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Abstract 

This study is motivated by the need to devise means to enhance heat transfer in configurations, like the back step, that appear in cer­
tain types of MEMS that involve fluid flow and that are not very efficient from the thermal transfer point of view. In particular, the work 
described in this paper studies the effect that a prescribed flow pulsation (defined by two control parameters: velocity pulsation frequency 
and pressure gradient amplitude at the inlet section) has on the heat transfer rate behind a backward facing step in the unsteady laminar 
2-D regime. The working fluid that we have considered is water with temperature dependent viscosity and thermal conductivity. We have 
found that, for inlet pressure gradients that avoid flow reversal at both the upstream and downstream boundary conditions, the time-
averaged Nusselt number behind the step depends on the two above mentioned control parameters and is always larger than in the 
steady-state case. At Reynolds 100 and pulsating at the resonance frequency, the maximum time-averaged Nusselt number in the hor­
izontal wall region located behind the step whose length is four times the step height is 55% larger than in the steady-case. Away from the 
resonant pulsation frequency, the time-averaged Nusselt number smoothly decreases and approaches its steady-state value. 
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1. Introduction 

Nowadays, there is a large variety of Micro-Electro-
Mechanical systems (MEMS) that, in one way or another, 
involve fluid flow and heat transfer effects. Practical appli­
cations of these systems include, for instance, micro­
motors, micro-cooling devices and power-MEMS. When 
dealing with specific engineering design aspects, it often 
happens that because of manufacturing restrictions, or 
the need to keep a low product cost, channel configurations 
inside this type of MEMS are far from being fully opti­
mised. For example, it is not unusual to find deep recess, 
sharp bends, grooves, and both forward and backward fac­
ing step like structures inside some designs. Since the sur­

face to volume ratio grows when the typical characteristic 
length of the system diminishes, associated heat losses 
could become important and corrective actions might be 
implemented. In some specific cases, heat losses are so crit­
ical that new configurations need to be devised to fulfil cer­
tain objectives. For instance, micro-combustion based on 
arrays of catalytic wires is being pursued actively because 
thermal losses in the micro-scale may prevent combustion 
to occur in the shape of a conventional stabilised flame. 

The objective of this paper is to study the effect that 
forced flow pulsation may have on laminar heat transfer 
enhancement behind a 2-D backwards facing step. We have 
chosen this configuration because it represents a broad 
class of geometries to be found inside fluid-thermal 
MEMS. Since we foresee liquid cooling applications, the 
focus of our study is on the laminar, unsteady, incompress­
ible flow regime. For instance, if we consider a backwards 
facing step whose inlet channel has an height of 225 urn 
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control parameter for pressure gradient at inlet 
section 
specific heat at inlet section 
hydraulic diameter of the inlet channel 
acronym for Eq. (27) 
Grashof number 
gravity constant 
local convection coefficient behind the step 
dimensionless thermal conductivity 
thermal conductivity 
thermal conductivity at inlet section 
local Nusselt number behind the step 
direction normal to a surface 
dimensionless pressure 
pressure 
Prandtl number 
Reynolds number based on Z>h and u^ 
Reynolds number based on the Stokes thickness 
acronym for right hand side 
dimensionless time 
time 
dimensionless pseudo-time 
dimensionless fluid temperature 
temperature 
fluid temperature at inlet section 
dimensionless horizontal velocity component 
maximum centreline velocity in a Poiseuille type 
solution 
horizontal velocity component 

(hydraulic diameter Dh equal to 450 um), an step height of 
225 um, and water flows in at 293 K and 0.22 m/s, the Rey­
nolds number based on the mean inlet velocity and hydrau­
lic diameter is 100. 

Also, we will concentrate on the 2-D regime because the 
onset of 3-D effects is expected to occur at higher Reynolds 
numbers. Armaly reported, based on their own 
experimental data, a critical Reynolds number of 400 for 
this onset. Durst and Pereira found good agreement 
between experimental and numerical 2-D results for Rey­
nolds numbers below 648. Kaiktsis , by using direct 
numerical simulation, suggested that the critical Reynolds 
number is 700. More recently, Barkley have 
shown, by performing a stability analysis, that the onset 
of 3-D effects starts a Reynolds 997 (this figure has been 
corrected to be consistent with the Reynolds number defi­
nition used and in the present study). Barkley 

have also discussed in detail these discrepancies 
and concluded that the reason for the rather low critical 
Reynolds number (400) found by Armaly is the 
presence of end wall effects. In particular, the span-wise 

Moo mean horizontal velocity component at inlet sec­
tion 

v dimensionless vertical velocity component 
v' vertical velocity component 
x dimensionless horizontal co-ordinate 
x' horizontal co-ordinate 
y dimensionless vertical co-ordinate 
y' vertical co-ordinate 

Greek symbols 
f> pseudo-compressibility parameter 
f>exp thermal expansion coefficient 
8' stokes layer thickness 
A increment 
$ functional approximation for the Finite Point 

algorithm 
X0 to X5 parameters that define the functional approxi­

mation 4> 
fi dimensionless dynamics viscosity 
fi' dynamic viscosity 
jioo dynamic viscosity at inlet section 
v' kinematic viscosity 
Poo density at inlet section 
a> dimensionless pulsation frequency 
a/ dimensional pulsation frequency 

Superscripts 
k time instant 
o initial time in the integration loop 

aspect ratio of their experimental set up was 36:1, while 
Barkley _ considered an ideal 2-D geometry in their 
computations. Summarizing, since we will consider Rey­
nolds numbers of the other of 100, we can assume that 
the hypothesis of two-dimensionality is well satisfied. We 
also include in our analysis the temperature dependence 
of both viscosity and thermal conductivity. Water viscosity 
changes by a factor of three in the temperature span rang­
ing from 293 K to 353 K that we have considered, see Incr-
opera and DeWitt , and that is typical of some 
electronics systems cooling applications. Since flow topol­
ogy is very sensitive to the Reynolds number in the regime 
that we consider, we decided to account for real 
fluid effects from the outset. 

