IMPROVING THE CAPABILITIES OF DISTRIBUTED
COLLABORATIVE INTRUSION DETECTION SYSTEMS USING
MACHINE LEARNING

CARLOS GARCIA CORDERO

Dissertation
Zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertationsschrift in englischer Sprache
von MSc. Carlos Garcia Cordero
aus Darmstadt, Germany
geboren in Mexiko Stadt, Mexiko

Erstreferent: Prof. Dr. Max Miihlhauser
Korreferent: Prof. Dr. René Mayrhofer
Korreferent: Prof. Dr. Sascha Hauke

Tag der Einreichung: 6 May 2019
Tag der Priifung: 14 June 2019

Fachgebiet Telekooperation
Fachbereich Informatik
Technische Universitat Darmstadt
Hochschulkennziffer D-17
Darmstadt, 2019

August 21, 2019 — version 1.2

Carlos Garcia Cordero:
Improving the Capabilities of Distributed Collaborative Intrusion Detection
Systems using Machine Learning

Darmstadt, Technische Universitit Darmstadt

Jahr der Veroffentlichung der Dissertation auf TUprints: 2019
URN: urn:nbn:de:tuda-tuprints-9goo33

Tag der Priifung: 14.06.2019

Veroffentlicht unter CC BY-SA 4.0 International
https:/ /creativecommons.org/licenses/

© August 21, 2019

I can’t help but ask, one day many years later, when you find your
previous awareness, cognition and choices are all wrong, will you
keep going along the wrong path or reject yourself?

— Gu Li after playing against AlphaGo

iv

SYNOPSIS

The impact of computer networks on modern society cannot be es-
timated. Arguably, computer networks are one of the core enablers
of the contemporary world. Large computer networks are essential
tools which drive our economy, critical infrastructure, education and
entertainment. Due to their ubiquitousness and importance, it is rea-
sonable to assume that security is an intrinsic aspect of their design.
Yet, due to how networks developed, the security of this communica-
tion medium is still an outstanding issue.

Proactive and reactive security mechanisms exist to cope with the
security problems that arise when computer networks are used. Proac-
tive mechanisms attempt to prevent malicious activity in a network.
Prevention alone, however, is not sufficient: it is imprudent to assume
that security cannot be bypassed. Reactive mechanisms are responsi-
ble for finding malicious activity that circumvents proactive security
mechanisms. The most emblematic reactive mechanism for detecting
intrusions in a network is known as a Network Intrusion Detection
System (NIDS).

Large networks represent immense attack surfaces where malicious
actors can conceal their intentions by distributing their activities. A
single NIDS needs to process massive quantities of traffic to discover
malicious distributed activities. As individual NIDSs have limited re-
sources and a narrow monitoring scope, large networks need to em-
ploy multiple NIDSs. Coordinating the detection efforts of NIDSs is not
a trivial task and, as a result, Collaborative Intrusion Detection Sys-
tems (CIDSs) were conceived. A CIDS is a group of NIDSs that collabo-
rate to exchange information that enables them to detect distributed
malicious activities. CIDSs may coordinate NIDSs using different com-
munication overlays.

From among the different communication overlays a CIDSs may use,
a distributed one promises the most. Distributed overlays are scalable,
dynamic, resilient and do not have a single point of failure. Distrib-
uted CIDSs, i. e., those using distributed overlays, are preferred in the-
ory, yet not often deployed in practice. Several open issues exist that
constraint the use of CIDSs in practice.

In this thesis, we propose solutions to address some of the out-
standing issues that prevent distributed CIDSs from becoming viable
in practice. Our contributions rely on diverse Machine Learning (ML)
techniques and concepts to solve these issues. The thesis is structured
around five main contributions, each developed within a dedicated
chapter. Our specific contributions are as follows.

DATASET GENERATION We survey the intrusion detection research
field to analyze and categorize the datasets that are used to develop,
compare, and test NIDSs as well as CIDSs. From the defects we found in
the datasets, we develop a classification of dataset defects. With our
classification of dataset issues, we develop concepts to create suitable
datasets for training and testing ML based NIDSs and CIDSs. With our
concepts, we injects synthetic attacks into real background traffic. The
generated attacks replicate the properties of the background traffic to
make attacks as indistinguishable as they can be from real traffic.

INTRUSION DETECTION We develop an anomaly-based NIDS ca-
pable of overcoming some of the limitations that NIDSs have when
they are used in large networks. Our anomaly-based NIDS leverages
autoencoders and dropout to create models of normality that accu-
rately describe the behavior of large networks. Our NIDS scales to the
number of analyzed features, can learn adequate normality models
even when anomalies are present in the learning data, operates in
real time, and is accurate with only minimal false positives.

COMMUNITY FORMATION We formulate concepts to build com-
munities of NIDSs, coined community-based CIDSs, that implement
centralized ML algorithms in a distributed environment. Community-
based CIDSs detect distributed attacks through the use of ensemble
learning. Ensemble learning is used to combine local ML models cre-
ated by different communities to detect network-wide attacks that
individual communities would otherwise struggle to detect.

INFORMATION DISSEMINATION We design a dissemination strat-
egy specific to CIDSs. The strategy enables NIDSs to efficiently dissem-
inate information to discover and infer when similar network events
take place, potentially uncovering distributed attacks. In contrast to
other dissemination strategies, our strategy efficiently encodes, ag-
gregates, correlates, and shares network features while minimizing
network overhead. We use Sketches to aggregate data and Bayesian
Networks to deduce new information from the aggregation process.

COLLUSION DETECTION We devise an evidence-based trust mech-
anism that detects if the NIDSs of a CIDS are acting honestly, according
to the goals of the CIDS, or dishonestly. The trust mechanism uses
the reliability of the sensors and Bayesian-like estimators to compute
trust scores. From the trust scores, our mechanism is designed to de-
tect not only single dishonest NIDSs but multiple coalitions of dishon-
est ones. A coalition is a coordinated group of dishonest NIDSs that
lie to boost their trust scores, and to reduce the trust scores of others
outside the group.

Vi

ZUSAMMENFASSUNG

Die Auswirkungen von Computernetzwerken auf die moderne Ge-
sellschaft lassen sich nicht abschitzen. Zweifellos sind Computernetz-
werke einer der wichtigsten Faktoren in der heutigen Welt. Grofie
Computernetzwerke sind unverzichtbare Werkzeuge, die unsere Wirt-
schaft, kritische Infrastruktur, Bildung und Unterhaltung antreiben.
Aufgrund ihrer Allgegenwartigkeit und Bedeutung ist es sinnvoll an-
zunehmen, dass Sicherheit ein wesentlicher Aspekt ihres Designs ist.
Doch aufgrund der Entwicklung der Netzwerke ist die Sicherheit die-
ses Kommunikationsmediums noch ein offenes Thema.

Zur Bewiltigung der Sicherheitsprobleme, die bei der Nutzung von
Computernetzwerken auftreten, werden aktuell proaktive und reak-
tive Sicherheitsmechanismen eingesetzt. Proaktive Mechanismen ver-
suchen, boswillige Aktivitdten in einem Netzwerk zu verhindern. Pré-
vention allein reicht jedoch nicht aus: Es ist leichtsinnig anzunehmen,
dass Sicherheit nicht umgangen werden kann. Reaktive Mechanismen
sind dafiir verantwortlich, gerade die Aktivitidten zu entdecken, die
proaktive Sicherheitsmechanismen umgehen. Der wohl bekannteste
reaktive Mechanismus zur Erkennung von Eindringlingen in einem
Netzwerk ist bekannt als NIDs.

Grofie Netzwerke stellen immense Angriffsflichen dar, deren Gro-
3e es boswilligen Akteuren ermoglicht, ihre Absichten durch die Ver-
teilung ihrer Aktivitdten zu verbergen. Ein einzelnes NIDS muss grofse
Mengen an Datenverkehr verarbeiten, um bosartige verteilte Aktivita-
ten zu entdecken. Da einzelne NIDSs nur iiber begrenzte Ressourcen
und einen eingeschrankten Uberwachungsradius verfiigen, miissen
grofse Netzwerke mehrere NIDSs einsetzen. Da die Koordination der
Erkennungsbemiihungen von NIDSs keine triviale Aufgabe darstellt,
wurden als Losung CIDSs konzipiert. Ein CIDS besteht aus einer Grup-
pe von NIDSs, die zusammenarbeiten, um Informationen auszutau-
schen, die es ihnen ermdglichen, verteilte bosartige Aktivititen zu er-
kennen. NIDSs konnen durch CIDSs unter Verwendung verschiedener
Kommunikationstiberlagerungen koordiniert werden.

Aus den verschiedenen Kommunikations-Overlays, die ein CIDSs
verwenden kann, ist ein verteilter Ansatz der vielversprechenste. Ver-
teilte Overlays sind skalierbar, dynamisch, resilient und haben keinen
zentralen Schwachpunkt. Verteilte CIDSs, die verteilte Overlays ver-
wenden, werden in der Theorie bevorzugt, aber in der Praxis nicht
haufig eingesetzt. Es gibt mehrere offene Fragen, die den Einsatz von
CIDSs in der Praxis einschranken.

In dieser Arbeit schlagen wir Losungen vor, mit dem Ziel, einige
der noch offenen Fragen zu addressieren, die verhindern, dass ver-
teilte CIDSs in der Praxis nutzbar werden. Unsere Beitrdge basieren

vii

auf verschiedenen ML Techniken und Konzepten, um dieses Ziel zu
erreichen. Die Arbeit beinhaltet fiinf Hauptbeitrdge, die jeweils in ei-
nem eigenen Kapitel beschreiben werden. Unsere spezifischen Beitra-
ge lauten wie folgt.

DATENSATZERSTELLUNG Wir untersuchen das Feld wissenschaft-
licher Arbeiten zu Intrusion Detection Systems (IDSs), um die Daten-
sdtze zu analysieren und zu kategorisieren, die zur Entwicklung, zum
Vergleich und zum Testen von NIDSs und CIDSs verwendet werden.
Aus den Defiziten, die wir in den Datensdtzen gefunden haben, ent-
wickeln wir eine Klassifizierung fiir Datensatzprobleme. Mit unse-
rer Klassifizierung von Datensatzproblemen entwickeln wir Konzep-
te zur Erstellung geeigneter Datensdtze zum Trainieren und Testen
ML-basierter NIDSs und CIDSs. Mit unseren Konzepten injizieren wir
synthetische Angriffe in realen Hintergrunddatenverkehr. Die erzeug-
ten Angriffe replizieren die Eigenschaften des Hintergrunddatenver-
kehrs, um Angriffe dadurch von echtem Datenverkehr ununterscheid-
bar zu machen.

EINBRUCHSERKENNUNG Wir schlagen ein anomaliebasiertes NIDS
vor, das in der Lage ist, einige der Einschrankungen von NIDSs zu
iiberwinden, die auftreten, wenn diese in grofien Netzwerken einge-
setzt werden. Unser anomaliebasiertes NIDS nutzt Autoencoder und
Dropout, um Modelle der Normalitidt zu erstellen, die das Verhalten
grofSer Netzwerke akkurat beschreiben. Unser NIDS skaliert hinsicht-
lich der Anzahl analysierter Merkmale, ist resilient gegeniiber dem
Lernen auf Datensdtzen, die Angriffe beinhalten, arbeitet in Echtzeit
und hat eine genaue Erkennungsrate bei minimaler Anzahl von Fehl-
alarmen.

ERSTELLUNG VON GEMEINSCHAFTEN Wir formulieren Konzepte
zum Aufbau von Gemeinschaften von NIDSs, genannt gemeinschafts-
basierte CIDSs. Diese implementieren zentralisierte ML Algorithmen
in einer verteilten Umgebung. Gemeinschaftsbasierte CIDSs erkennen
verteilte Angriffe durch den Einsatz von Ensemble Learning. Ensem-
ble Learning wird verwendet, um lokale ML Modelle zu kombinieren,
die von verschiedenen Gemeinschaften erstellt wurden, um netzwerk-
weite Angriffe zu erkennen, die einzelne Gemeinschaften sonst nur
schwer erkennen wiirden.

INFORMATIONSVERBREITUNG Wir entwickeln eine Verbreitungs-
strategie, die speziell auf CIDSs zugeschnitten ist. Die Strategie er-
moglicht es NIDSs, Informationen effizient zu verbreiten, um dhnli-
che Netzwerkereignisse zu erkennen und daraus Riickschliisse zu
ziehen, um potenziell verteilte Angriffe aufzudecken. Im Gegensatz
zu anderen Verbreitungstechniken kodiert, aggregiert, korreliert und

viii

teilt unsere Verbreitungsstrategie Netzwerkmerkmale effizient und
minimiert gleichzeitig den Netzwerk-Overhead. Bayes’sche Netzwer-
ke und Sketches dienen hierbei als Hebelmechanismen.

KOLLUSIONSERKENNUNG Wir entwickeln einen evidenzbasierten
Vertrauensmechanismus, der erkennt, ob die NIDSs einer CIDS ehrlich,
nach den Zielen der CIDS, oder unehrlich handeln. Der Vertrauensme-
chanismus nutzt die Zuverldssigkeit der Sensoren und orientiert sich
an Bayes’schen Schitzern, um Vertrauenswerte zu berechnen. Der
Mechanismus wurde entwickelt, um nicht nur einzelne unehrliche
NIDSs, sondern auch mehrere Koalitionen von unehrlicher NIDSs zu er-
kennen. Eine Koalition ist eine koordinierte Gruppe von unehrlichen
NIDSs. Die NIDSs einer Koalition ltigen, um ihre Vertrauenszahlen zu
erhohen und die Vertrauenszahlen anderer aufSerhalb der Koalition
zu reduzieren.

ix

ACKNOWLEDGMENTS

Mephistopheles: “[Some things] lie outside the boundaries that
words can address; and man can only grasp those thoughts
which language can express.”

Faust: “What? Do you mean that words are greater yet than
man?”

Mephistopheles: “Indeed they are.”

Faust: “Then what of longing? Or affection, pain and grief? I
can’t describe these, yet I know they are in my breast. What
are they?”

Mephistopheles: “Without substance, as mist is.”

Faust: “In that case man is only air as well!”

— From the movie “Faust”, by Jan Svankmajer

The 1994 Faust movie by Jan Svankmajer plays with the rhetoric
that words (language) are the enablers of thought. The argumenta-
tion that language is essential to thought has been a long-standing
debate with many in favor (e.g., Hegel, Nietzsche) and against (e.g.,
Rousseau, Bergson). Both parties, however, (arguably) agree that lan-
guage is the best tool to preserve thought. In the context of modern
science, the written word is that which enables us, scientists, to de-
velop, present and share our scientific thoughts. Acknowledging the
importance of the written word enabled me to sit down long nights
to develop the contents of the present work (in spite of all the hard-
ships).

In the novel of Goethe, Dr. Faust struggles to find and develop
novel scientific thoughts and, due to his frustration, sells his soul to
Mephistopheles. In the song “Faustian Echoes”, Agalloch expresses
what this relatable frustration must have been to Faust:

O growing Moon, didst thou but shine
A last time on this pain of mine
Behind this desk how oft have I

At midnight seen thee rising high
O’er book and paper I bend

Thou didst appear, 0 mournful friend

— From the song “Faustian Echoes”, by Agalloch

Instead of relying on Mephistopheles” help, like Faust did, I relied on
the support of many around me to cope with the inherent frustrations
associated with the development of novel scientific work.

Prof. Miihlhduser, you have been a great supervisor and an extraor-
dinary boss. The freedom you have given me to carry out my research
made me a better researcher. Every discussion I had with you, no mat-
ter the subject, always brought up interesting points that challenged

Xi

my perception of things. “Where do you believe we think?”, you asked
me once. “In the brain of course”, I replied. “I think it was my stomach,
and not my brain, that made the decision to go in and disturb that lecture
while I was pulling the Ph.D. celebration wagon”. Overall, my time work-
ing in the Telecooperation Lab was stressful but rewarding and fun.
Much of the fun was due to the great environment brought about
by my colleagues. Thank you Aidmar, Andrea, Fabio, Florian, Julien,
Jorg, Leon, Manolis, Mathias, Nikos, Rolf, Sascha, Shankar, Sheikh,
Tim, and all the others for the support and your patience.

To all my family, specially: my mom, dad, sister, aunts, uncles and
cousin; thank you for letting me know that you are around me de-
spite the distance. To all my friends, in Darmstadt, Mexico and all
over the world, thank you for the great times we have had and the
times that we have yet to live! Yetty, do not stop sending messages
with that ever-present chant of yours! Myriam, every discussion I
have with you is amazing. What an amazing friend you are. I am
always looking up to you as inspiration. Oso, when are we cooking
together again? Flaca, we should listen and compose post-rock music
together! Ilaine, let us chat more often! Muerto, when are we jamming
together? Paulina, let us go grab dinner some time soon. Mariana, we
should cook mole and Mexican food again! Angie, I promise to visit
you more often in Edinburgh (or wherever you are). Pepe, have you
heard the latest album of Nargaroth!? It is amazing! Fernando, let us
climb once a week again and play as many board games as possible!
Max, middle earth was too peaceful for far too long. The hunt for the
ring shall continue! Rahul, now that we both have experienced it, let
us compose “depressive thesis writing black metal”! Oh, and I just
discovered a new Russian Circles album is out! Gustavo, when is the
next band practice taking place? Are we finally learning how to play
“Babe I'm gonna leave you”?

Vanessa, let this that is written here be a remembrance of the his-
tory that was and is. If they ask, we will say that, indeed, it was true;
for what is true but that which we perceive?

Xii

CONTENTS

1 Introduction o
1.1 Intrusion Detection in Large Networks
1.2 An Overviewon CIDS
1.3 Open Issues within Distributed CIDSs
1.4 Research Goals and Objectives
1.5 Scientific Contributions
1.6 Publications Lo L
1.7 Thesis Organization and Structure

1.7.1 MarginNotes
1.7.2 Structure of the Contributions
1.7.3 General Outline

2 Background and Related Work

2.1 Machine Learning
2.1.1 Performance Metrics
2.1.2 Feature Types and Encodings
2.1.3 Datasets and Model Training
2.1.4 Anomaly Detection

2.2 Network Intrusion Detection Systems
2.2.1 NIDS Requirements and Difficulties
2.2.2 NIDS Architecture and Classification.
2.2.3 Anomaly-based Network Intrusion Detection

2.3 Collaborative Intrusion Detection Systems
2.3.1 CIDS Communication Overlays
2.3.2 CIDS Collaboration Levels
2.3.3 CIDS Architectural Components

3 Dataset Generation

3.1 Introduction o o L.
3.1.1 Problem Statement
3.1.2 The Challenges of Creating Adequate Datasets . . .
3.1.3 Chapter Contributions

3.2 Requirements of Datasets and Injection Tools
3.2.1 Requirements of Datasets Suitable in the Field . . .
3.2.2 Requirements for Creating Synthetic Traffic

3.3 Related Work and Defect Analysis
3.3.1 Static Datasets
3.3.2 Dataset Generation Tools
3.3.3 Classification of Dataset Defects

3.4 The Intrusion Detection Dataset Toolkit (ID2T)
3.4.1 The Architecture of ID2T
3.4.2 The Modules of ID2T

3.5 Testing Intrusion Detection Datasets (TIDED)
3.5.1 Classification of Reliability Tests

R O O &~ W N R

xiii

3.5.2 Reliability Test Metrics 58

3.6 The Attack Scripts of ID2T 62
3.6.1 Probe and Surveillance Attack Scripts 63
3.6.2 Resource Exhaustion Attack Scripts 66
3.6.3 Exploitation Attack Scripts 68
3.6.4 Botnet Infection Attack Scripts 71

3.7 Exemplary Evaluation by Use Cases 74
3.7.1 Reproducing Anomaly-based Evaluation Results . . 74
3.7.2 Validating Signature-based Configurations 76
3.7.3 Discussion of the Use Cases 77

3.8 Conclusion and Lessons Learned 77
3.8.1 Future Work Lo oL 78
3.8.2 Chapter Summary. 79

Intrusion Detection 81

4.1 Introduction o oL 83
4.1.1 Problem Statement 83
412 Challenges 84
4.1.3 Chapter Contributions 84

4.2 Specialized Background 84
4.2.1 Network Flows 85
4.2.2 Characterizing Network Flow Features with Entropy 85
4.2.3 The Subspace Method 86
4.2.4 Replicator Neural Networks 87

4.3 Related Work 88

4.4 Intrusion Detection using Replicator Neural Networks . . 89
4.4.1 Formal RNN Model 90
4.4.2 Extracting Entropies 91
4.4.3 Using RNNs to Detect Anomalies in Network Flows 91
4.4.4 Detecting Anomalous Flows 93

4.5 Evaluation 94
4.5.1 Evaluation Dataset 94
4.5.2 Experimental Setup 95
4.5.3 Experimental Results 96
4.5.4 Discussion of the Experiments 101

4.6 Conclusion and Lessons Learned 103
4.6.1 Future Work 104
4.6.2 Chapter Summary. 104

Community Formation 105

5.1 Introduction L 106
5.1.1 Problem Statement 108
51.2 Challenges 109
5.1.3 Chapter Contributions 110

5.2 Specialized Background 110
5.2.1 The LERAD Algorithm 110
5.2.2 Ensemble Learning 111

Xiv

5.3 Related Work o L. 112
5.3.1 Rule-based Anomaly Intrusion Detection 112
5.3.2 Distributed Machine Learning 113

5.4 Communities for Collaborative Intrusion Detection. . . . 113
5.4.1 The Community Formation Concept 113
5.4.2 Mathematical Formalization 114
5.4.3 The Community Building Parameters 115
5.4.4 Community Formation 117
5.4.5 Sensor Grouping Algorithms 118
5.4.6 Community-based Collaborative Intrusion Detection 119

5.5 Evaluation 120
5.5.1 Modifications to the DARPA g9 Dataset 121
5.5.2 Using LERAD in the Communities 122
5.5.3 Experimental Setup 123
5.5.4 Experimental Results 123

5.6 Conclusion and Lessons Learned 126
5.6.1 Future Work, 127
5.6.2 Chapter Summary. 128

Intrusion Information Dissemination 129

6.1 Introduction 130
6.1.1 Problem Statement 131
6.1.2 Challenges 132
6.1.3 Chapter Contributions 133

6.2 Specialized Background 134
6.2.1 The Count-Min Sketch Probabilistic Data Structure 134
6.2.2 Divergences of Sketches 135
6.2.3 Bayesian Networks 136

6.3 Related Work L. 137

6.4 Overview of the Dissemination Strategy 138

6.5 Feature Processing: Encoding Counts with Sketches . . . 139

6.6 Similarity Deduction: Using Bayesian Networks 141
6.6.1 Bayesian Networks for Deducing Similarities 141
6.6.2 Learning the Bayesian Network Parameters 147

6.7 Information Dissemination: Forwarding Sketches 149

6.8 Evaluation 151
6.8.1 Experimental Setup 151
6.8.2 Deductions using Assumptions 152
6.8.3 Deductions using Real-world Data 154

6.9 Conclusion and Lessons Learned 156
6.9.1 Future Work L. 158
6.9.2 Chapter Summary. 158

Collusion Detection 159

7.1 Introduction oo 160
7.1.1 Problem Statement 161
7.1.2 Challenges 161
7.1.3 Chapter Contributions 162

XV

7.2 Specialized Background 0oL 163
7.2.1 K-means Clustering 163
7.2.2 Gaussian Mixture Models 163

7.3 Related Work 164
7.3.1 Bayesian Trust Models 164
7.3.2 Machine Learning for Trust Modeling 164
7.3.3 Trust Management within CIDSs 165

7.4 Sphinx: a Colluder-resistant Trust Mechanism 166
7.4.1 The Mechanism and its Assumptions 166
7.4.2 Evidence-based Trust Score 168
7.4.3 Reliability-based Trust Score 170
7.4.4 Final TrustScore 171

7.5 Evaluation 171
7.5.1 Experimental Setup 171
7.5.2 Experiments 174

7.6 Conclusion and Lessons Learned 180
7.6.1 Future Work 181
7.6.2 Chapter Summary. 181

8 Conclusion 183

81 Summary 183

8.2 On the Usefulness of the Contributions 186

83 Outlook 189

Bibliography 191

XVi

LIST OF FIGURES

1.1 Five componentsof aCIDS 4
1.2 The five contributions of the thesis 12
2.1 Prediction classes in machine learning 16
2.2 The datasets used in machine learning 19
2.3 Simplified NIDS architecture 23
2.4 Information flow in an anomaly detection system 25
2.5 Classes of CIDS communication overlays 27
2.6 The CIDS architecture 29
3.1 Overview of the first contribution 36
3.2 Inputsand outputsof ID2T 38
3.3 Publishing timeline of datasets 43
3.4 Classification of dataset defects 50
3.5 The architecture of ID2T 53
3.6 Comparing TIDED reliability tests 57
3.7 IPentropiesin MAWI 59
3.8 Comparison of normalized entropies 60
3.9 Novel IP entropiesin MAWI 61
3.10 Comparing normalized novelty distributions 62
3.11 IP cumulative entropies in MAWI 63
3.12 Classification of ID2T attacks 64
3.13 Detecting DDoS attacks withan RNN. 75
4.1 Overview of the second contribution 82
4.2 Characterization of distributions with entropy 87
4.3 Example of an RNN architecture 88
4.4 Scatter plots of network flow feature entropies 95
4.5 Loss during RNN training 97
4.6 Anomaly scores of some MAWIdays 97
4.7 Box plots of anomaly scores 99
4.8 Anomaly scores of DDoS attacks 100
4.9 Anomaly scores of portscans 100
4.10 PCA projection for anomaly detection 102
5.1 Overview of the third contribution 106
5.2 Three parameter configurations 116
5.3 Original and modified DARPAs 99 architecture 122
5.4 Recall and precision using different sensors 124
5.5 Recall and prevision with different sensor overlap 126
6.1 Overview of the fourth contribution 130
6.2 Simple message distribution scenario. 132
6.3 Similarity deduction overview, 138
6.4 Example feature distribution scenario of three members . 140
6.5 Number of nodes created for a Bayesian Network 142

Xvii

6.6 Bayesian Network that deduces Sketch divergences 143

6.7 Comparing edge creation methods 145
6.8 Number of node stereotypes 146
6.9 Deduction accuracy using data assumptions 153
6.10 Average deduction accuracy using data assumptions . .. 154
6.11 Deduction accuracy using real-world data. 155
7.1 Overview of the fifth contribution 160
7.2 Family of Beta distributions 173
7.3 Detecting single large coalitions 175
7.4 Detecting multiple coalitions 176
7.5 Detecting less conservative coalitions 176
7.6 Effects of disperse bootstrapped trust scores 177
7.7 Effects on the sensibility of dishonesty 178
7.8 Detecting smart dishonest sensors 179
7.9 Turning point for smart dishonest sensors 180

LIST OF TABLES

3.1 Summary requirements of static datasets 47
3.2 Summary requirements of dataset generation tools 49
3.3 Testing SNIDSs with ID2T 76
4.1 Principal components of flow features. 101
5.1 ALERADruleset. 111
5.2 Summary of the notation used within this chapter 115
6.1 Knowledge after distributing four messages 132
6.2 Divergence comparisons with and without Sketches 141
6.3 Example CPTs of two Bayesian Network nodes 148
7.1 Summary of the notation used throughout this chapter. . . 167

LIST OF ALGORITHMS

5.1 Community creation algorithmone 119
5.2 Community creation algorithmtwo 120
6.1 Creation of Sketch similarity datasets 148
6.2 Probabilistic Sketch forwarding algorithm 150

xviii

ACRONYMS

ANIDS
API

AS
CAIDA
CDN
CDX
CIDS
CPT
DAG
DARPA
DDoS
DHT
DLL
DoS
FLAME
FOSS
GAN
GMM
TANA
ICSI
ID2T
IDS

IMPACT

IRSC
IoT

JSD

Anomaly-based Network Intrusion Detection Systems
Application Programming Interface
Anomaly Score

Center for Applied Internet Data Analysis
Content Distribution Network

Cyber Defense Exercise

Collaborative Intrusion Detection System
Conditional Probability Table

Directed Acyclic Graph

Defense Advanced Research Projects Agency
Distributed Denial of Service

Distributed Hash Table

Dynamic Link Library

Denial of Service

Flow-Level Anomaly Modeling Engine
Free and Open Source Software
Generative Adversarial Network
Gaussian Mixture Model

Internet Assigned Numbers Authority
International Computer Science Institute
Intrusion Detection Dataset Toolkit
Intrusion Detection System

Information Marketplace for Policy and Analysis of
Cyber-risk & Trust

Indian River State College
Internet of Things

Jensen-Shannon Divergence

Xix

LBNL

LERAD

MLE

ML

MSS

NAT

NIC

NIDS

P2P

PCAP

PCA

PC

PDF

PDS

PDS

PHAD

PMF

RNN

SDN

SGD

SNIDS

SPoF

TIDED

TTL

ToS

VPN

iid.

XX

Lawrence Berkeley National Laboratory
Learning Rules for Anomaly Detection
Maximum Likelihood Estimation
Machine Learning

Maximum Segment Size

Network Address Translation
Network Interface Card

Network Intrusion Detection System
Peer to Peer

Packet Capture

Principal Components Analysis
Principal Component

Probability Density Function
Probabilistic Data Structure
Probabilistic Data Structure

Packet Header Anomaly Detector
Probability Mass Function

Replicator Neural Network

Software Defined Networking
Stochastic Gradient Descent
Signature-based Network Intrusion Detection Systems
Single Point of Failure

Testing Intrusion Detection Datasets
Time to Live

Type of Service

Virtual Private Network

independent and identically distributed

INTRODUCTION

HE entanglement between computer networks and modern society
has increased in such a way that without networks the “modern”
qualifier in “modern society” could be dismissed. We interact with
networks, whether directly or indirectly, to carry out both simple and
complicated activities. On the Internet, we conduct business, find en-
tertainment, share experiences and interact with others on a regular
basis. In 2017, for example, it is estimated that close to 8o percent
of all adults in Europe and North-America used the Internet almost
every day [The Connected Consumer Survey 2017; Wagner, 2018]. With
such a prolific use, security should be one of the core aspects of net-
works. At present, nonetheless, network security is an afterthought
rather than the outcome of careful design.

When networks of computers were first put together in the seven-
ties, the security of the communication channels was not a core con-
cern [Oppliger, 2001]. One of the first large-scale computer network,
Arpanet, was exclusive to a relatively small population of trusted
users, i.e., the military and few researchers. Arpanet’s design and
goals were custom-made to move information quickly and reliably.
Network security only consisted in defending against external threats
rather than its own users [Timberg, 2015]. As security issues started
to proliferate within Arpanet, security began to be patched on top
of already existing components. Arpanet eventually became what is
now the Internet and the core communication stack of today (e.g.,
TCP/IP). Modern networks inherit old design principles that, to this
day, make them susceptible to attacks of their own users. Many old
design decisions are questionable, causing more troubles than bene-
tits. For example, Barwolff [2010] studied the decision of making in-
termediary network infrastructure responsible for flow control, error
control and resource management instead of end-hosts.

Due to the ubiquitousness and importance of large networks, pro-
tecting them is indispensable, yet the task is challenging: Networks
keep growing exponentially just as they continue to increase their
transportation capacity [Inacio et al., 2010]. The combination of their
size and our dependence to them creates immense attack surfaces
that malicious users seem to exploit uncontestedly. Detecting attacks
within large networks is challenging and is further exacerbated by
the fact that coordinated attacks are becoming the norm. Network
operators and data centers, for example, consider coordinated Dis-
tributed Denial of Service (DDoS) attacks as the biggest threat they
face [Worldwide Infrastructure Security Report 2014]. Some 30 percent

network security is
an afterthought

networks are
designed to move
information

network security is a
patch

immense attack
surfaces

separation of
concerns

security at the edge
is not enough

proactive security

reactive security

intrusion detection
system

network intrusion
detection system

INTRODUCTION

of UK companies estimate that they would lose £10,000 or more for
each hour of a DDos attack [Neustar, 2014]. Despite the disruptive ca-
pability of coordinated attacks such as DDoSs, countermeasures do not
appear to be in place. We conclude this from the fact that, in the span
of 6 months from October 2017 to March 2018, the number of overall
DDoS attacks on the Internet more than doubled [Verisign, 2018].

Network security has largely been incorrectly regarded as a prob-
lem that can be solved at the edge (e.g., [Markham et al., 2001]).
At the edge, where end users operate, we can easily establish secu-
rity countermeasures through separation of concerns: Each end point
is responsible for their own security. We argue, however, that this
approach is incapable of detecting network-wide threats. Separation
of concerns is a veil that gives a false sense of security and enables
coordinated malicious individuals to disguise their actions through
distribution. In order to detect collaborative attacks, we require collab-
orative defenses. This is especially true if we wish to detect intrusions
in large networks.

1.1 INTRUSION DETECTION IN LARGE NETWORKS

The constant growth of sophisticated, distributed and coordinated
attacks poses a serious threat to users and infrastructures alike. Be-
sides focusing on financial gain at the expense of users, malicious
individuals are slowly shifting focus towards the disruption of criti-
cal infrastructure (e. g., state sponsored attacks) [Mee et al., 2018]. To
actively counteract these threats, network operators employ proactive
security systems such as firewalls, anti-virus scanners, Virtual Private
Networks (VPNs), public key authentication or content access policies.
These proactive security measures, now common in every network, re-
strain malicious activity without being fully capable of preventing it.
Reactive security mechanisms are a second line of defense responsible
for finding malicious activity that may slip through proactive secu-
rity mechanisms. Intrusion Detection Systems (IDSs) are key reactive
mechanism extensively studied and used in many domains [Butun
et al., 2004; Lazarevic, Kumar, et al., 2005; Mitchell et al., 2014].

IDSs monitor a host or a network for signs of undesired activities,
often pointing to security violations. An IDS that focuses on monitor-
ing network activity is known as a Network Intrusion Detection Sys-
tem (NIDS). Network intrusion detection can be carried out through
misuse analysis or anomaly detection. Misuse analysis is the process of
recognizing previously seen malicious traffic using signatures. Ano-
maly detection, instead, first models a network’s normal behavior and
then discovers behavior that does not conform to the model. Misuse
or anomaly detection can be applied at the packet level, network flow
level or both. At the packet level, individual network packets are the
subject of analysis. Within small and medium sized networks, intru-

[y

1.2 AN OVERVIEW ON CIDS

sion detection at the packet level is taxing, yet achievable. In large
networks, however, such a luxury is not available due to the num-
ber of generated packets. Instead, large networks rely on intrusion
detection at the network flow level.

The state of the art for detecting intrusions embedded in large traf-
fic quantities relies on NIDSs examining network flows in search for
intrusions. Network flows are collections of features that relate to the
packets exchanged between two network devices. Network flows con-
sist of communication and packet aggregation statistics. Some statis-
tics include the number of exchanged bytes, the duration of communi-
cation and the packets sent, among others. A formal and more detail
explanation of network flows is covered in Section 4.2.1.

The current trend followed by organizations to detect intruders in
large networks is to collect network flows in a central dataset which
an NIDS can analyze [Sperotto and Pras, 2010]. Distributed flow ex-
porters are responsible for monitoring a network and constructing
flows. All flows are sent to flow collectors which in turn store the
flows in a central location to create a dataset. An NIDS examines this
dataset searching for intrusions. This approach is effective but has sev-
eral architectural disadvantages. A centralized architecture contains
a Single Point of Failure (SPoF) and has limited scalability as a sin-
gle NIDS must posses ample computational resources. Furthermore,
with such an architecture, a single NIDS is given full access to all
information which may pose a privacy risk. These conditions are pro-
hibitive, especially when involving multiple organizations with differ-
ent domain boundaries. To overcome these issues, we need a distrib-
uted and collaborative environment. In collaborative environments,
autonomous participants can share information with different de-
grees of granularity and share computational resources. Collaborative
Intrusion Detection Systems (CIDSs) address these issues and provide
the theoretical foundations by which we can detect single and coordi-
nated intruders in large networks.

1.2 AN OVERVIEW ON CIDS

CIDss are collections of autonomous NIDS' sensors that together ex-
change information to enable the detection of collaborative and dis-
tributed network attacks. Sensors are responsible for performing in-
trusion detection on top of network traffic they collect. A commu-
nication overlay connects sensors together, possibly taking into ac-
count communication restrictions (e.g., [Vasilomanolakis, Krugl, et
al., 2016]), to enable information sharing. One or more analyzers are

CIDSs may also be formed using host-based IDSs (see Section 2.2). Throughout this
thesis, however, we only consider CIDSs composed of NIDSs. This consideration does
not hamper the applicability of our contributions if host-based IDSs would instead
be used.

network flows

INTRODUCTION

then responsible for identifying, through correlation and aggregation
of shared data, common events experienced by different sensors.

Until recently, centralized, hierarchical or distributed CIDSs were
not considered to have a standardized or established set of com-
ponents. In the survey work of Vasilomanolakis, Karuppayah, et al.
[2015], they identify five components that together form a general
CIDS architecture. As a reference only?, we show in Figure 1.1 the
architectural components that make up a CIDS. Each component oper-
ates like a black box> with respect to all other components, only using
as inputs the output of those components directly below or next to
it. This architectural quality allows us to address individual issues
within each component to develop more robust and capable CIDSs.
For these reasons, we reference this architecture rather than imitating
other CIDs architectures (e. g., [Yu et al., 2005; Chenfeng Vincent Zhou
et al., 2010a]).

CIDS Architecture

Global Detection

Data Correlation & Aggregation

Membership Data
Management Dissemination

Local Detection

Figure 1.1: The five architectural components that make up a CIDs.

We use the aforementioned modular CIDS architecture to orient the
reader with respect to our work: Each of our contributions explicitly
addresses issues that lie within one or more of the five components
of the CIDS architecture model we reference. Each of our contribution
chapters (i.e., from Chapter 3 to 7) includes an overview that uses
Figure 1.1 to highlights the CIDS components the chapter addresses.

1.3 OPEN ISSUES WITHIN DISTRIBUTED CIDSS

CIDSs carry out their work using multiple NIDSs. Depending on how
NIDSs organize, a CIDS is classified as centralized, hierarchical or dis-
tributed. Distributed CIDSs are the most promising of the three from

We give a comprehensive and detailed explanation of each component later in Sec-
tion 2.3.3.

The term “black box” is used in the Machine Learning (ML) field to refer to a process
that is not transparent to the viewer and may be understood only in terms of its
inputs and outputs.

1.3 OPEN ISSUES WITHIN DISTRIBUTED CIDSS

a theoretical perspective but suffer from several issues which ham-
per their distributed capabilities in practice. We identify five pressing
issues that without adequate solutions make fully distributed CIDSs
only plausible in theory.

THE DATASET IsSUE The intrusion detection field has the long
standing issue of lacking datasets [Catania et al., 2012]. Yet, stan-
dard and open datasets are the key to develop, evaluate and compare
CIDSs. Datasets play an especially important role in the development
of CIDS that are based on ML. Nevertheless, there is no single dataset
or tool that researchers in the CIDS field can easily use. Those avail-
able datasets are either outdated [Tavallaee et al., 2009], lack ground
truth (e.g., [Fontugne et al., 2010]), contain known deficiencies (e. g.,
[Lippmann et al., 1999]) or only reflect highly specialized and lim-
ited scenarios (e.g., [CAIDA, 2018]). Without adequate datasets, the
community lacks one of the basic tools needed to accelerate the pace
by which the CIDs field advances. This is especially true when ML is
involved.

THE SCALABLE ANOMALY DETECTION ISSUE In the past, misuse
or signature-based NIDSs were heavily used due to their accuracy and
effectiveness [Axelsson, 1998]. Today, network misuse analysis is no
longer as effective as before due to large attack surfaces, the polymor-
phic nature of attacks, the widespread usage of encryption and the
amount of new attacks surfacing every day. Therefore, anomaly-based
NIDSs need to be prioritized. Anomaly detection relies on creating nor-
mality models which can then identify abnormal behavior. Building
scalable normality models with the amount of data observed in large
networks is challenging. Furthermore, anomaly detection is known
to have, in comparison to misuse detection, high rates of false alarms.
When analyzing large traffic quantities, a small false alarm rate still
translates to a large number of alerts that an analyst has to study.

THE COLLABORATION ISSUE CIDSs usually operate at what we
term the alarm level. At this level, NIDSs first perform intrusion de-
tection in isolation and then share the alarms they yield with others.
Distributed attacks are discovered from the aggregation and collec-
tion of alarms. We recognize an alternative level of CIDS operation
which we coin the detection level. Instead of performing intrusion de-
tection in isolation, at the detection level, NIDSs collaborate to build
distributed Machine Learning (ML) models that can be used to per-
form intrusion detection. By building models in collaboration with
others, subtle distributed and collaborative attacks may be detected
earlier and more accurately.

ML models are typically learned using centralized mechanisms. In
distributed collaborative environments, however, centralized compo-

alarm level

detection level

dissemination
techniques

collusion in CIDSs

INTRODUCTION

nents degrade the quality of the system. Many effective centralized
mechanisms already exist. Instead of rebuilding these mechanisms
from scratch to operate within a distributed environment, collabora-
tion should be leveraged to find ways to join several central models
together to create distributed ones. Without solving this issue, distrib-
uted CIDSs require especially tailored algorithms, becoming an issue
on its own.

THE DISSEMINATION IsSUE The NIDS sensors of a CIDSs establish
collaboration by means of information exchange. When a commu-
nication overlay is not defined in advance, exchanging information
becomes difficult, especially if we set the goal of minimizing commu-
nication overhead. Therefore, in distributed environments, informa-
tion should be exchanged using a carefully designed dissemination
mechanism. As designing and incorporating such a mechanism is
complicated and time consuming, CIDS designers take the dissemi-
nation mechanism for granted (i.e., communication between sensors
just happens), or use inefficient but easy to implement solutions (e. g.,
network flooding) [Vasilomanolakis, Karuppayah, et al., 2015].

No dissemination mechanism exists that is specifically customized
to CIDSs. The typical dissemination techniques used within CIDSs are
flooding, gossiping, publish-subscribe and centralized communica-
tion [Vasilomanolakis, Karuppayah, et al., 2015]. Flooding techniques
incur in high communication overhead costs and do not scale well.
Gossiping techniques, also known as epidemic techniques [Gupta et
al., 2010], lower the communication overhead at the expense of unre-
liable data delivery. Publish-subscribe suffers from the high costs of
managing and maintaining an overlay. Centralized communication
introduces a SPoF, among many other problems. CIDSs require a dis-
semination mechanism that scales well, reduces communication over-
head and is tailored to the dissemination of the type of information
NIDSs need.

THE COLLUSION ISSUE CIDSs are meant to protect large network
infrastructures against attacks. Yet, most CIDSs do not protect them-
selves against insider attacks [Chenfeng Vincent Zhou et al., 2010b].
The vast majority of work in the CIDS field assumes that collaborat-
ing NIDSs are honest and trustworthy. This assumption does not ad-
equately hold in real-world settings. Things are changing, however,
as researchers start to propose trust-based mechanisms to detect dis-
honest CIDS members (e.g., [C.]. Fung, J. Zhang, et al., 2011]). This
is a positive step forward but more work is required in the direction
of detecting collusion. In the CIDS context, collusion is an agreement
between dishonest NIDSs to secretly deceive the system in their favor.

1.4 RESEARCH GOALS AND OBJECTIVES

1.4 RESEARCH GOALS AND OBJECTIVES

The goal of this thesis is to propose algorithms, systems and concepts
to improve the capabilities of fully distributed CIDSs with the help of
ML. To achieve our goal, we focus on accomplishing different objec-
tives, all of which relate to the aforementioned open issues within
distributed CIDSs. For each open issue, we devote a chapter of this
thesis to its study and the proposal of potential solutions. In the fol-
lowing, we state the high level objectives on which we focus, to which
open issue the objectives relate, and the chapter where the objectives
are addressed.

® To address the the dataset issue, in Chapter 3, we set two objectives.
The first objective is to survey available datasets to determine their
usefulness for evaluating and developing NIDSs. The second objec-
tive is to develop a tool capable of creating suitable datasets for
evaluating NIDSs.

® To approach the scalable anomaly detection issue, in Chapter 4, we
establish the objective of developing an unsupervised anomaly de-
tection technique that scales to large networks.

® In Chapter 5, to tackle the collaboration issue, we develop the theory
behind the formation of NIDS communities within a CIDS. Building
communities serves us as a mean to achieve two different objec-
tives. The first objective is to propose methods for using centralized
ML algorithms within a distributed environment (i.e., a commu-
nity). We wish to develop a mechanism capable of balancing the
communication overhead incurred within a community with the
detection accuracy achieved by the community. The second objec-
tive is to develop the concept of collaboration at the detection level
which enables us to build distributed ML models within CIDSs.

® To undertake the dissemination issue, we establish two objectives in
Chapter 6. The first objective is to develop a dissemination strategy
tailored to the needs of CIDSs. The second objective is to enable
collaborating NIDS sensors that use such a dissemination strategy
to work under uncertainty. Working under uncertainty implies that
sensors can infer from partial observations and do not need to wait
for the dissemination mechanism to converge before using shared
information.

® Finally, in Chapter 7, we work on the collusion issue by establishing
three objectives. The first objective is to propose a fast and efficient
system capable of detecting dishonest CIDSs sensors. The second
objective is to enable CIDSs to detect one ore more groups of collud-
ing sensors as long as the colluders do not overwhelm the honest
sensors. The third objective is to detect dishonest sensors and col-
luders that choose to act honestly from time to time to fool the
defensive mechanisms of a CIDS.

INTRODUCTION

1.5

SCIENTIFIC CONTRIBUTIONS

We leverage several ML techniques such as neural networks, proba-
bilistic inference, clustering, Gaussian Mixture Models (GMMs) and
ensemble learning throughout this thesis to improve the capabilities
of distributed CIDSs. We further develop concepts and evaluate ideas
to advance the field of distributed CIDSs and aid researchers in the de-
velopment of tools. Overall, the thesis consists of five core chapters,
each having the following contributions:

® Dataset Generation (Chapter 3)

(@)

This chapter provides a comprehensive and extensive survey
on the datasets available for the evaluation and development
of NIDSs. In our survey, we organize and compare many popu-
lar datasets. We further propose a classification that groups the
defects that others and ourselves found in such datasets.

The core aspect of this chapter is our proposal of a mechanisms
to facilitate the creation of datasets that overcome the defects
identified in our survey. Our mechanisms consist in the injection
of synthetic attacks into arbitrary network traffic inputs. The
injected attacks replicate the statistical properties of the network
traffic inputs to disguise the injections.

A dataset has quality issues if it contains problems that may bias
the evaluation results of systems that use such a dataset. We
develop metics to determine quantitative aspects of a network
dataset that reveal potential issues that degrade the quality of
the dataset.

® Intrusion Detection (Chapter 4)

O

At the core of this chapter, we develop a mechanism capable
of detecting distributed and collaborative attacks in large net-
works that can cope with massive amounts of data and requires
relatively low computational resources.

We leverage neural network concepts, i.e., dropout and autoen-
coders, to build an unsupervised anomaly detection NIDSs.

The anomaly detection system we propose learns adequate mod-
els of normality (see Section 2.1.4) even when using training
data that contains attacks.

® Community Formation (Chapter 5)

(@)

We develop the theory of community building within CIDSs. A
community is a group of NIDS sensors that together trade off
communication overhead and detection accuracy.

We leverage ensemble learning to create distributed models out
of models that can typically only be exploited in centralized en-
vironments.

1.6 PUBLICATIONS

O With communities, we enable distributed CIDSs to use central-
ized intrusion detection mechanisms without having a SPoF.

® Intrusion Information Dissemination (Chapter 6)

O We propose a dissemination mechanism that uses Bayesian Net-
works to enable CIDSs to quickly and efficiently find NIDSs ob-
serving similar events in a distributed manner. Our dissemina-
tion strategy is tailored to CIDSs.

O Our mechanism is agnostic to the detection level: CIDSs may find
distributed attacks at the alarm level or at our newly proposed
detection level.

© The mechanism we propose enables distributed aggregation and
correlation that requires no centralized component.

O By using our mechanism which leverages Bayesian Networks,
members of a CIDSs may deduce information that they have not
yet observed. This enables members to perform their tasks with-
out having to wait for information to fully disseminate within a
CIDSs.

® Collusion Detection (Chapter 7)

O In this chapter, we develop a trust mechanism to detect dishon-
est NIDS sensors acting against the agenda of their CIDS.

O Using clustering and GMMs, we develop an efficient mechanism
that determines accurate trust scores using the reliability of sen-
SOrS.

O Our mechanism can detect one or more groups of colluding dis-
honest sensors. Furthermore, our mechanism successfully pun-
ishes colluders that choose to act honestly some times to fool the
system.

1.6 PUBLICATIONS

Most of the work presented in this thesis has been published in peer-
reviewed conferences, workshops and journals of which a consider-
able portion is highly ranked. Ten published works constitute the core
of this thesis along with two others under review. All these publica-
tions have in common the topic of NIDSs and ML.

Finding datasets for evaluating NIDSs is a core difficulty in our field.
For this reason, many of our publications touch upon the topic of cre-
ating datasets for evaluating NIDSs. Our original idea to create mech-
anisms to inject synthetic attacks into real traffic mimicking its prop-
erties is described in [Cordero, Vasilomanolakis, Milanov, et al., 2015].
Afterwards, we improve and expand the idea in [Vasilomanolakis,
Garcia Cordero, et al., 2016]. These publications, along with another
one under review, make the contents of Chapter 3.

adversarial attack

INTRODUCTION

To cope with large amounts of network traffic, we recognize the
potential usefulness of an unsupervised and scalable anomaly detec-
tion NIDSs. In [Cordero, Hauke, et al., 2016], we report our findings
in experimenting with Replicator Neural Networks (RNNs) to create
an anomaly-based NIDS. The research and results of this publication
make up Chapter 4.

There is extensive literature relating to the detection of network
attacks using centralized ML algorithms. Most algorithms cannot be
easily transformed to work in a distributed scenario and, therefore,
were not directly usable within CIDSs. Some of our research explores
adapting already existing ML algorithms to the context of CIDSs using
ensemble learning. We propose a methodology to do such a task in
[Cordero, Vasilomanolakis, Miihlhduser, et al., 2015]. This methodo-
logy and our evaluation of results became the essence of Chapter 5.

We faced the problem of developing a dissemination mechanism
within CIDSs when we developed an overlay-aware CIDSs in [Vasilo-
manolakis, Krugl, et al., 2016]. We also observe how, in related work,
others take dissemination for granted and do not propose dissemina-
tion mechanisms tailored to the requirements of CIDSs. Consequently,
we develop such a mechanism and present it in Chapter 6. Our mech-
anism is described in a publication which is currently under review.

Many ML fields, such as those involving vision or network security
(e.g., [Akhtar et al., 2018; Q. Liu et al., 2018]), have recently been con-
cerned with adversarial attacks and their mitigation. An adversarial
attack is a set of inputs that an attacker carefully crafts to cause mis-
takes in the prediction of an ML model. In this same line of thought,
we studied different adversarial attacks against CIDSs. Some of our
research focused on probe-response attacks against CIDSs (published
in [Vasilomanolakis, Stahn, et al., 2015, 2016]) and colluder resistant
systems (published in [Cordero, Traverso, et al., 2018; Traverso et al.,
2017]). In this thesis, we concentrate exclusively on mitigating collu-
sion and use our publications on this matter to develop Chapter 7.

We published two articles that do not directly relate to specific
chapters of this thesis but, instead, are used sparsely throughout the
thesis. In [Gazis et al., 2014], we propose an architecture to enable col-
laborators to securely share data. This work helped form some of the
ideas presented in Chapter 5, Chapter 2 and this introduction. Finally,
in [Vasilomanolakis, Srinivasa, Cordero, et al., 2016], we present a sys-
tem for generating signatures of multi-stage attacks for misuse NIDSs.
Although misuse NIDSs are not covered in this thesis, our expertise
in this topic helped us to present the introduction and related work
sections.

10

1.7 THESIS ORGANIZATION AND STRUCTURE

1.7 THESIS ORGANIZATION AND STRUCTURE

This section details the organizational and structural characteristics
of this thesis. We begin with an explanation of how the reader should
use the margin notes. We then describe how our core contributions
are structured. In this description, we detail the logical order of the
contributions as well as the structure each contribution follows. Fi-
nally, we give a brief outline of the thesis.

1.7.1 Margin Notes

This thesis uses margin notes to highlight important definitions and
concepts. A margin note also points towards terminology that the
reader can expect to find later in use. Margin notes should ease the
process of skimming backwards through a chapter to locate a defini-
tion or term. Margin notes also identify those concepts of importance
on which to focus. We recommend that the reader does not stop to
read margin notes. Instead, they should be used as a reference to
recall terminology or identify key concepts detailed within a section.

1.7.2 Structure of the Contributions

The five core chapters and contributions of this thesis follow a logical
order rather than a chronological one in relation to when we carried
out research. The contributions are shown in Figure 1.2. We begin our
contributions with the chapter titled Dataset Generation, Chapter 3, by
addressing the problem of finding suitable datasets to evaluate NIDSs.
With the dataset problem addressed, we move forward to the chapter
titled Intrusion Detection, Chapter 4, to propose an unsupervised ano-
maly detection mechanism. Our mechanism can process the amount
of data that a large network produces while still successfully detect-
ing (relatively small) distributed attacks. However, our mechanism is
centralized and does not easily translate to fully distributed scenar-
ios. In Community Formation, Chapter 5, we propose concepts to build
communities where centralized algorithms can be used within fully
distributed CIDSs by leveraging communication overhead and detec-
tion accuracy. The Community Formation chapter exposes the problem
that disseminating data is not easy (and left unaddressed by related
work) within CIDSs. In Information Dissemination, Chapter 6, we create
a mechanism to disseminate information that takes into account the
specific needs of CIDSs. The dissemination mechanism assumes, as re-
lated work typically does, that members of a CIDSs act honestly. With
the popularity of adversarial attacks, we finally take on the challenge
of identifying dishonest CIDSs members using computation trust in
Chapter 7.

11

logical order of the
chapters

context box

chapter overview

chapter-specific
outline

problem statement

challenges

scientific
contributions

background and
related work

system section

evaluation

conclusion

INTRODUCTION

Field of Contributions

1. Dataset Generation

2. Intrusion Detection

3. Community Formation

4. Information Dissemination

5. Collusion Detection

Figure 1.2: Five contributions make the core of this thesis. Each contribution
builds on top or solves a basic problem introduced in the previous contribu-
tion.

Each of the five contributions that make up Chapter 3 to 7 follow
the same structure. A contribution chapter starts with a box which we
title Context. The context situates the problem tackled in each chap-
ter with respect to the other chapters. After the context, the chapter
begins with a brief description of how we solve the core problem
of the chapter. We then continue with an overview of the chapter
contributions. The overview uses Figure 1.2 and Figure 1.1 to high-
light, respectively, on which chapter we are located, and on which
CIDS components the chapter focuses (see Section 1.2). This is then
followed by a chapter-specific outline.

The introduction part of each chapter begins with a small motiva-
tion. The motivation is then followed with a problem statement. After-
wards, we highlight the core challenges needed to be solved to address
the problem statement. The introduction closes with the scientific con-
tributions of the chapter. Each chapter deals with topics that are ex-
clusive to itself and its contributions. Because of this, we follow the
introduction with specialized background and related work that only ap-
plies within its respective chapter.

Chapters then follow a different structure depending on whether a
system, algorithm or general novel concept is detailed. After the core
details of each chapter, we close with an evaluation (or use case) that
provides scientific insights into that which we propose. Every chapter
closes with a conclusion that, besides summarizing the achievements
of the chapter, highlight lessons learned in the process of developing
the chapter.

12

1.7 THESIS ORGANIZATION AND STRUCTURE

1.7.3 General Outline

This thesis is structured as follows. After this introduction, we pro-
vide general background and related work in Chapter 2, where we
covers topics that concern every other chapter that follows. From
Chapter 3 to 7 we present the five chapters that make up the core
of the thesis (as described in Section 1.7.2). Finally, the thesis closes
in Chapter 8 with a general conclusion and an overlook.

13

14

BACKGROUND AND RELATED WORK

HIs chapter introduces key background topics that relate to all

of the five core contributions we present in this thesis. The back-

ground topics to be presented also include related work that concerns

all of our contributions. Complementary to this chapter, we cover spe-

cialized background and related work within each contribution chap-
ter (i.e., from Chapter 3 to Chapter 7).

This chapter covers three main topics. We begin with a brief intro-
duction to key ML concepts that we use throughout this thesis. We
continue with a distilled introduction to NIDSs. Finally, we transition
to describe CIDSs, which are the core topic addressed in this thesis.

2.1 MACHINE LEARNING

ML is an approach to artificial intelligence that consists in designing
algorithms capable of learning without being explicitly told how to.
The field is similar to the field of mathematical optimization where
the goal is not only to minimize reconstruction error but also to mini-
mize a data generalization error. In this thesis, we use several ML algo-
rithms as a mean to improve CIDSs. Without attempting to be exhaus-
tive or complete, this sections briefly introduces some ML concepts
which are sparsely used throughout each of our contributions. Four
key topics are covered. First, we describe the performance metrics
that we generally use to discuss the performance of ML algorithms.
Second, we explain the different data types and encodings used by
ML algorithms. Third, we explain the differences between the three
datasets used to train ML algorithms. Finally, we describe what ano-
maly detection is and how ML is used in such a task. All four topics
are accompanied with resent highlights of related work.

2.1.1 Performance Metrics

The performance of ML algorithms is mostly measured using met-
rics that depend on the four prediction classes known as true positive,
true negative, false positive and false negative. To explain the prediction
classes, let us assume a dataset D and a data instance d € D. In a
scenario where data instance d belongs to one of two classes, we say
that the true class of d is given by the function c¢(d) : D — {0, 1}. The
function c((d) maps the data instance d to either class 0 or 1. Given an
ML model M, we say that M predicts the class of 4 using the function

15

BACKGROUND AND RELATED WORK

cp(d; M) : D — {0, 1}. Depending on the values of c¢(d) and ¢, (d; M)
for the same d, the prediction class according to model M changes.

