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Abstract
Wepropose a prototypemodel ofmarket dynamics inwhich all functional relationships
are linear. We take into account three borders, defined by linear functions, that are
intrinsic to the economic reasoning: non-negativity of prices; downward rigidity of
capacity (depreciation); and a capacity constraint for the production decision. Given
the linear specification, the borders are the only source for the emerging of cyclical and
more complex dynamics. In particular, we discuss centre bifurcations, border collision
bifurcations and degenerate flip bifurcations—dynamic phenomena the occurrence of
which are intimately related to the existence of borders.

Keywords Capacity constraint · Depreciation constraint · Nonnegativity constraint ·
Piecewise smooth system · Border collision bifurcation · Centre bifurcation

1 Introduction

In the aftermath of the recent financial crises, economic models that consider con-
straints and boundaries have become increasingly popular, in particular constraints in
the financial markets: liquidity constraints, borrowing constraints, credit constraints,
collateral constraints, etc. These constraints primarily reflect imperfections in the
financial markets. However, there are other constraints with an even longer, albeit less
noted, history that do not involve any market imperfections: e.g. capacity constraints,
which bind production decisions, feature prominently in industrial organization mod-
els, but also in business cycle models in the tradition of Samuelson and Hicks; or
incentive and participation constraints that play a central role in contract theory. And
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there are even more fundamental constraints, such as budget constraints and non-
negativity constraints for quantities and prices.

Recently, considering inequality constraints in dynamic models, Rendahl (2017)
pointed out that this asks for specific analytic methods.1 Even less known is another
analytic implication: themere existence of boundaries creates the potential for cyclical
and even chaotic dynamic time paths. This neglect is astonishing since the financial
crises has powerfully shown that the stability of equilibria and fixed points cannot be
taken as granted. Instead, the analysis of out of equilibrium dynamics should be of
prime importance.

In the following, we show dynamic phenomena that directly derive from the consid-
eration of boundaries. For that purpose, we propose a very simple model that involves
boundaries, but is linear otherwise and continuous. Thus, any complex dynamics can-
not be attributed to nonlinear functional specifications that might be considered as
arbitrary; it directly derives from the boundaries, crossing which the linear system
changes definition. In particular, we present a very simple model of market dynamics
in the Marshallian tradition. Quantity decisions—on current output and on capacity
adjustments—depend on a comparison of the relevant demand and supply price. Out-
put is sold against the market demand function at a market clearing price. On purpose,
we assume all functional relationships to be linear. In addition, we explicitly take into
account three borders that are intrinsic to the economic reasoning: a non-negativity
constraint for prices; a downward rigidity of capacity (depreciation) and a capacity
constraint for the production decision.

The study of the dynamics which are involved in piecewise linear two-dimensional
maps is not a new research subject. It started several years ago, and important early
contributions include Gumowski andMira (1980), Nusse and Yorke (1992),Mira et al.
(1996), and Gardini (1992). However, this area is not so well known and developed.
Also two influential surveys on analytic tools for economic dynamics, Barnett et al.
(2015) and Grandmont (2008), present only tools for smooth functions. Many proper-
ties are still to be investigated and in the present paper we apply most recent analytic
tools to a prototype economics model.

There are also some contributions in economics that do already involve borders
and not only with piecewise smooth functions, occasionally also with discontinuous
specification of the central dynamic process. In business cycle theory, models in the
tradition of Hicks and Kaldor with a “floor” and a “ceiling” (Hommes 1995; Sushko
et al. 2003, 2010; Gardini et al. 2006) aswell as regime switchingmodels (Tramontana
et al. 2010); in growth theory (Matsuyama 1999, 2007; Boehm and Kaas 2000; Kaas
and Zink 2007; Tramontana et al. 2011a), in industrial organization theory, managerial
economics and competition models (Kopel 1996; Laugesen and Mosekilde 2006;
Bischi and Lamantia 2012; Bischi et al. 2012; Schmitt et al. 2017), models of the
so-called New Economic Geography and industry location (Currie and Kubin 2006;
Commendatore et al. 2008a, b, 2020; Agliari et al. 2011; Schmitt et al. 2018), and also
in macroeconomic models with financial markets (Caballé et al. 2006; Tramontana
et al. 2011b; Matsuyama 2013; Sushko et al. 2014, 2016; Kubin and Zörner 2019)

1 In his work, the author aims to bridge the gap between dynamic programming techniques (which are
reliable but often slow) and Euler equation-based methods (which are known to be faster but have difficult
convergence properties).
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borders play a crucial role. In fact, in his survey on macro-dynamics, Gomes (2006)
identifies the piecewise smooth specification as one of five influential model types.

Moreover, improvements in the dynamic tools which can be used to investigate
one-dimensional piecewise smooth systems recently appeared (Sushko et al. 2015,
2016), and also two-dimensional piecewise smooth models in economic applications
have been investigated (Sushko et al. 2017; Gardini et al. 2018).

In our contribution, the focus relies on the connection that exists between the bor-
ders, which have a genuine economic rational, and the dynamic specification. As
already remarked, we present a simple prototype model of the market dynamics in the
Marshallian tradition which involves three borders and in which all functional rela-
tions are linear.2 Time is discrete and structured by the production period. Decisions
on output and capacity depend (linearily) on the difference between the correspond-
ing supply and demand prices. At the end of the production period, output is sold
at against a (linear) market demand, and the resulting market prices feed back upon
quantity decisions. Output, capacity and market prices are subject to a non-negativity
constraint, output is bounded by a capacity constraint, and capacity reductions cannot
exceed depreciation. The resulting model is piecewise linear in two dimensions (out-
put and capacity) and involves three borders. In particular we discuss three dynamic
phenomena, the occurrence of which are intimately related to the existence of borders:
centre bifurcations, border collision bifurcations and degenerate flip bifurcations. The
emerging dynamics may be complex and in our analysis we pay special attention to
the role of the borders in shaping the resulting dynamics.

