM, neural network, random forest, LSTM,
and the eXtreme Gradient Boosting (XGBoost). More specifically, their model
accomplished the highest accuracy of 74.2% compared to the accuracy of 53.4%,
66%, 65.3%, 55.1%, 57.4%, 67.2%, 48.3% attained from the other algorithms,
respectively.

Moreover, one of the primary motivations for the usage and popularity of
Twitter sentiment analysis in market prediction is the vast amount of data
available on the platform. The Twitter platform has over 330 million monthly
active users; on average, 500 million tweets are sent daily. Hence, it provides a
large and diverse sample of data that can be employed to investigate investors’
sentiment. Furthermore, research in this area has shown a correlation between
the sentiment of tweets posted by individual investors and market movements.
For example, a study by Tabari, Seyeditabari, Peddi, Hadzikadic, and Zadrozny
(2019) examined the sentiment analysis of Twitter by analysing a dataset of
11,000 tweets for Apple, Facebook, and Amazon. The data was retrieved from
the Twitter API and labelled using Amazon Mechanical Turk, comparing differ-
ent neural networks, such as a shallow CNN and a shallow LSTM, against the
baseline SVM model. The results showed that the LSTM network outperformed
the other methods. Their findings indicated a significant link between tweets
and stock returns. Likewise, Aggarwal, Gupta, Garg, and Goel (2019) analysed
various factors and parameters from social media such as Twitter and historical
prices from Poloniex and datahub.io; they investigated the effect of gold price
on the price of bitcoin. In their study, several deep learning models such as
CNN, LSTM and GRU are utilised to anticipate the price of bitcoin. The results
were that the deep learning models are adequate for Bitcoin price forecasting.

Integrating symbolic methods like lexica, such as VADER, as inputs in neu-
ral models like RNNs empowers AI systems to capture explicit rule-based
reasoning and complex pattern recognition. This fusion of approaches could
contribute to designing more robust AI systems. For example, neural models,
such as RNNs, effectively capture sequential dependencies and context over
time. Furthermore, by combining symbolic inputs, which provide domain-
specific information such as from Twitter and linguistic knowledge, the neural
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models could better grasp the context in which the data is presented. This
enhanced context understanding enables AI systems to perform more accurate
cognitive tasks like sentiment analysis, emotion recognition, and language
understanding.

The above discussion offered a piece of knowledge on the power of a combi-
nation of NLP rule-based systems and neural models that could create more
robust AI models in financial markets like Forex. Moreover, it has been revealed
that sentiment analysis is crucial in financial predictions, while one of the influ-
ential data sources is Twitter. However, the Forex market is highly complicated
and influenced by many factors. Therefore, while Twitter could be a valuable
source of information for forex traders, it is better to be something other than
the whole seed of information on which trading decisions but instead to be
combined with other financial data, such as the closing price of an exchange
rate. Consequently, researchers have been increasingly interested in finding
new ways to predict stock market movements. A pathway could be combining
historical stock data and social mood from user-generated content on sources
such as Twitter and web news to predict stock prices more accurately.

Even though the historical stock data and social mood can be combined and
utilised in ANNs, their monolithic architecture, widely used in price predic-
tions, still presents challenges in high-complexity volatile markets. Hence,
monolithic network architectures still need to be investigated in an overview
of their applications in financial markets. These challenges will be presented
in the next section and identified by aiming to fill them out with the proposed
MCoRNNMCD-ANN developed in this thesis. Finally, benchmark state-of-the-
art models will be utilised from section 2.6 to be compared with the proposed
model. This comparison will validate if the MCoRNNMCD-ANN can outper-
form the monolithic networks in predicting price movements in Forex markets,
as presented in Chapter 5.

2.6 Overview of Machine and Deep Learning Finan-

cial Predictive Models

In order to predict challenging financial markets’ fluctuations and accurately
forecast them, researchers have proposed several machines and deep learning
methods such as the CNNs, the variants of RNNs, namely the GRU and LSTM
and their hybrid architectures. For instance, Galeshchuk and Mukherjee (2017)
suggested a CNN for predicting the price change direction in the Forex market.
They utilised the daily closing rates of EUR/USD, GBP/USD, and USD/JPY
currency pairs. Moreover, they compared the results of CNN with baseline
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models such as the majority class (MC), autoregressive integrated moving
average (ARIMA), exponential smoothing (ETS), ANN and SVM. Their findings
showed that the baseline models and SVM yielded an accuracy of around 65%,
while their suggested CNN model had an accuracy of about 75%. Deep learning
architectures such as the LSTMs were recommended for future investigation
in Forex. Likewise, Shiao et al. (2019) employed the support vector Regression
(SVR) and the RNN with LSTM to capture the dynamics of Forex data using
the closing price of the USD/JPY exchange rate. The results indicated that their
suggested RNN model outperformed the SVR model with an RMSE of 0.0816,
which achieved an RMSE of 0.1398, respectively. Maneejuk and Srichaikul
(2021) investigated which ARIMA, ANN, RNN, LSTM, and support vector
machines (SVM) models presented better performance to the Forex market
predictions. They used the daily closing price of five currencies: the Japanese
yen, Great Britain Pound, Euro, Swiss franc, and the Canadian dollar for six
years. Each model’s performance was evaluated using the RMSE, MAE, MAPE
and Theil U. Their findings showed that the ANN outperformed the other
models in predicting the CHF/USD currency pair. On the other hand, the
LSTM obtains better results than the other methods in predicting EUR/USD,
GBP/USD, CAD/USD, and JPY/USD rates. For instance, the LSTM achieved
the MAE of 0.0300 in the prediction of the EUR/USD compared to the MAE of
0.0435, 0.0319, 0.0853, 0.0560 obtained from the ARIMA, ANN, RNN, LSTM,
and SVM models, respectively.

McNally, Roche, and Caton (2018) have also utilised RNNs and LSTM networks
to predict the price of Bitcoin in USD for six years. The neural networks were
compared to the Autoregressive Integrated Moving Average (ARIMA) method.
Their findings unveiled that the LSTM surpassed the RNN and the ARIMA
models by an accuracy of 52%. The RNN and the ARIMA achieved an accuracy
of 50.25% and 50.05%, respectively. Moreover, Hossain, Karim, Thulasiram,
Bruce, and Wang (2018) suggested a model based on deep learning to fore-
cast the stock price of the Standard & Poor’s 500 (S&P500) from 1950 to 2016,
combining LSTM and GRU networks, comparing to a multilayer perceptron
(MLP), CNN, RNN, Average Ensemble, Hand-weighted Ensemble and Blended
Ensemble. Their findings revealed that the LSTM-GRU model surpassed the
other methods, achieving a mean square error (MSE) of 0.00098, with the other
models accomplishing MSE of 0.26, 0.2491. 0.2498. 0.23, 0.23, and 0.226, re-
spectively. Similarly, Althelaya, El-Alfy, and Mohammed (2018) investigated
long-short-term memory (LSTM) architectures to forecast the closing prices of
S&P500 for eight years. Their findings showed that the Bidirectional LSTM
(BLSTM) was the most appropriate model, outperforming the MLP-ANN, the
LSTM and the stacked LSTM (SLSTM) models, achieving the lowest error in the
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short- and long-term predictions. For example, the BLSTM achieved a mean
absolute error (MAE) of 0.00736 in the short-term forecasts compared to MAE of
0.03202, 0.01398 and 0.00987 for the MLP-ANN, LSTM and SLSTM, respectively.
Ojo, Owolawi, Mphahlele, and Adisa (2019) aimed to predict the behaviour of
the stock market using a stacked LSTM network model on the American Stock
Exchange. The data used in their study was historical stock market data from
the NASDAQ Composite (IXIC) from January 2009 to July 2019. Their model’s
predictions were compared to the actual stock market behaviour to evaluate its
accuracy, revealing that the stacked LSTM network model could predict stock
market behaviour with an accuracy of 53.6%. While this accuracy rate is low,
it is still significant, considering the complexity of forecasting stock markets.
However, their study also noted that predicting the stock market is complicated,
and numerous characteristics, such as political events and global news, could
influence its behaviour. Lu, Li, Li, Sun, and Wang (2020) proposed a predicting
technique for stock prices employing a combination of CNN and LSTM, which
utilises the memory function of LSTM to analyse relationships among time
series data and the feature extraction capabilities of CNN. Their CNN-LSTM
model uses opening, highest, lowest and closing prices, volume, turnover, ups
and downs, and change as input and extracts features from the previous ten
days of data. Their method is compared to other forecasting models such
as LSTM, MLP, CNN, RNN, and CNN-RNN. The results showed that their
CNN-LSTM outperformed the other models by presenting an MAE of 27.564 in
contrast to MLP with 37.584, CNN with 30.138, RNN with 29.916, LSTM with
28.712 and CNN-RNN with 28.285. They concluded that their proposed CNN-
LSTM could provide a reliable reference for investors’ investment decisions.
However, their model still needs to improve, as it only considers the effect of
stock price data on closing prices rather than combining sentiment analysis
and national policies into the predictions. Alonso-Monsalve, Suárez-Cetrulo,
Cervantes, and Quintana (2020) investigated using CNNs and convolutional
LSTM networks as an alternative to conventional MLP and radial basis function
(RBF) ANNs for anticipating the price movements of cryptocurrency exchange
rates utilising high frequencies. Their study compared the performance of these
four different network architectures on six popular cryptocurrencies: Bitcoin,
Dash, Ether, Litecoin, Monero, and Ripple. Results showed that convolutional
LSTM networks outperformed all other models significantly, with the CNNs
also providing good results, particularly for Bitcoin, Ether, and Litecoin. The
study concludes that CNNs and convolutional LSTM networks are suitable for
predicting the trend of cryptocurrency exchange rates using technical indicators.
However, the study is limited to short-term trend prediction, and more research
is needed to address limitations for practical application in trading settings.

56



2. Incorporating Rational Choice Theory With Neuroscience and AI Systems

Researchers have further investigated the influence of ANNs in forecasting
prices. For example, Al-Sulaiman (2022) examined the feasibility of predicting
future stock processes based on substantial price changes by constructing a
deep-forward neural network model with three and four hidden layers. Their
proposed model outperformed other techniques, such as linear regression, mul-
tiplayer perception, and SVM. Ajoku et al. (2021) explored the usage of ANN
in predicting daily stock market prices from various banks. Their research
introduced an efficient forecasting model using an Ensemble ANN consist-
ing of three ANNs with three hidden layers utilising the ensemble averaging
(EA) theory. Their ensemble model (EM) outperformed traditional MLP neural
networks to forecast banks’ closing value, presenting fewer errors, 2 in total,
against 3, 3.29, 4, and 2.71 from MLPs, respectively. For future research, they
proposed utilising other factors, such as macroeconomic and human psycho-
logical characteristics, as input variables. Figure 2.10 illustrates their proposed
EM.
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Figure 2.10: Architecture of the Ensemble Model [Ajoku et al. (2021)].
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Recently, Y. Zhang, Chu, and Shen (2021) argued that LSTM is a better model
than other ANNs for processing complex financial time series data to predict
stock price movements. To improve the forecast accuracy, they use investor
attention proxies, such as the Baidu index’s search volume and news count, and
traditional stock variables like price, volume, and technical indexes as inputs for
their LSTM model. The results indicated that the LSTM model with the added
investor attention proxies outperforms other models, such as ANNs, regarding
prediction accuracy and time efficiency. Hence, the authors conclude that the
LSTM model with attention proxies is an optimistic method for anticipating
stock prices. S. Yang (2021) suggested a model-based deep learning framework
using LSTM as a benchmark and GRU models to predict financial indicators
values. The financial indicators, such as return on tangible assets (ROTA), price-
to-sales ratio (PTSR), and price-earnings ratio (PER) of two stock companies,
Mondelez International and Hormel Food Corp, were utilised to verify their
proposed framework. Their framework evaluates economic conditions and
determines the degree of financial risks for organisations. Their study employs
data from the USA stock market but suggests that using data from other markets,
such as European and Asian, could improve the results’ validity. Their study
found that the LSTM and GRU models accurately predict the chosen financial
indicators. They suggest incorporating text information from financial websites
and news channels in future works could improve prediction accuracy. More
recently, Kanwal et al. (2022) proposed a hybrid deep learning technique fore-
casting the prices of Crude Oil, Crude Oil (CL=F1) and Global X DAX Germany
ETF (DAX) for the individual stock item; DAX Performance-Index (GDAXI)
and Hang Seng Index (HSI). Their Bidirectional Cuda Deep Neural Network
Long Short-Term Memory that compounds BiLSTM Neural Networks and a
one-dimensional CNN (BiCuDNNLSTM-1dCNN) compared against the LSTM
deep neural network (LSTM-DNN), the LSTM–CNN, the Cuda Deep Neural
Network Long Short-Term Memory (CuDNNLSTM), and the LSTM. The results
from their study showed that the BiCuDNNLSTM-1dCNN outperformed the
other models, validating the outcomes by using the RMSE and MAE metrics; for
instance, in the DAX predictions, the BiCuDNNLSTM-1dCNN achieved MAE
of 0.566; while the LSTM-DNN, the LSTM–CNN, the CuDNNLSTM, and the
LSTM achieved MAE of 0.991, 3.694, 2.729, 4.349 in the test dataset, respectively.
Features such as sentiment information have not been exploited in their study.
Figure 2.11 illustrates their proposed BiCuDNNLSTM-1dCNN.
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Figure 2.11: Architecture of the BiCuDNNLSTM-1dCNN [Kanwal et al. (2022)].

Zhou, Zhou, and Wang (2022) proposed a hybrid stock forecasting model (FS-
CNN-BGRU) that combines Feature Selection (FS), CNN, and Bidirectional
Gated Recurrent Unit (BGRU) to predict stock performance. Their model was
evaluated and compared to single models such as the CNN, LSTM, and GRU
and mixed models like the CNN-LSTM and CNN-GRU. The results show that
the FS-CNN-BGRU model outperforms all other models regarding prediction
error (MAPE) and R2. Their proposed FS-CNN-BGRU model achieved an error
of 1.4325%, which is lower than that of CNN-GRU at 1.6354%, CNN-LSTM is
1.6426%, that GRU is 1.8332%, LSTM is 1.8654%, and that of CNN is 2.0601%.
Finally, researchers proposed that there is still space for progress. Pokhrel et al.
(2022) compared the performance of three deep learning models, LSTM, GRU,
and CNN, in predicting the next day’s closing price of the Nepal Stock Exchange
(NEPSE) index. The study uses fundamental market data, macroeconomic data,
technical indicators, and financial text data of Nepal’s stock market. Their
models’ performances are compared using standard assessment metrics like
Root Mean Square Error (RMSE), MAPE, and Correlation Coefficient (R). Their
results indicated that the LSTM model architecture provides a superior fit with
The smallest RMSE 10.4660 MAPE 0.6488 and with R score 0.9874 in contrast to
the GRU with RMSE 12.0706, MAPE 0.7350, R 0.9839, and the CNN with RMSE
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13.6554, GRU 0.8424, R 0.9782. Their study also suggested that the LSTM model
with 30 neurons was the supreme conqueror, followed by GRU with 50 neurons
and CNN with 30 neurons. Finally, they proposed developing hybrid predictive
models, implementing hybrid optimisation algorithms, and comprising other
media sentiments in the model development methodology for future work.
Undoubtedly, it is evident that the CNNs as a financial forecasting model in
regression analysis is considered one of the most potent techniques in academic
settings that consistently outperformed other state-of-the-art models, including
different ANNs, LSTMs, and fuzzy-based approaches (Kirisci & Cagcag Yolcu,
2022).

The studies above have yielded noteworthy achievements in forecasting finan-
cial markets. However, scholars have underscored the untapped potential for
exploration within the domain of time series models, like LSTM and GRU, in
Forex predictions. Renowned for their adeptness in capturing long-term de-
pendencies within time-series data, these models offer a promising avenue for
enhancing the accuracy of Forex forecasts. Likewise, within the Forex market
context, researchers have mainly highlighted the investigation of Modular Neu-
ral Networks (MNNs) as a unique approach, alongside the rising trend of NLP,
which has yet to be extensively explored in the forecast of price fluctuations
(Islam et al., 2020; Sezer et al., 2020). However, the challenge of developing
MNN architectures is that it can take time to design and train the individual
modules to lead to an effective combination in the final network decision; there-
fore, more research is needed to determine their effectiveness and practicality
in this field.

Regarding structural elements and parameters of models, it has been observed
that while dropout is widely employed in stock predictions, the utilisation of
Monte Carlo dropout (MCD) relevant to uncertainty quantification in Forex
predictions has been relatively limited in an effort to improve predictions.
MCD, utilising dropout during the inference phase, provides the model not
only a point estimate but also an estimate of uncertainty associated with each
prediction (Miok, Nguyen-Doan, Škrlj, Zaharie, & Robnik-Šikonja, 2019; Zhu &
Laptev, 2017). Hence, the MCD used has yet to be thoroughly investigated for
possible contributing to better Forex predictions. Additionally, non-orthogonal
weight initialisation methods are commonly used in stock prediction models.
However, the potential benefits of orthogonal weight initialisation methods
in addressing issues like the vanishing gradient problem and improving the
optimisation process in Forex prediction models have yet to be extensively
examined (Duan & Wang, 2016; Saxe, McClelland, & Ganguli, 2013).