We illustrate the four prediction classes and how they relate to the
true class (c¢(d)) and the class predicted by the model (cy,(d; M)) in
Figure 2.1. The four prediction classes are defined as:

® True Positives (TP). c¢(d) =1 and cp(d; M) = 1.
® True Negatives (TN). c¢(d) = 0 and c,(d; M) = 0.
® False Positive (FP). c¢(d) =0 and cp(d; M) = 1.

® False Negative (FN). c¢(d) =1 and cp(d; M) = 0.

True Class (c;)

¢, =1 ¢, =20
é_’f T True False
% B Positive Positive
O
o)
Slo
% I False True
E &[] Negative | Negative

Figure 2.1: Four prediction classes are used to evaluate the predictive capa-
bility of an ML model. True Positives and True Negatives represent correctly
predicted classes. On the contrary, False Positives and False Negatives signal
that predictions are not correct.

Metrics combine the prediction classes in different ways to high-
light diverse qualities of ML models. In the following, we describe
the five most commonly used metrics to determine the performance
of models. Without loss of generality, our explanations assume that
data instances belong to either a positive or negative class. All metrics
are applicable within a multi-class setting but are not discussed here
(see [Bishop, 2006] for more information).

AcCcURACY The accuracy of an ML model in a classification prob-
lem corresponds to the correct (either positive or negative) predic-
tions made over all predictions. The metric is typically used when the
classes in a dataset are balanced and is uninformative when datasets
are unbalanced. Accuracy is defined as:

16

2.1 MACHINE LEARNING

PRECISION Precision is used to measure the proportion of positive
data instances that a model classified as positive. The precision metric
ignores the capabilities of a model to recognize negative classes. Preci-
sion alone does not sufficiently describe the performance of a system.
Therefore, the precision is often reported along the Recall metric. Pre-
cision is defined as:

Precision —L
- TP+FP

RECALL The recall of a model is the proportion of true positives
that the model identified. As such, a model that yields no false neg-
atives (FN) has a recall of 1.0. Precision and recall are normally in-
versely proportional to each other, i. e., as one is improved, the other
is worsened.

TP

Recall =—
TP IEN

sPECIFICITY The specificity of a mode corresponds to the propor-
tion of negative data instances correctly predicted by the model as
negative. This metric is the opposite of recall and is used when the
cost of incorrect negative predictions is high.

o s TN
Specificity ~TNTFP

F1 SCORE Instead of reporting multiple metrics, the F1 Score com-
putes the harmonic mean of the precision and recall to obtain a single
representative score. The F1 score is often the most adequate single
metric for comparing different ML models.

2 - Precision - R 1
F1Score — recision - Recal

Precision + Recall
2.1.2 Feature Types and Encodings

Datasets are composed of multiple data instances and each instance
is made up of multiple features or attributes. Three different types of
features exist. Categorical or Nominal features are those characterized by
unsortable classes (e. g., names, gender or genre). Ordinal features are
categorical features with a sense of order (e. g., education level, satis-
faction level or age group). Features of the numerical type are charac-
terized with numbers (e. g., height, number of bytes or payload size).

Many ML algorithms can be distinguished from each other accord-
ing to the feature types they can process. Some algorithms can caope
with categorical features while others can only use numerical ones.

17

categorical features

ordinal features

numerical features

training set

BACKGROUND AND RELATED WORK

Neural networks, for example, are only able to use numerical fea-
tures. Many techniques exist to transform categorical or ordinal fea-
ture types into numerical types. The following list mentions some of
these techniques.

® Direct Numeric Encoding. This method directly assigns a number
to each possible value a feature may have. A direct encoding is of-
ten ineffective as it creates numerical representations which assign
an explicit rank to values that do not have one.

® One-hot Encoding. This encoding scheme transforms one categor-
ical feature into several binary features. The scheme consists in
replacing a categorical feature with m new binary features, one
for each possible value of the categorical feature. For each data
instance, all m new features are set to zero except for one, set to
one, that corresponds to the original value of the feature. This tech-
nique works well when the possible number of feature values is
low. Otherwise, the curse of dimensionality’ becomes a problem.

® Dummy Coding Scheme. Similarly to the One-hot encoding, this
method creates m — 1 new binary features. The m-th feature is
represented by all m — 1 features being zero.

® Feature Embeddings. This technique gives categorical attributes
numerical values that associate inherent properties of the feature
to notions of distance. For example, words may be assigned vectors
of numbers (known as Word2Vec [Mikolov et al., 2013]) such that
the following computation makes sense: king — man +women =
queen.

® Autoencoders as Embeddings. This encoding scheme uses autoen-
coders to automatically find suitable numeric representations of a
feature. Autoencoders are special arrangements of neural networks
that reduce the dimensionality of data analogously to methodolo-
gies such as Principal Components Analysis (PCA) [B. Zhang et al.,
2012]. Autoencoders find compressed representations of datasets
that can be used as numerical embeddings (e.g., [Dizaji et al,
2017]). We use this technique in Chapter 4 to reduce the dimen-
sionality of network data and create embeddings.

2.1.3 Datasets and Model Training

The process of finding the adequate parameters (or hyper-parameters)
of an ML model uses the three sets shown in Figure 2.2. The training
set provides the data instances that a model directly uses to learn its

The curse of dimensionality is a problem ML algorithms have when learning with high-
dimensional datasets. The more dimensions, the more training examples are needed
to learn a model without overfitting it to the dataset.

18

2.1 MACHINE LEARNING

parameters. For example, neural networks may use gradient descent
on samples of the training set to find its weights and biases. The
validation set provides the means to conduct the unbiased evaluation
of a model’s fit. After changing parameters, the validation set is used
to determine the effects of the change. Both training and validation
sets are said to be seen during training. The training set is directly
seen to train a model. The validation set, however, is only indirectly
seen to select better parameters (i.e., it is seen but not used during
training). The testing set provides a global unbiased estimate of the
final model. This set is not seen during training nor parameter tuning.

Dataset |

Training Set Validation Set Testing Set

S - Unseen —

Seen

Figure 2.2: To learn the hyper-parameters of an ML model, a dataset is split
into three parts. The training and validation sets are seen during training.
The training dataset is directly seen to find parameters while the validation
dataset is indirectly seen to fine-tune parameters. The testing dataset remain
unseen until calculating the model’s generalization error.

The training, validation and testing sets are assumed to be gener-
ated from the same probability distribution with parameters 6. Non-
sequential datasets are further assumed to follow the independent
and identically distributed (i.i.d.) principle®. With these two assump-
tions, the expected training error approximates the expected testing
error as the data instances in both sets are generated from the same
distribution with parameters 0 [Goodfellow et al., 2016]. In ML, how-
ever, we do not know 0 in advance. Therefore, the goal of an ML
algorithm is to find © by minimizing the training error and the gap
between the testing and training errors. When the training error is
too large, we say a model underfits the data. When the gap between
the testing and training errors is too large, we say the model overfits
the data.

Preventing a model from overfitting is challenging. Although there
are no techniques that can guarantee that a model does not overfit
its data, we can use several techniques to assess if a model is over-
fitting and by how much. The family of methods known as cross-
validation enables us to statistically determine how well a model gen-
eralizes on average (i.e., how well the model does not overfit). The
technique known as k-fold cross validation partitions a dataset into k
different subsets. The technique uses all the subsets but one to form a

In an iid. dataset, all data instances are created using the same probability distribu-
tion and do not depend on each other.

19

validation set

testing set

i.i.d. principle

model underfitting
model overfitting

cross-validation

training loss

validation loss

quadratic loss

normality model

similarity measure

anomaly score

point anomaly

contextual
anomalies

collective anomalies

BACKGROUND AND RELATED WORK

training dataset. To build a validation dataset, the technique gathers
the leftover subset not used for training. The training and validation
datasets are then used in the normal process of training and validat-
ing a model. This is repeated k times, each time retaining different
subsets of the data for validation, and the average performance of the
model is computed. This final computation identifies the generaliza-
tion capabilities of the model.

The performance of an ML model is often measured by its “loss”
(also known as “error”). The loss is the discrepancy that exists be-
tween the prediction of a model and an expected value. The training
loss of a model is the loss of the model when it is evaluated against
the training set. Similarly, the validation loss is the loss of the model
when it is evaluated against the validation set. During training, an
ML algorithm tries to minimizing the loss of the validation set while
only using the training set. Equation 2.1 shows a commonly used loss
function known as the quadratic loss.

7

N
1 2

£m(D) = N;(ym(xi)—ti) (21)

1=
The loss Lam(D) is the average of the squared difference between the
prediction ym (x) of model M and the known target value t, where N
is the total number of data instances in dataset D. The quadratic loss
function is heavily used in the ML algorithm for intrusion detection

we propose in Chapter 4.

2.1.4 Anomaly Detection

Generally speaking, anomaly detection is the task of discovering un-
usual patterns in data that do not conform to pre-established no-
tions of normality. An anomaly detection system, defined as the tuple
(M, D), is composed of a normality model M and similarity measure
D. The normality model M contains all that is needed to determine
if some data points are normal or not. The similarity measure D is re-
sponsible for computing the distance that exists between an arbitrary
data point and model M. This distance is known as anomaly score
and is used to label something as an outlier. An anomaly score close
to zero indicates that something is normal. The further an anomaly
score is to zero, the more anomalous something is. When something
is to be labeled as either anomalous or not, a threshold establishes
the limit after which an anomaly score signals an anomaly.

Related work generally categorizes anomalies into three different
classes [Chandola et al., 2009]. Point anomalies are data instances that
are considered too far away from any other data instance (e.g., [Mc-
Fowland et al., 2013]). Contextual anomalies are data instances that do
not match the expectations brought about by a context (e. g., [X. Song
et al., 2007]). Collective anomalies are groups of data instances that to-

20

2.2 NETWORK INTRUSION DETECTION SYSTEMS

gether seem normal but are all abnormal with respect to a dataset as
a whole (e.g., [Sun et al., 2006]).

The normality model M of an anomaly detection system may be
created using techniques from statistics, physics or machine learn-
ing, among many other options. ML-based anomaly detection refers
to anomaly detection systems that obtain their normality model M
using ML. Das et al. [2007] propose to use Bayesian Networks to build
normality models. Rule mining is used in the work of McFowland et
al. [2013] to find rules that describe normal behavior. In [B. Zhang
et al., 2012], the authors use the subspace method (see Section 4.2.3) to
create mappings from high to low dimensionality spaces to create a
normality model. Kwon et al. [2017] provide a survey on techniques
based on deep neural networks to create normality models. As a contri-
bution to this thesis, in Chapter 4, we propose an approach based on
neural networks.

2.2 NETWORK INTRUSION DETECTION SYSTEMS

Computer networks are complex communication channels with phys-
ical and logical components that work together to transport informa-
tion. When these channels were first designed halfway through the
twentieth century, the security of the transported information was
but a simple goal. However, with the predominance and criticality of
computer networks, security has become a major concern. To protect
networks, proactive and reactive approaches exist. Proactive approaches
impose restrictions on networks to prevent intrusions. Some popular
proactive approaches include the usage of firewalls, virtual private
networks, security protocols or cryptography, among others. In con-
trast, reactive approaches monitor networks in search for indications
that an intrusion is or has taken place. NIDss fall in the category of
reactive security approaches.

IDSs are systems that attempt to detect actions that compromise the
integrity, availability or confidentiality of a target. Depending on the
target they monitor, IDSs are grouped into two main classes. Host-
based IDSs are responsible for detecting undesired activities at the
device level. In contrast, NIDSs detect unwanted activities at the com-
munication level. In this thesis, we only consider NIDSs aimed at de-
tecting intrusions in large networks.

2.2.1 NIDS Requirements and Difficulties

Host-based 1DSs and NIDSs share many common requirements. Butun
et al. [2004] propose five different requirements that make 1DSs usable
in practice. One, IDSs must not introduce new weaknesses into the tar-
get they monitor. Two, IDSs need to use as few resources as possible
to avoid hampering the target’s functionality. Three, for the detection

21

proactive security
approaches

reactive security
approaches

classes of IDSs

five IDS
requirements

special NIDS
requirements

three major
difficulties

first difficulty

second difficulty

third difficulty

network component

Sensors component

BACKGROUND AND RELATED WORK

to be useful, IDSs need to run continuously and transparently mini-
mizing user intervention. Four, whenever possible, standardized pro-
tocols should be used. Finally, and most importantly, IDSs need to be
reliable. A reliable IDS is one that minimizes false positives and false
negatives (see Section 2.1.1 for a description of these metrics).

NIDSs have special requirements beyond those that overlap with
Host-based 1DSs. While Host-based 1DSs use partially structured and
typically homogeneous data (e. g., system calls or event logs), NIDSs
use network data. Network data has diverse properties that makes it
substantially difficult and challenging to use for intrusion detection
[Lakhina, Crovella, and Christophe Diot, 2004]. This is especially true
when ML, the currently most used technique [Sperotto and Pras, 2010],
is used as the mean to detect intrusions [Sommer et al., 2010]. To
cope with the complexity, speed and size of traffic in large networks,
researchers are using ML on top of network flows [B. Li et al., 2013;
Soysal et al., 2010]. Section 4.2.1 gives a brief definition of network
flows.

Applying ML within NIDSs is not a straightforward task. In contrast
to other fields, the network intrusion detection field needs to cope
with three major difficulties. These difficulties are, one, the high cost
of errors; two, the absence of datasets; and three, the lack of actionable
responses against detected intrusions [Sommer et al., 2010]. These dif-
ficulties are further aggravated by the complexity and heterogeneity
of network traffic. Much of today’s work on NIDSs has focused on
proposing solutions to these difficulties. To cope with the high cost of
errors, for example, deep learning has been used to maximize detec-
tion accuracy while reducing false positives [Kwon et al., 2017]. In
Chapter 4, we develop an NIDs that uses techniques borrowed from
deep learning to also address the high cost of errors. A major issue
that contributes to the absence of datasets is the fear of leaking confi-
dential information, among several other problems (see Section 3.1.2).
In Chapter 3 of this thesis, we propose a potential solution to this
second difficulty. Finally, regarding the lack of actionable responses, we
recognize that responding to intrusions is of such a complex nature
(e.g., [Lee et al., 2002]) that it is becoming a field on its own [Anwar
et al., 2017]. The term Intrusion Response Systems is used to refer to this
field. Responding to intrusion is outside of the scope of this thesis.

2.2.2 NIDS Architecture and Classification

Figure 2.3 shows a simplified architecture of an NIDS. The architec-
ture has four main components. The network component is known in
more general IDS architectures as the environment. NIDSs only use net-
work traffic to carry out their task. Network traffic is processed in
the sensors component by one or many devices. In the context of NIDSs,
the term “sensor” refers to an active or passive device that extract

22

2.2 NETWORK INTRUSION DETECTION SYSTEMS

data features from network traffic for further analysis. Some exam-
ple sensors are firewalls, honeypots, routers or Network Interface
Cards (NICs) acting as sniffers. The intrusion detection module is respon-
sible for processing collections of network features, gathered from
one or many sensors, to identify intrusions. Two main intrusion de-
tection categories of NIDSs exist. Signature-based Network Intrusion
Detection Systemss (SNIDSs) use the footprints of previously observed
intrusions to detect whenever they occur again. Anomaly-based Net-
work Intrusion Detection Systemss (ANIDSs) learn models to represent
the normal behavior of network traffic. These models of normal be-
havior are used to detect traffic that deviates from the norm, i.e.,
anomalous traffic. ANIDSs are covered in more detail in Section 2.2.3.
The final architectural component, known as the response module, is
accountable for applying actions, or countermeasures, to a network
to mitigate intrusion reported by alarms. In this thesis, the response
module is not covered.

Intrusion [Alarms D
: > Response
Detection b

A Actions 1

Traffic Features

Sensors |

A
Network Traffic

Network

<_______

Figure 2.3: The core architectural components of an NIDS and the key data
items the components transfer.

SNIDS and ANIDSs have different advantages and disadvantages.
SNIDSs do not suffer from many of the difficulties discussed in the pre-
vious section (Section 2.2.1). In theory, these systems have low false
positive rates and are highly effective in recognizing known attacks.
To obtain signatures, instead of requiring difficult to obtain datasets,
they need intrusion examples. Finally, countermeasures can be tai-
lored to specific attacks. For these and other reasons, SNIDSs are the
most widespread NIDSs (e. g., Bro [Paxson, 1999], Snort [Roesch, 1999]
and Suricata’). Creating signatures is a major challenge of SNIDSs
and many researchers have created automated mechanisms, often
based on ML, to derive signatures (e.g., [Kim et al., 2004; Kreibich
et al., 2004]). We have also worked in this direction [Vasilomanolakis,
Srinivasa, Cordero, et al., 2016]; however, this thesis concentrates on
ANIDSs as, we argue, the effectiveness of SNIDSs is in decline. SNIDSs
need accurate signature databases to be effective. However, creat-
ing and maintaining these databases is becoming daunting due to

3 https://www.openinfosecfoundation.org

23

intrusion detection
module

intrusion detection
categories

response module

https://www.openinfosecfoundation.org

subspace method

modeling component

BACKGROUND AND RELATED WORK

the constant appearance of novel threats, the popularization of en-
crypted communication mediums, and the growth of attack surfaces.
Under these conditions, even large and constantly updated signature
datasets are not sufficient to protect networks.

Despite some of their problematic aspects, ANIDSs have qualities
that make them more appropriate than SNIDSs in many circumstances:
ANIDSs can detect attacks that have not been seen before. For this rea-
son, the field of NIDSs is still actively developing anomaly detection
methodologies [Pimentel et al., 2014]. A popular and effective tech-
nique to identify anomalies in network traffic is to use the subspace
method [Lakhina, Crovella, and Christophe Diot, 2004]. This method
consists in splitting network traffic into disjoint normal and abnormal
subspaces using techniques such as PCA [Ringberg et al., 2007]. Many
researchers, however, have criticized PCA stating that the mechanism
is not robust enough (e.g., [X. Li et al., 2006]). On the other hand,
recently proposed modifications to PCA have made it more robust
within networks (e.g., [Chen et al., 2016]). In Chapter 4, we propose
a robust isomorphic alternative to PCA that detects network traffic
anomalies.

2.2.3 Anomaly-based Network Intrusion Detection

ANIDSs are based on the suspicious hypothesis. The suspicious hypoth-
esis states that anomalous events are deemed suspicious from a se-
curity point of view [Estevez-Tapiador et al., 2004]. In the context of
network traffic, an anomalous event refers to traffic that does not con-
form to the expected behavior of a network. Anomalous events are
found using an anomaly detection system (M, D), as defined in Sec-
tion 2.1.4. In the context of an ANIDS, the model of normality M finds
representations of normal network traffic while the similarity mea-
sure D finds the distance between arbitrary networks traffic and M.
If, according to D, network traffic is above a predetermined threshold,
the traffic is considered anomalous. The model of normality M can be
represented in many ways. Matthew V Mahoney and P. Chan [2003]
use conditional rules to model normal behavior. Autoencoders, a type of
neural network, are successfully used in the literature to model nor-
mality (e.g., [Dau et al., 2014]). Even models borrowed from physics,
such as Wavelets and Fourier transformation, are used to create models
of normality [Jiang et al., 2014].

Anomaly detection uses two independent components to construct
normality models and detect intrusions. The diagram in Figure 2.4
shows a simplified example of how information flows when con-
structing normality models and detecting intrusions. Networks gen-
erate traffic and one or many sensors collect the traffic to extract fea-
tures. Features are aggregated and then distributed to the modeling
component. This component is responsible for learning a model M

24

2.2 NETWORK INTRUSION DETECTION SYSTEMS

to represent the normality of the features it received. The learned
model is shared with the detection component which, in turn, uses it to
detect intrusions. To detect intrusions, the detection component com-
pares the features it receives against the normality model M and, if
the features are above a threshold according to similarity measure D,
the traffic is labeled as anomalous. In consequence, ANIDSs need to
be trained before they can detect intrusions. Note that the training
process (i.e., creating a normality model) does not involve labeled
network traffic and assumes that only normal network traffic is con-
sidered.

Traffic

Modeling
(\&Q‘% Component

Traffic Sensors Fc'atl”,OS PR Model,
L X

Traffic Y‘(\-(\t\\‘"cs .) .
———>| Sensors ; - K v
<& 3
4

Network

Detection

M Sensors Component

Figure 2.4: Information flow of an anomaly detection system. Network traf-
fic is monitored by sensors that extract features. Sensors send features to
a modeling component that is responsible for creating a normality model.
The detection component uses the normality model to determine if some
features are abnormal or not.

In principle, normality models can be constructed using arbitrary
selections of features. In large networks, however, modern anomaly
detection techniques use the entropy of IP header fields as features.
Entropy is a metric that efficiently calculates the dispersion and con-
centration of a distribution [Ringberg et al., 2007]. Most network-wide
intrusions affect the dispersion and concentration of IP header fields.
Therefore, entropy is a suitable metric to learn normality models
that represent large networks. Lakhina, Crovella, and Christiphe Diot
[2004] provided most of the analysis that made the (Shannon) entropy
of IP header fields a default feature in most other works. Many other
researchers have also experimented and successfully demonstrated
the usefulness of other types of entropies as features (e. g., the nonex-
tensive or Tsallis entropy [Tellenbach et al., 2011; Ziviani et al., 2007]).
Beyond using the entropies of IP header features, researchers have
created improved anomaly detectors by mixing the entropy of other
feature types beside IP header fields. A notable example is proposed
by Nychis et al. [2008]. In their work, they improve anomaly detec-
tion by using the entropy of the behavior of flows (i.e., the in- and
out-degree distributions of hosts).

The diagram in Figure 2.4 assumes that one entity is responsible
for building one single model of normality. Likewise, the diagram

25

detection component

entropy of IP header
fields

CIDS sensors
CIDS analyzers

organizational
criteria

communication
overlay

collaboration level

architectural
components

centralized CIDSs

hierarchical CIDSs

BACKGROUND AND RELATED WORK

implies that only one entity is responsible for using the normality
model in the detection component. These two assumptions limit the
system in its scale. To cope with this limitation, researchers propose
groups of collaborative NIDSs, or Collaborative Intrusion Detection
Systems (CIDSs). These systems are the topic of discussion in the next
section.

2.3 COLLABORATIVE INTRUSION DETECTION SYSTEMS

The necessity to detect collaborative attacks has brought forth collabo-
rative defenses. Collaborative Intrusion Detection Systems (CIDSs) are
collections of NIDSs that together collaborate to detect widespread
intrusions. Computer networks can reach monumental sizes, creat-
ing an environment where attackers can easily conceal their activities.
The goal of a CIDS is to detect those undesired activities that would
otherwise be overlooked by individual NIDSs. A CIDS is composed of
multiple sensors, communication channels and one or more analy-
sis units. As in an NIDS, sensors are responsible for monitoring local
network traffic. Analysis units, in contrast to an NIDS, can be plentiful
and have different roles depending on whether the collaboration level
of a CIDS is at the detection or alarm level (see Section 2.3.2). Analysis
units share the responsibilities of the modeling and detection compo-
nent of NIDSs (see Figure 2.4).

CIDSs are complex systems that can be organized differently accord-
ing to different criteria. In the coming two sections, we expand upon
two different organizational paradigms of CIDSs. The first paradigm
considers the communication overlay of a CIDS. The second paradigm
takes into account the collaboration level at which a CIDS operates.
Regardless of how they are organized, CIDSs are made up of the same
components. The architectural components of CIDSs are presented in
Section 2.3.3. This architecture plays an important role in this thesis
as it is used as the foundation by which this thesis’ contributions are
organized.

2.3.1 CIDS Communication Overlays

According to the communication overlay they use, CIDSs can be orga-
nized into three different classes. Figure 2.5 shows the three commu-
nication overlays by which related work can be organized [Vasiloma-
nolakis, Karuppayah, et al., 2015]. Centralized CIDSs tend towards the
best detection accuracy given that the data of all sensors is analyzed
by one single analyzer. Its obvious deficiency is that it does not scale
well to large networks. Hierarchical CIDSs alleviate the scalability is-
sue by creating hierarchies of analyzers. At each level of the hierarchy,
an analyzer processes the data of a limited number of sensors. Analyz-
ers may collect (and aggregate) the results of other analyzers to create

26

2.3 COLLABORATIVE INTRUSION DETECTION SYSTEMS

meta-models. The lower an analyzer is in the hierarchy, the narrower
its view is and, theoretically, the less accurate its network-wide detec-
tion capabilities are. Both centralized and hierarchical overlays have
SPoFs. Distributed CIDSs, in contrast, do not have a sPoF. They rely on
having many analyzers that may also act as sensors. Analyzers estab-
lish collaboration by regularly sharing information with all others. In
doing so, detecting network-wide intrusions is possible at the cost of
high communication overhead.

| Centralized || Hierarchical || Distributed |

Figure 2.5: Examples of the three different communication overlay classes
of a CIDS. A centralized CIDS has one analyzing node (s*) towards which
many sensors (s) connect. A hierarchical CIDS has stacked analyzers and
sensors connected in a hierarchical way. A distributed CIDS consists of many
analyzers connected together.

Many examples of CIDSs exist that use different communication
overlays. The first CIDSs were mostly centralized. Today, modern CIDSs
tend to be distributed and focus on improving their performance in
comparison to centralized CIDSs. Some classic centralized CIDSs are
proposed in [Cuppens et al., 2002; Kannadiga et al., 2005]. In these
classic systems, a central unit processes all network traffic. In the are
of hierarchical CIDSs, Z. Zhang et al. [2001] propose one of the first
systems of this type. They built a system that would preprocess, cor-
relate, and aggregate sensor data until the data converged onto a
root analyzer. One of the challenges of distributed CIDSs is to employ
adequate dissemination mechanisms. C V Zhou et al. [2007], for ex-
ample, use a publish-subscribe overlay on top of a Distributed Hash
Table (DHT) and Peer to Peer (P2P) network. Due to the effectiveness
of P2P networks, others have used it to propose alternative systems
(e.g., [Z. Li et al., 2006; Marchetti et al., 2009]). In Section 6.1, as the
fourth contribution of this thesis, we propose a distribution mechan-
ism that improves upon the aforementioned proposals and the state
of the art.

2.3.2 CIDS Collaboration Levels

We propose a new organizational paradigm that categorizes CIDSs
depending on the level at which CIDS members collaborate. We rec-

27

distributed CIDSs

detection level

alarm level

BACKGROUND AND RELATED WORK

ognize two distinct levels of collaboration according to how data is
transferred between the sensor module and intrusion detection module
shown in Figure 2.3. In the case of an NIDS (as illustrated in the fig-
ure), the modules always exchange data at the feature level. Sensors
are responsible for extracting relevant network features. These fea-
tures are used by the intrusion module to learn and detect intrusions.
Analogously, CIDSs also have sensors and analysis units; however, they
may interact at a detection level (i. e., feature level) or alarm level. At
the detection level, sensors and analyzers exchange features to build
models that describe network-wide behaviors. At the alarm level, sen-
sors exchange features only with few analyzer. Each analyzer is then
responsible for independently building their own intrusion detection
model. Analyzers establish collaboration with others by exchanging,
aggregating and correlating the alarms they generate with their own
models.

ALARM LEVEL COLLABORATION Almost all CIDSs operate at the
alarm level [Vasilomanolakis, Karuppayah, et al., 2015]. Notable clas-
sical examples of these type of systems include the work of Dash et
al. [2006]. They propose an anomaly, distributed and network-based
CIDSs that can detect threats that slowly propagate through large net-
works. Like this work, many others focus on general solutions that ap-
ply within any network (other notable examples are, e.g., [Garcia et
al., 2004a; Q. Zhang et al., 2003]). The current trend, however, focuses
on proposing CIDSs at the alarm level that apply within networks of
a specific domain. In the works of Gamer [2012] and Marchetti et
al. [2009], CIDSs are created for the purpose of detecting intrusions
in backbone networks. In [Sedjelmaci et al., 2015], CIDSs are applied
within vehicular networks. The popular domain of smart grids have
seen CIDSs proposals tailored to the domain (e. g., [Hong et al., 2017;
Xiaoxue Liu et al., 2015]).

DETECTION LEVEL COLLABORATION At the detection level, al-
most no CIDSs have been proposed. However, we argue that the field
of distributed ML model learning is isomorphic to the field of CIDSs
that operate at the detection level: In both fields, the goal is to dis-
tributedly create ML models that minimize communication overhead
while maximizing the accuracy of one or more models. Many dis-
tributed ML algorithms are somehow based on ensemble learning
[Peteiro-Barral et al., 2013]. Ensemble learning is the technique of
combining multiple models to make decision (see Section 5.2.2 for
more details). Model combinations can be made by mixing the predic-
tions of the individual models or by mixing the models themselves
[P. K. Chan et al., 1993]. Both model combinations are suitable within
CIDss: analyzers can either create and share their own models or share
only significant statistics [Lazarevic, Nisheeth Srivastava, et al., 2009]

28

2.3 COLLABORATIVE INTRUSION DETECTION SYSTEMS

to calculate one single global model (at each analyzer). In Chapter 5,
we propose a CIDS at the detection level that mixes model predictions
to increase detection accuracy.

2.3.3 CIDS Architectural Components

CIDSs are complex systems composed of multiple subsystems inter-
acting together with the goal of detecting network-wide intrusions.
In order to better study CIDSs, Vasilomanolakis, Karuppayah, et al.
[2015] propose a CIDS architecture composed of five building compo-
nents. The architecture is shown in Figure 2.6. The design principle of
the architecture is that of separation of concerns. Each component oper-
ates independently of each other, only requiring the services of those
other components with which it is in contact. In the reminder of this
section, we describe the responsibilities and mention the noteworthy
related work that relates to each component. In our descriptions, we
exclusively concentrate on CIDSs that operate at the network level, i.e.,
they only monitor network traffic in search for intrusions. We disre-
gard CIDSs operating at the host level as they are outside the scope of
this thesis.

Global Detection

Data Correlation & Aggregation

Membership Data
Management Dissemination

Local Detection

Figure 2.6: The architecture of CIDSs. Five components interact together to
create a collaborative environment. Analyzers operate at the local detection
level. Though membership management and the dissemination of data, they es-
tablish overlays for communication. Shared data is correlated and aggregated
before it is used to build a global detection component.

An overview of the architecture and data flow is as follows. At the
local detection component, sensors and analyzers are responsible for
monitoring network traffic and generating local data. Local data is
then disseminated to other analyzers with the help of the data dis-
semination component. This component uses the services provided by
the membership management component to ensure that all interested
parties receive the local data. The data correlation & aggregation com-
ponent provides the means by which analyzers efficiently collect data.

29

five building
components

separation of
concerns

architecture
overview

operating at the
alarm level

operating at the
detection level

BACKGROUND AND RELATED WORK

The collected data is used by the global detection component to provide
intrusion detection mechanisms at a network-wide scale.

2.3.3.1 Local Detection Component

The local detection component is responsible for capturing and process-
ing network traffic to provide high-level information to other compo-
nents. Local detection components have two different modes of oper-
ation depending on whether a CIDS operates at the alarm or detection
level. At the alarm level, the local detection component creates its
own signature or anomaly-based models which it uses to detect lo-
cal intrusions. Alarms, which are the results of successfully detecting
intrusions, are forwarded to other CIDS members. At the detection
level, analyzers share features with each other to build distributed
ML models.

Signature and anomaly-based NIDSs can be used as a local detec-
tion component. The most popular signature-based NIDSs include Bro
[Paxson, 1999], Snort [Roesch, 1999] and Suricata*. Anomaly-based
NIDSs are scarce and often custom built. Some well known software
systems that include anomaly detection capabilities are Hogzilla> and
CFEngineé. In the second contribution of this thesis, found in Chap-
ter 4, we propose an anomaly detection mechanism that can operate
within this component.

2.3.3.2 Membership Management Component

The role of this architectural component is to establish communica-
tion overlays between CIDS members. Communication overlays can
be classified as static or dynamic. A static overlay is one where each
member manually specifies fixed connections to other members. This
overlay class is the default used one by centralized systems where
members know the centralized component with whom to connect. In
contrast, dynamic overlays are established and reorganized when ap-
propriate. In such overlays, members do not have fixed connections.
Instead, connections are established as needed according to a proto-
col or algorithm. Distributed CIDSs make use of dynamic overlays to
accommodate a variable number of members and to prevent a SPoF.
The membership management component may use a diverse set of
technologies to establish dynamic communication overlays for CIDS
members. The most basic of this technologies is known as PzP net-
works [Marchetti et al., 2009]. This technology relies on members
of a P2P network having the ability to store lists of neighbors (i.e.,
other systems to whom data can be sent), and the ability to pop-
ulate a neighbor list by asking other members for their neighbors.

https://suricata-ids.org/
https://ids-hogzilla.org/
https://cfengine.com/

30

https://suricata-ids.org/
https://ids-hogzilla.org/
https://cfengine.com/

2.3 COLLABORATIVE INTRUSION DETECTION SYSTEMS

DHTs, for instance, enable collaborating members to distributedly save
and share information using structured data routing [Androutsellis-
Theotokis et al., 2004].

Membership management is not a solved and obvious task; CIDSs
need to solve diverse challenges to create effective communication
overlays. Information shared between the members of a CIDSs is of-
ten of a sensitive nature. Whether members share alerts or features
to build models, members may choose to restrict others from directly
observing what they are sharing. Therefore, the dissemination strat-
egy, as taken care by the data dissemination component, influences how
communication overlays are established. For example, the dissemi-
nation strategy we propose in Chapter 6 preserves a degree of data
privacy and therefore relaxes the concerns that members may have
when overlays are built. Membership management is also influenced
by the trust that exists between the members of a CIDS. We propose a
collusion detection mechanism in Chapter 7 which may be used to re-
strict how overlay links are established depending on how much CIDS
members trust each other. Overlay links may be established randomly
or with a goal in mind. We propose a membership management mech-
anism in Chapter 5 that establishes links between members with the
goal of creating communities.

2.3.3.3 Data Dissemination Component

While the membership management component establishes commu-
nication channels, the data dissemination component is responsible for
distributing data through those channels. Centralized CIDSs use sim-
ple dissemination mechanisms where all data is forwarded to one
central component. Hierarchical CIDSs distribute data in one direction,
bottom-top, using well established communication links. Distributed
CIDSs, however, require more sophisticated mechanisms as communi-
cation links may be dynamically established and removed.

Dynamic overlays can use many distribution techniques, each hav-
ing its own advantage and disadvantages. Flooding a network is the
most basic technique that can be used to distribute data in a com-
munication overlay. In its naive implementation, flooding consists in
letting each participant directly transmit data to its neighbor. Upon
receiving data, a neighbor forwards the data to every other neighbor
from which the data did not originate. This approach has the obvious
disadvantage of having a high communication overhead. However, it
guarantees that every participant sees everything that is shared. Al-
ternative mechanisms include gossiping. Gossiping is similar to flood-
ing but, instead of sending data to every neighbor, data is selectively
transmitted to others following a probability distribution [Kermarrec
et al., 2007]. This mechanism drastically reduces the communication
overhead at the price of not guaranteeing that every participant re-
ceives all data. Gossiping, along with many other similar techniques,

31

flooding

gossiping

publish-subscribe

multi-cast routing

correlation

aggregation

alarm level output

detection level
output

attack-based
correlation

similarity-based
correlation

BACKGROUND AND RELATED WORK

is known as epidemic routing [Kosti¢ et al., 2003]. Other viable dissem-
ination techniques include publish-subscribe [Daubert et al., 2016] and
multi-cast routing [Bye et al., 2010]. In Chapter 6, we propose a dissem-
ination mechanism customized for CIDSs that minimizes communica-
tion overhead and provides deduction capabilities to CIDS members.

Dissemination strategies often involve some form of compressed
data representation. The family of data structures known as Proba-
bilistic Data Structure (PDS) are able to store some data property in
sub-linear space. This means that PDSs use less memory than the num-
ber of properties they track. Bloom filters [Locasto et al., 2005], for ex-
ample, store whether something been observed or not. Sketches store
how many times something has been observed. We use this type of
data structures in Section 6.1 to create a data dissemination mechan-
ism. We refer the reader to the specialized background in Section 6.2
for more details about PDSs.

2.3.3.4 Data Correlation and Aggregation Component

The terms correlation and aggregation in CIDSs have a special mean-
ing. Generally speaking, correlation is the process of finding statistical
dependencies between random variables. Aggregation is the process
of summarizing similar data items together into a single representa-
tive item. Within the context of CIDSs, the meaning of these two terms
change depending on the CIDS’s collaboration level (see Section 2.3.2).
At the alarm level, CIDSs correlate alarms to find groups of alarms that
show signs of a dependent relation. Aggregation at this level implies
mixing similar alarms together to create one alarm. The output at this
level consists of meta-alarms (i. e., alarms of alarms). At the detection
level, CIDSs correlate features to do feature selection for ML; and ag-
gregate features into summary statistics. The output at this level are
collections of data features.

According to the intended outcome, correlation at the alarm level
can be grouped into four distinct categories. Attack-based correlation
aims at identifying a group of alarms that follow after specif attacks
(e.g., [Garcia et al., 2004b]). Similarity-based correlation finds similar
alarms based on predefined distance metrics (e.g., [Eckmann et al.,
2002]). Multistage-based correlation attempts to find the alerts that are
generated by attacks that involve multiple steps (e. g., [Vasilomanola-
kis, Srinivasa, and Mitihlh&user, 2015]).

At the detection level, exchanged features can be aggregated us-
ing sufficient statistics [Caragea et al., 2004]. Sufficient statistics are
those statistics that alone can be used to generate an ML model. More
formally, most ML algorithms use some statistics computed from a
dataset D to generate their model M. A statistic s(D) of dataset D is
sufficient when it is enough to compute the parameters 0 of model M.
For example, the sufficient statistics of a Gaussian model are the mean
and standard deviation of D. Within our contribution presented in

32

2.3 COLLABORATIVE INTRUSION DETECTION SYSTEMS

Chapter 6, we develop a mechanism that distributes sufficient statis-
tics (i. e., feature distributions).

2.3.3.5 Global Detection Component

This architectural component uses the information provided by the
aggregation and correlation component to provide network-wide in-
trusion detection capabilities. When a CIDS operates at the alarm level,
this component finds network-wide attacks by looking at the aggre-
gated and correlated alarms issued by the local detection component.
Besides locating network-wide attacks, at this level of operation, the
global detection component is responsible for filtering and ranking
alarms by their level of importance. Widespread and repetitive alarms
are ranked higher as it is assumed that such alarms have a higher im-
pact at a network-wide level. At the detection level , this component
is responsible for turning data features into ML models. When func-
tioning at a detection level, CIDSs share ML models (or the means to
create unified ML models) with all its members. The members can
then use these models to detect network-wide attacks.

33

global detection at
the alarm level

global detection at
the detection level

34

DATASET GENERATION

CONTEXT

This chapter constitutes the first major contribution of this thesis. In
the following sections, we present research that leads us to derive the
concepts and theory needed to blend synthetic attacks into network
traffic captures. Our concepts are realized and demonstrated in the
form of a toolkit. This toolkit facilitates the creation of useful datasets
for the filed of NIDSs by creating and blending synthetic attacks into
arbitrary network traffic. The datasets we can generate improve upon
commonly used public ones, many of which are known to contain
significant problems [Creech et al., 2013; Matthew V Mahoney and
P. K. Chan, 2003].

The following sections also lay down the foundations on which
some of the subsequent chapters are evaluated. With our toolkit,
termed Intrusion Detection Dataset Toolkit (ID2T), we create labeled
datasets from unlabeled network traffic to detect, for instance, attacks
in a backbone network or members colluding within a CIDS.

ATASETS are one element among many that belong to the essen-
tial means needed to develop proper and empirically tested
Network Intrusion Detection Systems (NIDSs). In this chapter, we re-
view the publicly available datasets most commonly used in the net-
work security field. In our review, we compare the capabilities of each
dataset and present a classification of their defects. To alleviate most
defects and further enable researchers to develop their own datasets,
we develop an Intrusion Detection Dataset Toolkit (ID2T).

An overview of this chapter is shown in Figure 3.1. On the left side,
the figure shows where this contribution lies in relation to the others.
Our contributions begin with the introduction of methods and means
to generate useful datasets for evaluating NIDS. This ability to create
useful datasets is exploited in subsequent chapters to evaluate our
research. As shown to the right of Figure 3.1, this chapter is related
to the bottom and top layer of the CIDS architecture we reference (see
Section 2.3.3). Our dataset generation mechanisms enable us to ade-
quately test local and global detection mechanisms. This is achieved
by injecting known synthetic attacks into network traces; thereby, cre-
ating labeled datasets. These labeled datasets are used to evaluate
the sensitivity of local or global detection mechanisms to attacks of
different nature.

35

DATASET GENERATION

Chapter Overview

Field of Contributions CIDS Architecture

1. Dataset Generation Global Detection

2. Intrusion Detection
Data Correlation & Aggregation

3. Community Formation

Membership Data
4. Information Dissemination Management Dissemination
5. Collusion Detection Local Detection

Figure 3.1: This chapter constitutes the first contribution of this thesis:
Dataset Generation. This contribution is tied to the highlighted layers of our
referenced CIDS architecture: Global Detection, and Local Detection.

This chapter is structured as follows. The chapter begins by intro-
ducing and motivating the demand and the problems of generating
datasets through the injection of synthetic attacks. The introduction
also includes our requirements for tools that create synthetic attacks
as well as requirements for datasets to be useful in the CIDS field (Sec-
tion 3.2). In this field, datasets play a major role. It is for this reason
that we summarize the major datasets and tools that create datasets
through the injection of synthetic attacks. Our dataset summary also
includes a defect analysis that categorizes common problems found
in real or synthetic datasets (Section 3.3). ID2T, the toolkit that we pro-
pose to generate datasets, is then introduced along with a full descrip-
tion of its components (Section 3.4). Within the architecture of ID-T,
the TIDED and Attacks modules stand out above the others. The sec-
tion of the TIDED module explains the metrics used to detect potential
issues in the datasets created by ID>T or any other dataset (Section 3.5).
The section of the Attacks module describes the different attacks ID2T
can inject to create labeled datasets (Section 3.6). We present two
use cases to demonstrate how ID2T can be used to generate datasets
for the evaluation, replication and comparison of NIDSs (Section 3.7).
Finally, we conclude the chapter with some lessons learned, future
work and a chapter summary (Section 3.8).

3.1 INTRODUCTION

The threat landscape of network communications is constantly push-
ing researchers and network operators to develop and deploy more
elaborate and capable Network Intrusion Detection Systems (NIDSs).
Due to the lack of modern standardized datasets, security practition-
ers cannot easily determine and compare the capabilities of different

36

3.1 INTRODUCTION

NIDSs under similar conditions. Furthermore, those public and fre-
quently used datasets lack the attack diversity needed to test modern
systems.

Today;, it is difficult to obtain or produce reliable datasets that can
be used to accurately test and evaluate up-to-date NIDSs. Furthermore,
most publicly available datasets contain defects or restrictions that
limit their usefulness [Koch et al., 2014]. Network communication
paradigms evolve rapidly and NIDSs need to keep up, yet datasets
are not updated and continue to reflect network states that are no
longer relevant. For example, the widely used DARPA 1999 dataset
[Lippmann et al., 1999] was generated using an outdated version of
the TCP protocol [Matthew V Mahoney and P. K. Chan, 2003]. Using
outdated datasets to evaluate NIDSs may lead to conclusions that do
not adequately apply to modern networks. To overcome the challenge
to properly evaluate systems that generalize well to modern networks,
we require datasets that conform to certain quality standards.

3.1.1 Problem Statement

We wish to tackle the task of generating reproducible and modern
datasets that are useful for testing, comparing and evaluating NIDSs.
We do not focus, however, on creating a single dataset that will even-
tually become outdated. Instead, we develop the theory and concepts
needed to inject synthetically generated malicious network traffic into
arbitrary traffic. We realize the theory and concepts in the form of a
toolkit. Our toolkit, known as the Intrusion Detection Dataset Toolkit
(ID2T), replicates the properties of network traffic, when appropriate,
into synthetically generated malicious traffic. Through this scheme of
replicating properties, ID2T blends synthetic traffic with real traffic,
creating labeled datasets that disguise synthetic traffic. The disguis-
ing process reduces potential sources of dataset defects and bias.

Most datasets in the field of NIDSs are distributed as Packet Cap-
ture (PCAP) files. PCAP files contain records of network packets where
each packet, for our convenience, can be considered as originating
from either an unknown or a malicious source. We term the pack-
ets that originate from unknown sources normal or background traffic.
Conversely, we denominate those packets originating from malicious
sources as attack or malicious traffic.

Figure 3.2 shows the basic inputs and outputs of ID2T. ID2T takes
a PCAP file as input and used it as background traffic. ID>T uses the
properties of background traffic to create synthetic attacks and inject
them into the background traffic. When we supply ID2T with back-
ground traffic free of attacks, ID2T creates a dataset with labels that
functions as the ground truth. As background traffic free of attacks is
often difficult to acquire, ID2T facilitates the discovery of anomalous

37

PCAP files

background traffic

malicious traffic

DATASET GENERATION

I

Parameters

Input

Figure 3.2: As inputs, ID2T takes a PCAP file that is used as background traffic
and a set of parameters that define attacks to inject and their specifications.
As outputs, ID=T creates a new PCAP file with the background traffic injected
with synthetic attacks, a collection of statistics related to the background
traffic, and a file containing the labels of each injected attack.

or exceptional patterns in the background traffic. The user-supplied
parameters specify attacks and their properties.

ID2T generates three outputs. The first output is a PCAP file that sim-
ulates that (disguised synthetic) attacks took place at the same time
as when the background traffic was recorded. The second output is a
collection of statistics that relate to the input background traffic (e. g.,
packet rates, Time to Live (TTL) distribution or IP source entropy). The
third output is a file with labels that detail when an attack takes place
and its characteristics.

3.1.2 The Challenges of Creating Adequate Datasets

Datasets are some of the most important means to evaluate NIDSs.
With ID2T, we propose one potential solution to the long-standing
issue of datasets that are outdated, unfit, unavailable or cannot be
easily replicated in the field of NIDS. With our solution, we attempt to
address six major challenges we identify as responsible for the lack
of modern datasets in the field. These challenges are listed below.

1 Privacy Concerns. Network data is prone to contain sensitive in-
formation in the payloads of network packets. Many datasets are
not published due to the fear of leaking sensitive information. With
ID2T, there is no need to share background network traffic. Instead,
only the attack generation process is shared and the user is respon-
sible for providing background network traffic (which is generally
easy to collect or obtain).

2 Safety Concerns. Manipulating malicious programs (e.g., viruses,
malware or botnets) to generate malicious network traffic has the
potential of compromising or affecting unsuspecting systems. Sand-
boxes and virtual environments may reduce the risk of undesired

38

3.1 INTRODUCTION

security incidents. Nonetheless, it is generally undesirable to repli-
cate or update datasets that depend on the manipulation of ma-
licious programs. ID=T attempts to programmatically replicate the
effects of network attacks without incurring in dangerous activities.

3 Label Availability. Datasets are most useful when they contain ac-
curate labels that detail the attacks or issues they contain. Label-
ing network data, however, is a difficult, tedious and vague task:
label-worthy events consist of multiple packets, many of which,
by themselves, would not necessarily signal malicious intent. ID2T
automatically creates labels for any injected synthetic attack. Fur-
thermore, ID>T can to mark all packets associated with an injected
attack without human intervention.

4 Renewability Problems. Due to how fast network communications
evolve [Worldwide Infrastructure Security Report 2014], datasets need
regular updates to reflect the latest attacks and network paradigm
changes. Otherwise, datasets risk becoming quickly outdated. With
ID2T, instead of releasing new updated datasets, only attacks need
to be programmed into the toolkit. The Application Programming
Interface (API) that ID2T provides facilitates this task.

5 Flexibility Shortfall. Most datasets are created using fixed network
configurations with attacks targeting systems within the network.
Due to fixed network configuration, these datasets suffer the risk
of becoming unfit or outdated. Lacking alternative network config-
urations means that, as systems specialize in detecting attacks in
the fixed network, their generalization capabilities may diminish.
As 1D2T injects synthetic attacks into arbitrary network configura-
tions, attacks can be simulated to occur in any provided network
configuration.

6 Payload Availability. Because of privacy reasons, technological limi-
tations, modeling difficulties or monitoring restrictions, packet pay-
loads are often not provided in datasets. In this circumstances,
NIDSs that use information at the packet level are automatically left
out. ID2T models and includes the payload of the attacks it injects.

To overcome these challenges, we have established two sets of re-
quirements. The first set relates to the inherent properties of datasets.
The second set relates to the process of creating and injecting syn-
thetic attacks that replicate network properties. These requirements
are further divided into functional and non-functional and detailed
in Section 3.2.

3.1.3 Chapter Contributions

This chapter is constituted by three main contributions that target the
development and sharing of datasets suitable in the field of NIDSs.

39

DATASET GENERATION

In the first contribution, we present a comprehensive survey of com-
monly used datasets. We analyze the datasets and derive a classi-
fication of common dataset defects. In the second contribution, we
develop a modular toolkit, termed ID-T, that facilitates the creation of
datasets through the injection of synthetic attacks. Our toolkit takes
into account our defect classification and actively tries to mitigate de-
fects. Finally, in our third contribution, in a module of ID2T termed
TIDED, we develop metrics to analyze PCAP files. The metrics are used
to determine if the PCAP files contain suitable quantitative character-
istics to act as background data for a dataset. To demonstrate the use-
fulness of ID2T, we present two use-cases that demonstrate how the
toolkit can be used to reproduce the evaluation of NIDSs by creating
our own datasets.

3.2 REQUIREMENTS OF DATASETS AND INJECTION TOOLS

We identify eight requirements that relate to the datasets needed in
the NIDS field. On the one hand, there are requirements that apply to
the datasets themselves. On the other hand, requirements apply to the
generation and injection of synthetic attacks. All requirements are de-
rived from related work. Additionally, our defect analysis presented
in Section 3.3 adds to the requirements of datasets for NIDSs. The
development of ID2T adds to the requirements of generating and in-
jecting synthetic attacks. We classify all requirements into functional
and non-functional ones.

3.2.1 Requirements of Datasets Suitable in the Field

We derive the following requirements from surveys [Vasilomanola-
kis, Karuppayah, et al., 2015], related work [Bhuyan et al., 2015; Koch
et al., 2014, Matthew V Mahoney and P. Chan, 2003; Shiravi et al.,
2012] and our experience in the field of IDSs [Cordero, Vasilomanola-
kis, Milanov, et al., 2015; Vasilomanolakis, Garcia Cordero, et al., 2016;
Vasilomanolakis, Krugl, et al., 2016]. The following requirements are
targeted at making datasets suitable to testing, evaluating and com-
paring NIDSs.

® Functional Requirements

1 Payload Availability. Datasets should include packet payloads so
that they are useful to test all types of NIDSs. Many NIDSs rely on
deep packet inspection to recognize intrusions.

2 Labeled Attacks. Datasets must be labeled such that the individ-
ual packets of an attack are associated to a label.

3 Ground Truth. Dataset labels must be accurate. This implies that
there is no benign traffic labeled as an attack and that there are

40

3.2 REQUIREMENTS OF DATASETS AND INJECTION TOOLS

no attacks without an associated label. Without ground truth, we
cannot compare different NIDSs with conclusive results.

4 Renewable. Datasets must be updated to include new attacks
and emergent network patterns. With the speed network proto-
cols and patterns change, a dataset can only remain relevant if it
is continuously renewed.

5 Flexible. Datasets must have the ability to test different scenarios
with distinct scopes (e. g., anomaly or signature-based detection
in office, house or backbone network environments).

® Non-Functional Requirements

1 Public Availability or Replicability. Datasets should be public or,
if not possible, easy to replicate. Many datasets, although orig-
inally public, are now difficult to obtain due to lack of main-
tenance from the side of the creator. Releasing a dataset to the
public is therefore desired.

2 Interoperability. Datasets should be shared using a common and
widespread format. The most popular file format for sharing
network packet captures is the PCAP file format.

3 Quality. Datasets need to actively minimize or avoid creating
issues and defects. Quality datasets reduce the bias that may
exist when evaluating the capabilities of NIDSs. We distinguish
between issues that arise from the generation of real traffic, and
from the creation of synthetic traffic. In Section 3.3, we detail and
categorize issues found in commonly used datasets.

3.2.2 Requirements for Creating Synthetic Traffic

Tools need to take into account a series of requirements to facilitate
the task of injecting synthetic traffic. The following functional require-
ments are derived from observations of how datasets are compiled
(e.g., [Shiravi et al., 2012]) and how other tools create synthetic traffic
(e.g., [Brauckhoff et al., 2008]). The non-functional requirements are
targeted at tools capable of processing arbitrary PCAP files.

® Functional Requirements

1 Packet-level Injection. Synthetic attacks need to be modeled at
the packet level (instead of flow level, for example) which is the
lowest common denominator for most NIDSs.

2 PCAP Interoperability. Synthetic attacks need to be injected into
arbitrary PCAP files. To do this, attacks need to adjust their prop-
erties to match the statistical properties of the traffic in the PCAP.

3 Minimal User Interaction. Synthetic attacks should be created
without much user interaction. A user should be expected to

41

DATASET GENERATION

only specify an initial set of parameters that are enough to gen-
erate attacks. The generation process needs to be deterministic
so as to enable others to replicate a set of attack injections.

4 Packet-volume or Payload-based Attacks. Synthetic attacks should
be created to model either packet or payload-based attacks. At-
tacks such as exploits rely on the ability to model the payloads
of packets while DDosS attacks need to alter the number of created
packets.

® Non-Functional Requirements

1 Scalability. Injection tools need to process capture files of large
networks. Therefore, the parsing and collection of statistics needs
to be efficient.

2 Extensibility. Injection tools need to be easily extended with new
attacks to cope with the evolving threat landscape.

3 Usability. Injection tools should not require specialized hardware
to create synthetic traffic. At the same time, users should be in-
volved as little as possible in the injection process.

4 Open Source and Public Availability. Injection tools, to be useful
to the community, need to be public and open source. Many
tools and datasets become inaccessible or are lost because their
creators stop maintaining them.

3.3 RELATED WORK AND DEFECT ANALYSIS

In the NIDS field, researchers are constantly looking for better datasets
to evaluate, compare or replicate the results of others [Abt et al,
2013]. This need is especially evident, for example, when developing
anomaly-based NIDSs, where supervised methods that need labeled
data dominate [Abt et al., 2013]. In this section, we review commonly
used static datasets in the field as well as tools that dynamically gen-
erate datasets. We then derive and propose a classification of common
dataset defects.

In Figure 3.3, we use a timeline to show the publication year of the
18 static datasets and tools we analyze. An arrow to the right of a
dataset name indicates that the dataset has been updated after it was
first published.

3.3.1 Static Datasets

We define static datasets as those generated either from real or syn-
thetic traffic that, once created, are not altered. Many such datasets
exist, each with different degrees of popularity and deficiencies. In
the following, we briefly describe each static dataset. Subsequently,
we present a summary and comparison table of all datasets.

42

3.3 RELATED WORK AND DEFECT ANALYSIS

B Static dataset
Dataset generation tool
—p Updates available

— msc
DARPA 99 [UNSW-NB15)
DARPA 98 L1010 g
\ l] NGIDS DS
1 1 1 1 1 1 I >
D D H L > O 4% H o A
D O O° O NN ¥ M
SN P P P PP

Figure 3.3: Timeline of the published year of static datasets and dataset gen-
eration tools. We show static datasets in red blocks and dataset generation
tools in yellow blocks. An arrow to the right of a block indicates that updates
exist for the dataset.

DARPA 98 AND 99 Created by the Lincoln Laboratory of the MIT
to enable an offline intrusion detection evaluation challenge set by
DARPA, these datasets are still widely used in spite of their age [Abt
et al., 2013]. The datasets consists of records of simulated traffic (of
hundreds of users) between a United States Air Force base and the
Internet. It was a first attempt at creating an “objective, repeatable
and realistic [dataset]” [Lippmann et al., 1999]. The dataset contains
different threats that range from network scans to privilege escalation
exploits. A total of five weeks of data are provided: two weeks of
normal traffic, one of labeled attack traffic and one of unlabeled attack
traffic. The datasets have been found to contain many defects that
may bias the detection capabilities of anomaly detectors [Matthew V
Mahoney and P. K. Chan, 2003]. For example, as a notable defect, all
network packets that belong to an attack have a fixed TTL value.

KDD 99 The KDD 99 dataset was created in 1999 for a competi-
tion aimed at developing NIDS [KDD Cup 99, 1999]. The dataset is
a collection of records of network flows extracted from the Defense
Advanced Research Projects Agency (DARPA) 98 dataset. Each record
contains 31 features. With such a dataset, developers do not need to
engineer features and can fully concentrate on developing NIDSs. The
KDD g9 dataset is still used today despite it being outdated and hav-
ing well known issues [Creech et al., 2013].

MAWI The MAWI dataset [Fontugne et al., 2010] is a collection of
PCAP files containing backbone network traffic flowing between Japan
and United States. The dataset exists since 1999 and, as of today, is
updated almost every day with new PCAP files. Each PCAP contains
15 minutes of anonymized traffic and, due to the amount of recorder

43

DATASET GENERATION

traffic, may be up to 20GiB in size. Despite the advantage of its re-
centness, the dataset has other limitations that hinder its usage in
the field: packet payloads are not available, IP addresses are incon-
sistently scrambled among different PCAPs, and ground truth is not
available. Anomaly detectors are used to label the PCAPs in an attempt
to leverage the inherent problems of labeling real network traffic.

caipA The organization known as the Center for Applied Inter-
net Data Analysis (CAIDA) [CAIDA, 2018] gathers, anonymizes and
publishes network traffic captures of different purposes. Six datasets
are available for the specific purpose of assisting security researchers,
each with specialized attacks or anomalies. However, the datasets are
limited in scope and have no labels.