The plan of the paper is as follows. In Sect. 2, we present the model and define the
different regions in the phase space inwhich the continuousmap changes its definition.
In Sect. 3 we describe the dynamic behaviour generated by this map. In particular,
Sect. 3.1 completely characterises the unique fixed point of the map, showing that
it loses stability via a centre bifurcation (see Sushko and Gardini 2008) that always
(i.e. independently on the parameters of the map) occurs through a rotation of period
six and leads to a stable period-6 cycle (belonging to an attracting closed invariant
curve, saddle-node connection of a pair of 6-cycles). In addition, we show that this
period-6 cycle loses stability through a so-called secondary centre bifurcation leading
to annular chaotic areas (see Gardini 1994; Gardini et al. 2011) as well as to chaotic
areas in one piece (see Mira et al. 1996; Fournier-Prunaret et al. 1997; Maistrenko
et al. 1998; Sushko et al. 1999). In Sect. 3.2, we shall describe two additional dynamic
phenomena,which are caused by the existence of the borders. In particular, we describe
the so-called border collision bifurcations [following the terminology introduced by
Nusse and Yorke (1992)], which occur if some periodic point of a cycle merges with
a border line; and we describe the peculiar character of a flip bifurcation which, due
to the linearity of the functions, is degenerate (Sushko and Gardini 2010). Section 4
concludes.

2 The model is inspired by Currie and Kubin (1997), a nonlinear version is studied in Kubin and Gardini
(2013).
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2 The basic framework

In the following, we develop a very simple prototype model of the dynamic interaction
between the decisions on output and capacity adjustment and the price determination
in a competitive market for a single homogenous commodity. We choose an unusual
approach. After introducing the assumption on production technology, we discuss the
borders that play an important role in our model and we trace explicitly the elements
of the model that are already implied by the specification of the borders. Only later
whenever necessary, we introduce the behavioural framework that rests upon ideas
taken from evolutionary economics.

Production technology is assumed to be as simple as possible. Production takes
time (one period); and requires as input one unit of fixed capital (one machine) and
a constant quantity of labour and raw material per unit of the final output. While
the required quantity of labour and raw material can be acquired instantaneously,
the stock of machines can only be increased with a gestation lag of one period. It
depreciates irrespective of use at a constant rate δ per period. Once installed, machines
are specific to the particular industry and thus their use involves no opportunity costs.
Entrepreneurs decide upon capacity adjustments and production output that is sold in
a competitive market. Given that we are focussing on the (partial) analysis of a single
market, we take the prices for the variable inputs and for new machines, denoted by ν

and m resp., as fixed. In addition, we assume that entrepreneurs can finance any cost
at a—given—interest rate, denoted by i .

The first border that we observe is the non-negativity constraint for prices. We
assume that there exists a maximum quantity that can be sold at a non-negative price
(denoted by a) and this assumption splits the phase space into two halves. For qt ≥ a
the constraint implies that in this region pt = 0 holds (where qt denotes the quantity
sold at time t and pt denotes the price); for 0 ≤ qt < a we have to specify a demand
function, i.e. pt = P (qt )with dP

dqt
< 0. Note that the demand function allows reducing

the phase space to a two dimensional one in output and capacity.
The second border that we take into consideration is the capacity constraint, which

follows from the following reasoning: production requires fixed capital (machines)
as input and the stock of fixed capital (machines) cannot be adjusted instantaneously.
Therefore, the current production decision is restricted by the currently existing capac-
ity. We allow for a production lag of one period and denote with q̃t+1 the intended
output for period t + 1. The capacity constraint is binding, whenever the intended
output is higher than the existing capacity, denoted by kt , i.e. whenever q̃t+1 ≥ kt .
For that case, the quantity dynamics is already implied by the constraint itself and is
given by qt+1 = kt .

The third border in our model concerns the downward rigidity of capacity adjust-
ment. Assuming that machines once installed are specific to the industry, a capacity
reduction cannot exceed the depreciation. We allow for a one period lag in capacity
adjustment (i.e. a gestation lag for new machines) and denote the intended capacity
for period t+1 by˜kt+1. The depreciation constraint is binding, whenever the intended
capacity reduction is higher than the depreciation, i.e. whenever ˜kt+1 ≤ kt (1 − δ).
Again, the capacity dynamics for that case is already implied by the constraint and
given by kt+1 = kt (1 − δ).
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Therefore, if a border is binding, it is the border that implies the dynamic (or static)
outcome for that case—roughly spoken, half of the dynamics is already given by the
borders.

In order to proceed, we have to specify behavioural rules for the intended quantity
and the intended capacity. In doing so, we succeed in relating the borders to the phase
space as well as in specifying the dynamics for the cases in which no border is binding.

For modelling entrepreneurial behaviour we follow the line suggested in Kubin and
Gardini (2013) and start from the following observations that are well documented
in managerial, evolutionary, behavioural economics as well as in systems dynamics
(for overviews, see e.g. Dosi et al. 2008; Aramburo et al. 2012). In an environment
characterised by nonlinearities, feedback mechanisms and delays — and our model
will definitely fall in this class—the scope for learning the underlying model is limited
[see Dosi et al. (2008), who extensively document various impediments to learn]
and economic agents tend to base their decisions on incomplete and inaccurate mental
models or to recur to simple heuristics. In their famous survey on heuristics and biases,
Tversky and Kahneman (1974, p. 185) note that “in many situations, people make
estimates by starting from an initial value that is adjusted to yield the final answer”
and that “adjustments are typically insufficient”. Sterman (1989), in his seminal paper,
identifies this anchoring and (insufficient) adjustment behaviour as typical heuristic
used in capacity adjustment decisions (with the status quo being quite naturally used
as anchor) and provides evidence for its intended rationality (similar also in his more
recent study, Sterman et al. 2007). Aramburo et al. (2012) review results from a
vast number of laboratory experiments on decision making in complex and dynamic
environments. They conclude that economic agents tend to ignore delays and that in
complex environments “experimental data fit a decision rule based on the anchoring
and adjustment heuristic” (Aramburo et al. 2012, p. 98).

