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Abstract

We investigate the stochastic response of a base stock inventory system where the order quan-
tity is either upper- or lower-constrained. This system can represent many real-world settings:
forbidden returns, minimum order quantities, and capacity constraints for example. We show
that this problem can be translated into a stopping time problem where the distributions of
orders and inventory can be represented by a countably infinite mixture of truncated and con-
voluted demand distributions. This result can be extended to the cases of arbitrary lead time
and auto-correlated demand. A state space algorithm is developed to approximate the first- and
second-order moments of the order quantity and inventory level. Via a numerical analysis, we in-
vestigate the performance of the approximation, as well as the operational and economic impact
of the order constraint. In particular, the constraint impacts order and inventory variances via
different combinations of the mixture and truncation effects. We show how tuning the constraint
can improve the operational and financial performance of the inventory system by acting as a
smoothing mechanism.

Keywords: inventory, constraint, stochastic response, base stock policy

1. Introduction

We study the limiting, or asymptotic, distributions of order quantity and inventory level in a
nonlinear inventory system, where the order quantity is limited by an upper- or lower-constraint,
but the demand is not constrained by this limit. In other words, we explore the stochastic
response of an inventory system where a (maximum or minimum) constant constraint on the
order quantity is in the interior of the support of the demand quantity. This model has many
real-world applications, which we now elaborate to motivate this research.

Forbidden returns (FR). There are supply chain scenarios where the customer is allowed to
return the products but the seller is not allowed to do so. In this sense, the demand can be either
positive or negative, where negative demand implies products returned from customers exceed
those demanded by them in a period, but orders to suppliers are constrained to nonnegative
values. The existence of negative demand has been reported in the literature. For example, in the
book publishing and electronic industries, unwanted items can be returned to the manufacturer.
In general, the negative demand assumption holds if we accept the net flow of goods can be
reversed temporarily. In the upstream, the inversion of the material flow is less common in
business-to-business environments. Typically, businesses are not allowed to return their surplus
products to suppliers; this can be represented mathematically by a nonnegative assumption
on the order quantity. This assumption is common in the classic inventory control literature;
however, as highlighted by Chatfield and Pritchard (2013), this assumption is rare in the bullwhip
effect and supply chain dynamics literature.

∗Corresponding author.
Email addresses: wangx46@cardiff.ac.uk (Xun Wang), s.m.disney@exeter.ac.uk (Stephen M. Disney),

ponteborja@uniovi.es (Borja Ponte)

Preprint submitted to European Journal of Operational Research April 15, 2022

Wang, X., Disney, S.M., and Ponte, B., (2022), On the stationary stochastic response of 
an order-constrained inventory system. Forthcoming in European Journal of Operational Research.



Minimum order quantity (MOQ). The lower limit of the order quantity may also be a positive
number, representing a MOQ. The business can either order above (or at) the MOQ, or not order
at all. This case is frequently observed in the upstream supply chain. For example, minimum
order quantities are commonly imposed by off-shore suppliers, due to low profit margins, high
set-up and shipment costs, and batching requirements in the manufacturing process. In the on-
line grocery industry, it is common practice to set a MOQ as a prerequisite to receive discounted,
or free, shipping. Zhou et al. (2007) gives an interesting discussion on the role of minimum order
quantities in supply chains. Moreover, the famous (s,S) ordering policy, optimal in many cost
scenarios (Scarf, 1960; Zheng, 1991), is an ordering rule such that if the inventory position is
below a reorder point s, an order is placed to bring the inventory position back to the order-up-to
level S. The (s,S) policy can be seen as a MOQ constraint, where S − s is the MOQ, whereas
the demand can be lower than S − s.

Capacity constrained (CC). In production systems, maximum production quantities are often
set due to limited internal capacity; however, customer demand is free to go beyond the capacity
limit. The maximum order quantity is also used by some material requirements planning (MRP)
software to prevent the automatic generation of unreasonably large orders. Besides, upper bound
constraints may also emerge from external sources. For example, vendors may impose maximum
order quantity constraints to ration customers when the capacity or raw material availability
is limited to prevent some customers over ordering and other customers under-fulfilled. Also,
maximum order quantities may be strategically imposed by single-source vendors that sell to
multiple buyers to avoid opportunistic behaviours such as the hold-up problem (Dahel, 2003).

Figure 1 shows a time series of real demand and its distribution. The product is from the
consumer electronics industry, whose distribution is approximately normal, with two negative
demands in the three-year period. Figure 1 also shows the time series and distribution plot of
simulated orders generated by the three constrained order policies that we study in this paper:
FR, MOQ (with s = 50 and S = 150), and CC (capacity constraint set to 300). Unit lead-
times were assumed. In all these cases, when the desired order quantity exceeds the lower, or
upper, limit allowed, the actual order quantity has to be switched either to this limit or another
designated value, greatly increasing the analytical complexity of the inventory model. Indeed,
traditional analytical techniques for linear time invariant (LTI) models can no longer be applied
in these nonlinear scenarios. This perspective explains why these complex nonlinear behaviours
are understudied in the literature despite their obvious practical relevance and acts as the major
driver of this research.

In this paper, we make the following contributions:

• We show the equivalence of three order-constrained inventory systems; the FR, MOQ, and
CC systems can be represented in a general form for analysis.

• We derive the limiting density functions of the order quantity and inventory level in the con-
strained inventory system, under transportation delay and demand autocorrelation. The
derivation is based on distribution truncation, convolution, and mixture; no assumptions
regarding the demand distribution need to be made.

• For Gaussian demand, we propose a state space algorithm to approximate the first- and
second-order moments of order quantity and inventory level, based on the properties of
truncated normal random variables. This algorithm can be used in scenarios with a trans-
portation delay and demand correlation. We discuss the applicability, efficiency, and effec-
tiveness of this algorithm.

• We investigate how the order constraint influences the variance of the order quantity and
the inventory level. We reveal how the order constraint creates a mixing effect and a
truncation effect that affects the trade-off between the order and inventory variances. We
also show how the constraint may reduce the sum of the order and inventory variances.

The rest of this paper is organized as follows. In Section 2, we review related literature.
Section 3 gives the notation and the main results characterizing the distributions of orders and
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Figure 1: A real demand pattern and the simulated response of the base stock policy with three different order
constraints (forbidden returns, minimum order quantity, and a capacity constraint).
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inventory levels in the order-constrained inventory model with unit delay and independently
and identically distributed (i.i.d.) demand. Extensions to arbitrary transportation delay and
correlated demand are made in Section 4. In Section 5, we propose an approximation algorithm
for calculating the first- and second-order moments of the stochastic response generated by a
Gaussian demand. Section 6 is devoted to operational aspects of our model, where a numerical
analysis examines the variance amplification and the service level performance in this model.
Finally, Section 7 concludes and highlights avenues for future research.

2. Literature review

This research contributes to the literature from three perspectives: (i) to the bullwhip effect
research, which usually explores the inventory control problem through a linear quadratic Gaus-
sian (LQG) model; (ii) to nonlinear supply chain dynamics research, which includes constraints
on system variables but mainly investigates deterministic demand series; and (iii) to the classical
inventory control literature, especially those on the (s,S) policy and the capacitated system,
which predominantly models demand as a nonnegative, i.i.d. and integer time series.

LQG models have been extensively applied in bullwhip research because of their analytical
tractability. In the seminal work of Lee et al. (1997), the bullwhip effect triggered by demand sig-
nal processing is simulated by a Gaussian input with first-order autocorrelation. The probability
of the demand and order quantity being negative is assumed negligible by setting the coefficient
of variation of demand sufficiently small. In addition, to preserve linearity of the model, unmet
demand is backlogged. These assumptions were frequently adopted in later research on bullwhip
effect and inventory amplification (Chen and Lee, 2009; Disney et al., 2015). The connection
between the second-order moment and the cost incurred is established by the assumption that
the inventory (order) cost function is convex, under which the cost increases with the inventory
(order) variance. In the special case of normally distributed demand, piece-wise linear and con-
vex cost function and optimal safety stock (production capacity), the cost is a multiple of the
standard deviation of the inventory (orders) (Boute et al., 2021).