LBNL This dataset, created by the Lawrence Berkeley National Lab-
oratory (LBNL) and Berkeley’s International Computer Science Insti-
tute (ICSI), contains around 100 hours of traffic activities recorded
from a large enterprise network. With a size of 11GiB, the traffic
consists of background network traffic with no known attacks. The
dataset has been used to analyze large networks [Nechaev et al., 2010],
but has a limited scope in the context of NIDSs. The dataset is now out-
dated (having been collected in January 2005) and does not contain
labels.

KyoTto The Kyoto dataset [J. Song et al., 2006], rather than being a
collection of network captures, consists of a series of records of fea-
tures extracted from traffic captured by honeypots. The honeypots are
deployed in the University of Kyoto and implement advanced mecha-
nisms of disguise [J. Song et al., 2008]. The dataset has been updated
up to December 2015. The records use the same 14 features as those
used in the KDD g9 dataset plus 10 additional features related to the
output of diverse IDSs. Ground truth is not available and the original
packet captures are not provided.

SIMPLEWEB In an attempt to publish open datasets to evaluate and
compare NIDSs, the Simpleweb /University of Twente dataset was cre-
ated [Barbosa et al., 2010]. The dataset consists of eight traces, with
varying formats, of network traffic captured in a university network.
All traces have been anonymized and, if applicable, stripped of their
payloads. One trace, from the eight available, consists of features ex-
tracted from network traffic that passed through a honeypot [Vasi-
lomanolakis, Karuppayah, et al., 2015]. All traffic from this trace is
considered (and labeled) as malicious [Sperotto, Sadre, et al., 2009].
The other traces do not contain labels.

44

3.3 RELATED WORK AND DEFECT ANALYSIS

UMASS REPOSITORY The Laboratory for Advanced System Soft-
ware from the University of Massachusetts has a public repository of,
among many things, heterogeneous network traces [Liberatore et al.,
2018]. The traces are collected from specialized scenarios, reflecting
specific network configurations, threats, situations and attacks. The
format and labels of the traces vary. Most of them are synthetically
generated and the ground truth may or may not be available.

IMPACT The community known as the Information Marketplace
for Policy and Analysis of Cyber-risk & Trust (IMPACT) provides di-
verse datasets related to cyber-security [IMPACT, 2017]. The datasets
are provided by several partners and do not conform to particular
formats. Recent and old datasets exist with different combinations of
labeled attacks or synthetic traffic. Access to the datasets is restricted
to researchers from the USA and other authorized countries.

cpx Created in 2009 from the Cyber Defense Exercises (CDXs) com-
petition [Sangster et al., 2009], the CDX dataset provides labeled traces
of network traffic. All traffic originating from participants in charge of
compromising other systems is labeled as malicious. All other traffic
is considered normal or benign. Although the captured traffic con-
sists of network traces of human activities, it does not conform to
the expectations of realistic traffic. In particular, the ratio of malicious
and benign traffic is almost the same, and the traffic volume is low.

NSL-KDD After a statistical analysis of the KDD g9 dataset, Taval-
laee et al. [2009] identified issues responsible for biases that would
negatively affect the performance of anomaly detection mechanisms.
The NSL-KDD dataset attempts to alleviate these issues by creating a
new dataset from specifically chosen records of the KDD g9 dataset.

UNswW-NB15 Motivated by the lack of publicly available and mod-
ern datasets that reflect modern network traffic scenarios, Moustafa
et al. [2015] created the UNSW-NB15 dataset in 2015. The dataset was
generated using a mixture of network test beds and synthetic traf-
fic generation tools. Nine different attack families are included, all
of which are labeled. The dataset is provided in the PCAP format as
well as a record of network features (in the same style as the KDD 99
dataset).

IRsC Created in 2015 by the Indian River State College (IRSC), this
dataset consists of real controlled and uncontrolled attacks carried
out in a production network [Zuech, Taghi M. Khoshgoftaar, et al.,
2015a]. The datasets consists of full network traces in the PCAP file for-
mat along records of network flows. Labels are provided for all con-
trolled attacks while some uncontrolled attacks are labeled through

45

DATASET GENERATION

the usage of the Snort IDS. The dataset does not look to be publicly
available as of now.

NGIDs-Ds Haider et al. [2017] proposed a metric to evaluate the
realism of datasets for IDS. Taking into account the qualities that im-
prove their proposed metric, they developed a synthetic and labeled
dataset with a medium-high score (according to their metric). The
dataset is provided in the PCAP file format along with labels and the
logs of each network host. The dataset emulates five different network
scenarios: e-commerce, military, academia, social media and banks.

3.3.1.1 Requirement Compliance of Static Datasets

In Table 3.1, we summarize the compliance of the static datasets we
survey against the requirements we propose in Section 3.2.1. The
columns of the table correspond to each proposed functional and
non-functional requirements for static datasets (except the last col-
umn). Our last non-functional requirement, that of quality, is replaced
with a different one as quality does not lend well to a summarization.
In Section 3.3.3, we discuss in detail the quality of different datasets.
The genuineness attribute of a dataset replaces the quality requirement.
A genuine dataset is one that is generated using traffic of a real net-
work environment. A synthetically created dataset is not considered
genuine. In the datasets we survey, we found that the genuineness of a
dataset correlates with its quality: Synthetic datasets contain more is-
sues or defects that genuine ones. Therefore, the genuineness attribute
works as a heuristic that determines the quality of a dataset.

No single dataset satisfies all our proposed requirements. This at-
tests to the difficulty of creating useful datasets for this field of re-
search. Up to now and according to our requirements, the NGIDS-DS
dataset is the most suitable one as it is labeled with the ground truth,
contains full package information, is flexible (incorporating multiple
network scenarios), and is distributed in the PCAP file format. It lacks
the renewable requirement and genuine attribute. The lack of renewa-
bility is not currently a problem as the dataset is modern (published
in 2017); however, the dataset will eventually become outdated. The
genuineness attribute is a more subtle topic. The community has
strong negative feelings against synthetic datasets. Nonetheless, it is
arguable that, for a system to perform well in real network environ-
ments, the system must also perform well using synthetic datasets
[Abt et al., 2013].

3.3.2 Dataset Generation Tools
Static datasets are difficult to maintain and update. This is evident

from the fact that most static datasets, as seen in Table 3.1, have trou-
bles meeting the renewable and flexible requirement. More often than

46

3.3 RELATED WORK AND DEFECT ANALYSIS

xrz&é \o@% > &‘b &t > 4'50\ ¥ 5 @@Qé &

F @% F & & Nz Q& & &
DARPA 98/99 VERAR S S
KDD 99 VAR AR S A S (
MAWI X v X v X v v /U
CAIDA VD SEED S S L A
LBNL SO X X X X X X v
Kyoto X v X V< x v ooXx
SimpleWeb x vEx o ox o ox v/ X
UMass VARV SN S A A E
IMPACT X vix v o/ /e s s
CDX VAR ARD S SN S
NSL-KDD VAR S A S
IRSC VERAARD S SN S
UNSW-NB15 VAR S S e
NGIDS-DS VAR A AR |

@ Access is restricted or special permissions are needed.
i The PCAP file format is not used all the time.

k Renewed up to 2015.

I Only partially labeled.

5 Mixed set of genuine and synthetic data.

! Genuine background traffic with synthetic attacks.

Table 3.1: Summary requirements of 14 different static datasets.

not, when researchers need modern datasets targeted at specific sce-
narios, they build custom tools to generate them. In this section, we
present two tools (similar in scope to our proposal) for creating cus-
tom datasets and an overview of our tool (ID2T). Afterwards, we sum-
marize how the tools conform to the requirements we propose for
tools that create synthetic traffic.

FLAME Brauckhoff et al. [2008] have developed a tool for injecting
anomalies into network flows. The tool known as Flow-Level Ano-
maly Modeling Engine (FLAME) injects anomalies using one of three
different modes. With an additive mode, flows are injected without
modifying the background traffic (e. g., port scans). Using the subtrac-
tive mode, flows are removed from background traffic (e.g., ingress
shifts). Both modes are combined into an interactive mode to add
and remove flows (e. g., to simulate congestion due to a Denial of Ser-
vice (DoS)). Due to FLAME being discontinued, the tool can no longer
be easily found in the public domain.

47

DATASET GENERATION

I1scx-UNB Shiravi et al. [2012] point out the difficulty of evaluat-
ing, comparing and deploying anomaly-based NIDS due to the lack of
suitable datasets. In their work, they propose an approach to synthet-
ically generate network traffic from profiles. A profile is an abstract
model that describes network traffic. They created two types of mod-
els for representing profiles, one for legitimate traffic and another for
malicious behavior. Legitimate traffic is modeled by replicating the
statistics of real network traffic. Malicious behavior is modeled using
a custom description language. A test bed is used to generate net-
work packets from profiles. A dataset example is accessible, however,
the tool is not readily available to the public.

ip2T This is the tool we develop and present in this chapter. The
first prototype of this tool was released in 2015 [Cordero, Vasilomano-
lakis, Milanov, et al., 2015]. An improved version of the tool, and first
public release, followed in 2016 [Vasilomanolakis, Garcia Cordero, et
al., 2016]. The objective of ID2T is to create attacks that replicate the
properties of background traffic. Background traffic is provided by
the user. Attacks are manually programmed and use the statistics col-
lection mechanism of ID=T to replicate the network properties of any
input PCAP file. Many attacks are readily available that range from
DoS and network scans to malware and botnet infections.

3.3.2.1 Requirement Compliance of Synthetic Traffic Generation Tools

There is a distinct lack of tools that can generate synthetic attacks suit-
able for the evaluation of NIDSs. FLAME and ISCX-UNB try to achieve
similar goals as ID2T but do not meet the requirements we derived as
essential for such tools. FLAME is not available online anymore despite
it being originally publicly released. This is an issue that would po-
tentially be prevented had the software been published as Free and
Open Source Software (FOSS) in an open platform. Although the flex-
ibility of the tool is limited, as it does not operate at the packet level,
research that specializes in processing flows would benefit from such
a tool. ID2T is more general and generates network traffic at the packet
level. Tools that work on flows can use the output of ID2T to extract
flows with labeled attacks.

The creators of ISCX-UNB proposed a tool capable of generating
synthetic background and malicious traffic. In contrast, ID2T only gen-
erates synthetic malicious traffic. The ISCX-UNB tool has the disad-
vantage, however, that it requires a test bed to model traffic. The test
bed is not easy to setup, and requires specialized software and hard-
ware. Due to the test bed, ISCX-UNB has low usability, does not scale
well to large networks, and lacks an adequate interactivity. The tool is
not publicly available and the quality of its output cannot be compared
to ID2T.

48

3.3 RELATED WORK AND DEFECT ANALYSIS

Ci"\ &\QQO S
2 T A@ OOJ
\) Q/Q‘Z‘/\ {‘& \/\{:\@4 Ob \o\e ng
X T D A AT A >
s@@@ cé} &OQ.&& > & ,@*\b q}& @c
F T AT T o RO
FLAME X X v X v v v X
ISCX-UNB VERARS RV CHEVARD S«
ID2T v v v v v v 7/ /

d Only a sample dataset generated by the tool is provided.

f Originally publicly available. Cannot be easily found online anymore.

! The tool requires a dedicated test bed.

$ It is not obvious if more profiles requires a larger test bed with more systems.

Table 3.2: Summary requirements of three different datasets generation
tools.

3.3.3 Classification of Dataset Defects

We aim at creating a dataset generation tool that actively avoids the
same mistakes found in related work. In this section, we present a
classification of the defects found by others and ourselves in the
datasets and tools previously presented in Section 3.3.1 and 3.3.2.
Our classification is the outcome of the systematic analysis of related
work. It serves as a guide to acknowledge potential defects that syn-
thetic attacks may inadvertently leave behind. The classification also
enables us to organize solutions to actively detect and circumvent
dataset defects. This section is used in Section 3.6 as a guide to gen-
erate synthetic attacks that actively avoid leaving defects behind by
considering this classification.

In the classification, we distinguish between two types of defects
found in network traffic datasets. We use the term artifact, in accor-
dance to related work [Abt et al., 2013], to refer to defects in a dataset
introduced as a side effect of creating synthetic traffic. The term de-
ficiency refers to a defect or problem in a dataset that originate from
incorrectly using, capturing or recording real network traces.

Figure 3.4 presents our proposed classification of defects for net-
work traffic datasets. Defects can be divided into two general classes.
The Invalid Network Traffic class covers defects related to the incorrect
usage of network protocols or specifications (e.g., TCP communica-
tion with windows of size zero). The Inconsistent Network Traffic class
encompasses defects associated with the existence of inconsistent or
unexpected network traffic (e.g., overly regular packet interarrival
times). Furthermore, in our analysis of related work, we observed that

49

artifact

deficiency

invalid network
traffic
inconsistent network

traffic

network specific
context

network agnostic
context

DATASET GENERATION

Dataset Defect

mw

Invalid Inconsistent
Network Network
Traffic Traffic
Network i
i etw.or Artificial '
. Specific . 1
{ Anomalies]
Context ;
[Invalid | o |)l
E' """""""" Data [~ 777) A0 A A AR
i Network ;
! . Temp(?ral Predictable| | Unrealistic| |
¢ Agnostic Invalid Cl '
! Context L) Data Patterns eanness :

Figure 3.4: Classification of dataset defects. Defects may be distinguished as
either a deficiency or an artifact. Both defect types may fall into the classes
of invalid or inconsistent network traffic. These classes can further be orga-
nized into contexts depending on whether a problem is specific or agnostic
to a network.

some defects may be classified as a defect only in certain contexts..
Therefore, classifying something as a defect also depends on the con-
text. From a network specific context, something is a defect only when
the characteristics of the network traffic as a whole are taken into ac-
count (e.g., the existence of public IPs in a local network). From a
network agnostic context, something is a defect irrespective of the char-
acteristics of network traffic (e. g., invalid IP addresses). We use five
different classes to categorize defects (see Figure 3.4). Each class is
described below.

® Invalid Network Traffic
O Network Specific Context

0 Invalid Data. Disregarded characteristics or physical limita-
tions of a network in its captured representation.

O Network Agnostic Context

0 Invalid Data. Violation or incorrect usage of network proto-
cols.

1 For example, every attack packet having a TTL value of 126 is a defect only if the
background packets does not have this same property.

50

3.4 THE INTRUSION DETECTION DATASET TOOLKIT (IDZT)

0 Temporal Invalid Data. Incorrect usage of protocols due to
protocol deprecation or renewal.

® Inconsistent Network Traffic
O Network Specific Context

0 Artificial Anomalies. Anomalous data patterns that do not
correspond to the overall characteristics of the network traffic.

O Network Agnostic Context

0 Predictable Patterns. Network characteristics that repeat with
regular periodicity, without much variance, against the ex-
pected behavior of a network.

0 Unrealistic Cleanness. Network characteristics that do not be-
have as expected, are too regular or do not exhibit the typi-
cal untidy behavior [Bellovin, 1992; Paxson, 1999] of network
communication.

In Example 3.1, we demonstrate how our classification is used to
classify some known defects of the DARPA 99 dataset. After the de-
scription of each defect, we indicate the class of the defect in paren-
thesis.

Example 3.1: Defects of the DARPA 99 Dataset

The DARPA g9 datasets contains well known defects. The TCP ver-
sion used in the dataset is old [Postel et al., 1981], making the
TCP header field “IPv4 Type of Service (ToS)” invalid according
to modern standards [Grossman, 2002] (temporary invalid data).
The dataset uses only nine different TTL values that follow an
uncommon network pattern (predictable pattern). Furthermore,
Matthew V Mahoney and P. K. Chan [2003] noticed that the pack-
ets of all attacks in the dataset use one of two different TTL values
(artificial anomaly). As identified by [McHugh, 2000], although
an attempt was made to add some of the untidy behavior typ-
ical of TCP communication, in the form of fragmented packets,
the dataset does not show the expected characteristics of irregular
network behavior [Paxson, 1999] (unrealistic cleanness). The data
rates of the dataset are invalid if the theoretical network configura-
tion, from where the dataset was generated, is taken into account
[McHugh, 2000] (invalid data, from a network specific context).

3.4 THE INTRUSION DETECTION DATASET TOOLKIT (IDZT)

ID2T is a public and open source command-line toolkit that injects
synthetic attacks into supplied (network) traffic captures. To achieve
this, the toolkit first analyzes and collects statistics from a traffic cap-
ture input. The statistics are then used by attack scripts to set their

51

ID2T inputs

DATASET GENERATION

parameters and create attack packets that replicate the properties of
background traffic (when appropriate). Finally, ID>T merges the at-
tack packets with the packets of the input. The outputs of ID2T are
a PCAP file with injected attacks and a file of labels that clearly indi-
cates when attacks start and end. If needed, ID>T can watermark or
taint packets to associate each packet to an attack.

Example 3.2: Using ID2T

ID2T has a command-line interface. A user executes ID2T with dif-
ferent arguments to control the behavior of ID2T. ID2T can be used
to print different plots that relate to the statistical properties of an
input PCAP:

$ id2t --input background.pcap --plot TTL,MSS,IPEntropy

ID2T can also be used to issue queries, using an SQL syntax, to
obtain complex information pertaining an input PCAP:

$ id2t --input background.pcap --query 'SELECT ipAddress
FROM ip_statistics WHERE pktsSent > 1000’

Ultimately, as its primary purpose, ID2T can inject synthetic at-
tacks into an input PCAP:
$ id2t --input background.pcap --attack ddos ip.src

=10.0.0.30 ip.dst=10.0.0.40 attackers.count=250 packets.
per-second=400 --output output.pcap

3.4.1 The Architecture of ID2T

In this section, we present the architecture of ID2T. ID2T is a toolkit
aimed at injecting synthetic attacks into PCAP files of network traf-
fic. To blend synthetic attacks with arbitrary input PCAP files, ID2T
attempts to match the statistical properties of synthetic network traf-
fic with the statistical properties of the input. Others have validated
the usefulness of replicating network properties to generate synthetic
traffic [Danzig et al., 1991; Shiravi et al., 2012]. In addition to replica-
tion, ID2T enhances the quality of synthetic traffic by actively avoid-
ing (see Section 3.6) the defects presented in our classification (see
Section 3.3.3). The architecture of 1D2T is therefore built to enable the
two strategies of replicating statistics and avoiding defects. In addi-
tion, the architecture provides the tools needed to alter or create new
attack scripts that follow both strategies.

Figure 3.5 illustrates the architecture of ID2T. ID2T processes two
inputs and, using seven modules, yields three different outputs. The
inputs include a PCAP of network traffic and a set of parameters. The
input PCAP has no restrictions about its size or provenance; however,

52

3.4 THE INTRUSION DETECTION DATASET TOOLKIT (IDZT)

TIDED
r \
.. Attack
Tnput y Sl ‘ Controller Attacks
PCAP | — f [\ Y,
Coordinator
) (_g
L g Attack
it 1 1 Merger 1« e el
00
Parameters Attacks
\ PCAP

KID2T

) 1410
0 1m1

#1010
01wl
Output
PCAP

Labels

Figure 3.5: The architecture of ID=T is composed by seven modules. These
modules carry out the tasks needed to create a labeled output PCAP (with
its statistics) that mimics the input PCAP in accordance to some user defined

parameters.

IPv6 traffic is not considered®. The parameters specify one or many
attacks to inject and their respective properties. Example 3.3 shows

how 1D2T is used in the command-line to inject a port scan.

Example 3.3: Injecting a Port Scan Attack

The following command sets the input PCAP as background.pcap
and a set of parameters that relate to a port scan attack.

$ id2t --input background.pcap --attack portscan ip.src
=192.168.178.2 mac.src=32:08:24:DC:8A:72 inject.at-
timestamp=1536595087

The IP and MAC addresses of the attacker are explicitly specified.
The timestamp of when the simulated attack takes place is also
specified. All other properties made available by the port scan
attack script that are not explicitly specified are automatically cal-
culated from the statistics of the input. Such other properties, for
example, are the packet rate of the attack, IP address of the victim,
destination ports, and status of the open and close ports, among
others.

The outputs of 1D=T include a copy of the input PCAP merged with

packets created by attack scripts, a human-readable XML file with la-

2 Besides its name, IPv6 does not share many things with IPv4. The protocols function
in different ways. Therefore, the research presented here does not directly translate

to work with the IPv6 protocol.

53

ID2T outputs

ID2T modules

query mode

DATASET GENERATION

bels and a report of the input statistics. The labels indicate when an
attack started and finished along with all user-supplied or automat-
ically calculated properties of the attack. Individual packets are not
labeled. It is possible, however, to taint the packets (e.g., by manu-
ally specifying a known MAC address) to associate them to specific
attacks. The statistics output shows a quantitative characterization of
the PCAP input. This characterization includes the values of different
properties such as the average packet rate, average packet size, total
bandwidth used, IP address entropies, and TTL distribution, among
others. When appropriate, these statistics are also reported on an in-
terval rather than an input-wide basis. All the available statistics are
detailed in Section 3.5.

The modules of ID2T are responsible for generating the outputs from
the inputs. The following section describes each module in detail.

3.4.2 The Modules of ID2T

ID2T is a multi-modular application built to be easily extendable. Mod-
ules are decoupled from each other and perform a specific set of tasks.
In this section, we describe each of the seven modules, their tasks and
how they interact with each other. Figure 3.5 illustrates each module
as a small block inside the main block of the architecture.

COORDINATOR MODULE This user-facing module is responsible
for parsing the command-line arguments issued by the user. The mod-
ule coordinates with the Statistics, Attack Controller and Merger mod-
ules to perform the tasks of injecting attacks, plotting the statistics of
the input or listing the properties of each attack.

STATISTICS MODULE This is a backend module responsible for col-
lecting and computing statistics from the input PCAP file. The mod-
ule collects two types of statistics, those related to the input PCAP
as a whole (i. e., total number of packets), and those related to user-
defined intervals (e. g., average packet rate every one minute interval).
The Controller module enable users to directly interact with the Statis-
tics module though a mode termed query mode. In query mode, users
can query for predefined information or generate custom information
queries. Example 3.4 shows how ID2T is used in query mode. The
Statistics module also provides an interface to the attack controller
and TIDED modules. Through this interface, the modules can query
information programmatically to carry out their operations (i.e., cre-
ate synthetic attacks that replicate the statistics of the input).

Example 3.4: Using the Query Mode of ID2T

The query mode of ID2T has predefined queries to learn more
about an input PCAP file. For example, to obtain a list of the most

54

3.4 THE INTRUSION DETECTION DATASET TOOLKIT (IDZT)

used IP addresses from the file background.pcap, the following com-
mand is used:

$ id2t --input background.pcap --query ‘most_used(ipAddress)’

Users can supply their own SQL query to obtain custom infor-
mation. The following command obtains, for example, all IP ad-
dresses in the input file that sent more than 1,000 packages:

$ id2t --input background.pcap --query 'SELECT ipAddress
FROM ip_statistics WHERE pktsSent > 10;

TIDED MODULE This is a backend module that performs qualita-
tive tests on the input PCAP using data from the Statistics module.
The objective of the tests is to provide measurements that may expose
deficiencies (see Section 3.3.3) and sources of problems in the input
PCAP file. The tests fall in one of the categories of availability, valid-
ity or diversity. A detailed description of Testing Intrusion Detection
Datasets (TIDED) is given in Section 3.5.

ATTACK CONTROLLER MODULE This backend module instructs at-
tack scripts, via the Attacks module, to create the packets of synthetic
attacks. This module validates the attack parameters supplied by the
user. It also enables the attack scripts to obtain information from the
Statistics or TIDED modules. After the Attacks module generates packets,
this module creates a consolidated PCAP file (of only attack packets)
that is forwarded to the Merger module. Information about the attacks
in the consolidated PCAP is forwarded to the Attack Labeling module
to enable it to create a file with attack labels.

ATTACKS MODULE This module is both a user-facing and a back-
end module. From the side of the user-facing part, this module pro-
vides an API for users to program attack scripts. The API has functions
to facilitate the programming of attacks that replicate the properties
of an input PCAP file. The programmed attacks become available to
the user by registering them with the Attack Controller module. From
the side of the backend part, this module configures attacks given
the set of parameters specified by the user. ID>T comes with 12 pro-
grammed attacks, each detailed in Section 3.6.

ATTACK LABELING MODULE This backend module is responsible
for generating an XML file containing the labels of injected attacks.
The labels include the attack name, user-specified parameters, default
parameters, number of injected packets and time of injection. The file
is meant to be readable by machines and humans.

55

reliability tests

DATASET GENERATION

MERGER MODULE This backend module merges together the at-
tacks supplied by the Attack Controller Module and the input PCAP to
create an output PCAP file.

3.5 TESTING INTRUSION DETECTION DATASETS (TIDED)

Quality datasets are essential to the development, comparison and
evaluation of NIDSs. The overall quality of a dataset not only depends
on the quality of the injected attacks but also on the quality of the
background traffic. The TIDED module of ID2T performs tests on the
background traffic to identify potential artifacts or deficiencies (see
the classification in Section 3.3.3).

We assign the term reliability tests to the tests implemented within
TIDED that attempt to expose deficiencies in the background traffic
used as an input to ID2T. We borrow this term from the field of com-
puter systems. From the perspective of computer systems, reliability
refers to the probability that a system satisfactorily performs the tasks
for which it is designed. Analogously, we deem NIDS databases reli-
able if they satisfactorily perform their intended task (provide valid
grounds for the evaluation of NIDSs). Thereafter, we use the term reli-
ability tests to denote tests that may uncover aspects that hamper the
reliability of an NIDS dataset.

The purpose of TIDED is two-fold. On the one hand, it uses relia-
bility tests to validate the conformance of the network traffic to some
expected properties (e. g., the distribution of IP addresses conforming
to supposedly backbone network traffic). On the other hand, TIDED
makes the reliability tests available to the attack scripts (through the
Attack Controller module) to enable a better replication of the proper-
ties of background traffic. This module confers ID-T the characteristics
of a network dataset analysis tool.

We derive nine reliability tests from our survey and analysis of re-
lated work (see Section 3.3). The reliability tests are designed to detect
the artifacts or deficiencies which we have classified in Section 3.3.3.
The reliability tests are classified into different classes. In the follow-
ing, we present the different reliability tests and their classes. After-
wards, we describe the metrics used by the reliability tests and illus-
trate examples of the usefulness of the tests.

3.5.1 Classification of Reliability Tests

We use three different classes to categorize the reliability tests of
TIDED. Figure 3.6 shows a diagram of the nine implemented tests. The
tests use the statistics collected by ID2T from its input PCAP file and
do not need to directly analyze the file. If needed, ID>T provides an
API to create new tests. The currently implemented tests are detailed
next.

56

3.5 TESTING INTRUSION DETECTION DATASETS (TIDED)

Test Classes
|

v
Avallablhty Validity Diversity
Tests Tests Tests

Payload TCP Chocksum 1P] MSS] L[ToS]
P Classes Port Rdnge TTL] Window Size]

Figure 3.6: Classification of the reliability tests implemented in TIDED.

[Reliability J

® Availability Tests. This is a class of tests that encompasses all tests
that verify the existence of a property or attribute in network traf-
fic.

O Payload Availability. This test verifies if the packets of a network
contain payloads or not. If payloads are available, the test tracks
the entropy of the payloads to deduce and report on the amount
of encrypted payloads.

O IP Classes Availability. This test identifies which classes of IP
addresses a network contains. The test specifies how public and
private addresses mix and to what ratio.

® Validity Tests. This is a test class that corresponds to the tests that
identify consistency issues within network traffic captures.

O TCP Checksum Validity. This test identifies the amount of TCP
checksum errors in the packet capture. The test reports the ratio
of checksum errors.

O Port Range Validity. This test counts the number of ports seen in
the network capture for each of the three port ranges defined by
the Internet Assigned Numbers Authority (IANA) in accordance
to RFC 1700 [Reynolds et al., 1994] and RFC 6335 [Cotton et al.,
2011]. The test reports the number of packets that target port
zero.

® Diversity Tests. This is a class that relates to the tests that determine
the correct or incorrect behavior of TCP header values in network
communications.

o IP Distribution. This test identifies if the distribution of source
and destination IP addresses correspond to expected patterns of
normality. IP address distribution correlates with the network
type (e.g., home, office, or backbone network).

O TTL Distribution. This test measures the distribution of TTL val-
ues in the TCP header field and looks for unexpected deviations
from how a network behaves. This value correlates with the be-

57

DATASET GENERATION

havior of operating systems and hardware devices (i. e., different
systems and devices modify the TTL differently).

O Maximum Segment Size (MSS) Distribution. This test determines
if the MSS varies according to some expectation. The expectations
depend on the hosts that take part in network communications.
Hosts increase the MSS to maximize their output and decrease it
to minimize IP fragmentation. This value correlates with the de-
sign and capabilities of a network. The Mss indirectly signals the
purpose of a network (e. g., content distribution, cloud services
or office work).

© Window Size Distribution. This test analyses how different the
window sizes of packets are within a network capture. The win-
dow size correlates with the bandwidth of a network. Therefore,
by estimating the bandwidth, the test determines if the different
values of the window sizes match the expected distribution of
different window size values.

O ToS Distribution. This test tracks the Tos TCP header value and
detects whether the Tos follows modern protocol specifications.
The meaning of these header has changed multiple times in the
past, i.e., in RFC 791, 1122, 1349, 1455, 2474, 2780 and 3168 [Ra-
makrishnan et al., 2001]. In some specialized environments, the
ToS is used to determine the priority of packets. In most environ-
ments, the ToS is ignored.

3.5.2 Reliability Test Metrics

The reliability tests utilize diverse metrics to characterize network
traffic and identify potential sources of defects. The results of the
metrics are used, both, to expose potential problems to an analyst and
to better replicate the network traffic properties of synthetic attacks.
We present different metrics and examples of how these are used to
detect irregular network characteristics.

(SHANNON) ENTROPY DISTRIBUTION The entropy metric is used
to characterize the uncertainty of network features within a time win-
dow. Entropy H(X) is defined as

n

H(X) == P(xi)-log, P(xi),

i=1

where X = {x1,%x2,...,%xn}, Xi are values of any one feature, and P(X)
is the probability mass function of X. The minimum entropy is zero
and the maximum is log, n. A low entropy indicates that the values
of X repeat often. Conversely, high entropy signals that the values of
X do not tend to repeat. Example 3.5 shows how this metric can be
used.

58

3.5 TESTING INTRUSION DETECTION DATASETS (TIDED)

Example 3.5: Visualizing the Distribution of Entropies

The entropies of IP addresses provide useful information that al-
lows us to identify noteworthy events that occur in network traf-
fic. Figure 3.7 shows the entropies of the source and destination
IP addresses of traffic in a day (2018/04/01) of the MAWI dataset.
Entropies are calculated by dividing the traffic in 100 time win-
dows and calculating the entropies of the IPs within each time
window.

= IS
210 gu
s =
- 2o
265 :@
& E oo
6.0L,
0 20 40 60 80 100 0 20 40 60 80 100
Time Windows Time Windows
(a) Entropies of source IPs (b) Entropies of destination IPs

Figure 3.7: Measurements of IP entropies using 100 time windows on
the 2018/04/01 of the MAWI dataset.

The figures make evident a noteworthy event, visible in the last
time windows, where entropies drastically fall. This means that
this day of the MAWI dataset cuts the traffic capturing process
short. This traffic would therefore be more useful as a dataset if
we disregard all packets of the last time window.

NORMALIZED (SHANNON) ENTROPY This metric corresponds to
the entropy normalized in the range [0, 1]. The normalized entropy
H., (X) is defined as

7

= P(xi) -log, P(xi)
Hn(X) = 72 logfit

i=1
and is equivalent to dividing H(X) by the its maximum value log, n,
where X = {x1,%x2,...,xn}. This metric enables us to directly com-
pare the values of different datasets. In Example 3.6, we compare the
features of different datasets using the normalized entropy.

NOVELTY DISTRIBUTION This metric counts the different values a
random variable has had at time window t; that have not been pre-
viously seen in time windows t € [1,t;_1]. These counts enable us to
visually determine the dynamic nature of a network. This metric cor-
relates with the type and size of a network: In small home networks,
novelty distributions are infrequently high. The contrary is true for
backbone networks where the novelty distribution is not typically
low.

59

DATASET GENERATION

60

Example 3.6: Visualizing Normalized Entropies

The properties of the static datasets presented in the related work
section (Section 3.3.1) cannot be directly compared. This is be-
cause the datasets span different amounts of time (e.g., a day in
MAWI spans 15 minutes while a day in DARPA spans 24 hours)
and contain different packet quantities. A comparison is meaning-
ful, however, if we use normalized entropies: All properties are
characterized with entropies which we can compare when nor-
malized. The histograms in Figure 3.8 compare seven properties
of seven datasets using the normalized entropy metric.

I UNSW E=== DARPAout HEEEE (SCX WESSY NGIDS
s NMAWI I Simpleweb BEESE DARPAIn

= 0.8F

jo

o

= 0.6

L;j‘ B

S04t

<

3 0ot

= 0.2

0.0

ip src mss port tos ttl win size

i) dst
Figure 3.8: Comparing the normalized entropies of different datasets.

The y-axis of Figure 3.8 corresponds to the average normalized
entropy of all time windows of 14 minutes of a dataset. We choose
time windows of 14 minutes as all compared datasets span at least
14 minutes. DARPAin refers to one week of the internal traffic of
the DARPA dataset. DARPAout refers to one week of the external
traffic.

Some conclusions can be drawn from the histograms. The
DARPA dataset is known to have deficiencies in how traffic uses
the Mss, Tos and TTL fields [Matthew V Mahoney and P. K. Chan,
2003]. DARPA has almost zero entropy in all these fields. The fields
also differ from other realistic datasets such as MAWI or Sim-
pleweb. The NGIDS dataset shows that the normalized entropy of
destination addresses is close to zero, signaling that the same IP
addresses are almost always targeted. There are also no variations
of the MsS, ToS and TTL fields. The normalized entropy of the ports
shows that the NGIDS dataset has traffic that almost always goes
to different IP addresses, something which is not typical of real
users. The histograms also shows (from the high source and des-
tination IP address normalized entropies) how the UNSW dataset
captures traffic of hosts that are seen few times only.

3.5 TESTING INTRUSION DETECTION DATASETS (TIDED)

NOVELTY DISTRIBUTION ENTROPY This metric measures the en-
tropy of the novelty distribution metric. Entropy is typically used to
estimate the uncertainty of a random variable. However, entropy can
also be used to characterize the shape of a distribution. This metric
characterizes the novelty distribution for easier visualizations. Exam-
ple 3.7 shows some conclusions this metric allows us to make.

Example 3.7: Visualizing Novelty Distribution Entropies

Figure 3.9 shows the distribution of novelty IP addresses in a day
of the MAWI dataset. From Figure 3.9b, we can appreciate that
during time window 27 (spanning 9 seconds), given all newly
seen IPs, only few new IPs receive the majority of the traffic. This
behavior may signal traffic shifts, routing reconfigurations, the
start of new alpha flows [Lassoued, 2011], network errors or other
similar traffic behaviors.

= =
g g
g g
=] = 16
&3] =
2 10 Z 1
Q:; % 12
[
: L o E
“ 0 20 40 60 80 100 & 0 2 40 60 80 100
Time Windows Time Windows
(a) Entropies of novel source IPs (b) Entropies of novel destination IPs

Figure 3.9: Measurements of novelty distribution entropies using 100
time windows on the 2018/04/01 of the MAWI dataset.

NORMALIZED NOVELTY DISTRIBUTION ENTROPY This is a met-
ric that normalizes the novelty distribution metric in the range of
[0, T]. This metric characterizes the shape of novel values and, as it is
normalized, enables a direct comparison of characterizations of nov-
elty distributions between multiple sources. An example of how this
metric is used is shown in Example 3.8.

CUMULATIVE ENTROPY DISTRIBUTION This metric measures the
distribution of cumulative entropies. The cumulative entropy of ran-
dom variable X at time window t is the entropy of X when we take
into account all the values of X until the end of t. The cumulative
distribution is the histogram that results from the calculation of the
cumulative entropies at every time window t. Example 3.9 shows a
sample scenario where this metric gives insights into the behavior of
network traffic.

61

DATASET GENERATION

Example 3.8: Visualizing the Novelty Distribution

The histograms in Figure 3.10 compare the normalized novelty
distribution of seven fields of seven different datasets. Some
known as a well a new insights can be deducted from the figure.
Once again, we can conclude from the low novelty values that the
DARPA dataset has unusual MSS, ToS and TTL values. The NGIDS
dataset sees all the hosts in the dataset in few time windows, as
shown from the zero normalized entropy values of its source and
destination IP addresses.

. UNSW E=== DARPAout HEEEE (SCX WESES NGIDS
sy NAWI M Simpleweb BEEEE DARPAin

Normalized Entropy

ANNNNANANANNNNNN

INNNNANN AN ANNYN

%
/
2
2
2

p src mss port tos ttl win size

=

p dst

Figure 3.10: Comparing the normalized novelty distribution of different
datasets.

36 THE ATTACK SCRIPTS OF ID2T

The main goals of ID2T is to inject synthetic attacks. ID=T comes with
12 attack scripts that generate the packets to simulate diverse attacks.
All attack scripts use the API of ID2T to leverage the properties of
an input PCAP to disguise the synthetic nature of the packets they
create. Attack scripts require different user-supplied parameters to
craft network packets. If the user does not specify all parameters,
ID2T selects default values for the missing ones. Default parameter
values try to match the characteristics of the input. For example, if the
victim’s IP address parameter is not specified for an attack script that
targets port 8o, the script must find a suitable default. The script finds
a random IP addresses within the input PCAP that receives traffic on
port 8o.

We classify the 12 injectable attacks provided by ID2T in four classes.
Figure 3.12 shows the injectable attacks and how we categorize them.
In what follows, we present four classes of attacks along with their
individual attacks, the potential artifacts that may affect the classes
(according to our classification in Section 3.3.3), and how we avoid
artifacts.

62

36 THE ATTACK SCRIPTS OF ID2T

Example 3.9: Visualizing Cumulative Entropy Distributions

Consider the cumulative entropy distribution shown in Fig-
ure 3.11. The figure highlights specific points where entropy dras-
tically shifts; signaling swift behavioral changes in relation to past
observations. In time window 78 of Figure 3.11b it is clear that the
distribution of destination IP addresses drastically changed. This
behavior, although not common, is expected to occur within back-
bone networks (which the MAWI dataset provides). If we observe
this phenomenon in a home network, we would conclude that the
unexpected change of traffic probably comes from a deficiency in
the dataset.

14

o

12

~
=5

10

I
=)

0 20 40 60 80 100
Time Windows

20 40 60 80 100
Time Windows

fe=l

IP src Cumulative Entropy
IP dst Cumulative Entropy

(a) Cumulative entropies of src. IPs (b) Cumulative entropies of dst. IPs

Figure 3.11: Measurements of cumulative entropies using 100 time win-
dows on the 2018/04/01 of the MAWI dataset.

3.6.1 Probe and Surveillance Attack Scripts

The attacks crafted by the attack scripts of this class, more than being
explicit attacks, are probing or surveillance techniques typically used
to gather information before conducting an attack. These attacks use
different techniques to disclose information about the provided ser-
vices or exposed vulnerabilities of network hosts. ID2T includes three
different types of network probes.

3.6.1.1 Potential Artifacts of Probes and Surveillance Attacks

The synthetic attacks crafted by probe and surveillance attack scripts
may potentially contain several artifacts. In the invalid data category,
from a network specific context, these attacks could incorrectly gener-
ate an amount of packets that disregard the physical limitations (e. g.,
bandwidth) of the input PCAP. Determining the physical limitations
of PCAP files is challenging as the PCAP file format do not explicitly
carry such information. The probing and surveillance attacks that
we develop estimate the bandwidth and network routing capabilities
(i.e., latency and speed) to avoid creating more packets than the net-
work can theoretically carry. Our estimates are based on the heuristic

63

DATASET GENERATION

[ID?T Attack Scripts]

v v v v

Probing and Resource T2 latiiaion Botn'et
Infection

Surveillance Exhaustion
SYN Flood Eternal Blue
Joomla, Generic P2P
SQL Injection

SMBLoris

——

MS17 Scan

WinaXe
FTP Exploit

Figure 3.12: Classification of the synthetic attacks ID2T can inject. ID2T can
inject 12 different attacks. We classify the attacks into four different classes.

that network bandwidth is a multiple of 10 Mb/s, and that the aver-
age packet interarrival time directly correlates with routing capabil-
ities. Whenever our probing and surveillance attacks inject packets,
they take into account the estimated physical limitations of the net-
work and the number of packets already present: For a given time
window, the attacks only inject a number of packets that does not
exceed the difference between the packets present in the time win-
dow and our estimated maximum number of packets that the time
window may contain.

From a network agnostic context, the injection of port scans and sim-
ilar attacks can easily create artifacts that fall in the predictable pattern
category. Our probing attacks consider the distribution of interarrival
times and the current background traffic to estimate where and how
many packets may be injected. This actively avoids injecting packets
that fall within predictable time slots.

3.6.1.2 The Synthetic Probe and Surveillance Attack Scripts

PORT SCAN ATTACK SCRIPT This attack script emulates port scans
that uncover open services in network hosts. The attack script imple-
ments a variation of this attacks that executes a vertical TCP SYN
port scan: One IP address is scanned fully before moving to the next
IP. The attack script disguises the synthetic nature of the packets it
creates by imitating the behavior of the popular Nmap? port scanner.
The disguise process uses an adaptive packet rate generation strategy
that targets the most common 1,000 ports (by default).

https://nmap.org/

64

https://nmap.org/

36 THE ATTACK SCRIPTS OF ID2T

Example 3.10: Injecting a Port Scan Attack

The following command injects a port scan into background.pcap
targeting IP 10.0.0.12 with a rate of 300 packets per second.

$ id2t --input background.pcap --attack portscan packets.per
-second=300 ip.src=10.0.0.12

SMB SCAN sCRIPT This attack script generates attacks that search
a network for hosts that offer SMB or Samba shared resources. The
simulated attack attempts to establish a TCP connection with port
445 of a victim so as to list available shared resources. This attack
script simulates the network communication that takes place when
hosts respond, both, positively or negatively to SMB queries. By spec-
ifying parameters, a user can control which resources are returned as
available on successful queries.

Example 3.11: Injecting an SMB Scan Attack

The following command injects an SMB scan into background.pcap
simulating that it originates from 10.0.0.30 and targets different
IPs. The IPs in the range 10.0.0.1 to 10.0.0.100 are scanned; only
the IP 10.0.0.40 replies positively to the scan.
$ id2t --input background.pcap --attack smbscan ip.src
=10.0.0.30 hosting.ip=10.0.0.40 ip.dst=(10.0.0.1 -
10.0.0.100)

Ms17 SCAN SCRIPT This is a specialized attack script that gener-
ates simulates attacks that probe hosts running the Windows operat-
ing system to determine if they have the MS17-010 patch*. This patch
fixes several vulnerabilities that leaves a host open to remote exploita-
tion. The attack script disguises the attacks it generates by imitating
the behavior of the open source Metasploit framework>.

Example 3.12: Injecting an MS17 Scan Attack

The following command injects into background.pcap a successful
scan of host 10.0.0.40 that is not patched. The scan request origi-
nates from IP 10.0.0.30

$ id2t --input background.pcap --attack msl7scan ip.src
=10.0.0.30 ip.dst=10.0.0.40

4 https://docs.microsoft.com/en-us/security-updates/securitybulletins/

2017/ms17-010
5 https://www.metasploit.com/

65

https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://www.metasploit.com/

DATASET GENERATION

3.6.1.3 Probe and Surveillance Limitations

When a host answers back to a probing attack, the response creates
many packets that may be affected by the background network traffic,
attack itself or the network configuration. The network packets gener-
ated by ID=T assume that the responses follow the standard TCP pro-
cedure (using SYN and ACK control packets) without packet drops
or retransmission errors.

3.6.2 Resource Exhaustion Attack Scripts

These attack scripts aim at conducting attacks that consume the re-
sources of a host to deny legitimate users from using one or more
services of the host. ID2T has with three resource exhaustion attack
scripts.

3.6.2.1 Potential Artifacts of Resource Exhaustion Attack Scripts

The injection of synthetic exhaustion attacks relies on crafting large
amounts of packets. This crafting process is prone to leave artifacts
behind. From a network specific context, these attacks may introduce in-
valid data and artificial anomalies if care is not taken. These attacks
avoid creating invalid data artifacts using the same technique that
probes and surveillance attacks use: We design the attacks to first
estimate the bandwidth and routing capabilities of an input PCAP file.
Afterwards, the attack scripts create a number of packets that do not
exceed the estimated physical limitations of the input (see also Sec-
tion 3.6.1.1).

Synthetic resource exhaustion attacks may incorrectly inject artifi-
cial anomalies if the attacks craft packets that disregard the network
specific characteristics of the input PCAP file. Our resource exhaustion
attacks recognize and deal with anomalies that relate to IP addresses
and to packet frames®. Regarding the IP addresses, we implement our
attacks to take into account the classes (i.e., A, B C, D or E) and types
(i.e., public or private) of the IP addresses present in the input. The
IP of injected packets mimic these two IP characteristics. Regarding
the packet frames, our attacks consider all time-related metrics of a
packet (i.e., arrival time, time delta from previous packet and time
of capture), packet length, payload entropy and protocol parameters
(e.g., TCP flags and ports) to create packets that blend with the back-
ground traffic (when appropriate). For all considered frame proper-
ties, we fit a Gaussian probability distribution to the property and
sample from the distribution to obtain values that match the back-
ground traffic.

The PCAP file format stores information that relates to a network packet in a data
structure known as a frame. A frame contains packet information that goes from the
Data Frame layer up to the Application layer of the OSI reference model.

66

36 THE ATTACK SCRIPTS OF ID2T

From a network agnostic context, without adequate prevention mech-
anisms, the packets these attacks inject can introduce artifacts of the
predictable pattern class. The resource exhaustion attacks of ID-T set the
TCP/IP protocol properties of a packet (i.e., TTL, window size, MSS,
DSCP and IP Flags) by sampling the distribution of existing proper-
ties in the background traffic. These attacks also mimic packet con-
gestion and packet drops.

3.6.2.2 The Synthetic Resource Exhaustion Attack Scripts

SYN FLOOD DDOS ATTACK SCRIPT This attack script creates at-
tacks that imitates multiple malicious network clients trying to con-
sume the network capabilities of a host. In the generated attacks, ma-
licious clients try to establish as many TCP connections as possible.
In the attack generation process, the attack script creates the packets
that would originate from attackers as well as from the expected re-
sponses of victims. The attack script uses the network activities of a
victim to tune its behavior. The tuning process has two steps: First,
the script determines which ports are open. Second, the script calcu-
lates a packet rate that is expected to overwhelm the incoming traffic
of a victim. This attack script disguises the attacks it generates by
imitating the characteristics of DDoSs generated with Metasploit.

Example 3.13: Injecting a SYN Flood DDoS

The following command injects a DDoS into background.pcap. The
DDoS targets IP 10.0.0.40 and lasts 5 minutes. The victim is simu-
lated to reply to 500 TCP connection requests before exhausting
its resources.

$ id2t --input background.pcap --attack ddos ip.dst
=10.0.0.40 attack.duration=300 victim.buffer=500

MEMCRASHED ATTACK SCRIPT This attack script creates attacks
that use an amplification DoS technique that exploits a vulnerability
in Memcached” servers to send unsolicited traffic to a victim. In the
Memcached attack, an attacker sends forged UDP requests to a vul-
nerable Memcached server specifying the victim’s IP address as the
source address. The victim then receives unsolicited packets in mag-
nitudes larger than the number of packets sent by an attacker. The
attack script implementing this attack only simulates the traffic gen-
erated by the attacker. The traffic that the victim would receive is
omitted. A SYN Flood DDoS attack can instead be used to simulate
the traffic received by the victim.

7 Common vulnerability and exposure entry CVE-2018-1000115.

67

DATASET GENERATION

Example 3.14: Injecting a Memcrashed Amplification Attack

The following command injects the traffic an attacker would inject
into a network when carrying out a memcrashed amplification at-
tack. The file background.pcap is injected with packets that originate
from the address 10.0.0.133 and 10.0.0.60. A precise timestamp is
used to specify when the attack starts.

$ id2t --input background.pcap --attack memcrashed ip.src

=10.0.0.133 ip.dst=10.0.0.60 inject.at-timestamp
=1457823600

SMBLORIS ATTACK SCRIPT This attack script creates synthetic DoS
attacks that exploit a vulnerability® in the SMB protocol to exhaust
the resources of a system. With the SMBLoris exploit, an attacker
forces large memory allocation on a system which renders the system
inoperable.

Example 3.15: Injecting an SMBLoris DDoS

With this command, DT injects a SMBLoris attack into back-
ground.pcap that is simulated to target IP address 10.0.0.30. A total
of 25 attackers are simulated to take part in the DDoS attack. ID2T
chooses the IP addresses of the attackers automatically such that
the generated packets blend with the background traffic.

$ id2t --input background.pcap --attack smbloris ip.dst
=10.0.0.30 attackers.count=25

3.6.2.3 Resource Exhaustion Limitations

Resource exhaustion attacks change network flow patterns. The most
prominent changes include, but are not only limited to, increased
response times, network congestion, increased network latency and
high packet-loss rates. The attack scripts of ID>T do not alter the back-
ground traffic. Instead, attack scripts add additional traffic to existing
traffic. ID>T therefore cannot replicate the side-effects of resource ex-
haustion attacks. Most NIDSs, however, rely on detecting attacks from
suspicious traffic rather than from the observable side-effects of un-
suspecting traffic.

3.6.3 Exploitation Attack Scripts

These are attacks that target specific defects and vulnerabilities in
software with the goal of executing unwanted code in a target system.
ID2T provides five different attack scripts of this exploitation class.

A common vulnerability and exposure entry is not available.

68

36 THE ATTACK SCRIPTS OF ID2T

The attack scripts focus on replicating the real payload contents and
characteristics of an exploit. In this type of attacks, the contents of the
payload are as important as the properties of the TCP/IP headers as
most NIDSs detect these attacks through deep packet inspection.

3.6.3.1 Potential Artifacts of Exploitation Attack Scripts

To create synthetic exploitation attacks, we supply the exploitation
attack scripts of ID2T with the packets generated by real exploitation
attempts. The scripts use the packets as templates and modify them to
match the network properties of the input PCAP and the user param-
eters. Modifying existing packets to make them look as if originating
from a different network may leave diverse artifacts behind.

From a network agnostic context, we take care that the attack scripts
do not alter packets such as to create artifacts of the invalid data class.
When we modify real packets, we ensure that the resulting packets
conform to the underlying protocols and network specification of the
input. The exploitation attack scripts of ID-T, when needed, recalcu-
late the TCP, IP and Ethernet packet checksums. For each packet of
a template, the attack scripts also modify and set adequate TCP/IP
flags; and modify the classes and types of IP addresses to be consis-
tent.

The process of generating synthetic exploits from packet templates
can create artifacts of the predictable patterns class. We take two mea-
sures to avoid these types of artifacts. First, the exploitation attack
scripts of ID2T alter the order of the established connections in the
template (without affecting the order of the packets) and change the
interarrival times between the packets. Second, the scripts employ dif-
ferent examples of successful and unsuccessful exploitation attempts
which are used depending on the conditions of the background traf-
fic. These two measures ensure that different injections of the same
attack (in the same or different PCAP) do not produce the same net-
work trace.

3.6.3.2 The Synthetic Exploitation Attack Scripts

ETERNAL BLUE EXPLOIT ATTACK SCRIPT This attack script cre-
ates attacks that exploit a buffer overflow vulnerability in the SMB
protocol implementation of the Windows operating system®. The im-
itated attack consists in crafting a especially designed SMB message
which an attacker can use to take control of a host. This attack script
of replicates the exploit as if launched with the popular Metasploit
framework. The created attack relies in the creation of many TCP
connections, all of which the script replicates and adapts according
to user-supplied parameters.

9 Common vulnerability and exposure entry CVE-2017-0144.

69

10
11
12

13

DATASET GENERATION

Example 3.16: Injecting an Eternal Blue Exploit

The following command injects traffic as if an eternal blue exploit
took place in the network capture contained in background.pcap.
ID2T chooses an IP address for the attacker and victim that
blends the attack with the background traffic. The packets that
belong to an attacker are watermarked with the MAC address
11:22:33:44:55:66. This enables us to follow every individual attack
packet in the resulting PCAP file.

$ id2t --input background.pcap --attack eternalblue mac.src
=11:22:33:44:55:66

JOOMLA EXPLOIT ATTACK sCRIPT This attack script forges at-
tacks that execute arbitrary code in servers hosting the Joomla' con-
tent management system. The attack being imitated consists in ex-
ploiting a vulnerability*' that enables remote attackers to create user
accounts with full privileges. This attack script uses packets created
by the Metasploit framework as a template. The attack script manipu-
lates the TCP/IP and HTTP headers of the template packets to repli-
cate properties of background traffic and adjust to user-supplied pa-
rameters.

Example 3.17: Injecting a Joomla Exploit

The next command injects traffic into background.pcap that looks
like a Joomla remote exploit. The injected attack is made to look
like originating from the IP address 10.0.0.54 and is injected after
500 packets are seen in the background.

$ id2t --input background.pcap --attack joomla ip.src
=10.0.0.54 inject.after-pkt=500

SQL INJECTION ATTACK SCRIPT This attack script forges the pack-
ets that an SQL injection attack would create against a vulnerable'*
ATutor™> learning management system. The replicated attack creates
special SQL commands that are sent over the network to a system
hosting the ATutor platform. These sent commands bypass the au-
thentication of the system and give administrator privileges to an
attacker. This attack script replicates the behavior of sending mali-
cious SQL commands over a network. To disguise the synthetic na-
ture of the created attacks, the attack script uses the packets created
by Metasploit when it is used to conduct a real SQL injection attack
against ATutor. The attack script uses the parameters supplied by

https://www.joomla.org/

Common vulnerability and exposure entry CVE-2016-8870.
Common vulnerability and exposure entry CVE-2016-2555.
https://atutor.github.io/

70

https://www.joomla.org/
https://atutor.github.io/

36 THE ATTACK SCRIPTS OF ID2T

the user and the input background traffic to blend and disguise, re-
spectively, the synthetically generated packets with the background
traffic.

Example 3.18: Injecting a Memcrashed Amplification Attack

This next command injects a synthetically created SQL injection
attack into background.pcap. The attack targets the port 8080 of a
victim. ID2T automatically chooses the IP addresses of the attacker
and the victim to match the background traffic.

$ id2t --input background.pcap --attack sqli port.dst=8080

WINAXE FTP EXPLOIT ATTACK SCRIPT This attack script creates
the packets of an attack that target the WinaXe FTP client. The attack
script imitates an exploit that gives full unauthorized control of the
client’s system to a third party. The exploit uses a buffer overflow
vulnerability'+ to corrupt the memory of a WinaXe FIP client and
give control to whoever controls the malicious FIP server. The attack
script gives users the possibility of specifying the payload that the
attack contains.

Example 3.19: Injecting a WinaXe FTP Client Exploit

With the next command, ID=T injects a synthetically created attack
that simulates the exploitation of a WinaXe FTP client. As a pa-
rameter, the user specifies script.bat as a file that the payload of
the attack carries.

$ id2t --input background.pcap --attack ftpwinaxe custom.
payload.file=script.bat

3.6.3.3 Exploitation Limitations

Exploitation attacks are characterized by network traffic that trans-
ports malicious code in the payload of packets. ID2T replicates this
type of attacks accurately by using the packets generated by real-
world tools as templates. However, ID2T can only replicate the behav-
ior of an attack instance. For example, in an Eternal Blue exploit, the
established TCP connections vary according to many variables. With
ID2T, a fixed number of connections are generated.

3.6.4 Botnet Infection Attack Scripts

These attack scripts create synthetic traffic related to botnet infections.
A botnet is a collection of compromised systems that respond to the

14 A common vulnerability and exposure entry is not available

71

15

DATASET GENERATION

commands of an unauthorized actor. Botnets are mostly used to con-
duct malicious activities that require the coordination of many sys-
tems. Typical examples of these malicious activities range from email
spam and advertisement fraud to DDoS attacks. ID2T includes attack
scripts that inject traces of a real or hypothetical botnet.

3.6.4.1 Potential Artifacts of Botnet Infection Attack Scripts

Botnet infection attacks have characteristics and patterns similar to
resource exhaustion and exploitation attacks. Consequently, generat-
ing synthetic botnet infection attacks may create the same artifacts
as those potentially generated by resource exhaustion and exploita-
tion attack scripts. These attack scripts avoid artifacts of the invalid
data (from the network specific context), artificial anomalies and artificial
patterns classes with the same techniques used by resource exhaus-
tion attack scripts (see Section 3.6.2.1 for more details). In short, bot-
net infection attack scripts borrow the mechanisms to generate large
amounts of packets from the resource exhaustion attack scripts. The
scripts also adopt a template-based approach to inject botnet traffic
following the mechanisms of exploitation attack scripts.

Botnet communications rely on establishing many network connec-
tions, usually using UDP as the underlying protocol. To avoid gen-
erating artifacts of the unrealistic cleanness type, these attack scripts
simulate communication problems: packet loss, duplication and re-
transmission. The scripts estimate the bandwidth and network load
(see Section 3.6.1.1 for details) to determine when packets are retrans-
mitted, duplicated, dropped or lost.

3.6.4.2 The Synthetic Botnet Infection Attack Scripts

SALITY BOTNET INFECTION ATTACK sCRIPT This attack script
creates packets as if originating from the Sality malware. The real mal-
ware infects executable files in the Windows operating system with
different purposes. One of its main purposes is to give third parties
unauthorized control of a systems. Systems infected with Sality com-
municate over a P2P network to enable the coordination and execution
of remote commands. This attack script creates the network packets
that the Sality variant Win32-Sality.AM generates when it communi-
cates with peers. The payloads of the packets contain a malicious
Dynamic Link Library (DLL) that can be found in Sality infections in
the wild. The network traffic patterns and infected DLL come from
VirusTotal’>. This attack script takes care of modifying the network
communication traces of Sality to match that of the background in-
put data.

https://www.virustotal.com/

72

https://www.virustotal.com/

36 THE ATTACK SCRIPTS OF ID2T

Example 3.20: Injecting the Traces of a Sality P2P Botnet

The following command injects the network traffic communica-
tion patterns created by a Sality P2P botnet into background.pcap.