For our model, we follow this line of reasoning and assume that entrepreneurs
base their decisions on an anchoring and (insufficient) adjustment heuristic, where
the status quo is used as anchor and where the (insufficient) adjustment follows from
market observations. In order to be more precise, note that in a competitive market
with many (homogeneous) competitors a single entrepreneur would have difficul-
ties to observe total market capacity, total market supply and total market demand,
but the own capacity, the own quantity produced and the market price for the out-
put can be easily observed. This suggests a Marshallian perspective on managerial
decision heuristics. Observable individual quantities serve as anchor and they are
(insufficiently) adjusted—following a Marshallian tradition—whenever the current
market price is not equal to the relevant Marshallian supply price.

First, we model the output decision. Given that machines, once installed, are spe-
cific to the particular industry, the costs of the inherited machines are sunk, and a
Marshallian short-run supply price is equal to the effective variable cost ν(1 + i).
As noted above, we assume ν(1 + i) to be constant. The intended quantity is thus
higher the higher the current production (anchoring behaviour) and the higher the

current price (adjustment behaviour); therefore, q̃t+1 = ˜Q (qt , pt ) with
∂ ˜Q
∂qt

> 0 and
∂ ˜Q
∂ pt

> 0. Using the demand function, results in q̃t+1 = ˜Q (qt , P (qt )). This spec-
ification allows us to relate the second border, the capacity constraint, to the phase
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space. On the border q̃t+1 = kt holds or kt = ˜Q (qt , P (qt )) with
dkt
dqt

= ∂ ˜Q
∂qt

+ ∂ ˜Q
∂P

dP
dqt

.

Since dP
dqt

< 0 for 0 ≤ qt < a, the second boundary, the capacity constraint, can
have a positive or negative slope in that region, depending on the relative strength of
the anchoring and adjustment behaviour. In contrast, dP

dqt
= 0 holds for qt ≥ a; in

that region, the capacity constraint has a positive slope. In addition, the behavioural
rule implies the dynamic outcome for the case in which the capacity constraint is not
binding: qt+1 = ˜Q (qt , P (qt )) if kt > ˜Q (qt , P (qt )).

Second, we model the capacity adjustment decision. The corresponding long-run
supply price, denoted by c, is given as follows:

c = ν (1 + i) + m (δ + i) (1)

where m (δ + i) represents the ex ante per period costs of buying and installing a
machine instead of investing in the financial market. We assume that the long-run
supply price is constant as well and that c < a holds.

Entrepreneurs intend to increase capacity whenever the current market price is
higher than the long-run supply price. The higher the current capacity (anchoring
behaviour) and the higher the current price (adjustment behaviour), the higher the
intended capacity; therefore, ˜kt+1 = ˜K (kt , pt ) with ∂ ˜K

∂kt
> 0 and ∂˜k

∂ pt
> 0. Using

the demand function, results in˜kt+1 = ˜K (kt , P (qt )). This specification allows us to
relate the third border, the depreciation constraint, to the phase space. On the border
˜kt+1 = kt (1 − δ) holds or kt (1 − δ) = ˜K (kt , P (qt )). For determining the slope

observe (1 − δ) dkt = ∂ ˜K
∂kt

dkt+ ∂ ˜K
∂P

dP
dqt

dqt ; thus
dkt
dqt

=
∂ ˜K
∂P

dP
dqt

1−δ− ∂ ˜K
∂kt

. Similar to the capacity

constraint also the third boundary, the depreciation constraint, may have a positive or
negative slope in the area 0 ≤ qt < a. Instead, for qt ≥ a the depreciation constraint
has a zero slope. Again, the behavioural rule implies the dynamic outcome for the
case in which the depreciation constraint is not binding: kt+1 = ˜K (kt , P (qt )) if
˜K (kt , P (qt )) > kt (1 − δ) .

We thus have illustrated how the definition of the borders and the specification of
the behavioural rules interact in specifying the full dynamic model. Both are necessary
and the borders—that are intrinsic to the model and generally much less disputed than
the behavioural rules—contribute much to this specification.

The analysis of the dynamics generated by this model requires a more explicit
specification of the behavioural rules. On purpose—and in contrast to Kubin and
Gardini (2013)—we shall use linear specifications; therefore, any nonlinear dynamics
comes from the—much less disputed—borders, and not from a nonlinear specification
of the behavioural rules that might be considered arbitrary.

With a linear demand function and observing the non-negativity constraint the
market clearing price, pt , is given as:

pt =
⎧

⎨

⎩

0 for qt = 0
a − qt for 0 < qt ≤ a
0 for qt > a

(2)
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With a linear specification the intended quantity is given as:

q̃t+1 = qt + μ(pt − ν(1 + i)) (3)

For 0 < qt ≤ a the second boundary, the capacity constraint (shown in magenta in
Fig. 1), can be written as kt = qt +μ(a−qt − ν(1+ i)), i.e. kt = qt (1−μ)+μ(a−
ν(1 + i)) =: f1(qt ), while for qt > a the second boundary (also shown in magenta
in Fig. 1) is kt = qt − μν(1 + i) =: f2(qt ).

