11 research outputs found

    Aspects of Bifurcation Theory for Piecewise-Smooth, Continuous Systems

    Full text link
    Systems that are not smooth can undergo bifurcations that are forbidden in smooth systems. We review some of the phenomena that can occur for piecewise-smooth, continuous maps and flows when a fixed point or an equilibrium collides with a surface on which the system is not smooth. Much of our understanding of these cases relies on a reduction to piecewise linearity near the border-collision. We also review a number of codimension-two bifurcations in which nonlinearity is important.Comment: pdfLaTeX, 9 figure

    Inductive Reasoning Games as Influenza Vaccination Models: Mean Field Analysis

    Full text link
    We define and analyze an inductive reasoning game of voluntary yearly vaccination in order to establish whether or not a population of individuals acting in their own self-interest would be able to prevent influenza epidemics. We find that epidemics are rarely prevented. We also find that severe epidemics may occur without the introduction of pandemic strains. We further address the situation where market incentives are introduced to help ameliorating epidemics. Surprisingly, we find that vaccinating families exacerbates epidemics. However, a public health program requesting prepayment of vaccinations may significantly ameliorate influenza epidemics.Comment: 20 pages, 7 figure

    Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps

    Full text link
    Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark-Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of "rotational" periodic solutions that display lens-chain structures for a general NN-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure

    Stability analysis of a constrained inventory system

    Get PDF
    Stability is a fundamental design property of inventory systems. However, the often exploited linearity assumptions in the current literature create a major gap between theory and practice. In this paper the stability of a constrained production and inventory system with a Forbidden Returns constraint (that is, a non-negative order rate) is studied via a piecewise linear model, an eigenvalue analysis and a simulation investigation. The APVIOBPCS (Automatic Pipeline, Variable Inventory and Order Based Production Control System) and EPVIOBPCS (Estimated Pipeline, Variable Inventory and Order Based Production Control System) replenishment policies are adopted. Surprisingly, all kinds of non-linear dynamical behaviours of systems can be observed in these simple models. Exact expressions of the asymptotic stability boundaries and Lyapunovian stability boundaries are derived when actual and perceived transportation lead-time is 1 and 2 periods long respectively. Asymptotically stable regions in the non-linear Forbidden Return systems are identical to the stable regions in its unconstrained counterpart. However, regions of bounded fluctuations that continue forever, including both periodicity and chaos, exist in the parametrical plane outside the asymptotically stable region. Simulation shows a complex and delicate structure in these regions. The results suggest that accurate lead-time information is essential to eliminate inventory drift and instability and that ordering policies have to be designed properly in accordance with the actual lead-time to avoid these fluctuations and divergenc

    Stability analysis of constrained inventory systems with transportation delay

    Get PDF
    Stability is a fundamental design property of inventory systems. However, the often exploited linearity assumptions in the current literature create a major gap between theory and practice. In this paper the stability of a constrained production and inventory system with a Forbidden Returns constraint (that is, a non-negative order rate) is studied via a piecewise linear model, an eigenvalue analysis and a simulation investigation. The APVIOBPCS (Automatic Pipeline, Variable Inventory and Order Based Production Control System) and EPVIOBPCS (Estimated Pipeline, Variable Inventory and Order Based Production Control System) replenishment policies are adopted. Surprisingly, all kinds of non-linear dynamical behaviours of systems can be observed in these simple models. Exact expressions of the asymptotic stability boundaries and Lyapunovian stability boundaries are derived when actual and perceived transportation lead-time is 1 and 2 periods long respectively. Asymptotically stable regions in the non-linear Forbidden Return systems are identical to the stable regions in its unconstrained counterpart. However, regions of bounded fluctuations that continue forever, including both periodicity and chaos, exist in the parametrical plane outside the asymptotically stable region. Simulation shows a complex and delicate structure in these regions. The results suggest that accurate lead-time information is essential to eliminate inventory drift and instability and that ordering policies have to be designed properly in accordance with the actual lead-time to avoid these fluctuations and divergence

    On the significance of borders: the emergence of endogenous dynamics

    Get PDF
    We propose a prototype model of market dynamics in which all functional relationships are linear. We take into account three borders, defined by linear functions, that are intrinsic to the economic reasoning: non-negativity of prices; downward rigidity of capacity (depreciation); and a capacity constraint for the production decision. Given the linear specification, the borders are the only source for the emerging of cyclical and more complex dynamics. In particular, we discuss centre bifurcations, border collision bifurcations and degenerate flip bifurcations—dynamic phenomena the occurrence of which are intimately related to the existence of borders