$ id2t --input background.pcap --attack salitybotnet

ID2T finds reasonable defaults for all parameters: The IP address of
the infected host is selected from one of the existing IP addresses
of the background. The IP address of other Sality peers are chosen
to be public IP addresses not present in the background (Sality
avoids contacting peers in the same network). The created packets
are injected at a random location where they all fit.

GENERIC P2P BOTNET INFECTION ATTACK SCRIPT This attack
script generates network packets as if originating from a user-defined
P2P botnet. This script simulates botnets that have multiple properties
and characteristics. A user specifies the botnet communication pat-
terns in a comma-separated file. The communication patterns specify
the type and timing of the messages bots send to each other. The
script transforms the communication patterns into network traffic
that matches the user-supplied background traffic.

Example 3.21: Injecting a Generic PzP Botnet

With the next command, ID2T injects into background.pcap net-
work communication traces that match the botnet interactions in
comm.csv. The attack script simulates that bots with private IP ad-
dresses communicate with bots with public IP addresses through
Network Address Translation (NAT). Public IP addresses in back-
ground.pcap are used to simulate external bots. Internal bots (with
private IP addresses) are randomly created but will match the
background traffic.

$ id2t --input background.pcap --attack memberattack file.
csv=comm.csv nat.present=true ip.reuse.external=true

3.6.4.3 Botnet Infection Limitations

The Sality botnet variant replicated by ID2T creates network traffic
that targets a set of external peers. The IP addresses of these peers
are fixed and do not vary between injections. However, NIDSs identify
Sality based on the network traffic footprint, which ID2T replicates,
instead of the IP addresses used.

73

DATASET GENERATION

3.7 EXEMPLARY EVALUATION BY USE CASES

This section presents an evaluation in the form of two use cases. The
first use case uses ID2T to reproduce the evaluation results of the
anomaly-based system we present in Chapter 4 but with a different,
easily replicable, dataset. The second use case validates the ability
of ID2T to inject attacks with well known footprints that SNIDSs can
successfully detect. In the two use cases, we use replicable datasets
generated with ID2T and publicly available PCAP files (as background).

3.7.1 Reproducing Anomaly-based Evaluation Results

In this first use case, we demonstrate how to use ID2T to reproduce the
detection capabilities of the anomaly-based NIDS we propose in Chap-
ter 4 known as RNN. Our RNN needs background traffic (without at-
tacks) to learn models that describe the behavior of normal traffic. We
use MAWI PCAPs for this purpose (see Section 3.3.1 for a description
of the MAWI dataset). To test the detection accuracy of our RNNs, we
train an RNN to search for anomalies in a labeled PCAP. With ID2T, we
create this labeled PCAP by injecting a day of the MAWI dataset (dif-
ferent from the day used for training) with DDoS attacks of different
intensities.

We use four different sanitized PCAPs of the MAWI dataset to train
and test our RNN. The PCAPs from the three days of the 2018/04/01 to
the 2018/04/03 are used to learn a model of normal traffic. The PCAP
of the 2018/04/04 is injected with attacks by ID>T and used to test
the accuracy of the learned normal model. All four PCAPs go through
three steps of data preprocessing. First, each PCAP is split into time
windows of 10 seconds long. Second, we convert all the traffic in each
time window into network flows that are then sanitized. The sanitiz-
ing process consists in removing network flows with IP addresses
marked as anomalous in the accompanying labels of the PCAPs of
the dataset. Finally, per time window, we calculate the entropy met-
ric (see Section 3.5.2) of source and destination IP addresses as well
as ports. An RNN uses the entropy metrics of the first three PCAPs to
learn a model of normality. The entropy metrics of the last PCAP (with
injected attacks) are used for testing purposes.

3.7.1.1 Detecting Injected DDoS Attacks

We use an RNN to detect the attacks injected by ID2T. An RNN is an
autoencoder that learns to compress or reduce the dimensionality of
data. In learning how to compress data, an RNN need to find a trans-
formed space, or subspace, that fits data well. We use this subspace
to determine if unobserved data is anomalous or not. If unobserved
data does not fit well in the subspace found by the RNN, the data is
considered anomalous in contrast to the data used to learn the sub-

74

3.7 EXEMPLARY EVALUATION BY USE CASES

space. RNNs are the core topic of Chapter 4 and we discuss them in
detail there.

We evaluate the ability of ID>T to generate a useful dataset for ano-
maly detection by using an RNN. RNNs are mechanisms capable of
recognizing DDoS attacks [Cordero, Hauke, et al., 2016]. We therefore
inject a PCAP file with DDoS attacks of varying intensities using ID2T
and examine how well an RNN can identify the attacks. Furthermore,
we show how the RNN does not find unexpected anomalies besides
the injected attacks.

To test ID2T, we train an RNN using the PCAPs from 2018/04/01
to 2018/04/03 of the MAWI dataset. With the subspace learned by
the RNN, we analyze the PCAP from 2018/04/04 when it is injected
with DDoSs of varying intensities. We denote this injected PCAP as the
testing PCAP. An RNN uses the entropy metrics of IP addresses and
ports within a time window to calculates anomaly scores. Whenever
the anomaly score of a time window is above a threshold, we consider
that an attack took place in that time window. We set the threshold
as the maximum anomaly score observed during training of the RNN.

—_

10

No Attack 3k DDoS
----- threshold =====threshold

AT KR A | — e S ¥

10 0 20 40 60 80 10 0 20 40 60 80

6k DDos 10k DDos

.......... threshold

ot
ot

Anomaly Score Anomaly Score

o ot
i
1
1
1
1
1
1
1
; 1
1
1
1
1
]
-]
&
1
3 o
[g
1 3
' Z
H o
S =
o t

AT TR AR AT A AT Y . A
0 20 40 60 80 0 20 40 60 80
Time Windows Time Windows

Figure 3.13: Using a RNN to detect DDos attack injected with 1D2T. The top
left figure is a reference that shows the anomaly score of a PCAP that has not
been injected with attacks. The other three figures show the anomaly scores
of the same PCAP injected with different DDoSs of different intensities.

Figure 3.13 shows the anomaly scores of the testing PCAP when
we inject it with DDoSs of different intensities. The upper left plot
serves as a reference: It shows the anomaly scores of the testing PCAP
at different time windows when no attacks are injected. The other
three plots show DDoSs attacks that distribute 3,000; 6,000 and 10,000
packets throughout time windows 30 to 36 of the testing PCAP. Con-
sidering that the testing PCAP has 78 million packets in total, the per-
centage of added packets corresponds to 0.23, 0.46 and o0.77 percent,
respectively. Despite the relatively small footprint of the injected at-
tacks, the anomaly scores of all attacks lie above the threshold and
are therefore detected. Outside of the attacks, no other anomalies are
registered. This last fact implies that ID-T is not creating artifacts by
mistake outside of the areas injected with attacks.

75

testing PCAP

16

DATASET GENERATION

With ID2T, we are able to easily recreate the evaluation results of
RNNs we later present in Chapter 4. Although the evaluation con-
ducted in this section uses the same MAWI dataset as our evaluation
of RNNs in Chapter 4, the dataset used in this evaluation is two years
more recent. This demonstrates how ID2T can be used to reproduce
and replicate the results of other NIDSs without relying on the exact
same dataset.

3.7.2 Validating Signature-based Configurations

In this exemplary evaluation by a use case, we use ID2T to create PCAPs
with injected attacks and determine if two SNIDSs detect the injections.
We choose attacks that leave well-known signatures that should be
identified in a correctly configured NIDS. Each attack is injected into
the same background PCAP (without mixing them). The background
PCAP consists of office network traffic collected during one minute. It
contains 30 MiB of data and 55,000 thousand packets.

Table 3.3 shows the detection results of the Bro [Paxson, 1999] and
Suricata’® NIDSs on four different PCAPs (all having the same back-
ground traffic but different injected attacks). The injected attack is
shown in the left-most column of the table. A check mark (v') indi-
cates that the NIDS successfully identified the injected attack; other-
wise, a cross mark (X) is shown.

Bro Suricata

Port Scan v/ X
EternalBlue Exploit v /P
WinaXe FTP Exploit X X
Sality Botnet v Ve

2 Identified as: Scan::Port_Scan 188.165.214.141 scanned at least 15 unique ports
of host 188.165.214.253 in om4s

b Exploit identified as: ETERNALBLUE MS17-010 Echo Response and ETPRO
TROJAN (possible Metasploit payload)

¢ Sality identified as: ETPRO TROJAN Win32/Sality. AM and ET MALWARE Sal-
ity Virus User Agent Detected (KUKU)

Table 3.3: Testing two different SNIDSs against four different attacks injected
by ID2T. A check mark (v) indicates that the attack was detected; otherwise,
a cross (X) is used.

The results are not indicative of the detection capabilities of NIDSs.
Instead, the results demonstrate the effectiveness of the set of signa-
tures or anomaly rules we installed in the NIDSs. The anomaly rules of
Bro identify the port scan injection while the signatures of Suricata do
not. The EternalBlue exploit was identified by both NIDSs due to the

https://www.openinfosecfoundation.org

76

https://www.openinfosecfoundation.org

38 CONCLUSION AND LESSONS LEARNED

distinctive footprint it leaves behind. Suricata additionally identified
that the payload of the EternalBlue exploit originates from Metas-
ploit (which ID2T attempts to replicate). The WinaXe exploit was not
identified by neither NIDS as we did not install signatures that would
otherwise detect the exploit. Both NIDSs identified the Sality botnet in-
jection. Suricata further identified the HTTP traffic generated by ID=T
that uses special headers that emulate the communication protocol of
Sality. In all attacks, ID2T did not leave traces that confused the NIDss
or caused them to trigger false alarms.

3.7.3 Discussion of the Use Cases

The two exemplary evaluations by use cases showcase the ability of
ID2T to reproduce and replicate results, and to test the detection capa-
bilities of NIDSs. In the first exemplary evaluation, we reproduced the
capabilities of RNNs using an easily replicable PCAP. The replicable
PCAP comes from the same source (the MAWI dataset) as the PCAPs
used in the detailed evaluation of RNNs presented in Section 4.5. Al-
though the PCAPs are from the same source, because they have almost
two years of difference, we argue that they contain significantly dif-
ferent traffic characteristics. This is because in the last two years back-
bone network traffic has significantly changed [The state of the internet
/ security report 2018]. ID2T is able to help conduct or reproduce eval-
uations without having to create and publish a dataset from scratch.
We use ID2T in the second exemplary evaluation to determine if NIDSs
are properly configured with adequate sets of signatures or rules.

38 CONCLUSION AND LESSONS LEARNED

The NIDS field has had the long standing issue of not having reliable,
modern and adequate datasets to develop, compare and evaluate sys-
tems. Most researchers face the problem of choosing between public
outdated datasets or privately-created modern datasets. Because net-
work data is prone to carry sensitive information, private datasets are
often not made public or are heavily anonymized. Heavy anonymiza-
tion implies that network payloads are removed and IP addresses are
scrambled. This anonymization procedure yields datasets that lack
the basic requirements we identify as essential to effectively evaluate
NIDSs.

We proposed ID2T to address the issue of creating public, reliable
and reproducible datasets. Instead of producing a single dataset that
would eventually become outdated, ID2T allows researchers to cre-
ate multiple labeled datasets that contain diverse attacks. ID2T injects
synthetic attacks into user-supplied PCAP files. To avoid creating un-
intentional defects when injecting synthetically generated traffic, ID2T

77

17

DATASET GENERATION

replicates the traffic characteristics of the supplied PCAP. Additionally,
it actively avoids creating the same mistakes found in other datasets.

We engineer ID-T taking into account the results of systematic sci-
entific work. The idea to develop ID2>T comes from our analysis of
related work and our inability to obtain recent datasets. In our anal-
ysis, we conclude that current datasets cannot be effectively used to
evaluate many NIDSs. Thereafter, we derived a set of requirements
that datasets need to be useful for the evaluation of NIDSs in a gen-
eral sense'”. We design ID2T to try and meet all requirements. How-
ever, we found that the quality requirement of datasets was difficult
to address. To make ID2T create quality datasets, we classified and
grouped all defects found (by others and ourselves) in publicly avail-
able datasets. Afterwards, we used our defect classification to design
the attack scripts of ID2T. The attack scripts are responsible for repli-
cating background traffic properties as well as actively avoiding the
introduction any of our classified defects. Finally, we evaluated the
ability of ID2T to create quality datasets using an exemplary evalua-
tion by use cases.

3.8.1 Future Work

We wish to expand the capabilities of ID2T into two directions. First,
we plan to continue developing the ability of ID2T to create synthetic
attacks that are indistinguishable from real attacks. Second, we look
into addressing the main limitation of ID2T: In its current form, ID2T
adds network traffic into a background PCAP without modifying the
background traffic. We plan to create a new ID>T module that enables
a feedback loop between the attack controller and the merger modules
to alter the input traffic to better match the characteristics of an attack.
The creation of such a feedback module will require a careful study
that explores how the properties of normal traffic are affected by an
attack. In essence, we will need to predict the changes that an attack
would introduce into already existing traffic by only looking at the
desired parameters of an attack.

ID2T is only concerned with the creation of synthetic attack traf-
fic; the user is expected to supply their own input PCAPs to serve as
background traffic. With the current advancements in the ML field of
Generative Adversarial Networks (GANs), we are looking into giving
ID2T the ability to create synthetic background traffic that is indistin-
guishable from certain types of background traffic.

Many datasets are only useful in specific contexts and for a limited set of NIDSs. A
dataset is useful in general if it can be used by any type of NIDS.

78

38 CONCLUSION AND LESSONS LEARNED

3.8.2 Chapter Summary

This chapter presented ID2T, a toolkit we developed to inject synthetic
attacks into user-supplied PCAPs. The objective of ID2T is to create
datasets that meet the requirements needed to develop, evaluate and
compare NIDSs. These requirements were laid down in Section 3.2.
A survey of available datasets was then carried out taking into ac-
count the requirements defined in Section 3.3. No single dataset met
the requirements needed. Furthermore, many datasets contained de-
fects that were uncovered by researchers and our analysis. We cre-
ated thereafter a classification to categorize the defects, shown in Sec-
tion 3.3.3. We then proceeded to present ID>T and its modular archi-
tecture in Section 3.4. The architecture of ID>T enables a user to con-
trol how and when attacks are injected. ID2T is then responsible for
blending the synthetic traffic it generates with the user’s input and
for labeling injected attacks. TIDED is a core module of ID2T presented
in Section 3.5. The module runs several tests on an input PCAP to de-
termine if the input has quality issues. Such tests allowed us to iden-
tify public datasets with characteristics that make them unsuitable to
evaluate NIDSs. In Section 3.6, we classified and described each attack
available to ID2T (along with their limitations). Finally, we presented
two use case scenarios in Section 3.7. The use cases demonstrated
how ID2T can be used to easily replicate datasets to evaluate NIDSs,
and to evaluate the effectiveness of the rules or signatures installed
in SNIDSs.

79

8o

INTRUSION DETECTION

CONTEXT

With their size and growth rate, large networks are difficult to se-
cure due to the amount of data they transport, among many other
reasons. The challenge is further exacerbated by the presence of so-
phisticated, coordinated and distributed attackers. Researchers have
proposed NIDSs to detect coordinated attacks, yet single NIDSs do not
scale to large networks. This is mostly due to the amount of informa-
tion NIDSs need to process coupled with the limitations of signature-
based and supervised-based NIDss. With the recent advancements in
neural networks and unsupervised ML techniques, anomaly-based
NIDSs are slowly making progress towards becoming scalable to large
networks.

Developing NIDSs that work on large networks was difficult as
procuring suitable datasets for testing was a major challenge. In the
previous chapter, we presented ID2T and associated concepts that en-
ables us to create labeled datasets out of arbitrary PCAP files. With
ID2T, we can inject attacks into publicly available PCAPs of large net-
works to simulate different types of coordinated attacks. With the
ability to create suitable datasets, we can now develop an NIDS that is
properly tested and evaluated.

HE focus of this chapter is to present an anomaly-based NIDS ap-
plicable to large networks that can detect coordinated resource
exhaustion attacks (e. g., DDoSs attacks) and profiling techniques (e. g.,
port scans). We use ID2T to generate datasets to train RNNs, a type
of autoencoder and unsupervised neural network, to detect network
anomalies. With our anomaly-based NIDS, we identify attacks even
when the footprint of the attacks is relatively small in relation to the
background traffic.

The overview shown in Figure 4.1 puts this chapter into perspec-
tive. It shows the contribution of this chapter in relation to all others
and places it in the context of the CIDs architecture we reference (see
Section 2.3.3). In relation to the other chapters, the anomaly detec-
tion mechanism we propose herein employs the output datasets of
Chapter 3, Dataset Generation, to learn models of normality that de-
tect distributed attacks. Our mechanism is described and evaluated
in this chapter in its centralized variant. We do not realize or eval-
uate a decentralized version in this chapter as the crucial issues of
decentralization are handled elsewhere (see Chapter 5). However, the

81

INTRUSION DETECTION

Chapter Overview

Field of Contributions CIDS Architecture

1. Dataset Generation Global Detection

2. Intrusion Detection
Data Correlation & Aggregation

3. Community Formation

Membership Data
4. Information Dissemination Management Dissemination
5. Collusion Detection Local Detection

Figure 4.1: This chapter comprises the second contribution of this thesis:
Intrusion Detection. The contribution is tied to the highlighted layers of our
referenced CIDS architecture: Local Detection and Global Detection.

concepts of our centralized mechanism are directly applicable to a
decentralized variant if we use the community formation mechanism
laid out in Chapter 5.

In relation to the CIDS architecture we reference, this contribution
chapter is related to the lowest and highest layers of the architecture,
i.e., the Local Detection and Global Detection layers. At the local layer,
detection relies only on local network traffic to yield intrusion alerts.
At the global layer, detection relies on aggregated and correlated
alerts from the local layer to yield network-wide alerts. The anomaly-
based NIDS we propose has no theoretical limitations that prevents it
from detecting intrusions at either layer. We, however, only explicitly
address the problem of detecting intrusions at the local layer, i. e., we
only consider network traffic. There is, however, no theoretical limita-
tion that prevents our mechanism from working at the global layer.

This chapter is organized as follows. To understand our methodo-
logy to detect anomalies in network traffic, we introduce how net-
work flows are characterized with entropy (Section 4.2.2) and the con-
cept of RNNs. Afterwards, we elaborate on how these three topics
come together to create anomaly detection models for network data
(Section 4.4). Building such models implies extracting entropies from
packet captures (Section 4.4.2) and training and validating RNNs with
the extracted entropies (Section 4.4.3). After establishing the metho-
dology, we present evaluations that support RNNs as viable anomaly
detectors in large networks (Section 4.5). In the evaluation process,
we explain the used dataset (Section 4.5.1), describe how it is sani-
tized and how we establish ground truth to test the accuracy of our
model (Section 4.5.1.1). As part of the evaluation, we explain the de-
tails of the experimental setup (Section 4.5.2) and present our results
(Section 4.5.3). Finally, we present a discussion of our experiments

82

4.1 INTRODUCTION

(Section 4.5.4) and general conclusions that include future work (Sec-
tion 4.6).

4.1 INTRODUCTION

The most widespread network communication protocols used these
days were devised more than 20 years ago. At that time, securing
network communications against resource exhaustion attacks or pro-
filing techniques was not a concern. Now that large networks are
constantly subjected to widespread coordinated attacks, network op-
erators need to face the difficult challenge of detecting attacks that
barely leave traces. In fields with the problem of analyzing vast quan-
tities of data, researchers propose supervised learning mechanisms
as possible solutions, e.g., deep learning. However, it is impractical
to use supervised learning, where labeled data is needed, to detect
attack in network traffic. Labeling network traffic is expensive as it
tends to be vast and not readily amenable to human comprehension.
Automatic labeling is also not possible due to the non-stationary be-
haviour of network traffic. Therefore, we are in need of intrusion de-
tection methodologies that use unsupervised learning and do not re-
quire labeled data.

4.1.1 Problem Statement

Mechanisms that detect distributed attacks within large networks
need to cope with many challenges. We need mechanisms that de-
tect the types of attacks that leave small and disperse network foot-
prints within millions of packets that originate from thousands of
sources. Former signature and supervised-based NIDSs, with their
memory and processing limitations, are often overwhelmed by the
vast amounts of information they need to process to detect the sig-
natures or anomalous patterns of distributed attacks. With the recent
advancements in neural networks and unsupervised ML techniques
for network traffic characterization, anomaly-based NIDSs are becom-
ing usable within the problem space. For example, NIDSs can use neu-
ral networks to distributedly learn models to detect patterns while
unsupervised ML techniques can learn compressed representations of
network traffic that significantly lowers memory requirements.
Working directly with the network packets generated in large net-
works is prohibitively expensive. Instead of directly analyzing net-
work packets, NIDSs that specialize in the analysis of large networks
need to work with network flows [Lakhina, Crovella, and Christiphe
Diot, 2004]. Network flows summarize the packets that have been
transferred between two end systems in a certain period of time. We
therefore need anomaly-based NIDss that works with network flows.

83

INTRUSION DETECTION

4.1.2 Challenges

If anomaly-based NIDSs want to be usable within large networks, they
need to overcome four main challenges. First, they need to scale to
large amounts of network traffic. Second, they need to be accurate
while minimizing the rate of false positives. This is because even low
false positive rates may translate to large amounts of false alarms in
the context of large networks. Third, the anomaly detection models
of an NIDS should not require labeled data for training. Labeling net-
work traffic is expensive even in small networks as network traffic
alone is hardly comprehensible to humans. Finally, anomaly-based
NIDSs need to cope with the fact that, when learning models of nor-
mality, they cannot expect to work with completely normal and sani-
tized network traffic.

4.1.3 Chapter Contributions

In this chapter, we propose an anomaly-based NIDS that can cope
with the four challenges just described. In particular, we propose
to use RNNs to detect network-wide attacks in large networks. RNNs
use traffic feature distributions, from network flows, characterized by
their entropy. We leverage the autoencoder and dropout concepts of
deep learning to create the models of normality required by anomaly-
based NIDSs (see Section 2.2.3). RNNs provide a methodology that has
the potential of scaling with the number of analyzed features. RNNs
are resilient to learning models where the training data has highly
anomalous learning samples that should not be integrated into a nor-
mality model. Finally, RNNs can be used in real time as they are fast.
They both learn and predict in only a matter of seconds with standard
commodity hardware.

4.2 SPECIALIZED BACKGROUND

This section details the key topics needed to understand how we use
RNNs to develop anomaly detection systems that detect distributed at-
tacks in large networks. At its core, our mechanism uses network flows
to learn a model of normality that later enables us to detect abnormal
network flows. However, we do not directly work with network flow
features. Instead, we work with features of network flows characterized
by their entropy. Furthermore, the dimensionality of these features is
reduced into a smaller subspace. The reduction, or transformation, is
performed using RNNs. These topics are detailed in what follows.

84

4.2 SPECIALIZED BACKGROUND

4.2.1 Network Flows

Network traffic from large networks comes in vast quantities and has
a complex nature. In its raw form, vast traffic quantities cannot be
used to efficiently compute meaningful normality models that accu-
rately describe traffic [Lakhina, Crovella, and Christophe Diot, 2004].
Hence, dimensionality reduction and feature extraction techniques
are necessary [Lakhina, Crovella, and Christophe Diot, 2004]. Addi-
tionally, network traffic, as seen by packet capture tools, is a combina-
tion of heterogeneous data types. For example, source addresses con-
stitute categorical data, packet sizes constitute numerical data, and
TCP SYN flags may be described with the ordinal data type. To cope
with the challenges of dealing with heterogeneous data, to effectively
use complex data, and to build computationally feasible models of
normality, researchers aggregate network data into network flows.

Network flows are representations of network data that summarize
the communication process of two end-points during some period
of time. Flows are defined, according to RFC 3917, as the tuple F =
(K, ts, te, A) [Quittek et al., 2004]. The element K is called the flow key.
The key is composed of five attributes, the source and destination IP,
the source and destination ports, and the communication protocol
used by the end-points. The time when a flow is first observed is t,
and the time when a flow is finished or deliberately cut short is te. A
is the set of aggregated information elements associated with a flow.
The information a € A can span summary statistics, network payload
data or event flags, among others. Common examples of information
gathered from flows are the size of the transferred data, the set of
all TCP flags observed during a communication session or the total
number of network packets.

The process of collecting flows is carried out by networking devices
or flow metering tools. Many modern network devices operating on
layer 3 are capable of aggregating network packets into flows in real
time. When PCAP files are instead available, a flow metering tool can
be used to extract flows. Regardless of the method used to extract
flows, suitable parameters need to be chosen to export flows. The idle
timeout parameter specifies a time after which a flow with no traffic
activity is exported. The active timeout parameter determines when a
flow is exported even if traffic activity is still being observed. These
parameters are especially important when time windows are used to
build traffic feature distributions, as explained next.

4.2.2 Characterizing Network Flow Features with Entropy
Network flows are widely used to reduce the dimensionality of net-

work traffic. This, however, is not often sufficient when the amount of
network traffic is significant. Gigabit network links observe millions

85

idle timeout

active timeout

subspace method

INTRUSION DETECTION

of network flows in the span of a minute, and each flow can be repre-
sented with hundreds of dimensions [X. Li et al., 2006]. By computing
the entropy of traffic feature distributions during a window of time,
we can reduce the complexity and dimensionality of network flows.
This computation also transforms all network features into numerical
values which we can then use as inputs to an RNNs (as they only work
with continuous values).

Representing feature distributions with their entropy is an ade-
quate approach to cope with the challenges of dealing with the het-
erogeneity and complexity of network traffic. Entropy characterizes
with one single value the shape of a distribution. If a distribution is
uniform, the entropy will be close to its maximum possible value. If
the probability mass of a distribution collapses onto one single value,
the entropy will be close to zero. Let us consider the example of a
DDoS attack. If we analyze how the destination IP addresses are dis-
tributed during this attack, we observe that the observation of one
or few IP addresses will overwhelm all others. As such, the entropy
of the destination IP address feature will be reduced in contrast to
previous observations. If we consider, on the other hand, a port scan,
because the diversity of contacted ports suddenly increases, the en-
tropy of the destination port feature increases in relation to previous
instances where no port scan took place. Example 4.1 illustrates how
entropies can characterize a distribution of IP addresses.

Multiple types of entropy can be utilized to characterize the distri-
bution of network flow features. Lakhina, Crovella, and Christophe
Diot [2005] uses the Shannon entropy while Tellenbach et al. [2011]
the Tsallis entropy. We exclusively use the Shannon entropy in this
chapter as the Tsallis entropy has the disadvantage of having a tun-
able parameter. In our work, we aim at creating an unsupervised
method that does not require adjustable parameters.

4.2.3 Known Subspace Method for Detecting Anomalies in Network Flows

The subspace method is a type of data embedding technique [Roweis
et al., 2000] that uses a dataset to learn a mathematical subspace to
represents normal data and another to represent abnormal data. It
uses Principal Components Analysis (PCA) [Wold et al., 1987] to com-
pute the Principal Components (PCs) of a dataset. A normal subspace
is defined as the Cartesian coordinate system composed by the PCs
that capture the most variance of the dataset. Accordingly, the abnor-
mal subspace is the Cartesian coordinate system defined by the PCs
not used for the normal subspace. The number of PCs used for the
normal subspace are chosen such that a desired amount of variance
is accounted for. In our work, we use RNNs to compute subspaces and
use PCA as a metric of comparison.

86

4.2 SPECIALIZED BACKGROUND

Example 4.1: Entropy Capturing Characteristics of Distributions

Figure 4.2 shows histograms of all different IP addresses observed
in an office network sorted by their counts during some time win-
dow. Figure 4.2a shows the distribution of the IP addresses under
normal conditions. Figure 4.2b shows the distribution when the
network experiences a DoS attack. When a Dos takes place, the fea-
ture distribution of destination IP addresses is skewed towards
the left to accommodate the counts of the packets targeting the
attacked address. As a consequence, the entropy value during the
attack period is reduced. This implies that during a DoS attack the
uncertainty of observing different IP addresses is reduced as one
or more victims are targeted by packets with increased regularity.

w0
2 100f 300}
23
= 200
; il “ 100
< L
=
1 5 10 15 20 25 30 35 1 5 10 15 20 25 30 35
Ranked IP Addresses Ranked IP Addresses

(a) Counts of observed IP ad- (b) Counts of observed IP ad-
dresses while traffic is normal. dresses while a DoS attack is taking
place.

Figure 4.2: Exemplifying the characterization of distributions using en-
tropy. Two distribution are shown for the counts of IP addresses ob-
served in an office network during a normal and abnormal time win-
dows.

4.2.4 Replicator Neural Networks

RNNs are neural networks, and particular instances of autoencoders
[Deng et al., 2014], that were originally proposed as a data compres-
sion technique [Hecht-Nielsen, 1995]. RNNs learn to reconstruct their
inputs after compressing them. By using an intermediate layer with
fewer units than the input units, compression is achieved [Hecht-
Nielsen, 1995]. This compression process is proven to be related to the
PCA dimensionality reduction technique [Hecht-Nielsen, 1995] that
subspace methods use. The standard RNN has five layers, including
the input and output layers. An example RNN architecture is shown
in Figure 4.3. The second and fourth layers are fully connected and
use either a sigmoid or tanh activation function [Karlik et al., 2011].
These two layers do not need to have the same number of units. The
third later has less units than the input layer and utilizes a step-wise
activation function with N number of steps [Hawkins et al., 2002].

87

replicator neural
networks

INTRUSION DETECTION

The number of units in the input layer and output layer must be the
same.

Figure 4.3: Example architecture of a Replicator Neural Network (RNN). The
neural network has five layers. The first layer, that of the inputs, has four
neurons. The second and fourth layers have seven neurons each. The middle
layer is smaller than the input layer; it has three neurons. The last layer, that
of the outputs, has by definition the same number of neurons as the input
layer (four).

4.3 RELATED WORK

The related work presented in this section covers intrusion detection
mechanisms based on ML that apply to large networks. We begin by
describing the requirements that ML algorithms must have to qualify
as applicable to this context. Afterwards, for each of the four require-
ments, we mention related work that addresses the requirement in
relation to our contribution.

As stated in the challenges section (Section 4.1.2), anomaly-based
NIDSs and, more specifically, NIDSs based on ML need to take four
requirements into account to be useful in large networks. First, ML
algorithms need to scale to large amounts of network traffic. Second,
they need to be accurate (with low false positives). Third, they need to
work without labeled data, i. e., they need to be unsupervised. Fourth,
and lastly, they are required to be resilient against learning models
using imperfect data, i.e., using training data that still contains at-
tacks. The first three requirements are derived from the fact that large
network traffic comes in large quantities. The fourth requirement is
derived from the fact that, when using unsupervised algorithms to
learn ML models, we cannot assume that large networks only process
benign traffic. It is also unfeasible to pretend that traffic from large
networks can be perfectly sanitized.

With regards to the scalability challenge of NIDSs, the most scalable
techniques rely on learning ML models using network flows [Soysal et
al., 2010]. There are many influential results demonstrating the value

88

4.4 INTRUSION DETECTION USING REPLICATOR NEURAL NETWORKS

of ML on top of network flows [Lakhina, Crovella, and Christophe
Diot, 2005; B. Li et al., 2013; Lu et al., 2005; Nychis et al., 2008]. Net-
work flows are common means of gathering network information as
they are easy to obtain either from the perspective of a single host
or multiple routers. Most, if not all routers used in large networks
support some protocol specification that enables the summarization
of network traffic into network flows.

Despite the challenging task of labeling network data to train the
ML models of NIDSs, a lot of related work depends on supervised
learning techniques. Supervised strategies using SVMs [Sallay et al.,
2013] or Random Forests [Zulkernine et al., 2008], for example, need
accurate labeled data to build classification models. This is a disad-
vantage as labeled data is hard to acquire in large networks. Our
proposed methodology utilizes RNNs as unsupervised learning mech-
anisms that do not rely on labeled data. This contrasts with other
related work, such as [G. Liu et al., 2007], where neural networks are
used as supervised learning methods.

Regarding the challenge of learning normality models using imper-
fect data, related work uses two main approaches. The first approach
consists in sanitizing data; the second relies on algorithms that toler-
ate learning from imperfect training data. Cretu et al. [2008] proposes
a methodology for sanitizing training data for anomaly-based sys-
tems that use the data to learn models of normality. Some datasets
also attempt to label potential anomalies for others to sanitize it [Cho
et al., 2000; Fontugne et al., 2010]. The second approach relies on
models that tolerate learning from data that contains a few mistakes
or anomalies. Hartono et al. [2007] developed a supervised learning
system able to learn from imperfect data. In [Breve et al., 2010], the
authors develop a semi-supervised learning scheme that avoids prop-
agating mislabeled data to generate accurate models. Our unsuper-
vised model based on RNNs falls in the category of models that can
be accurate in spite of imperfect training data.

4.4 INTRUSION DETECTION USING REPLICATOR NEURAL NET-
WORKS

To find anomalous network flows, we modify the RNN proposed by
Hecht-Nielsen [1995] to build our own variant. With our variant, we
train an RNN to replicate the entropy characterization of the distribu-
tion' of network flow features. Our proposed RNN uses dropout (see
Section 4.4.3 for details) to create neural networks that model normal
network flows without heavily relying on only few inputs. RNNs inter-

We use empirical distributions for this purpose. For example, in a time window t,,,
we count how many times we observe each source IP address. This yields a his-
togram of source IP addresses which is used as the empirical distribution of source
IP addresses in ty,.

89

INTRUSION DETECTION

nally learn normality models of network flows by first compressing
the entropy characterization of network flows and then reconstructing
these. This learned normality models enable us to identify anomalies
and potentially malicious network flows.

In the following, we formally define an RNN. We then proceed to
describe the technical aspects of how we extract features from net-
work flows, how RNNs learn models that describe normal network
flows, and how we can use the normality models to identify anoma-
lous network flows.

4.4.1 Formal RNN Model

The underlying network that constitutes the RNN illustrated in Fig-
ure 4.3 can be formally defined as follows. The neural network has
a total of n inputs and n outputs. In between the input and output
layers, three hidden layers exist. All layers are indexed with the vari-
able 1 € {1,2,...,5}, where 1 = 1 corresponds to the input layer and
L = 5 to the output one. Each layer 1 has a total of Uy units, and we

use U.U)

., 1e{1,2,..., Uy} to refer to a value stored in unit i of layer
1. For 1 € {1,5}, Uy = n; for 1 € {2,3,4} the number of units U; are
hyper-parameters® than we can freely to choose.

We use zgl) to denote the output of unit i of layer 1, as explicitly
(1)

shown in Equation 4.3. The output z; ' is the transformation of the

value ugl) by the activation function ¢V (-). The first layer of the neu-
ral network uses the identity activation function ¢ (x) = x. Note
that the other layers, 1 € {2, 3,4, 5}, may employ a different activation
function. Some common choices for activation functions are the Sig-
moid and the tanh functions, both shown as a reference in Equation 4.1
and 4.2, respectively.

1

d)sigmoid(z) = T+ez (41)
e —e *
Prann(z) = prp— (4-2)
1 1
2 = o™ (") (+3)
O =N R TA
u; = Z w (uj B U)zj B (4-4)
j=0

(v

We calculate the value u; * using Equation 4.4. We use the function

w (LL)U*1),ugl)) to represent a weight parameter that exists between

the unit j in layer 1 — 1 and the unit i of layer 1. The collection of

The term hyper-parameter is used to refer to a variable that needs to be set in ad-
vance and that an ML algorithm considers as constant. In contrast, a parameter is a
variables that an ML algorithm finds through the process of learning.

90

4.4 INTRUSION DETECTION USING REPLICATOR NEURAL NETWORKS

weights W =w (u].(iq),ug)) vi={2,...,5}, j={1,..., U1}, k=
{1,...,U;} are parameters that an RNN finds during training.

RNNs attempt to find weights W that replicate the inputs as the out-
puts after subjecting the inputs to expanded and compressed repre-
sentations. Assume that an input of D dimensions to an RNN is given
as X = {(x(1),x(2) ... x(P)}. We define the output of the RNN, given
weights W, as f(Xi; W) = %; + €;. The term X; is known as the recon-
struction component of X; and €; is the residual, or error component,
of X;. Training an RNN is the process of minimizing €; for all possible
inputs X;. This minimization process is not analytically tractable. To
solve it, Stochastic Gradient Descent (SGD) techniques are used. Some
examples of well known SGDs methods include Nesterov [Nesterov,
1983], Adagrad [Duchi et al., 2011] or the method simply known as
momentum [Sutskever et al., 2013]. In our work, we use the Nesterov
SGD as it proved to find the best weights that minimize the reconstruc-
tion error in our tests.

4.4.2 Extracting Entropies

The inputs to our RNN are fed with entropies that characterize the
distribution of network flow features. The process of extracting these
entropies has three steps. First, we aggregate network packets into
flows in a process known as flow export. Second, we split flows into
time windows. Third and lastly, we count the different values that
network flow features take and compute their entropy.

The process of extracting entropies from network flow feature dis-
tributions starts with the aggregation of network packets into flows.
Packets sharing the same flow key K, as defined in Section 4.2.1, are
aggregated into bins with a length given by a time window parame-
ter. We use the chosen time window value to set the idle timeout, the
active timeout and the time window by which flow features a € A
are aggregated and counted. All in all, this means that the process
of capturing flows is synchronized with the process of counting fea-
tures. As a consequence, this ensures that flow features are counted
in an appropriate time window without introducing problems that
arise from flows that take too long to expire, incorrectly appearing in
future time windows after their actual occurrence.

4.4.3 Using RNNs to Detect Anomalies in Network Flows

We use an RNN to create a normality model of network flows. Our
RNN uses five layers despite the literature suggesting that three layers
are enough [Dau et al., 2014]. Five layers allows us to use the dropout
regularization technique [Nitish Srivastava et al., 2014] to yield better
results. Dropout probabilistically removes units and their connections
from neural networks during training. This makes the network more

91

flow export

time window

INTRUSION DETECTION

resilient to co-adapting network units [Nitish Srivastava et al., 2014].
With dropout, network units avoid learning features that depend on
the presence of some other feature and, instead, learn to generalize
better. We apply dropout to the second and fourth layers of our RNN
model.

All layers of our RNN are fully connected. The second and fourth
layers use a tanh non-linear activation function [Karlik et al., 2011].
For the third (middle) layer, we use a standard Sigmoid activation
function which has been proven to work well in this context [T6th
et al., 2004]. In formal terms, V) = dnn for 1 = {2,4}; and $3) =
(bsigmoid'

Our RNN is trained in rounds (known as epochs) using multiple
batches. Each batch of data contains the entropies of different dis-
tributions of network flow features at different time windows. The
number of features n determines the number of input neurons (and
output neurons), i.e., um =ub® =n.Ineach epoch, a set of feature
distributions characterized by their entropy are inputted into our RNN.
A validation set is used to evaluate the generalization capabilities of
the learning process. Once our RNN is trained, it is used as a normal-
ity model with which Anomaly Scores (ASs) are computed. ASs above
a certain threshold are considered anomalous.

The set of all weights W of our RNN define the parameters of a
normality model. Let us represent the set of all N training instances
as X = {X1,X2,...,Xn}; the entropies of D flow feature distributions
(dimensions) as X; = {xg1)’ng), e ,XED)},’ and the output of an RNN
with the function f(X;) = Xi + €}, as already defined in Section 4.4.1.
Recall that the vector %; is the reconstruction of X; and the vector

€ = {ei”, €£2)/'”’€gD)} is the residuals, or error components, of

1
the reconstruction, for i € {1,...,N}. The weight parameters of the

network are updated utilizing back propagation with the Nesterov
SGD method. The loss function minimized in the learning process is
shown in Equation 4.5.

f (fi;W) =R+ €;

Lw) =1

N |

N
> (X — (%, W) (4.5)
i=1

As the goal of back propagation with SGD is to minimize L, the net-
work tries to find a combination of weights W such that %; ~ X; and
e?) ~ 0. To avoid learning the trivial solution f(X;) = X;, we set the
number of units of the middle layer to be less than the adjacent layers
(G.e, UB) <UD for i € {2,4}), and use dropout [Nitish Srivastava
et al., 2014] to disrupt the network by randomly shutting down units
()

in each learning iteration (i.e., setting u;”’ = 0 for random values of

iin some layer j).

92

4.4 INTRUSION DETECTION USING REPLICATOR NEURAL NETWORKS

The residual value €; = X; —X; is used to compute an Anomaly
Score (AS) that determines how anomalous X; is. We define the AS of
7_6'1 as

AS(Xy) = % >) -2 = %Z (€D, (4.6)

To determine time windows that contain anomalous flows, we set the
entropy of the distribution of features of all i time windows as X; and
calculate AS(X;). If AS(X;) is above a predefined threshold, we say
that the time window contains anomalies. We set this threshold as
the biggest reconstruction error €nax = max({€j,..., €n}) observed
during training of the RNN.

4.4.4 Detecting Anomalous Flows

The problem of finding the flows within an anomalous time window
that contribute the most to the AS of the time window is a problem
with a multitude of solutions [Chen et al., 2016; Kanda et al., 2013; X.
Li et al., 2006]. Therefore, we do not address the problem of finding
individual anomalous flows and, instead, only concentrate on find-
ing anomalous time windows. Although outside of our scope, we
nonetheless delineate the main concepts that enable our methodology
to identify the flows responsible for high ASs.

Any method capable of identifying anomalous subsets of flows can
be used to single out anomalous flows using Sketches (further ex-
plained in Section 6.2.1). In their most general form, Sketches are
Probabilistic Data Structures (PDSs) that store items. Sketches have
rows and each row has one associated hash and b bins. The hashes
compute a value between zero and b. To store an item in a Sketch,
for each row, the item is hashed with the associated hash of the row
to obtain a bin number where the item is stored. Therefore, an item
is duplicated r times, i.e., once per row and in only one bin of each
row. For example, if we add flow F to a Sketch, the Sketch stores r
copies of F in one of the b bins of each row. If we add a collection of
flows F = {F1,F2,...,FnJ to a Sketch, each row of the Sketch ends up
with a copy of each F; (at possibly different bins for each row). The
end result is that all the bins of a row form a disjoint subsets of F.In
addition, the subset of F in each bin (among all rows) is different.

Let us assume that the set of flows F is known to be anomalous due
to a high AS. The process of determining which flows contribute the
most to the AS consists in calculating the AS of the v x b bins of the
sketch. Whenever the AS of a bin (i.e., a subset of flows) is above a
certain threshold, we mark that bin as containing anomalies. To find
the anomalous flows, we go through every F; € F and determine
the bins where the Sketch placed F;. If all the bins where F; was
placed are marked as containing anomalies, we then conclude that F;

93

INTRUSION DETECTION

is in part responsible for it. In practice, however, we obtain a better
accuracy if we relax the restriction that all appearances of F; must
lie within an anomalous bin [Kanda et al., 2013]. This mechanism for
finding flows that contribute to an anomalous AS works because a
randomly sampled subset of flows retains with high probability the
same traffic properties of the whole set of flows [X. Li et al., 2006].

4.5 EVALUATION

In this section, we evaluate the capabilities of our anomaly detection
methodology based on RNN to detect attacks in a large network. We
begin describing the evaluation dataset and proceed to test the me-
thodology on two distributed attacks. We evaluate our capability of
detecting DDoS resource exhaustion attacks and SYN port scans of
different intensities. Finally, we discuss the implications of our find-
ings and how our methodology can detect anomalies not only during
testing but also while training. The evaluation also shows how our
methodology can successfully learn normality models even when the
training data has attacks.

4.5.1 Evaluation Dataset

In all our experiments, we use the MAWI dataset introduced in Sec-
tion 3.3.1. We use ID2T (detailed in Chapter 3) to inject labeled attacks
into the MAWI dataset and establish some ground truth. We obtain
network flows from the dataset and use the destination and source IP
addresses, and the destination and source ports as features. The en-
tropy of these four features are enough to represent low dimensional
manifolds that accurately describe network data [Lakhina, Crovella,
and Christophe Diot, 2004]. We experimented with more features but
found that indeed using the aforementioned four features yield the
best results. From a different point of view, we argue that those fea-
tures sufficiently describe network data as their entropies are highly
correlated, as can be seen from the scatter matrix in Figure 4.4. On
the non-diagonal scatter plots of the figure, the entropy of each of the
four features extracted from the MAWI dataset is plotted against all
other features. On the diagonal plots, we use kernel density estima-
tions to model the individual distribution of those feature entropies.
The scatter plots show that the feature entropies tend to form clusters.
The diagonals show that feature entropies have a highly peaked and
unimodal distribution. These two facts corroborate the argument that
the four features can be represented as being situated within a low
dimensionality manifold.

94

4.5 EVALUATION

&

Z‘ F % e, oA
(=)

\ "

&

E ~ - o oy
3| ¥ - &
19}

Sl P K
g5 # ¥ F
7

A

<

2w - .

2|, e *7, o

w0

Destination IP Source P Destination Port Source Port

Figure 4.4: The scatter plots and distributions of flow feature entropies. We
observe areas where the entropies cluster and how they correlate with each
other.

4.5.1.1 Attack Injection

To test the accuracy of our anomaly detection mechanism, we inject
DDoS resource exhaustion attacks and SYN port profiling scans into
a specific time interval of a day of the MAWI dataset, or just dataset
for short. ID2T injects attacks that mimic the network properties of
the dataset and avoids creating artifacts or common defects (see Sec-
tion 3.3.3).

We inject a DDoS and SYN port scan in different copies of the same
dataset. We vary the intensity of the attacks by specifying the amount
of packets per second to generate and the duration of the attack. In
total, we test six different attack configurations consisting of three
DDoS and three SYN port scans. All injected DDoS attacks target the IP
address 90.46.2.226 and port 8o. The source IP address of the attacks
is chosen randomly from a set of 1,264 different IP addresses not ob-
served in the dataset. This setup effectively simulates a DDoS botnet at-
tack with 1,264 participating bots. All injected SYN port scans target
the IP 90.46.2.226 and originate from a single host with IP 147.42.27.56.
This setup simulates one machine profiling another machine.

4.5.2 Experimental Setup

The MAWI dataset comes in the form of PCAP files. We utilize the
yaf flow metering tool [Inacio et al., 2010] to extract flows from the

95

INTRUSION DETECTION

MAWI dataset. We set the idle timeout and active timeout to 10 seconds.
In all evaluations, we use the 5 days of the MAWI dataset between
2015/03/30 and 2015/04/03. The first three days are used to train
models of normality. The fourth day is used for validation purposes.
Different copies of the fifth day are injected with different attacks and
used to evaluate the accuracy of the trained models.

We use an RNN with the architecture shown in Figure 4.3. The RNN
is configured to have seven fully connected units in all its layers. The
third (middle) layer uses only 3 fully connected units. These numbers
were found after experimentally iterating through these parameters
to find a good compromise between learning speed and convergence.
We use the tanh activation function for the second and fourth layers,
and the sigmoid activation function for the middle layer. Finally, we
introduce a dropout of 0.5 in the second and fourth layers. This is
equivalent to shutting down 50 percent of the units in the second and
fourth layers in each training iteration. We tested all dropout rates
in the range [0.1,0.2,...,0.9] and found that a dropout rate of 0.5
decreased the validation error the most during training.

The training of the RNN is performed using the loss function in
Equation 4.5. We experimented with multiple SGD mechanisms to
minimize the loss function. We consistently observed that using the
adaptive Nesterov SGD [Nesterov, 1983] with a momentum of 0.2 and
a starting learning rate of 0.007 (for our RNN architecture) yielded
the lowest training and validation errors. We use a fixed number
of epochs to train the RNN. In the following experiments, the RNNs
trained during 10,000 epochs.

4.5.3 Experimental Results

This section presents the results of four different experiments carried
out using the experimental setup just described on top of the pre-
sented MAWI dataset. In the first experiment, we demonstrate the
learning capabilities of RNNs and how they can model the entropy of
network flow features characterized with their entropy. In the second
set of experiments, we expose the capability of our methodology to
identify anomalies in the training data. Our model does not overfit
and is not negatively affected by anomalies present in the training
data. In the third set of experiments, we test the accuracy of our me-
thodology by injecting attacks with ID>T and identifying their pres-
ence. Finally, in the last set of experiments, we compare our model
against the subspace method.

4.5.3.1 Learning Representations of Network Flows

Our proposed RNN architecture learns accurate representations of net-
work flows, as can be appreciated in Figure 4.5. The figure shows
the average loss of the training and validation datasets during train-

96

4.5 EVALUATION

ing. The validation loss is lower than the training loss as the loss of
the validation function does not use regularization while the training
function does. The learning process also uses three times more data,
resulting in higher average loss values.

1.0r

——— training loss
------- validation loss

0.8F

0.6F

Loss

04r °

0.2}

~

0.0 0 2000 4000 6000 8000 10000

Training Epoch

Figure 4.5: Training and validation loss during the learning process of an
RNN. Throughout 10,000 iterations, or epochs, the loss of the validation
dataset constantly improves. Beyond 10,000 epochs (not shown), the im-
provement stalls.

In Figure 4.6, we show how RNNs model normal network flows
from the perspective of their AS. The x-axis covers go time windows
of 10 seconds each. The y-axis shows the ASs of the three training
and validation days. The AS is calculated using Equation 4.6. The ASs
of the time windows stay within reasonable boundaries, below 0.6,
except at time windows 10 and 11 of Training Day 2. As explained
next, however, this is a positive effect of using dropout.

0.8F | Training Day 1 |

0.4F
0.0 C 1 1 1 1 1

0.8+ |— Training Day 2 |
0.4F I ‘
00 L 1 1 1 1 A

B

0.0E_: . . : n n

Training Day 3 |

Anomaly Score (AS)

0.8} | Validation Day |

04y /""'/-v\—-/\"’\ A ﬁJ"'/

0.0E_ . X
0 10 20 30 40 50 60 70 80 90

Time Windows

Figure 4.6: Anomaly Scores (ASs) of the training and validation days.

97

INTRUSION DETECTION

The traffic observed in time windows 10 and 11 of the second train-
ing day have the characteristics of an ingress shift, potentially caused
by a resource exhaustion attack. In most of the training’s network
traffic, the number of destination IP addresses seen, during a time
window, averages 200,000. In time windows 10 and 11, the number
of destination IP addresses are reduced to 26,534, yet the bandwidth
utilization remains almost the same. This finding also demonstrates
that RNNs are able to detect anomalies during training. We further
expand upon this finding next.

4.5.3.2 Detecting Anomalies in the Training Data

When dropout is used as described in the experimental setup (Sec-
tion 4.5.2), our RNN model does not incorporate highly irregular time
windows that do not follow the trend of all other time windows. Two
of the time windows in Training Day 2, as appreciated in Figure 4.6,
should clearly not be forcefully fit into the model. Figure 4.7 shows
the ASs of the three training and the validation days. The median ASs
are shown with horizontal lines and the boxes go from the first to the
third quartiles. The whiskers of the plots go from the 3rd up to the g7
percentile. On the left side of the figure, we see the box plots of all the
ASs of time windows of Training Day 2. There are two time windows
that dominate the landscape with ASs close to 16. They correspond
to the times between 2015/03/31 14:01:41 and 2015/03/31 14:02:01
of the MAWI dataset. On the right side of the figure, we present the
same box plots after the anomalies are removed. The ASs of all time
windows are below o0.6. Later in Section 4.5.3.4, we show that this is
a quality that other methods based on PCA are not able to replicate.

4.5.3.3 Detecting Attacks

Our anomaly detection methodology successfully discovers all con-
spicuous DDoS attacks and port scans we inject. All synthetic attacks
are injected on 2015/04/03 of the MAWI dataset without overlapping
them. More specifically, each attack is injected into a different copy
of the same day. Attacks are injected in the same spot of 14:10:33
(GMT+9) over a span of 5 seconds.

For the injection of attacks, we choose a day close to the days used
for training the model. Because network traffic changes over time,
the farther away the day used to test the attacks is in relation to the
days used for learning, the higher the average ASs get. This means
that this methodology requires a constant update of the model with
recent data to better reconstruct the entropies of the network data
with RNNs.

Figure 4.8 shows the ASs of the day 2015/04/03 of the MAWI
dataset when it is injected with DDoSs attacks of different intensities.
The top left plot shows the AS of the day without attack as a ref-

98

4.5 EVALUATION

20.0 0.7 5
, 8 6
17.5¢ 0.6F
___15.0
N 0.5F
o 120 0.4 © 8
SET (@]
S 100
N
= 0.3}
<
g 7.5 o &
= 50l 0.2F o
<< o)
(@]
25¢ 0.1t %
0ot & & -8— < | oot %
NN NS D g
S e oF RS R
NSRRI LN 9 &
ST S
ST Y Y@ ST Y Y@

Figure 4.7: Box plots for the Anomaly Scores (ASs) of the training and vali-
dation days. On the left, two anomalous ASs are spotted. On the right, these
two anomalies are removed and the plot is zoomed.

erence. The other three plots show DDoSs attacks with intensities of
1,000, 10,000 and 20,000 packets per second. With our methodology,
we detect DDoSs attacks of more than 10,000 packets a second by iden-
tifying high ASs. The DDoS attack with an intensity of 1,000 packets per
second is not detected. With this intensity, the DDoS attack is arguably
not taxing on network devices and could be disregarded. As a jus-
tification to this statement, we refer to the benchmarks of the Linux
kernel. Version 4.4 of the Linux kernel is able to process 3,500,000
SYN packets per second in commodity hardware?.

We test three different scenarios that incorporate port scans. The
top left plot of Figure 4.9 shows the AS of the day 2015/04/03 of
the MAWI dataset that we choose for training when no port scans
are injected. In the top right quadrant of the figure, we show the
computed AS of the training day when scanning the first 1024 ports of
a host in a five second interval. The bottom left and right plots show
the ASs when scanning ports during a five second interval of a single
host in the ranges [1 —49,151] and [1 — 65, 535], respectively. The two
plots show that it is possible to detect port scans that scan 49,151 ports
or more from looking at the AS of the time windows. Detecting port

The changes introduced in the linux kernel that are able to achieve this packet pro-
cessing performance are found in http://git.kernel.org/cgit/linux/kernel/git/
torvalds/linux.git/commit/?id=c3fc7ac9a0b978ee8538058743d21feef25f7b33

99

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=c3fc7ac9a0b978ee8538058743d21feef25f7b33
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=c3fc7ac9a0b978ee8538058743d21feef25f7b33

INTRUSION DETECTION

£ 5{[=— o A sf—"ons
o 6F 61
>
—54 4+
g of o}
5 ol ="V T ~N\ NV
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
2 5= weooo] T
»n 6} 61
>
'764 4t
gQ_—M_m_"\/\ |
|
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Time Windows Time Windows

Figure 4.8: Ass calculated by a trained RNN of different DDoS attacks that
have different intensities. The top left plot shows the AS of the testing day
without attacks. All others plots show the AS of the testing day when attacks
are injected at the same time window.

scans that scan up to the port 1024 is particularly difficult as these
ports are common in the MAWI dataset. A host that scans these ports
in a five seconds interval is not capable of shifting the distribution of
the destination ports such that its entropy is affected.

4 4
-t | No Port Scan | | 1024 Por Scan |
] 3t 3t
()
[9]
2t of
<
- NN e : NN e
=]
<ot 0t
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
4 4
o | 49,151 Port Scan | | 65,535 Port Scan |
S al I
S 3 3
[9p]
Zot 2t
g
h M\. |
=]
<0 0

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Time Windows Time Windows

Figure 4.9: ASs calculated by a trained RNN of different port scans that go
through different number of ports. The top left plot shows the AsS of the
testing day when there are no port scans present. All others plots show the
AS of the testing day when port scans are injected at the same time window.

4.5.3.4 Comparison Against the Subspace Method

We use the standard subspace method (see Section 4.2.3) as a baseline
of comparison. To compute normal subspaces with PCA, we use the

100

4.5 EVALUATION

same four features used in the last experiments, i. e., both source and
destination of IPs and ports. The days of the MAWI dataset used for
training the PCA model, from which features are extracted, are also
the same, i. e., from 2015/03/30 to 2015/04/01. The PCs found by PCA
are shown in Table 4.1. Each eigenvalue associated to a PC relates to
the proportion of variance captured. The captured variance of each
PC is shown in the second row of the table. The total accumulated
variance is shown in the third row. We choose PC; and PC, to represent
the normal subspace as together they cover more than 9o percent
of all variance in the data. PC; and PC, are used to represent the
abnormal subspace. This selection of PCs yields the best results in our
tests.

PC, PC, PC, PC,

Eigenvalue 1.0563 0.2062 0.0511 0.0213

Variance 79.11% 15.44% 03.83% 01.60%

Accumulated Variance 79.11% 94.56% 98.39% 100%

Table 4.1: Eigenvalues of the flow features and variance they capture.

Using the subspace method for anomaly detection is a two step
process. As the first step, we project the entropies of network flow fea-
ture distributions onto the abnormal subspace. Second, we compute
the norm of the projection and compare it to a threshold to deter-
mine if its anomalous or not. To determine the threshold, a statistical
approach such as Q-statistic [Lakhina, Crovella, and Christophe Diot,
2005] may be used.

The subspace method detects the injected attacks that our method
detects. The subspace method, however, fails to detect anomalous traf-
fic within the training data and incorporates them into the model.
Figure 4.10 illustrates this problem. The figure shows the computed
norm of the entropy of network flow feature distributions projected
onto the abnormal subspace for the training and validation days. The
second day of training has an attack at the 10" and 11" time win-
dows. However, the attack is assimilated into the model and cannot
be identified with this representation (cf. Figure 4.6). RNNs, in con-
trast, are able to detect the attacks and avoid integrating them into
the model.

4.5.4 Discussion of the Experiments

The datasets used in the experiments, i. e., days of the MAWI dataset,
are of substantial size. The PCAPs used for training have an average
of 8.6GiB in size, each with traffic rates of at least 150,000 packets
per second. This is taking into account that only protocol headers

101

INTRUSION DETECTION

0.8F | Training Day 1 |

0L AMAMMAMAMNA AW
0.0

0.8F | Training Day 2 |

04f N A

0.0F_ : : : ! ! ! ! ! !

