51,851 research outputs found

    An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method

    Full text link
    In this paper we propose a collocation method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. They are categorized as singular initial value problems. The proposed approach is based on a Hermite function collocation (HFC) method. To illustrate the reliability of the method, some special cases of the equations are solved as test examples. The new method reduces the solution of a problem to the solution of a system of algebraic equations. Hermite functions have prefect properties that make them useful to achieve this goal. We compare the present work with some well-known results and show that the new method is efficient and applicable.Comment: 34 pages, 13 figures, Published in "Computer Physics Communications

    Numerical Approximations Using Chebyshev Polynomial Expansions

    Full text link
    We present numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N (El-gendi's method). The solutions are exact at these points, apart from round-off computer errors and the convergence of other numerical methods used in connection to solving the linear system of equations. Applications to initial value problems in time-dependent quantum field theory, and second order boundary value problems in fluid dynamics are presented.Comment: minor wording changes, some typos have been eliminate

    Application of the method of lines for solutions of the Navier-Stokes equations using a nonuniform grid distribution

    Get PDF
    The feasibility of the method of lines for solutions of physical problems requiring nonuniform grid distributions is investigated. To attain this, it is also necessary to investigate the stiffness characteristics of the pertinent equations. For specific applications, the governing equations considered are those for viscous, incompressible, two dimensional and axisymmetric flows. These equations are transformed from the physical domain having a variable mesh to a computational domain with a uniform mesh. The two governing partial differential equations are the vorticity and stream function equations. The method of lines is used to solve the vorticity equation and the successive over relaxation technique is used to solve the stream function equation. The method is applied to three laminar flow problems: the flow in ducts, curved-wall diffusers, and a driven cavity. Results obtained for different flow conditions are in good agreement with available analytical and numerical solutions. The viability and validity of the method of lines are demonstrated by its application to Navier-Stokes equations in the physical domain having a variable mesh

    The Construction of Finite Difference Approximations to Ordinary Differential Equations

    Get PDF
    Finite difference approximations of the form Σ^(si)_(i=-rj)d_(j,i)u_(j+i)=Σ^(mj)_(i=1) e_(j,if)(z_(j,i)) for the numerical solution of linear nth order ordinary differential equations are analyzed. The order of these approximations is shown to be at least r_j + s_j + m_j - n, and higher for certain special choices of the points Z_(j,i). Similar approximations to initial or boundary conditions are also considered and the stability of the resulting schemes is investigated

    Trajectory computational techniques emphasizing existence, uniqueness, and construction of solutions to boundary problems for ordinary differential equations Final report

    Get PDF
    Trajectory computational techniques emphasizing existence, uniqueness, and construction of solutions to boundary problems for ordinary differential equation
    corecore