On the other hand, it has long been known that real-life supply chains are constrained. For
instance, in the Beer Game experiment, participants are allowed to backlog unsatisfied demand
to the next period, but excess inventory cannot be returned to their supplier (Sterman, 1989).
This can be seen more clearly in their model of participants’ behaviour; the order quantity is
limited by a max{0, ·} constraint, i.e., the order quantity is not allowed to be negative. There
are various attempts to study the dynamic behaviour of such system using nonlinear dynamical
systems theory (Larsen et al., 1999; Laugesen and Mosekilde, 2006). The research interest focuses
on system stability; the primary finding is that complex behaviour of the inventory system can
be induced by nonlinear constraints and irrational decisions. The nonlinear effects may even
dominate the dynamics of the system, resulting in very complex behaviours, such as chaos and
super-chaos (phenomena where the system behaviour is sensitive to perturbation in the system
state and parameter values, which is difficult or impossible to predict, Wang et al., 2012).
However, this research stream often focuses on system stability and a deterministic demand
signal (a step function is used in most cases). Attempts to extend the nonlinear inventory
system model to stochastic demand have been predominantly simulation based, e.g., Chatfield
and Pritchard (2013) for the lower constraint and Ponte et al. (2017) for the upper constraint
to the order quantity. More recently, Disney et al. (2021) study the dynamics of a lost-sales
inventory system where the inventory level is nonnegative. They show that both order and
inventory distributions can be derived from the censored demand distribution. We show this is
not the case in an order-constrained system.

Lastly, in the inventory theory literature, a lot of attention was given to the inventory and the
order distribution in either the (s,S) or the capacitated systems. Using renewal theory, Karlin
(1958) has derived an expression for the inventory distribution (also see Scarf, 1963); for the same
model Schultz (1983) provides the order distribution and the order variance. Approximation
algorithms for computing the order and inventory variance under the (s,S) policy have been
proposed by Schneider et al. (1995) and later utilized by Kelle and Milne (1999) to study the

4

Wang, X., Disney, S.M., and Ponte, B., (2022), On the stationary stochastic response of 
an order-constrained inventory system. Forthcoming in European Journal of Operational Research.



bullwhip effect. More recently, Noblesse et al. (2014) study the bullwhip effect in a continuous-
review (s,S) system with compound Poisson demand. They derive the distribution of orders as
well as the time between orders.

Another, seemingly detached, research stream considers the capacitated inventory system,
mostly focusing on the optimal ordering policy when the order quantity is upper-constrained.
Federgruen and Zipkin (1986a,b) show that a base stock policy is optimal under the assumption of
stationary demand. Tayur (1993) notes the similarities between the capacitated inventory system
and a D/G/1 queuing system, and used the analogy of an infinite-stage uncapacitated supply
chain system to derive the stationary distribution of the inventory level. Using the shortfall
concept they show that the inventory distribution can be represented by an infinite convolution
between the demand distribution and the shortfall distribution. The stability of the capacitated
system is discussed in Glasserman and Tayur (1994), where stationarity conditions are derived.
Approximation methods of the optimal base stock level are proposed in Glasserman and Tayur
(1995) and Glasserman (1997). Kapuściński and Tayur (1998) extend Federgruen and Zipkin
(1986a,b)’s capacitated model to the case cyclic demand, and Parker and Kapuściński (2004)
extend the model to a two-echelon system. Both studies found a (modified) base stock policy
to be optimal. Levi et al. (2008) develop an approximation algorithm for the optimal policy.
Gavirneni et al. (1999) study the case of information sharing in a two-echelon capacitated supply
chain and proved the optimality of the order-up-to policy under this scenario.

In this work, unlike previous research, we do not focus on the optimal policy under the
constraint, but on the stochastic response and variability of a constrained base stock inventory
system. From this perspective, this study complements the above research in several ways.
First, previous research did not reveal the connection between the systems with different order
constraints, whereas we show they are equivalent. This can also be seen from the similar structure
of order and inventory distributions in these systems. Second, previous research, based on
renewal theory or the D/G/1 queuing analogy, requires that the random variables in demand are
non-negative. We relax this assumption by allowing negative demand using stopping time and
mixture distributions. Third, most previous research assumes unit lead-time and i.i.d. demand,
whereas our approach allows us to incorporate arbitrary lead-times and auto-correlated demand
in a straightforward manner. Fourth, we propose a novel approximation to calculate the order
and inventory variances which outperforms previous approximation methods.

3. Distributions of order and inventory

In this section, we present an analysis under the assumptions of unit transportation delay
and temporally independent demand series. These assumptions will be relaxed later in Sections
4.1 and 4.2, respectively. We use the notation outlined in Table 1 throughout this paper. Other
notation will be introduced as needed.

3.1. The stopping time problem
We first present a general form of our problem that can represent a variety of inventory

systems with order-constraints, including the FR, MOQ, and CC sytems. We then show this
general form is actually a stopping time problem. We consider a periodic review system, with
t ∈ N . In this section we assume the demand is an i.i.d. random process following a distribution
whose probability density function (pdf) fd(x) is defined on the real line R. Here we do not need
to specify the type of distribution, but merely assume that fd is integrable. The transportation
delay of the inventory system is one period; that is, the order placed at the end of period t will
be received and available to satisfy demand during period t+ 1. At the end of the period, after
demand has been satisfied, the observed inventory levels and open orders are subtracted from
the order-up-to level S to determine the replenishment orders. A description of the sequence of
events for unit lead times is given in Figure 2.

The inventory balance equation is

it = it−1 + ot−1 − dt. (1)
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Table 1: Commonly used notation.
Sets
A The set of admissible order quantities
A′ The complement of A
N The set of positive integers
R The set of real numbers
Variables (time-dependent random processes)
ε Gaussian i.i.d. variable with zero mean and unit variance
d Demand
o Order quantity
õ Desired order quantity
i Net inventory level after fulfillment and consumption
w Work-in-process; wt = 0 when L = 1
IP Inventory position, IPt = it + wt; IPt = it when L = 1
τ Order cycle length
Inventory system parameters
αT Target service level
L Transportation lead time
S Order-up-to level
Functions and distributions
xA Truncation of x with A: xA = x if x ∈ A; xA = 0 otherwise
[f(x)]A Truncation of f with A: [f(x)]A = f(x) if x ∈ A; [f(x)]A = 0 otherwise
f(x) ∗ g(x) Convolution between f(x) and g(x)
φ(x), Φ(x) pdf and cdf of standard normal distribution
E(x), µx The expectation vector of x; dimE(x) = dimx
V(x), σ2x The covariance matrix of x; dimV(x) = dimx× dimx

Tally demand, generate forecast of demand in period 
t+1, observe inventory, place order at the end of period, t

Time

Demand satisfied from 
inventory during period t

Receive order placed 1 periods ago sometime during period t 

Period t-1 Period t+1 Period t+2

Figure 2: Sequence of events in the base stock replenishment policy with unit lead-time.

The variable i is the inventory level and o the order quantity. A base stock policy is used to
make replenishment decisions. That is, the desired order quantity is the difference between the
order-up-to level S and the inventory position IPt (when the lead-time is one period, IPt = it).
Under FR, the actual order quantity equals desired order quantity if it is positive, and zero
otherwise:

ot =

{
S − it if S − it > 0
0 otherwise.

Under the MOQ policy, the actual order quantity equals the desired order quantity if inventory
it is below the re-order point s, and zero otherwise:

ot =

{
S − it if it < s
0 otherwise.