Finally, Table 2.1 encapsulates the state-of-the-art models, highlighting research
gaps and future opportunities pertinent to this thesis. The overarching purpose
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is to contribute to advancing more accurate, robust, and adaptable models,
thereby enabling a potentially better understanding in anticipation of the in-
tricacies inherent in the Forex market, ultimately benefiting financial decision-
makers.

Table 2.1: Existing work in deep learning models and future research directions.

Authors Model Type Gaps and Future Research

Kanwal et al. (2022) BiCuDNNLSTM Hybrid Feature extraction from multivariate datasets
Lu et al. (2020) CNN–LSTM Hybrid Integration of emotional factors
Hossain et al. (2018) LSTM–GRU Hybrid Application in domains such as Forex
Alonso-Monsalve et al. (2020) CLSTM Hybrid Window size and network structure adjustment
Ajoku et al. (2021) EM EA Consider macroeconomic factors and news
Pokhrel et al. (2022) 2D-CNN Single Sentiment incorporation
Pokhrel et al. (2022) GRU Single Sentiment incorporation
Pokhrel et al. (2022) LSTM Single Sentiment incorporation
Islam et al. (2020) Various Various Investigation of modular architectures

2.7 Critical Analysis

The multidisciplinary review within this study, incorporating recent neuro-
science and financial market insights, underscores the ongoing need to enhance
machine and deep learning methods. It also highlights the importance of mod-
ular design as a solution to the challenges posed by monolithic architectures
(Islam et al., 2020). Monolithic neural networks often suffer from catastrophic
forgetting when learning new skills, altering their previously acquired knowl-
edge. This study advocates for neural networks inspired by the modular or-
ganisation of human and animal brains, capable of integrating new knowledge
without erasing existing knowledge—a fundamental consideration (Ellefsen,
Mouret, & Clune, 2015). In addition, the direction of examining investors’ sen-
timent combined with economic indicators like closing prices is a promising
trend requiring further investigation (Sezer et al., 2020).

In the realm of computational models, recent studies highlight the significance
of techniques like orthogonal initialisation and MCD, which improved the
performance of ANNs (Duan & Wang, 2016; Miok et al., 2019). These tech-
niques diverge from models relying solely on default weights and conventional
dropout methods frequently implied in exploring financial predictive models
from the literature, conceivably by enhancing predictive performance. Simul-
taneously, primary data plays a pivotal role in this research, offering a direct
path to its aim of forecasting the hourly closing price of EUR/GBP, which is
integral to financial analysis (Barcellos & Zamarro, 2021). These data, meticu-
lously gathered from Yahoo Finance (closing prices) and Twitter (sentiments)
APIs, seamlessly align with the study’s context (Nobata, Tetreault, Thomas,
Mehdad, & Chang, 2016; J. Yang & Counts, 2010). Beyond introducing and
comparing baseline models to optimally partition the data, these sources enable

61



2. Incorporating Rational Choice Theory With Neuroscience and AI Systems

a comprehensive assessment of state-of-the-art hybrid, ensemble and single
monolithic architectures selected from the literature, which were relevant to
this study’s aim and feasible for replication.

2.7.1 Baseline Models

The significance of baselines is crucial in this study as they were created to ad-
dress research gaps, such as the limited utilisation of MCD and the orthogonal
kernel initialisation, reducing overfitting and potentially enriching the Forex
market’s anticipation. These new models provide a starting point for further
analysis. They could help researchers identify areas for improvement as an
essential tool in designing possible more accurate predictive models discussed
further in Chapters 4 and 5. Moreover, baselines are vital for effectively parti-
tioning the input domain in the context of Forex predictions. This partitioning,
in turn, optimally allocates inputs, thereby enhancing task performance. This
importance is substantiated by primary research leveraging closing prices and
sentiment scores from Yahoo Finance and Twitter Streaming APIs as inputs ag-
gregated based on hourly rates within 2018–2019. Tables 2.2, 2.3, and 2.4 present
the test performance of the baseline models in anticipating the EUR/GBP hourly
closing price based on the MSE, MAE, and Mean Squared Logarithmic Error
(MSLE) objective evaluation metrics.

Table 2.2: Baseline models performance metrics in closing prices (CP) of EUR/GBP.

Model Variables Metrics Train Valid Test R2 Time Duration

CoRNNMCD CP MSE 6.7184× 10−5 6.2938× 10−5 5.8785× 10−5 0.99 2:30
MAE 0.00549 0.00538 0.00529
MSLE 3.1801× 10−5 2.79863× 10−5 2.6419× 10−5

CoRNN CP MSE 6.8642× 10−5 6.3699× 10−5 5.9447× 10−5 0.99 1:27
MAE 0.00551 0.00541 0.00532
MSLE 3.2413× 10−5 2.8352× 10−5 2.6773× 10−5

CoGRUMCD CP MSE 6.9541× 10−5 6.4196× 10−5 5.9700× 10−5 0.99 7:38
MAE 0.00551 0.00542 0.00532
MSLE 3.3150× 10−5 2.8718× 10−5 2.7013× 10−5

CoGRU CP MSE 6.9597× 10−5 6.4106× 10−5 5.9565× 10−5 0.99 3:59
MAE 0.00552 0.00541 0.00532
MSLE 3.3222× 10−5 2.8713× 10−5 2.6914× 10−5

1D-CNN CP MSE 0.00012 0.00011 0.00011 0.99 0:36
MAE 0.00763 0.00757 0.00747
MSLE 5.3941× 10−5 4.800× 10−5 4.6293× 10−5
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Table 2.3: Baseline models performance metrics in sentiment scores of EUR/GBP.

Model Variables Metrics Train Valid Test R2 Time Duration

CoRNNMCD Sentiment MSE 0.00079 0.00076 0.00067 0.62 2:21
MAE 0.01535 0.01512 0.01456
MSLE 0.00031 0.00027 0.00026

CoRNN Sentiment MSE 0.00077 0.00076 0.00066 0.63 1:24
MAE 0.01504 0.01489 0.01428
MSLE 0.00029 0.00027 0.00025

CoGRUMCD Sentiment MSE 0.00076 0.00074 0.00065 0.64 6:09
MAE 0.01465 0.01439 0.01394
MSLE 0.00029 0.00026 0.00024

CoGRU Sentiment MSE 0.00077 0.00075 0.00066 0.63 3:47
MAE 0.01497 0.01479 0.01418
MSLE 0.00030 0.00027 0.00025

1D-CNN Sentiment MSE 0.00085 0.00083 0.00073 0.61 0:36
MAE 0.01661 0.01644 0.01591
MSLE 0.00034 0.00031 0.00028

Table 2.4: Baseline models performance metrics in closing prices in CRNN and sentiment
scores in CGRU of EUR/GBP.

Model Variables Metrics Train Valid Test R2 Time Duration

CRNN CP MSE 6.8795× 10−5 6.4113× 10−5 5.9921× 10−5 0.99 1:42
MAE 0.00530 0.00544 0.00535
MSLE 3.2451× 10−5 2.8487× 10−5 2.6988× 10−5

CGRU Sentiment MSE 0.00079 0.00076 0.00068 0.63 3:10
MAE 0.01577 0.01545 0.01519
MSLE 0.00030 0.00027 0.00026

The CoRNNMCD and the CoGRUMCD performed better than the other base-
line models in Tables 2.2 and 2.3, presenting less error in the MSE, MAE, and
MSLE test sets for the closing prices and sentiment scores, respectively. More-
over, these two baselines will be used to develop the proposed Modular Neu-
ral Network model. For instance, CoRNNMCD in closing prices (Table 2.2)
demonstrated fewer errors in the test sets, decreasing the MSE by 1.12%, 1.54%,
1.32%, and 60.68% for the CoRNN, CoGRUMCD, CoGRU, and 1D–CNN, re-
spectively. Likewise, sentiment scores (Table 2.3) presented better arrangement
in CoGRUMCD with fewer errors in test sets by decreasing the MSE by 3%,
1.52%, 1.52%, and 11.59% for the CoRNNMCD, CoRNN, CoGRU, and 1D–CNN,
respectively. The typical 1D-CNNs did not employ the orthogonal RNNs cou-
pled with MCD instead of pooling layers and were used as a baseline, showing
less execution time in closing prices and sentiments. However, 1D–CNNs MSE
was significantly higher than the other baselines and performed worse. Also, it
has been observed that using MCD could increase baseline computational time.
Nevertheless, the MCD application significantly improved performance in the
selected baselines.
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All representatives’ R-squared in Table 2.2 was high (R2), meaning the models
can fit well with the datasets. However, in Tables 2.3 and 2.4 for the CGRU,
the models’ more moderate R2 value has been observed. On the other hand, a
high R-squared does not mean a correlation with objective evaluations such
as the MSE, which can be very useful for comparing the models to provide a
more comprehensive evaluation of the predictions. Finally, Table 2.4 shows that
the best-performed CoRNNMCD and CoGRUMCD significantly outperformed
the convolutional RNN (CRNN) and convolutional GRU (CGRU), presenting
1.92% and 4.5% lower MSE in the test set. These results prove the efficiency
of the suggested adaptive mechanism of this thesis, consisting of MCD and
orthogonal kernel initialisation against the models that did not imply it, like
the CRNN and CGRU.

2.7.2 Hybrid and Ensemble Benchmark Models

The choice of hybrid algorithms for this study prioritised adopting the most
current, reputable, and state-of-the-art techniques available, which can be repli-
cated as well, according to the provided information by the authors. This
focus on the most recent and state-of-the-art models ensures that the study is
grounded in the latest developments and contributes to advancing understand-
ing in the forecast of hourly EUR/GBP price fluctuations.

Table 2.5 shows that the CNN–LSTM performed better than the other models,
presenting more inconsequential errors in the MSE, MAE, and MSLE test sets.

Table 2.5: Hybrid models’ performance metrics receive closing prices and sentiment scores of
EUR/GBP.

Model Metrics Train Valid Test R2 Time Duration

BiCuDNNLSTM MSE 0.00013 0.00015 0.00015 0.99 1:19
MAE 0.00848 0.00874 0.00866
MSLE 6.4001× 10−5 6.6003× 10−5 6.9725× 10−5

CNN-LSTM MSE 6.4471× 10−5 5.9427× 10−5 7.005× 10−5 0.99 1:41
MAE 0.00538 0.00536 0.00552
MSLE 3.0273× 10−5 2.6574× 10−5 3.2089× 10−5

LSTM-GRU MSE 0.00017 0.00014 0.00014 0.99 3:03
MAE 0.00935 0.00901 0.00887
MSLE 7.8049× 10−5 6.3934× 10−5 6.4782× 10−5

CLSTM MSE 0.00501 0.00514 0.00507 0.79 2:18
MAE 0.05722 0.05764 0.05743
MSLE 0.00229 0.00231 0.00234

Ensemble MSE 0.00325 0.00337 0.00320 -0.48 0:22
MAE 0.03716 0.03761 0.03665
MSLE 0.00149 0.00152 0.00146

For example, CNN–LSTM demonstrated fewer errors in the test sets, decreasing
the MSE by 72.66%, 66.61%, 194.55%, and 191.43% for the BiCuDNNLSTM,
LSTM–GRU, CLSTM, and ensemble learning respectively. The ensemble learn-
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ing approach presented less execution time due to the less intricate architecture
of the ANNs, but its MSE was significantly higher than the CNN–LSTM. It is
worth mentioning that the BiCuDNNLSTM is running in GPU based on CUDA
utilisation, which can boost the speed of training time of deep learning models.
Moreover, factors such as the time steps of each hybrid model can affect its
execution time, as discussed in Chapter 5. Finally, the hybrid models presented
a high R2, with the CLSTM showing a moderate R2 value and the ensemble
learning technique showing a negative R2. The negative R2 could indicate a
fundamental flaw in the chosen ensemble learning or between the ensemble
model and the underlying structure of the data.

2.7.3 Single Benchmark Models

Likewise, the choice of algorithms for this study strongly emphasised select-
ing the most recent single methods employed for the possible hourly price
fluctuation forecast in the EUR/GBP.

Table 2.6 revealed that the GRU performed better than the other models, pre-
senting less error in the MSE, MAE, and MSLE test sets.

Table 2.6: Single models’ performance metrics receive closing prices and sentiment scores of
EUR/GBP.

Model Metrics Train Valid Test R2 Time Duration

2D-CNN MSE 0.00012 0.00011 0.00012 0.99 0:51
MAE 0.00760 0.00746 0.00765
MSLE 5.3407× 10−5 4.8839× 10−5 5.9233× 10−5

GRU MSE 8.7491× 10−5 7.8116× 10−5 9.1750× 10−5 0.99 0:47
MAE 0.00628 0.00595 0.00614
MSLE 4.0481× 10−5 3.5261× 10−5 4.5704× 10−5

LSTM MSE 0.00732 0.00723 0.00736 0.77 0:10
MAE 0.04911 0.04911 0.04922
MSLE 0.00334 0.00327 0.00338

For instance, GRU exhibited fewer errors in the test sets, decreasing the MSE by
26.68% and 195.01% for the 2D–CNN and LSTM, respectively. LSTM presented
less execution time, implying 30 neurons and an Adam optimiser that can
obtain a faster convergence rate. However, the MSE of LSTM was considerably
higher than the GRU. The single models also presented a high R2, with the
LSTM presenting a more moderate R2 value.

2.7.4 Discussion

This chapter explored the integration of RCT modelling with contemporary
neuroscience insights and possible simulation by AI systems, specifically within
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the intricate domain of financial predictions in the Forex market. Moreover, the
critical scrutiny of computational models influencing financial landscapes lays
a robust groundwork, elucidating the intricate interplay among RCT, neuro-
science, and AI systems. Within this comprehensive exploration, the analysis
identified pivotal research gaps in Forex prediction. A compelling imperative
emerges for investigating modular neural network architectures, addressing the
underutilisation of Monte Carlo dropout and orthogonal weight initialisation
methods.

On the other hand, to strategically overcome challenges arising from limited
data in Forex predictions, the thesis proposes techniques such as partial transfer
learning to fortify generalisation performance amidst data scarcity. Significantly,
this goes beyond establishing benchmarks; the goal is the genuine enhancement
of generalisation performance in ANNs. As proposed in forthcoming chapters
(Chapter 4 and Chapter 5), the deliberate use of insights from the proposed
bio-inspired modular ANN is envisioned to catapult predictive capabilities
beyond those afforded by a simpler modular ANN, which lacks the enriching
insights of the advanced model. It is important to note that transfer learning
is a pivotal component of this thesis; it is not used solely as a benchmark but
as an integral element amplifying the thesis’s contribution to advancements in
financial predictions.

The subsequent chapter will thoroughly examine the computational properties
inherent in neural networks, emphasising specific architectural considerations
relevant to Forex prediction. This in-depth study spans the intricacies of Monte
Carlo dropout, orthogonality, and pertinent optimisers, culminating in a com-
prehensive framework that addresses the identified research gaps and propels
the field of Forex prediction models into new realms of sophistication.

Simultaneously, informed by the review of bio-inspired models, this thesis
strategically incorporates highly effective models such as CNN and RNNs. This
selection establishes a foundation for further exploration of novel models in
the financial domain proposed in Chapter 4. As an additional purpose, the
application and potential impact of transfer learning in enhancing the models’
predictive capabilities receiving less data in another similar task in the Forex
market could enrich the discourse on financial modelling.
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3. Computational Properties of
Neural Networks

This chapter will examine the computational foundation properties of neural
networks, including their architecture. Furthermore, it will delve into the
specific computational properties of Monte Carlo dropout and orthogonal
weight initialisation methods. These techniques have shown promise in various
domains and have the potential to significantly enhance the performance of
neural network models in Forex prediction. In addition to Monte Carlo dropout
and orthogonal weight initialisation, different optimisation algorithms are
explored in training neural networks.

3.1 ANN Architecture

An ANN is a feedforward artificial neural network of multiple layers of in-
terconnected neurons. The equation for a primary ANN network is denoted
as,

y = f

(
n

∑
i=1

wixi + b

)
, (3.1)

where y is the outcome of the neural network, f is the activation function (e.g.,
sigmoid, ReLU), wi is the weight for the input xi, and b is the bias term. 3.1
represents a single neuron in the network. An artificial neural network would
have multiple layers of neurons, each with weights and biases. The outcome of
one layer is utilised as the input for the next layer.

Another version with more layers of the ANN or a Multilayer Perceptron (MLP)
can be represented by:

y = fl

(
fl−1

(
. . . f2

(
f1

(
n

∑
i=1

w1ixi + b1

))
. . .

))
, (3.2)

where, l is the number of layers, fi is the activation function for the -th layer, wi

is the weight for the input xi, and bi is the bias term for the -th layer.

3.2 represents the output of the ANN network, a function of multiple layers
of neurons with different activation functions, weights, and biases. In the
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following sections of this chapter, different types of ANN such as CNNs and
RNNs will be discussed.