0.8F M Training Day 3 |
0.4 \N/__J
0.8F | Validation Day |

0.4F MM
0.0 ¢ . . , . : . . .

0 10 20 30 40 50 60 70 80 90
Time Windows

Norm of Residual Components

Figure 4.10: Projection of the training and validation days into the PCA’s ab-
normal subspace. The second day of training is known to contain an attack
in time windows 10 and 11. PCA undesirably incorporates this attack into
the model.

are provided and network payloads are removed and that the days
only span 15 minutes of time. The presented evaluation results are
encouraging as the attacks injected are small in relation to the dataset
used.

Our RNN based anomaly detection methodology has many advan-
tages to other approaches. It can quickly learn and predict using large
amounts of data. Learning the parameters of the RNNs takes no more
than a few seconds on commodity hardware. The methodology is
resilient to learning from training data that has obvious anomalies.
In the learning process, the anomalies are not incorporated into the
model. Removing outliers is therefore not as critical as in other mech-
anisms.

The presented RNNs have some limitations which can be overcome.
Arguably, the most expensive part of our methodology is the extrac-
tion of features from network flows in the form of entropies. With
the current flow export technology, this process can be easily auto-
mated to support single large devices or multiple devices. This, in
turn, enables our methodology to be applied within distributed envi-
ronments. Our methodology, as presented, requires a central compo-
nent to learn the model of the RNNs. This limitation can be overcome
by performing feature extraction in a distributed fashion, gathering
the most significant statistics of the feature extraction process, and us-
ing a methodology that distributedly learns the parameters of neural
networks from significant statistics [Lazarevic, Nisheeth Srivastava,
et al., 2009]. Our mechanism detects time windows where attacks are

102

46 CONCLUSION AND LESSONS LEARNED

present; it does not exactly identify the flows that contribute to the at-
tacks. As described in Section 4.4.4, however, our methodology can be
easily adapted to identify malicious flows using Sketches (explained
in Section 6.2.1).

46 CONCLUSION AND LESSONS LEARNED

We proposed in this chapter a methodology that uses RNNs to detect
anomalies and potential attacks in large networks. Our methodology
relies on two key ideas. First, we summarize the traffic of large net-
works with entropies that characterize the distribution of network
flow features. Second, we map entropies onto low dimensionality
spaces using a type of autoencoder known as RNN. Although RNNs
are simple autoencoders that were once created for the purpose of
compressing data, they are capable of building models of normality
useful for detecting anomalies. RNNs have similar properties as PCA,
another anomaly detection methodology commonly used to identify
anomalous traffic in large networks. In particular, RNNs can compute
normal and abnormal subspaces to model the entropies of network
flow features.

Neural networks such as RNNs only work with continuous fea-
tures. Network data, however, is highly heterogeneous with categor-
ical (e.g., IP addresses), nominal (e.g., TCP flags) and ordinal (e.g.,
TCP SYN flags) feature types. The process of directly applying RNNs
was not straightforward; we needed to transform network data into
sets of continuous features. We explored many common ML tech-
niques to transform features into continuous ones, such as one-hot en-
coding, but quickly discovered that the amount of network data from
large networks made the feature transformations prohibitively expen-
sive. From among the options presented in Section 2.1.2, we found
that autoencoders that embed the entropies of feature distributions
cope with the large quantities of network traffic the best.

We found that the RNN architectures used in related work [Hawkins
et al., 2002] for data compression suffer from several problems when
they are used to build anomaly detectors for large networks. In [Dau
et al., 2014], the authors showed that RNNs of five layers can be re-
duced to three layers and still retain the same accuracy. We observed
that dropout could not be added with positive effects in RNN architec-
tures of three layers. Dropout was effective, however, when using a
tive-layer architecture. RNNs typically use a step-wise activation func-
tion in the middle layer to theoretically compress the inputs into clus-
ters. Using step-wise activation functions is in general a problem for
neural networks. The method by which neural networks update their
parameters, i.e., back propagation (or gradient descent), cannot ana-
lytically compute gradients of step-wise functions to direct the search
process. This is because the gradient of these functions is almost al-

103

INTRUSION DETECTION

ways zero. For this reason, we changed the activation function of the
middle layer to the Sigmoid function, which others also found that
works well in other contexts [T6th et al., 2004].

4.6.1 Future Work

We see the potential of improving our methodology by using addi-
tional modern deep learning techniques given that RNN are instances
of neural networks. For example, RNNs can be stacked [Deng et al.,
2014], and adding Gaussian noise to the inputs of neural networks
has proven to be beneficial in many situations [Deng et al., 2014]. Fur-
thermore, RNNs may be adapted to automatically compute intermedi-
ate feature representations using techniques borrowed from convolu-
tional neural networks [Dumoulin et al., 2016]. This would enable us
to find new compositions and transformations of features that may
increase the representation capabilities of RNNs.

4.6.2 Chapter Summary

This chapter began by introducing the problems and challenges of de-
veloping anomaly-based NIDS for large networks. To contribute a solu-
tion to the problem, we propose an anomaly detection methodology
based on RNNs that can cope with the challenges and requirements
imposed by large networks. To understand our contributions and me-
thodology, we then presented specialized background that touched
upon four main topics: network flows, their characterization with
entropy, the subspace method for detecting anomalies in flows, and
RNNs. After presenting related work related to the usage of ML for
anomaly detection, the category on which RNNs fall, we proceeded to
explain our methodology.

Our methodology contains two main steps. The first step consists
in extracting features from network flows. Feature distributions, in
the form of entropies, are extracted from network flows subdivided
in time windows. At each time window, the entropies of all observed
features are computed. The second step consists of projecting the ex-
tracted features (or entropies) onto a lower dimensionality space us-
ing RNNs. RNNs learn to replicate the inputs as the output after the
input is forced to be compressed.

To test the capabilities of the aforementioned steps, we injected
known attacks into samples of backbone network traffic and pro-
ceeded to detect these attacks. Beyond the detection capabilities of
RNNs, we further explored the ability of the methodology of prevent-
ing anomalies in the training data from being included into the model.
The experiments showed that RNNs can be used as efficient unsuper-
vised mechanisms to detect anomalies in new, never before seen data,
as well as the training data.

104

COMMUNITY FORMATION

CONTEXT

Distributed intrusion detection mechanisms rely on the distributed
application of one or more algorithms. Algorithms typically lend
themselves well to distribution if they themselves are distributed. A
centralized algorithm, however, can still be used in distributed envi-
ronments, such as CIDSs, if one or more central components collect
data, apply the algorithm and distribute the results for merging. Col-
lecting data is expensive due to the overhead of information dissemi-
nation, yet many algorithms benefit from using as much data as pos-
sible. This is especially true for ML-based algorithms which perform
better the more data they consider. Therefore, communication over-
head and detection accuracy are inversely correlated in this context.

Our intrusion detection mechanism proposed in the last chapter is
of a centralized nature. With the help of neural networks, we created
a mechanism capable of processing vast amounts of data to detect
traffic anomalies. However, the learning process of our mechanism
needs all data in one location. To implement our mechanism, or any
other centralized one, within a distributed environment, we can col-
lect data subsets in multiple locations and apply the mechanism in
each location. If the algorithm is based on ML, like ours, the applica-
tion of the algorithm yields a model for each location. These models
can then be distributed among all locations to combine them. Models
are significantly smaller in size than raw data and their dissemination
is significantly less expensive than disseminating raw data.

Distributed CIDSs can establish different locations to collect data
and apply centralized algorithms. Determining how many locations
a CIDS would need to maximize its detection capabilities is not obvi-
ous. We need to find how to balance communication overhead and a
desired detection accuracy.

subset of CIDS sensors can use a common location to store data so

that a centralized algorithm can be applied on the data. When
sensors are grouped into multiple subsets for the purpose of apply-
ing a centralized algorithm in each subset, we say that the sensors
form communities. In this chapter, we develop concepts that allow us
to establish communities of sensors and understand how communi-
ties impact the performance of a CIDS. The communication overhead
and detection accuracy of a CIDS using communities depends on the
size of the communities and the number of overlapping sensors. To

105

COMMUNITY FORMATION

test the concept of communities, we develop a distributed anomaly-
based CIDS that joins the individual models built by communities. All
models are joined using an ensemble learning technique.

Chapter Overview

Field of Contributions CIDS Architecture

1. Dataset Generation Global Detection

2. Intrusion Detection
Data Correlation & Aggregation

3. Community Formation

Membership Data
4, Information Dissemination Management Dissemination
5. Collusion Detection Local Detection

Figure 5.1: This chapter corresponds to the third contribution of this thesis:
Community Formation. The contribution relates to the highlighted layers of
our referenced CIDS architecture: Data Dissemination and Global Detection.

An overview of this chapter is shown in Figure 5.1. This chapter
expands upon the third contribution of this thesis. In this contribu-
tion, we develop concepts that directly relate to two layers of the CIDS
architecture we reference (see Section 2.3.3). From the perspective of
the Data Dissemination layer, our concepts establish communication
overlays that form sensor communities which balance communica-
tion overhead and detection accuracy. A CIDS uses the ML models cre-
ated by multiple sensors to make decisions. This enables the system
to create a detection mechanism that belongs to the Global Detection
layer.

This chapter is organized as follows. The next section introduces
the problem of using centralized intrusion detection components in
distributed systems. We follow the introduction in Section 5.2 with
a specialized background that summarizes the key topics needed to
understand the concepts proposed herein. In Section 5.3, we present
work that relates to our contribution in either the direction of ano-
maly network intrusion detection or distributed CIDSs. We present
the concept of sensor communities and their properties in Section 5.4.
The performance evaluations of a CIDS that uses our community con-
cepts are shown in Section 5.5. The chapter finalizes with conclusion,
future work and summary in Section 5.6.

5.1 INTRODUCTION

To apply centralized intrusion detection mechanisms within a dis-
tributed CIDS, the CIDS needs to assemble one or more datasets that

106

5.1 INTRODUCTION

a centralized mechanism can process. In the context of ML, such a
mechanism uses a dataset to output a model. To detect network-wide
intrusions, a CIDS can merge or combine all generated models into
what is known as a meta-model. The CIDS then distributes the meta-
model among all its sensors which can then apply it within their
local context to detect network-wide intrusions.

A distributed CIDS should not rely on collecting the information of
its sensor in one single location. Doing so creates a SPoF, reduces the
scalability of the system and increasing the communication overhead
of the network. To address these problems, a distributed CIDS can in-
stead designate multiple sensors as locations where others can send
their information. These designated sensors would then be respon-
sible for creating datasets from what they receive, run a centralized
mechanism to output a model and distribute the model to others.
In the extreme case of choosing each sensor as a location where all
others send their information, all information is available to all sen-
sors without there being a SPoF. Each sensor would also be capable
of creating a model that considers all information, does not need to
be distributed and could theoretically achieve the best performance.
However, the communication overhead would be too high and scala-
bility would be severely constrained.

On the other side of the spectrum, each sensor could be restricted
to use a centralized mechanism to compute a model using only the
local data they observe, and distribute the computed model with all
other sensors. Sharing models is inexpensive in comparison to shar-
ing raw data’. Therefore, communication overhead is minimized and
scalability is achieved. The problem of this approach is that, even after
forming a meta-model from all models, we can expect that the capa-
bility of the sensors to detect network-wide intrusions is limited. The
limitation stems from the fact that each individual model considers
only local information.

In between the first approach of sharing information with every
sensor and the second approach of not sharing information, we may
consider choosing few sensors as locations where some other sensors
can send their information. In such a scenario, communication over-
head is influenced by not only the amount of locations where infor-
mation can be sent, but also by the number of sensors that can send in-
formation to those locations. The number of locations corresponds to
the number of models created by different instances of a centralized
mechanism that are combined to form a meta-model. The number of
sensors that contribute to the creation of a dataset (at each location)
correlate with the detection capability of the model that spawns from
the dataset. With the two variables of number of locations and number

ML models are usually no bigger than a few MiB in size while raw network data can
easily span GiB in a matter of minutes. ML models are sporadically built while raw
network data is constantly produced.

107

meta-model

community

community-based
CIDS

overlapping sensors

COMMUNITY FORMATION

of sensors sending information (for each location), we can balance the
communication overhead of a CIDS and the detection accuracy of a
resulting meta-model.

We use the term community to refer to a subset of sensors that
send information to one common sensor within the subset to create a
dataset. The sensor with the dataset is then responsible for building
a model using a centralized mechanism. A community-based CIDS is a
system that integrates many communities and combines the models
created by all communities to create a meta-mode. This meta model
is then distributed to all communities so that they can perform intru-
sion detection. In this chapter, we explore the benefits, develop the
concepts and study the benefits of using communities.

5.1.1 Problem Statement

Communities are able to influence the communication overhead and
detection accuracy of a CIDS though their size and sensor overlap.
Their size, i.e., number of sensors in the community, establishes the
quantity of shared information as well as the completeness of the re-
sulting dataset. The more sensors in a community, the more holistic
the view of the community is and the more accurate the model it can
generate (for network-wide intrusion detection). On the other hand,
bigger communities leave larger communication footprints and de-
grade the scalability of a system. Consequently, the size of a commu-
nity is one way to limit the upper bounds of the detection accuracy of
the centralized intrusion detection mechanism operating within the
community.

The sensors of a CIDS may belong to more than one community. We
refer to these sensors as overlapping sensors. Overlapping sensors have
the effect of duplicating their information in multiple datasets. For ex-
ample, let us consider the case of combining all the datasets collected
by each community. When there is no sensor overlap, the dataset com-
bination has no repeated information. When sensors are overlapped,
however, the information of those overlapping sensors is repeated in
the dataset combination as many times as their overlap. When we
use each individual dataset to train a model and the combination of
all datasets has copies of the same data, we effectively implement
the boosting ensemble technique (see Section 5.2.2.1). Boosting is the
technique of creating many small datasets by sampling from a large
dataset (with replacement) and creating a model with each smaller
dataset. All models are combined into a meta-model and the expected
accuracy of the meta-model is expected to outperform a single model
created from the large dataset. This effectively means that the sensor
overlap controls the degree by which boosting splits and samples a
large dataset (to improve detection accuracy), but also controls some

108

5.1 INTRODUCTION

degree of communication overhead (from sending duplicated infor-
mation).

The problem at hand is to determine the effect of the number of com-
munities, community size and sensor overlap in relation to the detection
accuracy and communication overhead of a community-based CIDs.
To test the performance of a community-based CIDS, we implement
one using the well established LERAD (see Section 5.2.1) algorithm
on top of the classic DARPA g9 dataset (detailed in Section 3.3.1). In
spite of the dataset and the algorithm being outdated, we still use
them as the algorithm is known to perform well on top of the dataset
[Matthew V. Mahoney et al., 2002]. This fact enables us to test how
the community parameters, i.e., their size, number and sensor over-
lap, influence the detection accuracy of model ensembles.

5.1.2 Challenges

Distributed CIDSs scale better than centralized ones at the cost of
their accuracy. This can be attributed to facts such as that distributed
systems cannot afford to train ML models with global information.
Communities generalize the concepts of building a fully distributed
ensemble model, a partially distributed ensemble model and a sin-
gle centralized model (see Section 5.2.2) that can be used to detect
network-wide attacks: Let us consider s sensors and ¢ communities,
where each community creates a model that participates in an en-
semble of learners. The configuration of one community, i.e., ¢ =1,
containing all s sensors is analogous to collecting all information in
one place and using one ML algorithm to create one model. This is
equivalent to a centralized system where no ensemble learning is ap-
plied. Conversely, when there are as many communities as sensors,
i.e, ¢ = s, and sensors do not overlap, the configuration imitates
a fully distributed system where nothing is shared. In such a fully
distributed system, ¢ models are built using the local information of
each of the s sensors. All c models are then combined to form an en-
semble. To balance the amount of distribution, we have partially dis-
tributed ensemble models. These configurations ensemble multiple
models that use information originating from multiple (potentially
overlapping) sensors. Throughout this chapter, we assume that shar-
ing models, to build ensembles of learners, has negligible network
overhead costs.

Most CIDSs work at the alarm level, e. g., [Cai et al., 2005; Gamer,
2012]. At this level, the sensors of a CIDS exchange intrusion alarms
with the expectation that alarms can be correlated to detect similar
attacks. Instead, we build in this chapter communities of sensors that
collaborate at the detection level. At the detection level, data features
are exchanged to collaboratively build intrusion detection models.
The challenge of sending information at the detection level is that,

109

alarm level

detection level

COMMUNITY FORMATION

at this level, sending information is more costly as significantly more
information is generated than at the alarm level.

5.1.3 Chapter Contributions

Our focus in this chapter is to develop the concepts for building com-
munities of sensors that can leverage communication overhead and
detection accuracy within distributed CIDSs. Communities of sensors
enable distributed CIDSs to use centralized mechanisms without creat-
ing a SPoF. Each community is responsible for independently building
their own ML model for intrusion detection. A community-based CIDS
combines all learned models into an ensemble of learners to detect
events that individual sensors would theoretically struggle to detect.

We explore the effects of forming communities using a well stud-
ied anomaly detector, i.e., LERAD, on top of a well known dataset,
i.e.,, DARPA 99. Using these, we compare the detection capabilities of
centralized mechanisms that learn models using global information
against an ensemble of learners that use models learned from par-
tial information. To form communities of sensors, we propose two
algorithms that establish communities following constrains set by the
number of communities, number of sensors in each community and
maximum sensor overlap.

We evaluate the communities concept and show that an ensemble
of learners that uses models created by all communities performs
substantially better than isolated learners. Furthermore, we show that
these ensembles approximate the best possible performance, i.e., the
performance of a centralized learner, while reducing communication
overhead.

5.2 SPECIALIZED BACKGROUND

This background section focuses on two key topics of crucial impor-
tance to this chapter. First, we introduce the anomaly detection algo-
rithm we employ known as LERAD. Afterwards, we briefly describe
what ensemble learning is and the boosting ensemble technique.

5.2.1 The LERAD Algorithm

Learning Rules for Anomaly Detection (LERAD) is a rule induction
algorithm and anomaly detector that finds conditional rules that de-
scribe normal patterns in a dataset [Matthew V Mahoney and P. Chan,
2003]. The conditional rules that LERAD finds can be used to model
the normal behavior of a network. A small exemplary ruleset of such
a normality model is shown in Example 5.1. The anomaly detection
part of LERAD uses its rulesets to identify network traffic that does not
conform to rules. However, LERAD’s anomaly detection mechanism is

110

5.2 SPECIALIZED BACKGROUND

not only based on finding network traffic that break rules, but also
on identifying rare events. Matthew V Mahoney and P. Chan [2003]
define a rare event as one that has not occurred after some predefined
time that also has low average anomaly rates during training. Along
with a decision on whether something is anomalous or not, LERAD’s
output also includes a confidence score.

Example 5.1: A Ruleset that Describes Normal Network Traffic

Table 5.1 shows a ruleset that may model normal network traffic.
Rule 1 states that if the TCP flag of the second to last package
in a conversation has the ACK bit set, the last flag of the packet
are expected to have set either the ACK or SYN bits. Rule 2 states
that if the first octet of the destination IP is “10”, the second octet
should be “112”. Rule 3 has no condition and states that a package
should only have the SYN, ACK, PSH or RST bits set. The last
rule states that if a packet targets port 8o and the first word of the
payload is “http”, then the first word of the payloads should be
“get”.

Rules have an associated support and codomain. The support
indicates how many data points were observed to follow the rule
during training. The codomain refers to the total number of pos-
sible values that the consequent of the rule has, and it is updated
during testing.

1 IF flagn, = ack THEN flag, = syn OR ack

Support: 28,882 Codomain: 2

2 IF dstip,; = 10 THEN second dst.ip, = 112

Support: 14,236 Codomain: 1

3 IF THEN flag, = syn OR ack OR psh OR rst

Support: 35,455 Codomain: 4

4 IF port = 80 AND word3 = http THEN word1 = get

Support: 12,440 Codomain: 1

Table 5.1: Example rules found by LERAD on a typical network.

5.2.2 Ensemble Learning

Rather that being a learning mechanism in itself, ensemble learning
is a meta-model that combines multiple learned models to make pre-
dictions. Predictions are made by asking each model for its output
and combining the outputs using one of many techniques. Popular

COMMUNITY FORMATION

techniques include averaging all model outputs and using the most
common output. In our work, for example, our combination strategy
is based on using the prediction of the model with the highest confi-
dence. The models of an ensemble may be created by different algo-
rithms, parameters or datasets. In this chapter, we use a homogeneous
ensemble where all models are created with the same algorithms. The
dataset used by each model, however, is different. The most widely
used ensemble algorithm that adaptively changes a dataset to create
better models is known as boosting.

5.2.2.1 Boosting

Boosting is a simple and one of the most commonly used ensem-
ble techniques to improve the accuracy of a predictor [Maclin et al.,
2011]. Boosting samples a dataset with replacement to create many
training sets. To improve the performance of a predictor, one predic-
tor is trained for each training set and all predictors are combined to
form an ensemble [Folino et al., 2016].

5.3 RELATED WORK

In general terms, this chapter is concerned with the development of
a distributed anomaly-based CIDS that uses communities of sensors
to detect network attacks. Anomaly-based systems are explained in
Section 2.1.4. In this section, we elaborate on anomaly detection algo-
rithms that build models of normality through rule induction.

5.3.1 Rule-based Anomaly Intrusion Detection

Anomaly detection algorithms can be coarsely grouped into three
groups depending on the type of features (see Section 2.1.2) they pro-
cess: algorithms that work on continuous, categorical, or mixed fea-
ture types. Network traffic features are heavily based on categorical
features [Chandola et al., 2009]. Because of this reason, network-based
anomaly detection is dominated by algorithms that cope with categor-
ical features. Rule induction algorithms are a class of algorithms that
exclusively work with this type.

Mahoney V. et al. [2001] developed one of the first algorithms,
known as Packet Header Anomaly Detector (PHAD), that focuses on
finding rules that describe the normal behavior of a network from
the categorical features of network-related protocols. PHAD learns the
patterns that describe a protocol and can identify network traffic that
does not adhere to the learned protocols. This algorithm evolved into
ALAD [Matthew V. Mahoney et al., 2002] by taking into account the
application layer of the OSI model. ALAD extracts features from TCP
streams to model some of the contents of network payloads. The final

112

5.4 COMMUNITIES FOR COLLABORATIVE INTRUSION DETECTION

iteration of this algorithm is known as LERAD [Matthew V Mahoney
and P. Chan, 2003]. LERAD finds conditional rules that involve net-
work headers and payloads to model normal network traffic.

5.3.2 Distributed Machine Learning

We propose concepts to form communities of sensors in CIDSs to apply
ML algorithms that are intrinsically centralized in a distributed envi-
ronment. Related work acknowledges two different contexts that in-
fluence how algorithms can operate on large datasets [Peteiro-Barral
et al., 2013]. In the first context, large data can be moved around. In
the second context, the assumption is that data cannot be moved. Our
community building contribution falls on the first context. However,
we further adapt our mechanism to work within a CIDS. Specifically,
we focus on proposing a system that takes communication overhead
into account.

Different centralized mechanisms exist to work with distributed
data when data can be moved around. The importance of applying
such mechanisms has gained traction and is now known as big data
processing [Lavalle et al., 2011]. The research field of CIDSs has natu-
rally caught on with the trend [Zuech, Taghi M Khoshgoftaar, et al.,
2015b]. In [Huang et al., 2014], for example, researchers use the typ-
ically centralized latent Dirichlet allocation mechanism in a distrib-
uted environment to find network intrusions. To extract rules from
distributed network data, Rodriguez et al. [2011] adapt the typically
centralized genetic algorithms heuristic to work in a distributed envi-
ronment.

54 COMMUNITY FORMATION FOR COLLABORATIVE INTRUSION
DETECTION

This section presents an approach to collaboratively detect anomalies
in networks using communities of sensors. We begin with a textual
description of our community forming mechanisms and follow with
its mathematical formalization. In the formalization process, we in-
troduce parameters responsible for creating communities. For each
parameter, we explain their impact on the community creation pro-
cess and communication overhead. Finally, we propose an algorithm
to choose how sensors are grouped into communities such that a cho-
sen set of parameters are respected.

5.4.1 The Community Formation Concept
We wish to group CIDS sensors into communities such that a central-

ized anomaly-based intrusion detection mechanism can be utilized
within each community. The goal is to then group the models created

113

community head

Ng parameter

N parameter

N, parameter

COMMUNITY FORMATION

by the communities to form an ensemble that can identify anomalies.
Each sensor collects network flows (see Section 4.2.1) of the traffic it
observes and performs feature extraction on its own. All extracted
features are then sent to a central location common to all members of
the community. At this central location, each community assembles a
unique dataset of features that can be used as the training set of an
anomaly detector, i.e., LERAD. Each different training set is used to
create a model of normality, i. e., rulesets, and all models of normal-
ity are ensembled into one to make decisions (see below). The feature
distributions of the training sets are expected to differ. These differ-
ences are exploited to build better predictors following the theory
behind the boosting technique (see Section 5.2.2.1).

Within a community, one sensor is designated to act as a central
location where all other members send their extracted features. This
sensor is known as a community head. The community head is also re-
sponsible for building a normality model using all collected features.
The resulting model is then shared with all other existing community
heads to form ensembles. In such a scenario, no central component
is needed. We assume that sharing models has negligible impact on
communication overhead as their size is diminutive in contrast to the
entirety of the network traffic. We further assume that models are dis-
tributed using an appropriate dissemination mechanism (such as the
one we propose in Chapter 6).

5.4.2 Mathematical Formalization

We model our community formation concept using the graph G =
(S,E). The nodes S represent the sensors that belong to a CIDS and
the edges E denote the connections that exist between sensors. A
community is the subset of sensors C C S. The number of sensors
in community C is denoted by ng = ||C||. The set of all communi-
ties is denoted with C = {Cy, C3, ..., Cy_}. The total number of com-
munities is therefore n. = ||C|. Each community C; has a sensor
s € C; that functions as a community head, i.e., it is responsible
for receiving features and learning a model. We assume that every
sensor s € C; can communicate with community head s such that
(s,87) € E, Vs € Ci. As community heads need to share the models
they create between each other, we assume that all community heads
are connected, i.e., (s}, sj*) € E where s7 # s]-*. Sensors are allowed to
belong to multiple communities simultaneously. The maximum sen-
sor overlap is denoted with n,, i.e., a sensor can be part of up to n,
communities. Table 5.2 provides an overview of the notation for ref-
erence. Example 5.2 gives a set of exemplary parameter settings and
shows communities that conform to the parameters.

114

5.4 COMMUNITIES FOR COLLABORATIVE INTRUSION DETECTION

G =(S,E) Community graph of sensors S
with overlay E
C={Cy,Cy,...,Cq.} Setof communities
S Set of the sensors of a CIDS
Ci €S The i-th community of the set C
s¥ Community head of community C;
ns Number of sensors in a community,
ie, ng =|C|
ne Total number of communities, i.e.,
ne = [|C||
N, Maximum number of communities

a sensor can belong to

Table 5.2: Summary of the notation used within this chapter

5.4.3 The Community Building Parameters

In the process of adapting a centralized algorithm into a distributed
CIDS with communities, we acknowledge three parameters that influ-
ence detection accuracy and communication overhead. In this section,
we discuss the influence of the number of the communities n., the
number of sensors per community ns, and the maximum overlap of
sensors among communities n,. Each parameter is analyzed in terms
of how it affects accuracy, communication overhead and the overall
scalability of the system.

5.4.3.1 Number of Sensors in Communities

ACCURACY The number of sensors ng of a community greatly in-
fluences the datasets built at each community head and, therefore,
has a strong impact on the detection accuracy. When ng = ||S|| (and
N, = 1), a centralized system is replicated as only one community ex-
ists that collect all features in its sole existing community head. The
opposite of a centralized system is a fully distributed system where
no collaboration takes place. This is the scenario where ng = 1 (and
N, = 1). In such a scenario, sensors form their own community, be-
come a community head and work in isolation. The size of n; is
bounded by 1 < n, < ||S].

OVERHEAD The overhead of ns can be expressed as the number
of edges in ||E|| of graph G = (S,E) between sensors s and com-
munity heads s*. The overhead can be expressed as the connections
between sensors s € S and their respective community head s*. This
overhead is inversely proportional to ns. The overhead can be calcu-
lated as ||S|| — ”T%H In this calculation, we ignore the edges that exist
between community heads. Community heads only need to commu-

115

COMMUNITY FORMATION

Example 5.2: Community Configurations

The diagrams in Figure 5.2 show how a graph G and communi-
ties C would be formed given different sets of parameters n.,ns
and n,. Configuration 1, for example, illustrates a set of commu-
nities C where n. = 2,ns =4 and n, = 1. Only Configuration 2
has communities with overlapping sensors, i.e., n, = 2. Config-
uration 3 shows how the more communities there are, the more

edges in E are needed.

-

—

-
Configuration 2:

nc:3,ns:3,n0:2

Configuration 1:
nc:2,ns:4,no:1

Configuration 3:

1
1
1
I
I
1
1
I
I
1
1
1
I
1
1
1
I
I
1
1
I
I
1
1
1
1
I
1
1
I
I
1
1 nc:4,ns:2,no:1
1

Figure 5.2: Three different parameter configurations and examples of
valid communities. n. specifies the number of communities, ng the
number of sensors in each community, and n, the maximum number of
overlapping sensors.

nicate models rather than send features. In contrast to the size of the
features sent, we assume that the size of a model is negligible.

SCALABILITY Small values of ng imply that the system is more
scalable as communities need to share and analyze less data. Increas-
ing n also increases the number of channels of communication and
the amount of data that needs to be transferred to a community head.
Therefore, the required computational capabilities of a system are in-
versely proportional to 1.

5.4.3.2 Number of Communities

AccurAacY The total number of communities n. affects the total
number of datasets and learned models. Therefore, it has an im-

116

5.4 COMMUNITIES FOR COLLABORATIVE INTRUSION DETECTION

pact on the performance of an ensembled predictor. The larger n.
is, the more models are available and the more accurate the ensem-
ble of models can be. When n. = 1, a single community is formed
and is equivalent to the case where ng = ||S||. In contrast, when
ne = [|S|| and n, = 1, sensors are their own community and no infor-
mation sharing takes place. n. and n; are inversely proportional. n
is bounded according to T < n. < ||S|.

OVERHEAD We express the overhead imposed by n. as the num-
ber of connections between sensors and their community heads. This
overhead calculation is isomorphic to the overhead calculation of n;
and can be expressed as 1. - (ns —1).

SCALABILITY The parameter n. affects the scalability of the sys-
tem only in combination with ng. We consider that scalability is only
affected by the amount of data that needs to be collected and pro-
cessed. For example, large values of n. and low values of ng cre-
ate constellations where many communities need to process small
amounts of data. The number of communities n. alone does not neg-
atively affect scalability on the chosen abstraction level.

5.4.3.3 Maximum Sensor Ouverlap

ACCURACY The parameter n, corresponds to the maximum num-
ber of times a sensor can appear in different communities. Note that
a sensor cannot appear twice in the same community, i.e., it is not
allowed to send repeated information to a community head. As this
parameter increases, more data is repeated among communities and
more accurate models can be built. The bounds of n, are defined by
1<y < ne.

OVERHEAD As the parameter n, is raised, communication over-
head increases as sensors need to send their extracted features to
multiple community heads. The increase in overhead introduced by
N, is simply calculated as (n, — 1). This parameter, however, directly
influences the number of sensors within a community ns. Further-
more, the larger n, is, the more communities n. can be accommo-
dated. More overlap implied more overhead.

SCALABILITY On its own, the sensor overlap n, does not influ-
ence the scalability of the system. However, it enables the establish-

ment of more communities and, therefore, indirectly affects scalability
through n..

5.4.4 Community Formation

We say that communities C = {Cy,Cp,...,Cn} honor the set of pa-

117

honor parameters

COMMUNITY FORMATION

rameters ng,n. and n, when C meets the conditions

1Cill =ns,
1€l =ne,
HCiijH =Ny VCi,Cj e Candi#j.

The set of sensors S can be used in numerous ways to form commu-
nities C, i.e., C; C S, such that the predefined parameters ng, n. and
N, are honored. A unique solution does not necessarily exist.

The criteria by which sensors are grouped into communities is anal-
ogous to choosing the properties of an ensemble of models. Each
community C € C creating a model using the features provided by
its member sensors. Therefore, the number of communities n. speci-
fies how many models are ensembled. Sensors can appear in multiple
communities to replicate their features into different datasets. This is
analogous to the sampling process boosting uses (see Section 5.2.2.1)
to create datasets that have different feature distributions. The num-
ber of sensors in a community ns determine the size and complete-
ness of the dataset the community will use for training purposes. Fi-
nally, n, introduces a factor that limits how many times features can
be replicated into different datasets.

5.4.5 Sensor Grouping Algorithms

In this section, we present two algorithms to stochastically group sen-
sors S into communities C that honor one or more of the parameters
Mg, N or n,. While n. is a parameter that applies globally, param-
eters ng and n, may be the same or different for each community.
With Algorithm 5.1, we present an algorithm that fixes ns and varies
n¢ and n,. The purpose of the algorithm is to create multiple com-
munities with the same number of sensors, even if sensors need to be
repeated among communities. Algocf 5.2 tries to do the opposite: it
fixes n, and n. (whenever it is possible to do so), and leaves ng to
vary. This algorithm creates community constellations that allows us
to easily test the impact of overlapping sensors.

ALGORITHM 1 Given the set of sensors S and the number of sen-
sors in a community ng, Algorithm 5.1 outputs n. communities, i.e.,
|C|| = n¢, where each community C € C has the same number of sen-
sors ns. The communities may also have different numbers of over-
lapping sensors n,. The algorithm consists of two phases. In the first
phase (lines 2 to 5), the algorithm selects a sensor that does not yet be-
long to another community to start a new community. The set Temp
is used to keep track of the sensors that already belong to a commu-
nity. The second phase of the algorithm (lines 6 to 9) randomly adds
a sensor to C from the set difference (S — C) until ||C|| = n.

118

5.4 COMMUNITIES FOR COLLABORATIVE INTRUSION DETECTION

input : set of sensors S
input : number of sensors n in a community
output : set of communities C

1 C {0}, Temp « {0}
2 fors e Sdo

3 if s ¢ Temp then

4 C <« {s}

5 Temp < Temp U{s}

6 while ||C|| < ng do

7 s + rand(S— C)

8 C+ CU{s}

9 Temp < Temp U{s}
10 C «+ Cu{C}

11 return C

Algorithm 5.1: Given a set of sensors S and a fixed parameter n;, construct a
set of communities C that honors the parameter ns (number of sensors) and
lets each community have different values of n. (number of communities)
and n, (sensor overlap).

ALGORITHM 2 With a set of sensors S and the n. and n, pa-
rameters fixed, Algorithm 5.2 creates a set of communities C where
IC|| = n¢ and no sensor overlaps more than n, times among all
communities. This algorithm creates communities containing differ-
ent numbers of sensors ns. The strategy of Algorithm 5.2 is as fol-
lows. First, lines 3 and 4 initialize the set C with n. empty commu-
nities. The top-most loop (line 5) iterates over each sensor s € S. The
inner-most loop (line 8) distributes the sensors following a uniform
distribution, i.e., U(1,n,), into different communities. If communities
from the set C finish empty, they are discarded.

5.4.6 Community-based Collaborative Intrusion Detection

After grouping sensors into communities following one of the pre-
viously presented algorithms, sensors can collaborate to detect intru-
sions in a network. A community of sensors C; € C can be interpreted
as an overlay network that connects all its members s € C; to its com-
munity head s}. Sensors are assumed to analyze the network traffic
they monitor, extract features and forward the features to their com-
munity heads. Community heads are also assumed to be capable of
communicating with each other to share intrusion detection models.
Each community head builds a ML model using an aggregated train-
ing dataset composed of all the features sent by the sensors directly
connected to the community head. Community heads are also re-
sponsible for sharing their models with other community heads. We
propose an efficient sharing mechanism in Chapter 6. In this work,

119

aggregated training
dataset

aggregated testing
dataset

COMMUNITY FORMATION

input : set of sensors S

input : number of communities n

input : maximum number of sensor overlap no
output : set of communities C

1 if ng > n¢ then
2 L o = N¢
3 C1,C2,...,Cnc %{@},{@},,{@}
C e{C1,C2,...,CnC}
fors € S do
x + uniform(1,n,)
Temp + {0}
for 1 to x do
C + rand(C — Temp)
C+ Cu{s}
11 Temp « Temp U{C}

g1 B

0w O O

12 return C

Algorithm 5.2: Given a set of sensors S and fixed parameters n. (number
of communities) and n, (overlapping sensors), construct a set of commu-
nities C that honors the two fixed parameters. The number of sensors in
communities ng is not fixed and can vary for each community.

community heads build normality models for an anomaly-based in-
trusion detection system using LERAD. However, our proposed me-
thodology is not bound by LERAD and can easily accommodate other
ML techniques.

Having received the normality models created by each community,
community heads create an ensemble of models to detect anomalies
in the network traffic monitored by their community. Sensors within
a community keep sending the features they extract to their commu-
nity heads. Community heads then build an aggregated testing dataset
and use LERAD to detect anomalies within this dataset. The generated
alarms are sent to a central location where they can be sorted, aggre-
gated and correlated. We randomly choose a community head to act
as this central location.

5.5 EVALUATION

We present the results of testing our proposed community-based CIDS
using LERAD as anomaly detector on top of a modified DARPA g9
dataset. We choose these two as they are known to perform well to-
gether. DARPA provides labeled data and, despite its deficiencies, does
not hamper testing our methodology. This is because our objective is
to determine how communities compare to a fully centralized and
fully distributed system (with no collaboration). This objective does

120

5.5 EVALUATION

not depend on having a realistic or error-free dataset, i.e., with the
same dataset we compare different systems under similar conditions.

The next tests compare the capabilities of centralized, isolated and
community-based CIDSs. Community-based CIDSs are generalizations
of centralized and isolated systems that approach the performance of
one or the other depending on how communication overhead and de-
tection accuracy is traded. We acknowledge that a centralized CIDS
should have the best detection performance while the opposite is
true for a fully isolated CIDS. Our evaluations demonstrate how a
community-based CIDS outperforms an isolated CIDS. Communities
can perform as well as a centralized CIDS if communication overhead
is disregarded.

5.5.1 Modifications to the DARPA 99 Dataset

Our tests use a modified DARPA g9 dataset that reflects a scenario
where multiple sensors are simulated to independently monitor parts
of a network. For a full description of this dataset without our modi-
fications, see Section 3.3.1. To construct aggregated training datasets,
we use the third week of the incoming training traffic of DARPA which
does not contain attacks®. For the aggregated testing datasets, we use
the two available weeks of incoming testing traffic of DARPA. The test-
ing dataset consists of normal traffic and 201 different attacks. Due
to our modifications described next, 19 attacks are removed, i.e., 19
attacks are treated as if no sensor observed them.

Figure 5.3 shows the original and our modified DARPA 99 capturing
architecture. The DARPA 99 dataset was captured using a single sen-
sor at the ingress point of external traffic, as shown in Figure 5.3a. We
modified the dataset to reflect the architecture shown in Figure 5.3b.
With our modifications, we simulate that each local host captures net-
work traffic independent of each other.

Our modifications effected two changes in the resulting dataset (in
contrast to the original DARPA 99 dataset). First, the modifications re-
moved all packets from the dataset with a destination IP address of
a host that does not exist in the local network. Packets discarded this
way relate mostly to port scans and DoS attacks. Second, the modifica-
tions removed packets in the testing dataset that target hosts that do
not appear in the training dataset. This is required as we assume that
all sensors (hosts) are present, both, during training and testing of
the anomaly detection models. Would this assumption not be made,
many sensors during testing would not have an associated anomaly
model. The resulting dataset consists of 15 sensors (one for each local
host still in the dataset after our two modifications).

The DARPA dataset was created with synthetic traffic. The first three weeks of incom-
ing traffic contain only normal traffic.

121

COMMUNITY FORMATION

((o})) E%Cﬂ ‘

Network Sensor Router Internet

(a) Original DARPA g9 architecture: Outgoing network traffic is captured by
one sensor that lies before the last end point before traffic reaches the Internet.

Network & Sensors Router Internet

(b) Modified DARPA 99 architecture: Instead of a single sensor, each host
captures its own outgoing network traffic.

Figure 5.3: The original and our modified architecture of the DARPA 99
dataset.

5.5.2 Using LERAD in the Communities

Every community head s} uses LERAD to build a model of normal-
ity. Community heads are responsible for running LERAD on their
aggregated training dataset to create conditional rules that model the
normal behavior of network traffic within a community. These nor-
mality models are then shared with all other community heads. At
each community head, an ensemble of models is built with all mod-
els, effectively recreating the same ensemble in each community head.
Community heads use the ensemble model, which consists of collec-
tions of conditional rules, to test their aggregated testing dataset. Rule
violations, or alarms, are sent to a central location where alarms can
be sorted and reported. We choose a random community head to act
as this central location.

Sensors extract 23 different features from the local network traffic
they monitor. Therefore, the aggregated training and testing datasets
consist of data points with 23 features. The features we select are
known to work well with LERAD [Matthew V Mahoney and P. Chan,
2003]. For each observed network flow (see Section 4.2.1), we extract
the date and time; the destination and source address; the destination
and source port; the duration of the flow; the TCP flags of the first,
second to last and last packets of the flow; the sum of payload sizes
of packets in the flow; and the first eight words of flow.

122

5.5 EVALUATION

5.5.3 Experimental Setup

We use recall and precision to evaluate our results. In this context, re-
call is the number of attacks detected over the total number of attacks.
Precision is the true alarmes, i. e., attacks detected, over the total num-
ber of alarms (true alarms + false alarms). Each experiment is run
500 times and the recall and precision are averaged over all runs. We
do not include confidence intervals in our results as these are small
and do not add useful information to the plots.

To measure recall and precision, we use the alarms issued by every
community head. Recall that all community heads send their alarms
to a predefined community head acting as a central location. Dupli-
cated alarms within a 60 second interval are removed. We analyze
alarms from high to low anomaly scores and determine if they corre-
spond to a true or false positive. We stop the analysis process after a
certain number of false alarms are processed. All remaining alarms
are discarded and results are calculated.

Our experiments test the recall and precision of different commu-
nity configurations. We explicitly distinguish between three impor-
tant community configurations based on the number of sensors com-
munities have:

® Centralized Configuration (ng = ||S|| and n, = 1). Only one com-
munity exists and all sensors send features to one community
head.

® [solated Configuration (ng = 1 and n, = 1). One community exists
for each sensor for a total of ||S|| communities. No collaboration
between sensors is possible.

® Community Configuration (ng = x where T < x < ||S]|). Com-
munities are formed that enable different degrees of collaboration
between sensors.

In our experiments, we expect the centralized configuration to outper-
form all others as all available data is used to create a single model.
On the contrary, the isolated configuration is not expected to perform
well as only weak models are ensembled. As communities include
more sensors, their recall and precision should approach those of a
centralized configuration. Due to the ensemble of models, we further
estimate that certain community configurations could outperform a
centralized one.

5.5.4 Experimental Results
Figure 5.4 shows a comparison of the recall and precision of every

possible community size, as created using Algorithm 5.1, given as in-
put the 15 sensors of our modified DARPA dataset. Figure 5.4 shows

123

centralized
configuration

isolated
configuration

community
configurations

COMMUNITY FORMATION

the outcomes of our experiments when different numbers of false
alarms are tolerated. For each experiment, we perform anomaly de-
tection until the stated number of false alarms are issued. At that
point, recall and precision are calculated with the processed alarms
and the leftover alarms are ignored. High false alarm rates is one of
the main weaknesses of anomaly detection. By discarding alarms, we
restrict the false alarms to make the system usable in practice. We
measure the detection capabilities of our communities using thresh-
olds of 100, 150, 200 and 400 false alarms. The testing data consists of
two weeks (10 days) of traces. Therefore, 100 false alarms correspond
to an average of 10 false alarms per day, 150 to 15 false alarms, and
SO on.

0.675
0.650
0.625
0.600
0.575
0.550
0.525
0.500
0.475
0.450

Recall

=—@— 100 false alarms
=== 150 false alarms
= 200 false alarms
—@— 400 false alarms
12345678 9101112131415
Number of Sensors (n;)

(a) Recall after considering different number of false alarms.

0.851
0.80F
0.751
0.70
0.651
0.60

Precision

—®— 100 false alarms
0.551 =F—= 150 false alarms
0.50 = 200 false alarms
0.45F —@— 400 false alarms

12345678 9101112131415
Number of Sensors (n;)

(b) Detection precision after considering different number of
false alarms.

Figure 5.4: Recall and precision when communities have different number of
sensors ns. With each configuration, a different number of total false alarms
are tolerated before dropping all other alarms.

124

5.5 EVALUATION

After encountering, e. g., 100 false alarms, we report the recall and
precision of our community-based anomaly detection methodology.
In Figure 5.4b, we show that when communities grow in size, pre-
cision is improved. This corroborates our hypothesis that a central-
ized configuration would have the highest precision. As seen in Fig-
ure 5.4a and 5.4b, if the false alarms threshold is increased, some
community sizes improve the recall in contrast to a centralized con-
figuration, i.e., ng = 15. With a threshold of 200 false alarms, most
community sizes have better recall than the centralized configuration.
Furthermore, with a higher threshold, the detection precision of all
community sizes converges to the precision of the centralized config-
uration. With a threshold of 400 false alarms, every community out-
performs, in terms of recall, the isolated community configuration as
well as the centralized configuration. Above 400 false alarms, no sig-
nificant changes are observed. However, as seen in Figure 5.4b, the
precision drops as the false alarms increase. With the 200 false alarms
limitation, community configuration where ns € [, 11] approach the
precision of the centralized configuration.

The maximum sensor overlap n, has noteworthy properties that
reflect on the recall of communities of fixed size. In Figure 5.5a, we
illustrate the recall of communities of fixed size ng and varying sen-
sor overlap n,. Recall generally improves with more sensor overlap
N, no matter the configuration. A centralized configuration, however,
outperforms all others as expected. A centralized configuration with
a sensor overlap of n, is the same as creating n, models with the
features of every sensor and making an ensemble of all models. For
this experiments, we created communities using Algorithm 5.2.

In Figure 5.5b, we show an isomorphic perspective of Figure 5.5a.
This perspective, however, also illustrates that as the number of com-
munities n. increases, the impact of n, is only slightly noticeable.
The sensor overlap, therefore, is not as impactful as we expected.

Our results show that communities easily outperform isolated con-
figurations and converge towards a centralized configuration. When
the threshold of false alarms is raised, some community configu-
rations can outperform a centralized configuration. This is due to
the nature of ensemble learning which can generally improve the
performance of weaker learners. Communities can improve the de-
tection and precision ratio of collaborating sensors while lowering
communication overhead as compared to a centralized configuration.
Our results indicate that, for the particular case of using the DARPA
dataset, we can find a combination of the parameters ng,n, and n,;
plus a suitable false alarm threshold that enables community con-
figurations to perform better than the centralized configuration, i.e.,
ng = 9,nc =4,n, = 3 and a false alarm threshold of 200. This is a par-
ticular setting that does not necessarily generalize to other datasets.

125

COMMUNITY FORMATION

0.61r —— N, = 1

0.60F —— =2
0.59F _—:: Z =
0.58F —f— N, = D
0.57F
0.56 F
0.55F
0.54}
0.53}

0.52 12345678 9101112131415
Number of Communities (n.)

Recall

(a) Recall depending on the number of communities n. and the maximum
allowed sensor overlap n,.

0617 [® ® ® ® o [—o—
0.60} e =
—— N = 4

0.59F e . =6

0.58 ¢ —_—— . =
% 0.57F —— 7, = 10
SN —_—— 1, =15
£ 056}

0.55F

0.54F

0.53F

0.52 1 2 3 4 5 6

Maximum Sensor Overlap (ng)
(b) Recall depending on the maximum sensor overlap n,.

Figure 5.5: Recall when we vary the maximum allowed sensor overlap n,.
With Algorithm 5.2, we create communities that all have the same parameter
N, for a given community size nc.

With different datasets, the parameters for the best performing sys-
tem will certainly vary.

56 CONCLUSION AND LESSONS LEARNED

The intrusion detection community has many well established intru-
sion detection mechanism. However, with the advent of large net-
works, collaborative attackers and CIDSs as countermeasures, many
mechanisms became outdated due to their centralized nature. We ex-
perience this problem, for example, when trying to use the LERAD
algorithm with a day of the MAWI dataset (see Section 3.3.1). It is not
uncommon for a day in the MAWI dataset to be larger than 10GiB in
size. This is taking into account that packet payloads are not available

126

56 CONCLUSION AND LESSONS LEARNED

and only 15 minutes of traffic are recorded per day. LERAD could not
be implemented to operate at the scale of the MAWI dataset without
modifications.

Instead of modifying LERAD, we arrived at the conclusion that it is
more viable to work on partitions of a dataset instead of modifying
every centralized algorithm to fit a distributed environment. In live
networks, however, partitioning network traffic is not straightforward.
In a distributed scenario, sensors monitor network segments and do
not know in foresight the amount of traffic they will observe. There-
fore, we need to create groups of sensors that can share information
with themselves to build models. This alone does not solve the issue
of utilizing an inherently centralized mechanism; we still require a
centralized component where data can be collected and learned from.
We proposed the idea of communities to tackle these issues.

This chapter studied the possibility of using centralized intrusion
detection mechanisms inside distributed CIDSs using communities. A
community is a grouping of CIDS sensors that operates as a central-
ized system independent of other communities. All sensors within a
community are responsible for extracting features from the network
segments they monitor (without overlap) and sending the features
to a community head. Each community appoints a sensor as com-
munity head which is responsible, besides receiving all features, for
creating ML models. Community heads then share their models with
each other to create ensembles of models. Sharing models has a signif-
icantly smaller communication overhead that sharing data and can be
disregarded in the calculation of network overhead. When a commu-
nity head needs to detect intrusions, it uses the ensemble of models
(which is the same in every community head).

5.6.1 Future Work

In this work, we establish communities with stochastic algorithms
and do not take into account the roles of the sensors. We acknowl-
edge, however, that more intelligent strategies can be used to estab-
lish communities: not all sensors are expected to observe the same
network traffic. A community head might be capable of creating bet-
ter models when all traffic sent to it is similar (or different depending
of the scenario). For example, all web servers might want to send their
extracted network features to a common community head so that the
community head can create better models of normality that describe
web traffic.

The algorithms we propose to form communities are centralized. In
future work, a system that implements the concept of communities
would benefit when these community formation algorithms would
work in a distributed environment.

127

COMMUNITY FORMATION

5.6.2 Chapter Summary

This chapter began introducing the need of applying centralized in-
trusion detection systems within distributed CIDS. Communities were
proposed as a mechanism that achieves this. Each community inde-
pendently creates a ML model using the data generated by its mem-
bers and shares the model with all other communities to establish an
ensemble of models. Communities determine if network traffic con-
tains intrusions by querying each model in the ensemble and choos-
ing the answer given by the model with the most confidence.

Communities have three inherent parameters that have a direct im-
pact in the communication overhead and the detection accuracy of
their created ensemble of models. The parameters are the size of a
community, the number of total communities and the maximum over-
lap of sensors within communities. These three parameters constitute
the means by which we can form communities. We propose two differ-
ent algorithms that stochastically form communities respecting some
combination of parameters.

The first algorithm we propose focuses on establishing communi-
ties with a fixed size, i. e., the number of sensors that make up a com-
munity is the same for all communities. The first algorithm varies the
number of communities and the overlap of sensors to accommodate
communities with a fixed size. In contrast, the second algorithm we
propose forms a fixed number of communities that all have a specific
sensor overlap. It does so by varying the number of sensors within
communities. These two algorithms are used to evaluate the intrusion
detection capabilities of communities.

In the evaluation section of this chapter, we demonstrated how
our community concept can be applied to detect intrusions in large
networks using an inherently centralized mechanism within a dis-
tributed CIDS. We analyzed the particular case of implementing an
anomaly-based intrusion detection mechanism where each commu-
nity was responsible for creating a model of normality. The experi-
ments used a modified version of the DARPA g9 dataset that reflects
a scenario of multiple sensors. We concluded that communities can
leverage communication overhead and detection accuracy to approxi-
mate the detection accuracy of a centralized system, i. e., a system that
possesses all available information. Our experiments also showed that
with certain parameter settings communities were able to outperform
a centralized system. This was due to the creation of ensembles that
theoretically improve upon the performance of single weaker models.

128

INTRUSION INFORMATION DISSEMINATION

CONTEXT

In the previous chapter, we proposed concepts for grouping sensors
into communities so that CIDSs could use centralized mechanisms in
distributed environments. Disseminating information was at the core
of detecting network-wide anomalies, yet we used a tacit dissemina-
tion strategy. In fact, not only our work, but also most research into
CIDSs assumes or takes for granted the process by which information
is disseminated [Vasilomanolakis, Karuppayah, et al., 2015]. Instead
of proposing adequate dissemination strategies, researchers often rely
on central servers to collect information or on sub-optimal dissemi-
nation techniques like flooding. These inadequate strategies impose
heavy restrictions on the size of communication networks and bring
new sets of problems. A viable dissemination strategy that general-
izes to different CIDSs is in demand. Dissemination strategies are of
special importance if distributed system are to work not only in a
theoretical but also in a practical sense.

N this chapter, we propose a viable strategy to efficiently dissem-

inate intrusion information taking into account the requirements

imposed by CIDSs. We further propose a set of requirements to make
dissemination strategies practical and generalizable to most CIDSs.

A chapter overview is shown in Figure 6.1. This chapter constitutes
the fourth contribution of this thesis. From the perspective of the CIDS
architecture model we reference (see Section 2.3.3), the contribution
covers the Data Dissemination, and Data Correlation and Aggregation
layers. In the presentation of the contribution, two points of view
are taken. From the point of view of the Data Dissemination layer, we
propose a stochastic strategy specifically designed for CIDSs to effi-
ciently disseminate information. To fully disseminate information to
every collaborating member, our experiments showed that our strat-
egy needs less than 20 percent of the messages sent by flooding. The
strategy further enables the members of a CIDS to make deductions
concerning information that has not yet been explicitly shared. This
enables the members of a CIDS to make decision without needing
to wait for all information to be disseminated. From the perspective
of the Data Correlation and Aggregation layer, the proposed strategy

129

INTRUSION INFORMATION DISSEMINATION

Chapter Overview

Field of Contributions CIDS Architecture

1. Dataset Generation Global Detection

2. Intrusion Detection
Data Correlation & Aggregation

3. Community Formation

Membership Data
4. Information Dissemination Management Dissemination
5. Collusion Detection Local Detection

Figure 6.1: This chapter constitutes the fourth contribution of this thesis:
Information Dissemination. This contribution is tied to the highlighted layers
of our referenced CIDS architecture: Data Dissemination and, Data Correlation
and Aggregation.

compresses and encodes information into constant-sized messages of
sub-linear size'.

This chapter is structured as follows. Section 6.1 introduces and
motivates the need for a general purpose information dissemination
strategy tailored towards CIDSs. We present specialized background,
relevant for comprehending our dissemination strategy, in Section 6.2.
Related work follows in Section 6.3 describing what CIDSs do to dis-
seminate information. Our dissemination strategy is structured, to
ease its comprehension, into three components. We give an overview
of each component in Section 6.4. The first component, which re-
lates to feature processing, is detailed in Section 6.5. We then follow
with an explanation of the similarity deduction component in Sec-
tion 6.6. In Section 6.7, we elaborate on the last component which
deals with information dissemination. With the evaluation presented
in Section 6.8, we demonstrate that our dissemination mechanism
performs better and has advantages in comparison to the most com-
monly used dissemination mechanism. Finally, we conclude with our
lessons learned, a view into the future and a chapter summary in
Section 6.9.

6.1 INTRODUCTION

CIDSs rely on several NIDS to monitor large networks. NIDSs are re-
sponsible for observing and collecting information from network seg-
ments. A full network overview is then acquired when NIDSs ex-
change their information with each other. In distributed CIDSs, where

A data structure is sub-linear in size if it occupies less units of space than the total
units of space occupied by all data items it stores.

130

6.1 INTRODUCTION

there is no centralized information repository, NIDSs are expected to
directly distribute information among themselves. Information dis-
tribution and dissemination, therefore, becomes the basis by which
collaboration is established.

Correlating and aggregating shared information is at the core of
establishing collaboration in a CIDS [Vasilomanolakis, Karuppayah,
et al.,, 2015]. NIDSs distribute information, e.g., sufficient statistics
[Lazarevic, Nisheeth Srivastava, et al., 2009], to enable others to corre-
late observations. Through correlations, NIDSs find common patterns
that enable them to find network-wide intrusions. To distribute their
findings, NIDSs use aggregation techniques to summarize what they
and others observe into messages. Aggregation minimizes the foot-
prints of the messages by making them as concise and informative
as possible. Messages, however, still need to be disseminated intel-
ligently to minimize the communication overhead of the system a
whole.

6.1.1 Problem Statement

We tackle the problem of efficiently disseminating messages within
NIDSs that would enable them to find distributed threats. Finding
threats is achieved by correlating, aggregating and disseminating in-
formation using a strategy that minimizes communication overhead.
Overhead is minimized by giving CIDS members the abilities to share
incomplete information and to deduce what is missing from it. We
rely on two tools to bestow CIDS members these abilities. First, we use
the Sketch PDS to correlate and aggregate local and remote informa-
tion to create messages suitable for dissemination. Second, Bayesian
Networks are used to deduce the information hidden behind the ag-
gregation process.

To create suitable messages for dissemination, we need to mini-
mize the size of the messages and the number of times messages
hop between hosts. Despite these restrictions, we set the goal of en-
abling every member to send their information to all others. If mes-
sages were naively sent from one member to every other, a total of
n x (n—1) messages would need to be sent, for n members. The
quadratic complexity of such a strategy would make the communica-
tion overhead pronounced. Alternatively, we could append informa-
tion to a received message before forwarding the message to other
members. This reduces the number of messages sent, but increases
the size of the messages. Trading lower number of sent messages for
bigger messages, effectively incurs in the same communication over-
head. A solution to this problem needs, therefore, to minimize the
number of sent messages while maintaining the size of the messages
constant at most.