In the CC setting, the actual production quantity equals the desired order quantity if it is less
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Table 2: Illustration of the order process in an forbidden returns system.

t Demand Desired
order quantity

Actual
order quantity

Inventory
level

Number of periods from
last admissible order

1 6.11 6.11 6.11 3.89 1
2 3.51 3.51 3.51 6.49 1
3 −3.49 −3.49 0 13.49 1
4 2.01 −1.48 0 11.48 2
5 2.38 0.90 0.90 9.10 3
6 −3.58 −3.58 0 13.58 1
7 9.43 5.85 5.85 4.15 2
8 −5.83 −5.83 0 15.83 1
9 7.11 1.28 1.28 8.72 2
10 3.53 3.53 3.53 6.47 1

than the production capacity Cp, otherwise the actual production quantity equals Cp:

ot =

{
S − it if S − it < Cp
Cp otherwise.

We will now show the above three systems can be represented by a single general form. Let
the admissible region A be the half real line divided by the real number C1, i.e., (−∞, C1) or
(C1,+∞). Note that C1 /∈ A. Also let C2 be a real number not in A, C2 ∈ A′ = R \ A, A′ is
the complement set of A with respect to R. Thus o ∈ A∪{C2}, and it is possible that C1 = C2.
We can write the order-constrained system as

ot =

{
S − it if S − it ∈ A
C2 otherwise.

(2)

Intuitively, C1 is the bound for the actual order quantity, and C2 is the actual order quantity if
the desired order quantity falls outside of this bound.

• Under FR, A = (C1 = 0,+∞) and C2 = C1 = 0. That is, when the desired order quantity
is less than zero, the actual order quantity is zero.

• With MOQ, A = (C1 = S − s,+∞) and C2 = 0; when the desired quantity is less than
S − s, the actual order quantity is zero.

• In the CC setting, A = (−∞, Cp) and C1 = C2 = Cp; when the desired production quantity
is greater than the capacity Cp, the actual production quantity is Cp.

The actual order quantity can either be free or constrained, corresponding to the two cases
in (2). An order is free when the actual order quantity equals the desired quantity, and it
is constrained if the actual order quantity equals the fixed value C2. The level of the impact
of the order constraint is determined by the probability that demand falls in the admissible
region,

∫
A fd(x)dx. When this integral equals one, the constraint is never binding and the

order-constrained system becomes identical to a linear system. We use the notation of the order
constraint being loose or tight to indicate the value of this integral being high or low.

Before the formal analysis, we give an intuitive example of the stopping time problem. Table
2 is adopted from a simulation output in a forbidden returns system where µd = 5, σd = 5 and
S = 10. It shows how the orders are generated from the demand. The desired order quantity is
always the sum of demand since the last free order. However, the actual order quantity must be
either in the admissible region or be equal to C2. Specifically, if the sum of demand falls into the
admissible region, then the order quantity is the sum of demand since the previous free order.
Otherwise, the order quantity is C2. For instance, in period 4, even if d4 > 0, we still have o4 = 0
because d4 + d3 < 0; in period 5, o5 = 0.9 as d3 + d4 + d5 = 0.9, despite d5 = 2.38.
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We will now show the general form (2) can be translated into a stopping time problem. To
see this we first define {d̂, ô, Â} as {d, o,A} subtracted by C2, such that d̂ = d−C2, ô = o−C2,
and Â = A− C2 = {x− C2|x ∈ A}.

Lemma 1. Let τ = min{k > 0 | ôt−k ∈ Â}, then

ôt =

(
τ−1∑
k=0

d̂t−k

)
Â

. (3)

Proof. Note it−τ + ot−τ = S and
∑τ−1

k=1 ot−k = (τ − 1)C2. Thus

it = it−1 + ot−1 − dt From (1)

= it−τ +
τ∑
k=1

ot−τ −
τ−1∑
k=0

dt−k Recursively expanding it−1

= S + (τ − 1)C2 −
τ−1∑
k=0

(d̂t−k + C2) it−τ + ot−τ = S, ot−k = C2 for k < τ

= S −
τ−1∑
k=0

d̂t−k − C2. Collecting together terms

Substituting the last expression into (2) yields (3).

To ensure the existence of τ , there needs to be at least one order that belongs to A in the
order history. This can be guaranteed by assuming the recurrence of the random walk

∑
t dt

on A, given by the Chung–Fuchs theorem (Sato, 1999). When C2 6= 0 (for instance, in the CC
system), we only need to subtract C2 from d, o and A to transform the problem into the form of
(3). Therefore, for notational convenience, we assume C2 = 0 in the subsequent analysis. That
is, the constrained order equals zero. However, in the numerical examples, we will present the
results from the CC system with C2 6= 0.

Lemma 1 shows that τ is a stopping time, the time at which
∑τ−1

k=1 dt−k falls into A. We
define τ as the degree of the order ot, indicating the most recent admissible order quantity was
made τ periods ago (the last column in Table 2). We also define o[τ ] as the order quantity with
the degree τ . In the FR and MOQ settings, {τ |o[τ ] ∈ A} can be intuitively understood as the
length of the ordering cycles, i.e., the number of periods between the current and the previous
positive order. Both τ and o[τ ] are time dependent variables, but we suppress the subscript t
to avoid notational clutter when no additional confusion is introduced, e.g. when discussing a
distribution function. For the subsequent analysis, it is convenient to denote the desired order
quantity as õt = S − it =

∑τ−1
k=0 dt−k. Lemma 1 can then be reiterated as the order quantity is

the desired order quantity truncated by A, or ot = (õt)A. By definition, the free order quantity
õt has the same degree as ot.

3.2. The distribution of order quantity
We derive the distribution of the order quantity as follows. For any ot[τ ], we have dt−τ+1 /∈ A,

dt−τ+1 + dt−τ+2 /∈ A, · · · ,
∑τ−1

k=1 dt−k /∈ A. Thus, the distribution of the desired order quantity
õ[τ ] can be derived by recursive convolution. The distribution of the actual order quantity o[τ ]
is then available through the rectification of õ[τ ]. Here we use rectification in a general sense;
rectification refers to a modification to a distribution function when its inadmissible part is reset
to zero, and the value of the rectified pdf at C2 (assumed to be zero) is the integral of the original
pdf over the inadmissible region. That is, f(x ∈ A′) = 0 and f(0) =

∫
A′ f(x)dx. In contrast, a

truncated pdf disregards the negative part (see Table 1 for the formal definition of truncation).
Since ot[τ ] are i.i.d., fo[τ ] become component distributions of a mixture, which can be simply
summed to yield fo. We begin by looking at an individual fõ[τ ].
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When τ = 1, there was a free order one period ago; the desired order quantity in this period
equals the demand observed, and the distribution of õ[1] is the demand distribution:

fõ[1](x) = fd(x). (4)

The distribution of õ[2] can be derived as follows. õt[2] means that its most recent free order
was made 2 periods ago. Therefore dt−1 /∈ A, and the distribution of õt[2] can be derived by the
following convolution:

fõ[2](x) = fd(x) ∗ [fd(x)]A′ = fd(x) ∗ [fõ[1](x)]A′ ,

where [fd(x)]A′ and [fõ[1](x)]A′ are the demand and order distributions truncated by A′. The
distribution of õ[3] can be derived similarly. Given dt−2 /∈ A and dt−2 + dt−1 /∈ A, we have

fõ[3](x) = fd(x) ∗ [fõ[2](x)]A′ .

Generally, the distribution of õ[τ ] (τ > 1) can be derived by recursive convolution as

fõ[τ ](x) = fd(x) ∗ [fõ[τ−1](x)]A′ . (5)

The distribution of o[τ ] is then the truncation of the distribution of õ[τ ], fo[τ ](x) = [fõ[τ ](x)]A.
It is known that if the demand follows a normal distribution, then õ[2] follows the skew-normal
distribution (Azzalini, 1985; Henze, 1986), but the type of distribution for õ[τ ] is generally
undefined when the demand distribution is unknown or when τ > 2.