Thus, we have the following output dynamics:

qt+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f1(qt ) = qt (1 − μ) + μ(a − ν(1 + i)) if 0 < qt ≤ a and kt ≥ f1(qt )
f3(kt ) = kt if 0 < qt ≤ a and kt < f1(qt )
f2(qt ) = qt − μν(1 + i) if qt > a and kt ≥ f2(qt )
f3(kt ) = kt if qt > a and kt < f2(qt )

(4)
With a linear specification, the intended capacity is given as:

˜kt+1 = kt + σ(pt − c) (5)

For 0 < qt ≤ a the third border, the depreciation constraint (shown in green in Fig. 1),
can bewritten as kt (1 − δ) = kt+σ(a−qt−c) =: g1(qt , kt )or (1 − δ) kt = g1(qt , kt )
or kt = σ

δ
qt + σ

δ
(c − a). For qt > a the third border (also shown in green in Fig. 1)

is kt (1 − δ) = kt − σc := g2(kt ) or kt = σ
δ
c.

Thus we have the following capacity dynamics:

kt+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g1(qt , kt ) = kt − σqt + σ(a − c) if 0 < qt ≤ a and g1(qt , kt ) ≥ (1 − δ) kt
g3(kt ) = (1 − δ)kt if 0 < qt ≤ a and g1(qt , kt ) < (1 − δ) kt
g2(kt ) = kt − σc if qt > a and g2(qt , kt ) ≥ (1 − δ) kt
g3(kt ) = (1 − δ)kt if qt > a and g2(qt , kt ) < (1 − δ) kt

(6)

So the economicmodel is ultimately described by (4) and (6), i.e. by a two-dimensional
continuous piecewise linear map in the plane, say (qt+1, kt+1) = T (qt , kt ), where the
definition of T changes (although continuously) at borders (in the phase plane (q, k))
that are due to the economically motivated constraints.

As long as the parameters satisfy the inequality σc
δ

< a − μν(1 + i), the positive
area of the phase plane (q, k) is represented by 5 different regions, where the map
takes different definitions, as shown in Fig. 1a, while for σc

δ
> a−μν(1+ i) we have

7 regions, as shown in Fig. 1b.
The definition of the map is given, in explicit form in each region, by

R1 :
[

qt+1
kt+1

]

=
[

f1(qt )
g1(qt , kt )

]

, R2 :
[

qt+1
kt+1

]

=
[

f2(qt )
g2(kt )

]

R3 :
[

qt+1
kt+1

]

=
[

f3(kt )
g1(qt , kt )

]

, R4 :
[

qt+1
kt+1

]

=
[

f3(kt )
g2(kt )

]

, R5 :
[

qt+1
kt+1

]

=
[

f3(kt )
g3(kt )

]

R6 :
[

qt+1
kt+1

]

=
[

f1(qt )
g3(kt )

]

, R7 :
[

qt+1
kt+1

]

=
[

f2(qt )
g3(kt )

]
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Fig. 1 Qualitative description of the different regions in the phase space. In a for σc
δ < a − μν(1 + i), 5

regions. In b for σc
δ

> a − μν(1 + i), 7 regions (color figure online)

We notice that in the rightmost regions where q > a the variable kt necessarily
decreases; therefore, an iterated point (qt , kt ) is forced to enter some region where
q < a. In the region R5 the map is a contraction, and such that a point (qt , kt ) is forced
to enter the region R3.

It is also easy to see that a fixed point cannot exist in the regions R1 and R6 so
that let us look at the definition of the map in region R3, given by (qt+1, kt+1) =
( f3(kt ), g1(qt , kt )) = (kt , kt − σqt + σ(a − c)). This map has a unique fixed point
given by (q, k) = (k∗, k∗) where

k∗ = (a − c) = (a − ν(1 + i) − m(δ + i)) > 0 (7)

and thus the two-dimensional map T has also a positive fixed point (q, k) =
(k∗, k∗) =: K ∗ iff this point belongs to the region R3.

Proposition 1 The system defined in (4) and (6) has a unique positive fixed point given
by K ∗ = (k∗, k∗), belonging to Region R3.

To prove the proposition we have to show that the fixed point belongs to that
region as we have already shown that no other fixed point exists in the other regions.
First we notice that k∗ = (a − c) < a so that the fixed point always belong to
the left side of the straight line determined by the constraint a. To show that the
fixed point is always above the constraint separating the regions R3 and R5 we have
to prove that the fixed point always satisfies g1(qt , kt ) ≥ (1 − δ) kt , and in fact it
is g1(k∗, k∗) − (1 − δ) k∗ = δ(a − c) > 0. Then we have to prove that the fixed
point is always below the constraint separating the regions R1 and R3, that means
f1(k∗) > k∗. And in fact we have f1(k∗) = k∗(1 − μ) + μ(a − ν(1 + i)) > k∗ iff
−(a − c)μ + μ(a − ν(1 + i)) > 0 iff m(δ + i) > 0 which is always satisfied. ��
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3 Dynamic properties

In a linearmodel cyclical or complexdynamics is onlypossible becauseof the existence
of borders, at which the definition of the (linear) dynamic specification changes. In the
following, we show how the borders shape the dynamic properties of our model. In
particular, we discuss the dynamics implied by centre bifurcations, by border collision
bifurcations and by degenerate flip bifurcations—i.e. dynamic phenomena in which
borders play a crucial role.

