6,669 research outputs found

    Bound states of the Klein-Gordon equation for vector and scalar general Hulthen-type potentials in D-dimension

    Full text link
    We solve the Klein-Gordon equation in any DD-dimension for the scalar and vector general Hulth\'{e}n-type potentials with any ll by using an approximation scheme for the centrifugal potential. Nikiforov-Uvarov method is used in the calculations. We obtain the bound state energy eigenvalues and the corresponding eigenfunctions of spin-zero particles in terms of Jacobi polynomials. The eigenfunctions are physical and the energy eigenvalues are in good agreement with those results obtained by other methods for D=1 and 3 dimensions. Our results are valid for q=1q=1 value when l≠0l\neq 0 and for any qq value when l=0l=0 and D=1 or 3. The ss% -wave (l=0l=0) binding energies for a particle of rest mass m0=1m_{0}=1 are calculated for the three lower-lying states (n=0,1,2)(n=0,1,2) using pure vector and pure scalar potentials.Comment: 25 page

    Any l-state improved quasi-exact analytical solutions of the spatially dependent mass Klein-Gordon equation for the scalar and vector Hulthen potentials

    Full text link
    We present a new approximation scheme for the centrifugal term to obtain a quasi-exact analytical bound state solutions within the framework of the position-dependent effective mass radial Klein-Gordon equation with the scalar and vector Hulth\'{e}n potentials in any arbitrary DD dimension and orbital angular momentum quantum numbers l.l. The Nikiforov-Uvarov (NU) method is used in the calculations. The relativistic real energy levels and corresponding eigenfunctions for the bound states with different screening parameters have been given in a closed form. It is found that the solutions in the case of constant mass and in the case of s-wave (l=0l=0) are identical with the ones obtained in literature.Comment: 25 pages, 1 figur

    Exact Klein-Gordon equation with spatially-dependent masses for unequal scalar-vector Coulomb-like potentials

    Full text link
    We study the effect of spatially dependent mass functions over the solution of the Klein-Gordon equation in the (3+1)-dimensions for spinless bosonic particles where the mixed scalar-vector Coulomb-like field potentials and masses are directly proportional and inversely proportional to the distance from force center. The exact bound state energy eigenvalues and the corresponding wave functions of the Klein-Gordon equation for mixed scalar-vector and pure scalar Coulomb-like field potentials are obtained by means of the Nikiforov-Uvarov (NU) method. The energy spectrum is discussed for different scalar-vector potential mixing cases and also for constant mass case.Comment: 17 pages; to be published in European Journal of Physics A (2009

    Discrete Breathers

    Full text link
    Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattices - quantum breathers. Finally we will formulate a new conceptual aproach capable of predicting whether discrete breather exist for a given system or not, without actually solving for the breather. We discuss potential applications in lattice dynamics of solids (especially molecular crystals), selective bond excitations in large molecules, dynamical properties of coupled arrays of Josephson junctions, and localization of electromagnetic waves in photonic crystals with nonlinear response.Comment: 62 pages, LaTeX, 14 ps figures. Physics Reports, to be published; see also at http://www.mpipks-dresden.mpg.de/~flach/html/preprints.htm

    Solution of Effective-Mass Dirac Equation with Scalar-Vector and Pseudoscalar Terms for Generalized Hulth\'en Potential

    Get PDF
    We find the exact bound-state solutions and normalization constant for the Dirac equation with scalar-vector-pseudoscalar interaction terms for the generalized Hulth\'{e}n potential in the case where we have a particular mass function m(x)m(x). We also search the solutions for the constant mass where the obtained results correspond to the ones when the Dirac equation has spin and pseudospin symmetry, respectively. After giving the obtained results for the non-relativistic case, we search then the energy spectra and corresponding upper and lower components of Dirac spinor for the case of PTPT-symmetric forms of the present potential.Comment: 21 pages, 1 Tabl

    Evolution of near extremal black holes

    Get PDF
    Near extreme black holes can lose their charge and decay by the emission of massive BPS charged particles. We calculate the greybody factors for low energy charged and neutral scalar emission from four and five dimensional near extremal Reissner-Nordstrom black holes. We use the corresponding emission rates to obtain ratios of the rates of loss of excess energy by charged and neutral emission, which are moduli independent, depending only on the integral charges and the horizon potentials. We consider scattering experiments, finding that evolution towards a state in which the integral charges are equal is favoured, but neutral emission will dominate the decay back to extremality except when one charge is much greater than the others. The implications of our results for the agreement between black hole and D-brane emission rates and for the information loss puzzle are then discussed.Comment: 25 pages, RevTe

    Solutions of the spatially-dependent mass Dirac equation with the spin and pseudo-spin symmetry for the Coulomb-like potential

    Get PDF
    We study the effect of spatially dependent mass function over the solution of the Dirac equation with the Coulomb potential in the (3+1)-dimensions for any arbitrary spin-orbit κ\kappa state.. In the framework of the spin and pseudospin symmetry concept, the analytic bound state energy eigenvalues and the corresponding upper and lower two-component spinors of the two Dirac particles are obtained by means of the Nikiforov-Uvarov method, in closed form. This physical choice of the mass function leads to an exact analytical solution for the pseudospin part of the Dirac equation. The special cases 1% \kappa =\pm 1 (l=l~=0,l=\widetilde{l}=0, i.e., s-wave),, the constant mass and the non-relativistic limits are briefly investigated.Comment: 24 page
    • …
    corecore