For the probability of actual order quantity, we need to derive the probability of each com-
ponent. We denote the probability that a free order has degree τ as pτ where

pτ =

∫
R
fo[τ ](x)dx =

∫
A
fõ[τ ](x)dx. (6)

Note, the integration of fõ[τ ](x) over R, although not truncated, is not unity. This is because
[fõ[τ−1](x)]A′ is not normalized. In this sense, [fõ[τ ](x)]A′ is not a truncated distribution as
conventionally defined, which requires Fõ[τ ](+∞) = 1. In fact, the integration of fõ[τ ] gives the
probability that any order has a degree of τ , in other words, the time difference between two
consecutive free orders is at least τ . This can be seen as the unconstrained counterpart of pτ ,
thus can be denoted p̃τ . Intuitively,

p̃τ =

∫
R
fõ[τ ](x)dx =

∫
R
fd(x) ∗ [fõ[τ−1](x)]A′dx

=

∫
R
fd(x)dx

∫
A′
fõ[τ−1](x)dx =

∫
A′
fõ[τ−1](x)dx = 1−

τ−1∑
k=1

pk.

The last equality can be easily verified by induction. Note, orders with degree one do not
have any preceding constrained orders; orders with degree two have one preceding constrained
order, and so on. Thus, the average time difference between two successive free orders is

∑
k kpk.

Since the average length of the zero order series is
∑

k(k − 1)pk, instantly we have:

Pr{o = 0} =

∑∞
k=1(k − 1)pk∑∞

k=1 kpk
, and

Pr{o ∈ A} = 1−
∑∞

k=1(k − 1)pk∑∞
k=1 kpk

=
1∑∞

k=1 kpk
.

We can then derive the expression for the distribution of orders:
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Figure 3: Inventory distribution in order-constrained systems, d ∼ N(5, 5), S = 10. (a) The FR system; (b) the
MOQ system with s = 8. (c) The CC system with Cp = 10.

Proposition 1. In the order-constrained system, the distribution of order quantity is

fo(x) =
δ(x)

∑∞
k=1(k − 1)pk +

∑∞
k=1 fo[k](x)∑∞

k=1 kpk
. (7)

Here δ(x) is the Dirac Delta function with δ(0) = 1 and δ(x) = 0 for x 6= 0.

The distribution of order quantity is a mixture distribution with a discrete ot = 0 part and
a continuous ot ∈ A part. Schultz (1983) provides the order quantity distribution under an (s,
S) policy and integer, nonnegative demand. Schultz’s density function has a similar structure to
(7), where

∑
k(k− 1)pk is analogous to the renewal function representing the average number of

periods the accumulative demand is above s. The difference is that when demand is allowed to
be negative, the renewal model can no longer be applied.

Figure 3 shows the distribution of the order quantity in the three order-constrained systems.
In the FR system, A = (0,+∞). In the MOQ system, A = (2,+∞). In the CC system,
A = (−∞, 10). The order distributions are also compared with the demand distribution, which
is assumed to be Gaussian, with µd = 5 and σd = 5. In the FR system, the mode of ot no longer
equals µd, it is slightly smaller. This can be intuitively explained as follows. The mean of õ[1]
equals µd. For õ[τ ] where τ > 1, as õt[τ ] =

∑τ−1
k=0 dt−k and

∑τ−1
k=1 dt−k < 0, we have E(õ[τ ]) < µd

where E(·) is the expectation operator. This gives fo(x) a negative skew. This effect is more
prominent when the order constraint becomes tighter. In the CC system, the admissible region
is symmetric to the admissible region in the FR system about µd, therefore the order distribution
under CC is a horizontal reflection of the order distribution under FR about µd. In the MOQ
system, the inadmissible region A′ contains both negative and positive parts and it is generally
indefinite whether E(õ[τ ]) is monotone in τ or not. Although A is tighter in the MOQ setting
than in FR setting, the skewness does not change significantly. To illustrate the above analysis,
Figure 4 shows the first ten component distributions, õ[τ 6 10], under the same settings as in
Figure 3. Each point represents one component distribution, the horizontal and vertical axes
show their respective mean and standard deviation, and the size of the points are proportional
to their probabilities.

3.3. The distribution of inventory
With unit lead-time, the distribution of inventory is straightforward to derive from the order

distribution. From (1) and (2), the inventory iteration can be written as

it =

{
S − dt if ot−1 ∈ A
it−1 − dt otherwise.

(8)

This can be formulated with the stopping time τ = min{k > 0|ot−k ∈ A} as

it[τ ] = S −
τ−1∑
k=0

dt−k = S − õt[τ ]. (9)
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Figure 4: Point process representation of the component distributions, d ∼ N(5, 5), S = 10. (a) The FR system;
(b) the MOQ system with s = 8. (c) The CC system with Cp = 10. The size of the circle is proportional to the
probability of the component distribution. The probabilities are given under the circles.

Figure 5: Distribution of the inventory levels in order-constrained systems, d ∼ N(5, 5), S = 10. (a) The FR
system; (b) the MOQ system with s = 8. (c) The CC system with Cp = 10.

Equation (9) shows the inventory level in any given period equals S minus the desired order
quantity in that period. This can also be seen in the numerical illustration in Table 2. Further,
(9) shows the distribution of inventory is also a mixture distribution. The main difference is that
the inventory level is not constrained. That is, the component distributions are not truncated.
Generally, fi[τ ](S − x) = fõ[τ ](x) holds for all τ > 1, that is, fi[τ ] is fõ[τ ] reflected about S/2.
Therefore we have,

Proposition 2. In the forbidden returns system, the distribution of the inventory is

fi(S − x) =

∑
k fõ[k](x)∑
k kpk

, (10)

where k = 1, · · · ,∞.

Figure 5 shows the inventory distributions in the same setting as in Figure 3. Here S−µd = 5
so the inventory distribution in the linear system is the same as the demand distribution. Since
the inventory distributions are continuous and smooth, their nature can be illustrated more
precisely with the descriptive statistics shown in Table 3. We see the FR inventory distribution
exhibits both a higher mean and mode and a wider spread (higher variance) than the equivalent
linear inventory distribution; which causes the peak density to decrease. It is also positively
skewed and leptokurtic (the kurtosis larger than 3, meaning the distribution has fatter tails than
the Gaussian). The CC inventory distribution is symmetrical to the FR inventory distribution.
In the MOQ system, the monotonicity E(õ[τ ]) cannot be guaranteed and we cannot establish how
the inventory distribution will change from the Gaussian. In this example, the MOQ constraint
has a milder impact on the mean and mode of the inventory distribution compared with the FR
constraint.
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Gaussian FR MOQ CC
Mean 5 5.63 5.48 4.37

Standard deviation 5 5.31 5.33 5.31
Mode 5 5.48 5.32 4.52

Density at mode 0.080 0.077 0.077 0.077
Skewness 0 0.15 0.15 −0.15
Kurtosis 3 3.25 3.25 3.25

Table 3: Characteristics of the inventory distribution in order-constrained systems.

4. Extensions: Transportation lead time and correlated demand

Having explored the base case for unit lead time and i.i.d. customer demand in Section 3, we
now extend our analysis to examine the cases of arbitrary lead-time and auto-correlated demand.

4.1. i.i.d. demand and a transportation delay
Under the base stock policy, the transportation delay does not affect the distribution of the

order quantity when the demand is i.i.d. In cases where the lead time is longer than one period,
we only need to replace the inventory level it by the inventory position IPt in (1) and (2), and
the results in Section 3.2 hold as the order distribution does not change. However, the delay
does affect the inventory distribution, as the inventory balance equation now becomes

it = it−1 + ot−L − dt. (11)

As in Section 3.3, now we need to express the inventory level as the sum of past demand,
from which we have the following result:

Lemma 2. In the order-constrained system where L > 1, it = S −
∑L+υ−2

k=0 dt−k, where the
stopping time υ = min{k > 0 | ot−L−k+1 ∈ A}.