The idea of using pulsating flows to enhance laminar 
heat convection is not new although the outcome of the 
many studies that have been performed up to now still 
remains controversial. The situation is best summarised 
in the introduction of the paper published by Yu et al. 
where they classify previous work into four categories 
according to the conclusion being reached: 



• Pulsation enhances heat transfer 
• Pulsation deteriorates heat transfer 
• Pulsation does not affect heat transfer 
• Heat transfer enhancement of deterioration may occur 

depending on the flow parameters 

Incidentally, the authors of the review, Yu con­
clude from their own work that pulsation neither enhances 
nor deteriorates heat flow. Recently, another study on the 
subject has been published by Chattopadhyay 
and they report that pulsation has no effect on the time-
averaged heat transfer along straight channels. 

Regarding the backward facing step flow under consid­
eration, a comprehensive review of steady heat transfer 
results has been published by Abu-Malaweh for a wide 
range of configurations and flow properties. Other recent 
studies on heat transfer effects on 2-D and 3-D backward 
facing step geometries have been published by Abu-Hijleh 

Nie and Armaly and Iwai . In the isother­
mal case with no heat transfer effects, a detailed analysis 
that addresses the different flow topologies that appear as 
a function of the Reynolds number has been reported by 
Chiang and Sheu 

Some aspects of laminar heat transfer downstream of a 
back-step whit pulsating and non-pulsating inlet conditions 
have been studied previously by Valencia and Hinojosa 

In this paper, the authors dealt with air having con­
stant viscosity and thermal conductivity properties, and 
assumed a parabolic inlet velocity profile with sinusoidal 
time variation. For the case of pulsating flow, they consid­
ered the case of one Strouhal number and found this spe­
cific pulsation enhanced heat transfer by a time-averaged 
factor of 9% in the lower wall when compared to the steady 
flow situation. A similar study in the turbulent regime has 
been reported by Valencia In this case, the changes in 
the lower wall Nusselt number caused by pulsating condi­
tions appeared to be smaller than in the laminar case. 
Anther study on the effect of pulsation on laminar heat 
transfer has been published by Chang and Tucker 
where they address the problem of laminar flow around a 
sharp 180° bend. In order to enhance heat transfer, they 
placed a thin fin right before the bend so as to achieve a 
self-sustained oscillatory separated flow region. In their 
conclusions, they stated that these self-sustained oscilla­
tions cause a substantial reduction in reattachment length 
and, accordingly, a sizable increase in the local Nusselt 
number. Another reference worth noticing in this context 
is the study by Yoshioka In this work, the 

authors pointed out that the evolution of organised vortex 
motion behind a back-step in the turbulent regime is 
strongly dependent on the imposed inlet perturbation. 

The work presented in this paper differs from previous 
ones because of three main aspects: (a) we consider the flow 
of water having temperature dependent viscosity and ther­
mal conductivity (this is important because water viscosity 
changes by a factor of 3 in the range from 293 K to 353 K 
typical of many industrial applications), (b) we specifically 

search for the pulsation amplitudes and frequencies that 
maximise heat transfer behind the step and (c) we present 
the resonant behaviour of the Nusselt number as a function 
of the pulsation parameters. Concerning the organisation 
of the work presented hereafter, the chapters that follow 
are: problem description, governing equations, boundary 
conditions, spatial and temporal discretisation, validation, 
results, sensitivity of the results and conclusions. 

2. Problem description 

We study the effect that forced flow pulsation has on the 
heat transfer rate behind a backward facing step in the 2-D, 
laminar incompressible flow regime. The non-dimensional 
geometry of the problem is shown in Fig. 1. Distances 
are rendered dimensionless by using the hydraulic diameter 
of the inlet channel. All walls are adiabatic except a portion 
of length L — 5 on the lowest wall downstream of the step 
where temperature is prescribed. In this way we isolate the 
effect that we are looking for, and we do not have interfer­
ence from thermal effects caused by other walls. 

Our cooling fluid is water and we assume that it enters 
the computational domain at the ambient temperature of 
293 K. Wall temperature at the lowest wall downstream 
of the expansion is 353 K. These two temperatures repre­
sent a typical situation found in electronics systems cooling 
applications. To have a continuous dependence of viscosity 
and thermal conductivity on temperature, we have interpo­
lated the experimental data provided by Incropera and 
Dewitt The functions that we use are: 
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Fig. 1. Problem definition. 
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Fig. 2. Comparison between correlations generated for dynamic viscosity 
and thermal conductivity, and experimental data. 
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where ji' and K axe the dimensional dynamic viscosity ant 
thermal conductivity, respectively. The dimensionless tem­
perature T is obtained by dividing the actual temperature 
by the reference inlet temperature (293 K). Fig. 2 shows 
the relations (1) and (2) and their comparison with the 
experimental data provided in the range from 
293 K ( T = 1.0) to 353 K ( T = 1.2). 

3. Governing equations 

Dimensionless equations of the problem are continuity, 
x and y momentum and energy: 
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Dimensionless variables are defined as follows: 
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where u, v, P, T, x, y and t stand for horizontal and vertical 
velocity components, pressure, temperature, horizontal 
and vertical spatial co-ordinates and temperature, respec­
tively. Dotted variables are dimensional and the subscript 
oo denotes unperturbed values upstream of the inlet. Dh 

is the hydraulic diameter of the inlet channel. The Rey­
nolds number is defined as 

Re 
Poo M ooAl 

."oo 
(9) 

Armaly _ _ used (2/3)wmax to define the Reynolds 
number, with wmax being the maximum centreline velocity. 
Since u^ = (2/3)wmax for a Poiseuille type inlet velocity 
profile, it follows that we use the same definition as they 
do. Prandtl number Pr (ji^Cpvo/kvo) is also defined by using 
upstream values, ji and k appearing in Eqs. (4)-(6) are ta­
ken from the relations (1) and (2). 

