74 research outputs found

    Time Based Intrusion Detection on Fast Attack for Network Intrusion Detection System

    Get PDF
    In recent years network attack are easily launch since the tools to execute the attack are freely available on the Internet. Even the script kiddies can initiate a sophisticated attack with just a basic knowledge on network and software technology. To overcome this matter, Intrusion Detection System (IDS) has been used as a vital instrument in defending the network from this malicious activity. With the ability to analyze network traffic and recognize incoming and ongoing network attack, majority of network administrator has turn to IDS to help them in detecting anomalies in network traffic. The gathering of information and analysis on the anomalies activity can be classified into fast and slow attack. Since fast attack activity make a connection in few second and uses a large amount of packet, detecting this early connection provide the administrator one step ahead in deflecting further damages towards the network infrastructure. This paper describes IDS that detects fast attack intrusion using time based detection method. The time based detection method calculates the statistic of the frequency event which occurs between one second time intervals for each connection made to a host thus providing the crucial information in detecting fast attack

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Self-management Framework for Mobile Autonomous Systems

    Get PDF
    The advent of mobile and ubiquitous systems has enabled the development of autonomous systems such as wireless-sensors for environmental data collection and teams of collaborating Unmanned Autonomous Vehicles (UAVs) used in missions unsuitable for humans. However, with these range of new application domains comes a new challenge – enabling self-management in mobile autonomous systems. The primary challenge in using autonomous systems for real-life missions is shifting the burden of management from humans to these systems themselves without loss of the ability to adapt to failures, changes in context, and changing user requirements. Autonomous systems have to be able to manage themselves individually as well as to form self-managing teams that are able to recover or adapt to failures, protect themselves from attacks and optimise performance. This thesis proposes a novel distributed policy-based framework that enables autonomous systems to perform self management individually and as a team. The framework allows missions to be specified in terms of roles in an adaptable and reusable way, enables dynamic and secure team formation with a utility-based approach for optimal role assignment, caters for communication link maintenance among team members and recovery from failure. Adaptive management is achieved by employing an architecture that uses policy-based techniques to allow dynamic modification of the management strategy relating to resources, role behaviour, team and communications management, without reloading the basic software within the system. Evaluation of the framework shows that it is scalable with respect to the number of roles, and consequently the number of autonomous systems participating in the mission. It is also shown to be optimal with respect to role assignments, and robust to intermittent communication link disconnections and permanent team-member failures. The prototype implementation was tested on mobile robots as a proof-ofconcept demonstration

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    European Atlas of Natural Radiation

    Get PDF
    Natural ionizing radiation is considered as the largest contributor to the collective effective dose received by the world population. The human population is continuously exposed to ionizing radiation from several natural sources that can be classified into two broad categories: high-energy cosmic rays incident on the Earth’s atmosphere and releasing secondary radiation (cosmic contribution); and radioactive nuclides generated during the formation of the Earth and still present in the Earth’s crust (terrestrial contribution). Terrestrial radioactivity is mostly produced by the uranium and thorium radioactive families together with potassium. In most circumstances, radon, a noble gas produced in the radioactive decay of uranium, is the most important contributor to the total dose. This Atlas aims to present the current state of knowledge of natural radioactivity, by giving general background information, and describing its various sources. This reference material is complemented by a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources. It is a compilation of contributions and reviews received from more than 80 experts in their field: they come from universities, research centres, national and European authorities and international organizations. This Atlas provides reference material and makes harmonized datasets available to the scientific community and national competent authorities. In parallel, this Atlas may serve as a tool for the public to: • familiarize itself with natural radioactivity; • be informed about the levels of natural radioactivity caused by different sources; • have a more balanced view of the annual dose received by the world population, to which natural radioactivity is the largest contributor; • and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence to better understand the latter.JRC.G.10-Knowledge for Nuclear Security and Safet

    Improving the Capabilities of Distributed Collaborative Intrusion Detection Systems using Machine Learning