3.2 CNN Architecture

CNN is a type of ANN for processing data with a grid pattern, such as images,
inspired by the organization of animal visual cortex (Fukushima, 1980). CNN is
commonly employed for image and video processing tasks, but it can also be
used for processing time series data. A convolutional layer applies 1D filters
to the input data. Each filter is a small 1D window that slides over the input
data and performs a dot product operation between the filter and the portion of
the input data the filter is currently "looking at." The result of this dot product
operation is called convolution. Mathematically, the convolution between a 1D
filter "w" of length "k" and an input signal "x" of length "n" can be represented
as:

(x ∗ w)[i] =
k

∑
j=1

x[i + j]w[j] (3.3)

Where * denotes the convolution operation, the output is represented by (x * w),
and i, j is the multiplied element’s index.

After the convolution, a bias term b is added to each element of the convolution
computed as:

y[i] = f ((x ∗ w)[i] + b) (3.4)

Where f is the activation function, in this case, it could be ReLU, for example,
which is illustrated as:

(x) = max(0, x) (3.5)

A max-pooling layer is then typically applied to the convolutional layer’s output
to reduce the data’s spatial dimensions and make the network more invariant
to small translations of the input data. The max pooling layer can be defined as
follows:

y[i] =
k−1

max
j=0

x[i× s + j] (3.6)

Here, x is the input time series, y is the output time series, i is the output index,
and k is the size of the pooling window or the ’pool size’. The operator max
returns the maximum value within the pooling window of size k at the i-th
position.

68



3. Computational Properties of Neural Networks

After the max pooling, the output of the pooling layer is flattening and can be
given as :

y[i] = f latten(x[i, j)] (3.7)

Where x is the input, which is the output of the convolutional layer or max
pooling operation, and y is the flattened output.

Finally, to generate the network’s output, the dense layer’s output is passed
through a softmax activation function, which converts the output of the dense
layer into a probability distribution over the possible classes. Then, for a dense
layer, the output can be represented mathematically as:

y = f (Wyx + b) (3.8)

Where x The flattening output is used as input to the dense layer, Wy is the
weight matrix, b is the bias term, and f is the activation function. A typical CNN
architecture for time series consists of a one-dimensional convolutional layer, a
polling layer flattened to a dense layer, which is illustrated in Figure 3.1.

CNN pseudocode can be described as follows:

Algorithm 1 CNN

1: procedure CNN(input: x, filter: w, bias: b, pool size: k, stride: s, weight:
Wy)

2: Convolutional Layer:
3: for i = 1 to n− k + 1 do
4: y[i]← 0
5: for j = 1 to k do
6: y[i] += x[i + j] · w[j]
7: end for
8: y[i] += b
9: y[i]← max(0, y[i])

10: end for
11: Max Pooling Layer:
12: for i = 0 to

⌊n
s
⌋
− 1 do

13: y[i]← maxk−1
j=0 x[i · s + j]

14: end for
15: Flatten Layer:
16: y← flatten(x)
17: Dense Layer:
18: y← softmax(Wy · x + b)
19: end procedure
20: CNN(x, w, b, k, s, Wy)
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Figure 3.1: CNN Architecture.

3.3 Simple RNN Architecture

An RNN is a neural network well-suited for application in sequential data, such
as time series or natural language. An RNN is a set of hidden units that process
input data and maintain a state, or memory, that captures information about
the past (Hochreiter, 1991). A vector h represents the state of the RNN at any
given time step.

At each time step t, the RNN processes an input xt and updates its hidden state
ht using the following equations:

ht = tanh(Whhht−1 + Wxhxt + bh) (3.9)

Here, ht is the hidden state at time step t, ht−1 is the hidden state at the previous
time step, xt is the input at time step t, Whh, Wxh are weight matrices, and bh is
a bias term.

The output of the RNN at time steps t:

yt = softmax(Whyht + by) (3.10)

Here, yt is the output at time step t, ht is the hidden state at time step t, Why is a
weight matrix, and by is a bias term. RNN is illustrated in Figure 3.2.

70



3. Computational Properties of Neural Networks

RNN pseudocode can be described as follows:

Algorithm 2 RNN

1: procedure RNN
2: initialize h0
3: for each time step t do
4: ht = tanh(Whhht−1 + Wxhxt + bh)
5: yt = softmax(Whyht + by)

6: end for
7: end procedure

tahn

Figure 3.2: RNN Architecture.

To train the RNN, we use backpropagation through time (BPTT), which involves
unrolling the RNN in time and applying the chain rule to compute the gradient
of the loss function regarding the parameters of the model given as:

∂L
∂p

=
T

∑
t=1

∂L
∂yt

∂yt

∂p
(3.11)

Here, L is the loss function, and ∂L
∂yt

is the gradient of the loss function concerning
the output at time step t. The gradient of the output at time step t for the model
parameter p can be computed using the chain rule as follows:

∂yt

∂p
=

∂yt

∂ht

∂ht

∂p
(3.12)
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The gradient of the hidden state at time steps t concerning the model parameter
p can be calculated employing the chain rule as follows:

∂ht

∂p
=

∂ht

∂ht−1

∂ht−1

∂p
(3.13)

If the gradients of the weights in the network become very small or "vanish" as
they are backpropagated through many time steps, it can make it challenging
for the network to learn effectively. This problem is known as the vanishing
issue. The vanishing issue can occur if the gradients of the hidden states
concerning the previous hidden states are small, i.e., ∂ht

∂ht−1
≈ 0. For example,

this can happen if the activation function used in the network, such as the
hyperbolic tangent function, has small gradients when the input is significant
in magnitude. To address the vanishing gradients problem, several techniques
have been developed, such as using a different type of activation function (e.g.,
ReLU), using a different type of RNN architecture (e.g., LSTM or GRU), or using
more advanced optimisation algorithms (e.g., Adam).

3.3.1 LSTM Architecture

An LSTM, is an RNN capable of learning long-term dependencies in data
(Hochreiter & Schmidhuber, 1997). This capability is in contrast to traditional
RNNs, which need help learning long-term dependencies due to the problem
of vanishing gradients.

LSTMs achieve this by introducing a few additional mechanisms to the tradi-
tional RNN architecture. These include an input gate, an output gate, and a
forget gate. The input gate controls data flow into the LSTM cell, the output gate
controls data flow out of the cell, and the forget gate controls which information
to discard from the cell state. The equations for the LSTM are given below:

Input gate:
it = σ(Wi[ht−1, xt] + bi) (3.14)

Forget gate:
ft = σ(W f [ht−1, xt] + b f ) (3.15)

Output gate:
ot = σ(Wo[ht− 1, xt] + bo) (3.16)

Cell input:
C̃t = tanh(WC[ht− 1, xt] + bC) (3.17)
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Cell state:
Ct = ft ⊙ Ct−1 + it ⊙ C̃t (3.18)

Hidden state:
ht = ot ⊙ tanh(Ct) (3.19)

Where: ht is the hidden state at time t, xt is the input at period t, ft, it and ot are
the forget, input, and output gates, respectively. C̃t is the candidate cell state,
Ct is the cell state at time t, W f , Wi, WC, Wo are weight matrices and b f , bi, bC,
bo are bias vectors. LSTM is displayed in Figure 3.3.

LSTM pseudocode can be described as follows:

Algorithm 3 LSTM

1: procedure LSTM
2: initialize C0, h0
3: for each time step t do
4: ft = σ(W f [ht−1, xt] + b f )

5: it = σ(Wi[ht−1, xt] + bi)
6: C̃t = tanh(WC[ht− 1, xt] + bC)
7: Ct = ft ⊙ Ct−1 + it ⊙ C̃t
8: ot = σ(Wo[ht− 1, xt] + bo)
9: ht = ot ⊙ tanh(Ct)

10: end for
11: end procedure

tanh

tanh

Figure 3.3: LSTM Architecture.

73



3. Computational Properties of Neural Networks

3.3.2 GRU Architecture

The GRU is a type of RNN architecture (Cho et al., 2014). Like other RNNs, a
GRU processes sequential input data by iteratively updating a hidden state,
allowing it to make decisions based on the entire history of the input seen so
far. However, unlike traditional RNNs, which use a simple update function to
combine the previous hidden state with the current input, GRUs use a more
complex gating mechanism to control the flow of information through the
hidden state. Two gates control the update process in a GRU: the "reset gate,"
denoted by r, and the "update gate," represented by z. These gates are operated
to decide how much of the previous hidden state, indicated by ht−1, should be
used in the update process and how much of the current input, denoted by xt,
should be used to update the hidden state at the current timestep, indicated by
ht.

The reset gate and update gate are calculated as follows:

rt = σ(Wr[ht−1, xt] + br) (3.20)

zt = σ(Wz[ht−1, xt] + bz) (3.21)

h̃t = tanh(Wh[rt ⊙ ht− 1, xt] + bh) (3.22)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (3.23)

Where: ht is the hidden state at time t, xt is the intake at time t, rt and zt are the
reset and update gates, respectively. h̃t is the candidate hidden state, Wr, Wz,
Wh are weight matrices, br, bz, bh are bias vectors. Figure 3.4 shows the GRU.

GRU pseudocode can be described as follows:

Algorithm 4 GRU

1: procedure GRU
2: initialize h0
3: for each time step t do
4: rt = σ(Wr[ht−1, xt] + br)
5: zt = σ(Wz[ht−1, xt] + bz)
6: h̃t = tanh(Wh[rt ⊙ ht− 1, xt] + bh)
7: ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t
8: end for
9: end procedure
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tanh

1 -

Figure 3.4: GRU Architecture.

3.4 Orthogonal Initialization

In orthogonal kernel initialisation, the input weight matrix is initialised with
an orthogonal matrix O, a square matrix whose columns are orthogonal unit
vectors. This process ensures that the input to the RNN or GRU is appropriately
scaled and decorrelated, aiding in training and improving performance. The
theorem of the orthogonal matrix can be stated as follows:

Let W be the weight matrix initialised with an orthogonal matrix O. The goal is
to show that the matrix O preserves the orthogonality of W.

The orthogonality of a matrix W can be defined as:

WTW = I (3.24)

If we initialise W with an orthogonal matrix O, we have:

W = O×U (3.25)

where U is a learned matrix.

Then, compute the transpose of W as:

WT = (O×U)T = UTOT = UTO−1 (3.26)

since O is orthogonal, its inverse is its transpose.

Substituting WT in the orthogonality definition in Equation 3.24, getting:

WTW = (UTO−1)(O×U) = UTU = I (3.27)
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Therefore:
WTW = I, (3.28)

which shows that the matrix O preserves the orthogonality of the weight matrix
W.

Orthogonal matrices have some valuable properties, such as preserving the
vector’s magnitude and the angle between the vectors; this is why it is helpful
in RNNs to avoid issues such as vanishing problems.

3.5 Bayesian Decision Theory in Finance

Bayesian decision theory is a formal and mathematical framework used to
model decision-making in uncertain situations. It is based on maximising ex-
pected utility, which involves considering the probabilities of different outcomes
and their associated utility to determine the best course of action.

In finance, Bayesian decision theory finds applications in various areas, such as
investment decision-making, valuation of financial assets, and risk modelling.
It is beneficial when limited information is available, or outcomes are uncertain.
A fundamental equation in Bayesian decision theory is the expected utility
equation, which calculates the expected value of an action. It is represented as:

E[U] =
n

∑
i=1

P(xi)u(xi) (3.29)

In 3.29, E[U] represents the expected utility, P(xi) denotes the probability of
outcome xi, and u(xi) represents the utility associated with outcome xi. By
summing up the products of the probabilities and utilities for each possible
outcome, we obtain the expected utility, which measures an action’s overall
value or desirability.

Another important equation in Bayesian decision theory is Bayes’ rule, which
updates the probabilities of different outcomes based on new information. It
can be expressed as:

P(A|B) = P(B|A)P(A)

P(B)
(3.30)

Here, P(A|B) denotes the posterior probability of event A given the occurrence
of event B. P(B|A) represents the likelihood of event B given event A. P(A)

and P(B) direct to the prior probabilities of events A and B, respectively. Bayes’
rule allows us to incorporate new evidence or information to update our beliefs
about the probabilities of different events.

Bayesian decision theory has numerous applications in finance, as already men-
tioned, including portfolio optimisation, option pricing, and risk management.
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By utilising Bayesian methods, decision-makers can make more informed in-
vestment decisions, gain insights into the valuation of financial instruments, and
effectively assess and manage financial risk. In an overview, Bayes’ rule allows
for quantifying probabilities and utilities, enabling better-informed decisions
and improved understanding and management of financial risk.

Bayesian Model Uncertainty

To perform parameter inference in a time series dataset with inputs denoted
as x = [x1, . . . , xr] and corresponding outputs of the regressor N denoted as
N = [N1, . . . , Nr], we can utilise Bayes’ theorem as follows:

P(ω|x, N) =
P(N|x, ω)P(ω)

P(N|x) (3.31)

In 3.31 the:

• P(ω|x, N) represents the posterior probability distribution of the parame-
ters ω given the observed inputs x and regressor outputs N. It quantifies
our updated knowledge about the parameters after incorporating the
observed data.

• P(N|x, ω) is the likelihood function, which captures the probability of
observing the regressor outputs N given the inputs x and the parameters
ω. It reflects how well the parameters explain the observed data.

• P(ω) represents the prior probability distribution, which captures our
initial beliefs about the parameters ω before observing any data. It pro-
vides a way to incorporate existing knowledge or assumptions about the
parameter values.

The denominator P(N|x) is a normalising constant to ensure the posterior
distribution is a valid probability density function. To evaluate the integral
in the denominator denoted as

∫
P(N|x, ω)P(ω)dω, represents the marginal

likelihood of the observed data given the inputs, the marginal likelihood can
rewrite as:

P(N|x) =
∫

P(N|x, ω)P(ω)dω (3.32)

This integral sums up the likelihood of the data for each possible parameter
value weighted by the prior probability distribution. It measures how well the
parameters explain the observed data, considering all possible parameter values.
By dividing the likelihood P(N|x, ω) by the marginal likelihood P(N|x), we
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can obtain the normalised posterior probability distribution P(ω|x, N). Mathe-
matically, this can be expressed as:

P(ω|x, N) =
P(N|x, ω)P(ω)∫
P(N|x, ω)P(ω)dω

(3.33)

The numerator P(N|x, ω)P(ω) represents the joint probability of observing the
data and the parameters. The normalised posterior distribution is obtained by
dividing it by the marginal likelihood P(N|x). This normalisation ensures that
the posterior distribution integrates to 1 for a valid probability density function
meaning that the probabilities assigned by the distribution cover all possible
outcomes and follow the rules of probability. Mathematically, this condition
can be expressed as:

∫
P(ω|x, N)dω = 1 (3.34)

Furthermore, it allows us to make inferences about the parameters ω based on
the observed data, accounting for our prior beliefs and the likelihood of the
data given different parameter values.

The above equations provide a rigorous framework for incorporating prior
beliefs, the likelihood of the data, and normalisation to estimate the posterior
distribution and make informed inferences about the parameters in light of the
observed data.

In computational finance, Bayesian Decision Theory can be effectively com-
bined with Monte Carlo dropout to tackle various decision problems. MCD
comes into play by generating samples from the posterior distribution and
approximating the updated beliefs after incorporating the observed data. This
integrated approach allows financial practitioners to make informed decisions,
quantify uncertainties, and assess the expected utility of various outcomes, fa-
cilitating risk management, asset allocation, option pricing, and other financial
applications. Below MCD is presented.

Monte Carlo Dropout

In MCD, introduced by Gal and Ghahramani (2016), dropout randomly sets
a fraction of neurons to zero during training, effectively removing them from
the network. This process creates a set of different models, each with a unique
configuration of active neurons.

Let us consider the goal of estimating the model’s predictive distribution, which
represents the uncertainty in the model’s predictions. The predictive distri-
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bution is p(y|x, θ), where y is the target variable, x is the input data, and θ

represents the model parameters.

Each model can be viewed as a different network instantiation with a specific
set of active neurons. To approximate the predictive distribution p(y|x, θ), we
can treat these ft(x) values as samples from that distribution. For example,
let us denote the t-th model as ft(x), set of predictions f1(x), f2(x), . . . , fT(x)
obtained from multiple forwards passes with dropout enabled representing the
prediction made by that model. To compute the expected prediction over the
ensemble of models to estimate the predictive distribution that can be expressed
as:

E[ f (x)] =
∫

f (x)p( f |x)d f , (3.35)

where E[·] denotes the expectation, p( f |x) is the distribution of models given
the input x, and d f represents the measure over the space of models. In MCD,
approximate this integral by sampling from the distribution of models p( f |x)
using dropout. Each sampled model provides a prediction ft(x) based on a
particular configuration of active neurons.

By averaging the predictions from these samples, we can estimate the expected
prediction:

ŷ =
1
T

T

∑
t=1

ft(x) (3.36)

In the above equation, sum the predictions from all T models, represented by
ft(x), from t = 1 to T. Then, diverge the sum by the number of samples T to
obtain the average prediction ŷ.

In summary, the equation ŷ = 1
T ∑T

t=1 ft(x) is a valid approximation of the
expected prediction in MCD. By averaging the predictions from multiple models
sampled using MCD, the estimation of the predictive distribution, obtain a more
accurate prediction, and assess the model’s uncertainty.