In the regime that we consider, flow topology depends 
strongly on the Reynolds number. For instance, for a step 
height of 0.5 in steady flow (see Fig. 1), Armaly et al. 
reported that the reattachment length is 1.44 and 3.23 for 
Reynolds 100 and 389, respectively. In our case, we have 
temperature variations of the order of 80 K in the flow field 
(form 293 K to 353 K) and this causes local viscosity (and 
local Reynolds number) to change by a factor of the order 
of 3. Then, we have a strong coupling via temperature of 
Eqs. (4)-(6). Finally, we have not included the viscous dis­
sipation function in the energy equation because this term 
is of the order of u^KRecp^T^), that is negligible in our 
case compared to the other equation terms. 

Regarding the model described by Eqs. (3)-(6), we have 
made two hypotheses that need to be justified. The first one 
is to assume laminar behaviour even though the flow has 
an oscillating nature. The second is related to the fact that 
buoyancy terms are not included in the momentum equa­
tions. Transition of wall-bounded unsteady profiles has 
been studied, among others, by Das and Arakeri Akh-
avan and Hino They have provided 
criteria to ascertain the onset of transition in straight ducts 
by using the Reynolds number (Reg) based on the Stokes 
layer thickness S' = (2V'/G/) ' , where V is the fluid kine­
matic viscosity and m'0 is the dimensional pulsation fre­
quency. It is to be noted that, as Das and Arakeri 
remark in page 263 of their work, vortex formation does 
not always leads to turbulence. In particular, these authors 
found that no transition to turbulence occurs for 
Reg < 1200. The criteria provided by Hino is 
somewhat more restrictive and sets up the transition Rey­
nolds number in the range from 500 to 550. We have, in 
our case, a sudden expansion so the above mentioned cri­
teria are not directly applicable. However, we could esti­
mate our range of Reg and see how far we stand from 
those critical values. As it will be mentioned in the next sec­
tion, we deal with hydraulic diameters and flow velocities 
of the order of 450 (im and 0.22 m/s, respectively. Also, 
we find that for these parameters, maximum heat transfer 
occurs at pulsating frequencies of 537 rad/s (85 Hz) so, in 
this case, we have Reg = 22 that is more than one order 
of magnitude smaller than the critical values for transition. 
In line with this reasoning, it is to be noted that in the 
already mentioned work performed by Valencia and Hinoj-
osa the flow was considered to be laminar as well. 

Dimensionless buoyancy terms scale as Gr/Re2 where Gr 
is the Grashof number. In our case, with inlet channel 
height in the range from 100 to 200 (im, maximum temper­
ature differences of 60 K, and Re — 100, the ratio Gr/Re2 

varies from l.Oe—3 to l.Oe—4, so we have not accounted 
for this effect 

4. Boundary conditions 

Before writing down the boundary conditions of the 
problem, we first describe the solution of the unsteady 



Poiseuille flow in a 2-D channel. The governing equation of 
this problem is 

0w dp 1 3 a 
dt ~ 0x Re dy2 

Solutions are sought as follows: 

u(y,t) =ui(y) +u2(y,t) 
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where a> is the prescribed dimensionless frequency for the 
pressure gradient and the product a\a2 is its amplitude. 
Solution of system (10)—(12). is 
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Solution ((11) and (12)) is formally valid for a pulsating 
flow inside an infinitely long 2-D straight channel so it 
should not be used as the inlet boundary condition in our 
back step problem. What we do is to retain the velocity 
profile (11) and the control parameters m (frequency) and 
a2 (amplitude) that define the pulsating flow, and relax 
the pressure boundary condition so that it adapts itself to 
both the velocity pulsation and back step geometry. 
Accordingly, our boundary conditions are: 

• Inlet 

u(y,t) =ui(y)+u2(y,t) (11) 

where u\(y) and u2(y,t) are denned by relations (14)-
(17). 

v = 0 

02P _ 

T = 1 

(18) 

(19) 

(20) 

Boundary condition (19) allows for a self-adapting time 
variation of the pressure gradient at the inlet. Boundary 
condition (20) assumes an isothermal incoming flow that 
is consistent with Eqs. (3)-(6) and with the fact that the 
inlet channel walls are adiabatic.Boundary condition 
(11) pulsates, see relation (15), with the argument 
Inort. According to our definition of the dimensionless 
variables, this argument is equal to Inort1 u^/D-^, where 
f is the dimensional time measured in seconds. If we 
select a typical case, like the one mentioned in the intro­

duction with Z>h = 450 microns and u^, = 0.22 m/s, and 
prescribe co = 0.1 (as we will show later, relevant heat 
transfer enhancement occurs in the range co = 0.1 to 
a> — 0.2 for Reynolds 100) the time needed to complete 
a full pulsating cycle is 0.02 s (50 Hz). That is, an exper­
iment could be realised by using an off-the-shelf recipro­
cating pump that oscillates at the grid frequency 
(50 Hz), together with a frequency adaptor to sweep 
for different values of a>. 

• Outlet 
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The formulation of outflow boundary conditions for the 
incompressible Navier-Stokes equations when comput­
ing either external or internal flows is still a subject of 
active research; see, for example, the work reported by 
Olshanskii and Staroverov Hasan and 
Nordstrom We have used, in the present 
work, the approximate boundary conditions (21) that 
assume that the flow is fully developed at the outlet sec­
tion. These conditions, that are admissible provided that 
the outlet boundary is located far enough downstream, 
have also been used by many researchers dealing with 
internal unsteady flows. Three practical application 
cases are, for example, those presented by Valencia 
and Hinojosa Kaiktsis and Wang and 
Zhang Other approaches consist, for instance, on 
the use of the so called "traction free" conditions, Wang 
and Sheu or setting to zero all second order deriv­
atives of the primitive variables, Chattopadhyay et al. 