Proof. Define as before τ = min{k > 0 | ot−k ∈ A}. From (11), we have

it = IPt + wt = IPt−τ +

τ∑
k=1

ot−k −
τ−1∑
k=0

dt−k −
L−1∑
k=1

ot−k. (12)

The derivation of the last step utilises the inventory position balance equation, IPt = IPt−τ +∑τ
k=1 ot−k −

∑τ−1
k=0 dt−k, and that wt =

∑L−1
k=1 ot−k. Since ot−τ ∈ A, we have IPt−τ + ot−τ = S.

So (12) becomes

it = S −
L−1∑
k=τ

ot−k −
τ−1∑
k=0

dt−k.

Again, since ot−τ ∈ A, we have
∑L−1

k=τ ot−k =
∑L+υ−2

k=τ dt−k, where υ = min{k > 0|ot−L−k+1 ∈
A}. The result then directly follows.

Lemma 2 allows us to obtain the distribution of inventory when a lead time is present in a
manner similar to the one introduced in Section 3. In Lemma 2, υ is defined as the degree of
inventory. υ = 1 means that the most recent free order before period t−L is ot−L, i.e., ot−L ∈ A.
The distribution of i[1] equals the distribution of lead-time demand because all the demand that
occurred between period t−L+1 to period t contributes to it irrespective of the value of demand:

fi[1](S − x) = fLd (x), (13)

where fLd (x) denotes the lead-time demand distribution; that is, fLd (x) is fd(x) convolved L
times. The inventory level with the second degree i[2] means that ot−L−1 ∈ A, ot−L = 0,

12

Wang, X., Disney, S.M., and Ponte, B., (2022), On the stationary stochastic response of 
an order-constrained inventory system. Forthcoming in European Journal of Operational Research.



therefore dt−L /∈ A. The distribution of i[2] is thus the demand distribution truncated by A′,
[fd(x)]A′ , convolved with the lead-time demand distribution, fLd (x):

fi[2](S − x) = fLd (x) ∗ [fd(x)]A′ = fLd (x) ∗ [fõ[1](x)]A′ .

Observe, if it is of degree τ > 1, then we have it =
∑L−1

k=0 dt−k+õt−L. Also, ot−L is constrained
and õt−L is of degree τ − 1 because the most recent free order before t − L was τ − 1 periods
ago. The above result can be generalized to

fi[τ ](S − x) = fLd (x) ∗ [fõ[τ−1](x)]A′ . (14)

The overall inventory distribution is a mixture of the above component distributions which
has the same form as (10):

fi(x) =

∑
k fi[k](x)∑
k kpk

.

We can now provide a general representation for the order and inventory distributions under
constrained order and arbitrary lead-time. Let g1 = fd be the distribution of demand and
h1 = fLd be the distribution of lead-time demand. In the linear inventory system, they give the
order and inventory distribution respectively. In the order-constrained system, for k = 2, · · · ,∞,
construct the function series by recursive convolution:

gk = (gk−1)A′ ∗ g1 and hk = (gk−1)A′ ∗ h1.

Then
fõ(x) =

∑∞
k=1 gk(x)∑∞
k=1 kpk

and fi(S − x) =

∑∞
k=1 hk(x)∑∞
k=1 kpk

.

4.2. Correlated demand
An important issue in inventory theory is the temporal autocorrelation between consecu-

tive demands. It is relatively easy to incorporate demand autocorrelation into linear inventory
systems, as it does not affect the linearity of the system. In our model, we achieve this by
extending the previous analysis to the multivariate case. Under the assumption that demand
is ARMA(p,q), it follows a multivariate distribution fd(x|M,Σ), where x is the demand vector,
M is the expectation and Σ is the autocovariance matrix of x. In fact, the i.i.d. demand case
described in Section 3 is simply M = µd1 and Σ = σdI, where 1 is an all-one vector and I is the
identity matrix, both with proper dimensions.

In the case of correlated demand, M = µd1 remains unchanged as the stationarity assumption
is still in place. We only need to specify the covariance matrix Σ. For an ARMA(p, q) demand
model, the demand is generated by the following equations:

yt = Φyt−1 + Θεt,

dt = Zyt + µd,
(15)

where

Φ =


φ1 1

φ2
. . .

... 1
φr


is a square matrix representing the auto-regression,

Θ =
(
1 θ1 · · · θr

)T
is the input matrix representing the moving average, Z is a row vector in the form of (1 0 · · · 0),
and r = max(p, q). εt is a scalar i.i.d. random variable (Harvey, 1990). Under this model, the
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elements of Σ are σ2jk = E(djdk)− µ2d = ZE(yjy
T
k )ZT . In the case of k 6 j, we can write yj as

yj = Φyj−1 + Θεj

= Φ2yj−2 + ΦΘεj−1 + Θεj

= · · ·

= Φj−kyk +

j−k−1∑
l=1

Φj−k−lΘεk+l + Θεj .

Therefore E(yjy
T
k ) = Φj−kΣyy, where Σyy is the covariance of y. Σyy can be directly derived

from Φ and Θ using the Kronecker product, see Wang and Disney (2017).
In the case of j < k, write yk as

yk = Φk−jyj +

k−j−1∑
l=1

Φk−j−lΘεj+l + Θεk,

from which we have E(yjy
T
k ) = Σyy(Φ

k−j)T . So the elements of Σ can be written as

σ2jk =

{
ZΦj−kΣyyZ

T if k 6 j
ZΣyy(Φ

k−j)TZT if k > j.
(16)

Next, we need to rewrite the component distributions in the multivariate form. Define the
following partitions:

O[τ ] =

x

∣∣∣∣∣∣
k∑
j=1

xj ∈ A′, 1 < k < τ − 1

 ⊂ Rτ−1,

P[τ ] =

x

∣∣∣∣∣∣
k∑
j=1

xj ∈ A′, 1 < k < τ − 1

 ⊂ Rτ ,
and

I[τ ] =

x

∣∣∣∣∣∣
k∑
j=1

xj ∈ A′, 1 < k < τ − 1

 ⊂ RL+τ−1.
We have

fõ[τ ](x) =

∫
O[τ ]

fd(x)dx,

p̃τ =

∫
P[τ ]

fd(x)dx,

and
fi[τ ](S − x) =

∫
I[τ ]

fd(x)dx,

where x is the demand vector with dimensions of τ , τ and L+ τ respectively. The distribution
of order quantity and inventory can then be derived using the approached described in Section
3 and Section 4.1.

In a linear OUT policy, the minimum mean square error (MMSE) forecast of the ARMA
demand minimises the variance of inventory level and the inventory cost. However, in the order
constrained policy, this result is yet to be established. Meanwhile, for general ARMA demand,
adopting MMSE forecasts causes the order-up-to level S to be time-varying, complicating analysis
(as it will create a time-varying admissible region). We leave this for future research, and proceed
herein with a constant order-up-to level.
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5. An approximation algorithm

It can be seen that the computation of the order and inventory distribution and their moments
is difficult due to the fact that it involves the calculation of a countably infinite number of com-
ponent distributions and truncated distributions. Numerically, convolution of density functions
requires discretization, the granularity of which greatly impacts the accuracy of the computa-
tion. In this section, we introduce an approximation algorithm which allows us to compute the
mean and variance of order quantity and inventory much faster than conducting numerical con-
volutions. This algorithm works under the assumptions that the demand, and all component
distributions are Gaussian. The reason for choosing this assumption is that the variance of a
truncated Gaussian distribution can be written in closed form facilitating the recursive computa-
tion. However, it is important to note the component distributions are not Gaussian. Therefore,
the accuracy of the algorithm depends on the divergence between the component distributions
and the Gaussian distribution.

This algorithm builds upon the results from Nurminen et al. (2016), who derived the first- and
second-order moments of a multivariate normal distribution where the first variable is truncated.
We first introduce several variables that will be used in the algorithm. Let M and Σ be the mean
vector and the co-variance matrix of the multivariate distribution. The subscript A denotes the
truncation operation by A. Let mA be the mean truncation coefficient and sA the variance
truncation coefficient. They are calculated as

mA =
φ(z)− φ(z)

Φ(z)− Φ(z)
(17)

and
sA = 1 +

zφ(z)− zφ(z)

Φ(z)− Φ(z)
− (mA)2, (18)

where z = (inf A − µ1)/λ1,1 and z = (supA − µ1)/λ1,1 can be understood as the standardized
infimum and supremum of A. µ1 and λ1,1 are the elements of M and Λ at position 1 and
(1, 1) respectively. The lower triangular matrix Λ is the Cholesky decomposition of Σ such that
Σ = ΛΛT . Therefore µ1 and λ1,1 are the mean and standard deviation of the first element.