One of the key advantages of employing Monte Carlo Dropout is its capability to
measure model uncertainty, identify anomalous data points and facilitate more
informed decision-making in critical systems. Therefore, this thesis applies
the MCD in the proposed MCoRNNMCD-ANN, as presented in Chapter 4,
to improve the model’s performance. However, despite its potential benefits,
certain limitations are associated with implementing Monte Carlo Dropout in
time series prediction.
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3.6 Gradient and Optimizers

The gradient measures the shift in all weights concerning the change in error.
Assuming Wh is the weight of a node k in a neural network, then the update
rule for adjusting the weight Whk of Whk is calculated as,

Whk ←Whk − n
∂εt

∂Whk
, (3.37)

The weight is updated by subtracting a learning rate n multiplied by the partial
derivative of the error εt for the weight Whk. The learning rate is a crucial
part of the training process of neural networks. In this section, the most com-
mon optimizers that are used in machine and deep learning will be presented
(Goodfellow, Bengio, & Courville, 2016).

Stochastic Gradient Descent (SGD)

The stochastic gradient descent algorithm avoids the need for redundant cal-
culations as it updates the parameters for each iteration in a dataset. For this
reason, convening is faster and can also be used for online learning. However,
in SGD, frequent parameter updates have a hefty price dispersion, resulting in
fluctuations in the loss function. This phenomenon can lead the algorithm to
converge to other and potentially better local minima, in contrast to the gradient
descent algorithm that always converges to the same minimum.

In this thesis, the defining mean square error function is given as

Q(w) =
1
T
T
∑
i=1

(yi − ŷi)
2 =

1
T
T
∑
i=1
Qi(w), (3.38)

which calculates the average squared difference between the actual outputs yi

and the predicted outputs ŷi for a set of T training data examples. The function
can be represented as the sum of individual losses Qi(w) divided by T .

The gradient descent update rule for adjusting a model’s parameter vector w,
calculated as,

wt+1 = wt − nt∇Q(wt). (3.39)

The parameter vector is updated by subtracting a learning rate nt multiplied by
the gradient ∇Q(wt) of the loss function Q concerning the parameters at time
t.
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The full gradient of the loss is calculated as

∇Q(w) =
1
T
T
∑
i=1
∇Qi(w), (3.40)

where the full gradient of the loss function Q(w), which is the average of the
gradients ∇Qi(w) of individual losses Qi(w) for each training example.

The stochastic gradient descent is given as,

∇Q(w) =
1
|b| ∑

v∈|b|
∇Qi(w), (3.41)

where the gradient∇Q(w) is calculated as the average of the gradients∇Qi(w)

of a randomly selected batch of training examples, denoted by b.

The update rule for stochastic gradient descent is denoted as,

wt+1 = wt − nt
1
|b| ∑

v∈|b|
∇Qi(w), (3.42)

where the parameter vector w is updated by subtracting a learning rate nt

multiplied by the average of the gradients ∇Qi(w) over a batch of training
examples.

Momentum

The Gradient Descent algorithm can not deal with surfaces with sharp curves
in a common dimension near local minima. The algorithm oscillates between
the slopes in these cases, making little progress towards the local optima. Mo-
mentum is solving this problem, as it is a method that accelerates convergence
in one direction and, at the same time, reduces oscillation, calculated as,

zt = γzt−1 + n∇Q(w), (3.43)

w = w− zt (3.44)

. The variable zt represents the update vector that accumulates the previous
update multiplied by a momentum term γ, and the current gradient ∇Q(w)

multiplied by the learning rate n. The parameter vector w is then updated by
subtracting the update vector zt.
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Adaptive Gradient Algorithm (Adagrad)

Adagrad algorithm is a gradient-based optimisation algorithm that alters the
learning rate for each parameter, and its use is suitable for sparse data. Adagrad
algorithm has been found to improve the robustness of the Gradient Descent
algorithm. Let Gt, i represent the partial derivative (gradient) of the objective
function Qi(w) concerning the parameter w at time step t. This derivative
represents the rate of change of the objective function concerning the parameter
calculated as

Gt,i = ∇Qi(w). (3.45)

The update of each parameter wi every time t is given as,

wt+1,i = wt,i − nGt,i, (3.46)

The parameter is updated by subtracting the learning rate n multiplied by the
gradient Gt,i. The Adagrad algorithm introduces an adaptive learning rate
adjustment calculated as

wt+1 = wt,i −
n√

St,ii + E
Gt,i. (3.47)

The learning rate n for each parameter wi at time step t is modified based
on the previous gradients calculated for wi. The denominator

√
St,ii + E is a

scaling factor that normalises the learning rate. St is a diagonal matrix of size
D× D where each diagonal element St,ii represents the sum of the squares of
the gradients wi up to time step t. The term E is a small constant (smoothing
term) added to avoid division by zero. The above equation can be reduced to a
product of arrays, calculated as

wt+1 = wt −
n√

St + E
⊙ Gt. (3.48)

Moreover, it represents the update of the parameter vector w as a whole
rather than updating individual parameters separately. The ⊙ symbol denotes
element-wise multiplication. Here, the learning rate adjustment is applied to
the entire parameter vector by element-wise multiplying it with the normalised
gradient vector Gt.

Adadelta

The Adadelta algorithm is an elongation of the Adagrad that fixes the monotonous
reduction in the learning rate. Instead of accumulating the summary of all the
previous squares of the gradients, the Adadelta algorithm limits the summary
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to a window of length w. For a window w, the algorithm retrospectively
calculates the summary of the gradients as an average of all previous gradients.

Let a time step t the average of the gradients is E , depending by a fraction γ on
the average of the previous ones, and by the same degree it has in the specific t,
calculated as,

E [G2]t = γE [G2]t−1 + (1− γ)G2
t , (3.49)

and for the update vector ∆wt calculated as,

∆wt = −n⊙ Gt, (3.50)

wt+1 = wt + ∆wt. (3.51)

By placing the updated vector ∆wt is calculated by multiplying the learning
rate n with the gradient Gt divided by the square root of the average squared
gradients plus a small constant E, we have, respectively,

∆wt = −
n√

St + E
⊙ Gt. (3.52)

The parameter vector w is updated by adding the update vector ∆wt denoted
as,

∆wt = −
n√

E [G2]t + E
Gt. (3.53)

The variable E [G2]t represents the exponentially decaying average of the squared
gradients.

RMSProp

RMSProp is similar to Adadelta and is the same as the first update vector of
the Adadelta algorithm. By setting γ to a similar value as the momentum term,
around 0.9, we have

E [G2]t = 0.9E [G2]t−1 + 0.1G2
t , (3.54)

where, E [G2]t represents the exponentially weighted moving average (EWMA)
of the squared gradients G2t. The EWMA is calculated by taking a weighted
sum of the previous average E [G2]t− 1 (weighted by 0.9) and the squared
gradient G2t (weighted by 0.1). This average estimates the second moment
(variance) of the gradients. The update rule for the parameter vector w at time
step t is calculated as,

wt+1 = wt −
n√

E [G2]t + E
Gt. (3.55)

83



3. Computational Properties of Neural Networks

The parameter is updated by subtracting the learning rate n multiplied by the
gradient Gt divided by the square root of the average squared gradients E [G2]t
plus a small constant E.

Adaptive Moment Estimation (Adam)

Adam similarly RMSprop, and Adadelta store the average of previous square
gradients. The average of the gradients and the average squares of the gradients
derived from the previous iterations are given by the equations 3.56, and 3.57:

zt = β1zt−1 + (1− β1)Gt, (3.56)

where zt represents the exponentially decaying average (first moment) of the
gradients Gt. It is similar to the momentum term and is calculated by taking
a weighted sum of the previous average zt−1 (weighted by β1) and the cur-
rent gradient Gt (weighted by 1− β1). This average captures the tendency or
direction of the gradients.

qt = β2qt−1 + (1− β2)G2
t , (3.57)

where qt represents the exponentially decaying average (second moment) of
the squared gradients G2

t . It is calculated similarly to zt but with the squared
gradients instead. This average provides an estimate of the variance of the
gradients.

The bias-corrected estimate ẑt of the first moment by dividing zt by the bias-
correction factor 1 − βt

1. The bias-correction factor adjusts the estimate to
account for the initialisation bias in the first few time steps, calculated as,

ẑt =
zt

1− βt
1

, (3.58)

The bias-corrected estimate q̂t of the second moment by dividing qt by the
bias-correction factor 1− βt

2. Similar to equation 3.58, this correction factor
accounts for the initialisation bias in the first few time steps, calculated as,

q̂t =
qt

1− βt
2

. (3.59)

The parameters β1 and β2 control the decay rates for the first and second
moments, respectively. They are typically set to values close to 1, such as 0.9
and 0.999, to emphasise recent and squared gradients more.
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The update rule for the parameter vector w at time step t., is given as,

wt+1 = wt − n
ẑt√

q̂t + E
. (3.60)

The parameter is updated by subtracting the learning rate n multiplied by
the bias-corrected average gradient ẑt divided by the square root of the bias-
corrected average squared gradient q̂t plus a small constant E. The division by
the square root of q̂t acts as an adaptive learning rate based on the computation
of the variance of the gradients.

This chapter has provided a comprehensive exploration of the computational
properties of neural networks by examining their fundamental computational
properties, including their architecture. This foundation allowed us to grasp
the core principles that enable neural networks to process and transform input
data and learn from examples. Furthermore, the computational properties
of Monte Carlo dropout and orthogonal weight initialisation methods were
examined. These techniques have shown promise in enhancing the performance
and reliability of neural network models in various domains. By incorporating
these methods, we could improve prediction accuracy, quantify uncertainty, and
optimise the proposed modelling process. Additionally, different optimisation
algorithms are utilised in training neural networks. In the next chapter, the
proposed model is introduced.
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4. Proposed Novel Bio-inspired
Model Architecture For Forex
Market Predictions

This study proposes a novel bio-inspired Modular Convolutional orthogonal
Recurrent MCD–ANN (MCoRNNMCD–ANN), aiming to encounter the limi-
tations of the current monolithic architectures presented in the literature. The
proposed modular network incorporates a new CNN architecture to address
catastrophic forgetting, overfitting, vanishing and exploding gradient problems,
and underspecification (Alzubaidi et al., 2021). Therefore, a proposed new
CNN architecture incorporates a modular topology inspired by Tzilivaki et al.
(2019), formulating a convolutional, orthogonal recurrent MCD replacing the
pooling layers, followed by dense layers flattening their outputs. Compared
with a typical CNN time series composed of convolutional, pooling, flattened,
and dense layers, the proposed new CNN could enhance the robustness and
forecasting performance of the Forex market (Aryal et al., 2019).

Consequently, in the proposed MCoRNNMCD–ANN, the modules selected
from baselines (Tables 2.2 and 2.3) displayed better results in partitioning the
input domain in anticipating EUR/GBP price movements. Hence, two separate
and parallel features extraction convolutional with orthogonal kernel initialisa-
tion applied in simple RNN and a GRU coupled with MCD networks, receiving
the closing prices and sentiment scores capture long-term dependencies in the
EUR/GBP exchange rate hourly, replacing the pooling layers were considered.
The replacement occurs to avoid the downsampling of feature sequences by
losing valuable information since the pooling layers capture only the essential
features in the data and ignore the less important ones, which can be vital
(Liu, Ji, & Wang, 2020). The dense layers are also placed before the flattening
operation in both modules in the proposed novel CNN architecture. This adap-
tation transpires because the dense layer’s preliminary purpose is to increase
the model’s capacity to learn more complex patterns from the RNN’s output.
The flatten operation is then applied to reshape the result of the dense layer
for each module into a one-dimensional tensor to prepare it for the combined
outputs by integrating them into a final concatenation layer. Ultimately, the con-
catenated features passed in the final decision module consist of a three-layer
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feed-forward ANN that yields the anticipated hourly closing price of EUR/GBP.
Finally, the acquired knowledge from the proposed MCoRNNMCD-ANN from
predicting price fluctuations of the EUR/GBP is partially transferred. The
partially transferred learning strived to foster a modular ANN coupled with
MCD to possibly achieve better outcomes, receiving less data for predicting
the EUR/USD exchange rate. Figure 4.1 displays the proposed MCoRNN-
MCD–ANN model.
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Figure 4.1: Proposed MCoRNNMCD-ANN. Part A) visualises the brain areas that impact
investors’ decision-making. Part B) illustrates the representation of the brain areas from the
proposed MCoRNNMCD-ANN model. Finally, in part C), the generated knowledge of
MCoRNNMCD-ANN is partially transferred to a new task, aiming to fine-tune a modular
ANN.
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4.1 Module 1: Convolutional orthogonal RNN-MCD

(CoRNNMCD)

Let us consider time series data representing the hourly closing prices of the
EUR/GBP currency pair. The input data can be characterized as a matrix
xc ∈ Rdc×l, where dc is the number of channels (in this case, one for a single
currency pair) and l is the time series length for the one-hour time frame applied
in this study. As already referred, the hourly rate is one of the best intraday
time frames for price anticipation (Almasri & Arslan, 2018). However, in other
cases, the l variable can take whatever value, such as one day, week, or month,
in a time series prognosis.

In the initial CNN, the convolution operation can be mathematically represented
as:

y[i] = f ((xc ∗ w)[i] + b) (4.1)

Here, xc represents the input data, w denotes the filters or kernels, b is the bias
term, and f is the activation function. The dot product operation (xc ∗ w)[i] is
performed between the filter w and the portion of the input data xc the filter is
currently “looking at”. The activation function f is then applied element-wise
to the result of the dot product, adding non-linearity to the output.

Moving on to Module 1, a 1D convolutional layer is applied to the input data.
The convolution operation is performed using a set of filters or kernels, denoted
as w ∈ Rdc×r, where r is the size of the filter. Mathematically, the convolution
between a 1D filter w of size r and an input signal of length l can be defined as:

(xc ∗ w)[i] =
r

∑
j=1

xc[i + j]w[j] (4.2)

Here, ∗ denotes the convolution operation, and i ranges from 1 to (l − r + 1)
to ensure the filter fits entirely within the input signal. The variable j ranges
from 1 to r and represents the position within the filter and the corresponding
elements in length l input signal.

After the convolution, the activation function is applied element-wise to each
element of the convolution result, adding non-linearity. Next, the convolution
operation generates a new feature representation, denoted as W ∈ R(l−r+1)×mc,
where mc is the number of filters. The output feature map c of the 1D convolu-
tional layer is defined as the input to the RNN, which directly replaces the max
pooling layer. The feature map c is represented as a matrix W, where each row
corresponds to a window vector wn = [xn, xn+1, . . . , xn+r−1].
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To feed the window W into an RNN, the hidden state is computed as ht ∈ Rmh

where mh represents the dimension of the hidden state in the recurrent network
at each time step t. The hidden state ht in the equation of the simple RNN is
calculated as:

ht = ϕ(Wxhx(c)t + Whhht−1 + bh) (4.3)

Here, x(c)t ∈ Rmc represents the input at time step t, Wxh ∈ Rmc×mh and
Whh ∈ Rmh×mh are weight matrices, ht−1 is the previous hidden state, and
bh ∈ Rmh is a bias term. The non-linear activation function ϕ, such as the
Rectified Linear Units (ReLU), is applied element-wise to each hidden state ht

(Nair & Hinton, 2010).

Replacing the max pooling layer with an RNN allows capturing sequential
dependencies in the time series data. In addition, the RNN considers the
temporal information and improves the model’s performance in predicting
future values. After the RNN layer, a dense layer can be added to generate
the network’s output. The dense layer takes the hidden state ht as input and
applies the following equation:

y(c) = f (Wyht + b) (4.4)

Here, Wy is the weight matrix, b is the bias term, and f is the activation function,
such as softmax, which converts the output into a likelihood distribution over
the possible classes. Finally, a flattened layer takes the output of the dense layer
as input, computed as:

Fc[i] = flatten(y(c)[i]) (4.5)

It is worth mentioning that the dense layer after the RNN can allow the model
to learn complex relationships and mappings between the input and the desired
output while flattening the outputs of the dense can simplify the data structure
by collapsing the dimensions, making it compatible with following layers that
expect one-dimensional inputs.

The backpropagation technique (BPTT) is utilized to train an RNN. However,
RNNs require help to learn long-term dependencies during the BPTT training
process since the gradients employed to update the weights increase exponen-
tially, a procedure is known as the vanishing or exploding gradient problem.

In this thesis, orthogonal initialisation is considered one of the proper mecha-
nisms to address the vanishing gradient issue in the RNNs (Golmohammadi
et al., 2017). Therefore the kernel weights W will be transformed into O (sec-
tion 3.4). Furthermore, the parametric rectified linear unit (PReLU) activation
function is utilised instead of the tahn activation function since it is considered
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one of the keys to deep networks’ recent success in time series analysis (Dong,
Wang, & Guo, 2018). Furthermore, PReLU is denoted as:

f (xi) =

xi, if xi > 0

aixi, if xi ≤ 0
(4.6)

where f (xi) represents the output of the PReLU activation function for the
input xi, ai a learnable parameter associated with the i-th unit of the PReLU. It
controls the slope of the negative part of the function. When xi is less than or
equal to zero, the output becomes ai · xi, where ai is a non-negative constant.
When xi is greater than zero, the output remains xi. In other words, the PReLU
function allows for negative values in the output by introducing the learnable
parameter ai. If ai is set to 0, the function reduces to the regular ReLU activation.