131

requirement
categories

INTRUSION INFORMATION DISSEMINATION

Consider the scenario presented in Figure 6.2. Five CIDS members
wish to determine which other members have observed similar net-
work patterns. Table 6.1 summarizes the knowledge members acquire
after the shown messages are exchanged. For example, B knows how
similar its observations are to A, as indicated by a check mark (v). On
the other hand, A does not know anything about B, as indicated by
a question mark. If E wanted to know something about A, A would
need to send a message to B and B would need to forward this mes-
sage to E. Given an inefficient information dissemination technique,
16 additional messages would need to be sent to change every ques-
tion mark to a check mark.

A B C D E
A 2 2 2 2
B v 2?2
cC 2?2 2 ? v
D ? ? 7 v
E 2 v 2?2 2
Figure 6.2: Five NIDSs members Table 6.1: Illustration of what infor-
restricted by an underlay reagard- mation each member knows of the
ing how messages can be shared. other members after four messages
are sent.

We wish to address the problem of distributedly filling out Ta-
ble 6.1 with check marks, for each member, as efficiently as possi-
ble. Note that each member has a copy of this table that must be
filled out. In filling out all tables, we are constrained to only send-
ing small, constant-sized messages; thereby, minimizing the commu-
nication overhead. We create constant-sized messages by aggregating
the information of different members into Sketches of fixed size. The
caveat is, however, that Sketches cannot keep track of what belongs to
whom. We study and design Bayesian Networks capable of deducing
the members to whom aggregated information is associated.

6.1.2 Challenges

Information dissemination is a difficult task subjected to multiple re-
quirements that related work tends to omit (see below). We classify
the requirements related to the dissemination of information into two
categories. The general and practical category of requirements make in-
formation dissemination usable in practice. The reasoning category of
requirements enable CIDS members to process information efficiently,
taking uncertainty into account.

132

6.1 INTRODUCTION

While the first requirement category is inherent to the communica-
tion channel, the second category directly relates to how CIDSs han-
dle information. Most CIDSs use Probabilistic Data Structures (PDSs),
such as Bloom filters [Locasto et al., 2005; Vasilomanolakis, Krugl,
et al., 2016], to perform aggregation and correlation. In such a con-
text, the goal of these PDSs is to summarize feature counts. Feature
counts are the histograms, or the number of times, certain contextual
elements are seen in a predefined time window. In the context of net-
work flows, examples of features counts are the number of times a
specific IP address or a port number is seen in the last hour. In most
modern NIDSs, feature counts hold the sufficient statistics needed to
create intrusion detection models, e.g., [Lazarevic, Nisheeth Srivas-
tava, et al., 2009; Nychis et al., 2008]. Many ML models solely require
feature counts to recognize patterns, find clusters or retrieve informa-
tion [Cha, 2007; Duda et al., 2012]. Therefore, dissemination strategies
can be improved if they are tailored to the dissemination of feature
counts.

To summarize, the following are requirements needed to properly
disseminate information within CIDSs:

® General and Practical Requirements

1 Efficient. CIDSs need to minimize the communication overhead
by using small messages of constant size.

2 Real-time. CIDSs need to process information and make decisions
without much delay.

3 Privacy-preserving. The messages disseminated within a CIDSs
must not expose sensitive information of the source.

4 Resilient. In this context, CIDSs should avoid creating a SPoF.

® Reasoning Requirements

5 Capable of Deductions. CIDS members should have the ability to
reason accurately from incomplete or missing information.

6 Focused on feature count dissemination. CIDSs should optimize
the dissemination process to handle feature counts as these are
in most cases sufficient to create intrusion detection models.

6.1.3 Chapter Contributions

In this chapter, we propose a dissemination strategy that finds CIDs
members experiencing similar events. We take into account the pre-
viously defined general and practical requirements as well as the rea-
soning requirements to design the strategy. The proposed strategy,
first, efficiently encodes, aggregates and correlates feature counts us-
ing Sketches. Second, the strategy trains Bayesian Networks to enable
CIDS members to make similarity deductions from aggregated feature
counts stored in multiple Sketches.

133

feature counts

general and practical
requirements

reasoning
requirements

INTRUSION INFORMATION DISSEMINATION

We evaluate our dissemination strategy and how CIDS members use
it to infer similarities using realistic and synthetic data. Our experi-
mental results show that when using 8o percent of the information
used by flooding techniques, we can deduce feature similarities with
small error margins. If 50 percent of the information is used instead,
similarities can still be deduced better than the baselines, i. e., random
or fixed similarity choices.

The proposed dissemination strategy is not only applicable within
the context of CIDSs. It is a general strategy applicable to other prob-
lem spaces where it is useful to deduce similarities distributedly (tak-
ing communication overhead into account). Other potential domains
include, but are not limited to, Software Defined Networking (SDN),
edge computing and the placement of cache servers within Content
Distribution Networks (CDNs).

6.2 SPECIALIZED BACKGROUND

This section introduces Count-Min Sketches, Divergences and Bayesian
Networks. The dissemination strategy proposed herein combines these
three topics to deduce similarities between observations made by CIDS
members. A description of this problem is found in Section 6.1.1.
Count-Min Sketches are used to encode and aggregate observations
from different sources for distribution. Similarity Metrics define ways
to compare distributed data. Finally, Bayesian Networks provide the
probabilistic machinery needed to deduce similarities from aggre-
gated observations.

6.2.1 The Count-Min Sketch Probabilistic Data Structure

One of the main purposes of PDSs is to track elements (in some way
or form) using sub-linear space in relation to the size of the elements
being tracked [Cormode and S. Muthukrishnan, 2005]. Many PDSs are
used to compress, aggregate and distribute data. Their efficiency in
doing so has earned them widespread use within network communi-
cations research.

Many PDss exhibit specific advantages and disadvantages. Bloom
filters, perhaps the most popular of these, have been used to detect
collaborative attacks [Vasilomanolakis, Krugl, et al., 2016], route net-
work resources [Fan et al., 2000] or create overlay networks [Kostic¢ et
al., 2003]. Classical Bloom filters, however, have certain disadvantages
that make them unsuitable in our context due to our requirements
(see Section 6.1.2). In order to achieve our goals, we want a PDS that
can do two things: First, the PDS must be capable of tracking element
counts. Second, the PDS must be able to calculate (or approximate) the
distance between the element counts it encodes against the counts en-
coded by another PDS of the same type. Count-Min Sketches have

134

6.2 SPECIALIZED BACKGROUND

these capabilities [Anceaume et al., 2013; Cormode and M. Muthukr-
ishnan, 2012]. From this point forward, we use the term Sketch to refer
to a Count-Min Sketch.

Sketches are PDSs able to efficiently count, quickly update and ac-
curately approximate streams of items in sub-linear space* [Cormode
and S. Muthukrishnan, 2005]. Given the element set

e={er,ez...,en},

where each element e; has been observed a total of f(e;) times, con-
sidering f : e — [0, 00), a Sketch approximates the element count
f(ei) with f(e;). The approximation f(e;) has probabilistic guarantees
governed by user parameters.

We formally define a Sketch as $(M, H). The set M consists of d
vectors of wsize,asinM = {my,...,mgq}, m; ={mq,..., my}. The set
H is comprised of d pairwise-independent hash functions, as in H =
{h1,...,ha}, hi : e — [1,w). The value of d and w can be manually
specified or, if probabilistic guarantees are desired [Cormode and S.
Muthukrishnan, 2005], derived from the parameters 6 and € as d =
In(1/8) and w = [2/€]. Each element in m; is initialized to zero, i.e.,
vVm € m; : m = 0. To simplify the notation, we use M(i,j) = m; € m;.

The counts f(e;) are added to a Sketch using the update rule

M(j, hj(ei)) = M(j, hj(ei)) +flei); Vje{l,..., d}

We obtain the approximated counts f(e;) by computing the smallest
hashed value of the element as

f(ey) = argmin M(j, hj(ei)).
j

6.2.2 Divergences of Sketches

Similarity metrics compare the distance between two or more entities
in a mathematical space. They effectively measure how objects dif-
fer from each other. Similarity metrics are commonly used for recog-
nizing, retrieving, correlating and clustering information [Cha, 2007].
Given set Q, elements x,y,z € Q and distance function d: Q x Q —
R, the following properties are satisfied if d is a similarity metric
[Anceaume et al., 2013]:
A distance function that measures the similarity of a Probability Mass
Function (PMF) is known as a divergence. A divergence commonly sat-
isfies a subset of the properties that define a similarity metric.

We can compute the similarity of two Sketches using especially
designed divergences [Anceaume et al., 2013; Cha, 2007]. The Sketch
*-metric, proposed by Anceaume et al., is a divergence family that

A data structure with the sub-linear space property needs less than N units of space
to save N items.

135

Sketches

element count
definition

Sketch formalization

similarity metric

divergence

Sketch *-metric

divergence set Q

sum of element
counts Hm ||

divergence of two
Sketches
b8, s2)

Bayesian Network
inference

INTRUSION INFORMATION DISSEMINATION

1. d(x,y) =0 (non-negativity)

2. dx,y)=0 <= x=y (identity of indiscernibles)
3. d(xy)=d(y,x) (symmetry)

4. d(x,y)+d(y,z) > d(x,z) (triangle inequality)

finds similarities between two Sketches. Given Sketches $(1) (M (1), H)
and 8$(2)(M(2), H), encoding element sets eV and e(?), the Sketch
*-metric approximates any of the divergences in the set Q = { Kullback-
Leibler divergence, Jensen-Shannon divergence, Bhattacharyya distance }.
Note that each Sketch is associated with a different set of vectors
MO = {mgl), .. m d } and each vector is associated with different
(1) j)

values m; = {m1 e, W }. The set of hash functions H, and pa-

rameters d and w are shared among all Sketches We denote the sum

of all element counts of a vector m Ve MW as Hm || =Y m
The Sketch *-metric is defined as

m (2) m
(])(e ¢ > %argmaxd}(
leT]|" Jle] j ™

The divergence between the PMFs of the element sets e(!) and e(?) (left
of Equation 6.1) are approximated by finding the largest divergence
between the PMFs of m; € M) and m; € M) (right of Equation 6.1).
We use the shorthand ¢(8("),8(2)) to refer to the divergence between
Sketches 81 and 8(?)

1) 2)

3) H);Vd)eQ

(6.1)

0

(
)
(2)
N m]

e = —

6.2.3 Bayesian Networks

A Bayesian Network is a directed acyclic graph that represents the
probabilistic influence that random variables exert upon each other.
Formally, a Bayesian Network is defined as § = (X, W, 0) [Reed et
al., 2014]. Random variables are represented by the nodes of the set X.
The directed edges of these nodes are captured by the set W. The pa-
rameter set © represents all the Conditional Probability Tables (CPTs)
that encode the probabilistic relationships, encoded by the edges W,
of nodes in X.

Bayesian Networks enable us to query for the probability of ran-
dom variables given that we know the probability of some other ones.
If we let some random variables in X be fixed to specific values, we
can compute the posterior distribution of one or a set of the random
variables in X which were not fixed. This is known as inference and is
what enables us to deduce similarities within the members of a CIDs.

136

6.3 RELATED WORK

6.3 RELATED WORK

Sharing information is the key mechanism that enables CIDSs to ef-
fectively detect attacks in a distributed system. Most systems relying
on an information distribution mechanism do not explicitly address
the problem of minimizing communication messages and reducing
network overhead. Wu et al. [2003] developed a CIDS that improved
the performance of single IDSs by allowing IDSs to share events with
each other. The events are processed with an inference engine that
reduced false positives. Although different inference engines can be
distributed among members of the CIDs, the authors do not explicitly
address how events are disseminated within the network.

Oikonomou et al. [2006] proposed a collaborative overlay, known
as DefCOM, that enables different NIDSs to collaboratively detect and
mitigate DDoS attacks. Within the overlay, NIDSs send alert messages
to each other to identify when bandwidth rates are expected to be
exceeded. The authors state that “alarm messages are flooded on
the overlay, in a controlled manner to suppress duplicate messages”
[Oikonomou et al., 2006]. The flooding mechanism employed is inef-
ficient and does not minimize network overhead.

Gamer [2012] proposed a collaborative anomaly-based detection
system capable of detecting large-scale network attacks. Just as in the
aforementioned systems, information exchange is the key to the de-
tection capabilities of the system. This time, however, the author rec-
ognizes the network overhead issue and proposes a system that deals
with it. The proposed solution restricts communication to neighbour-
ing peers only. The system could be more efficient and less complex
if this restriction would be relaxed while still minimizing the network
overhead.

Many security systems mitigate network communication overhead
by using PDSs to encode and distribute information. Bloom filters have
been a popular tool to achieve this. In the work of Vasilomanolakis,
Krugl, et al. [2016], the proposed system detects distributed attacks by
disseminating Bloom filters among collaborating NIDSs. Bloom filters
encode the IP addresses of network actors associated with malicious
activity. With these Bloom filter encodings, some distributed attacks
can be detected by computing the bits that overlap between two or
more Bloom filters. The Bloom filters are distributed using a form of
gossiping [Kermarrec et al., 2007]. Gossiping techniques do not guar-
antee that disseminated messages reach all communication members
in an overlay. Instead, the messages reach all members with some
probabilistic guarantees.

Yan et al. [2006] use Bloom filters to improve the performance of
signature-based collaborative spam detection systems. In such sys-
tems, spam is detected by comparing unknown content against sig-
natures spread among collaborating peers. Signature-based spam de-

137

interpretation of
similarity

1. feature processing
component

2. similarity
deduction
component

INTRUSION INFORMATION DISSEMINATION

tection is effective, albeit computationally expensive. Furthermore, in
a distributed environment, the overhead of sharing signatures can
be substantial. To improve the lookup, storage and merging of signa-
tures, as well as reducing the communication overhead of synchroniz-
ing signatures, the authors use Bloom filters.

Boggs et al. [2011] presented a distributed NIDS that detects attacks
by comparing network traffic against signatures of normal and abnor-
mal traffic. The normal and abnormal signatures correspond to high
order n-grams observed in the payloads of normal and abnormal
packets, respectively. The n-gram analysis is based on the effective
ANAGRAM algorithm [Wang et al., 2006]. The signatures are stored
in Bloom filters and shared with collaborating members to distribut-
edly identify attacks. The Bloom filters preserve the privacy of the
analyzed traffic, minimize network overhead and reduce signature
lookup times.

64 OVERVIEW OF THE DISSEMINATION STRATEGY

1. Feature Processing

1.1 Encoding Features
1.2 Aggregating Features
1.3 Correlating Features

2. Similarity Deduction
2.1 Building Bayesian
Networks
2.2 Learning Bayesian
Network Parameters

Deducing
Feature Similarities

3. Information Dissemination
3.1 Probabilistic

Forwarding

Figure 6.3: Components that build up our mechanism to deduce the feature
similarities between CIDS members.

Our ability to identify the similarity between CIDS members relies
on them recording summaries of their observations in the form of
feature counts. The interpretation of similarity is, therefore, directly
related to the features being counted. For instance, if we use the ma-
licious IP address of raised alarms as the feature to count, we would
interpret that similar members are those experiencing attacks from
the same malicious IP. Beyond detecting one-dimensional similarities,
our dissemination strategy is able to tell different degrees of similar-
ity when multiple features are taken into account.

The deduction of feature similarities is a process that uses three dif-
ferent components (see Figure 6.3). In the first component, called Fea-
ture Processing, feature counts are encoded, aggregated and correlated
using Sketches as detailed in Section 6.5. In the Similarity Deduction

138

65 FEATURE PROCESSING: ENCODING COUNTS WITH SKETCHES

component, as detailed in Section 6.6, Bayesian Networks are build
and trained to deduce similarities from Sketches encoding feature
counts. Finally, in the Information Dissemination component explained
in Section 6.7, we develop a stochastic message forwarding technique.
The technique exploits Bayesian Networks and Sketches to efficiently
distribute feature counts such that similarity deductions can be made.

65 FEATURE PROCESSING: ENCODING COUNTS WITH SKETCHES

The first component needed to deduce feature similarities is that of
encoding, aggregating and correlating feature counts. Sketches pro-
vide the means to achieve these. Sketches encode feature counts by
storing these in the data structure itself. Aggregation is performed by
summing Sketches together (see below). Correlation is then the pro-
cess of estimating the difference (or similarity) between two Sketches
using a divergence (Section 6.2.2).

Feature counts encoded in Sketches can be interpreted as the his-
togram or Probability Density Function (PDF) of the counts. These
PDFs are compared using the Sketch *-metric using one of different
divergence functions. We use the Jensen-Shannon Divergence (JSD)
[Lin, 1991] on top of the Sketch *-metric because of two of its prop-
erties. First, the JSD is symmetric with respect to its domain, making
Sketch comparisons consistent. Second, the co-domain of the JSD is in
the range [0, 1] when base two logarithms are used. This co-domain
enables bounded similarity comparisons.

Aggregating encoded feature counts is the process of adding two
Sketches together. Given Sketches S(A](M(A),H) and S(B)(M(B),H),
Sketch addition is defined as

S(A+B) _ g(A) + s(B)

S(A+BJ(M(A+B),H) _ S(A)(M(A),H) —I—S(B)(M(B),H)
MATBI(,) = MM (4,5) + MBI (4,5)

Aggregated feature counts can be interpreted as adding histograms or
mixing PMFs. If PMF(A) and PMF(B) are the PMFs represented by Sketch
8A) and 8(B), respectively, then the PMF of 8(A+B) is pMF(A+B) —
0.5 - PMF(A) 1+ 0.5 PMF(B), Aggregates alone are not enough to accu-
rately calculate feature count similarities. However, these aggregates
become sufficient when combined with our similarity deduction com-
ponent (Section 6.6).

Correlating feature counts is the process of calculating the diver-
gence of the PMFs (and PMF mixtures) of the feature counts as en-
coded by Sketches. When using the Sketch *-metric with the JsD to
compare Sketches, the JSD approximates the true divergence of the
feature counts. JSD values close to zero indicate that two PMFs are
similar, while values close to one indicate that they are different. In

139

3. information
dissemination
component

1.1 encoding
features

1.2 agqregating
features

sketch addition

1.3 correlating
features

INTRUSION INFORMATION DISSEMINATION

Example 6.1, we illustrate the difference between calculating the di-
vergence of PMFs or of Sketches encoding the PMFs.

Example 6.1: Feature Similarities

The PMFs of the observations made by three collaborators (A, B
and C) may look like those shown in Figure 6.4. The divergences
between these observations (and their aggregations) are shown in
Table 6.2. Each table cell corresponds to the divergence between
the observations (and aggregations) represented by the first col-
umn and row associated to the cell. The notation X + Y corre-
sponds to the aggregation of the PMFs of X and Y. The top three
rows show the divergences between PMFs. The bottom three show
the divergences when comparing PMFs encoded in Sketches. No-
tice their similarity.

o1t .
n
w
= 0.0 : , . . . :
=
Zol)
£0.1
<
E 0.0 - . . , : .
& 01
N r—

0 5 10 15 20 25 30
Feature Index

Figure 6.4: A scenario of three members, each with different PMFs, that
describe the features they observed. Member A has mostly made obser-
vations from the fifth to the tenth feature. In contrast, member C has
observed almost all features.

With the proposed techniques to process feature counts, calculat-
ing similarities between collaborators no longer requires the distri-
bution of every count. Using Table 6.2 as an example, consider the
scenario where B receives §(A) and 8(A*¢). From the divergence
¢ (8(B),8(A)) = 0.91 (from Table 6.2), B knows that it does not share
many observations with A. B also knows ¢(8(B),8(A+C)) = 0.19. Al-
though B only has an aggregate that involves C, B can deduce that
the gain in similarity from 0.91 to 0.19 must be due to a high similar-
ity that exists between B and C, i.e,, ¢ (8(B),8(C)) = 0.21. Thereafter,
the similarity between B and C can be deduced to be medium-high
without directly observing the feature counts of C. Although it is not
obvious from this simple scenario, the benefits of this deduction strat-
egy are apparent when aggregations involve multiple Sketches. The
following section automates this deduction strategy when multiple
aggregations are taken into account.

140

6.6 SIMILARITY DEDUCTION: USING BAYESIAN NETWORKS

Divergence of PMFs
A B C A+B A+C B+C

without Sketches

A 000 095 0.56 0.30 0.46 0.71
B o095 o0.00 o022 0.29 0.21 0.09
C o056 0.22 0.00 0.14 0.12 0.04

with Sketches
A 0.00 091 0.51 0.29 0.45 0.65
0.91 0.00 0.21 0.27 0.19 0.08
C o051 021 0.00 0.12 0.11 0.04

=]

Table 6.2: Divergence of the PMFs shown in Figure 6.4 for A, B, C and their
aggregations. Each cell shows the divergence between the PMFs that belong
to the members (or their aggregations) corresponding to the first column
and row of the cell. The top three rows display the divergence between
PMFs. The bottom three rows display the divergence between the same PMFs
encoded with Sketches.

6.6 SIMILARITY DEDUCTION: USING BAYESIAN NETWORKS TO
DEDUCE SIMILARITIES

The previous section presented the first component needed to deduce
feature similarities. This first component used Sketches to encode, ag-
gregate and correlate feature counts. This section presents the second
component, that which deduces Sketch similarities. To automatically
deduce similarities from Sketches, we use Bayesian Networks. We
first tackle the task of designing a Bayesian Network capable of rea-
soning out, after some evidence, how Sketch similarities are related
to each other. Secondly, we learn the parameters of the proposed
Bayesian Network.

6.6.1 Bayesian Networks for Deducing Similarities

Designing a Bayesian Network 3 = (X, W, 0) (see Section 6.2.3) corre-
sponds to defining the set of nodes (or random variables) X and the
directed edges W that connect the nodes. The CPT parameters © are
either manually supplied or learned from data. We propose to model
the nodes as discrete random variables that describe the discretized
divergence ¢ (8X), 8(Y)) between the two Sketches $§X) and $(Y). The
divergence ¢ (8X),8(Y)) is calculated using ¢ = JSD as this facilitates
the discretization process due to the JSD having a bounded co-domain
[Lin, 1991].

We use a compact notation to reference the specific Sketch compar-
isons represented by nodes of our Bayesian Networks, the Sketches
the nodes compare and the Sketch aggregations they include. Sketch-
es of the form §X) are simply referred to as X. The Sketch aggregation
8§(X+Y) is referred to as XY. To reference the divergence represented

141

node divergence
notation

contents of a node

parameters C and n

three step node
creation approach

node candidates

node rank

INTRUSION INFORMATION DISSEMINATION

by a nodes, we use the notation (X[Y) = ¢ (8X), 8(Y)). We say that the
node (X]Y) contains the Sketches X and Y.

6.6.1.1 The Nodes of the Bayesian Network

The nodes X of our Bayesian Network are created taking into account
two parameters C, a set of Sketches, and n, the maximum number of
Sketch aggregations. To aid us in the process of creating nodes, we de-
fine the set of all subsets of C as P(C) and the set of all combinations
of C with k elements as Py (C) ={X € P(C) : || X|| = k}.

We use a three step approach to create the nodes X. First, we ob-
tain the set of combinations of C with n elements or less Q,(C) =
{P1(C)U...UPL(C)}. Second, we create node candidates by forming
element pairs using the elements of Q,,(C), asin S = P,(Q(C)). This
results in the set S having multiple elements s € S. Each element s
has two sets of Sketches, denoted {s1,s>} = s, where s; C C. Third,
to finally create the nodes of the Bayesian Network, we eliminate the
redundant elements of S. The set s is redundant when it meets any
of the conditions s7 C s, or s C s7. The set of nodes X can now be
formally defined as X = {(s1|s2)Vs € S:s1 ¢ 82, s2 ¢ s1}, where we
follow the notation we have introduced to reference the divergences
represented by nodes. The number of elements in each of s; and s,
is an important property of a node which we define as rank. Formally,
the rank of the node (s1lsz) € X is the sorted tuple

/ if <
rank ((s1]s,)) = Usall. sz} 3 llsall < szl 6.2)

(Is2ll, lIsall) if [[s2l] < Is1]

where ||s;|| refers to the number of aggregations in Sketch s;.

x103
% i Nodes (n = 2) L
%;5' ====: Nodes (n = 3) .I.
i ar Nodes (n = 4) ,l. + TFigure 6.5: The number of
S gl|=++=+ Nodesm=5)| 7,/ nodes created for a Bayesian
5 ol I.,. Pl Network grow exponentially
= ‘;' when different values of the
SIS 1 v‘,v‘“ parameters n and C are used.

0 [g . . .
3 4 5 6 7

Number of Sketches (||C|)

As a result of our methodology, the number of nodes in X grows
exponentially relative to the parameters n and C. Figure 6.5 shows
the exponential growth of the number of nodes in X as a function of
n and C. Without additional improvements, inference on a Bayesian
Network becomes intractable when ||C|| > 6 due to the number of

142

6.6 SIMILARITY DEDUCTION: USING BAYESIAN NETWORKS

nodes. Sharing parameters between the nodes of the network, how-
ever, reduces the complexity of the network to such an extent that
inference becomes tractable. This is the subject of Section 6.6.1.3. In
Example 6.2, we show the results of the node creation process.

Example 6.2: Node Creation Process

Consider the nodes of the Bayesian Network in Figure 6.6 (ignor-
ing the edges). The nodes are created by following the previous
three step approach using three Sketches C = {§*),8(B) 8(C)} =
{A,B,C} and a maximum number of aggregated Sketches n = 2.
Notice the three types of nodes created and their rank. The top-
most nodes compare unaggregated Sketches, e. g., (A|C), and have
a rank of (1,1). The middle nodes compare one unaggregated
Sketch against an aggregated Sketch, e. g., (A|[BC), and have a rank
of (1,2). The bottom-most nodes compare an aggregated Sketch
against another aggregated one, e. g., (AB|BC), and have a rank of
(2,2).

Figure 6.6: A small Bayesian
Network designed to de-
duce the similarity of three
Sketches. Each Sketch can
have up to two aggregations.

BIAG)

6.6.1.2 The Edges of the Bayesian Network

Multiple methods can be used to model the probabilistic relation-
ships between the nodes X as encoded by the edges W. To reduce
the complexity of performing inference with a Bayesian Network, we
aim at minimizing the number of parents for any given node while
retaining the predictive capabilities of the Bayesian Network as mod-
eled by the CPTs in 8. The biggest limiting factor for learning the ©
parameters is the number of parents of a node. The larger the num-
ber of parents, the more data is needed to estimate the parameters.
A straightforward method to minimize parents is to create directed
edges between each node and higher ranked nodes that share any of
the two Sketches they contain. This guarantees that all needed condi-
tional independent relationships are taken into account. We use the
term simple edge creation method to refer to this edge building proce-

143

simple edge creation
method

restrictive edge
creation method

INTRUSION INFORMATION DISSEMINATION

dure and formalize it with the set of directed edges

(1),.(1) (2)).(2)
W (sm|sm) (s(z)ls(z)) mnk((s1 Is5))<mnk((s1 s)),
1182) (8771s; 1 (2 .. .
3(3. —s)vme{],Z}

i j

Figure 6.6 shows how nodes are connected following this method.

The simple edge creation method is a first approach at building
tractable Bayesian Networks capable of inferring Sketch similarities.
Through a correlation analysis of the resulting nodes and the similari-
ties they represent, we develop a restrictive edge creation method that
improves over our former simple edge creation method. The restrictive
edge creation method adds edges between nodes following the simple
edge creation method but adds a new condition. Edges are added if,
additionally, it is true that for nodes (sgnlsg”), (sgz)lséz)) they meet
either si” = si(z) and s].m C sj(z) or si” = s]@ and sjm C ng)_ In
the small scenario of Figure 6.6, the restrictive edge creation method
connects the nodes with the same edges as the simple method.

The benefits of using the restrictive edge creation method are most
noticeable when multiple Sketches and many aggregations are taken
into account. This fact is illustrated in Figure 6.7 by showing the per-
formance of the two edge creation methods. In both methods, edges
are added between nodes that are created using different combina-
tions of the parameters n and C of our proposed node creation pro-
cess. In the figure, we denote the simple method with an S and the
restrictive method with an R. In parenthesis, we display the maximum
number of aggregations (the n parameter) used in the node creation
process. All x-axes show the number of Sketches (the ||C|| parameter)
used in the node creation process.

Each plot in Figure 6.7 shows that the proposed restrictive edge
creation method (R) achieves better overall results. In Figure 6.7a, we
show the total number of edges created. In this context, the restric-
tive method performs exponentially better than the simple method.
In Figure 6.7b and 6.7¢c, we show the maximum number of parents
of any node and the average number of parents of all nodes, respec-
tively. With any combination of parameters, the restrictive edge cre-
ation method yields a network with less parents and, thereafter, more
tractable.

Tractability is far from being the most important metric for com-
paring Bayesian Network models. The likelihood of the Bayesian Net-
works, given a dataset for them to model, is a widespread metric
used for comparisons [Koller et al., 2009]. The likelihood is normally
penalized by the total number of model parameters to avoid overfit-
ting (e.g., MDL, AIC and BIC [Z. Liu et al., 2012]). Having less of,
both, total and average parents implies that a Bayesian Network has
smaller CPTs and, therefore, less parameters. In all our experiments,
both simple and restrictive edge creation methods achieved the same
likelihood scores for the same datasets. As a consequence, we claim

144

6.6 SIMILARITY DEDUCTION: USING BAYESIAN NETWORKS

x10° 140 | .
| R (=2 U
40 /]
R (@n=2) / 10| mmms S (n=2) /
35| mmme § (n —) s i
30| ==em= R (n= y £ 100p 7" R@=3) / .
. (11—) !) -—- S(Il:3) i,’
8025 - S(n:) ’ ch 80l ammnm R(Il:4) I‘Q
520 ssmmnm R(ll:) il .' B . — | S(Il:4) l;/
3 -—-- S (Il—4) ., H# 60 ‘l
$ 15 ! 0 ¥
i/ Z ol Ve »¥
Lo} | R s -
- * pp—y
" fm";_':,— 20f ﬁ%“f‘g__‘— —
0.0 ——& oFf*® ,)) ,
3 4 5 6 7 3 4 5 6 7
Number of Sketches (||C||) Number of Sketches (||C/|)
(a) Total number of Edges created. (b) Max. number of parents a node has.
wor R (n=2) ’
k=== Sh=2) !
P mum= R (n=3) I’/
E 0T emunm §(n=3) i/ Figure 6.7: Performance of the
SV I P (n = 4) /1 Restrictive (R) and Simple (S)
#1 —— S (n = 4) /';' edge creation methods. In be-
20 F g N .
o %0 ¢ . s’ tween parenthesis, we show
Z o0t g .27 .. the maximum aggregations n
’Aéé__.-‘_"__ a Sketch may have. Overall,
10 g7 i .
‘_Ai the Restrictive method performs
0 > v . - : better than the Simple method.

Number of Sketches (||C||)

(c) Avg. number of parents per node.

that the restrictive method correctly prunes useless edges as it has
less parameters than the other method.

6.6.1.3 Node Structure and Parameter Sharing

Large Bayesian Networks are difficult to train and utilize. The larger
the network, the more data is needed to accurately estimate the net-
work parameters 8. Additionally, due to the (NP-hard) complexity of
most inference mechanisms [Reed et al., 2014], large networks are re-
stricted to the application of approximate, often inaccurate, inference
techniques. However, the negative effects of large networks are mit-
igated the more parameters the nodes of a Bayesian Network share
[Koller et al., 2009]. The previous node creation (Section 6.6.1.1) and
connection (Section 6.6.1.2) mechanisms present the opportunity of
creating nodes that can share their parameters.

While learning the parameters of Bayesian Networks (Section 6.6.2),
we observed that when nodes share a specific set of properties they
also share the same parameters. We define this set of properties as
the node stereotype. The node stereotype is composed by the rank and
number of parents of a node. For a given combination of parameters

145

node stereotype

INTRUSION INFORMATION DISSEMINATION

|C|| and n maximum Sketch aggregations, of the node creation mech-
anism, we observe few stereotypes (in contrast to the total number of
nodes). Figure 6.8 shown the number of node stereotypes a Bayesian
network has in relation to the maximum Sketch aggregation n. The
number of node stereotypes remains constant no matter the number
of Sketches ||C||. The number of stereotypes grows quadratically ac-
cording to the maximum Sketch aggregations n. Given the amount of
shared parameters, Bayesian Networks become tractable for as large
as the set of Sketches C may be and for values of n that generate thou-
sands of nodes. Example 6.3 shows an example of a Bayesian Network
that becomes tractable due to parameter sharing. In Example 6.4, we
show how nodes with the same stereotype look like.

2 48t

Z42r

2 36} .

8 40| Figure 6.8: The number of
! node stereotypes found in a
2 18} Bayesian Network that is con-
5 12} structed using a maximum of
N g' n Sketch aggregations.

2 3 4 5 6 71
Maximum Sketch Aggregations (n)

Example 6.3: A Bayesian Network Made Tractable

Assume that the nodes of a Bayesian Network are generated as
previously explained in Section 6.6.1.1 and connected with the
restrictive edge creation methodology (Section 6.6.1.2). With six
Sketches (||C|| = 6) and a maximum of four Sketch aggregations
n = 4, we find 16 node stereotypes. A total of 1,500 nodes and
5,000 edges are created. Despite the large number of nodes and
edges, because of having only 16 stereotypes, we only need to
calculate the parameters of 16 random variables shared among all
nodes.

Example 6.4: How Node Stereotypes Look

The Bayesian Network shown in Figure 6.6 has three stereotypes
(indicated by the shading of the node). The first layer is composed
of nodes of rank (1,1) and zero parents. The second layer has
nodes of rank (1,2), each with two parents. The last layer only
contains nodes of rank (2,2) as well as two parents. As such, ac-
cording to the knowledge we developed about node stereotypes,
the Bayesian Network is composed of three random variables (in-
stead of nine if we count one random variable for each node).
From this simple example, we can understand the nature of node
stereotypes: Nodes representing the same type of Sketch compar-

146

6.6 SIMILARITY DEDUCTION: USING BAYESIAN NETWORKS

ison are to be considered as having the same probability distribu-
tion (parameters).

6.6.2 Learning the Bayesian Network Parameters

The nodes of the Bayesian Network are random variables that rep-
resent the similarity between two Sketches (aggregated or not). We
choose to model the similarities of Sketches with discrete random
variables instead of continuous ones. Discrete random variables are
easier to learn and do not require that we make assumptions about
their PDF. As a consequence, the parameter 0 of the Bayesian Network
is composed of discrete CPTs. We define the similarity P : ¢ — INT
between two Sketches as 1V (d) (S(X),S(Y))) or, using a shorthand no-
tation, as P (X,Y). The similarity 1 is a discrete mapping from the
Sketch divergence ¢ to a positive integer. As the mapping function 1,
we choose a step function with equidistant steps. Example 6.5 shows
a three-step equidistant function. Example 6.6 shows how CPTs would
look like when Equation 6.3 is used.

Example 6.5: A Step Function with Three Equidistant Steps

A distance function 1\ with three equidistant steps would look like
Equation 6.3.
1 if0.00 < ¢ (8%),8)) <0.33
b (6 (8%9,8M)) =12 033 < (5%,8M) <066 (6:3)
3 if0.66 < ¢ (81X, 8)) < 1.00.

6.6.2.1 Learning from Assumptions

In the context of a Bayesian Network, learning is the process of cal-
culating the parameters of nodes using Maximum Likelihood Estima-
tion (MLE) on top of samples of the random variables represented by
the nodes. If we are able to assume the distribution of the Sketch simi-
larities, we can create a dataset with which to calculate the parameters
of the nodes using MLE. The process of learning from assumptions is
as follows. First, we create a dataset of Sketch similarities from sim-
ilarity assumptions. Second, we use MLE to compute 6. These two
steps yield CPTs that express the probability distributions of Sketch
similarities.

To learn the parameters of a Bayesian Network from assumptions,
we create a dataset of Sketch similarity samples (that follow some as-
sumed distribution family). The dataset creation algorithm is shown
in Algorithm 6.1. The algorithm expects three input parameters: a set
of empty Sketches C, the maximum aggregation of Sketches n, and

147

Sketch similarity

INTRUSION INFORMATION DISSEMINATION

Example 6.6: The Parameters of Discrete CPTs

The CPTs of nodes (A|C) and (A[BC) of Figure 6.6, when three
discretization steps are used, may look like those in Table 6.3. With
no parents, the CPT of node (A|C) has three parameters. With two
parents, the CPT of node (A[BC) has 27 parameters.

P(3 =x30ps =x3, P71 =%x1)
Py =%) x3=lLx2=1,x1=1 0.3
x1=1 o0.52

x3=1,x2=1,x1=2 0.03

X1 =2 0.23

x3=1,x2=1,x1=3 o0.02

x1 =3 0.25

(@) CPT of the node x3=3,x2=3,x1 =3 0.04
(A|C) where V7 =
P(A, C). (b) CPT of the node (A|BC) where {7 =

W(A,C), b2 = (A, B) and h3 = (A, BC).

Table 6.3: Example CPTs of two nodes of the Bayesian Network when
nodes have up to three distinct similarities.

input :Set of empty Sketches C

input :Maximum number of Sketch aggregations n
input :Desired number of dataset samples d
output :Dataset of examples of Sketch similarities D

1 D« 0;
2 X < GenerateNodes(C, n);
3 for1toddo
for each Sketch ¢ € C do
c < EmptySketch();
L EncodeFeatures(c, SampleFeature())

sample + (;
for each node x € X do
L sample < sample U NodeSimilarity(x, C);

O P [~ 23S 1

10 | D« DU{sample};

11 return D

Algorithm 6.1: Procedure for creating a dataset of Sketch similarity samples
useful for learning the parameters of a Bayesian Network that represents
the probabilistic relationships between Sketch similarities.

the number of samples to generate d. In line 2, we generate the nodes
of a Bayesian Network as described in Section 6.6.1.1. For each de-
sired dataset sample d, in line 6, EncodeFeatures() encodes features
sampled from assumed distribution families. The logic of the feature

148

67 INFORMATION DISSEMINATION: FORWARDING SKETCHES

sampling process is captured within SampleFeature()3. As a result,
each sample contains the similarity comparisons made by each node
of the Bayesian Network. The combination of all these samples makes
up the training dataset. This training dataset is used to learn the pa-
rameters © using an MLE variant that copes with shared parameters
[Koller et al., 2009].

Example 6.7: How Does a Sample Look Like

Given node (X|YZ), we aggregate Sketches Y, Z € C (as explained
in Section 6.6.1.1) and proceed to calculate the similarity of the
aggregation against Sketch X € C. The similarity is calculated by
a function such as Equation 6.3 using as many steps as desired.

6.6.2.2 Learning from Real Data

Learning the parameters © from real data is not substantially differ-
ent than learning from assumptions. The only difference lies in how
SampleFeature() forwards the samples to EncodeFeatures() in line 6
of Algorithm 6.1. When real data is available, the data itself is used
to extract features and populate every Sketch ¢ € C. In the evalua-
tion section of this chapter (Section 6.8), we demonstrate how hosts
experiencing similar communication patterns can be found in a large
backbone network.

67 INFORMATION DISSEMINATION: PROBABILISTIC FORWARD-
ING OF SKETCHES

The last sections describe two of the three components that comprise
our system for disseminating similarities. This sections describes the
last component and how the other two are jointly used to disseminate
similarities. To better understand the dissemination strategy, we dis-
tinguish between two types of Sketches. Local Sketches are those that
encode the feature counts of local observations. From the perspective
of an individual member, a Remote Sketch is any Sketch created by a
remote member that, because of the dissemination process, is now in
the possession of the member.

Local Sketches are used for two purposes. First, they are used
to compute similarities between them and remote Sketches. Second,
they are aggregated with remote Sketches and disseminated to other
members. With remote Sketches, members can deduce the similar-
ity between their local observations and the aggregated observations
of others. By using the similarity deduction component (Section 6.6),
we can deduce the similarity between the local observations and an
individual member that participated in the aggregation of a remote

For example, features could be assumed to follow a family of Gaussian distributions
where each individual distribution may have different parameters.

149

local Sketch

remote Sketch

probabilistic Sketch
forwarding

INTRUSION INFORMATION DISSEMINATION

Sketch. To tie everything together, we propose an algorithm called
Probabilistic Sketch Forwarding. This algorithm determines how aggre-
gated Sketches are forwarded to other members.

input : Number of forwarding rounds r
input : Number of maximum chain length ¢
input :Sketch forwarding probability p

1 for1tordo

2 m < RandomMember (0);

3 Sk < GetSketch(m);

4 Kn < GetKnowledge(m);

5 chain < {m};

6 do

7 m < RandomMember (chain);

8 m.UpdateKnowledge (chain, Sk, Kn);

9 Sk < Aggregate(Sk, GetSketch(m));
10 Kn < Combine (Kn, GetKnowledge(m));
11 chain < chain U m;

12 while || chain || < ¢ and Random(o, 1) < p;
13 return

Algorithm 6.2: Probabilistic Sketch forwarding algorithm.

In Algorithm 6.2, we show the proposed Sketch forwarding algo-
rithm. The algorithm is shown as if operated by a central oracle (for
the sake of simplicity). This does not detract from applying the illus-
trated concepts in distributed environments. The algorithm is based
on the concept of building chains of Sketches throughout different
rounds. Sketches are chained together through the process of aggre-
gation. In each round of the algorithm, a new chain of Sketches is
formed as Sketches are received, aggregated and forwarded.

The operation of the algorithm depends on three user-supplied pa-
rameters. The number of rounds r specifies how many Sketch chains
are formed. The maximum chain length c indicates how long Sketch
chains can be. The parameter c is related to the maximum number
of Sketch aggregations n, as introduced in Section 6.6.1.1, such that
¢ = n+ 1. Finally, the forwarding probability p specifies the proba-
bility of expanding a chain or not. In each round, a Sketch chain is
initiated by randomly selecting an initial member and using its local
Sketch as the base Sketch of a new chain (lines 2 to 5). Addition-
ally, some knowledge about this initial member is obtained. Knowl-
edge refers to the Sketch similarities P(X,Y) of Sketches X and Y
that are already known (because they were directly observed or de-
duced with high certainty). Sketch chains are forwarded to a random
member that has not already taken part in the current chain (line 7).
The chain receiver updates its knowledge using what is known about
the members participating in the chain, and the aggregated Sketch
itself (line 8). Notice that only three data structures need to be sent

150

6.8 EVALUATION

over the network to other members for each new link of a chain: a
list of members participating in the chain, the aggregated Sketch of
the participating members, and the combined knowledge of all chain
members. Finally, in lines 9 and 10, a new member is added to the
chain. With probability p, the chain is forwarded to another member
(line 12).

6.8 EVALUATION

In this section, we put together the three components that constitute
our system and evaluate their performance. We demonstrate the ca-
pabilities of the system to distributedly identify collaborating mem-
bers that observe similar features using less information than flood-
ing mechanisms. Our evaluations demonstrate this when synthetic
and real-world data are used.

6.8.1 Experimental Setup

Every experiment we conduct has four preparatory steps. In the first
step, using using Algorithm 6.1, we generate a dataset of feature ob-
servations either from assumptions or real-world data. In the second
step, we encode the features of each collaborating member ¢ € C
into a Sketch as detailed in Section 6.5. In the third step, we build
a Bayesian Network following the methods described in Section 6.6.
The nodes of the Bayesian Network are created for a given number of
members ||C|| and maximum Sketch aggregations n. The nodes are
connected in accordance to the edge building methodology in Sec-
tion 6.6.1.2. We learn the parameters of the Bayesian Network using
the dataset created in the first step. In the fourth and last step, col-
laborating members send, collect and aggregate Sketches (for later
forwarding) to disseminate knowledge. We follow the algorithm pre-
sented in Section 6.7 to simulate how members forward Sketches in a
network.

In all experiments, when learning the parameters of the Bayesian
Network architecture we propose, we discretize the divergence ¢ be-
tween two Sketches so that their similarity 1\ has five possible val-
ues (cf. Equation 6.3). Flooding is used as a baseline to measure
the efficiency of our methodology with respect to communication
overhead. Given a set of Sketches such as C = {A, B, C}, we calcu-
late that to achieve full knowledge using flooding, a total of f(C) =
IC|| x (|[C|]| = 1) = 6 messages need to be sent. We compare the accu-
racy of our deductions taking into account how many messages are
exchanged relative to f(C). If our deduction strategy uses four mes-
sages instead of the six needed by flooding, we say that 66.66 percent
of messages, with respect to f, are used. The accuracy of the system
is measured by calculating the average prediction error of the similar-

151

flooding as a
baseline

accuracy metric

random baseline

INTRUSION INFORMATION DISSEMINATION

ities. More specifically, after all members have received all Sketches
chosen to be sent over the network, each member predicts the simi-
larity of itself against all other members. The accuracy is the average
error of all predictions. In all experiments, the standard deviations of
the average errors are displayed. Furthermore, the average errors are
compared against the baseline of the accuracy that would be achieved
if similarities are chosen randomly.

6.8.2 Deductions using Assumptions

When learning the parameters of a Bayesian Network using assump-
tions, the Bayesian Network can accurately deduce similarities using
less messages than what flooding would require. To demonstrate this
claim, we test a setup of three collaborating members C = {A, B, C}
aggregating no more than two Sketches n = 2. We begin by gener-
ating a dataset of 500,000 samples (using Algorithm 6.1) with the
underlying assumption that features are distributed according to a
family of Gaussians. We then build a Bayesian Network following the
methodology presented in Section 6.6 with the algorithm parameters
|C|| = 3 (three members) and n = 2 (up to two Sketch aggregations).
The previously generated dataset is used to learn the CPT parameters
0 of the Bayesian Network using MLE.

We test two different scenarios involving three collaborating mem-
bers. The scenarios and their evaluations are shown in Figure 6.9. In
Scenario 1 (top row), members A and C share features with each other
but not with B. In Scenario 2 (bottom row), the features of C have few
similarities between the features of A and B. None of the features of
A and B are shared. In Figure 6.9a and 6.9c, we show the PMF of the
features of each member. The accuracy of the deductions made by
our strategy are shown in Figure 6.9b and 6.9d. Each bar in the plot
shows the average deduction error (y-axis) when a specific number of
messages are exchanged (x-axis). Each bar is labeled after the percent-
age of messages exchanged in contrast to flooding. For example, at
100 percent, the same number of messages are sent as with flooding.
The horizontal line shows the average deduction error if we choose
random similarities.

From both Figure 6.9b and 6.9d, we can appreciate that when send-
ing 66 percent of the messages needed by flooding, the average error
(including its standard deviation) is below the random baseline (red
horizontal line). With 83 percent of the sent messages, the average
error has the tendency of being below one. This implies that the de-
duction mechanism, using close to 20 percent less information, can
deduce all the similarities between the members with only few excep-
tions. The exceptions, nonetheless, are never far away from the true
value.

152

6.8 EVALUATION

£

2 0.2 random

o 8 16.7%

£ & 33.3%

¥ o 50.0%

< (.1 S 66.7%

Q : =

S g 83.3%

=

& E = 100.0%
=) 116.7%

0.0

. 1 2 3 45 6 7
Observations Accumulated Knowledge

(a) Scenario 1: Members a and c¢ (b) Deduction error against the num-
record similar observations. Member ber of shared messages (accumulated
b does not share any observations knowledge) of observations in (a).
with the others.

0.25F
xn random
z 0.20} 16.7%
= 8 33.3%
z s 50.0%
2 0.15 - g
= 2 83.3%
—g 0-10 = 100.0%
2 2 116.7%
A 0.05F A 133.3%
150.0%
0.00 ¢ 0
123456789
Observations Accumulated Knowledge

(d) Deduction error against the num-
ber of shared messages (accumulated
knowledge) of observations in (c).

(¢) Scenario 2: Member ¢ records sub-
tle, yet different, observation similari-
ties with a and b.

Figure 6.9: Deduction error using data assumptions with different types
of observation overlaps for three collaborating members ||C|| = 3 and a
maximum Sketch aggregation of two n = 2.

When increasing the number of members ||C|| and maximum num-
ber of Sketch aggregations n, we observe the same trend: With 20
percent less messages than what flooding sends to achieve full knowl-
edge, our strategy estimates the similarity of each member accurately
with only small errors. Moreover, from the standard deviation, we can
recognize that errors are small. Figure 6.10 shows the deduction er-
ror when using four members when averaged over multiple random
scenarios. Each scenario corresponds to a different configuration of
the features shared by the members. It is worth noting that, when
considering more members, the accuracy of the system is still below

153

INTRUSION INFORMATION DISSEMINATION

the random baseline (red horizontal line) even when a small set of mes-
sages are exchanged.

——— random
20 _ 16.7%
wrEz 25.0%
. === 333% | Figure 6.10: Deduction error
EL5f WIMMD i1.7% | of the average of multiple
5 EEEEEE 50.0% .. lation to h
5 mmmm 5550, | SCEnarios in re a' ion to how
£ 1.0} wewsw 66.7% | feature observations overlap.
= mmmen 75.0% | We consider four collaborat-
S 05 2??;” ing members |C|| = 4 and a
_ . () .
= 1000y | Maximum of two Sketch ag-
0.0 LI . mmm 108.3% | gregations n = 2.
’ 234567 891011121314 | ot 116.7%

Accumulated Knowledge

This and the previous experiments confirm that our dissemination
strategy is able to start estimating the similarity of collaborating mem-
bers as soon as information arrives, without having to wait for the full
information. This is evident from how the deduction error decreases
with each new received message. Furthermore, less messages are re-
quired than what flooding needs to achieve an approximation to the
real similarities. It is however important to mention that our strategy
is stochastic in how Sketches are encoded and in the probabilistic in-
ference of the Bayesian Network. This implies that even if 100 percent
of information is received, in contrast to the flooding mechanism, er-
rors can still be made; albeit small.

6.8.3 Deductions using Real-world Data

Real-world observations can be used to learn the parameters of the
Bayesian Networks we propose to deduce similarities (Section 6.6).
Our Bayesian Networks are as accurate in deducing similarities when
their parameters are learned from real-world observations instead of
assumptions. To demonstrate this claim, we test the capability of our
methodology of finding similar traffic patterns in an Internet back-
bone network. We begin by sampling different days of a publicly
available network backbone dataset known as the MAWI archives
[Cho et al., 2000]. With the samples, we create a new dataset for learn-
ing the parameters of our proposed Bayesian Network. Afterwards,
using the Bayesian Network, we deduce the similarity of the traffic
patterns observed in three different days not used while creating our
dataset. We measure the accuracy of the deductions when different
amounts of information are shared.

A Bayesian Network is designed to deduce the similarity of three
collaborating members ||C|| = 3 and up to two Sketch aggregations
n = 2 following the methodology of Section 6.6.1. The parameters

154

6.8 EVALUATION

of the network are learned using 15 days from September 2017 of
the MAWTI archives. From each day, in windows of one minute, we
record the counts of all destination I addresses observed. The counts
are sorted from high to low and only the 20 most seen IPs are kept for
each day. Given that each day of the MAWI archives has 15 minutes
of anonymized traffic, a total of 45 counts are collected.

From the 45 total IP counts collected, we derive a dataset to learn
the parameters of our Bayesian Network. We follow Algorithm 6.1
for this purpose and detail each step referencing lines of the algo-
rithm. To create each sample of our dataset, we pick three different IP
counts and encode each one into a Sketch (line 6). Then, for each node
of the designed Bayesian Network (line 8), the Sketches are used to
calculate the similarity of the node (line 9). All these similarities are
recorded as one sample and stored as part of the dataset (line 10).
Because *°Cz = 14,190, our dataset consists of 14,190 samples. MLE
is used on top of these samples to learn the shared parameters © of
the Bayesian Network [Koller et al., 2009].

In contrast to the setup used for evaluating the accuracy of our
deductions using data assumptions, we modify the similarity func-
tion 1 (Section 6.6.2). From empirical studies on the MAWTI archives,
we observed that the distribution of destination IP addresses tend to
overlap. Because of this, we choose to discretize the divergence of
two Sketches ¢ (X,Y) — [0,1] more tightly using the exponentially
spaced bins [0.00,0.09,0.24,0.47,0.84,1.00]. This way, for example, for
two Sketches to have a similarity of one, their divergence would need
to be in between 0.00 and 0.09.

fixed choice
16.7%
33.3%
50.0%
66.7%
83.3%
100.0%
116.7%

Deduction Error

1 2 3 4 5 6 7
Observations Accumulated Knowledge

(a) Real-data Scenario: Members (b) Deduction error compared to the num-
observe different destination IP ber of shared messages (x-axis) of obser-
distributions. vations in (a).

Figure 6.11: Deduction accuracy when using real-world data to test the de-
duction capabilities of three collaborating members ||C|| = 3, considering up
to two Sketch aggregations n = 2.

Having learned the parameters of the Bayesian Network, we can de-
duce the similarity of three arbitrary IP counts (not observed during

155

three tasks

INTRUSION INFORMATION DISSEMINATION

the dataset generation process). In Figure 6.11, we evaluate our de-
duction mechanism using three one minute IP counts of destination
IP addresses taken from three days in October 2017 from the MAWI
archives. The PMFs of the 20 destination IP addresses with the most
observations are shown in Figure 6.11a. We simulate each count be-
longing to a different collaborating member (among the three). We
employ our Probabilistic Forwarding algorithm (Algorithm 6.2) to
determine how messages are disseminated among the collaborating
members. In total, we simulate 250 different message dissemination
configurations. We show in Figure 6.11b the average deduction error
(and its corresponding standard deviation) using all message passing
configurations. As a baseline, we compare the accuracy of our metho-
dology against the accuracy obtained if we always predict that the
similarity of two counts is two (\ (X, Y) = 2). This fixed choice yields
the best average accuracy among all other possible fixed choices. The
results indicate that we can predict the similarity of all counts using
20 percent less information than flooding.

Our approach can deduce which members have observed similar
feature counts even in large backbone networks. Finding similar traf-
fic patterns opens the possibility of detecting many intrusions that
would typically be difficult to detect. For example, if we follow the
same approach as the one used in SkyShield [Cho et al., 2000], it
would be possible to collaboratively identify DDoS attacks occurring
in different parts of a network without the need of a centralized entity.
That is, if we identify that one collaborating member is experiencing a
DDoS attack, by deducing the similarities of the traffic characteristics
between the affected member and all others, DDos attacks targeting
other members can also be spotted.

69 CONCLUSION AND LESSONS LEARNED

Early on while reviewing related work on CIDSs, we identified the
need of a similarity identification strategy that would send less mes-
sages than what flooding needed and that did not rely on centralized
components. Most researchers do not detail how information is dis-
seminated in the process of determining the similarities of members
within a CIDs; instead, researchers take this for granted and build
a system on top of this non-existent component. In this chapter, we
focused on creating such a similarity identification strategy. In the
process of designing the strategy, however, we encountered multiple
problems with non-trivial solutions. In the end, what is presented
herein is the result of solving different problems through three tasks.
First, we searched for a common denominator that CIDSs use to iden-
tify similarities. Second, we analysed multiple correlation and aggre-
gation techniques and selected one. Lastly, we studied diverse ways
to deduce information from correlations and aggregations.

156

69 CONCLUSION AND LESSONS LEARNED

As the first task, through an analysis of related work, we iden-
tified that member similarities were the common denominator that
many CIDSs use to detect intrusions. Intrusion detection, at its core,
is achieved by allowing members to share information among them-
selves and letting the members perform aggregation and correlation
on the information. However, we were not able to find non-trivial so-
lutions* when considering the general problem of sharing raw infor-
mation. Instead, we focused on sharing feature counts (or histograms)
and enabling members to aggregate and correlate these. This deci-
sion was made after we observed that most CIDSs only require feature
counts for performing similarity comparisons.

Having in mind that we only wanted to share feature counts, we
determined as the second task that we needed a data structure special-
ized on summarizing counts. Furthermore, the data structure needed
two specific properties. One, it needed to combine with others of its
type to create aggregates. Second, it could calculate how different it
was from others, aggregated or not. Bloom filters were immediately
discarded as they were not able to track counts. Their counting vari-
ants were also not suitable as they lacked a well-defined comparison
operator. The count-min Sketch PDS was chosen as it had these two
properties.

By only sharing aggregates, we could lower the communication
overhead significantly. However, aggregates would loose enough in-
formation that after three or more aggregated feature counts (in a
single Sketch), the accuracy of calculating similarities dropped signif-
icantly. From this observation, we recognized the need of a deduction
mechanism able to determine how members contributed to an aggre-
gate. We studied the concept of members contributing to an aggre-
gate, where we determined that it was possible to manually detect
who was responsible for increasing or decreasing the similarity of an
aggregate. As the third task, we searched for a mechanism capable of
doing inference on Sketch aggregations. We experimented with differ-
ent ML techniques such as convolutional neural networks, deep auto-
encoders and probabilistic graphical models. Our experiments with
Bayesian Networks (a type of probabilistic graphical model) yielded
the most promising results.

Designing the Bayesian Networks needed to deduce Sketch simi-
larities was a difficult task on its own. When designing a Bayesian
Network, two main challenges need to be overcome. First, we need to
determine the random variables that nodes will represent. Second,
nodes need to be connected so that they form a Directed Acyclic
Graph (DAG). The decision of how to model nodes impacts how they
are connected, and vice versa. From a mathematical perspective, we
concluded that continuous random variables would not scale to large

4 A trivial solution to reduce the overhead of sharing information would involve com-
pressing all information before it is shared.

157

first task

second task

third task

INTRUSION INFORMATION DISSEMINATION

problems spaces. We settled for the discretization of similarities as
random variables.

After choosing how to represent the nodes of our Bayesian Net-
works, we experimented with different ways of connecting the nodes
to form DAGs. We quickly found a mechanism that would connect
all nodes, using as few edges as possible, maximizing the likelihood
of the probabilities they represent. However, the resulting networks
would be large and intractable for more than a few nodes. After man-
ually analysing the resulting networks, we discovered that the CPTs
represented by some nodes were the same in several circumstances.
After further analysis, we finally discovered that nodes with the same
number of parents and node rank (see Section 6.6.1.1) had shared pa-
rameters. We established the term stereotype of a node to distinguish
sets of nodes that share these two properties. This was the final piece
that enabled tractable Bayesian Networks.