In any case, in the last section of this paper (sensi­
tivity of the results) we present some additional results 
obtained by using a longer computational domain so 
as to check that the outflow boundary condition (21) 
does not influence the computed parameters. 

• Solid walls 

u = v = 0 

T = rwall for 5 < x < 10, y = 0 

dT 
•^— = 0 for any other wall 
0» J 

(22) 

(23) 

(24) 

Pressure boundary condition at vertical or horizontal 
walls is obtained by computing the momentum equa­
tions (4) or (5) with zero velocity and one-sided (into 
the flow domain) derivatives. Pressure at the two corners 
of co-ordinates (5, 0.5) and (5, 0), is obtained by com­
bining and solving Eqs. (4) and (5) along the direction 
that bisects the corners (45° in our case). 

5. Spatial and temporal discretisation 

Regarding spatial discretisation, we use the Finite Point 
formulation developed by Mendez and Velazquez 
whose main features are: 



• Spatial derivatives are computed by using a least squares 
approximation in a cloud of points. 

• Second order Taylor polynomials are used as the 
approximating functions 

<P(x, y) = XQ + k\x + X2y + X3x + X4y + X5xy (25) 

where $ stands for any flow variable and the X/s are 
computed in a least squares sense. 

• Each cloud contains seven points (a central point plus 
six neighbours). The closest point to the centrum maps 
the 2-D space into four different sectors that span 90° 
each, see Fig. 3. The first four neighbours are taken from 
each of the four sectors by choosing the closest point to 
the central one. The fifth and sixth points are chosen at 
random from two of the sectors so that computation of 
the spatial derivatives does not favour any particular 
direction in the x-y plane. 

We use a Cartesian grid in the work described in this 
paper, so we could have chosen a far simpler centred finite 
difference numerical algorithm. However, since we have 
future applications in mind where the implementation of 
Cartesian grids is no longer possible, we decided to use a 
Finite Point scheme from the outset. These schemes are 
attractive for practical industrial applications because they 
are very flexible from the geometry modellisation point of 
view and, also, because they are well suited to deal with 
moving surfaces. The reason is that clouds of points may 
penetrate each other without the compatibility constrains 
required by either finite element or finite volume schemes. 

The solver has been extensively validated for different 
configurations (circular and square cylinders at an angle 
of attack, and steady-state back steps) for different Rey­
nolds numbers in the vortex shedding laminar regime. In 
particular, we compared our computed global flow param­
eters (drag, lift and Strouhal number) with those reported 
in the literature Also, we performed a dedicated exper­
imental campaign in a low Reynolds number wind tunnel 
to validate solver results with regard to time-averaged local 
flow variables (velocity profiles) and rms values in the 
unsteady wake behind a square cylinder 

Regarding the time integration that we use in the present 
work, we deviate from the one reported . We have 
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/ 

now used the standard implicit pseudo-compressibility 
approach as described by Tannehil instead of the 
explicit relaxation-based pseudo-compressibility formula­
tion developed The reason is that the strong 
unsteady effects that are felt all over the computational 
domain in the case of a pulsating internal flow are com­
puted more accurately by using an implicit time integration 
scheme. Some examples of the practical application of this 
method have been published by Kiris and Kwak 

In particular, the equations that we integrate are: 

(26) dP „ du dv\ 

9^+ /W97j= 0 

du du du du 
dt* dt 9x dy 

dP 1 
9x Re 

fd u 9 v\ dfi du 
\dx2 dy2) 9x 9x 

dv dv dv dv 
dt* dt 9x dy 

dP 1 (d2v d2v\ djidv ( 
\9x2 dy2) dy dy < 

dT dT dT dT 
dt* dt 9x dy 

1 
RePr 

\fd2T d2T\ dkdT dkdT 
\dx2 dy1 J 9x 9x dy dy 

dfi dfi (du 

9x dy \dy 
8iA" 

9*7. 
(27) 

dfi fdv 9w\' 

9x \9x dy) 

(28) 

(29) 

where fS is the pseudo-compressibility parameter that we 
take it to be 200, For each physical time 
step At, Eqs. (26)-(29) are iterated in pseudo-time At* until 
\dP/dt*\,\du/dt*\,\dv/dt*\ and |9779f| are smaller that a 
certain prescribed value, thereby reverting to the solution 
of the original set of Eqs. (3)-(6). 

Integration in pseudo-time is carried out by using a sec­
ond order Crank-Nicholson scheme. For instance, if Eq. 
(27) is re-written in symbolic form as 

du 
dr 

du 
~di 

{RHS_eq27} (30) 

where RHS_eq27 stands for the right hand side of Eq. (27), 
the time integration procedure at each point is formulated 
as follows: 

A;* At 
{RHS_eq27}* + {RHS_eq27}° 

(31) 

Fig. 3. Set-up of a typical cloud of points. 

where superscript o marks the initial time in the pseudo-
time integration loop, and superscript k denotes the inter­
mediate pseudo-time instants. Values of the physical At 
and pseudo-time A;* increments, for a given grid and flow 
parameters, are chosen following the guidelines of the sta­
bility analysis performed by Peyret 

Keeping in mind the future applications that we 
have already referred to, we have implemented artificial 



dissipation terms in our numerical scheme. In particular, 
both second and fourth order terms have been used in 
the continuity equation (26), and fourth order terms in 
the momentum and energy equations (27)-(29). The imple­
mentation of these terms effectively changes the order of 
the equations (they cause them to become fourth order), 
so higher order boundary conditions are implemented for 
the artificial dissipation terms. This specific computational 
aspect is described 

6. Validation of the numerical algorithm 

We have used the experimental results provided by Arm-
aly to validate our solver both at the local and glo­
bal levels in the adiabatic case. In particular, we computed 
the steady-state reattachment bubble length behind the step 
for Reynolds 100 and 389, and found it to be 1.40 and 3.05, 
respectively. Armaly reported experimental values 
of 1.44 and 3.23, so our deviations are in the range of 2-
5%. Our Cartesian grid contained 32,051 points with a 
spacing of Ax = Ay = 0.2, so it is to be expected that devi­
ations between numerical and experimental results grow 
along with the Reynolds number. The computational and 
physical parameters that we used were: At* = 2.5e—4, 
At = 2.5e-4, /? = 200, and Pr = 6.62. The fact that walls 
were kept adiabatic effectively decoupled the energy equa­
tion from the others, although we computed it so as to keep 
the same numerical scheme. Regarding local values of the 
variables, Fig. 4 shows the comparison between computed 
and measured local velocity profiles at two sections 

downstream of the step for the two above mentioned Rey­
nolds numbers. 