3.1 Centre bifurcation

We start investigating the stability properties of the fixed point K ∗ = (k∗, k∗). The
Jacobian of the system defined in region R3 is a constant matrix given by

J3 =
[

0 1
−σ 1

]

(8)

whose characteristic polynomial is givenbyP(λ) = λ2−λ+σ.The related eigenvalues

λ1,2 = 1±√
1−4σ
2 are complex conjugated for σ > 1/4. The fixed point can loose

stability via a centre bifurcation, occurring when the complex eigenvalues become
equal to +1 in modulus, which occurs for σ = 1, that is when the complex conjugate

eigenvalues are λ1,2 = 1
2 ± j

√
3
2 which corresponds to a rational rotation with rotation

number 1
6 (of angle 2π

6 ). As shown in Sushko and Gardini (2008), a piecewise linear
map undergoing a centre bifurcation leads to an invariant polygon, filled with invariant
curves on which the trajectories are either all periodic or quasiperiodic, depending on
the rotation number (rational or irrational, respectively), and all the trajectories in
the polygon are stable but not attracting, i.e. not asymptotically stable. In our case
for σ = 1, an invariant polygon P exists, bounded by six segments of straight lines,
one segment must belong to the border of definition of the region R3 and the other
segments are given by its images under T . We can now prove the following

Proposition 2 Consider the system defined in (4) and (6).

(i) At σ = 1 an attracting Polygon P exists in Region R3 filled with cycles of period
6, each single cycle is stable but not attracting.

(ii) Let σ < 1 and μ < 1 then the unique fixed point K ∗ is globally stable.

Having shown that for σ = 1 the Jacobian matrix in region R3 (to which the fixed
point K ∗ belongs) has complex eigenvalues equal to 1 in modulus with a rational
rotation number 1

6 , to end the proof we have only to show that for σ < 1 and μ < 1,
when the fixed point is locally stable, it is globally attracting. To see this, we notice that
when the fixed point is locally stable, we have an immediate basin of attraction Bim
which is the widest region belonging to R3 made up of points which are converging
to the fixed point with a trajectory which is completely included in R3, and we show
that starting from any other point outside Bim wemust necessarily enter Bim in a finite
number of steps. In fact, the map defined in region R1 is in triangular form, where the
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Fig. 2 In a centre bifurcation at μ = 1.5, δ = 0.5 and σ = 1. In b a unique attracting six cycles exists, at
σ = 1.1

linear function f1(qt ) is a contraction for μ < 1 and tends to q∗ = a − ν(1 + i) < a
while the variable kt is governed by g1(qt , kt )which leads to g1(q∗, kt ) = kt −σq∗ +
σ(a − c) = kt − σ(a − ν(1 + i)) + σ(a − ν(1 + i) − m(δ + i)) = kt − σm(δ + i)
that is kt+1 = kt − σm(δ + i) which is decreasing. Thus any point (qt , kt ) ∈ R1 is
necessarily mapped in region R3 in a finite number of steps. We have already noticed
above that any point belonging to the region q > a is necessarily mapped to the region
q < a, so that, from the properties of the maps defined in the other regions, in a finite
number of steps the immediate basin Bim must be reached. ��

We remark that part (ii) of Proposition 2 is only a sufficient condition. That is, for
σ < 1, the stable fixed point may be globally stable also when μ > 1, but the proof
cannot follow the steps used above, as the map in triangular form defined in region R1
has the linear function f1(qt ) which is an expansion, and the points are pushed away
from q∗.

What occurs after the centre bifurcation of the fixed point clearly depends on
the combined effect of the functions defined mainly in the two regions R3 and R1.
However, the rational rotation with rotation number 1

6 suggests that also for σ > 1,
close to the bifurcation value, a unique attracting cycle of period 6 exists, that is, the
infinitely many 6-cycles, stable but not attracting, leads to a unique 6-cycle attracting
node and, as we shall see, after the centre bifurcation of the fixed point the dynamics
may become quite soon complicated. An example of the centre bifurcation is shown
in Fig. 2 at the following parameter values:

a = 8, ν = 1, m = 2, i = 0.1 (9)

which will be kept fixed in all our simulations in this work, and the parameter c is
computed as in (1).

Figure 2a shows the invariant polygon P existing when the fixed point is a centre,
at the bifurcation value (on the cuve C1 in Fig. 3a). Before the bifurcation, being
μ = 0.95 < 1, the fixed point is globally attracting. At the bifurcation value the
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Fig. 3 In a two-dimensional bifurcation diagram in the parameter plane (σ,μ) at δ = 0.5 fixed. The centre
bifurcation of the fixed point is labelled by C1, while that of the 6-cycle by C6. In b one-dimensional
bifurcation diagram showing qt as a function of μ at σ = 1.2 fixed, along the vertical path showin in (a). In
c one-dimensional bifurcation diagram showing qt as a function of σ at μ = 1.5 fixed, along the horizontal
path shown in (a) (color figure online)

invariant polygon, included in region R3, is bounded by six segments, one segment
belongs to the curve defining a border of the region R3, and the other segments are
obtained by iteration of this segment by the map T in this region. Any point external
to the polygon is mapped into it in a finite number of iterations, and any point of the
polygon (boundary included) belongs to six cycle (i.e. is periodic of period 6).

After the bifurcation, as we can see in Fig. 2b, only one attracting cycle is left,
with two periodic points belonging to region R1 and four periodic points belonging to
region R3. In Fig. 2b only the attracting cycle is shown, however it is worth to recall
that (due to the continuity of the map) the result of the centre bifurcation is a pair of
6-cycles, one of which is always a saddle while the other may be locally attracting (as
in Fig. 2b) or a repelling node. When the 6-cycle is attracting we may have a closed
curve connecting the saddle with the attracting cycle, made up of the unstable set of
the 6-cycle saddle, while the stable set of the saddle is an invariant set which belongs
to the frontier of the six disjoint fixed points for the sixth iterate of the map, i.e. for
T 6. An example will be given below (in Fig. 4a).