6.9.1 Future Work

Our dissemination strategy is underlay agnostic. The probabilistic
forwarding algorithm could be designed to take into account the
network underlay and minimize the number of hops messages take
in a network. The forwarding algorithm would also benefit from a
stochastic technique that can make sure that, on average, each mem-
ber receives an equal amount of messages.

6.9.2 Chapter Summary

The description of our system began in Section 6.5 with a demon-
stration of how feature counts are locally encoded using Sketches.
Afterwards, in Section 6.6, we proposed a Bayesian Network design
capable of deducing the similarities of Sketches that encode feature
counts. With the final proposition of a mechanism to probabilistically
aggregate and disseminate Sketches through a network, we arrived
at a methodology capable of deducing the similarity of local observa-
tions when only partial observations are shared. This had the benefit
of reducing the network footprint close to 20 percent when compared
to the number of messages that would need to be sent to guarantee
full knowledge. Furthermore, it was possible to start deducing sim-
ilarities as soon as information is made available without having to
wait for the dissemination of information to converge. The proposed
strategy enables a viable communication strategy between collaborat-
ing members of a CIDSs that respects all CIDS requirements plus all
additional requirements we have proposed.

158

COLLUSION DETECTION

CONTEXT

In the last chapter, we developed a dissemination mechanism tailored
to the distribution of information between members of a CIDS. Dissem-
inating information is indeed the key to collaboration between CIDS
members. The dissemination mechanism of the last chapter, however,
makes the implicit assumption that CIDS members are always honest.
Honest members pursue the common goal of detecting collaborative
attacks without hidden agendas. In practical scenarios, we need to
acknowledged the existence of hidden agendas and discourage dis-
honest members from acting against the common goal. Furthermore,
to complicate matters, we need to consider the scenario where dis-
honest members collude to push their personal or collective agendas.

ONESTY is a virtue that we cannot assume is present in all the
members of a CIDS. In this chapter, we acknowledge that acting
dishonestly within a CIDSs is a possibility and develop a trust mechan-
ism to detect single dishonest members as well as groups of colluding
members. In our trust mechanism, collaborating members rate the re-
liability of each other to determine trust scores. A member with a low
trust score signals that the member chooses to be unreliable to hide
information or that it is giving inaccurate ratings on purpose.

Figure 7.1 shows an overview of this chapter in relation to the the-
sis as a whole. This chapter is the fifth contribution of this thesis. The
contribution relates to the Membership Management layer of the CIDS
model we reference (see Section 2.3.3). In this chapter, we develop a
trust mechanism that uses the reliability of CIDS members to deter-
mine trust scores. CIDSs can use trust scores to manage the members
of a CIDS. When trust scores go below a certain threshold, members
can be blacklisted and prevented from participating in the exchange
of information. We only focus on developing the trust mechanism and
disregard the engineering task of using trust scores to create black-
lists.

The structure of this chapter is organized as follows. We begin with
a general introduction to the problem of building trust relationships
within CIDSs. In Section 7.2 and Section 7.3, we present background
relevant to this chapter; and related work in the field of bayesian
trust models, ML for trust and trust management within CIDSs, re-
spectively. Our trust mechanism for detecting colluders is explained

159

honest sensors

dishonest sensors

coalition

COLLUSION DETECTION

Chapter Overview

Field of Contributions CIDS Architecture

1. Dataset Generation Global Detection

2. Intrusion Detection
Data Correlation & Aggregation

3. Community Formation

Membership Data
4. Information Dissemination Management Dissemination
5. Collusion Detection Local Detection

Figure 7.1: This chapter comprises the fifth contribution of this thesis: Col-
lustion Detection. The contribution is tied to the highlighted layer of our
referenced CIDs architecture: Membership Management.

in Section 7.4. A detailed evaluation of our mechanism follows in Sec-
tion 7.5. We finish with a conclusion in Section 7.6 which containing
our lessons learned and limitations.

7.1 INTRODUCTION

Many recent massive cyber-attacks have highlighted the need of large-
scale proactive security. The Mirai botnet, for example, affected many
Internet sites and services in 2016 with massive DDoS attacks of up
to 600 Gbps in size. CIDSs can detect and, with the knowledge they
generate, enable third parties to mitigate the effects of such attacks.
At their core, CIDSs enable multiple independent sensors (i. e., NIDSs,
honeypots or firewalls) to share information to create holistic views
of large networks. From these holistic views, distributed and more
sophisticated attacks can be identified and prevented. Sharing infor-
mation is therefore the key component that enables CIDSs.

Sharing information is, however, only effective if all collaborating
sensors in a CIDS are honest. Honest sensors follow the common goal,
or agenda, of sharing information as accurate as possible in order to
detect distributed attacks. Conversely, dishonest sensors may choose
to share information that would advance their personal agendas. Dis-
honest sensors may further alter the information they share or collude
with other dishonest sensors. A group of dishonest sensors that col-
ludes to advance an agenda that contradicts the agenda of the honest
sensors is known as a coalition.

160

7.1 INTRODUCTION

7.1.1 Problem Statement

Dealing with the sharing of unreliable or false information by dishon-
est sensors is a major challenge in the field of CIDSs. The accuracy of
CIDSs heavily relies on the quality and accuracy of shared information.
Inaccurate or misleading information can severely degrade the over-
all detection capabilities of the system [Vasilomanolakis, Karuppayah,
et al., 2015]. CIDSs need a membership management mechanism to re-
move sensors that degrade the performance of the system.

Many CIDSs use trust mechanisms to detect dishonest sensors, e. g.,
[C.]. Fung,]. Zhang, et al., 2011]. Trust mechanisms enable the sen-
sors of a CIDS to rate each other with the goal of creating a holistic
rating of each sensor. This holistic rating, which we term trust score,
is meant to reflect what the CIDS believes the intentions of a sensor in
the system are. In a suitable trust mechanism for CIDSs, a sensor with
a high trust is a sensor that a CIDS considers honest, whereas a sensor
with low score is assumed to be dishonest.

We use the reliability of sensors to compute trust scores. The relia-
bility of a sensor is a property that quantifies the ability of a sensor
to detect network attacks and is measured with the help of reliability
traffic. Reliability traffic is network traffic that exhibits the properties
(e.g., a signature) of known attacks which a sensor should be able to
identify as malicious. We make the assumption that a CIDS sensor can
insert reliability traffic into the network and that sensors cannot dis-
tinguish between normal and reliability traffic. A sensor keeps track
of whether other sensors raise an alarm concerning the reliability traf-
fic they inserted. Note that each sensor keeps track of the reliability
of all other sensors. Therefore, sensors can compute a rating for each
other sensor. The rating is a value in the range [0, 1]. A rating of zero
means that a sensor is unreliable, i. e., the sensor reported no alarms
even though it saw reliability traffic. An example of how sensors can
create reliability traffic and how they can compute sensor ratings is
shown in Example 7.1.

7.1.2 Challenges

A sensor may not issue an alarm in response to receiving reliabil-
ity traffic due to several factors. Malice is certainly one factor, but
incompetence, low sensor up-time, low network availability or lim-
ited computational resources are other possibilities. Reliability alone
is therefore not enough to determine trust scores. We need a trust
mechanism that takes into account reliability, without completely de-
pending on it, to compute trust scores.

To further complicate matters, we consider the possibility of dis-
honest sensors forming coalitions. A coalition may choose to send
negative reliability reports to artificially lower the trust scores of oth-

161

trust score

sensor reliability

reliability traffic

sensor rating

Sphinx

COLLUSION DETECTION

Example 7.1: Creating Reliability Traffic and Rating Sensors

Reliability traffic needs to contain attacks known to a sensor. A
sensor can use ID2T, the result of the concepts presented in Chap-
ter 3, to inject synthetic attacks into real traffic. ID2T blends syn-
thetic attacks with real attacks such that others cannot recognize
reliability traffic from normal one.

The process of creating reliability traffic could be as follows.
First, a sensor randomly collects network traffic. Second, the sen-
sor analyzes the traffic for intrusions. Third, if the traffic is free of
intrusions, the sensor uses ID2T to inject it with one of 12 attacks
(see Section 3.6). Finally, the sensor inserts the traffic with attacks
back into the network and records which analyzers report alarms
in response to the injected attack.

From the alarms issued (or not) by others in response to reliabil-
ity traffic, a sensor can calculate the rating of a sensor. A simple
technique to compute the rating is to set the rating as the per-
centage of correctly issued alarms. A more advanced technique
involves a (Bayesian) probabilistic approach: An attack is associ-
ated with a prior P(X) that relates to the likelihood of the difficulty
of an attack P(Y|X), where X and Y are the random variables, re-
spectively, of detecting an attack and difficulty of an attack. The score
of a sensor can then be the marginal probability computed from
the Bayes theorem

PYIX)P(X)

PIXIY) = =5

ers. A colluding group may also positively alter the reliability of their
members to artificially increase their trust scores.

7.1.3 Chapter Contributions

We propose Sphinx', an evidence-based trust mechanism that uses
the reliability of sensors within a CIDS to compute trust scores and,
with these, uncover dishonest sensors. Sphinx does not only uncover
individual dishonest sensors, but also coalitions of dishonest sensors.
Sphinx is also oblivious to the underling CIDS architecture, being eas-
ily adapted to centralized or distributed systems. In contrast to the
state of the art, e. g., [Duma et al., 2006], our system does not assume
that honest or dishonest sensors are always consistent: a dishonest
sensor might choose to act honestly with some probability.

In Greek mythology, a Sphinx was a creature that dwelt outside the city of Thebes,
asking travelers a riddle to let them pass or be devoured. Our contribution is inspired
in how the Sphinx asks riddles (questions with known answers) to make decisions.

162

7.2 SPECIALIZED BACKGROUND

7.2 SPECIALIZED BACKGROUND

In this section, we explain the preliminaries needed to understand
our contribution. Sphinx relies on the two standard ML techniques of
K-means clustering and GMMs to compute trust scores. The basics of
these techniques are explained in what follows.

7.2.1 K-means Clustering

Let us define a dataset P = {Py,...,Pn} of n points in an Euclidean
space of D dimensions, with Py = {x1,, ..., xp,}, for i = 1,...,n.
With K-means clustering, we group the points in P into the K clusters
Gq,...,Ck, where each cluster minimizes the distance between the
members of the cluster and its center point. More formally, for clusters
C1,...,Cx, center points My,..., Mg are chosen, where M; = {x1].,
s, XD].}, for j =1,...,K. Each center point M; satisfies the property
that the sum of the squares of the distances of each data point P; to
the closest point M; is minimized. This concept can be formalized
with the help of the distortion measure], an objective function defined
as:

2

J

Py —M;|

n K
2D T
i=1j=1

where HPi —M; H is the distance between the points P; and M; and
where 1 ; = 1 if point P; is assigned to cluster C;, otherwise r;; = 0.

The K-means clustering problem consists in finding values r; ; and
centers M, fori=1,...,nand j = 1,...,K, such that the distortion
measure | is minimized. This is achieved using the EM algorithm
(see [Bishop, 2006]), which uses an expectation step E to adjust the
values 11 j, and a maximization step M to adjust the points M;. The
distortion measure]| is iteratively minimized by further applying the
E and M steps sequentially.

7.2.2 Gaussian Mixture Models

A GMM models the distribution of a dataset of points P ={Py,...,Pn},
whose distribution would normally be difficult to model directly, us-
ing a linear combination of Gaussian distributions. Consider G Gaus-
sian distributions Ny, 0'%), ..., N(ug, GZG), with mean p; and vari-
ance O'iz, fori=1,...,G. A GMM fitted to dataset P, denoted as p(P),
is defined as a linear combinations of the Gaussian distributions such
that

G G
p(P) = ZﬂjN(uj,sz), where an =1.
j=1 j=1

evidence-based trust
mechanisms

COLLUSION DETECTION

Each Gaussian N(pj,crjz) is known as a component of the mixture.
Each component is associated with a mixing coefficient ;. Because
Z;<11 m; = 1, p(P) is a probability distribution.

A Gaussian distribution N (u, 02) approximates the GMM distri-
bution p(P) as closely as possible, according to the Kullback-Leibler
divergence, when

K

K
p:Zchpj and 62:an(0j2—|—ujz)—u2
j=1 j=1

(see [Lauritzen, 1996]). my,..., ik correspond to the mixing coeffi-
cients of p(P). Sphinx uses this fact in its computations of trust scores.

7.3 RELATED WORK

When trust mechanisms rely on evidence derived from interactions,
they are called evidence-based trust mechanisms. Evidence may be de-
rived from either direct or indirect interaction. In a direct interaction,
an entity collects evidence from personal experiences. In an indirect
interaction, an entity collects evidence about the experiences a third
party had with others. In this chapter, we are concerned with the col-
lection of both direct and indirect evidence. Sphinx computes trust
scores using direct and indirect observations of the reliability of sen-
sors. In this section, we describe diverse evidence-based trust mech-
anisms based on statistical and ML techniques. We further highlight
trust mechanisms applied within CIDSs.

7.3.1 Bayesian Trust Models

Bayesian trust models, i.e., [Hang et al., 2011; Nielsen et al., 2007;
Ries, 2009], use Bayesian probabilities [Bolstad, 2004] to estimate the
trust score of a trustee based on evidence from past interactions, e. g,
[Josang et al., 2002]. These models, however, are not able to filter out
dishonest evidence. Buchegg et al. [2004] proposes a reputation sys-
tem that uses the honesty of the participants to build trust relation-
ships. His reputation system uses the key idea of learning from how
others act before considering direct interactions.

7.3.2 Machine Learning for Trust Modeling

ML has acquired an important role in the area of computational trust.
Nowadays, an increasing amount of evidence (or data) is generated
by large-scale web-based applications that rely on trust (e.g., Ama-
zon, Ebay and Airbnb). To cope with the amount of generated data,
researchers use ML to process enormous amounts of information and
compute trust scores. However, even if evidence is not available, ML

164

7.3 RELATED WORK

can still be used to predict trust scores, e.g., [Xin Liu, Tredan, et al.,
2014]. More specifically, ML can effectively solve the difficult problem
of estimating the dynamic behavior of an entity from its interactions
[Tang et al., 2012].

Sphinx uses ML techniques to calculate trust scores in the pres-
ence of honest and dishonest participants. With clustering algorithms,
Sphinx identifies evidence submitted by dishonest participants. In con-
trast to the related work, with the technique of fitting a GMM to clus-
ters, we identify unreliable evidence submitted by colluders. This con-
fers Sphinx the capability of degrading the trust scores of dishonest
Sensors.

7.3.3 Trust Management within CIDSs

Early CIDS research had the assumption that collaborating members
were reliable and honest by definition [Vasilomanolakis, Karuppayah,
et al., 2015]. In recent years, the assumption of having no insider
threats has been relaxed and the issue has been taken more seriously,
e.g. [C.]. Fung,]. Zhang, et al., 2011; Gil Pérez et al., 2013]. However,
related work has not extensively explored trust mechanisms based
on reliability measurements. Sphinx, our contribution, is an evidence-
based trust mechanism that focuses on managing trust using the reli-
ability of sensors.

Fung et al. have worked on the identification of insider threats
within CIDSs. In [C. J. Fung, Baysal, et al., 2008], they propose a frame-
work to bestow CIDS sensors the ability to determine the trust score
of others from past interactions. In [C. J. Fung,]. Zhang, et al., 2009],
they propose an evidence-based trust mechanism that uses the Dirich-
let distribution that sensors can use to update trust scores from direct
interactions. In [C.]. Fung,]. Zhang, et al., 2011], they add the con-
cept of acquaintances to break or establish dynamic relationships to
improve the performance of a CIDS. In many works of Fung etal. ,
collusion cannot occur due to how sensors pass messages similar to
how we measure reliability (see Section 7.1.1). In our work, we can-
not discard the possibility of collusion due to the fact that the message
passing system does not work in our scenario. This is because we
assume that it is not always possible to directly interact with other
CIDS sensors. Instead, we sometimes rely on indirect interactions. This
might happen, for example, when CIDS sensors belong to different or-
ganizations.

Collusion resistant trust models have been proposed in different
fields. Dwarakanath et al. [2017] proposed a collusion resistant mech-
anism that detects dishonest Internet of Things (IoT) devices that
share incorrect trust scores. Dishonesty and collusion is detected by
translating the trust scores into vectors and using a cosine similar-
ity metric to measure deviations. Although this collusion detection

COLLUSION DETECTION

mechanism does not target CIDSs, it meets some of our requirements.
However, the creation of trust vectors, in order to use the cosine sim-
ilarity metric, is not easily transferable to the CIDS domain given our
requirements. This is because CIDS sensors do not consider the trust
relationships of other sensors to compute trust scores, i.e., transitive
trust is not possible (otherwise colluders would have a way to defeat
our system).

Trust can be incorporated into many levels of the CIDS architecture
we reference (see Section 2.3.3). Gil Pérez et al. [2013] incorporate
trust into the global detection component. The system assesses the trust
score of sensors sending alerts to determine if an alert is taken or not
into account. At the membership management level, C. Fung et al. [2011]
uses trust scores to decide whether CIDS sensors are removed from the
system. Our contribution, Sphinx, serves as a membership management
mechanism that prevents dishonest sensors from affecting the opera-
tions of CIDSs.

7.4 SPHINX: A COLLUDER-RESISTANT TRUST MECHANISM

In this section, we present our proposed evidence-based trust mech-
anism coined Sphinx. We begin this section by describing our mech-
anism and its assumptions. We then describe how Sphinx computes
trust scores from evidence of the reliability of sensors. We provide
Table 7.1 to help the reader follow the notation used in this and sub-
sequent sections.

7.4.1 The Mechanism and its Assumptions

Let us assume a CIDS with a set of n sensors § = {S7,...,S.}. We
assign each sensor S; a trust score Tgt) € [0,1] at time t. The trust
scores S; express how reliable sensors are. Sensors may exchange
local knowledge with each other®. After all sensors S; share their

information, at time t, sensors evaluate the reliability of each other
(t)

and update trust scores Tgt). To simplify notation, trust scores t; ' at
time t are simply denoted as T;.

In a setting where reliability is rewarded, a sensor S; should be in-
terested in maximizing its reliability and, consequently, its trust score
Ti. To maximize its reliability, a sensor can go through the hardships
of being highly available and accurate to receive good ratings. How-
ever, sensors could also consider being dishonest about the reliability
of others to worsen or improve the trust score of others. Furthermore,
dishonest sensors could secretly form coalitions to boost their own
trust scores while degrading trust scores of others. We consider that

each sensor S; may be either honest or dishonest. Dishonest sensors

This work assumes that if sensor S; shares its local knowledge, all sensors S; € &
with j # i receive the knowledge unaltered.

166

7-4 SPHINX: A COLLUDER-RESISTANT TRUST MECHANISM

Si sensor i
n number of sensors
Ty = Tgt) trust score of S; at time t
t{ / 1/ evidence- / reliability-based trust score of S; at time t
Pj(i) Cartesian point (xpjm,ypjm) related to how §;j rates S;
Xplo /Upjm x— / y-coordinate of P).m
P get of all points ij forje[l,n]andj#1

evidence submitted by S; with respect to S;

K number of cluster centers

Cy,...,Cx clusters or classes of credibility
Mji,...,Mk center points of clusters Cj,...,Cx
YM,,---, UM, Y-coordinate of My,..., Mg
w]m weight of Cartesian point ij
my,..., Mg mixing coefficients of My, ..., Mg
o]m reward or punishment of S; given its ratings of S;

a1 reward and penalty values used to calculate o]m

a2 number of subdivisions of o].m
weight balancing function of trust scores T

N mixing coefficient of T/ and t{’ to create T;

Table 7.1: Summary of the notation used throughout this chapter

might act alone or form coalitions. We make the following three as-
sumptions with respect to the behavior of honest and dishonest sen-
SOrS.

® Assumption 1. Honest sensors report evidence as accurate as they
can but make mistakes that follow a Gaussian distribution’.

® Assumption 2. Dishonest sensors submit tampered evidence follow-
ing a Beta distribution® and can choose to submit accurate evidence
to confuse the system following a Uniform distribution?.

® Assumption 3. When dishonest sensors collude, they may only be-
long to one coalition.

Sphinx aims at mitigating the effect of coalitions and single dis-
honest sensors under the last three assumptions. Sphinx achieves this
by calculating two partial trust scores for each sensor S;, termed
evidence-based and reliability-based trust scores, and making a linear
combination of the two to obtain trust score ;. The evidence-based trust
score T for sensor S; is calculated using the reliability (i.e., the evi-
dence) that all other sensors S; calculated of sensor S, forj =1,...,n
and j # i (see Section 7.4.2). The calculation of the evidence-based

3 We discuss why this distribution is chosen in Section 7.5.1.

©/: evidence-based
trust score

©/': reliability-based
trust score

credibility classes

COLLUSION DETECTION

trust score is similar to what Bayesian models accomplish (see Sec-
tion 7.3), except that what we process is weighted differently depend-
ing on the reputation of the source (see below). The reliability-based
trust score T{" depends on how reliable the evidence submitted by sen-
sor S; is, with respect to sensor Sj, where j # i (see Section 7.4.3). In
the calculation of the reliability-based trust score, unreliable evidence
is detected and whoever submitter it is penalized. In Section 7.4.4, we
describe how these two partial trust scores are merged to obtain the
final trust score Tj.

7.4.2 Evidence-based Trust Score

This section details how Sphinx computes the evidence-based trust
score T} of sensor S; taking into account evidence submitted by all the
other sensors S; € 8 where j # i. The computation of t{ is performed
in a two dimensional Euclidean space D = 2. In the following, we
detail the steps Sphinx follows for the computations.

COLLECTING EVIDENCE Sphinx starts by collecting, as evidence,
how each sensor rates the reliability of all other sensors. Sphinx stores

a Cartesian point of the form P].m = (XPm,UP(i)) that relates to how
j j

sensor Sj rates S;, where j # i. The first component of point Pj(i)
= Tj(t_]) € [0,1], where T]-(t_]) is the last known trust score of

the sensor S;. The second component of point ij is Yy, = crjm,
j
where Gjm € [0,1] is how S;j rates the reliability of S;. The rating
G]-(i) = 0 indicates that sensor S; has only seen S; being unreliable;
G].m = 1 is the complete opposite (see Example 7.1 for possible ways
to compute reliability). With all the evidence, we create datasets of the
form PV = {Pgl), .., Pi(:)] , Pi(jr)l S, Pr(f)}. The dataset P(1) represents
all Cartesian points (evidence) that relate to the reliability of sensor

Si.

is

XPj(i)

FORMING CREDIBILITY CLASSES Sphinx groups the submitted ev-
idence into different classes, termed credibility classes, using cluster-
ing. K-means clustering groups the points of PV into K clusters
C1,...,Ck. Given that the points Pj(i) € P contains both the rep-
utation of the submitter sensor S; and the submitted evidence Gjm,
k-means finds clusters that take into account both values. The clus-
ters C1,...,Ck contain points that rate S; submitted by sensors with
a similar reputation. From the resulting cluster centers M;,..., My,
however, Sphinx only needs their y-coordinates ym,,...,Ym, to cat-
egorize evidence into credibility classes. This is because yn, ends

168

7-4 SPHINX: A COLLUDER-RESISTANT TRUST MECHANISM

up representing the average trust score submitted by the sensors in
cluster C; (recall the definition P).m = (Xpw, Ypw) = (tlt=1), G})).
j j

. . . (t—1)
WEIGHTING EVIDENCE Sphinx uses the previous reputation T

of sensor S; to weight the points Pjﬁ) that S; submitted. The weight
of a point is calculated with the function

F(x,w)
. P!
w(PiY) = e R
k=1 F(Xpl({i))

The function F : [0,1] — R is a positive and increasing function over
the interval [0, 1] meant to assign high values to high trust scores
T =x 6

j P
of low trust scores against high ones. In other words, function F(x)
determines how many low trust scores are needed to have enough
influence to overcome high trust scores. This is desirable as sensors
with high trust scores might also submit incorrect evidence. If many
sensors, even with low trust scores, submit evidence that contradicts
a sensor with high trust score, their opinions also have an impact. A
possible approach to define function F(x) is to choose a step function
over disjoint sub-intervals of the interval [0,1]. A concrete instanti-
ation of this function is later shown in the evaluation section (see

Section 7.5).

). The purpose of this function is to balance the influence

MIXING EVIDENCE AND CREDIBILITY CLASSES The last step to
calculate the evidence-based trust scores T/ of sensor S; is to com-
bine the previously defined credibility classes and the weighted ev-
idence. The combination is done with the help of GMMs. A GMM
is composed by a linear combination of Gaussian distributions Nj
with corresponding mixing coefficients 7t; (see Section 7.2.2). Each
credibility class is used to represent a Gaussian distribution such
that, for K credibility classes, we create the K Gaussian distributions
Ny, U%),. .., Nk (uk, Gi). The parameters of the Gaussian distribu-
tions are set so that ux = My (the center of cluster k) and O'i is the
average square distance between all points in cluster Cx and cluster
center My. To avoid Gi being zero, we add to it the smoothing term
107°. The mixing coefficients 7 are calculated using the weights of
the evidence with

€l

T = Z w(u{k))
=1
w e PV P e eyl

In summary, the weights of all points in cluster Cy are summed to-
gether to form 7ty. Finally, with the Gaussian distributions and mixing

reliability scores

COLLUSION DETECTION

coefficients calculated, the GMM is approximated with a single Gaus-
sian distribution*. The mean of the Gaussian approximation becomes
our evidence-based trust score T{ of sensor Si:

K
Z e - b € [0, 7).

7.4.3 Reliability-based Trust Score

This section covers how Sphinx computes the reliability-based trust
score T/'. This partial trust score compares the reliability of the ev-
idence submitted by sensor S; regarding sensor S; against all evi-
dence sent by sensor Sy, for k # 1, j, targeting S;. The purpose of this
computation is to distinguish reliable from unreliable evidence and
to discourage tampered submissions. As in the calculation of T, the
reliability-based trust score 1!’ is performed in a two dimensional Eu-
clidean space. The following describes the computation in a series of
steps.

PROCESSING EVIDENCE In this first step, we use the same ev-

. i X) X . ; 3
idence PV = {Pgl),...,Pi(:)],Pi(%,...,Pﬁf)}, where ij = (T-(t),

, j
(1)) that is collected in the first step of the calculation of . All

/

submitted evidence 0'(= yP i) are compared against T;

{ using the

Euclidean distance, denoted as d(t{, 0)@). When, d(T/, cr].m) =1, the
sensor S; submitted evidence that contradicts the calculated evidence-

based trust score of sensor S;. In contrast, if d(t;, G)m) =0, sensor S;

submitted evidence that matches the calculated evidence-based trust
score of sensor Si. In the next step, contradictory and consistent in-
formation is, respectively, punished or rewarded.

ASSIGNING RELIABILITY SCORES Sphinx rewards or punishes sen-

sor Sj based on its value of d(T], G)m) according to a set of dynam-

ically discretized ranges. We term these discretized ranges reliability
scores. We use o)m

for the rating it submitted of sensor S;. The value of o]m depends on

to denote the reliability score assigned to sensor S;

how close it is to T{. The values of o)m lie in the set
O={x|x=o0o1—(t1-n); Vne{0,1,2,...,(x2 —T1)}},

where the parameter ; € [0, 1] is used to specify a series of rewards
or penalty values and the parameter oy € Z* specifies the total num-
ber of elements (steps) in O. Intuitively, the first value of O is oy, the

See Section 7.2.2 for a justification of why one Gaussian distribution is used as ap-
proximation.

170

7.5 EVALUATION

second is 0 and subsequent ones are multiples of —«, for a total of

o, elements. Sphinx assigns o]m to d(t], cr]m) by finding the element

in O with index [d(T], G]m) - &2 |. For example, if distance d(t{, O"j(i))

is between the range [O, O%z], the first element of O, namely «;, is
: (1)

assigned as o; .

ALLOCATING PUNISHMENTS AND REWARDS As last step, Sphinx

calculates the reliability-based trust score Tj// of each sensor S; based

on all reliability scores oj(i), fori=1,...,nandj #1, using
0o (t=1) 1 (i)
T =T + —F . Z 05 .

;' is the result of increasing or decreasing the last trust score of sen-
sor S; by the average reliability scores of the sensor. With this calcu-
lation and the way reliability scores are calculated, reliability-based
trust builds up slowly over some period of time. Conversely, it is lost
quickly.

7.4.4 Final Trust Score

Trust score T; is a linear combination of T/ (Section 7.4.2) and T/
(Section 7.4.3). Given the parameter n € [0, 1], we calculate the trust
score T; of sensor S; as:

1

Ti=n-1+(1—m) 7. (7.1)

The parameter 1 can be chosen based on the requirements of a specific
CIDS. When 1 is close to one, the evidence-based trust score is favored
over the reliability-based trust score.

7.5 EVALUATION

Sphinx is capable of identifying coalitions if less than 50 percent of all
collaborating sensors collude within a single coalition. In certain con-
ditions, when multiple and independent coalitions exist, Sphinx can
identify dishonest participants even when more than 50 percent of all
sensors are dishonest. This section provides experimental evidence to
support these claims.

7.5.1 Experimental Setup

We perform all experiments in rounds. In each round t, Sphinx carries

out all the operations needed to calculate the trust score Tgt) for each
sensor S; in the CIDS. In summary, Sphinx calculates first the evidence-
based trust score T/ followed by the reliability-based trust score T/’

171

lone defector

COLLUSION DETECTION

Afterwards, Sphinx combines these two partial trust scores into a final
one using Equation 7.1

The sensors in all experiments are either honest or dishonest ex-
cept when we explicitly indicate that this is not the case. An honest
sensor rates others according to its empirical observations, making
small mistakes that follow a Gaussian distribution. A dishonest sen-
sor rates others better or worse, following a Beta distribution, depend-
ing on whether the sensor colludes with others or not. If a dishonest
sensor is acting alone, without the support of others, it rates every
other sensor worse than what it itself empirically observed. In doing
so, the supposition is that his trust score would eventually become
the best if the score of everyone else worsens. These single dishonest
sensors are termed lone defectors. If a dishonest sensor colludes with
other sensors to form coalitions, the following rules apply:

1 When rating sensors in the same coalition, the submitted ratings
are improved relative to the empirical observations of the rated
sensor.

2 Sensors of a coalition rate sensors not belonging to the same coali-
tion with a worsened rating relative to the true empirical obser-
vations. With some probability, dishonest sensors can give honest
ratings to try and fool the system.

3 Dishonest sensors can only belong to one coalition.
4 Multiple coalitions may exist.

All non-deterministic experiments are repeated 50 times. Instead
of showing aggregated graphs of all experiments, we show one sce-
nario that represents the overall tendency of the experiments. Sphinx
is a deterministic algorithm; the behavior of the sensors is not. The
stochastic behavior of the sensors does not heavily modify the trend
of our experiments; therefore, the variance of the results is small. For
this reason, variance is not shown.

7.5.1.1 The Parameters of the Rating System

Dishonest sensors submit evidence tampered positively or negatively
following a Beta distribution. In the next experiments, whenever dis-
honest sensor S; submits a rating, or evidence, for S;. It does so using

x ~ Beta(a,b) (7.2)

o) = T, (7:3)
where a and b are parameters of a Beta distribution and use one of
the combinations shown in Figure 7.2. In Equation 7.2, a sample x of
the chosen Beta distribution is obtained. This sample is either added
or subtracted, in Equation 7.3, depending on whether the true trust

172

7.5 EVALUATION

score T; is improved or worsened. We choose the Beta distribution as
it models dishonest members that alter evidence conservatively most
of the time and aggressively a few times with low probability.

—— 3 = 2 b = 50
,,,,,,, a=2b=40

R

mmssmmsrmm 5 =2 bh =20
ssssmsmsss 5 =3 h=20

— i = 4 b = 20

. ~
, Tay, gy,
AT - T T
0.3 0.4

Figure 7.2: Family of Beta distributions that specifies how much ratings are
improved or worsen by dishonest participants in a CIDS.

Honest sensor S; submits ratings, or evidence, concerning another
sensor S;, following a Gaussian model; that is,

y ~ N(0,std) (7-4)

crjm = T +y. (75)

The sample y is added to the true trust score T; to account for po-

tential inaccuracies in the empirical observations of S;. In all exper-

iments, std is chosen such that std < E[Beta(a,b)]. If this was not

given, the samples of the Gaussian distribution used by honest sen-

sors would greatly overlap with the samples of the Beta distribution

used by dishonest sensors, making the behavior of honest and dis-
honest sensors almost indistinguishable.

7.5.1.2 The Parameters of Sphinx

The calculations of Sphinx depend on different user-supplied param-
eters. The evidence-based trust score T’ uses two parameters: a func-
tion F(x) that weights scores and the number of cluster centers K
(see Section 7.4.2). The reliability-based trust score T relies on two
parameters: a reward parameter «; and the number of penalty sub-
divisions «; (see Section 7.4.3). The final trust score T depends on a
mixing coefficient 1 (see Section 7.4.4). In most experiments, all these
parameters are fixed to a single set of values.

173

COLLUSION DETECTION

7.5.2 Experiments

We conduct experiments to demonstrate how the trust scores of lone
defectors and coalitions are penalized. Unless explicitly indicated, all
experiments use the following parameters:

—_

if 0.00 < 1<0.25
2 if0.25<Tt<0.50
3 if050<Tt<0.75 ’
4 it 0.75 <t < 1.00.

K =2, a1 =0.20, x» = 25 and 1 = 0.30. Honest sensors use std = 0.05
in Equation 7.4. Dishonest sensors use the parameters a = 3, b = 20
for the Beta distribution in Equation 7.2. These parameters for the
Beta distribution yield the expected value of E[Beta(3,20)] = 0.13.
That is, most times, dishonest sensors alter (positively or negatively)
the rating of others by 0.13 points. The rating alterations generally
range from values close to o up to 0.35. That is, the chosen Beta distri-
bution models dishonest sensors that choose to be conservative most
times but aggressive a some others.

7.5.2.1 Experiment 1: Detecting Single Coalitions

Sphinx can detect single large coalitions as long as the number of sen-
sors in that coalition do not exceed the number of honest sensors.
This is shown in Figure 7.3. The x-axis of each plot shows the number
of rounds performed by Sphinx. Round zero is the case where Sphinx
has not run and represents the initial bootstrapped trust of each sen-
sor. All sensors are bootstrapped with an initial trust score following
the Gaussian distribution N(0.50, 0.15). On the y-axis, the trust scores
T are shown.

In the four plots of Figure 7.3, different coalition sizes are tested to
see how the trust scores of all sensors are affected. Figure 7.3a shows
that our mechanism successfully and quickly (in three rounds) lowers
the trust score of all members in a coalition made up of 25 percent
of all sensors. Figure 7.3b and 7.3c show that, although the coalition
has some influence for a few rounds, the trust score T of the coalition
members eventually falls to zero. Notice that in Figure 7.3c 47.5 per-
cent of all sensors (i. e., 19 out of 40) are dishonest. If 50 percent of all
sensors are part of a coalition, Sphinx fails to punish the coalition, as
Figure 7.3d shows.

7.5.2.2 Experiment 2: Detecting Multiple Coalitions

Sphinx can recognize and punish multiple independent coalitions.
With multiple coalitions, even if more than 50 percent of the total

174

=mms Coalition 1

Honest Group

1.00
0.75
t~ 0.50
0.25
0.00;

2 3 4 5 6 7
rounds

(a) 40 sensors in total, 25% of all sensors are
dishonest. The colluding sensors are easily
identified; their trust rapidly drops to zero.

= mme Coalition 1

Honest Group

rounds

(c) 40 sensors in total, 47.5% of all sensors are
dishonest. Same effect as when considering
37.5% of dishonest sensors. With more dishon-
est sensors, the effect last longer until about

7.5 EVALUATION

== == Coalition 1

Honest Group

1.00

0.75
& 0.50
0.25
0'000 4 6 8 10 12 14 16
rounds

(b) 40 sensors in total, 37.5% of all sensors are
dishonest. In the first two rounds, the coali-
tion can negatively affect the honest sensors.
After the trust of the coalition drops to zero,
the honest sensors only increase their trust.

== == Coalition 1 Honest Group

1.00
0.75
t~ 0.50
0.25
0.00

0 2 4 6 8
rounds

10

(d) 40 sensors in total, 50% of all sensors are
dishonest. The dishonest sensors overwhelm
the honest sensors and they easily drop the
rating of the honest sensors to low values.

round six.

Figure 7.3: Change of trust with every new calculation (round) of Sphinx.
Four different scenarios are evaluated: when 25%, 37.5%, 47.7% and 50.0%
of the collaborating sensors form a dishonest coalition.

sensors are dishonest, honesty is successfully rewarded and dishon-
esty punished. In Figure 7.4, we see the good performance of Sphinx.
In Figure 7.4a, a scenario with five coalitions is tested, each coalition
having 5 sensors; amounting to 50 percent of all sensors. Similarly, in
Figure 7.4b, a scenario of six coalitions with 5 sensors each is tested.
Notice that in the last scenario 60 percent of all sensors are dishon-
est (although not from the same coalition). Honesty is successfully
rewarded while dishonesty is punished.

When dishonest sensors use our default Beta distribution with pa-
rameters a = 3 and b = 20, adding more coalitions (of 5 sensors)
would result in an ecosystem were no individual or coalition can in-
crease its trust score beyond 0.25. Dishonest sensors effectively deny
the possibility of gaining trust. If the dishonest sensors are less con-
servative and modify their ratings using a more aggressive Beta distri-
bution with parameters a = 2 and b = 10, honesty is still recognized
and rewarded as shown in Figure 7.5. The figure shows that during
the early rounds, all trust scores are heavily penalized. After the trust
scores stop fluctuating, honesty is recognized again. In round 12, dis-
honest sensors no longer have enough trust and their dishonest sub-

175

1.00

0.75F

t~ 0.50

0.25f

COLLUSION DETECTION

= === Coalition 1 we wim - Coalition 5
=== Coalition 1 =enun Coalition 4 == === Coalition 2 O Coalition 6
Coalition 2 w mim - Coalition 5 == uum Coalition 3 Honest Group

== uum Coalition 3

Honest Group ===ss Coalition 4

0-00 0'000 2 4 G 8 ’ 10 12 14 16
rounds rounds

(a) 50 sensors and 5 coalitions of 5 sensors (b) 50 sensors and 6 coalitions of 5 sensors
each. 50% of all sensors are dishonest. Al- each. 60% of all sensors are dishonest. Dis-
though 50% of the total sensors are dishonest, honesty is identified despite having more dis-
the trust scores of dishonest sensors rapidly honest sensors overall. Notice that double the
drop to zero. The trust score of the honest sen- rounds were needed to detect dishonesty in
sors rapidly increases. contrast to (a).

Figure 7.4: Change of trust with every new calculation (round) of Sphinx.
Four different scenarios are evaluated: when 25%, 37.5%, 47.7% and 50.0%
of the collaborating sensors form a dishonest coalition.

missions stop having much weight. It is in this moment that honest
sensors slowly build up trust once again.

= m == Coalition 1 mem mim - Coalition 5
== === Coalition 2 Gummn® (Coalition 6
== unm Coalition 3 [Coalition 7

Honest Group

=sums (Coalition 4

1.00
0.75
t~ 0.50
0.25
0.00

rounds

Figure 7.5: 50 sensors and 7 coalitions of 5 sensors each. 70% of all sensors
are dishonest. If the dishonest sensors are less conservative, honest sensors
are eventually recognized.

7.5.2.3 Experiment 3: The Effects of Dispersed Bootstrapped Trust Scores

The previous two experiment assumed that all sensors start with a
bootstrapped trust score close to o.5. Initializing the trust scores over
the range [0, 1] has no negative influence on the capabilities of Sphinx
to detect dishonesty. Taking into account 20 honest sensors and two
coalitions of 10 sensors each (for a total of 20 dishonest sensors), Fig-
ure 7.6 shows how honest sensors with a low bootstrapped trust score
eventually reach high trust values. Similarly, dishonest sensors with
high bootstrapped trust scores get their score reduced two zero given

176

7.5 EVALUATION

enough rounds. As shown in the figure, the honest sensor with the
lowest starting trust score (of 0.08) is able to reach a maximum score
in eleven rounds. The dishonest sensor with the highest initial trust
score (of 0.95) is reduced to a score of zero after ten rounds.

= mm = Coalition 1
Coalition 2

Honest Group

1.00
0.75
k&~ 0.50
0.25F
0.00

rounds

Figure 7.6: Evolution of the trust scores (t) of two coalitions, each with 10
sensors, and 20 honest sensors when the trust scores are initially dispersed.
The honest sensor with the lowest score (of 0.08) reaches a trust of 1.00 after
11 rounds.

7.5.2.4 Experiment 4: The Effects on the Sensibility of Dishonesty

We examine how varying the sensibility of dishonesty affects the ca-
pability of Sphinx to identify coalitions. In the following experiment,
the trust scores of sensors are bootstrapped following the Gaussian
distribution N (0.5,0.2). This initialization simulates that all sensors
start with similar trust scores. In our experiments, we observe that
honesty is identified when std < [E[Beta(a, b)]. Thereafter, we choose
in our experimental setup (Section 7.5.1) std = 0.05. With this param-
eter value, honest sensors approximate the real score T; of sensor S;
with T such that t; = N (73, 0.05).

From the illustrated Beta distributions in Figure 7.2, Sphinx can
detect dishonest sensors that act according to a Beta distribution pa-
rameterized with a = 2 and b = 30 (where E[3(2,30)] = 0.062) and
below. Conversely, if dishonesty is modeled with the Beta distribu-
tion 3(2,40) or 3(2,50), dishonesty cannot be identified as it is easy
to confuse with honest mistakes.

Figure 7.7 shows the average trust scores T with standard devia-
tions after executing 12 rounds of Sphinx. When the coalitions are
dishonest, following the Beta distribution ((2,20) and ((2,30), the
average trust score of the dishonest participants is kept low. In all re-
peated experiments, the average trust score of all coalitions tends to
o. This is not the case, however, when coalitions act according to the
Beta distributions (3(2,40) or 3(2,50). In both these cases, the average
trust scores cannot be kept low and have a tendency to increase to-
wards 1. This is due to the fact that with such Beta distributions, it
is not possible to distinguish dishonesty from honest mistakes. Note

177

COLLUSION DETECTION

B Coalition 1 I Honest Group
=== C(oalition 2

1.00}
0.75}
&~ os0f
0.25}
0.00f = =
N

(b®
Y Y

Figure 7.7: Average trust score T, after 12 rounds, of honest and dishonest
sensors when the sensibility of dishonesty changes. From left to right, more
subtle Beta distributions are used by dishonest sensors to improve or worsen
the trust score of others. When using (3(2,30) or (3(2,20), the trust scores of
both coalitions are kept in line. Using more subtle Beta distributions results
in the trust scores of the coalitions also increasing (without affecting the
honest participants).

that the trust scores of the honest sensors are not negatively affected
this way.

7.5.2.5 Experiment 5: Dealing with Smarter Dishonest Sensors

In this scenario, we describe the effects on honest and dishonest sen-
sors when dishonest ones choose to sometimes submit honest evi-
dence according to some probability p to fool Sphinx. In Figure 7.8,
we illustrate four scenarios that take into account g0 sensors, dif-
ferent ratios of dishonest sensors, and different values of p. Subfig-
ure 7.8a and 7.8b duplicate the conditions and setup of the experi-
ments shown in Figure 7.3a but incorporate p. In Figure 7.8a, each
sensor of the coalition chooses to be honest with a probability of 20
percent (p = 0.2). In contrast to the results obtained when p = 0
(cf. Figure 7.3a), the trust scores of the coalition stay slightly higher
in round two but almost collapse by round three. With p = 0.5, as
shown in Figure 7.8b, the trust scores of the coalition are slowly pun-
ished. In the last two scenarios, the trust scores of the honest are
barely affected.

Figure 7.8c and 7.8d duplicate the conditions and setup of the ex-
periments shown in Figure 7.3¢ but incorporate p. As shown in Fig-
ure 7.8c, with p = 0.2, the coalition is not successful in keeping their
trust scores relevant. By round eight, all trust scores collapse. Sur-
prisingly, the trust scores of honest sensors are positively rewarded
by the honest submissions of the coalition. The trust scores of honest
sensors do not decrease as they do in Figure 7.3c and are maximized
by round 11. In the experiment shown in Figure 7.8d, sensors in the

178

Honest Group

=mms Coalition 1

rounds

(a) 40 sensors, 25% dishonest, 20% probabil-
ity of dishonest sensors being honest. When
colluders are 20% of the time honest, honest
sensors increase their trust scores faster. Dis-
honest sensors are still identified.

= === (Coalition 1 Honest Group

rounds

(c) 40 sensors, 47.5% dishonest, 20% probabil-
ity of dishonest sensors being honest. When
sensors in coalition 1 rate honestly with a 20%
probability, instead of harming the honest sen-
sots, the coalition boosts the trust scores of
the honest members without gaining enough
trust.

7.5 EVALUATION

Honest Group

=mms Coalition 1

1.00

(b) 40 sensors, 25% dishonest, 50% probability
of dishonest being sensors honest. Colluders
are correctly identified, albeit in later rounds.

== == Coalition 1 Honest Group

rounds

(d) 40 sensors, 47.5% dishonest, 50% probabil-
ity of dishonest sensors being honest. With a
50% probability of rating honestly, coalition 1
further boosts the scores of the honest sensors.
Their trust scores, however, are more slowly
reduced.

Figure 7.8: The performance of Sphinx when dishonest sensors are smarter,

i.e., they act honestly with some probability. The top and bottom rows repli-
cate the setup used in the first experiment, as shown in Figure 7.3a and 7.3c,

respectively, but consider smarter dishonest sensors.

coalition choose to be honest 50 percent of the time. In this scenario,
the trust scores of the coalition stay relevant longer but eventually
collapse after enough rounds pass. However, the trust scores of the
sensors are positively affected and reach their maximum earlier by

round eight.

Overall, dishonest sensors that choose to act honestly with some
probability p must trade between staying relevant longer and reward-
ing honest members to increase their score even faster. In the scenario
of smart dishonest sensors, we found a turning point when p = 0.65,
for which the results are shown in Figure 7.9. At this point, sensors
in coalition 1 choose to be honest 65 percent of the time and man-
age to keep their trust scores almost constant for all 32 rounds. If the
coalition wishes to get the trust scores T of their sensors to rapidly
increase (and not be left behind by the honest sensors), they would
need to be honest 8o percent of the time (not shown in the figure).
This would enable them to give some dishonest ratings without be-

179

COLLUSION DETECTION

ing heavily punished but would go against the goal of reducing the
trust scores of honest sensors.

= === Coalition 1

Honest Group

rounds

Figure 7.9: 40 sensors, 47.5% dishonest, 65% probability of dishonest sensors
being honest. The trust scores of the coalition almost stay constant through-
out 32 rounds of running Sphinx. Yet, the coalition could be identified by
the fact that their trust scores do not increase as those of the honest sensors.

76 CONCLUSION AND LESSONS LEARNED

This chapter proposed Sphinx, an evidence-based trust mechanism
that can detect dishonest sensors within a CIDS. Sphinx collects the
evidence submitted by all sensors regarding the reliability of other
sensors. From this evidence, each sensor is assigned a trust score that
represents the belief of the system about the attitude of the sensor.
Dishonest sensors can be identified using the iterative computations
of Sphinx in just a few rounds.

Related work proposes diverse evidence-based trust mechanisms to
solve the issue of detecting dishonest CIDS members. Related work of-
ten makes assumptions, however, that simplify the problem to better
adjust it to known computational trust models. As a goal of this work,
instead, we aimed at developing an evidence-based trust mechanism
that can cope with smart dishonest sensors and the initial bootstrap
problem. Smart dishonest sensors are sensors that behave inconsis-
tently overall, i.e., they switch roles. Inconsistent behavior is known
to cause troubles when designing evidence-based trust mechanisms
[Burnett et al., 2010]. We relaxed the “smartness” assumption and de-
signed our mechanism so as to assume that dishonest sensors choose
to be honest with some probability.

Evidence-based trust mechanisms tend to rely excessively on their
capability to bootstrap trust scores reasonably well. If the initial trust
score of a sensor is incorrectly bootstrapped, an honest sensor might
struggle to gain trust for a long time while dishonest sensors might
benefit for far too long [Burnett et al., 2010]. We therefore focused on
designing a mechanism that does not heavily dependent on the initial
trust score of sensors. We achieve this with the help of clustering
algorithms and Gaussian Mixture Models (GMMs). We were able to
show in our evaluations that bootstrapping all trust scores to a fixed

180

76 CONCLUSION AND LESSONS LEARNED

middle value (0.5) or uniformly within a wide range ([0.25,0.75]) does
not significantly affect Sphinx negatively.

7.6.1 Future Work

As future work, we intent to extend Sphinx to compute trust scores
incorporating additional criteria such as the amount of past interac-
tions between sensors, the initial bootstrapped trust score, and the
rate of change of trust scores. Sphinx is already capable of processing
additional information thatn the one that we already process through
the usagage of clustering to define credibility classes. However before
new criterias can be introduced, they need to be transformed to a two
dimensional Euclidean space that matches the one Sphinx uses. We
further plan to design a new bootstrapping procedure that improves
upon [Xin Liu, Datta, et al., 2009] to better address the scenario of
trust within CIDSs.

7.6.2 Chapter Summary

Honesty is a trait that should not be assumed to be part of all CIDS
members. This is especially true when the sensors of multiple inde-
pendent organizations collaborate while having potentially different
goals and purposes. In this chapter, we presented Sphinx, an evidence-
based trust mechanism that uses the reliability of sensors to compute
an overall trust score for each sensor. In Sphinx, the trust score of a
sensor represents the believe of the system concerning the attitude
of the sensor. Sensors with high trust scores are thought to be hon-
est, i.e., they share the overall goal of the CIDS. Low trust scores are
exactly the opposite and point towards dishonest sensors.

Sphinx makes three assumptions regarding how sensors submit ev-
idence about the reliability of others. First, it assumes that honest
sensors make small mistakes that follow a Gaussian distribution. Sec-
ond, dishonest sensors submit tampered evidence with some prob-
ability. Dishonest sensors tamper evidence (positively or negatively)
following a Beta distribution. Third, dishonest sensors can coordinate
into groups to collude; however, one sensor can only belong to one
such group. In contrast to related work, as implied by the second as-
sumption, dishonest sensors can sometimes be honest to try and fool
the system.

Sphinx uses computational trust models and unsupervised ML algo-
rithms to compute the trust scores of sensors. The final trust score of
a sensor depends on the two other partial trust scores evidence-based
trust score and reliability-based trust score that Sphinx calculates. In the
evidence-based trust score, Sphinx uses all the collected evidence that
refers to one sensor to calculate its first partial trust. In the reliability-

181

COLLUSION DETECTION

based trust score, the calculations done in the evidence-based trust
score are compared against all submissions to identify outliers.

We conduct five experiments to test the performance and weak-
nesses of Sphinx. The first experiment shows how Sphinx can detect
single large coalitions (groups of coordinated dishonest sensors) as
long as they do not exceed the number of honest sensors. Experiment
two shows how multiple coalitions can also be correctly identified
when the largest coalition has no more members than the total num-
ber of honest sensors. This considers the scenario where the total
number of dishonest servers is larger than the honest ones. In this
scenario, dishonesty can still be punished. Experiment three tests the
impact on trust scores when sensors start with diversified trust scores.
Even in the presence of dishonest sensors with high trust scores and
honest sensors with low trust scores, dishonesty can still be identified.
In Experiment four, we test the limits of identifying dishonesty when
evidence is tampered with different degrees of subtlety. Dishonest
members need to be so subtle to not be detected that it overlaps with
genuine errors made by honest sensors. Finally, in Experiment 5, we
show how dishonest sensors that choose to sometimes be honest can
be identified if they are dishonest more than 65 percent of the time.

182

CONCLUSION

Throughout this thesis, we introduced novel methods and mecha-
nisms that enhance the capabilities of distributed Collaborative In-
trusion Detection Systems (CIDSs) with the help of Machine Learn-
ing (ML). We propose solutions to problems that relate to one or many
components that make up the architecture of a CIDS. In this section,
we first summarize each chapter of this thesis, resuming how ML is
used, what our contributions are, and which component of the CIDs
architecture are affected. We then organize our conclusions in rela-
tion to the different components of the CIDS architecture. Finally, we
provide an overlook of research areas and directions towards further
improving the capabilities of distributed CIDSs.

8.1 SUMMARY

This thesis is composed of eight chapters, all relating to the common
topic of improving CIDSs using aspects or theory borrowed from ML.
The introduction chapter together with the related work and back-
ground chapter make up the preface of this thesis. The preface high-
lights the importance of CIDSs in large networks and covers the nec-
essary topics needed to understand our contributions. The core of
the thesis is composed of five chapters of contributions. Each of these
core chapters explains and tackles an open issue within CIDSs. Overall,
with the algorithms, systems and concepts proposed in our contribu-
tions, we enable the development of CIDSs that have better distributed
capabilities.

In the introduction, Chapter 1, we motivate the need and empha-
size the challenges of detecting attacks in large networks. Distributed
CIDSs are among the tools that precisely aim at solving this problem.
However, in their current form, distributed CIDSs have disadvantages
that constrain their ability to function adequately. For distributed
CIDSs to function in practice rather than only in theory, they need to
overcome diverse challenges. The introduction discusses these open
challenges and presents our research objectives aimed at overcoming
them.

In the background and related work, Chapter 2, we present three
key topics that relate to every core chapter alike. Specialized topics,
those only relevant to a particular contribution, are covered within
their respective chapter. The main covered topics of this chapter are
ML, Network Intrusion Detection Systems (NIDSs) and CIDSs. From
among the covered topics, we stress the importance of the section cov-

thesis preface

thesis core

Chapter 1

Chapter 2

Chapter 3

Chapter 4

CONCLUSION

ering the CIDSs architectural components (Section 2.3.3). Every contri-
bution chapter uses the CIDS architecture described in this section to
position the contribution within a CIDS. This helps the reader identify
the area of a CIDS being improved.

The first contribution of the thesis, detailed in Chapter 3, carries the
name Dataset Generation. We begin the chapter describing the prob-
lems that the field of NIDSs and CIDSs have with regards to datasets.
Datasets are key tools needed to design, evaluate and compare sys-
tems that rely on ML. The network intrusion detection field, how-
ever, notably lacks public datasets of quality. This can be attributed
to many facts; the most important one being that datasets need to
be labeled with ground truth. In a survey we present, we highlight
how modern datasets with ground truth do not exist. To alleviate this
issue, we propose the Intrusion Detection Dataset Toolkit (ID2T). ID2T
creates labeled datasets with ground truth by generating synthetic at-
tacks and injecting them into background traffic provided by the user.
The synthetic attacks replicate the statistical properties (when appro-
priate) of the background traffic. This makes synthetic traffic difficult
to distinguish from real traffic.

ID2T replicates the statistical properties of arbitrarily supplied back-
ground traffic to create synthetic attacks. Thereafter, the statistical
quality of the background traffic has substantial impact on the syn-
thetic traffic ID>T generates. We implement diverse metrics within ID2T
to analyze network traffic to help identify when it contains irregular-
ities or potential issues. For example, by measuring the distribution
of new source IPs contacted in different time window, we can tell if
traffic shows characteristics of a home, office or backbone network.
We demonstrate the usefulness of the metrics by analyzing public
datasets with known defects and showing which metric would poten-
tially identify the defect.

The first contribution concludes with two use cases that demon-
strate how ID2T can be used to test deployed NIDSs or evaluate new
theoretical NIDSs. In the first use-case, we reproduce some of the eval-
uation results of an anomaly NIDSs we develop in Chapter 4. The sec-
ond use-case shows how ID2T is used to validate two popular misuse
NIDSs.

The second contribution of this thesis, which is presented in Chap-
ter 4 and titled Intrusion Detection, is the development of an unsuper-
vised anomaly-based NIDSs aimed at working on backbone networks.
Traditional NIDSs, whether distributed or not, cannot directly cope
with the traffic produced in backbone networks because of two main
reasons. One, backbone networks produce overwhelming amounts of
network traffic and, two, creating intrusion detection models is chal-
lenging. We approach this problem by reducing the dimensionality of
network traffic in multiple steps. First, packets are grouped into net-
work flows. Second, network flows are characterized with the entropy

184

=y

8.1 SUMMARY

of many of their features. Finally, we use an autoencoder, known
as a Replicator Neural Network (RNN), to reduce the dimensional-
ity of the entropies. We use the RNN of the last step as the normality
model of an anomaly detection system. With our system, we can de-
tect undesired network-wide events, such as Distributed Denial of
Service (DDoS) attacks and port scans, with low false positives. The
performance of our system does not degraded when the traffic used
to create a normality model contains attacks. We evaluate our sys-
tem by using ID2T to injecting attacks into real network background
traffic. Our evaluations show that we can identify attacks that leave
relatively small traces of packets in relation to the massive quantity
of total packets.

In our third contribution, with the name Community Formation and
presented in Chapter 5, we develop concepts to form communities of
NIDS sensors that enable us to apply centralized ML algorithms within
distributed environments. A community is a group of sensors that
collect network traffic in one location from where centralized mod-
els of normality can be learned. Communities distribute their learned
models to all other communities. To detect intrusions, a community
uses its model along with all others models it received (from other
communities) to build an ensemble of models. We explore the effects
of using different number of communities, communities of different
sizes, and communities with different NIDS overlap. Our experiments
show how communities leverage detection accuracy and communica-
tion overhead depending on their parameters.

Our fourth contribution is titled Intrusion Information Dissemination
and is detailed in Chapter 6. In this chapter, we develop a mech-
anism tailored to the dissemination of information within a CIDs.
CIDSs have special needs that typical information dissemination mech-
anisms (e. g., flooding or gossiping) do not adequately satisfy. For ex-
ample, CIDSs need to distribute information with the guarantee that
every member receives it. At the same time, members need to work
with partial information without having to wait for the dissemina-
tion mechanism to converge. This last point is critical in large sys-
tems where dissemination may take a long time or when membership
churn rate’ is high.