7. Sensitivity of the results with regard to the computational 
parameters 

In this section, we address the sensitivity of the results 
obtained with regard to (a) spatial discretisation, (b) tem­
poral discretisation, (c) pseudo-compressibility parameter 
and (d) length of the computational domain. To address 
aspects (a)-(c), we have carried out a series of computa­
tions (defined in Table 1) for a baseline unsteady case 
with co = 0.40 and a2 = 1.50 that is a critical one from 
the numerical stability point of view since it has a large 
pulsation frequency and a large pressure gradient param­
eter. To assess the sensitivity we have chosen three figures 
of merit: the time-averaged Nusselt number in the region 
5 < x < 7 (see Figs. 1 and 5), the maximum local Nusselt 
number in the same region, and the minimum reattach­
ment length of the recirculation region behind the step 
along the pulsating cycle. The first two parameters are 
related to the energy equation while the third concerns 
the flow topology. 

For all cases, step height H was taken to be 0.5, and Pra-
ndtl and mean Reynolds number at the inlet section 6.62 
and 100, respectively. Water was flowing in at 293 K and 
wall temperature at the horizontal portion downstream 
of the step (see Fig. 1) was 353 K (T— 1.2). The definition 
of the local time-dependent Nusselt number Nux is as 
follows: 
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step. 



Table 1 
Cases computed to analyze sensitivity of results 

Parameters Case key 

03 

a2 

Ax, Ay 
Points in the domain 
At, At* 

P 
Average Nusselt 5 ^ x ^ 7 
Maximum local Nusselt 
Minimum reattachment length 

I 

0.40 
1.50 
2.0e-2 
32,051 
2.5e-4 
200 

7.48 
11.02 
1.34 

II 

0.40 
1.50 
3.3e-2 
11,731 
2.5e-4 
100 

6.98 
10.00 
1.30 

III 

0.40 
1.50 
1.2e-2 
81,281 
2.5e-4 
200 

7.50 
11.16 
1.33 

IV 

0.40 
1.50 
2.0e-2 
32,051 
1.2e-4 
200 

7.41 
10.96 
1.34 

V 

0.40 
1.50 
2.0e-2 
32,051 
6.2e-5 
200 

7.38 
10.92 
1.34 

VI 

0.40 
1.50 
2.0e-2 
32,051 
2.5e-4 
100 

7.58 
11.29 
1.32 

VII 

0.40 
1.50 
2.0e-2 
32,051 
2.5e-4 
150 

7.52 
11.11 
1.34 
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section 

Fig. 5. Location of points A, B and C inside the computational domain. 

Nux{t) 
hx(t)Dh 

^wall 

(32) 

where hx{t) is local convection coefficient. Since Ax = Ay in 
our Cartesian grid, the local Nusselt number could be writ­
ten as 

Nux{t) = 
Dh Twall * w a l l + i (t) 1 T. wall • wall+1 (0 
Ay' wall oc Ay wall - l 

(33) 

where rwau+1 (t) stands for the dimensionless temperature at 
the grid point located next to the wall along the normal 
direction. The time-averaged Nusselt number, see relation 
(34) was computed in a region of length 2 right behind 
the step, see Fig. 5. The reason for this choice is that, for 
this step height and Reynolds number, the re-circulating re­
gion length in the adiabatic steady-state case is 1.40 so, in 
this way, we cover the recirculation bubble length. 

Nu. average 
(=0 

Nuxdx \dt 
x=5 

(34) 

where tc is the dimensionless time associated with a full pul­
sating cycle. 

Regarding spatial discretisation, we have generated 
three computational domains. The baseline case I had 
32,051 points with Ax = Ay = 0.02, while case II had 
11,731 points and Ax = Ay = 0.03333, and case III was 
modelled with 81,281 points and Ax = Ay = 0.0125. It 
was not possible to compute case II with the same 
pseudo-compressibility parameter f> — 200 of cases I and 
III. The reason is that the larger values of Ax and Ay did 
not allow it because of numerical stability reasons. Never­
theless, the results given in Table 1 show that changing Ax 
and Ay from 3.33e—2 to 2.00e—2 and to 1.25e—2 caused 

the time-averaged Nusselt number to vary from 6.98 to 
7.48 and 7.50, respectively. That is, successive variations 
of 40% and 38% in Ax and Ay generated successive changes 
in the time-averaged Nusselt number of 7% and 0.3%, 
respectively. Similar results are observed for the maximum 
local Nusselt number and the minimum recirculation 
region reattachment length, so we could conclude that 
the results were converged with regard to the spatial 
discretisation. 

Concerning time discretisation, we computed cases IV 
and V with At = At* = 1.25e - 4 and At = At* = 6.25e-
5, while the baseline case I had At = At* = 2.50e—4. That 
is, see Table 1, dividing the time steps by a factor of 2 
and 4 caused the time-averaged Nusselt number to change 
from 7.48 to 7.41 and 7.38, respectively. That is, deviations 
in the computed result were 0.8% and 0.4%, respectively. 
Since a similar trend was observed regarding the maximum 
local Nusselt number and the minimum reattachment 
length, we could conclude that the results were also con­
verged with regard to the time discretisation. Finally we 
carried out the same baseline computation (fi — 200) with 
f> — 150 (case VII) and f> — 100 (case VI). In this case, vari­
ations in the time-averaged Nusselt number (7.58-7.52 and 
to 7.48) were of the order of 0.8% and 0.4%, respectively. A 
similar behaviour was observed for the other two figures of 
merit and, accordingly, we could say that the results are 
also converged with regard to the pseudo-compressibility 
parameter f>. 