In order to further investigate the dynamic properties, wewill refer to the bifurcation
diagrams in Fig. 3 (that are drawn for δ = 0.5). Figure 3a is a two-dimensional
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bifurcation diagram in the parameter plane (σ,μ). Different colors correspond to
attracting cycles of different periods, up to period 45. White points denote either a
chaotic attractor or a different attracting set, not chaotic, as a cycle with periodicity
higher than 45 or a closed invariant curve. We can see that at σ = 1 (vertical line
in Fig. 3a, denoted as C1 for centre bifurcation) a pair of 6-cycles always appear for
σ > 1, a saddle one and a second cycle (stable or unstable). A wide light blue region
in the centre of Fig. 3a corresponds to the existence of an attracting 6-cycle. The two
boundaries of this stability region (different from σ = 1) correspond to two different
kind of bifurcations. As proved in the following proposition, the upper boundary C6
corresponds to a centre bifurcation of the attracting 6-cycle, while the lower boundary
corresponds to a border collision bifurcation, also denoted by BCB for short (as
indicated in Fig. 3a), which means that a periodic point of the cycle collides with the
boundary of definition of a region.

We prove now the following:

Proposition 3 Consider the system defined in (4) and (6). Let (σ,μ) belong to the
stability region of the attracting 6-cycle born at the centre bifurcation of the fixed
point K ∗, then at μ = 1 + 1

σ 2 the 6-cycle undergoes a centre bifurcation.

To prove the proposition we recall that the attracting six cycles has two periodic
points belonging to region R1 and four periodic points belonging to region R3. Its local
stability is thus investigates as a fixed point of the map (q ′, k′) = (R3)

4(R1)
2(q, k)

which is still a linear map, with a constant Jacobian matrix given by [J3]4[J1]2 where

J3 =
[

0 1
−σ 1

]

, J1 =
[

1 − μ 0
−σ 1

]

so that the explicit formulation is given by

[J3]4[J1]2 =
[

(σ 2 − σ)(1 − μ)2 + (2σ − 1)(σ (1 − μ) + σ) −(2σ − 1)
(2σ 2 − σ)(1 − μ)2 + (σ 2 − 3σ + 1)(−σ(1 − μ) − σ) (σ 2 − 3σ + 1)

]

and via algebraic computation it is easy to see that forμ = 1+ 1
σ 2 the two eigenvalues

of this matrix are complex conjugated and equal to +1 in modulus. Thus the 6-cycles
undergoes a centre bifurcation, whose rotation number now depends on the values of
the parameters σ and μ of the system. ��

Figure 3b shows a one-dimensional bifurcation diagram for σ = 1.2 fixed and for
varying μ along the vertical line shown in Fig. 3a; the wide interval of σ values in
which an attracting 6-cycle exists corresponds to the crossing of the region having
triangular shape in Fig. 3a and the occurrence of a centre bifurcation (in the upper
boundary of the stability region, at μ = 1 + 1

1.22
= 1.694) and a border collision

bifurcation (in the lower boundary of the stability region) is indicated.
Figure 3c shows a different one-dimensional bifurcation diagram forμ = 1.5 fixed

and for varying σ along the horizontal line shown in Fig. 3a. Again, we indicate the

occurrence of the centre bifurcation of the 6-cycle (at σ =
√

1
μ−1 = √

2 = 1.4142). In

addition, we note the occurrence of a (degenerate) flip bifurcation. In the following, we
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Fig. 4 Change in the basin of attractions of the six fixed points of the map T 6 at μ = 1.5 and δ = 0.5. In a
σ = 1.1; In b σ = 1.4

are going to discuss these dynamic phenomena (shown in the enlargement of Fig. 3c)
that are intimately related to the existence of borders in more detail.

Let us first analyze in more detail the example marked in Fig. 3c in which the
attracting six cycles lose stability via the centre bifurcation commented above. Before
σ reaches the bifurcation point, the six cycles as attracting node (real eigenvalues
below 1 in absolute value) and the related basins for the map T 6 have a quite simple
structure (see Fig. 4a). As the parameter σ is increased the attracting node becomes
an attracting focus (complex eigenvalues below 1 in modulus), and we have a more
complex structure of the basins for the map T 6 (see Fig. 4b). This is also due to the
change in the partition of the phase space (qt , kt ) from 5 to 7 regions. Nevertheless, the
existing attractor still is a 6-cycle; so apparently nothing has changed on the attracting
set of the phase plane. However, the change of the borders of the map may cause
other border collision bifurcations, which may also lead to the appearance of pairs of
unstable cycles.

After the centre bifurcation of the 6-cycle, the 6-cycle continues to exist as a
repelling focus, and a different attractor appears. This centre bifurcation for the fixed
points of the map T 6 follows the properties recalled above (and described in Sushko
and Gardini 2008), and soon after we numerically see an attracting set made up of six
chaotic pieces in annular shape (see Fig. 5a). Increasing σ the chaotic set becomes
wider and the six chaotic pieces become filled (see Fig. 5b). This transition corre-
sponds to the first homoclinic bifurcation of the 6-cycle repelling focus existing inside
the annular regions (as described in Mira et al. 1996).

Increasing σ further, a contact bifurcation between the 6 chaotic pieces and the
stable set of the 6-cycle saddle (the one which was born in pair with the attracting six
cycles, and which belongs to the boundaries of the six basins of the map T 6), occurs,
a so-called contact bifurcation (Mira et al. 1996; Fournier-Prunaret et al. 1997) also
known as crises (following Grebogi et al. 1983), leading to a wider chaotic area of
annular shape, around the unstable fixed point (Fig. 5c). A similar transition also
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Fig. 5 Attractors of the map at μ = 1.5 and δ = 0.5. In a σ = 1.42 chaotic attractor in six annular regions;
in b σ = 1.454 six chaotic pieces; in c σ = 1.465 one annular region

occurs along the other path shown in Fig. 3b, at fixed σ = 1.2 and increasing μ after
the centre bifurcation of the 6-cycle, an example is shown in Fig. 6a at μ = 2.