Finally, to potentially enhance the performance of the orthogonal kernel ini-
tialized RNN receiving the outputs of the 1D-convolution closing price for
EUR/GBP as inputs, the MCD is coupled to the oRNN layer (CoRNNMCD) in
its ability to quantify model uncertainty, facilitating more informed decision
making in Forex forecast (Gal & Ghahramani, 2015). The hidden state ht in
equation 4.3 is updated and computed as:

ht = PReLU((Oxhx(c)t + Whhht−1 + bh)⊙MCD) (4.7)

The output of the CoRNNMCD is fed to the dense layer and computed as:

y(c)t = linear(Whyht + by) (4.8)

where ht is the hidden state at time t, xt is the input at time t, Whh, Why are
weight matrices, bh, and by are the bias vectors, O is an orthogonal matrix used
to initialize the input weights, ⊙ represents an element-wise multiplication,
and MCD is the Monte Carlo Dropout.

Finally, a flattened layer receives as an input the output of the dense layer
indicated as:

Fc[t] = flatten(y(c)[t]) (4.9)

Figure 4.2 illustrates the CoRNNMCD. CoRNNMCD pseudocode can be de-
scribed as follows:
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Algorithm 5 CoRNNMCD

1: procedure CORNNMCD
2: initialize h0
3: O← InitializeOrthogonalMatrix()
4: for each time step t do
5: ht = PReLU((Oxhx(c)t + Whhht−1 + bh)⊙MCD)

6: y(c)t = linear(Whyht + by)

7: Fc[t] = flatten(y(c)[t])
8: end for
9: end procedure

1D-Convolutional
Layer

Pooling
Layer FlatteningInput 1 Fully-Connected

Layer 

Orthogonal
RNN

MCD

1D-Convolutional
Layer

Orthogonal
RNN - MCD FlatteningInput 1 Fully-Connected

Layer 

PReLu

(A)

(B)

Figure 4.2: (A) Initial CNN Architecture (B) Orthogonal RNN-MCD Architecture. Replacement
of Max-Pooling Layer by the Orthogonal RNN-MCD.
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4.2 Module 2: Convolutional orthogonal GRU-MCD

(CoGRUMCD)

Module 2 uses a 1D convolutional layer for sentiment analysis on a time-series
task. Nevertheless, first, let us summarize the key components and equations:
Given the input data xs ∈ Rds×l, where ds is the number of channels (1 in this
matter), and l is the hourly length of the time series utilized in this study. xs rep-
resents the input data at each time step t. The window wn is formed by selecting
r consecutive sentiment scores starting from the n-th timestamp, expressed as
wn = [xn, xn+1, . . . , xn+r−1]. The 1D convolutional layer processes the window
wn to extract convolutional features. The output of the convolutional layer,
denoted as s ∈ R(l−r+1)×ms , consists of ms feature maps. The parameter ms

determines the number of feature maps representing the filters used in the
convolutional layer. The convolutional features in s are new window represen-
tations, capturing different patterns or representations in the input time series.
The output feature maps in s are then fed into a GRU computed as:

rt = σ(Wr[ht−1, x(s)t ] + br) (4.10)

zt = σ(Wz[ht−1, x(s)t ] + bz) (4.11)

h̃t = tanh(Wh[rt ⊙ ht−1, x(s)t ] + bh) (4.12)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4.13)

where ht is the hidden state at time t, x(s)t is the intake at time t, rt and zt are
the reset and update gates, respectively. h̃t is the candidate hidden state, Wr,
Wz, Wh are weight matrices, br, bz, and bh are the bias vectors, and ⊙ represents
an element-wise multiplication.

The 1D-convolutional orthogonal kernel initialized GRU coupled with MCD
(CoGRUMCD) updates the GRU equations 4.10, 4.11, 4.12, 4.13 to incorporate
the convolutional features and learn temporal dependencies in the sentiment
scores as follows:

rt = σ(Orx(s)t + Wrht−1 + br) (4.14)

zt = σ(Ozx(s)t + Wzht−1 + bz) (4.15)
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h̃t = PReLU(Ohx(s)t + Wh(rt ⊙ ht−1) + bh)⊙MCD (4.16)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4.17)

where rt is the reset gate at time step t, zt is the update gate at time step t, h̃t is
the candidate value for the new hidden state at time step t, ht is the new hidden
state at time step t, Or, Oz, Oh are orthogonal matrices used to initialize the
input weights, Wr, Wz, Wh are weight matrices, br, bz, and bh are the bias terms,
and ⊙ represents an element-wise multiplication.

The output of the CoGRUMCD is fed to the dense layer denoted as

y(s)t = linear(Whyht + by) (4.18)

Finally, a flattened layer receives as an input the output of the dense layer
computed as,

Fs[t] = flatten(y(s)[t]) (4.19)

Figure ?? illustrates the CoGRUMCD. CoGRUMCD pseudocode can be given
as follows:

Algorithm 6 CoGRUMCD

1: procedure COGRUMCD
2: initialize h0
3: Or ← InitializeOrthogonalMatrix()
4: Oz ← InitializeOrthogonalMatrix()
5: Oh ← InitializeOrthogonalMatrix()
6: for each time step t do
7: rt = σ(Orx(s)t + Wrht−1 + br)

8: zt = σ(Ozx(s)t + Wzht−1 + bz)

9: h̃t = PReLU(Ohx(s)t + Wh(rt ⊙ ht−1) + bh)⊙MCD
10: ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t
11: y(s)t = linear(Whyht + by)

12: Fs[t] = flatten(y(s)[t])
13: end for
14: end procedure
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Figure 4.3: (A) Initial CNN Architecture (B) Orthogonal GRU-MCD Architecture. Replacement
of Max-Pooling Layer by the Orthogonal GRU-MCD.

4.3 Parallel Feature Extraction and Concatenation

The parallel features extraction operation converges the two modules’ tasks.
The two modules are continuous, with hourly time frames. Let M1 be the
first module (CoRNNMCD) with input feature vector xc and output vector
yc flattened as Fc[t]. Let M2 be the second module (CoGRUMCD) with input
feature vector xs and output vector ys flattened as Fs[t].

The parallel processing operation can be represented as:
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y1,2 = [M1(xc), M2(xs)] (4.20)

The outputs from the parallel processing operating system, module 1 (M1)
and module 2 (M2), that receive the closing price and the sentiment scores are
merged in the concatenation layer and used as an integrating mechanism. The
conjunct outputs are connected to the final module of the proposed MCoRN-
NMCD–ANN model, aiming to yield the anticipated closing price for the
EUR/GBP rate.

The information that merged in the concatenation layer is calculated as:

C = M1∪M2 (4.21)

4.4 Module 3: Decision Making

The final part of the proposed MCoRNNMCD–ANN model takes place to make
the decision consisting of a three-layer feed-forward ANN. The first layer of the
ANN receives the merged information and can be denoted as:

Densed1 = ReLU(WDensed1C + bDensed1). (4.22)

In the second dense layer, a proposed altered version of the Swish activation
function, namely HSwishalt, is applied. The main difference between the Swish
activation function and the HSwishalt function is that it utilized the hard sig-
moid instead of the sigmoid in Swish (Courbariaux, Bengio, & David, 2015;
Ramachandran, Zoph, & Le, 2017). Moreover, HSwishalt utilized a different
scaling factor, as calculated below:

Swish(x, β = 1) = x · sigmoid(βx) (4.23)

The proposed HSwishalt function utilized β = 0.5 computed as:

HSwishalt(x, β = 0.5) = x · hardsigmoid(0.5x) (4.24)

The rationale behind HSwishalt is to mitigate the issue of exaggerated responses
to minor fluctuations in the input. In financial markets like Forex, where
prices can exhibit high volatility and noisy fluctuations, prediction models
need robustness and stability. Using HSwishalt with β = 0.5, the model can
potentially introduce a dampening effect on the negative inputs, resulting in
smoother and more controlled responses. This dampening effect could also be
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beneficial in scenarios where the model has to avoid harsh reactions to minor
input fluctuations.

Hence, the second dense layer receives the output from the first dense layer,
estimated as:

Densed2 = HSwishalt(WDensed2 Densed1 + bDensed2). (4.25)

The final output layer is denoted as:

Densed3 = linear(WDensed3 Densed2 + bDensed3). (4.26)

ANN pseudocode can be given as follows:

Algorithm 7 ANN

1: procedure ANN(C, W1, b1, W2, b2, W3, b3)
2: Densed1_output← ReLU(C ·W1 + b1)
3: Densed2_output← HSwishalt(Densed1 ·W2 + b2)
4: Densed3 ← linear(Densed2 ·W3 + b3)
5: return output
6: end procedure

The final computational form of the proposed MCoRNNMCD-ANN model is
presented below:

Algorithm 8 Proposed MCoRNNMCD-ANN

1: procedure MCORNNMCD-ANN(c, s)
2: cconv, sconv← C1(c), C2(s)
3: ORNN ← InitializeOrthogonalRNN()
4: OGRU ← InitializeOrthogonalGRU()
5: for each timestep t do
6: crnn[t]← ORNN(cconv[t])
7: sgru[t]← OGRU(sconv[t])
8: crnn_drop, sgru_drop← MonteCarloDropout(crnn, sgru)
9: end for

10: yrnn← Dense(Flatten(crnn_drop))
11: ygru← Dense(Flatten(sgru_drop))
12: yconcat← Concatenate(yrnn, ygru)
13: ANN ← InitializeANN(3)
14: ŷ ← ANN(yconcat)
15: return ŷ
16: end procedure
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4.5 Modular Partial Transferring Learning

A Modular Partial Transfer Learning (MPTL) method has been employed in
this thesis to enhance the performance of a modular ANN coupled with MCD,
denoted as MANNMCD, consisting of two modules in a similar task. This
enhancement is accomplished by leveraging previously acquired proposed
MCoRNNMCD-ANN knowledge from predicting price fluctuations of the
EUR/GBP currency pair. This approach’s primary goal is to enable MANN-
MCD to achieve better outcomes with less data for predicting the EUR/USD
exchange rate.

From the proposed MCoRNNMCD-ANN model, only the CoRNNMCD (mod-
ule 1) and the CoGRUMCD (module 2) will be transferred to two separate ANN
modules consisting of 3-layers coupled with MCD, referred to as ANNMCD1
and ANNMCD2, for fine-tuning.

The equations for the CoRNNMCD and CoGRUMCD models are presented
below:

hCoRNNMCD
t = fCoRNNMCD(hCoRNNMCD

t−1 , xt; θCoRNNMCD)

hCoGRUMCD
t = fCoGRUMCD(hCoGRUMCD

t−1 , xt; θCoGRUMCD)

Here, hCoRNNMCD
t and hCoGRUMCD

t represent the hidden states of the CoRNNMCD
and CoGRUMCD models at time t, respectively. xt is the input at time t, and
θCoRNNMCD and θCoGRUMCD are the parameters of the respective models.

The output of the CoRNNMCD and CoGRUMCD models is utilised for train-
ing the ANNMCD1 and ANNMCD2 models using the Adam optimiser. The
following equations describe the fine-tuning process:

θANNMCD1 = Adam(Ltarget(θANNMCD1))

θANNMCD2 = Adam(Ltarget(θANNMCD2))

Here, Ltarget(θANNMCD1) and Ltarget(θANNMCD2) represent the loss functions
specific to the target task, and θANNMCD1 and θANNMCD2 are the parameters of
ANNMCD1 and ANNMCD2, respectively.

The outputs of ANNMCD1 and ANNMCD2 are combined to obtain a com-
bined output (Combined_Output) consisting of the inputs of the final decision
module consisting of a 4-layer ANN. Refining the final module through train-
ing from scratch on target data could offer a distinct advantage by enabling
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the model to adjust intricately to the unique characteristics of the target do-
main. This approach may allow the neural network to develop tailored decision
boundaries and capture specific patterns prevalent in the target data. By doing
so, the model could become finely tuned to the intricacies of the task at hand,
potentially enhancing its performance and generalisation capabilities within
the specific context of the target domain. The Combined_Output is obtained by
concatenating the outputs of ANNMCD1 and ANNMCD2. Subsequently, the
combined output is processed by ANN layers using the following equations:

Densed1 = ReLU(W1 ·Combined_Output + b1)

Densed2 = HSwishalt(W2 ·Densed1 + b2)

Finally, the output of the decision module is obtained by applying a linear
transformation to Densed2:

yt = linear(W3 ·Densed2 + b3)

In the above equations, W1, W2, and W3 denote the weight matrices for the
connections between layers in the decision module, and b1, b2, and b3 represent
the bias vectors for the respective layers.

The Densed1 and Densed2 layers allow for additional non-linear transforma-
tions and feature extraction from the combined output of ANNMCD1 and
ANNMCD2. Additionally, these layers provide the flexibility to capture com-
plex relationships and patterns in the data, ultimately leading to the generation
of the final output yt.

It is crucial to note that the distinct activation functions, the number of hidden
layers, and the architecture of the decision module can vary depending on the
precise conditions of the task and the design choices made by the researchers.

The proposed MCoRNNMCD-ANN framework comprehensively leverages
partial transfer learning to potentially improve the MANNMCD performance
by incorporating knowledge from pre-trained CoRNNMCD and CoGRUMCD
models. Furthermore, the fine-tuning process aims to allow the model to adapt
to the target task while benefiting from the acquired knowledge, ultimately in
an effort to improve the EUR/USD exchange rate predictions.

The pseudocode for the MPTL for MANNMCD-ANN is given as follows:
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Algorithm 9 Modular Partial Transfer Learning for MANNMCD-ANN

1: procedure TRAINMCORNNMCD-ANN
2: Initialize CoRNNMCD and CoGRUMCD models
3: Pretrain CoRNNMCD and CoGRUMCD models on EUR/GBP data
4: Initialize ANN1 and ANN2 models
5: Fine-tuning Phase:
6: for epoch← 1 to N do
7: Get outputs hCoRNNMCD

t from CoRNNMCD model
8: Get outputs hCoGRUMCD

t from CoGRUMCD model
9: Update ANNMCD1: θANNMCD1 ←

Adam(θANNMCD1, Ltarget(θANNMCD1))

10: Update ANNMCD2: θANNMCD2 ←
Adam(θANNMCD2, Ltarget(θANNMCD2))

11: end for
12: Decision Module:
13: Get output Combined_Output by concatenating ANNMCD1 and

ANNMCD2 outputs
14: Calculate Densed1 = ReLU(W1 ·Combined_Output + b1)
15: Calculate Densed2 = HSwishalt(W2 ·Densed1 + b2)
16: Calculate final output: yt = linear(W3 ·Densed2 + b3)
17: Return: yt
18: end procedure

4.6 Discussion

This chapter introduced a pioneering bio-inspired framework, termed Modu-
lar Convolutional orthogonal Recurrent MCD–ANN (MCoRNNMCD–ANN),
designed to overcome the limitations of prevailing monolithic architectures in
forecasting hourly price movements in the Forex market. Comprising two mod-
ules, CoRNNMCD and CoGRUMCD, this novel architecture replaces pooling
layers to retain comprehensive information crucial for accurate price predic-
tion, starkly contrasting pooling methods that discard specific data. The new
adaptative mechanism consisted of Monte Carlo dropout and orthogonal ker-
nel initialisation, incorporating it into recurrent layers within a convolutional
modular network. It aims to enhance forecasting performance and execution
time to minimise loss errors compared to benchmarks outlined in Chapter 2.

Critical theoretical points included the strategic placement of dense layers after
the layers of the RNNs, where dense layers introduce learnable parameters
facilitating the model’s ability to discern intricate relationships between infor-
mation and desired output. Thus, flattening operations simplify data structures,
aligning them with subsequent layers expecting one-dimensional inputs.
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The chapter also introduced the MPTL, a technique leveraging knowledge from
the proposed MCoRNNMCD-ANN predicting EUR/GBP price fluctuations to
enhance a modular ANN coupled with MCD denoted as MANNMCDANN.
The CoRNNMCD and CoGRUMCD modules are transferred to the initial two
layers of the modular ANN, followed by fine-tuning, showcasing the model’s
adaptability across the anticipation of EUR/USD price fluctuations, receiving
fewer data.

Crucially, the decision-making of the modular ANN does not utilise prior
knowledge from the decision module of the proposed MCoRNNMCD–ANN,
emphasising the significance of training the decision module from scratch on
target data. This approach may align the model more closely with decision
boundaries and patterns specific to the target domain, fostering improved
generalisation.