Lemma 3. Suppose
(
x1 x2 · · · xn

)
is a random vector following a multivariate normal dis-

tribution with mean M and covariance Σ, then

E
(
(x1)A x2 · · · xn

)
= Λ

(
mA
0

)
+ M,

V
(
(x1)A x2 · · · xn

)
= Λ

(
sA 0
0 I

)
ΛT .

The logic of this algorithm is to derive the conditional mean and variance of the demand
vector

(
dt ∈ A dt+1 · · · dt+n

)
and

(
dt ∈ A′ dt+1 · · · dt+n

)
from the unconditional mean

and variance of
(
dt dt+1 · · · dt+n

)
, using Lemma 3. The conditional mean and variance

is then used to approximate the mean, variance, and probability of the component distribu-
tions õ[τ ] and i[τ ]. To initialize the algorithm, we take an n + 1 dimensional demand vector(
dt dt+1 · · · dt+n

)
. Its mean M and the variance Σ can be derived with the method specified

in Section 4.2. We denote them Md and Σd for consistency. Since the covariance matrix of a gen-
eral ARMA demand is not diagonal, the arbitrarily chosen n affects the accuracy and efficiency
of the approximation. We also need to introduce several binary matrices for the calculation. Let
uk =

(
1 01×(n−k−1)

)
, vk =

(
11×(L+1) 01×(n−L−k−1)

)
, Q1 =

(
0(n−1)×1 I

)
, Qk>1 =

(
uTk I

)
.

In the first step, M1 and Σ1 give the conditional mean and covariance of
(
dt+1 · · · dt+n

)
conditional on dt ∈ A:

M1 = Q1

[
Λd

(
(md)A

0

)
+ Md

]
, (19)

15

Wang, X., Disney, S.M., and Ponte, B., (2022), On the stationary stochastic response of 
an order-constrained inventory system. Forthcoming in European Journal of Operational Research.



Σ1 = Q1Λd

(
(sd)A 0
0 I

)
ΛTdQ

T
1 . (20)

Q1 is an (n − 1) × n matrix composed of an all-zero first column and an identity matrix. It
reduces the dimension of the vector (or the matrix) by one by deleting the first element (or the
first row and column). Since õt[1] = dt | dt−1 ∈ A, the mean of õ[1] is given by the first element
of M1, and its variance is given by the first diagonal element of Σ1:

µ1 = E(õ[1]) = u1M1,

σ21 = V(õ[1]) = u1Σ1u
T
1 .

The first element of uj is one and zero otherwise. It takes the first (diagonal) element of the
respective mean vector (covariance matrix). Note, under autocorrelated demand, we don’t have
E(õ[1]) = µd and V(õ[1]) = σ2d anymore as ot+1[1] = dt+1 is conditional on dt ∈ A. This can also
be seen in (19) and (20) as Λ is no longer diagonal.

In the next step, M1 and Σ1 are used to update the (m1)A′ , (s1)A′ and Λ2. We can then
derive the conditional mean and variance of the vector

(
dt+1 + dt+2 · · · dt+n

)
conditional on

dt ∈ A and dt+1 ∈ A′:

M2 = Q2

[
Λ1

(
(m1)A′

0

)
+ M1

]
, (21)

Σ2 = Q2Λ1

(
(s1)A′ 0

0 I

)
ΛT1Q

T
2 . (22)

The matrix Q2 is (n− 2)× (n− 1) which reduces the dimensions of M1 and Σ1 by one by adding
up the first two elements of M1 and the first two rows and columns of Σ1. Since õt[2] = dt−1 +dt
where dt−1 ∈ A′ and dt−2 ∈ A, the first element of M2 and Σ2 are the mean and variance of õ[2]:

µ2 = E(õ[2]) = u2M2,

σ22 = V(õ[2]) = u2Σ2u
T
2 .

We assume here that õ[2] is normally distributed, but it is in fact skew-normal. Hence µ2 and
σ22 are only approximations to the real mean and variance of õ2.

Generally, the iteration at step k is performed as follows:

Mk = Qk

[
Λk−1

(
(mk−1)A′

0

)
+ Mk−1

]
, (23)

Σk = QkΛk−1

(
(sk−1)A′ 0

0 I

)
ΛTk−1Q

T
k . (24)

Equations (23) and (24) approximate the mean and covariance of
(∑k

j=1 dt+j dt+k+1 · · · dt+n

)
conditional on dt ∈ A, dt+1 ∈ A′, dt+1 + dt+2 ∈ A′ up until

∑k−1
j=1 dt+j ∈ A′. The mean and

variance of õ[k] is approximated by the first element of Mk and the first diagonal element of Σk

respectively:
µk = E(õ[k]) = ukMk,

σ2k = V(õ[k]) = ukΣku
T
k .

The above procedure is easy to understand, recalling that each untruncated component distri-
bution is derived by convolving the demand distribution and the previous component distribution
truncated by A′. µk and σk will be used to calculate the truncation coefficients (mk)A and (sk)A
for the next iteration.
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Figure 6: The iterative relationship of variables in the TGC algorithm.

The distribution of actual order quantity with degree k is the truncation of the kth untrun-
cated component distribution by A, ot[k] = (õ[k])A. Its mean and variance can be approximated
as follows:

E(o[k]) = uk

[
Λk

(
(mk)A

0

)
+ Mk

]
,

V(o[k]) = ukΛk

(
(sk)A 0
0 I

)
ΛTk u

T
k .

The inventory level with degree k > 1 equals the order-up-to level S minus the lead-time
demand,

E(S − i[k]) = vkMk,

V(i[k]) = vkΣkv
T
k .

The vector vk is used to sum up the first (L+ 1) elements of Mk (or the first (L+ 1)× (L+ 1)
sub-matrices of Σk) to account for lead-time demand. When k = 1, the mean and variance of
i[1] equals the mean (reflected at S/2) and variance of lead-time demand.

Lastly, the probability of components with degree k is approximated by

pk = [Φ(zk)− Φ(zk)]
k−1∏
j=1

[
1− Φ(zj) + Φ(zj)

]
.

where zk = (inf A − µk)/σk and zk = (supA − µk)/σk. We use Φ(zk) − Φ(zk) to approximate
the probability that õk ∈ A. The probability of constrained orders ot = 0 can then be calculated
via the equations given in Section 3.2. The mean and variance of orders are thus available via
those of a mixture distribution, following Wald’s equation and the Blackwell–Girshick equation:

E(x) = E(E(x[k])),

V(x) = E(V(x[k])) + V(E(x[k])),

x ∈ {o, i}. The constant order quantities should also be included. Figure 6 shows the iterative
relationship between variables involved in this algorithm. We name this algorithm Truncated
Gaussian Convolution (TGC), as it assumes that all components are Gaussian and is based on
truncated Gaussian convolution. The only time consuming operation involved in this algorithm
is the Cholsky decomposition, with a complexity of O(n3). We will evaluate the effectiveness
and the efficiency of the TGC together with the economic analysis in Section 6.

17

Wang, X., Disney, S.M., and Ponte, B., (2022), On the stationary stochastic response of 
an order-constrained inventory system. Forthcoming in European Journal of Operational Research.