It is interesting to note that in the piecewise linear case, the boundaries of the chaotic
areas are perfectly known. In fact, a chaotic area can exist only if a border is crossed by
some pieces of a chaotic attracting set, and the intersection of the invariant chaotic set
with the borders of definition of the map gives a so-called generating arc (see Gardini
1994; Mira et al. 1996), whose images under T give the boundaries of the chaotic sets.
In the example shown in Fig. 5c the generating arc consists of two segments belonging
to the boundary between the regions R3 and R1, while in the example shown in Fig. 6a
(where the annular area is larger) the generating arc (g) consists in one single segment,
resulting from the intersection of the invariant area with the border between the regions
R3 and R1.With 6 iterates of the segment (g) the external boundary of the annular area
is obtained, and a small piece of the internal boundary also (see the black segments in
Fig. 6b), while with 6 more images also the internal boundary is completely obtained
(see the red segments in Fig. 6b). In addition, as the parameter μ is further increased,
the unstable fixed point K ∗ may also undergo its first homoclinic bifurcation leading
to a chaotic area in one piece including the unstable fixed point. As is well known, this
occurs when all these images of the “generating arcs” cross the fixed point, leading
to a snap-back repeller (so-called after Marotto 1978, 2005 see also Gardini 1994;
Gardini et al. 2011). This bifurcation is shown in Fig. 6d. The first six iterates of
the generating arc (g) gives the external boundary of the one-piece chaotic area, and
the seventh iterate (shown in blue) cross through the fixed point K ∗ (and thus all the
further iterates also), thus leading to a closed chaotic area, as shown in Fig. 6c, no
longer annular, as it includes the fixed point K ∗ now also homoclinic.

Returning to Fig. 5, we can interpret the homoclinic bifurcation of the 6-cycle
shown in Fig. 5b in a similar way: The images of the generating arc (for the map T 6)

give the boundaries of the six chaotic pieces, and when these images cross through
the period-6 repelling focus, the six areas are closed and the period-6 repelling focus
becomes a snap-back repeller (i.e. with homoclinic orbits). After that, as commented
above, the reunion of the six chaotic pieces into one occurs due to an homoclinic
bifurcation of the saddle 6-cycle.
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Fig. 6 Chaotic areas of the map at δ = 0.5 and σ = 1.2. In a at μ = 2 chaotic annual area; in b the
generating segment (g) and its iterates giving the boundary of the area in (a). In c at μ = 2.348 chaotic
area; in d the generating segment (g) and its iterates giving the external boundary of the one-piece area in
(d) (color figure online)

As a last point, we note that the existence of such homoclinic cycles leads to
more complicated dynamics. Figure 7a shows a trajectory of qt when the attractor
is the annular chaotic area of Figs. 6a, 7b shows a trajectory qt after the homoclinic
bifurcation of the fixed point K ∗ when there is a one-piece chaotic area without holes.
An increase in unpredictability can be observed. In fact, in Fig. 7a, the trajectory
is confined to the annular region and the quantity capacity points travel around the
(unstable) fixed pointwithout approaching it, while in Fig. 7b the trajectory approaches
the (unstable) equilibrium from time to time, in an unpredictable way.

3.2 Border collision bifurcations and degenerate flip bifurcation

In this section we first analyze the effects of a border collision bifurcation, i.e. bifur-
cation that occurs if a point of the attractor collides with one of the borders. This type

123



I. Kubin, L. Gardini

Fig. 7 A few iterations of a trajectory of the map at δ = 0.5 and σ = 1.2. In a at μ = 2 as in Fig. 6a; in b
at μ = 2.348 as in Fig. 6c

Fig. 8 In a border collision bifurcation of the 6-cycle at δ = 0.5, σ = 1.2 and μ = 0.9292. In b closed
invariant curve existing as attracting set at μ = 0.9291

of bifurcation is quite common in piecewise smooth systems, and we shall see that
different dynamic behaviours may be associated with a border collision of some cycle.

We start with the example shown in the bifurcation diagram for σ = 1.2 fixed and
varying μ along the vertical line shown in Fig. 3a. Starting from a μ value inside the
range in which the 6-cycle is stable, decreasing μ a lower bifurcation value is met, at
which a border collision bifurcation occurs leading to the disappearance of the 6-cycle
(in contrast to the centre bifurcation discussed above at which the 6-cycle continues to
exist but becomes a repelling focus). In Fig. 8a we illustrate the 6-cycle at the border
collision. This type of bifurcation occurs if one of the periodic points of the 6-cycle
belongs to the border separating the regions R3 and R1, i.e. the border associated with
the capacity constraint. In this example, the bifurcation leads to the disappearance of
the 6-cycle, and the attracting set existing after the bifurcation (detected numerically)
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involves quasiperiodic trajectories belonging to a closed attracting curve, as shown in
Fig. 8b.

In general it is difficult to predict what happens after a border collision bifurcation.
The existence of a cycle is strictly related with the sequence of maps which are applied
in order to get the cycle. Thus whenever a periodic point merges with a border, and a
border collision occurs, we may have some change in the attracting set. As we have
just seen, this change may lead to the disappearance of one attractor and to the birth of
a different one. However, it may also be the case that the cycle continues to exist with
the same periodicity, and that only the definitions of the involved maps have changed.