Aspect (d): length of the computational domain, is 
related to the justification of the approximate boundary 
conditions (21) at the outlet section. In all computations 
presented so far, the outflow section is located 10 dimen­
sionless units downstream of the step that has a non-
dimensional height of 0.5 (aspect ratio equal to 20). We 
have now performed an additional computation of another 
baseline case with a> — 0.15 and a2 = 1.50 by enlarging the 
computational domain by an extra 5 dimensionless units 
(aspect ratio equal to 30) and keeping all other computa­
tional parameters unchanged. In this case, the number of 
points that we used was 44,801. It is to be noted that the 
aspect ratio used in the work by Valencia and Hinojosa 

was 10. We have chosen these pulsation parameters 



because, as it will be shown in the next section, they pro­
vide maximum heat transfer enhancement. The maximum 
local Nusselt number that we have computed by using 
the longer domain was 16.56, while we obtained 16.42 with 
the standard domain. Regarding the space and time-aver­
aged Nusselt number, we have now obtained the value of 
8.36 while we computed 8.41 in the baseline case. That is, 
differences were always less than 1%. 

8. Results 

We have computed a series of cases with different values 
of the dimensionless forcing frequency a> and pressure gra­
dient amplitude parameter a2 at the inlet section. Step 
height H, and inlet Prandtl and Reynolds numbers were 
0.5, 6.62 and 100, respectively. Definition of the computed 
cases is shown in Table 2, where the minimum and maxi­
mum j-averaged inlet Reynolds number is given to provide 
an idea of the amplitude of the mass flow variation. Again, 
as in the previous section, water was flowing in at 293 K 
and wall temperature downstream of the step was 353 K 
(T— 1.2). The results obtained are shown in Fig. 6. Three 
curves are presented in the upper sub-plot that correspond 
to different values of parameter a2 that controls the ampli­
tude of the pressure gradient at the inlet (see Table 2). Fre­
quency of the pulsation is given in the x-axis while the 
space-time-averaged Nusselt number is presented in the 
j-axis. The distinctive feature that could be observed is that 
there is an enhancement of the heat transfer rate in the 
vicinity of the frequency co = 0.15. Away from this reso-

Table 2 
Definition of computational cases 

Case key 

01 
11 
12 
13 
14 
15 
16 
17 

21 
22 
23 
24 
25 
26 
27 

31 
32 
33 
34 
35 
36 
37 
41 

OJ 

0.000 
0.100 
0.125 
0.150 
0.175 
0.200 
0.250 
0.400 

0.100 
0.125 
0.150 
0.175 
0.200 
0.250 
0.400 

0.100 
0.125 
0.150 
0.175 
0.200 
0.250 
0.400 
0.150 

a2 

0.000 
0.250 
0.250 
0.250 
0.250 
0.250 
0.250 
0.250 

0.750 
0.750 
0.750 
0.750 
0.750 
0.750 
0.750 

1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
1.500 
2.300 

5 

0.000 
0.251 
0.251 
0.252 
0.252 
0.251 
0.252 
0.251 

0.752 
0.752 
0.754 
0.753 
0.753 
0.752 
0.751 

1.503 
1.505 
1.512 
1.510 
1.507 
1.509 
1.510 
2.318 

Remm 

100 
87 
89 
90 
91 
92 
94 
96 

60 
66 
71 
75 
77 
81 
88 

20 
32 
42 
49 
54 
63 
76 
10 

ftp 

100 
113 
111 
110 
109 
108 
106 
104 

140 
134 
129 
125 
123 
119 
112 

180 
168 
158 
151 
146 
137 
124 
190 

Nil 

9 

8.5 

8 
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Fig. 6. Upper sub-plot: computed time-averaged Nusselt number versus 
pulsating frequency for three different values of the a2 parameter in the 
variable properties fluid hypothesis. Lower sub-plot: comparison between 
results obtained by assuming variable and constant fluid properties for the 
case a2 = 1.5. 

nant frequency, the average Nusselt number decreases both 
in the direction of lower and higher frequencies. The 
steady-state result (m — 0.0) is also presented for the sake 
of completion. The curves move up in the direction of 
higher heat transfer rates for larger values of the inlet pres­
sure gradient parameter. In the case m — 0.15 and a2 = 1.5, 
the Nusselt number (8.41) that is 44% higher than the in the 
steady case (5.83). 

The lower sub-plot of Fig. 6 shows, for the case a2 — 1.5, 
the results obtained by assuming that water is an ideal fluid 
with constant viscosity and thermal conductivity. Compar­
ison with the results obtained after the variable properties 
assumption is also given in the same sub-plot. The differ­
ences are of the order of 15% in the region where Nusselt 
number resonance is maxima (co in the range from 0.1 to 
0.2). We think that the reason is that water viscosity 
decreases markedly when the temperature goes up and, 
therefore, the local Reynolds number in the vicinity of 
the heated wall is larger than in the ideal case. 
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Fig. 7. Computed time-averaged Nusselt number versus a2 for the 
pulsating frequency co = 0.15. 

The behaviour shown in both sub-plots of Fig. 6 resem­
bles the typical response of a resonating dynamical system 
to an externally applied oscillating force. Fig. 7 shows the 
Nusselt number as a function of the inlet pressure gradient 
for the resonating frequency co = 0.15. There, it could be 
observed that the heat transfer rate does not grow linearly 
along with the a2 parameter; i.e.: the second derivative of 
response amplitude is negative with regard to the ampli­
tude of the forcing parameter, like in the case of a many 
damped resonating dynamical systems. 