6. Numerical analysis and economic implications

The purpose of the numerical analysis is to demonstrate the performance of the TGC algo-
rithm and to reveal the economic impact of the order constraint. For the former, we test the
TGC algorithm in terms of approximation accuracy, computational efficiency, and robustness
under other demand distributions. For the latter, we conduct a simulation-based analysis via
three performance measures prominent in inventory control: the order variance amplification
phenomenon, a.k.a. the bullwhip effect, the trade-off between the order-up-to level and service
level, and the trade-off between order and inventory variance amplification. The analysis encom-
passes scenarios of order constraints (FR, MOQ, and CC), auto-correlated demand and arbitrary
lead-time. Prior to presenting the analysis, we reemphasize the equivalence between the FR and
CC systems under symmetric demand distributions. Therefore, adjusting the mean demand in
the FR system will have the same effect as adjusting the capacity in the CC system.

We compare TGC with the computing methods of: numerical convolution, simulation, and two
intuitive approximations, namely, the truncated demand (TD) to approximate order distribution
(as the order distribution is the same as the demand distribution in the linear system), and lead-
time demand (LTD) to approximate the inventory distribution (as the inventory distribution is
a reflected and translated lead-time demand distribution in the linear system). Schneider et al.
(1995) proposed the following approximation for the order variance in the (s,S) system based on
the mean and variance of demand (we label it as SRK after the authors’ names)

σ2o ≈ σ2d +
2µ2d(S − s)2

µ2d + 2µd(S − s) + σ2d
.

See also Kelle and Milne (1999) for an application of the SRK approximation in a supply chain
context. We include the SRK approximations in the bullwhip analysis as well. This approxima-
tion is intended for the MOQ system only, while the FR system can be derived from the MOQ
system by letting s = S. Therefore in the FR system, SRK approximates the order variance as
the demand variance.

6.1. Bullwhip analysis
The bullwhip ratio is a good indicator of the impact of the order-constraint, defined as the

ratio between order variance and demand variance. In the linear base-stock policy under i.i.d. de-
mand with MMSE forecasts, ot = dt, the order variance equals the demand variance and the
bullwhip ratio is one (Disney et al., 2016). However, the bullwhip ratio in this nonlinear environ-
ment is no longer constant. Figure 7 shows the evolution of this metric when the mean demand
changes from 0 to 4 under auto-correlated demand and the FR and MOQ order constraints
respectively. The auto-correlation model is chosen to be the first order auto-regressive, AR(1),
demand process where Φ and Θ in (15) are both scalars such that Φ = φ and Θ = 1. The demand
process can be written as yt = φyt−1 + εt and dt = yt + µd. We illustrate scenarios of φ = −0.5
(negative correlation); φ = 0 (no correlation) and φ = 0.5 (positive correlation). We also adjust
the value of σ2ε in three scenarios to make the demand variance constant at σ2d = σ2ε/(1−φ2) = 1.
In the MOQ system, we use s = 0 and S = 1.

First, in a nonlinear system with constrained orders, the mean demand (or more generally,
the tightness of the constraint) has a significant impact on the order variance. This clearly
contrasts with our knowledge in the linear system, where the mean demand does not affect the
order variance. We see the real order variance in the FR system is increasing concave in the mean
demand, and asymptotes to the demand variance when µd is sufficiently large. Similarly, the
order variance is increasing concave in the capacity under the CC system. In the MOQ system,
the order variance will first increase, and then decrease, in µd. This is because of the distance
between the discrete and the continuous components (at C2 = 0 and A respectively) in the order
distribution, such that a reduction in the probability of the discrete component does not always
lead to an increase in order variance.

Second, we observe that TGC is a better approximation than TD. The advantages are two
fold. From an accuracy perspective, even for i.i.d. demand, TGC is more accurate than TD
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Figure 7: The order variance with varying mean demand, demand correlation and order constraint.

when the mean demand is low. This is because TD does not account for the component mixture
in the order distribution. Furthermore, as TD does not contain any information about the
demand correlation, it cannot reflect the demand correlation properly. As shown in Figure 7, in
scenarios where the demand variance is equal but correlation is different, TD always gives the
same approximation. However, the TGC approximation can account for the demand correlation.
When compared with SRK in the MOQ system, we see that TGC significantly outperforms SRK
at approximating the real order variance, and SRK does not take into account the demand auto-
correlation. We need to note that SRK performs better when the MOQ becomes larger. This is
because a key step in the derivation of the SRK approximation requires large MOQ values (see
Appendix 1 of Schneider et al., 1995). On the other hand, the proposed TGC approximation
performs less satisfactory under large MOQ values as the component distributions deviate from
Gaussian significantly.

The robustness of TGC is examined with Gamma demand in Figure 8. The Gamma(α, β)
distribution is given by fd(x) = β−αxα−1e−x/β/Γ(α) where α is the shape parameter, β is the
scale parameter and Γ(·) is the Gamma function. This gives µd = αβ and σ2d = αβ2. We vary
α between 2 and 12 with β = 2. As the support of the Gamma distribution is non-negative,
the FR constraint does not affect the order distribution. Therefore we use an MOQ system with
s = 0 and S = 1. The result shows that TGC approximates the order variance better than
TD and SRK when α is small, in terms of the distance from the real values. When α becomes
large, the Gamma distribution becomes more like a Gaussian distribution (see the subplots in
Figure 8), and the accuracy of TGC improves. Meanwhile, TD converges faster than TGC in this
example. This is because µd increases with α, and the order constraint (in this case ot > 1)
gradually becomes loose. SRK performs similar to TD but shows an increasing divergence when
α increases.

The efficiency of TGC compared with the numerical convolution method and Monte-Carlo
simulation is shown in Table 4. The task is to calculate the order variance in the FR system
when demand is i.i.d. with µd = 1.5 and σd = 1. We do not vary the parameters as they do not
affect the computation time. The platform is a personal computer with INTEL R© i7-8650 CPU
at 1.9GHz and 16GB RAM. For the benchmark variance value, we use numerical convolution
as the real value requires infinite convolutions which is practically impossible. To reduce the
discretization error, a fine grid (105) is used to discretize the density functions. The number of
iteration (30) is chosen such that the absolute change in the converging value is less than the
maximum rounding error under double precision (2−52 ≈ 2.22×10−16). Next, the approximation
of TGC is given with an discrepancy of 10−3 from the benckmark value. For the methods where
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Figure 8: The order variance in an (s,S) system with Gamma demand.

Table 4: Computational efficiency of the numerical methods.
Benchmark* TGC† Simulation‡ Convolution§ TD SRK

Order Variance, σ2 0.8959 0.8969 (0.8950, 0.8968) 0.8950 0.8884 1.0000
Time (seconds) 43.66 0.17 5.78 5.52 0.01 0.003

* 105 data points are used to discretize the pdfs up until o[30].
† n = 100.
‡ 95% confidence interval of 6,400 samples over 1,000 periods.
§ 105 data points are used to discretize the pdfs up until o[5].

iteration is needed (simulation and numerical convolution), we show the computation time needed
in order to achieve the same level of accuracy. The results by TD and SRK are also included.
It is quite obvious that TGC possesses great superiority in terms of computational efficiency
with the same level of accuracy between numerical convolution and simulation methods. On
the other hand, TD and SRK are quick since no iteration is involved, but their approximations
have large deviations from the benchmark. Finally, it is important to note the reliability of
TGC decreases as the constraint becomes tighter, since the inadmissible part of the demand
distribution is not negligible, and the component distributions cannot be safely approximated
by Gaussian distributions.

6.2. Order-up-to level and service level
The achieved service level is another important performance measure of the inventory system,

which can be adjusted by altering the safety stock and the order-up-to level. Since the order-up-
to level horizontally shifts the inventory distribution and does not change its shape, it should be
set such that the achieved service level (the probability that the inventory level is positive) equals
the target service level. If the achieved service level does not equal the target, then the business
will either be over- or under-stocked and the inventory cost will not be minimized. In this sense,
the distance between achieved and target service level can be used to measure inventory control
performance. Since the exact inventory distribution is asymptotically available, we can always
achieve the target service level, at least numerically. In this section, we are interested in the
service level performance using only the inventory variance estimate.