The following chapter presents information on data collection and the parametri-
sation of the proposed MCoRNNMCD–ANN. It delineates a comprehensive
design comparison between the proposed MCoRNNMCD–ANN model and
benchmarks. Moreover, it compares 2 modular ANNs as presented above, with
and without transfer learning receiving less data in a new task with an exten-
sive comparison between these two models. Ultimately, results are discussed,
providing a thorough understanding of the proposed MCoRNNMCD–ANN,
state-of-the-art hybrid, ensemble, single, and MPTL models’ efficacy in an en-
deavour to predict hourly closing prices of EUR/GBP and EUR/USD currency
pairs.
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5. Modelling and Forecasting

This chapter provides a comprehensive overview of the data collection process,
the proposed modular neural network model setup, the comparative analysis,
and the results obtained from the experiments. Firstly, the data collection is
described, including the selection of relevant Forex market data sources and
the preprocessing steps implemented to ensure the quality and consistency of
the dataset. The chapter then proceeds to discuss the comparative analysis
conducted, where the performance of the modular neural network model is
compared against existing monolithic architectures and other relevant bench-
mark models. Next, the evaluation metrics used to assess prediction accuracy,
such as mean absolute error and root mean square error, are explained, and the
significance of the results is discussed. Finally, the chapter concludes by pre-
senting the results obtained from the experiments, showcasing the nimbleness
and capabilities of the proposed model in predicting Forex price fluctuations.
The findings highlight the superiority of the proposed modular approach over
traditional monolithic architectures.

5.1 Data Collection

The EUR/GBP, exchange rate data consist of the closing price values and sen-
timent information retrieved from Yahoo Finance API and Twitter Streaming
API, respectively. The EUR/GBP, exchange rate prices were acquired from the
Finance Yahoo API based on an hourly rate. Therefore, the predicted hourly
intraday trading of the closing price EUR/GBP rate is the defined target from
January 2018 to December 2019 for 12,436 hours. However, because the Forex
prices incorporate missing values, Twitter’s sentiment data utilises the same
hourly timeframe to be aligned with the pricing data. Therefore, the temporal
data was partitioned according to the time intervals hourly in which they were
collected.

Furthermore, a feature-level fusion based on the same hourly timeframe is
considered to achieve the data coalition from both APIs. Finally, after the data
fusion, the EUR/GBP exchange rate closing prices and the sentiment scores
are provided for each module of the MCoRNNMCD-ANN model. Similarly,
the EUR/USD exchange rate closing prices and the sentiment data have been
collected and followed the same process above to be retrieved from Yahoo
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Finance API and Twitter Streaming API, respectively, from January 2020 to
December 2020.

5.1.1 Forex Closing Prices

The Forex closing prices of the EUR/GBP rate generated from the Yahoo Fi-
nance API from January 2018 to December 2019 are 12,436 h. The data includes
the open, high, low, and close values. Only the closing price is taken into
consideration as considered the most helpful indicator to foresee Forex markets
(C.-C. Chen et al., 2015). One hour is deemed most suitable for better antici-
pating financial markets because it is shorter than daily or yearly forecasting
(Almasri & Arslan, 2018). Finally, it is worth mentioning that research on data
requirements for predicting time series using ANNs revealed that utilising data
of one to two years yields the highest accuracy (Walczak, 2001).

5.1.2 Sentiment Data

The Twitter Streaming API is utilised by tuning the appropriate parameters for
the needs of this study. The language parameter indicates whether a user wants
to receive tweets only in one or some specific languages in terms of the tweet’s
text. More specifically, the “language = en” parameter is specified because
extracting tweets from an English text was considered more appropriate, as all
existing dictionaries support the English language. Using Tweepy enables han-
dling the profile of a user and the data collection by assessing specific keywords;
this study uses hashtags such as search words = “#eurgbp”, “#forexmarket”,
and “#forex”, referring to EUR/GBP currency pairs. Each tweet is accompa-
nied by its corresponding timestamp value during its collection from Twitter
API. The timestamp values are parsed using the Pandas to extract date and
time information, facilitating time-based analysis. Subsequently, the tweets
are grouped into hourly intervals based on the hour of posting. Tweets with
the same hour counted as one, which, in this case, aggregates the text into a
single data point. This aggregation can be helpful for various types of analysis,
including sentiment analysis using tools like the Valence Aware Dictionary
for Sentiment Reasoning (VADER). Finally, 3,265,896 have been retrieved from
January 2018 to December 2019 for 12,436 h. Following a similar process, the
sentiment data for the EUR/USD has been retrieved from the Twitter Streaming
API from January 2020 to December 2020, defending the hashtags of “#eurusd”,
“#forexmarket”, and “#forex”.

VADER, a rule-based sentiment analysis lexicon, is utilised to extract each
sentiment score from the Twitter data (Hutto & Gilbert, 2014). VADER has
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yielded enormous results, considering the labelling of a tweet that outperforms
even from a human factor rating. VADER delivers a compound ratio, giving
the negative, positive, and neutral sentiment scores. For example, from the
3,265,896 tweets of the EUR/GBP exchange rate, VADER yielded the following
results: 747,890 (22.9%) negative, 930,780 (28.5%) positive, and 1,587,226 neutral
(48.6%) tweets, from January 2018 to December 2019 for 12,436 h of EUR/GBP
rate.

Similarly, from the 1,864,926 tweets of the EUR/GBP exchange rate, VADER
yielded the following results: 345,012 (18.5%) negative, 488,610 (26.2%) positive
and 1,031,304 neutral (55.3%) tweets, from January 2020 to December 2020 for
6,190 hours of EUR/USD rate. Figure 5.1 shows how the tweets can be parsed
in hourly intervals and how the concatenation of sentiment scores yielded from
VADER with the Forex closing price can occur.
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Figure 5.1: Time-Based Analysis Framework
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5.2 Design and Implementation

In this thesis, to conduct the experiments, the proposed MCoRNNMCD–ANN
model setting is as follows: First, each dataset has been acquired from the Yahoo
Finance API and Twitter Streaming API, incorporating the hourly closing price
and sentiment data, applying normalisation method, respectively. Second, the
datasets are divided into training, validation, and testing sets, with the same
portion of 60:20:20 used to improve the generalisability of the network. Third,
the hyperparameters of the MCoRNNMCD–ANN model are encountered by
employing the grid search method. Finally, the parameters below are considered
to choose the most optimal for the proposed model receiving closing price and
sentiment score evaluated by the MSE. The list of parameters is given below,
and the best results are presented in Table 5.1 accordingly:

• Number of time steps (Lookback): 20, 30, 40, 50, 60

• Number filters per convolutional layer (Filters): 32, 64, 128, 256, 512

• Number of nodes per hidden layer (Nodes per HL): 25, 30, 50, 60, 100

• MCD rates: 10% to 50%

• Batch sizes (BS): 10, 20, 30, 60, 100

Table 5.1: Top parameters extracted from grid search in closing prices (CP) and sentiment (Sent)
scores of EUR/GBP.

Model Lookback Filters Nodes per HL MCD Rate BS MSE

CoRNNMCD (CP) 60 128 50 0.1 20 0.0010
CoRNNMCD (CP) 60 30 30 0.1 20 0.0012
CoGRUMCD (Sent) 60 128 50 0.1 20 0.2967
CoGRUMCD (Sent) 20 64 30 0.1 20 0.3110

It is worth noting that the MSE used as an objective metric of evaluation in
the grid search algorithm is evaluating the performance of its model and not
its final predictions that have different calculations in the shake of hourly
Forex forecasting closing price. Accordingly, grid search produces the optimal
hyperparameters described:

• The lookback window uses a time step of 60. Furthermore, 128 filters
are selected as the optimum numbers of the 1D convolutional layer in
modules one and two, incorporating the ReLu activation function. Addi-
tionally, in the orthogonal kernel initialised RNN and GRU layers coupled
with MCD with 0.1 rates, supplanting the max-pooling layer in the initial
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CNN architecture, 50 neurons have been selected, utilising PReLU as the
optimal activation function;

• The dense layers in modules one and two consist of 50 neurons integrat-
ing the ReLu activation function connected to the flattened layers. The
decision-making ANN module consists of 3 layers receiving the merge
features from modules one and two. The first dense layer also includes
50 neurons incorporating the ReLU activation function. Likewise, the
second dense layer includes 50 neurons containing the HSwishalt. The
output of the decision-making part, receiving one neuron selecting the
linear activation function, as it is appropriate for regression tasks, yielding
the predicted hourly closing price fluctuations of the EUR/GBP exchange
rate;

• A batch size of 20 has been selected. The early stopping method is em-
ployed to identify the optimum number of epochs for training (Kingma,
Salimans, & Welling, 2015). Early stopping has also been used in the
baseline models to determine the optimum number of epochs for train-
ing. According to N. Srivastava, Hinton, Krizhevsky, Sutskever, and
Salakhutdinov (2014), it is worth noting that early stopping is only some-
times utilised to combat overfitting. Laves, Ihler, Fast, Kahrs, and Ort-
maier (2020) also indicated that the early stopping is not optimal for the
squared error on training and testing data. The Adam optimiser with
a learning rate of 0.0001 has been chosen as it proved effective for non-
stationary objectives and problems with very noisy gradients, and the
MSE as the loss function has been utilised during the proposed MCoRN-
NMCD–ANN for its training process. Each experiment of the proposed
MCoRNNMCD–ANN against benchmarks has been repeated fifty times
to be reliable;

• A computer with the following characteristics has been used to execute
the experiments: Intel® Core™ i7-9750H (Hyper-Threading Technology),
16 GB RAM, 512 GB PCIe SSD, NVIDIA GeForce RTX 2070 8 GB. The
Anaconda computational environment with Keras and TensorFlow in
Python (version 3.6) programming language has been utilised to conduct
the experiments.

After implementing the well-suited parameters in the proposed MCoRNMCD–ANN
model, its performance based on the MSE, MAE, and MSLE is provided in Table
5.2. Furthermore, the MCoRNMCD–ANN outperformed all the baselines.
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Table 5.2: MCoRNNMCD–ANN performance metrics in closing prices and sentiment scores of
EUR/GBP.

Model Metrics Train Valid Test R2 Time Duration

MCoRNNMCD-ANN MSE 6.5486× 10−5 6.1332× 10−5 5.7488× 10−5 0.99 2:35
MAE 0.00534 0.00526 0.00518
MSLE 3.1117× 10−5 2.7342× 10−5 2.6051× 10−5

5.2.1 Objective Evaluation Metrics

This thesis has applied three objective evaluation metrics, such as the MSE,
MAE, and MSLE, to reveal which models performed better. The proposed
MCoRNNMCD-ANN model was compared with the benchmarks and single
models to predict EUR/GBP hourly price fluctuations, as presented in sections
5.2.2 and 5.2.3. Likewise, the modular partial transfer learning results are
presented in section 5.2.4.

• The Mean Squared Error (MSE) is the summary of the square of the
forecast error, which is the original output y minus the foreseen output ŷ,
squared and divided by the total number of data points T . It is calculated
as:

MSE =
1
T
T
∑
i=1

(y− ŷ)2. (5.1)

• The Mean Absolute Error (MAE) is the summary of the absolute difference
between the original output y and the foreseen output ŷ, divided by the
total number of data points T . It is calculated as:

MAE =
1
T
T
∑
i=1
|y− ŷ|. (5.2)

• The Mean Squared Logarithmic Error (MSLE) is the summary of the
squared difference between the original values yi and the foreseen values
ŷi after applying a logarithmic transformation. The sum is divided by the
total number of data points T . It is calculated as:

J(y, ŷ) =
1
T
T
∑
i=0

(log(yi + 1)− log(ŷi + 1))2 . (5.3)

5.2.2 Benchmarks Models

The objective evaluation metrics of the proposed MCoRNNMCD–ANN shown
in Table 5.2 revealed a decline in errors of the hybrid and ensemble models
presented in Table 2.5. For instance, MCoRNNMCD–ANN decreased to 89.17%,
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19.70%, 83.56%, 195.51% and 192.95% for the test MSE of the BiCuDNNLSTM,
CNN–LSTM, LSTM–GRU, CLSTM and ensemble learning model. The test
MAE of MCoRNNMCD–ANN decreased to 50.30%, 6.36%, 52.53%, 166.91%
and 150.47% for the test MAE of the BiCuDNNLSTM, CNN–LSTM, LSTM–GRU,
CLSTM and ensemble learning model. The test MSLE of MCoRNNMCD–ANN
decreased to 91.20%, 20.77%, 85.28%, 195.59%, 192.99% for the test MSLE of the
BiCuDNNLSTM, CNN–LSTM, LSTM–GRU, CLSTM and ensemble learning
approach. The difference in time elapsed in minutes between the proposed
MCoRNNMCD–ANN and the hybrid and ensemble benchmark models pre-
sented in Table 2.5 has also been considered regarding their execution time.
As a result, the execution time of MCoRNNMCD–ANN decreased to 28 min
for the execution time of the LSTM–GRU. The execution time of MCoRNN-
MCD–ANN was increased to 76, 54, 17 and 133 minutes for the execution time
of BiCuDNNLSTM, CNN–LSTM, CLSTM, and ensemble model, respectively.
Based on the outcomes, in most cases, the execution time of a model can be
tremendously affected by the size of the window length and the complexity of
the layers used in each model. It is worth mentioning that the BiCuDNNLSTM
with the default parameters needs less execution time as it runs in a GPU using
CUDA, which accelerates deep learning models. Finally, the LSTM–GRU takes
more execution time than the proposed MCoRNNMCD–ANN, even though
it utilises a default size window of 30. This effect can result from the more
utilised neurons and complex architecture since it employs only LSTM and
GRU models. MCoRNNMCD–ANN outperformed benchmarks.

To conduct a fairer comparison, modified versions of the hybrid benchmarks
implemented the parameters from the proposed MCoRNNMCD–ANN model
to investigate their performance as below:

• The modified parameters of BiCuDNNLSTM utilise a window length of 60
instead of the default 50-time steps, a convolution layer with a filter size of
128 instead of its default 64, a dropout layer with a rate of 0.1 instead of 0.2,
the HSwishalt activation function in the dense layer after the flattening
layer instead of the default ReLU, linear as the output activation function
instead of ReLU, MSE as the loss function instead of MAE, a batch size of
20 instead of 64, and early stopping is applied instead of 32 epochs;

• The modified parameters of the CNN–LSTM neural network model are a
window length of 60 instead of the default 50-time steps, a convolution
layer with a filter size of 128 instead of its default 32 with a ReLU activation
function instead of tanh, an LSTM layer with 50 hidden units instead of 64,
and the activation function used in this layer is parametric ReLU instead
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of that, MSE as the loss function instead of MAE, a batch size of 20 instead
of 64, and early stopping is applied instead of 100 epochs;

• The modified parameters of the LSTM–GRU neural network model are a
window length of 60 instead of the default 30-time steps, LSTM and GRU
layers with 50 hidden units instead of 100 with the activation function
PReLU for both layers instead of a hyperbolic tangent, without the inner
activations to be set as hard sigmoid functions, Adam optimiser trains the
network with the learning of 0.0001 instead of the rate of 0.001, and early
stopping is applied instead of 20 epochs;

• The CLSTM model was adjusted with 128 filters in the 1D convolutional
layer, 60-time steps instead of 15, and 50 neurons instead of 200, 100, and
150 neurons in the dense and LSTM layers. Moreover, LSTM employed
MCD with PReLu instead of traditional dropout and ReLu activation
function, applying early stopping instead of 100.

Table 5.3 confirmed that the MCoRNNMCD–ANN outperforms the state-
of-the-art hybrid benchmarks adjusting with the parameters of the MCoRN-
NMCD–ANN.

Table 5.3: MCoRNNMCD–ANN performance metrics against adjusted (adj.) hybrid
benchmarks.

Model Metrics Train Valid Test R2 Time Duration

BiCuDNNLSTM adj. MSE 0.00011 0.00010 0.00010 0.99 2:54
MAE 0.00761 0.00754 0.00746
MSLE 5.1970× 10−5 4.7161× 10−5 4.6294× 10−5

CNN-LSTM adj. MSE 7.2831× 10−5 6.7592× 10−5 6.2947× 10−5 0.99 7:13
MAE 0.00572 0.00563 0.00551
MSLE 3.4659× 10−5 3.0217× 10−5 2.8432× 10−5

LSTM-GRU adj. MSE 0.00011 0.00010 0.00010 0.99 20:43
MAE 0.00739 0.00721 0.00721
MSLE 5.4301× 10−5 4.6677× 10−5 4.6560× 10−5

CLSTM adj. MSE 0.00145 0.00151 0.00134 0.93 8:21
MAE 0.02352 0.02381 0.02353
MSLE 0.00061 0.00063 0.00059

MCoRNNMCD-ANN MSE 6.5486× 10−5 6.1332× 10−5 5.7488× 10−5 0.99 2:35
MAE 0.00534 0.00526 0.00518
MSLE 3.1117× 10−5 2.7342× 10−5 2.6051× 10−5

The objective evaluation metrics revealed that the test MSE of MCoRNN-
MCD–ANN decreased to 53.98%, 9.10%, 53.98%, and 183.54% for the test MSE of
the BiCuDNNLSTM, CNN–LSTM, LSTM–GRU, and CLSTM by adjusting their
parameters with the parameters of the proposed MCoRNNMCD–ANN. Like-
wise, the test MAE of MCoRNNMCD–ANN decreased to 36.08%, 6.18%, 32.77%,
and 127.83% for the test MAE of the adjusted BiCuDNNLSTM, CNN–LSTM,
LSTM–GRU, and CLSTM. The test MSLE of MCoRNNMCD–ANN decreased
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to 55.96%, 8.74%, 56.49%, and 183.01% for the test MSLE of the BiCuDNNL-
STM, CNN–LSTM, LSTM–GRU, and CLSTM, containing the parameters of
the MCoRNNMCD–ANN. The difference in time elapsed in minutes between
the MCoRNNMCD–ANN and the hybrid benchmark models adjusted with
the parameters of the proposed model has shown that the execution time of
MCoRNNMCD–ANN decreased to 19, 278, 1088, and 346 min for the execu-
tion time for the modified BiCuDNNLSTM, CNN– LSTM, LSTM–GRU, and
CLSTM. Consequently, the execution time of hybrid benchmarks increased
when the window length increased at 60-time steps incorporating the MCD
when usable. That validated the previous assumption that the time steps play
a remarkable role in the execution time of the models. Notably, the predic-
tive error of the benchmarks adjusted with the proposed model parameters
was reduced significantly and yielded better outcomes. Finally, the proposed
MCoRNNMCD–ANN significantly outperformed the adjusted benchmarks.
MCoRNNMCD–ANN was faster, validating the modular architecture and the
innovative orthogonal kernel initialised RNN layers coupled with the MCD
mechanism applied in the proposed model. All the models in Table 5.3 also
presented a high R2 value. Figure 5.2 illustrates an example of the MSE’s
tremendous improvement by utilising the parameters of the proposed MCoRN-
NMCD–ANN in the CLSTM and the best-performed hybrid benchmark MSE,
namely CNN–LSTM adj., and the MSE of the MCoRNNMCD–ANN.
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(a)

(b)

Figure 5.2: (cont.)
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(c)

(d)

Figure 5.2: MSEs of CLSTMs, CNN–LSTM, and the MCoRNNMCD–ANN
model: (a) CLSTM default; (b) CLSTM adjusted; (c) CNN–LSTM adjusted; and
(d) proposed MCoRNNMCD–ANN.

