3 research outputs found

    Laminar heat transfer enhancement downstream of a backward facing step by using a pulsating flow

    Get PDF
    This study is motivated by the need to devise means to enhance heat transfer in configurations, like the back step, that appear in certain types of MEMS that involve fluid flow and that are not very efficient from the thermal transfer point of view. In particular, the work described in this paper studies the effect that a prescribed flow pulsation (defined by two control parameters: velocity pulsation frequency and pressure gradient amplitude at the inlet section) has on the heat transfer rate behind a backward facing step in the unsteady laminar 2-D regime. The working fluid that we have considered is water with temperature dependent viscosity and thermal conductivity. We have found that, for inlet pressure gradients that avoid flow reversal at both the upstream and downstream boundary conditions, the timeaveraged Nusselt number behind the step depends on the two above mentioned control parameters and is always larger than in the steady-state case. At Reynolds 100 and pulsating at the resonance frequency, the maximum time-averaged Nusselt number in the horizontal wall region located behind the step whose length is four times the step height is 55% larger than in the steady-case. Away from the resonant pulsation frequency, the time-averaged Nusselt number smoothly decreases and approaches its steady-state value

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area
    corecore