Table 5 examines the performance of TGC in terms of service level in a capacitated system.
The same three auto-correlated demand scenarios as in Section 6.1 are considered. The capac-
ity Cp = 3, the lead-time values are L = {1, 5, 10}, and the mean demand µd = {1, 2}. The
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Table 5: Actual service level when safety stock is calculated by LTD and TGC. (Note: Bold font indicates cases
where the TGC approximation does not perform worse than the LTD approximation).

µd = 1 µd = 2
φ = −0.5 φ = 0 φ = 0.5 φ = −0.5 φ = 0 φ = 0.5

LTD
L = 1 0.900 0.898 0.895 0.894 0.865 0.820
L = 5 0.900 0.899 0.898 0.891 0.887 0.873
L = 10 0.900 0.900 0.900 0.892 0.892 0.884

TGC
L = 1 0.901 0.898 0.905 0.891 0.879 0.895
L = 5 0.900 0.899 0.901 0.891 0.890 0.889
L = 10 0.900 0.900 0.901 0.893 0.892 0.892

order-up-to level is determined in the following way: S = Lµd + z(αT )σi, where first term is the
mean of lead-time-demand, z(αT ) is the αT -quantile of the standard Gaussian distribution. The
second term z(αT )σi is the safety stock. Under TGC, σi is derived by taking into account the
truncations and mixtures. As a comparison, under the LTD approximation, the mean and vari-
ance of inventory are simply taken as those of the lead-time demand in the linear unconstrained
case (the demand auto-correlation is still considered). A target service level of αT = 90% is
assumed. The achieved service level is derived via simulation in the CC system.

By varying the lead-time and the demand autocorrelation, we see both approximations pro-
duce less satisfactory results when the constraint becomes tighter (that is, when µd becomes
greater). This is true for both the LTD and the TGC approximations. There is a positive re-
lationship between µd and the achieved service level; that is, given a capacity constraint, the
achieved service level decreases as µd increases. This contrasts with a linear unconstrained in-
ventory system model, in which the actual service level is affected by the order-up-to level but
not the mean demand. The reason is the inventory distribution becomes more negatively skewed
as µd becomes greater, leading to a thicker negative tail and lower achieved service level. The
discrepancy between the target and the achieved service level also decreases in lead-time and
decreases in demand correlation. A possible explanation is that long lead-time and negative cor-
relation both lead to more “normal” component distributions, due to the central limit theorem
and the risk pooling effect. We also observe TGC generally outperforms the LTD approximation
in terms of reaching the target service level; the benefit could be as high as 7.5% (when µd = 2,
φ = 0.5 and L = 1). This indicates significant cost savings can be gained with a more accurate
inventory distribution estimate in the order-constrained system.

6.3. Sum of order and inventory variances
It is known that the standard deviation of inventory has a strong impact on inventory-related

costs. Under certain assumptions (such as piece-wise linear and convex costs and Gaussian in-
ventory distribution), this relationship is even linear. Hence, the study of inventory variance
provides insight for inventory cost management. Similarly, the standard deviation of the replen-
ishment orders (or production targets in manufacturing settings) directly creates capacity costs
and also contributes to the inventory cost in upstream suppliers. The relative magnitudes of the
order and inventory standard deviations alter the economic consequences (Boute et al., 2021).
However, in order to preserve the analytical simplicity of quadratic problems, here we consider
the simple sum of the variances.

Ponte et al. (2017) has observed that a capacity constraint on the order quantity has a
smoothing effect on orders, reducing the order variance while increasing inventory variance. We
can now explain this observation. When there is a constant constraint on the order quantity,
there are two effects taking place. The first one is the mixture effect, where the order distribution
becomes mixed, with component distributions that have different means. This increases the order
variance. There is also the truncation effect, where all component distributions are truncated
by the constraint, which tends to decrease the order variance. For the order quantity, the
truncation effect is dominant, and the order variance decreases as the order constraint becomes
tighter. However, the component distributions of inventory are not truncated as there is no
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Figure 9: Sum of order and inventory variance with varying mean demand, demand correlation, and order
constraint.

constraint on the inventory level. This means the inventory variance increases with a tighter
constraint (although not monotonically) as only the mixture effect is present. We also observe
that as the constraint tightens, the order variance reduces slower than the inventory variance
increases. However, the inventory variance grows significantly when the constraint becomes very
tight. We can take advantage of this phenomenon and reduce order variance by adjusting the
constraint, while keeping the inventory variance to an acceptable level, to balance the trade-off
between inventory and order costs.

Figure 9 shows the order variance, the inventory variance, and their sum. The mean demand,
demand correlation and order constraints are the same as in Figure 7. We let the lead-time L = 1
so that the order and inventory variances are comparable. The immediate observation is that for
the FR system, when the demand is independent or negatively correlated, decreasing µd leads
to a reduction in the variance of the sum, due to the reasons elaborated above. Moreover, by
decreasing µd, a larger benefit can be achieved in the negative correlation case. As the auto-
regression coefficient increases, the benefit of reducing µd becomes insignificant. The same effect
can be observed in the CC system when the capacity is tuned. However, when C1 6= C2 as in
the MOQ system, the order variance does not increase with the mean demand, but increases
then decreases. Consequently, the sum of variances may not have a global minimum, but instead
possess multiple local maximums and minimums, as in the negative correlation and no correlation
cases.

We can easily infer what would happen when the objective is a weighted sum of order and
inventory variances (that is, γσ2o +(1−γ)σ2i where 0 6 γ 6 1). The weight γ does not change the
tightness of the order constraint, therefore it does not affect the accuracy of the TGC algorithm.
However, since the order variance decreases, and the inventory variance increases when the
constraint tightens, the weight does affect how much the weighted sum can be reduced by the
constraint. For instance, by increasing the weight for the order variance, there would be a greater
reduction in the weighted sum of variances.

7. Conclusions

We have investigated the order and inventory distributions in a periodic review, continuous
state, nonlinear inventory system, where the order quantity is (either upper- or lower-) con-
strained by a constant. This model is shown to have a wide application in practice, covering
cases of forbidden returns, minimum order quantity, and production capacity. Our analytical
framework is compatible with long transportation delays and demand autocorrelation.
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Both the order and inventory distributions are a mixture of distributions, where the com-
ponents can be derived by iterative convolutions of full and truncated distributions. For the
Gaussian demand, we have proposed an algorithm that is able to approximate the density func-
tion and the moments, taking advantage of the analytical tractability of the truncated Gaussian
distribution. The performance of the algorithm decreases with the tightness of the constraint,
but it generally provides more accurate estimates than the intuitive approximations and is more
efficient than numerical convolution. When applying this algorithm to set the safety stock, the
accuracy leads to improved service level.

We have revealed the order constraint has a smoothing effect on orders but a variance am-
plifying effect on inventory. This is due to both distribution truncation and mixture effects.
Combined, the order constraint is able to reduce the sum of order and inventory variance. This
finding exposes a mechanism by which the order-inventory trade-off can be influenced by the
order constraint. Strategically constraining orders has the potential to significantly enhance the
dynamic behaviour of production and distribution systems.

Managerially, our analysis provides additional insights for managers to understand the effect
of the order constraint on the fluctuations of order quantity and inventory level. The approxima-
tion algorithm allows for accurate and efficient estimating the magnitude of this effect. Moreover,
it enlarges the toolbox for controlling the trade-off between order and inventory variances. We
can now choose to influence the mean demand, introduce a minimum order quantity, or adjust
the capacity. Such measures may be easier to implement than the proportional control method
(Disney and Towill, 2003) usually advocated to control the bullwhip effect, as the core algorithm
does not need to be changed. The ordering decision can be made by simply comparing the orig-
inal recommended quantity and the constraint value. In future research, it would be interesting
to use our modelling approach to extract demand information from observed constrained order
information. Furthermore, the effect of demand auto-correlation and lead-time on the inventory
level performance in the order-constrained systems is worth further exploration, especially when
the order-up-to level is dynamic over time due to the demand forecast.
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