5.2.3 Single Benchmark Models

In Table 2.6, the results of the single benchmark models have been shown.
The objective evaluation metrics demonstrated that the test MSE of MCoRN-
NMCD–ANN decreased to 70.44%, 45.91%, and 196.90% for the test MSE of
the 2D–CNN, GRU, and LSTM, respectively. The test MAE of MCoRNN-
MCD–ANN decreased to 38.50%, 16.96%, and 161.91% for the 2D–CNN, GRU,
and LSTM test MAE, respectively. The test MSLE of MCoRNNMCD–ANN
decreased to 77.81%, 54.77%, and 196.94% for the test MSLE of the 2D–CNN,
GRU, and LSTM, respectively. The difference in time elapsed between the pro-
posed MCoRNNMCD–ANN and the benchmark-single models in minutes has
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also been considered regarding their execution time. As a result, the execution
time of MCoRNNMCD–ANN was increased to 104, 108, and 145 min for the
execution time of 2D–CNN, GRU, and LSTM with default parameters. The
execution time of the models can again be tremendously affected by the size of
the window length and the complicatedness of each model. For instance, when
the window length of the 2D–CNN, GRU, and LSTM single model incorporates
a smaller time window length equal to 5-time steps, decreasing the execution
time training. On the other hand, even though the LSTM is more complex
than the 2D–CNN and GRU, it took significantly less time to be trained since it
utilised fewer neurons (30) than GRU (50 neurons) and an Adam optimiser that
can obtain a faster convergence rate leading to being faster against Adagrad
for CNN (Kingma & Ba, 2017). However, LSTM has the highest predictive
error. Finally, MCoRNNMCD–ANN presented a minor prediction error by
significantly outperforming the single models.

Similarly to the hybrid benchmark models, the single benchmarks (Pokhrel et
al., 2022) will be adjusted with the proposed MCoRNNMCD–ANN parameters
for a fairer comparison. The modified parameters of the CNN, LSTM, and
GRU models are a window length of 60 instead of the default 5-time steps, a
convolution layer with a filter size of 128 instead of its default 30 for CNN, an
LSTM with 50 hidden units instead of 30 utilising the activation function of
PReLU. Furthermore, a batch size of 20 is used. Finally, Adam is employed
instead of Adagrad for GRU and CNN, while the Adam learning rate is set to
0.0001 instead of 0.1 in LSTM.

Table 5.4 proved that the error in the test performance of the MCoRNNMCD–ANN
based on the evaluation metrics MSE, MAE, and MSLE was the smallest one
in hourly EUR/GBP closing forecasting price outperforming the single bench-
marks adjusting with the parameters of the proposed model.

Table 5.4: MCoRNNMCD–ANN performance metrics against adjusted (adj.) single
benchmarks.

Model Metrics Train Valid Test R2 Time Duration

2D-CNN adj. MSE 0.00017 0.00016 0.00017 0.99 0:39
MAE 0.00901 0.00897 0.00912
MSLE 8.3038× 10−5 7.3716× 10−5 7.6177× 10−5

GRU adj. MSE 7.3054× 10−5 6.6247× 10−5 6.2578× 10−5 0.99 4:54
MAE 0.00558 0.00544 0.00536
MSLE 3.4814× 10−5 2.9724× 10−5 2.8312× 10−5

LSTM adj. MSE 8.7955× 10−5 8.0258× 10−5 7.6894× 10−5 0.99 8:43
MAE 0.00635 0.00621 0.00612
MSLE 4.1941× 10−5 3.6171× 10−5 3.4807× 10−5

MCoRNNMCD-ANN MSE 6.5486× 10−5 6.1332× 10−5 5.7488× 10−5 0.99 2:35
MAE 0.00534 0.00526 0.00518
MSLE 3.1117× 10−5 2.7342× 10−5 2.6051× 10−5
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More specifically, the test MSE of MCoRNNMCD–ANN decreased to 98.91%,
8.48%, and 28.88% for the test MSE of the 2D–CNN, GRU, and LSTM adjusted
with the parameters of the proposed MCoRNNMCD–ANN. The test MAE
of MCoRNNMCD–ANN decreased to 55.10%, 3.41%, and 16.63% for the test
MAE of the 2D–CNN, GRU, and LSTM adjusted with the full parameters of
the proposed MCoRNNMCD–ANN. The test MSLE of MCoRNNMCD–ANN
decreased to 98.06%, 8.32%, and 28.77% for the test MSE of the 2D–CNN, GRU,
and LSTM adjusted with the parameters of the proposed MCoRNNMCD–ANN.
The difference in time elapsed between the proposed MCoRNNMCD–ANN and
the benchmark-single models in minutes has also been considered regarding
their execution time. As a result, the execution time of MCoRNNMCD–ANN
decreased to 139 and 368 for the execution time of the GRU and LSTM modified
with full parameters of the proposed MCoRNNMCD–ANN, respectively. The
execution time of MCoRNNMCD–ANN was increased to 116 min for the time
of 2D–CNN utilising the parameters of the proposed MCoRNNMCD–ANN.
Based on the results, it has been observed that the 2D–CNN performs faster
when adjusted with the proposed model parameters despite the timestep be-
ing increased to 60; this could result from the Adam optimiser that led to a
faster training process instead of the Adagrad in CNN. However, the modified
2D–CNN performed worse than the default 2D–CNN. However, all bench-
marks hybrid and single networks, and also those that used 1D convolutions,
show significant improvement when MCoRNNMCD–ANN parameters are
applied, displaying lower MSE and confirming the effectiveness of MCD and
orthogonal kernel initialisation and 1D–CNNs for time-series tasks. For the
adjusted LSTM and GRU with 60-time steps, execution time is increased due to
retaining information from previous steps and slowing training. All the models
have also presented a high R2 value. Figure 5.3 shows substantial MSE im-
provement with proposed MCoRNNMCD–ANN parameters in LSTM and the
best GRU–utilised MCoRNNMCD–ANN parameters and MSE of the proposed
model’s MSE.
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(a)

(b)

Figure 5.3: (cont.)
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(c)

(d)

Figure 5.3: MSEs of LSTMs, GRU, and the MCoRNNMCD–ANN model: (a)
LSTM default; (b) LSTM adjusted; (c) GRU adjusted; and (d) proposed
MCoRNNMCD–ANN.

Concerning RQ1 and RQ2, the outcomes of sections 5.2.2 and 5.2.3 further
asset the concept of modularity alongside the adaptive mechanism consist-
ing of MCD and orthogonality. Based on the experimental results, the pro-
posed MCoRNNMCD–ANN outperformed all the hybrid, EM and single mono-
lithic architectures. The GRU adjusted with the parameters of the proposed
MCoRNNMCD-ANN was the second-best predictive model. Figure 5.4 dis-
plays the predictions in the price movement direction of the EUR/GBP rate,
with the proposed MCoRNNMCD–ANN showing better performance than the
adjusted GRU in the whole- and shorter-time frame. It is worth noting that the
shorter period shows the first 50 hours of the EUR/GBP currency pair.
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(a)

(b)

Figure 5.4: (cont.)
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(c)

(d)

Figure 5.4: Predictions of GRU and the MCoRNNMCD–ANN model: (a) GRU
adj. predictions whole time frame; (b) MCoRNNMCD–ANN predictions whole
time frame;(c) GRU adj. predictions shorter time frame; and (d)
MCoRNNMCD–ANN predictions shorter time frame.

5.2.4 Modular Partial Transfer Learning

The acquired knowledge from the proposed MCoRNNMCD-ANN model re-
garding the predicted hourly closing price of EUR/GBP utilised two years
of data (2018-2019) has been partially transferred to fine-tuning the first two
modules of modular ANN coupled with MCD in a new task. Consequently, the
decision-making of the modular ANNs did not obtain prior knowledge of the
decision module of the proposed MCoRNNMCD-ANN. Training the decision
module of the modular ANNMCD from scratch on the target data can sustain
the model better align with the decision boundaries and patterns specific to the
target domain, improving generalisation. The new related task aimed to predict
the hourly closing price of EUR/USD exchange rate fluctuations using only
one year of data (2020). The pricing and sentiment data of 2020 were obtained
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and processed similarly, such as in the EUR/GBP task, using the same Yahoo
Finance and Twitter Streaming APIs.

The modules of the MANNMCD consist of 1 hidden layer with 50 nodes incor-
porating the HSwishalt activation function coupled to an MCD layer with 0.1
rates and an output layer with one neuron utilising the linear activation func-
tion. The outcomes of each module are connected to the final part of an ANN
without transferring the knowledge of the previous task of the final decision-
making module, consisting of 2 hidden layers with 50 neurons applying the
ReLu and HSwishalt activation functions, with the output incorporating one
neuron with a linear activation function.

In Table 5.5, the evaluation metrics confirmed that the MANNMCDANN with
PTL performs better than the MANNMCDANN without applying transfer
learning (TL). Moreover, the test MSE of the MANN with TL decreased to
7.76% for the MANNMCDANN test MSE without using transfer learning. Sim-
ilarly, the MAE of the MANNMCDANN with the TL model decreased to 10.2%
for the MAE of the MANNMCD-ANN without TL. Finally, the test MSLE of
the MANNMCDANN with TL decreased to 6.36% for the test MSLE of the
MANNMCDANN without applying TL. As a result, the training time of the
MANNMCDANN with TL is increased by 73 minutes. This increment in time
can result from adapting the pre-trained model to the new task involving up-
dating the modular model weights to fit the target data better. Depending on
the extent of fine-tuning required, this adaptation process can be computation-
ally expensive, leading to increased training time. However, reducing the loss
error, which is this thesis’s primary goal, has been achieved by improving the
performance of the modular ANN that utilised the TL.

Concerning RQ3, the results of this section further support the notion that
relevant tasks with limited data can enhance their generalisation performance
with MPTL. Therefore, the modular ANNMCDANN applied transfer learning
outperformed the model without being applied. Furthermore, it achieves
significantly better results than a model that relies on the target domain alone
for training.

Table 5.5: MANNMCDANN model loss before and after applying partial TL.

Model PTL Metrics Train Valid Test Time Duration

MANNMCDANN w/o Transfer Learning MSE 0.00156 0.00189 0.00174 0:45
MAE 0.01851 0.01894 0.01953
MSLE 0.00069 0.00083 0.00081

MANNMCDANN with Transfer Learning MSE 0.00144 0.00176 0.00161 1:58
MAE 0.01658 0.01711 0.01763
MSLE 0.00064 0.00078 0.00076
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Figure 5.5 displays the MANNMCDANN model loss before and after applying
partial TL, showing a clear improvement in the model that utilised the PTL.
Figure 5.6 shows the predicted closing price fluctuation with the MANNMC-
DANN of applying the partial transfer learning performs better than without
involving the technique of partial TL in the MANNMCDANN.

(a)

(b)

Figure 5.5: MSEs of the MANNMCDANN model: (a) without (w/o) Transfer
Learning and (b) with Transfer Learning.
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(a)

(b)

Figure 5.6: Predictions of the MANNMCDANN model: (a) without (w/o)
Transfer Learning and (b) with Transfer Learning.

5.3 Discussion

This chapter compares the proposed MCoRNNMCD-ANN model against the
benchmark models regarding the MSE, MAE, and MSLE tests in anticipating
the Forex market price directions.

The results convey volumes about the exceptional performance leap achieved by
MCoRNNMCD–ANN. A noticeable decrease in MSE, MAE, and MSLE across
various benchmark models is evident. For example, the test MSE for BiCuD-
NNLSTM, CNN–LSTM, LSTM–GRU, CLSTM, and the ensemble learning model
witnessed reductions ranging from a notable 19.70% to an outstanding 195.51%,
underscoring the superior predictive prowess of MCoRNNMCD–ANN. In
addition, the objective evaluation metrics reveal a substantial performance en-
hancement achieved by MCoRNNMCD–ANN when its parameters are adjusted
for hybrid models. For instance, the test MSE decreased impressively, showcas-
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ing the MCoRNNMCD–ANN model’s adaptability and improved predictive
accurateness across adjusted for hybrid models ranging from 9.10% to 183.54%.
Also, the evaluation of single benchmark models, as indicated in the results,
reveals a substantial betterment in the performance of MCoRNNMCD–ANN.
For example, the objective evaluation metrics demonstrated a significant de-
crease in the MSE for the 2D–CNN, GRU, and LSTM ranging from 45.91% to
196.90%. Finally, accommodating MCoRNNMCD–ANN parameters for single
benchmark models demonstrated significant improvement. For instance, for
the test of MSE reductions across adjusted single benchmark models ranging
from 8.48% to 98.91%

The exploration into time execution efficiency provided a comprehensive un-
derstanding of the adaptability the proposed MCoRNNMCD–ANN exhibited,
especially compared to hybrid models. The hybrid with their default parame-
ters, BiCuDNNLSTM, experienced a lower execution time of 76 minutes, while
CNN–LSTM, CLSTM, and the ensemble model incurred 54, 17, and 133 minutes,
respectively. For the specific case of the LSTM–GRU architecture, the execution
time of MCoRNNMCD–ANN demonstrated a significant reduction, reaching a
mere 28 minutes. These findings underscore the substantial impact of window
length and layer complexities on execution time dynamics. Particularly note-
worthy is the efficient performance of BiCuDNNLSTM with default parameters,
designed for GPU acceleration using CUDA, resulting in lower execution times.

Conversely, the LSTM–GRU, despite utilising a default window size of 30,
required more time due to heightened neuron utilisation and the intricate archi-
tecture associated with models relying solely on LSTM and GRU components.
Deeper insights emerge from comparing MCoRNNMCD–ANN with hybrid
benchmark models adjusted to the proposed MCoRNNMCD–ANN parameters.
The proposed MCoRNNMCD–ANN reduction in execution times ranged from
19 to 1088 minutes for the modified BiCuDNNLSTM, CNN–LSTM, LSTM–GRU,
and CLSTM configurations. This outcome underscores the critical role of win-
dow length, especially at 60-time steps, validating the assumption that time
steps significantly influence model execution time. Hence, the state-of-the-art
hybrids adjusted models that used the proposed MCoRNNMCD–ANN pa-
rameters proved that the MCoRNNMCD-ANN was significantly faster against
them.

The review of time efficiency extends to comparing the proposed MCoRN-
NMCD–ANN and single benchmark models, shedding light on the nuanced
intricacies of their execution times. The execution time of MCoRNNMCD–ANN
witnessed increments to 104, 108, and 145 minutes for the default parameter con-
figurations of 2D–CNN, GRU, and LSTM, respectively. This observed increase
in execution time again underlines the sensitivity of single models to window
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length and complexity. Notably, when the window length of the 2D–CNN, GRU,
and LSTM single models with their default parameters stands at a smaller time
window of 5-time steps, a notable decrease in execution time during training
is discernible. This result emphasises the impact of window length on train-
ing efficiency, offering a trade-off between temporal scope and computational
demands. This thorough examination of time execution efficiency not only
elucidates the nuanced influence of window length and layer complexities but
also establishes MCoRNNMCD–ANN as a faster and more efficient alternative.