Also in the other bifurcation diagram shown in Fig. 3c, for μ = 1.5 fixed and
varying σ along the horizontal path, we can see twomore examples of border collision
bifurcation there indicated with the points B1 and B2. At σ = 3 an attracting 7-cycle
exists, and decreasing σ we can see that the position of the points of the attracting
7-cycle changes a little. In Fig. 9a we represent the attractor at the point B2; the 7-cycle
has one of the periodic points on the border between the regions R3 and R5, and we can
also notice that one point of the cycle is in region R2. The effect of this border collision
bifurcation is a kind of persistence. That is, also after the bifurcation the attractor is
a cycle of the same period, but the periodic point which crosses from region R5 to
region R3 causes a marked change also to the position of the other periodic points,
as the sequence of functions which are now applied to the points is now different. In
Fig. 9b, we can see, as σ is slightly decreased, how the periodic points of the 7-cycle
have changed their position in the different regions, in particular, now no point of the
cycle belongs to region R2.

Less visible is the effect of the border collision bifurcation that occurs as σ is
further decreased, at the point B1. The same periodic point which crossed the boundary
approaches the other boundary between the regions R3 and R1, as shown in Fig. 9c,
and then it crosses the border. However, the effect now is smoother, since the attractor
persist as a 7-cycle with the transition of one periodic point from region R3 to region
R1.

We remark that at the point P in Fig. 3c no bifurcation occurs. This peculiar point
in the bifurcation diagram is due to the particular position of the 7 periodic points in
the phase space, having 5 points on the same vertical line, as shown in Fig. 9d.

Our discussion thus shows that border collision bifurcations may be “dangerous” in
the sense that it is difficult to predict what happens after the bifurcation (it is difficult to
predict whether the bifurcation involves the appearance of a new attractor or whether
it only modifies the shape of the attractor).

Finallywe show that due to the existenceof borders not only new types of bifurcation
can occur such as the discussed centre bifurcations and border collision bifurcations,
but that also a well known bifurcation type such as the flip bifurcation is modified to
a so-called “degenerate flip bifurcation” (see Sushko and Gardini 2010). In fact, in
piecewise linearmaps at theflip bifurcationvalue there exist segmentsfilledwith cycles
of doubled period, and the length of the segments, along the invariant eigenvector of
the cycle undergoing the flip bifurcation, depends on the distance of the periodic points
from the borders of definition for the map.

An example is shown in the one-dimensional bifurcation diagram in Fig. 3c at
σ ≈ 2.17 indicated as “Flip” and the related enlargement. Decreasing σ , the 7-cycle
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Fig. 9 Period-7 attactors at δ = 0.5 and μ = 1.5. In a σ = 2.8758 at the bifurcation B1. In b σ = 2.8757.
In c σ = 2.84 at the bifurcation B2. In d σ = 2.79

(as shown in Fig. 10) loses stability via an eigenvalue that crosses the value −1
giving rise to a cycle of double period (i.e. of period 14 in our case). However, at the
bifurcation value there exist a segment filled with cycles of period 14, and the length
of the segment depends on the distance of the periodic points from the borders. In our
example one periodic point is very close to the vertical boundary (q = a), as shown
in Fig. 10a. Thus the segments are very short, and after the bifurcation the two points
associated with that periodic point are on opposite side with respect to the boundary
q = a, as shown in Fig. 10b.

4 Conclusions

Models with constraints and boundaries have become increasingly popular in the
aftermath of the financial crisis. The intention of this paper was to show the impact
that these constraints may impinge upon the dynamic out-of-equilibrium processes. In
order to avoid any ambiguity, we on purpose specified all functional relationships as
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Fig. 10 Degenerate flip bifurcation of the map at δ = 0.5 and μ = 1.5. In a σ = 2.18 close to the
bifurcation, 7-cycle. In b σ = 2.15 after the bifurcation, 14-cycle

linear, leaving the constraints as the only source for complex dynamics. We consider
this specification as being of particular importance, since economists appear to agree
more easily on the nature and specification of borders (some of them are actually
intrinsic to the definition of the variables themselves) than on specification of a non-
linear out-of-equilibrium dynamics. As example, we constructed a very simply model
of quantity and capactity dynamics in a Marshallian tradition, in which we account
explicitly for intrinsic boundaries: a non-negativity constraint on price, quantity and
capacity; a capacity constraint on output and a downward rigidity (depreciation) on
capacity. We showed that these model elements are sufficient to produce cyclical phe-
nomena as well as more complex dynamic behaviours.

The resulting piecewise linear model has a unique fixed point which loses stability
via a centre bifurcation, giving rise to a (stable) 6-cycle, which in turn loses stability
via another (secondary) centre bifurcation, resulting in a chaotic cycle consisting of
six annual pieces, that eventually merge to one annular attractor and finally to a one
piece chaotic attractor. Due to the sensitivity on initial conditions the dynamic path
on a chaotic attractor is unpredictable. However, the boundaries and constraints not
only give rise to these complex dynamic patterns, they also shape the attractors. The
intersection of the attractor with the borders leads to generating arcs whose images
form the outer boundary of the attractor and—in the case of annual attractor—also the
inner boundary.

In addition, we showed border collision bifurcations, which occur if a point of
the time path merges with a boundary, and we stressed the “dangerous” nature of
such border collision bifurcations (in the sense that it is not easy to predict whether
a qualitative change in the attractor happens or not). Finally, we show the degenerate
nature of the occurring flip bifurcations.

Given the linear specificationof ourmodel, borders and constraints alone are respon-
sible for the complex dynamics. Note that specifying nonlinear functional formswould
introduce another source for such a behaviour. Thus, cyclical or complex dynamics
should not be considered as an exceptional case. Instead, it seems to be intrinsic in
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economic models, a fact that deserves more attention after the financial crisis has
highlighted the inherent instability of economic processes.
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