For all computation cases presented in Table 2, the 
time-dependent mass flow was monitored at 10 different 
vertical sections located inside the computational domain 
and the variations between each other were found to be less 
than 1%. Also, for each case, we monitored the time evolu­
tion of the inlet pressure gradient, assumed a behaviour of 
the type stated in relation (12), and computed an equivalent 
a2 parameter that we have called 8. This parameter 8 is also 
given in Table 1 where it could be seen that its difference 
with a2 is always smaller than 1%. This means that the inlet 
boundary condition that we use resembles very closely the 
ideal unsteady Poiseuille solution for a straight channel. 

The behaviour presented in Figs. 6 and 7 suggests the 
existence of a non-linear coupling of resonant nature 
between thermal effects and Fluid Dynamics parameters. 
This fact may allow for the application of some kind of 
flow control, with frequency and amplitude of the inlet 
pressure gradient acting as the control parameters. Even 
though the Nusselt number enhancement (55%) in the 
region right behind the step is not very large, this result 
suggests that it may be possible to look for resonances in 
problems that involve large recirculation regions with the 
objective of improving, among others, the heat transfer 
rate. 

When looking at the results, one of the questions that 
arise is whether different frequencies appear in the flow 
field. In this regard, we have checked the time history of 
all computed results and found no evidence of the existence 
of frequencies other than the pulsating frequency. Fig. 8 
shows the time evolution of u and v along a cycle at points 
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Fig. 8. Time evolution of u and v at points A, B and C for case 33. 

A (5.5, 0.25), B (5.5, 0.75) and C (6.5, 0.25), see Fig. 5, for 
case 33, see Table 2, with co = 0.15 and a2 = 1.5. The evo­
lution of the average velocity at the inlet section is also 
shown for reference purposes in the figure. In this case, 
the dimensionless time needed to complete a pulsating cycle 
is 1/co = 1/0.15 = 6.67. Two features could be observed in 
Fig. 8: (a) velocity profiles repeat themselves at the end of 
the cycle, and (b) outside the recirculation region (point A), 
horizontal velocity profiles (points B and C) follow qualita­
tively the pattern of the inlet profile. 

The difference between pressure at points A, B and C, 
and the average inlet pressure is shown in the upper part 
of Fig. 9. The j-averaged inlet pressure gradient is also 
shown in the figure as a frame of reference. Again, pressure 
profiles repeat themselves at the end of the cycle and pres­
sure follows qualitatively the pattern set up in the pulsa­
tion. Finally, temperature evolution at the same points A, 
B and C, is given in the lower plot of Fig. 9. In this case, 
it is not straightforward to draw a relation with the inlet 
velocity profile. In fact, the highest temperature at point 
A, that is representative of the region closest to the step, 
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Fig. 9. Time evolution of P and T at points A, B and C for case 33. 

is obtained towards the end of the cycle where inlet velocity 
is smallest. 

An overview of the local Nusselt number in the region 
(5 < x < 7) right behind the step as a function of the 
dimensionless time (0 < t < 6.67) along the pulsating 
cycle (case 33) is presented in Fig. 10. The Nusselt num­
ber in the region very close to the step is low and nearly 
insensitive to pulsation (5 < x < 53,Nu < 3,Vf). How­
ever, further downstream, for instance at x — 6.5, the 
local Nusselt number changes down from 5 up to 16 
depending on the time instant. The reattachment point 
of the recirculation region is also presented in this 
Fig. 10. It could be observed that the region of the max­
imum local Nusselt number roughly follows the position 
of the reattachment point. It is worth to notice, see Figs. 
8-10, that the highest values (Nu ^ 14) are obtained 
when the inlet pressure gradient is positive and velocity 
is minimum. On the contrary, the Nusselt number is min­
imum (Nu ~ 5) when the inlet pressure gradient is most 
favourable, and inlet velocity is near its maximum 
(1 < t < 2). This fact suggests that the maximum heat 

Local Nusselt number and reatachement length, case 33 

Fig. 10. Local Nusselt number iso-contours behind the step as a function 
of the x co-ordinate and time along a cycle for case 33. The dashed ( ) 
line represents the recirculation region reattachment point as a function of 
time. 

transfer rate is reached out of phase (approximately half 
a cycle away) from the inlet conditions of largest velocity 
and most favourable pressure gradient. 

We think that the variation of the heat transfer rate is 
connected to the changes in flow topology along the cycle. 
Fig. 11 shows 10 equally spaced snapshots of the flow 
streamlines for the same case 33 and a full pulsating cycle. 
Time reads top-bottom left-right in Fig. 11. It is to be 
noted that, in this case, up to four recirculation regions 
appear in the flow field. In particular, a very large recircu­
lation region appears (and disappears) in the upper wall for 
snapshots 7 and 8 (t — 4 and t — 5). The maximum size of 
this region is 2.06 (6.28 < x < 8.34) that is even larger than 
the recirculation region located right behind the step, and 
its presence coincides with the time span when the local 
Nusselt number reaches its maximum (see Fig. 10). This 
behaviour could be explained by the fact that, in this time 
span and because of the large size of the upper wall recir­
culation bubble, deflection of the streamlines is largest 
when they impinge the lower wall. That is, pulsation gener­
ates flow obstacles, large-size low-velocity regions that 
appear and disappear periodically, that contribute to mod­
ify the streamlines pattern and the heat transfer rate. 
Another approach to enhance mixing is, of course, to man­
ufacture grooves or other obstacles in the channels walls, 
and this has been the subject of some recent studies 

Since manufacturing of micro-structures in channels 
walls might be costly, flow pulsation could be considered 
as a potential candidate to generate fluid obstacles that 
may enhance local mixing. 

For a given pulsation frequency, the number and extent 
of recirculation regions decreases for smaller values of the 
a2 parameter. Fig. 12 shows, as in Fig. 11, 10 snapshots of 
case 23 (see Table 2) with a> — 0.15 and a2 = 0.75. Now, the 
maximum number of recirculation regions is three and 
their size is much smaller than in the previous case. 