In the context of modified single models, parameter adjustments yielded sub-
stantial improvements in the models’ efficiency. For instance, when proposed
MCoRNNMCD–ANN parameters were applied to the GRU, its execution time
notably decreased to 139 minutes, underscoring the MCoRNNMCD–ANN
model’s adaptability to optimisation. Similarly, when the MCoRNNMCD–ANN
parameters counted to LSTM, its time execution was reduced to 368 minutes,
emphasising the proposed model’s parameters’ efficiency in handling the com-
plexities associated with long short-term memory networks. The execution
time of 2D–CNN increased to 116 minutes with adjusted parameters of the pro-
posed model, suggesting that, despite optimisation efforts, the 2D–CNN model
prompts a nuanced consideration of the trade-off between model complexity
and computational efficiency. While the 2D–CNN exhibited increased execu-
tion time with adjusted parameters, the overall efficiency gains for MCoRNN-
MCD–ANN reaffirm its effectiveness in time-series tasks.

MCoRNNMCD–ANN’s theoretical ingenuity shines through its fusion of mod-
ular convolutional orthogonal kernel-initialised RNN layers with the Monte
Carlo dropout mechanism. This amalgamation sets the proposed MCoRNN-
MCD–ANN apart as an innovative departure from conventional computational
approaches. The proposed model consistently outperformed hybrid and single
benchmarks, confirming its theoretical robustness in capturing intricate tem-
poral patterns. Eventually, opportunities for exploration lie in adapting the
proposed model architecture for different time step lengths and evaluating its
performance across various financial time series. The remarkable reduction in
predictive errors for the adjusted benchmarks further strengthens the case for
the efficacy of the proposed model parameters. MCoRNNMCD–ANN consis-
tently outperformed all benchmarks, highlighting the robustness of its modular
architecture and innovative orthogonal convolutional RNN and GRU MCD
mechanisms.

The knowledge derived from the initial development of the MCoRNNMCD-
ANN model, primarily designed for predicting the hourly closing price of
EUR/GBP, has been strategically leveraged in a new task focused on forecasting
hourly closing price fluctuations for EUR/USD exchange rates using a one-year
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dataset. This transfer of knowledge is facilitated through the utilisation of the
first two modules within the modular ANN-MCD architecture, wherein the
prior insights from the CoRNNMCD and CoGRUMCD modules of the original
MCoRNNMCD-ANN are adapted to the prediction framework for EUR/USD
exchange rates.

Adopting a modular partial transfer learning approach presents adaptability
and improves overall performance in capturing the underlying patterns within
the new dataset, as underscored in Table 5.5. Maintaining the decision module
as a fixed component during modular partial transfer learning while trans-
ferring the other two modules mitigates the risk of overfitting and facilitates
improved generalisation to new samples. Refraining from fine-tuning the de-
cision module is deliberate, aiming to preserve the general knowledge and
patterns acquired during the pre-training stage. This strategic choice enhances
the model’s ability to generalise effectively to novel samples, showcasing the
value of retaining foundational knowledge while adapting to the nuances of a
distinct prediction task.

This chapter can also offer a practical implication. For instance, in Forex trad-
ing, even minor improvements in prediction accuracy can significantly impact
profitability. Forex trading is often done with high leverage, meaning traders
can control significant positions with relatively small amounts of capital. For
example, consider a trader who makes 100 trades daily with an average profit
of $10. Over a year, this trader would profit $260,000 (assuming 250 trading
days per year). Suppose the trader can improve their average profit per trade
by just 1%. In this case, their average profit per trade would increase to $10.10,
and their annual profit would increase to $266,000. These gains may appear as
minor returns growth, but they represent a 2.3% increase in profitability, which
can be substantial. Furthermore, high trading frequencies and large trading
volumes are expected in Forex trading, meaning that even minor improvements
in prediction accuracy can be magnified. For example, suppose a trader has a
winning percentage of 55% on their trades, meaning they win 55 out of every
100 trades. If they can increase their winning percentage to 56%, they can
make more profitable trades and increase their overall profitability. It may
seem slightly improved, but can significantly impact profitability throughout
thousands of trades. Table B1 presents the predicted price movements by the
MCoRNNMCD-ANN in Forex of the EUR/GBP. The thesis concludes in the
Chapter below, presenting its limitations and future directions.
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6. Conclusions and Future Research

This thesis has tackled the formidable challenges in Forex forecasting by intro-
ducing a novel computational approach that has combined economic theories,
sentiments and recent neuroscience advancements through a modular neural
network architecture. The proposed MCoRNNMCD-ANN framework show-
cased notable success in predicting price fluctuations across various currency
pairs, surpassing existing state-of-the-art hybrid, ensemble and single models
in the predictions of the hourly price fluctuations in EUR/GBP.

Adopting a modular architecture inspired by the modularity observed in human
and animal brains has proven to be remarkably effective in capturing diverse
patterns and features of data dynamics compared to monolithic architectures.
Combining the new adaptative mechanism consisting of Monte Carlo dropout
and orthogonal kernel initialisation into recurrent layers within a convolutional
modular network, replacing the standard pooling layer has enhanced Forex
prediction performance. Moreover, incorporating modular partial transfer
learning from the proposed MCoRNNMCD-ANN has facilitated knowledge
transfer between currency pairs. Consequently, the generalisation capabilities of
the neural model utilised under data scarcity conditions have been augmented.
The MANNMCDANN that applied this partial transfer learning technique has
shown significantly better outcomes than the model that did not use it in the
predictions of the hourly price fluctuations in EUR/USD.

Modular neural network architectures are poised to improve accuracy and
robustness in Forex prediction models by potentially furnishing invaluable
insights for traders navigating the foreign exchange market. Furthermore, inte-
grating RCT and neuroscience through AI systems can elevate decision-making
processes within Forex in an effort to foster more informed and successful
trading strategies. Through ongoing research and exploration, this thesis en-
deavours to propel the development of more reliable and accurate methods for
forecasting price movements in the dynamic and volatile Forex market.

In addition to the technical advancements made in this thesis, it is crucial to
underscore the ethical considerations inherent in developing and applying
predictive models in financial markets. Integrating AI, particularly in Forex
forecasting, demands a thoughtful examination of potential ethical implications.
As these models become increasingly influential in decision-making processes,
the responsible and transparent use of such technology is crucial. Moreover,
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the responsible handling of sensitive financial data and protecting user privacy
should be paramount. As AI systems rely on vast amounts of data, safeguarding
the confidentiality and privacy of individuals and institutions involved in Forex
trading is imperative. Striking a balance between data-driven insights and
ethical data practices is vital to engender trust and maintain the integrity of the
digital financial ecosystem.

6.1 Contributions

• First, a novel modular neural network architecture that drew inspiration
from rational choice theory and cognitive neuroscience to model human
decision-making in Forex price fluctuation predictions was presented.
This approach was aimed to bring significant novelty to the field by in-
corporating modularity, rationality, and emotions. Modularity allows for
decomposing the decision-making process into distinct modules, enabling
a better understanding of how different factors, such as the sentiment of
investors, contribute to price fluctuations. By integrating rationality and
emotions, the proposed model has shown promising results in capturing
psychological factors that could influence Forex trading decision-making.
This approach pushes the boundaries of existing knowledge by combining
interdisciplinary insights from economics neuroscience to be simulated
from AI, providing new perspectives and potential advancements in pre-
dictive modelling in the Forex domain.

• The second approach introduced a new adaptation mechanism that com-
bined Monte Carlo dropout and orthogonal kernel initialisation within a
convolutional modular network. This mechanism was incorporated into
the recurrent layer, replacing the traditional pooling mechanism from the
CNN. The use of Monte Carlo dropout allowed adaptive width of the
recurrent layers, enabling dynamic adjustments of capacity based on the
complexities of Forex data. Furthermore, the proposed MCoRNNMCD-
ANN model reduced redundancy and enhanced the representation of
features in the data by initialising orthogonal kernels. This novel adap-
tation mechanism addresses the limitations of traditional pooling layers
that neglect important features during their operation, offering a more
flexible and efficient approach to handling Forex data complexities. Also,
because the Monte Carlo dropout introduces a stochastic element that
allows different subsets of units to be active or inactive during training,
this stochastic behaviour enables the model to explore different feature
combinations and prevents over-reliance on specific features. As a result,
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the model can become more adaptable and less prone to discarding es-
sential features. Integrating Monte Carlo dropout and orthogonal kernel,
initialisation introduces a novel aspect to the field of neural networks,
tailored explicitly for modular designs, and offers new approaches for
possibly improving prediction performance, uncertainty quantification,
and reliability of Forex forecast modelling.

• The third approach proposed a novel method for addressing the challenge
of data scarcity in Forex prediction by employing modular partial transfer
learning. This approach utilised information from a previous task, such
as the acquired knowledge (EUR/GBP) of the proposed MCoRNNMCD-
ANN that transferred to fine-tune the first two modules of a modular ANN
coupled with MCD in a new task with less data (EUR/USD). Accordingly,
the modular ANNs’ decision-making did not receive prior knowledge
from the decision module of the proposed MCoRNNMCD-ANN. Further-
more, training the decision module of the MANNMCDANN (EUR/USD)
from scratch on the target data can sustain the model better align with the
decision boundaries and patterns specific to the target domain, improving
generalisation performance. Partial transfer learning allows extracting rel-
evant features and patterns from other data while avoiding the pitfalls of
complete transfer learning, where irrelevant information may negatively
impact performance. This novel approach acknowledges the scarcity of
Forex data. Furthermore, it leverages the potential of transfer learning to
overcome this challenge, offering a unique perspective on handling data
limitations in predictive modelling.

In summary, all three approaches emphasise novelty in their respective areas.
The first approach introduced a novel modular neural network architecture
combining rational choice theory and cognitive neuroscience insights. The sec-
ond approach presented a novel adaptation mechanism incorporating Monte
Carlo dropout and orthogonal kernel initialisation in a recurrent layer within
a convolutional modular network that replaced the pooling layer. Finally, the
third approach proposes a novel strategy utilising partial transfer learning to ad-
dress data scarcity in Forex prediction. These approaches provide new insights
and potential advancements in predictive modelling in the Forex domain.

Regarding the research questions, the results presented in Chapter 5 support
the hypothesis that:

• RQ1: The investigation into whether bio-inspired modular neural net-
work architectures outperform monolithic ANN architectures in predict-
ing price fluctuations in exchange rates has yielded positive results. The
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critical analysis and comparative evaluation have demonstrated that the
proposed MCoRNNMCD-ANN significantly outperforms the state-of-the-
art models. Furthermore, the modular architecture has shown superior
prediction accuracy, successfully capturing complex market dynamics
and outperforming monolithic architectures in decreasing prediction error.
These findings highlighted the effectiveness of modularity in enhancing
Forex price prediction models and its ability to capture and model the
intricate dynamics of the Forex market.

• RQ2: Exploring the potential benefits of the new adaptative mechanism
consisting of Monte Carlo dropout and orthogonal kernel initialisation
into recurrent layers within a convolutional modular network, replacing
the standard pooling layer, has yielded promising results. The practi-
cal evaluation has demonstrated the positive impact of these techniques
on predicting Forex price fluctuations. By incorporating Monte Carlo
dropout, the prediction error has been significantly reduced, and un-
certainty quantification has been improved. Additionally, applying or-
thogonal weight initialisation methods has enhanced the optimisation
process, leading to improved performance and robustness of the neural
network models. These conclusions highlight the potential benefits of
incorporating these techniques in enhancing the accuracy, reliability, and
optimisation process of Forex price prediction models.

• RQ3: The investigation into how modular neural network architectures
can leverage knowledge gained from the proposed MCoRNNMCD-ANN
to enhance the performance and generalisation capabilities of ANNs in
Forex predictions, particularly in data scarcity scenarios, has provided
valuable insights. By incorporating partial transfer learning into modular
architecture, the study successfully demonstrated the ability of modular
architectures to leverage knowledge acquired from one currency pair
and apply it to a different relevant task. This approach has effectively
enhanced prediction models’ generalisation capabilities and reliability in
data-scarce scenarios. These findings address the challenge of limited data
availability in Forex predictions and emphasise the potential of modular
architectures in improving performance and generalisation capabilities.

In summary, the answers to the research questions confirm the effectiveness of
bio-inspired modular neural network architectures in outperforming state-of-
the-art and monolithic models, emphasise the benefits of incorporating Monte
Carlo dropout and orthogonal weight initialisation methods, and highlight
the ability of modular architectures to leverage knowledge and enhance gen-
eralisation capabilities in data scarcity scenarios. These findings contribute
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to advancing Forex price prediction models, providing practical implications
for traders and investors in making informed decisions in the dynamic and
complex Forex market.

6.2 Limitations and Future Research

There are some limitations in this thesis, which can be addressed in further
studies:

• Firstly, it should be acknowledged that this research only focused on two
specific Forex pairs (EUR/GBP and EUR/USD) as examples for forecast-
ing price fluctuations. While these pairs are commonly traded and widely
studied, they may not fully represent the entire Forex market. Therefore,
the performance and effectiveness of the proposed MCoRNNMCD-ANN
model may differ when applied to other Forex pairs. Thus, further studies
should consider exploring more currency pairs to validate and generalise
the findings.

• Secondly, while modular networks offer increased adaptability and modi-
fiability compared to monolithic architectures, they may also introduce
additional complexity in implementation and maintenance. The design
and implementation of modular architectures require careful consider-
ation of module interconnections, module design choices, and module
coordination. Future research should focus on developing efficient tools
and methodologies to facilitate the practical implementation and manage-
ment of modular network architectures.

• Lastly, it is essential to note that while the proposed MCoRNNMCD-ANN
model may improve the prediction error of Forex forecasting, it does
not guarantee profits or eliminate all risks associated with trading in the
Forex market. Therefore, trading in the Forex market always involves
inherent risks, and it should be approached with caution and proper risk
management strategies.

Future Research

Delving deeper into the incorporation of explainable AI (XAI) principles unveils
a critical avenue for future research, particularly within the proposed modular
network architecture context. As the sophistication and complexity of AI mod-
els continue to advance, the imperative for transparency and interpretability
becomes increasingly pronounced, particularly in sensitive domains such as
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mental health. In these domains, where the consequences of AI-driven decisions
significantly impact individuals, establishing a clear understanding of how the
model arrives at its predictions is paramount. The integration of XAI aligns
seamlessly with overarching ethical considerations and emerging regulatory
requirements in deploying AI systems. Transparent models could satisfy the
demand for accountability and contribute to responsible and trustworthy AI
practices.

Moreover, the proposed modular network architecture could be applied to
mental health prognoses. By leveraging the advantages of modularity, it may be
possible to identify and predict patterns of mental health conditions, enabling
early intervention and treatment. Specifically, the modular architecture can
be employed to analyse and integrate various data sources, such as electronic
health records, social media posts, and physiological data, to build a comprehen-
sive profile of an individual’s mental health. By leveraging the flexibility and
adaptability of modular architectures, future studies can explore the application
of these models in the mental health domain to possibly enhance prediction
accuracy and enable personalised interventions.

The modular network approach may also have a broader applicability beyond
mental health predictions. It could be utilised in other fields where integrating
multiple data sources is necessary, such as environmental monitoring, cyberse-
curity, or energy management. The modular network approach offers a flexible
and adaptable framework for integrating diverse data types, providing new
insights and opportunities for prediction and optimisation in various domains.

In summary, future research should aim to address the limitations of this study
by considering a more comprehensive range of Forex pairs, exploring the gen-
eral applicability of hybrid activation functions, facilitating the implementation
and maintenance of modular architectures, and investigating the potential of
modular networks in mental health predictions and other relevant domains.
The incorporation of XAI, therefore, transcends a mere technical enhancement;
it becomes a cornerstone in the ethical and responsible use of AI in critical
domains. By addressing these areas, researchers can further enhance prediction
models’ accuracy, reliability, and applicability and open new technological
advancements.
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Appendix

The MCoRNNMCD-ANN predictions aim to forecast price movements, and
the outcomes are consistent with the actual movements. Table B3 compares
the original price values with the corresponding predicted prices. Compared
to the original prices, cell colouring is utilised for the classification and price
fluctuations columns to emphasise whether the predicted prices indicate an
upward or downward movement.

The MCoRNNMCD-ANN model effectively predicts price movements by align-
ing its predictions with the trends observed in the original prices. When the
original prices indicate an upward movement, the model’s predictions follow
suit by suggesting higher prices, as indicated by the green-filled cells in the
table. Similarly, when the original prices show a downward movement, the
model’s predictions often indicate lower prices, as denoted by the red-filled
cells. This alignment between the original prices and the corresponding pre-
dicted prices showcases the model’s ability to capture and replicate the trends
present in the market, providing valuable insights into future price movements.

Table B1: MCoRNNMCD-ANN Predicted Price Fluctuations.

Original price Predicted price Classification Price fluctuations
0.88414 0.883698 1 Up
0.86065 0.860085 0 Down
0.87611 0.876166 1 Up
0.85411 0.853859 0 Down
0.89866 0.899046 1 Up
0.89988 0.901466 1 Up
0.85953 0.859448 0 Down
0.86729 0.867039 1 Up
0.88284 0.882783 1 Up

More specifically:

• Original price: This column represents the actual or original price values.

• Predicted price: This column displays the predicted price values.

• Classification: This column indicates the classification of price movement
based on the predicted values. The classification is represented by the
colour-filled cells.

• Price fluctuations: This column describes the direction of price movement.
Based on the classification, it shows whether the price is going up or down.
The direction is also represented by the colour-filled cells.
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