    Exploring the oscillatory dynamics of a forbidden returns inventory system

    Get PDF
    We present an analytical investigation of the intrinsic oscillations in a nonlinear inventory system where excessive inventory cannot be returned to the supplier. Mathematically this is captured by a non-negative constraint on the replenishment order. By studying the eigenvalues of the characteristic matrices of the system, the criteria for different types of dynamic behaviour (including convergence, periodicity, quasi-periodicity, chaos, and divergence) are derived. The upper and lower bounds of the order and inventory oscillations are found via a time-domain analysis. Our results are verified by bifurcation diagrams. We find that the closer the replenishment rule feedback parameters are to the convergence area, the milder the intrinsic oscillation of the system

    On the stationary stochastic response of an order-constrained inventory system

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Elsevier via the DOI in this recordWe investigate the stochastic response of a base stock inventory system where the order quantity is either upper- or lower-constrained. This system can represent many real-world settings: forbidden returns, minimum order quantities, and capacity constraints, for example. We show that this problem can be translated into a stopping time problem where the distributions of orders and inventory can be represented by a countably infinite mixture of truncated and convoluted demand distributions. This result can be extended to the cases of arbitrary lead time and auto-correlated demand. A state space algorithm is developed to approximate the first-and second-order moments of the order quantity and inventory level. Via a numerical analysis, we investigate the performance of the approximation, as well as the operational and economic impact of the order constraint. In particular, the constraint impacts order and inventory variances via different combinations of the mixture and truncation effects. We show how tuning the constraint can improve the operational and financial performance of the inventory system by acting as a smoothing mechanism.Spanish State Research Agency (Agencia Estatal de Investigación

    The Chaos of Katrina: A Nonlinear Analysis of Federal Logistics Support during Hurricane Katrina Relief Operations

    Get PDF
    This thesis presents a case study of federal logistics support during Hurricane Katrina disaster relief operations. Data from federal contracts covering the first 10 weeks of Katrina are used to measure federal logistics activity. The study investigates whether chaos theory, part of complexity science, can extract information from Katrina contracting data to help managers make better logistics decisions during disaster relief operations. The study uses three analytical techniques: embedding, fitting the data to a logistic equation, and plotting the limit-cycle. Embedding and fitting a logistic equation to the data were used to test for deterministic chaos. The logistic equation and two versions of the limit-cycle model developed by Priesmeyer, Baik, and Cole were also tested as potential management tools. The study found that deterministic chaos was present during the first week of disaster relief, but that results for subsequent weeks were inconclusive, possibly due to internal changes to the relief dynamics. The thesis concludes that initial conditions and early actions will have a significant affect on disaster relief outcomes. Furthermore, many events that appear to be uncontrollable and random may actually be controllable. Therefore, managers play a critical role in preparing for and providing guidance in the early stages of disaster relief

    Diseño de controladores continuos convergentes por un tiempo fijo para sistemas dinámicos con incertidumbre

    Get PDF
    Este documento presenta controladores no lineales que proveen convergencia en tiempo fijo al origen (o a una vecindad del origen) para sistemas dinámicos de alto orden sujetos a incertidumbres (disturbios deterministicos no desvanescentes y disturbios estocásticos desvanescentes dependientes de los estados y el tiempo). Dos de los tres controladores diseñados incluyen un diferenciador convergente en tiempo fijo, un observador de disturbios convergente en tiempo fijo, y un regulador convergente en tiempo fijo. El diferenciador se da en el caso que el ´único estado medible del sistema dinámico es el de mayor grado relativo. El observador de disturbios convergente en tiempo fijo se emplea para estimar variaciones de disturbios no desvanecentes y no acotados. En caso de que las cotas para los disturbios sean desconocidas se incluye un observador adaptable convergente en tiempo fijo caracterizado por no incrementar de manera excesiva las ganancias del controlador. En cuanto a la presencia simultanea de disturbios determinísticos no desvanescentes y disturbios estocásticos desvanescentes dependientes de los estados y el tiempo, se presenta un algoritmo Super-twisting estocástico convergente en tiempo fijo. El problema de estimación del tiempo de convergencia de los controladores se resuelve calculando una cota superior uniforme del tiempo fijo de convergencia. Finalmente, los algoritmos diseñados se verifican en dos casos de estudio: Un motor DC con armadura y un problema de gestión de stocks. Resultados de las simulaciones confirman convergencia en tiempo fijo y robustez de los controladores diseñados
    corecore