Fig. 11. Snapshots of the streamlines for case 33 along a pulsating cycle. Time reads top-bottom left-right. Snapshots are equally spaced in time. 

Fig. 12. Snapshots of the streamlines for case 23 along a pulsating cycle. Time reads top-bottom left-right. Snapshots are equally spaced in time. 

Fig. 13 presents the time evolution of flow topology for 
case 13 (see Table 2) with a> — 0.15 and a2 = 0.25 and, in 
this case, only one slowly contracting and expanding recir­
culation region is present. Snapshots of case 37 (see Table 
2) with a> — 0.4 and a2 = 1.5 are presented in Fig. 14. These 
results, that should be compared to those presented in 
Fig. 11 show that increasing frequency from 0.15 (the res­
onant one) to 0.4 while keeping a2 constant causes the flow 

field to exhibit a simpler structure. In this case, only two 
recirculation regions are present and the one appearing in 
the upper wall is much smaller than the one that is gener­
ated during the resonant pulsation (case 33). As a sum­
mary, it could be said that the two control parameters m 
and a2 exert a large influence on the topology of the flow 
field and that, in turn, this topology controls the heat trans­
fer rate behind the step. 



Fig. 13. Snapshots of the streamlines for case 13 along a pulsating cycle. 

Fig. 14. Snapshots of the streamlines for case 37 along a pulsating cycle. Fig. 14. Snapshots of the streamlines for case 37 along a pulsating cycle. Time reads top-bottom left-right. Snapshots are equally spaced in time. 

An overview of three snapshots of the temperature field 
associated with case 33 is shown in Fig. 15. These temper­
ature snapshots (the dark grey shade signals the highest 
temperature) correspond to the second, fifth and eighth 
sub-plots of Fig. 11, respectively. In the two lower sub­
plots, it is possible to see how the large vortex located 
downstream of the step entrains hot fluid from the wall 

Time reads top-bottom left-right. Snapshots are equally spaced in time. 

region and how, when the vortex disappears, the hot fluid 
is convected away (see upper plot). 

Finally, a comment should be made on the commonal­
ity that exists between the results obtained in this paper 
and the results reported by other researchers in the turbu­
lent flow regime. Yoshioka have studied the tur­
bulent flow topology behind a back-step when the 



Fig. 15. Temperature snapshots of case 33. Time reads top-bottom. 
Snapshots are equally spaced in time. 

incoming flow is subjected to a periodic perturbation. The 
perturbation consisted on the implementation of an 
alternating suction/injection (inclined 45° relative to the 
x-axis) through a slit open right on the step edge. The 
authors found that the perturbation that has the largest 
effect on the reattachment length has a Strouhal number 
(based on the step height and mean inlet velocity) close 
to 0.2. This value falls approximately within the range 
reported by other researchers that are referenced 
In our case, we obtain maximum heat transfer enhance­
ment for a Strouhal number (measured by using the same 
convention as Yoshioka et al. close to 0.1). A factor 
of 2 exists between those two critical Strouhal numbers, 
but it should be borne in mind that the problems also 
have large differences; namely: (a) the Reynolds number 
in the turbulent flow studies is about 100 times larger 
than in our case, (b) the nature of the perturbation is very 
different, and (c) our velocity profile is parabolic right 
before the step, while it is nearly flat in the turbulent flow 
studies. Nevertheless, both problems have in common the 
existence of a critical Strouhal number that markedly 
affects some fluid dynamics related aspects. 

9. Conclusions 

The following conclusions could be drawn after the 
completion of the work: 

• It has been found that forced flow pulsation in the inlet 
duct of a 2-D back step channel modifies substantially 
flow topology in the low Reynolds number regime. In 
particular, instead of a single recirculation bubble 
anchored to the step, several separated flow regions 
appear and disappear periodically as the pulsating cycles 
proceed. Some of the separated flow regions appear in 
the upper wall of the channel. The recirculation region 
behind the step undergoes a dynamic process in which 

a single vortex expands, breaks into a pair of vortices, 
contracts, and expands again. This dynamic behaviour 
is controlled by two parameters: frequency of the veloc­
ity pulsation and amplitude of the oscillating pressure 
gradient at the inlet section. 

• These periodic changes in the flow topology enhance 
convective mixing and, accordingly, increase the local 
Nusselt number in the region located right behind the 
step. We have computed the Nusselt number in a hori­
zontal region whose length is four times the step height 
at Reynolds 100, and found that the time-averaged Nus­
selt number could become 55% larger than in the steady-
state case. This heat transfer enhancement is the 
maximum that could be obtained without having flow 
reversal at either the inlet or outlet flow sections. 

• This Nusselt number enhancement appears to be of a 
resonant nature. For a given inlet pressure gradient 
amplitude, its reaches it maximum for a specific pulsat­
ing frequency and decreases for both higher and lower 
values of the frequency. For a given frequency, the Nus­
selt number is higher the larger is the inlet pressure gra­
dient amplitude. 

• We found that heat transfer enhancement is larger when 
it is assumed that water has temperature dependent vis­
cosity and thermal conductivity. The reason could be 
that local Reynolds numbers in the vicinity of the heated 
wall are larger when considering this real fluid behaviour. 

• The behaviour that has been described in the previous 
paragraph suggests that it might be feasible to exert 
some kind of flow control by forcing unsteady behav­
iour on a reference steady regime. This, of course, might 
not happen for any type of flow; indeed, published data 
seems to point out that flow pulsation in straight chan­
nels does not influence the time-averaged Nusselt num­
ber. That is: the existence of resonant effects may 
require the presence of a suitable geometric configura­
tion. In this context, it is worth to note that, at Reynolds 
100, the resonant frequency m — 0.15 is close to the typ­
ical vortex shedding Strouhal number (of the order of 
0.15-0.20, depending on the blockage ratio) associated 
with the flow around a square cylinder. 
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