    Get PDF
    The impact of computer networks on modern society cannot be estimated. Arguably, computer networks are one of the core enablers of the contemporary world. Large computer networks are essential tools which drive our economy, critical infrastructure, education and entertainment. Due to their ubiquitousness and importance, it is reasonable to assume that security is an intrinsic aspect of their design. Yet, due to how networks developed, the security of this communication medium is still an outstanding issue. Proactive and reactive security mechanisms exist to cope with the security problems that arise when computer networks are used. Proactive mechanisms attempt to prevent malicious activity in a network. Prevention alone, however, is not sufficient: it is imprudent to assume that security cannot be bypassed. Reactive mechanisms are responsible for finding malicious activity that circumvents proactive security mechanisms. The most emblematic reactive mechanism for detecting intrusions in a network is known as a Network Intrusion Detection System (NIDS). Large networks represent immense attack surfaces where malicious actors can conceal their intentions by distributing their activities. A single NIDS needs to process massive quantities of traffic to discover malicious distributed activities. As individual NIDS have limited resources and a narrow monitoring scope, large networks need to employ multiple NIDS. Coordinating the detection efforts of NIDS is not a trivial task and, as a result, Collaborative Intrusion Detection System (CIDSs) were conceived. A CIDS is a group of NIDSs that collaborate to exchange information that enables them to detect distributed malicious activities. CIDSs may coordinate NIDSs using different communication overlays. From among the different communication overlays a CIDSs may use, a distributed one promises the most. Distributed overlays are scalable, dynamic, resilient and do not have a single point of failure. Distributed CIDSs, i.e., those using distributed overlays, are preferred in theory, yet not often deployed in practice. Several open issues exist that constraint the use of CIDSs in practice. In this thesis, we propose solutions to address some of the outstanding issues that prevent distributed CIDSs from becoming viable in practice. Our contributions rely on diverse Machine Learning (ML) techniques and concepts to solve these issues. The thesis is structured around five main contributions, each developed within a dedicated chapter. Our specific contributions are as follows. Dataset Generation We survey the intrusion detection research field to analyze and categorize the datasets that are used to develop, compare, and test NIDSs as well as CIDSs. From the defects we found in the datasets, we develop a classification of dataset defects. With our classification of dataset issues, we develop concepts to create suitable datasets for training and testing ML based NIDSs and CIDSs. With our concepts, we injects synthetic attacks into real background traffic. The generated attacks replicate the properties of the background traffic to make attacks as indistinguishable as they can be from real traffic. Intrusion Detection We develop an anomaly-based NIDS capable of overcoming some of the limitations that NIDSs have when they are used in large networks. Our anomaly-based NIDS leverages autoencoders and dropout to create models of normality that accurately describe the behavior of large networks. Our NIDS scales to the number of analyzed features, can learn adequate normality models even when anomalies are present in the learning data, operates in real time, and is accurate with only minimal false positives. Community Formation We formulate concepts to build communities of NIDSs, coined community-based CIDSs, that implement centralized ML algorithms in a distributed environment. Community-based CIDSs detect distributed attacks through the use of ensemble learning. Ensemble learning is used to combine local ML models created by different communities to detect network-wide attacks that individual communities would otherwise struggle to detect. Information Dissemination We design a dissemination strategy specific to CIDSs. The strategy enables NIDSs to efficiently disseminate information to discover and infer when similar network events take place, potentially uncovering distributed attacks. In contrast to other dissemination strategies, our strategy efficiently encodes, aggregates, correlates, and shares network features while minimizing network overhead. We use Sketches to aggregate data and Bayesian Networks to deduce new information from the aggregation process. Collusion Detection We devise an evidence-based trust mechanism that detects if the NIDSs of a CIDS are acting honestly, according to the goals of the CIDS, or dishonestly. The trust mechanism uses the reliability of the sensors and Bayesian-like estimators to compute trust scores. From the trust scores, our mechanism is designed to detect not only single dishonest NIDSs but multiple coalitions of dishonest ones. A coalition is a coordinated group of dishonest NIDSs that lie to boost their trust scores, and to reduce the trust scores of others outside the group

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions
    • …
    corecore