Our dissemination mechanism finds to couple the Sketch Proba-
bilistic Data Structure (PDS) and Bayesian Networks to lower commu-
nication overhead and enable CIDS members to make deductions from
partial information. CIDS members encode the data (e.g., features)
they want to distribute using Sketches. Sketches are then shared with
neighboring members only. After receiving a Sketch, a member ag-
gregates the data into the Sketch that it wishes to disseminate and
forwards the Sketch to another neighbor. Sketches do not grow in size

The term “churn rate” is a metric that defines the rate by which individuals (e. g.,
sensors) enter or leave a group (e. g., a CIDS) over a period of time.

Chapter 5

Chapter 6

Chapter 7

contributions are
standalone

CONCLUSION

when data is aggregated in them. However, due to how they encode
data, we loose the possibility of determining which member added
which data to the Sketch (we only know which members participated
in the aggregation process). Members use Bayesian networks to rea-
son about the contents of a Sketch (i.e., what data belongs to what
member). After seeing many Sketches, a Bayesian network can de-
duce what is it that each member placed in the Sketch. The deduc-
tions may later be used by a CIDS to identify distributed attacks. Our
mechanism uses 20 percent less information than network flooding
and can provide accurate deductions as soon as it sees one dissemi-
nated message.

In our fifth and final contribution, detailed in Chapter 7 and titled
Collusion Detection, we develop a system capable of detecting a single
dishonest sensor or a group of colluding sensors within a CIDS. Our
system exploits computational trust models and ML to compute trust
scores of participating CIDS members that reflect their intentions. Our
system uses the reliability of a member to compute a trust score. Reli-
ability is the ability of sensor to reply correctly to queries in time and
form. The correctness of a reply is established by hiding queries with
known answers with every other query that a CIDS may ask one of
its members. To determine the capabilities of our system, we conduct
diverse evaluations that test different system conditions. Our system
is capable of detecting coalitions (i.e., groups of colluding sensors)
successfully as long as a colluding group is smaller than the group of
honest sensors. Detecting dishonesty is possible even when there are
more overall dishonest sensors than honest hones, given that no sin-
gle colluding group is larger than the honest group. In contrast to re-
lated work, our system considers the possibility of dishonest sensors
that choose to be honest (with some probability) to fool the system.
These “smart dishonest sensors” do not affect the performance of our
system and can be successfully detected.

8.2 ON THE USEFULNESS OF THE CONTRIBUTIONS

When all our contributions are put together, we can conceptualize a
CIDS with improved distributed capabilities. However, our contribu-
tions are worthwhile by themselves and can improve the capabilities
of existing CIDSs. With ID>T (Chapter 3), researchers can accurately
compare CIDSs and ultimately design better ones. With our intrusion
detection methodology based on RNNs (Chapter 4), CIDSs can adapt to
detect undesired distributed traffic in both small and large networks.
If centralized NIDSs already work well in centralized environments,
our community creation concepts (Chapter 5) enable those NIDSs to be
deployed within distributed environments by trading their detection
accuracy for a desired communication overhead. A fully working dis-
tributed CIDS can replace its dissemination mechanism with the one

186

8.2 ON THE USEFULNESS OF THE CONTRIBUTIONS

we propose (Chapter 6). This replacement enables CIDS members to
deduce information even before they fully observe everything while,
at the same time, reducing communication overhead (assuming the
popular flooding mechanism was used). Regardless of the architec-
ture a CIDS uses, with our collusion detection mechanism (Chapter 7),
a CIDS can better protect itself from insider threats, enabling it to
openly accept more collaborators with less risk. In the following, we
match together the architectural components of CIDSs with our contri-
butions and draw conclusions.

From the perspective of the CIDS architecture we reference (see
Section 2.3.3), our contributions enrich each of the components that
make up a CIDS. Let us consider the five components of a CIDS as
shown in Figure 2.6 (p. 29). At the local detection component, we de-
velop a dataset creation toolkit (Chapter 3) and an intrusion detection
mechanism (Chapter 4) that improve the capability of individual CIDS
sensors to detect intrusions. The intrusion detection mechanism we
propose in Chapter 4 specializes on detecting anomalies in large net-
works. There are, however, no theoretical constraints that prevents it
from performing well in smaller networks. Our dataset generation
toolkit provides the means to test and design better systems that use
ML. Many researchers argue that synthetic datasets are not as good
as a real dataset [Abt et al., 2013]. However, we sympathize with the
hypothesis that Abt et al. [2013] draw: If statistical learners (i.e., ML
algorithms) are trained with synthetic datasets that replicate the sta-
tistical properties of real network traces, the probability is high that
the learner can perform well in real-world settings.

Managing members in a CIDS is a challenging task. In real world
settings, where multiple organizations may be involved in the de-
tection of distributed threats (e.g., as in the PROTECTIVE H2020"
project [PROTECTIVE: Proactive Risk Management 2018]), it is impossi-
ble to keep track of the actions of every collaborator. Trust therefore
plays an important role in the process of managing members. Our
evidence-based trust mechanism proposed in Chapter 7 can enable
a more carefree environment for collaboration. Our trust-mechanism
assumes that honest sensors make mistakes following a Gaussian dis-
tribution while dishonest ones follow a Beta distribution to tamper
evidence. Although this assumption adequately cover most settings,
we wonder how our system performs in settings where mistakes or
malicious activities have different costs.

From an analysis of related work [Vasilomanolakis, Karuppayah,
et al., 2015], we can conclude that the most neglected component of
the five architectural components of a CIDS is the data dissemination
one. We argue that this stems from the fact that disseminating data

Horizon 2020, also known as H2020, is a research program of the European Union
with a funding close to €8o billions from 2014 to 2020. The program focuses on
funding research that involves academic and industrial partnerships.

component
enrichment

local detection

membership
management

data dissemination

data correlation and
aggregation

global detection

CONCLUSION

in a network is an already solved problem and, therefore, an engi-
neering rather than a scientific task. In Chapter 6, on the contrary,
we argue that disseminating information within a CIDS has special re-
quirements that are not typically taken into account. For example, a
system that analyses a network channel which it also uses for trans-
portation, needs to be especially conscious of network overhead. By
adding traffic to the same network it monitors, the system introduces
potential bias in the detection process (e.g., due to congestion). If a
countermeasure is implemented to ignore certain traffic, we may give
malicious insiders the possibility of disguising themselves. Therefore,
reducing communication overhead is crucial. At the same time, how-
ever, guaranteeing full information dissemination to achieve the est
possible detection accuracy is important. These two goals are usually
traded in regular dissemination techniques (e. g., gossiping [Kermar-
rec et al., 2007]).

The component that performs data correlation and agqregation is ar-
guably the most important component of a CIDS. It is responsible
for, both, reducing the amount of data that need to be transferred
in a network and enabling the detection of distributed attacks ex-
perienced by different collaborators. The distribution mechanism we
propose in Chapter 6 has the goal of fully distributing information
while reducing communication overhead as much as possible. The
mechanism uses aggregation and correlation as means to achieve its
goals. Our mechanism therefore fuses two CIDS components together:
those of data dissemination and data correlation and aggregation. We ar-
gue that CIDSs need to consider both components in conjunction to
truly exploit the capabilities of aggregation, correlation and data dis-
semination.

The main goal of a CIDS is to detect network-wide threats. This
is achieved by analyzing and observing traffic patterns that concern
a network as a whole. In traditional CIDSs, those patterns come in
the form of alarms. Alarms flow from the lowest component (i.e.,
local detection) all the way to the highest component (i.e., global de-
tection), with no other information being shared. As a consequence,
CIDSs detect network-wide threats only when the threats leave traces
that trigger alarms. We have created the term alarm level to refer to
CIDSs that only operate with alarms. Detection techniques at this level
exist and can find distributed threats. We argue, however, that only
using alarms is fundamentally flawed: The purpose of heavily distrib-
uted attack is to become subtle enough to avoid raising alarms.

Our contributions to the global detection component work at a differ-
ent level that the alarm one. Instead of relying on alarms, we work on
the foundation that network features can be shared to build distrib-
uted intrusion detection models. We refer to this level of CIDS opera-
tion as detection level. In Chapter 5, we propose the detection level and
develop concepts to build CIDSs that operate at such level. The intru-

188

8.3 OUTLOOK

sion detection system we propose in Chapter 4, although presented as
a single NIDS, can be implemented as the core detection strategy of a
CIDS that operates at the detection level. Our contribution to develop
labeled datasets also has an effect on the global detection component.
With our synthetic datasets, we can train and test the performance of
systems that try to detect network-wide threats.

8.3 OUTLOOK

In the course of this thesis, we presented diverse contributions that to-
gether improve modern CIDSs. Our approach consisted in recognizing
the basic components that make a CIDS and providing improvements
as a whole, or proposing solutions to outstanding issues. We envision
further research in relation to each of our components but also to the
CIDS in general. Each contribution chapter (i.e., from Chapter 3 to 7)
includes a discussion of possible future work that relates to the con-
tribution itself. In this section, we propose future work outside of our
contributions to improve CIDSs.

We have previously argued (e.g., in Chapter 5) that CIDSs need
to evolve from simple systems that manage alerts to full-featured
systems capable of creating distributed intrusion detection models
through cooperation. Advancements in distributed ML, we argue, are
directly related to the future of CIDSs. Ensemble learning is a suc-
cessful technique that intrinsically supports the development of dis-
tributed models. As researchers, we still need to interconnect more
closely the fields of ensemble learning and CIDSs. The end goal should
focus on developing CIDSs that operate at the detection level, and en-
semble learning may provide the means to achieve this goal.

In the process of interconnecting ensemble learning and CIDSs to-
gether, the local detection and global detection components of the
CIDS architecture need to be tied more closely together. As such, the
components need to be addressed not as individual and indepen-
dent components but, rather, as coupled components. For the global
detection component to create intrusion detection models, the local
detection component needs to extract network features or build mod-
els that align with the specific requirements of the global detection
component.

We expect that the CIDS architecture experiences and evolves in a
similar fashion to the OSI model. When the OSI model was originally
conceptualized, each of its seven layers had well defined functional-
ities that did not overlap much with each other. At present, the OSI
model is just but a theoretical concept used to understand the dif-
ferent components that enable network communication. Implemen-
tations of the OSI model dilute the functionality of the layers such
that it is not possible to distinguish where the responsibilities of one
layer start and end. Similarly, the CIDS architecture has components,

CONCLUSION

or layers, whose implementation can easily become tangled. There
are a few places where this is most obvious. The data correlation and
aggregation and the data dissemination components are most effectively
implemented in combination. If we further wish to consider under-
lays in the dissemination process, then the membership management
component should also be taken into account. The same goes for the
location detection component and the global detection component.

We envision a treatment of the membership management component
similarly to how we treated the data dissemination component. Instead
of using existing protocols to manage members, we believe that CIDSs
would benefit from the development of especially tailored member-
ship management mechanisms. Such mechanism would need to take
into account data correlation and aggregation strategies, and data
dissemination methodologies to better optimize how members are
organized.

190

BIBLIOGRAPHY

Abt, Sebastian and Harald Baier (2013). “Are We Missing Labels? A
Study of the Availability of Ground-Truth in Network Security
Research.” In: Badgers 2014 (cit. on pp. 42, 43, 46, 49, 187).

Akhtar, Naveed and Ajmal Mian (2018). “Threat of Adversarial At-
tacks on Deep Learning in Computer Vision: A Survey.” In: IEEE
Access 6, pp. 14410-14430 (cit. on p. 10).

Anceaume, Emmanuelle and Yann Busnel (2013). “Sketch *-metric:
Comparing Data Streams via Sketching.” In: 2013 IEEE 12th Inter-
national Symposium on Network Computing and Applications. 1EEE,

pp- 25-32 (cit. on p. 135).

Androutsellis-Theotokis, Stephanos, Diomidis Spinellis, Campbell
Gibson, and Kay Jung (2004). “A survey of peer-to-peer content
distribution technologies.” In: ACM computing surveys (CSUR)
36.4, pp- 335-371 (cit. on p. 31).

Anwar, Shahid et al. (2017). “From intrusion detection to an intru-
sion response system: Fundamentals, requirements, and future
directions.” In: Algorithms 10.2 (cit. on p. 22).

Axelsson, Stefan (1998). Research in intrusion-detection systems: A sur-
vey. Tech. rep. Department of Computer Engineering, Chalmers
University of Technology, p. 93 (cit. on p. 5).

Barbosa, Rafael Ramos Regis, Ramin Sadre, Aiko Pras, and Remco
van de Meent (2010). “Simpleweb/university of twente traffic
traces data repository.” In: Centre for Telematics and Information
Technology University of Twente, Enschede, Technical Report (cit. on

p- 44)-
Barwolff, Matthias (2010). End-to-End Argquments in the Internet: Prin-
ciples, Practices, and Theory (cit. on p. 1).

Bellovin, Steven M (1992). “Packets Found on an Internet 1 Intro-
duction 2 Address Space Oddities.” In: Computer Communications

23.3, pp. 1-8 (cit. on p. 51).
Bhuyan, Monowar H, Dhruba K Bhattacharyya, and Jugal K Kalita

(2015). “Towards generating real-life datasets for network intru-
sion detection.” In: International Journal of Network Security 17.6,

pp- 683-701 (cit. on p. 40).

Bishop, Christopher M (2006). Pattern recognition and machine learning.
springer (cit. on pp. 16, 163).

191

BIBLIOGRAPHY

Boggs, Nathaniel, Sharath Hiremagalore, Angelos Stavrou, and Sal-
vatore J. Stolfo (2011). “Cross-domain collaborative anomaly de-
tection: So far yet so close.” In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 6961 LNCS, pp. 142-160 (cit. on p. 138).

Bolstad, William M (2004). Introduction to Bayesian Statistics. John
Wiley & Sons, Inc (cit. on p. 164).

Brauckhoff, Daniela and a Wagner (2008). “FLAME: a flow-level ano-
maly modeling engine.” In: The conference on Cyber security (cit.

on pp. 41, 47).

Breve, Fabricio A, Liang Zhao, and Marcos G Quiles (2010). “Semi-
Supervised Learning from Imperfect Data through Particle Coop-
eration and Competition.” In: Neural Networks (I[CNN), The 2010
International Joint Conference on, pp. 1-8 (cit. on p. 89).

Buchegg, S and] Y L Boudec (2004). “A Robust Reputation System for
Peer-to-Peer and Mobile Ad-hoc Networks.” In: Proc. of the 2nd
Workshop on the Economics of Peer-to-Peer Systems (cit. on p. 164).

Burnett, Chris, Timothy] Norman, and Katia Sycara (2010). “Boot-
strapping Trust Evaluations through Stereotypes.” In: gth Inter-
national Conference on Autonomous Agents and Multiagent Systems,
Pp- 241-248 (cit. on p. 180).

Butun, Ismail, Salvatore D. SD Morgera, and Ravi Sankar (2004). “A
Survey of Intrusion Detection Systems in Wireless Sensor Net-
works.” In: Communications Surveys & Tutorials, IEEE PP.g9, pp. 1—
17 (cit. on pp. 2, 21).

Bye, Rainer, Seyit Ahmet Camtepe, and Sahin Albayrak (2010). “Col-
laborative Intrusion Detection Framework: Characteristics, Ad-
versarial Opportunities and Countermeasures.” In: CollSec (cit.
on p. 32).

Cai, Min, Kai Hwang, Yu-Kwong Kwok, Shanshan Song, and Yu Chen
(2005). “Collaborative internet worm containment.” In: I[EEE Se-
curity & Privacy 3.3, pp. 2533 (cit. on p. 109).

CAIDA (2018). Center for Applied Internet Data Analysis. URL: https:
//www . caida.org/home/ (visited on 12/06/2018) (cit. on pp. 5,

44).

Caragea, Doina, Adrian Silvescu, and Vasant Honavar (2004). “A
Framework for Learning from Distributed Data Using Sufficient
Statistics and its Application to Learning Decision Trees.” In: In-
ternational Journal of Hybrid Intelligent Systems 1.1, pp. 80-89 (cit.

on p. 32).

192

https://www.caida.org/home/
https://www.caida.org/home/

BIBLIOGRAPHY

Catania, Carlos a. and Carlos Garcia Garino (2012). “Automatic net-
work intrusion detection: Current techniques and open issues.”
In: Computers & Electrical Engineering 38.5, pp. 1062—1072 (cit. on

p- 5)-

Cha, Sung-hyuk (2007). “Comprehensive Survey on Distance / Sim-
ilarity Measures between Probability Density Functions.” In: In-
ternational Journal of Mathematical Models and Methods in Applied

Sciences 1.4, pp. 300-307 (cit. on pp. 133, 135).

Chan, Philip K and Salvatore J Stolfo (1993). “Toward Parallel and
Distributed Learning by Meta-Learning.” In: AAAI workshop in
Knowledge Discovery in Databases, pp. 227-240 (cit. on p. 28).

Chandola, Varun, Arindam Banerjee, and Vipin Kumar (2009). “Ano-
maly detection: A Survey.” In: ACM Computing Surveys 41.3,
pp- 1-58 (cit. on pp. 20, 112).

Chen, Zhaomin, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau
(2016). “Detection of network anomalies using Improved-MSPCA
with sketches.” In: Computers & Security (cit. on pp. 24, 93).

Cho, Kenjiro, K Mitsuya, and a Kato (2000). “Traffic data repository
at the WIDE project.” In: ATEC ‘oo Proceedings of the annual con-
ference on USENIX Annual Technical Conference, pp. 51-52 (cit. on

pp. 89, 154, 156).

Cordero, Carlos Garcia, Sascha Hauke, Max Muhlhauser, and Math-
ias Fischer (2016). “Analyzing flow-based anomaly intrusion de-
tection using Replicator Neural Networks.” In: 2016 14th Annual
Conference on Privacy, Security and Trust (PST). IEEE, pp. 317-324

(cit. on pp. 10, 75).

Cordero, Carlos Garcia, Giulia Traverso, et al. (2018). “Sphinx: a
Colluder-Resistant Trust Mechanism for Collaborative Intrusion
Detection.” In: IEEE Access, pp. 1-13 (cit. on p. 10).

Cordero, Carlos Garcia, Emmanouil Vasilomanolakis, Nikolay Mi-
lanov, Christian Koch, David Hausheer, and Max Muhlhauser
(2015). “ID2T: A DIY dataset creation toolkit for Intrusion De-
tection Systems.” In: 2015 IEEE Conference on Communications and
Network Security (CNS). IEEE, pp. 739—740 (cit. on pp. 9, 40, 48).

Cordero, Carlos Garcia, Emmanouil Vasilomanolakis, Max Miihlhau-
ser, and Mathias Fischer (2015). “Community-Based Collabora-
tive Intrusion Detection.” In: International Conference on Security
and Privacy in Communication Systems, pp. 665-681 (cit. on p. 10).

Cormode, Graham and Muthu Muthukrishnan (2012). “Approximat-
ing Data with the Count-Min Sketch.” In: IEEE Software 29.1,

pp- 64—69 (cit. on p. 135).

193

BIBLIOGRAPHY

Cormode, Graham and S. Muthukrishnan (2005). “An improved data
stream summary: The count-min sketch and its applications.” In:

Journal of Algorithms 55.1, pp. 58-75 (cit. on pp. 134, 135).

Cotton, Michelle, Lars Eggert, Joe Touch, Magnus Westerlund, and
Stuart Cheshire (2011). Internet assigned numbers authority (IANA)
procedures for the management of the service name and transport proto-
col port number registry. Tech. rep. (cit. on p. 57).

Creech, Gideon and Jiankun Hu (2013). “Generation of a new IDS
test dataset: Time to retire the KDD collection.” In: Wireless Com-
munications and Networking ... pp. 1-6 (cit. on pp. 35, 43).

Cretu, Gabriela F., Angelos Stavrou, Michael E. Locasto, Salvatore J.
Stolfo, and Angelos D. Keromytis (2008). “Casting out demons:
Sanitizing training data for anomaly sensors.” In: Proceedings -
IEEE Symposium on Security and Privacy, pp. 8195 (cit. on p. 89).

Cuppens, Frédéric and Alexandre Miege (2002). “Alert correlation in
a cooperative intrusion detection framework.” In: IEEE Sympo-
sium on Security and Privacy (S&P). IEEE (cit. on p. 27).

Danzig, Peter B. and Sugih Jamin (1991). “tcplib: A Library of Inter-
network Traffic Characteristics.” In: Library 48, pp. 1-8 (cit. on

p- 52).

Das, Kaustav and Jeff Schneider (2007). “Detecting anomalous re-
cords in categorical datasets.” In: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data
mining - KDD ‘o7, p. 220 (cit. on p. 21).

Dash, Denver, B Kveton, and JM Agosta (2006). “When gossip is good:
Distributed probabilistic inference for detection of slow network
intrusions.” In: Proceedings of the ... pp. 1115-1122 (cit. on p. 28).

Dau, Hoang Anh, Vic Ciesielski, and Andy Song (2014). “Anomaly
Detection Using Replicator Neural Networks Trained on Exam-
ples of One Class.” In: Simulated Evolution and Learning. Dunedin,
New Zealand: Springer International Publishing, pp. 311322 (cit.
on pp. 24, 91, 103).

Daubert, Jorg, Mathias Fischer, Tim Grube, Stefan Schiffner, Panay-
otis Kikiras, and Max Miihlhduser (2016). “Anonpubsub: Anony-
mous publish-subscribe overlays.” In: Computer Communications
76, pp- 42—53 (cit. on p. 32).

Deng, Li and Dong Yu (2014). “Deep Learning: Methods and Ap-
plications.” In: Foundations and Trends in Signal Processing 7.3-4,
pp- 197387 (cit. on pp. 87, 104).

Dizaji, Kamran Ghasedi, Amirhossein Herandi, Cheng Deng, Wei-
dong Cai, and Heng Huang (2017). “Deep clustering via joint

194

BIBLIOGRAPHY

convolutional autoencoder embedding and relative entropy min-
imization.” In: Computer Vision (ICCV), 2017 IEEE International
Conference on. 1IEEE, pp. 5747-5756 (cit. on p. 18).

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive Sub-
gradient Methods for Online Learning and Stochastic Optimiza-
tion.” In: Jmlr 12, pp. 1—40 (cit. on p. 91).

Duda, Richard O, Peter E Hart, and David G Stork (2012). Pattern
classification. John Wiley & Sons (cit. on p. 133).

Duma, Claudiu, Martin Karresand, Nahid Shahmehri, and Germano
Caronni (2006). “A trust-aware, P2P-based overlay for intrusion
detection.” In: Proceedings - International Workshop on Database and
Expert Systems Applications, DEXA, pp. 692—697 (cit. on p. 162).

Dumoulin, Vincent and Francesco Visin (2016). “A guide to convolu-
tion arithmetic for deep learning.” In: pp. 1—28 (cit. on p. 104).

Dwarakanath, Rahul, Boris Koldehofe, Yashas Bharadwaj, The An
Binh Nguyen, David Eyers, and Ralf Steinmetz (2017). “Trust-
CEP: Adopting a trust-based approach for distributed complex
event processing.” In: Proceedings - 18th IEEE International Confer-
ence on Mobile Data Management, MDM 2017 May, pp. 30-39 (cit.
on p. 165).

Eckmann, Steven T, Giovanni Vigna, and Richard A Kemmerer (2002).
“STATL: An attack language for state-based intrusion detection.”
In: Journal of computer security 10.1-2, pp. 71—-103 (cit. on p. 32).

Estevez-Tapiador, Juan M., Pedro Garcia-Teodoro, and Jesus E. Diaz-
Verdejo (2004). “Anomaly detection methods in wired networks:
a survey and taxonomy.” In: Computer Communications 27.16,

pp- 1569-1584 (cit. on p. 24).

Fan, Li, Pei Cao, Jussara Almeida, and Andrei Z. Broder (2000). “Sum-
mary cache: A scalable wide-area Web cache sharing protocol.”
In: IEEE/ACM Transactions on Networking 8.3, pp. 281—293 (cit. on

p- 134)-

Folino, Gianluigi and Pietro Sabatino (2016). “Ensemble based collab-
orative and distributed intrusion detection systems: A survey.”
In: Journal of Network and Computer Applications 66, pp. 1-16 (cit.
on p. 112).

Fontugne, Romain, Pierre Borgnat, Patrice Abry, and Kensuke Fu-
kuda (2010). “MAWILab: combining diverse anomaly detectors
for automated anomaly labeling and performance benchmark-
ing.” In: Proceedings of the 6th International Conference (Co-NEXT
10). New York, New York, USA: ACM Press, 8:1-8:12 (cit. on

pp- 5, 43, 89).

195

BIBLIOGRAPHY

Fung, Carol J., Olga Baysal, Jie Zhang, Issam Aib, and Raouf Boutaba
(2008). “Trust management for host-based collaborative intrusion
detection.” In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) 5273 LNCS, pp. 109—-122 (cit. on p. 165).

Fung, Carol ., Jie Zhang, Issam Aib, and Raouf Boutaba (2009). “Ro-
bust and scalable trust management for collaborative intrusion
detection.” In: 2009 IFIP/IEEE International Symposium on Inte-
grated Network Management, IM 2009, pp. 33—40 (cit. on p. 165).

Fung, Carol J., Jie Zhang, Issam Aib, and Raouf Boutaba (2011). “Di-
richlet-based trust management for effective collaborative intru-
sion detection networks.” In: IEEE Transactions on Network and
Service Management 8.2, pp. 79-91 (cit. on pp. 6, 161, 165).

Fung, Carol, Jie Zhang, Issam Aib, and Raouf Boutaba (2011). “Trust
management and admission control for host-based collaborative
intrusion detection.” In: Journal of Network and Systems Manage-
ment 19.2, pp. 257-277 (cit. on p. 166).

Gamer, Thomas (2012). “Collaborative anomaly-based detection of
large-scale internet attacks.” In: Computer Networks 56.1, pp. 169—
185 (cit. on pp. 28, 109, 137).

Garcia, Joaquin, Fabien Autrel, Joan Borrell, Sergio Castillo, Fred-
eric Cuppens, and Guillermo Navarro (2004a). “Decentralized
Publish-Subscribe System to Prevent Coordinated Attacks via
Alert Correlation.” In: Information and Communications Security
3269.0ctober 2014, pp. 297-304 (cit. on p. 28).

Garcia, Joaquin, Fabien Autrel, Joan Borrell, Sergio Castillo, Fred-
eric Cuppens, and Guillermo Navarro (2004b). “Decentralized
publish-subscribe system to prevent coordinated attacks via alert
correlation.” In: International Conference on Information and Com-
munications Security. Springer, pp. 223-235 (cit. on p. 32).

Gazis, Vangelis, Carlos Garcia Cordero, Emmanouil Vasilomanolakis,
Panayotis Kikiras, and Alex Wiesmaier (2014). “Security perspec-
tives for collaborative data acquisition in the internet of things.”
In: International Internet of Things Summit. Springer, pp. 271-282
(cit. on p. 10).

Gil Pérez, Manuel, Félix Gomez Marmol, Gregorio Martinez Pérez,
and Antonio F. Skarmeta Goémez (2013). “RepCIDN: A
reputation-based collaborative intrusion detection network to
lessen the impact of malicious alarms.” In: Journal of Network
and Systems Management 21.1, pp. 128-167 (cit. on pp. 165, 166).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep
Learning. MIT Press (cit. on p. 19).

196

BIBLIOGRAPHY

Grossman, Dan (2002). New terminology and clarifications for diffserv.
RFC 3260 (cit. on p. 51).

Gupta, 1., A M. Kermarrec, and A.]. Ganesh (2010). “Efficient epide-
mic-style protocols for reliable and scalable multicast.” In: 21st
IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings.
3. IEEE Comput. Soc, pp. 180-189 (cit. on p. 6).

Haider, W., J. Hu, J. Slay, B. P. Turnbull, and Y. Xie (2017). “Generating
realistic intrusion detection system dataset based on fuzzy quali-
tative modeling.” In: Journal of Network and Computer Applications
87.November 2016, pp. 185-192 (cit. on p. 46).

Hang, Chung-Wei and Munindar P Singh (2011). “Trustworthy Ser-
vice Selection and Composition.” In: ACM Trans. Auton. Adapt.
Syst. 6.1, 5:1-5:17 (cit. on p. 164).

Hartono, Pitoyo and Shuji Hashimoto (2007). “Learning from imper-
fect data.” In: Applied Soft Computing Journal 7.1, pp. 353—363 (cit.

on p. 89).

Hawkins, Simon, Hongxing He, Graham Williams, and Rohan Baxter
(2002). “Outlier detection using replicator neural networks.” In:
Data Warehousing and ... (Cit. on pp. 87, 103).

Hecht-Nielsen, R (1995). “Replicator neural networks for universal
optimal source coding.” In: Science (New York, N.Y.) 269.5232,
pp- 1860-1863 (cit. on pp. 87, 89).

Hong, Junho and Chen-Ching Liu (2017). “Intelligent electronic de-
vices with collaborative intrusion detection systems.” In: IEEE
Transactions on Smart Grid (cit. on p. 28).

Huang, Jingwei, Zbigniew Kalbarczyk, and David M Nicol (2014).
“Knowledge discovery from big data for intrusion detection us-
ing LDA.” In: 2014 IEEE International Congress on Big Data. 1IEEE,
pp- 760—761 (cit. on p. 113).

IMPACT (2017). Information Marketplace. URL: https://www.impactcy
bertrust.org (visited on 08/17/2018) (cit. on p. 45).

Inacio, Christopher M. and Brian Trammell (2010). “Yet Another
Flowmeter (YAF).” In: International conference on large installation
system administration (LISA) (cit. on pp. 1, 95).

Jiang, Dingde, Zhengzheng Xu, Peng Zhang, and Ting Zhu (2014).
“A transform domain-based anomaly detection approach to
network-wide traffic.” In: Journal of Network and Computer Ap-
plications 40.1, pp. 292—306 (cit. on p. 24).

Josang, Audun and Roslan Ismail (2002). “The beta reputation sys-
tem.” In: Proceedings of the 15th bled electronic commerce conference.
Vol. 5, pp. 2502—2511 (cit. on p. 164).

197

https://www.impactcybertrust.org
https://www.impactcybertrust.org

BIBLIOGRAPHY

Kanda, Yoshiki, Romain Fontugne, Kensuke Fukuda, and Toshiharu
Sugawara (2013). “ADMIRE: Anomaly detection method using
entropy-based PCA with three-step sketches.” In: Computer Com-

munications 36.5, pp. 575-588 (cit. on pp. 93, 94).

Kannadiga, Pradeep and Mohammad Zulkernine (2005). “DIDMA :
A Distributed Intrusion Detection System Using Mobile Agents.”
In: International Conference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed Computing. IEEE,

pp- 238—245 (cit. on p. 27).

Karlik, Bekir and A Vehbi Olgac (2011). “Performance analysis of
various activation functions in generalized MLP architectures of
neural networks.” In: International Journal of Artificial Intelligence
and Expert Systems 1.4, pp. 111-122 (cit. on pp. 87, 92).

KDD Cup 99 (1999). Knowledge Discovery and Data Mining Tools Com-
petition. URL: http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html (visited on 08/20/2008) (cit. on p. 43).

Kermarrec, Anne-Marie and Maarten van Steen (2007). “Gossiping
in distributed systems.” In: SIGOPS Oper. Syst. Rev. 41.5, pp. 2=7
(cit. on pp. 31, 137, 188).

Kim, Hyang-Ah and Brad Karp (2004). “Autograph: Toward Auto-
mated, Distributed Worm Signature Detection.” In: USENIX secu-
rity symposium. Vol. 286. San Diego, CA (cit. on p. 23).

Koch, Robert, Mario Golling, and Gabi Dreo Rodosek (2014). “To-
wards Comparability of Intrusion Detection Systems: New Data
Sets.” In: TERENA Networking Conference, p. 7 (cit. on pp. 37, 40).

Koller, Daphne and Nir Friedman (2009). Probabilistic graphical models:
principles and techniques. MIT press (cit. on pp. 144, 145, 149, 155).

Kosti¢, Dejan, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat
(2003). “Bullet: High Bandwidth Data Dissemination Using an
Overlay Mesh.” In: SOSP ‘03 Proceedings of the nineteenth ACM
symposium on Operating systems principles 37.5, pp. 282—297 (cit.
on pp. 32, 134).

Kreibich, Christian and Jon Crowcroft (2004). “Honeycomb: creat-
ing intrusion detection signatures using honeypots.” In: ACM
SIGCOMM computer communication review 34.1, pp. 51-56 (cit. on
p- 23).

Kwon, Donghwoon, Hyunjoo Kim, Jinoh Kim, Sang C. Suh, Ikkyun
Kim, and Kuinam J. Kim (2017). “A survey of deep learning-
based network anomaly detection.” In: Cluster Computing (cit. on

pp- 21, 22).

198

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

BIBLIOGRAPHY

Lakhina, Anukool, Mark Crovella, and Christiphe Diot (2004). “Char-
acterization of network-wide anomalies in traffic flows.” In: Pro-
ceedings of the 4th ACM SIGCOMM conference on Internet measure-
ment - IMC “o4 6, p. 201 (cit. on pp. 25, 83).

Lakhina, Anukool, Mark Crovella, and Christophe Diot (2004). “Di-
agnosing network-wide traffic anomalies.” In: ACM SIGCOMM
Computer Communication Review 34, p. 219 (cit. on pp. 22, 24, 85,

94).

Lakhina, Anukool, Mark Crovella, and Christophe Diot (2005). “Min-
ing anomalies using traffic feature distributions.” In: Conference
on Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM)os. New York, New York, USA: ACM
Press, pp. 217-228 (cit. on pp. 86, 89, 101).

Lassoued, Imed (2011). “Adaptive Monitoring and Management of
Internet Traffic.” PhD Thesis. Université de Nice, p. 160 (cit. on

p- 61).

Lauritzen, Steffen L (1996). Graphical models. Vol. 17. Clarendon Press
(cit. on p. 164).

Lavalle, Steve, Eric Lesser, Rebecca Shockley, Michael S Hopkins, and
Nina Kruschwitz (2011). “Big data, analytics and the path from
insights to value.” In: MIT sloan management review 52.2, p. 21 (cit.

on p. 113).

Lazarevic, Aleksandar, Vipin Kumar, and Jaideep Srivastava (2005).
“Intrusion detection: A survey.” In: Managing Cyber Threats. Sprin-
ger, pp. 19-78 (cit. on p. 2).

Lazarevic, Aleksandar, Nisheeth Srivastava, Ashutosh Tiwari, Josh
Isom, Nikunj Oza, and Jaideep Srivastava (2009). “Theoretically
Optimal Distributed Anomaly Detection.” In: 2009 IEEE Interna-
tional Conference on Data Mining Workshops, pp. 515-520 (cit. on
pp- 28, 102, 131, 133).

Lee, Wenke, Wei Fan, Matthew Miller, Salvatore J. Stolfo, and Erez

Zadok (2002). “Toward cost-sensitive modeling for intrusion de-
tection and response.” In: Journal of Computer Security 10.1-2,

pp- 5—22 (cit. on p. 22).
Li, Bingdong, Jeff Springer, George Bebis, and Mehmet Hadi Gunes

(2013). “A survey of network flow applications.” In: Journal of
Network and Computer Applications 36.2, pp. 567-581 (cit. on pp. 22,

89).

Li, Xin et al. (2006). “Detection and identification of network anoma-
lies using sketch subspaces.” In: Proceedings of the 6th ACM SIG-
COMM on Internet measurement - IMC ‘06, p. 147 (cit. on pp. 24,

86, 93, 94).

199

BIBLIOGRAPHY

Li, Zhichun, Yan Chen, and Aaron Beach (2006). “Towards scal-
able and robust distributed intrusion alert fusion with good load
balancing.” In: SIGCOMM workshop on Large-scale attack defense
(LSAD). New York, New York, USA: ACM Press, pp. 115-122
(cit. on p. 27).

Liberatore, Marc and Prashant Shenoy (2018). Umass trace repository.
URL: http://traces.cs.umass.edu (visited on 08/12/2018) (cit.

on p. 45).

Lin, Jianhua (1991). “Divergence Measures Based on the Shannon
Entropy.” In: IEEE Transactions on Information Theory 37.1, pp. 145—

151 (cit. on pp. 139, 141).

Lippmann, R.P. et al. (1999). “Evaluating intrusion detection systems
without attacking your friends: The 1998 DARPA intrusion detec-
tion evaluation.” In: DARPA Information Survivability Conference
and Exposition, 2000. DISCEX "oo. Proceedings, 12—26 vol.2 (cit. on

PP- 5, 37, 43)-

Liu, Guisong, Zhang Yi, and Shangming Yang (2007). “A hierarchical
intrusion detection model based on the PCA neural networks.”
In: Neurocomputing 70.7-9, pp. 1561-1568 (cit. on p. 89).

Liu, Qiang, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor C
M Leung (2018). “A survey on security threats and defensive
techniques of machine learning: a data driven view.” In: IEEE
access 6, pp. 12103-12117 (cit. on p. 10).

Liu, Xiaoxue, Peidong Zhu, Yan Zhang, and Kan Chen (2015). “A
collaborative intrusion detection mechanism against false data
injection attack in advanced metering infrastructure.” In: IEEE
Transactions on Smart Grid 6.5, pp. 2435-2443 (cit. on p. 28).

Liu, Xin, Anwitaman Datta, Krzysztof Rzadca, and Ee-Peng Lim
(2009). “StereoTrust: A Group Based Personalized Trust Model.”
In: Proceedings of the 18th ACM Conference on Information and Knowl-
edge Management. CIKM "09. New York, NY, USA: ACM, pp. 7-16
(cit. on p. 181).

Liu, Xin, Gilles Tredan, and Anwitaman Datta (2014). “A Generic
Trust Framework for Large-Scale Open Systems Using Machine
Learning.” In: Computational Intelligence 30.4, pp. 700-721 (cit. on

p- 165).

Liu, Zhifa, Brandon Malone, and Changhe Yuan (2012). “Empirical
evaluation of scoring functions for Bayesian network model selec-
tion.” In: BMC bioinformatics 13.15, S14 (cit. on p. 144).

Locasto, M, J Parekh, A Keromytis, and S; Stolfo (2005). “Towards
Collaborative Security and P2P Intrusion Detection.” In: IEEE

200

http://traces.cs.umass.edu

BIBLIOGRAPHY

Workshop on Information Assurance and Security. IEEE, pp. 333-339
(cit. on pp. 32, 133).

Lu, Wei and Issa Traore (2005). “A new unsupervised anomaly de-
tection framework for detecting network attacks in real-time.” In:
Cryptology and Network Security, pp. 96—109 (cit. on p. 89).

Maclin, Richard and David Opitz (2011). “Popular ensemble methods:
An empirical study.” In: CoRR abs/1106.0, pp. 169-198 (cit. on

p- 112).

Mahoney V., Matthew and Philip Chan K. (2001). PHAD: packet header
anomaly detection for identifying hostile network traffic (cit. on p. 112).

Mahoney, Matthew V. and Philip K. Chan (2002). “Learning non-
stationary models of normal network traffic for detecting novel
attacks.” In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ‘02, p. 376
(cit. on pp. 109, 112).

Mahoney, Matthew V and PK. Chan (2003). “Learning rules for ano-
maly detection of hostile network traffic.” In: Third IEEE Interna-
tional Conference on Data Mining, pp. 601-604 (cit. on pp. 24, 40,
110, 111, 113, 122).

Mahoney, Matthew V and Philip K Chan (2003). “An Analysis of
the 1999 DARPA /Lincoln Laboratory Evaluation Data for Net-
work Anomaly Detection.” In: In Proceedings of the Sixth Interna-
tional Symposium on Recent Advances in Intrusion Detection 2820.L1,

pp- 220-237 (cit. on pp. 35, 37, 43, 51, 60).

Marchetti, Mirco, Michele Messori, and Michele Colajanni (2009).
“Peer-to-Peer Architecture for Collaborative Intrusion and Mal-
ware Detection on a Large Scale.” In: Lecture Notes in Computer

Science 5735, pp- 475-490 (cit. on pp. 27, 28, 30).

Markham, T. and C. Payne (2001). “Security at the network edge: a
distributed firewall architecture.” In: Proceedings DARPA Informa-
tion Survivability Conference and Exposition II. DISCEX'01. Vol. 1.
IEEE Comput. Soc, pp. 279—286 (cit. on p. 2).

McFowland, E, S Speakman, and DB Neill (2013). “Fast generalized
subset scan for anomalous pattern detection.” In: The Journal of
Machine Learning ... 14, pp. 1533—1561 (cit. on pp. 20, 21).

McHugh, John (2000). “Testing Intrusion detection systems: a critique
of the 1998 and 1999 DARPA intrusion detection system evalua-
tions as performed by Lincoln Laboratory.” In: ACM Transactions
on Information and System Security 3.4, pp. 262—294 (cit. on p. 51).

Mee, Paul and Rico Brandenburg (2018). Large-Scale Cyber-Attacks On
The Financial System. URL: https://www.oliverwyman.com/our -

201

https://www.oliverwyman.com/our-expertise/insights/2018/mar/large-scale-cyber-attacks-on-the-financial-system.html
https://www.oliverwyman.com/our-expertise/insights/2018/mar/large-scale-cyber-attacks-on-the-financial-system.html

BIBLIOGRAPHY

expertise/insights/2018/mar/large - scale- cyber-attacks -
on-the-financial-system.html (visited on 12/04/2018) (cit. on

p- 2).

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean (2013). “Distributed representations of words and phrases
and their compositionality.” In: Advances in neural information
processing systems, pp. 31113119 (cit. on p. 18).

Mitchell, Robert and Ing-Ray Chen (2014). “A survey of intrusion
detection techniques for cyber-physical systems.” In: ACM Com-
puting Surveys (CSUR) 46.4, p. 55 (cit. on p. 2).

Moustafa, Nour and Jill Slay (2015). “UNSW-NB15: a comprehensive
data set for network intrusion detection systems (UNSW-NB15
network data set).” In: 2015 Military Communications and Informa-
tion Systems Conference (MilCIS) December, pp. 1-6 (cit. on p. 45).

Nechaev, Boris, Mark Allman, Vern Paxson, and Andrei V Gurtov
(2010). “A Preliminary Analysis of TCP Performance in an Enter-
prise Network.” In: INM/WREN 10 (cit. on p. 44).

Nesterov, Yurii (1983). “A method for unconstrained convex min-
imization problem with the rate of convergence o(1/k"2).” In:
Doklady AN USSR 269, pp. 543-547 (cit. on pp. 91, 96).

Neustar (2014). Distribution of Estimated Average Costs per Hour of Ddos
Attacks in The United Kingdom (Uk) in 2012 and 2013. URL: www .
statista.com/statistics/463505/estimated- average- costs-
per - hour - of - ddos - attacks - in - the - united - kingdom - uk/
(visited on 12/05/2018) (cit. on p. 2).

Nielsen, Mogens, Karl Krukow, and Vladimiro Sassone (2007). “A
bayesian model for event-based trust.” In: Electronic Notes in The-
oretical Computer Science 172, pp. 499-521 (cit. on p. 164).

Nychis, George, Vyas Sekar, David G. Andersen, Hyong Kim, and
Hui Zhang (2008). “An empirical evaluation of entropy-based
traffic anomaly detection.” In: Proceedings of the 8th ACM SIG-
COMM conference on Internet measurement conference - IMC '08.
New York, New York, USA: ACM Press, p. 151 (cit. on pp. 25, 89,

133).

Oikonomou, George, Jelena Mirkovic, Peter Reiher, and Max Robin-
son (2006). “A framework for a collaborative DDoS defense.”
In: Proceedings - Annual Computer Security Applications Conference,
ACSAC, pp. 33—42 (cit. on p. 137).

Oppliger, Rolf (2001). Internet and intranet security. Artech House (cit.
on p. 1).

202

https://www.oliverwyman.com/our-expertise/insights/2018/mar/large-scale-cyber-attacks-on-the-financial-system.html
https://www.oliverwyman.com/our-expertise/insights/2018/mar/large-scale-cyber-attacks-on-the-financial-system.html
https://www.oliverwyman.com/our-expertise/insights/2018/mar/large-scale-cyber-attacks-on-the-financial-system.html
www.statista.com/statistics/463505/estimated-average-costs-per-hour-of-ddos-attacks-in-the-united-kingdom-uk/
www.statista.com/statistics/463505/estimated-average-costs-per-hour-of-ddos-attacks-in-the-united-kingdom-uk/
www.statista.com/statistics/463505/estimated-average-costs-per-hour-of-ddos-attacks-in-the-united-kingdom-uk/

BIBLIOGRAPHY

Paxson, Vern (1999). “Bro: A system for detecting network intruders
in real-time.” In: Computer Networks 31.23, pp. 2435-2463 (cit. on

pp- 23, 30, 51, 76).
Peteiro-Barral, Diego and Bertha Guijarro-Berdifias (2013). “A sur-

vey of methods for distributed machine learning.” In: Progress in
Artificial Intelligence 2.1, pp. 1—11 (cit. on pp. 28, 113).

Pimentel, Marco a F, David a. Clifton, Lei Clifton, and Lionel Taras-
senko (2014). “A review of novelty detection.” In: Signal Process-

ing 99, pp. 215-249 (cit. on p. 24).
Postel, Jon et al. (1981). Internet protocol. REC 791 (cit. on p. 51).

PROTECTIVE: Proactive Risk Management (2018). URL: https://prot
ective-h2020.eu/background/ (visited on 12/14/2018) (cit. on

p- 187).

Quittek, J., T. Zseby, B. Claise, and S. Zander (2004). “Requirements
for IP Flow Information Export (IPFIX).” In: IETF RFC 3917, pp. 1—-
34 (cit. on p. 85).

Ramakrishnan, K K, S Floyd, and S Black (2001). The addition of explicit
congestion notification (ECN) to IP. Tech. rep. (cit. on p. 58).

Reed, Erik and Ole J. Mengshoel (2014). “Bayesian network parameter
learning using EM with parameter sharing.” In: CEUR Workshop
Proceedings 1218, pp. 48-59 (cit. on pp. 136, 145).

Reynolds, Joyce and Jon Postel (1994). Assigned numbers. Tech. rep.
(cit. on p. 57).

Ries, Sebastian (2009). “Extending Bayesian trust models regarding
context-dependence and user friendly representation.” In: Pro-
ceedings of the 2009 { ACM} Symposium on Applied Computing (SAC),
Honolulu, Hawaii, USA, pp. 1294-1301 (cit. on p. 164).

Ringberg, Haakon, Augustin Soule, Jennifer Rexford, and Christophe
Diot (2007). “Sensitivity of PCA for traffic anomaly detection.”
In: ACM SIGMETRICS Performance Evaluation Review 35.1, p. 109
(cit. on pp. 24, 25).

Rodriguez, Miguel, Diego M Escalante, and Antonio Peregrin (2011).
“Efficient distributed genetic algorithm for rule extraction.” In:
Applied soft computing 11.1, pp. 733743 (cit. on p. 113).

Roesch, Martin (1999). “Snort: Lightweight intrusion detection for
networks.” In: Proceedings of LISA '99: 13th Systems Administration
Conference. Vol. 99. 1. USENIX Association, pp. 229-238 (cit. on

PpP- 23, 30).

203

https://protective-h2020.eu/background/
https://protective-h2020.eu/background/

BIBLIOGRAPHY

Roweis, Sam T and Lawrence K Saul (2000). “Nonlinear dimension-
ality reduction by locally linear embedding.” In: science 290.5500,
pPp- 2323—2326 (cit. on p. 86).

Sallay, Hassen, Adel Ammar, Majdi Ben Saad, and Sami Bourouis
(2013). “A Real Time Adaptive Intrusion Detection Alert Classi-
fier for High Speed Networks.” In: 2013 IEEE 12th International
Symposium on Network Computing and Applications, pp. 73-80 (cit.
on p. 89).

Sangster, Benjamin et al. (2009). “Toward Instrumenting Network
Warfare Competitions to Generate Labeled Datasets.” In: CSET

(cit. on p. 45).

Sedjelmaci, Hichem and Sidi Mohammed Senouci (2015). “An accu-
rate and efficient collaborative intrusion detection framework to
secure vehicular networks.” In: Computers & Electrical Engineering

43, pp- 3347 (cit. on p. 28).

Shiravi, Ali, Hadi Shiravi, Mahbod Tavallaee, and Ali a. Ghorbani
(2012). “Toward developing a systematic approach to generate
benchmark datasets for intrusion detection.” In: Computers & Se-

curity 31.3, pp. 357-374 (cit. on pp. 40, 41, 48, 52).

Sommer, Robin and Vern Paxson (2010). “Outside the Closed World:
On Using Machine Learning for Network Intrusion Detection.”
In: 2010 IEEE Symposium on Security and Privacy, pp. 305-316 (cit.
on p. 22).

Song, Jungsuk, Hiroki Takakura, and Yasuo Okabe (2006). “Descrip-
tion of kyoto university benchmark data.” In: Academic Center for
Computing and Media Studies (ACCMS), Kyoto University (cit. on

p- 44)-

Song, Jungsuk, Hiroki Takakura, and Yasuo Okabe (2008). “Coopera-
tion of intelligent honeypots to detect unknown malicious codes.”
In: Information Security Threats Data Collection and Sharing, 2008.
WISTDCS 08. WOMBAT Workshop on. 1EEE, pp. 31-39 (cit. on

P- 44)-

Song, Xiuyao, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka
(2007). “Conditional anomaly detection.” In: IEEE Transactions on
Knowledge and Data Engineering 19.5, pp. 631—-645 (cit. on p. 20).

Soysal, Murat and Ece Guran Schmidt (2010). “Machine learning algo-
rithms for accurate flow-based network traffic classification: Eval-
uation and comparison.” In: Performance Evaluation 67.6, pp. 451—
467 (cit. on pp. 22, 88).

Sperotto, Anna and Aiko Pras (2010). “Flow-based intrusion detec-
tion.” Ph.D. Thesis. University of Twente, p. 182 (cit. on pp. 3,
22).

204

BIBLIOGRAPHY

Sperotto, Anna, Ramin Sadre, Frank Van Vliet, and Aiko Pras (2009).
“A labeled data set for flow-based intrusion detection.” In: In-
ternational Workshop on IP Operations and Management. Springer,

PP- 39-50 (cit. on p. 44).

Srivastava, Nitish, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutske-
ver, and Ruslan Salakhutdinov (2014). “Dropout : A Simple Way
to Prevent Neural Networks from Overfitting.” In: Journal of Ma-
chine Learning Research (JMLR) 15, pp. 1929-1958 (cit. on pp. 91,
92).

Sun, Pei, Sanjay Chawla, and Bavani Arunasalam (2006). “Mining for
outliers in sequential databases.” In: Proceedings of the 2006 SIAM
International Conference on Data Mining. SIAM, pp. 94—105 (cit. on

p- 21).

Sutskever, I and] Martens (2013). “On the importance of initialization
and momentum in deep learning.” In: Proceedings of the 30th in-
ternational conference on machine learning (ICML-13), pp. 1139-1147
(cit. on p. 91).

Tang, Jiliang, Huiji Gao, Huan Liu, and Atish Das Sarma (2012).
“eTrust: Understanding Trust Evolution in an Online World.” In:
Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD “12. New York, NY,
USA: ACM, pp. 253—261 (cit. on p. 165).

Tavallaee, Mahbod, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani
(2009). “A detailed analysis of the KDD CUP g9 data set.” In:
IEEE Symposium on Computational Intelligence for Security and De-
fense Applications, CISDA 2009 Cisda, pp. 1-6 (cit. on pp. 5, 45).

Tellenbach, Bernhard, Martin Burkhart, Dominik Schatzmann, and
David Gugelmann (2011). “Accurate network anomaly classifi-
cation with generalized entropy metrics.” In: Computer Networks
55.15, pp. 3485—3502 (cit. on pp. 25, 86).

The Connected Consumer Survey (2017). URL: https://www.consumerba
rometer. com (visited on 12/03/2018) (cit. on p. 1).

The state of the internet / security report (2018). URL: https://www .
akamai.com/uk/en/multimedia/documents/case-study/spring-
2018-state-of-the-internet-security-report.pdf (visited on
10/15/2018) (cit. on p. 77).

Timberg, Craig (2015). Net of Insecurity: A Flaw in the Design. URL:
https://www.washingtonpost.com/sf/business/2015/05/30/
net-of-insecurity-part-1 (visited on 12/02/2018) (cit. on p. 1).

Toth, L and G Gosztolya (2004). “Replicator Neural Networks for
Outlier Modeling in Segmental Speech Recognition.” In: Advances
in Neural Networks—ISNN 2004, pp. 996—1001 (cit. on pp. 92, 104).

205

https://www.consumerbarometer.com
https://www.consumerbarometer.com
https://www.akamai.com/uk/en/multimedia/documents/case-study/spring-2018-state-of-the-internet-security-report.pdf
https://www.akamai.com/uk/en/multimedia/documents/case-study/spring-2018-state-of-the-internet-security-report.pdf
https://www.akamai.com/uk/en/multimedia/documents/case-study/spring-2018-state-of-the-internet-security-report.pdf
https://www.washingtonpost.com/sf/business/2015/05/30/net-of-insecurity-part-1
https://www.washingtonpost.com/sf/business/2015/05/30/net-of-insecurity-part-1

BIBLIOGRAPHY

Traverso, Giulia et al. (2017). “Evidence-Based Trust Mechanism Us-
ing Clustering Algorithms for Distributed Storage Systems.” In:
15th Annual Conference on Privacy, Security and Trust (PST) (cit. on

p- 10).

Vasilomanolakis, Emmanouil, Carlos Garcia Cordero, Nikolay Mila-
nov, and Max Muhlhauser (2016). “Towards the creation of syn-
thetic, yet realistic, intrusion detection datasets.” In: NOMS 2016
- 2016 IEEE/IFIP Network Operations and Management Symposium.
IEEE, pp. 1209-1214 (cit. on pp. 9, 40, 48).

Vasilomanolakis, Emmanouil, Shankar Karuppayah, Max Miihlhdu-
ser, and Mathias Fischer (2015). “Taxonomy and Survey of Col-
laborative Intrusion Detection.” In: ACM Computing Surveys 47.4,
pp- 133 (cit. on pp. 4, 6, 26, 28, 29, 40, 44, 129, 131, 161, 165, 187).

Vasilomanolakis, Emmanouil, Matthias Krugl, Carlos Garcia Cordero,
Max Muhlhauser, and Mathias Fischer (2016). “SkipMon: A lo-
cality-aware Collaborative Intrusion Detection System.” In: 2015
IEEE 34th International Performance Computing and Communications
Conference, IPCCC 2015 (cit. on pp. 3, 10, 40, 133, 134, 137).

Vasilomanolakis, Emmanouil, Shreyas Srinivasa, Carlos Garcia Cor-
dero, and Max Muhlhauser (2016). “Multi-stage attack detection
and signature generation with ICS honeypots.” In: NOMS 2016
- 2016 IEEE/IFIP Network Operations and Management Symposium.
Vol. 2016. IEEE, pp. 1227-1232 (cit. on pp. 10, 23).

Vasilomanolakis, Emmanouil, Shreyas Srinivasa, and Max Miihlhdu-
ser (2015). “Did you really hack a nuclear power plant? An indus-
trial control mobile honeypot.” In: Communications and Network
Security (CNS), 2015 IEEE Conference on. IEEE, pp. 729—730 (cit. on

p- 32).

Vasilomanolakis, Emmanouil, Michael Stahn, Carlos Garcia Cordero,
and Max Muhlhauser (2015). “Probe-response attacks on collabo-
rative intrusion detection systems: Effectiveness and countermea-
sures.” In: 2015 IEEE Conference on Communications and Network
Security (CNS). IEEE, pp. 699—700 (cit. on p. 10).

Vasilomanolakis, Emmanouil, Michael Stahn, Carlos Garcia Cordero,
and Max Muhlhauser (2016). “On probe-response attacks in Col-
laborative Intrusion Detection Systems.” In: 2016 IEEE Conference
on Communications and Network Security (CNS). IEEE, pp. 279-286
(cit. on p. 10).

Verisign (2018). Distributed Denial of Service Trends Report. URL: https:
//www.verisign.com/assets/report-ddos-trends-Q12018%7B%
5C_%7Den%7B%5C_%7DGB. pdf (visited on 12/05/2018) (cit. on p. 2).

206

https://www.verisign.com/assets/report-ddos-trends-Q12018%7B%5C_%7Den%7B%5C_%7DGB.pdf
https://www.verisign.com/assets/report-ddos-trends-Q12018%7B%5C_%7Den%7B%5C_%7DGB.pdf
https://www.verisign.com/assets/report-ddos-trends-Q12018%7B%5C_%7Den%7B%5C_%7DGB.pdf

BIBLIOGRAPHY

Wagner, Kurt (2018). Roughly one in four Americans is online ‘constantly’.
URL: https://www.recode.net/2018/3/17/17130688/online-dat
a-america-pew- research-obsession- facebook-google (visited
on 12/03/2018) (cit. on p. 1).

Wang, Ke, Janak J. Parekh, and Salvatore J. Stolfo (2006). “Anagram:
A Content Anomaly Detector Resistant to Mimicry Attack.” In:
pp- 226-248 (cit. on p. 138).

Wold, Svante, Kim Esbensen, and Paul Geladi (1987). “Principal com-
ponent analysis.” In: Chemometrics and intelligent laboratory systems

2.1-3, pp. 37-52 (cit. on p. 86).

Worldwide Infrastructure Security Report (2014). Tech. rep. Arbor Net-
works, p. 83 (cit. on pp. 1, 39).

Wu, Yu Sung, Bingrui Foo, Yongguo Mei, and Saurabh Bagchi (2003).
“Collaborative intrusion detection system (CIDS): A framework
for accurate and efficient IDS.” In: Proceedings - Annual Com-
puter Security Applications Conference, ACSAC 2003-Janua.Acsac,

PpP- 234—244 (cit. on p. 137).

Yan, Jeff and Pook Leong Cho (2006). “Enhancing collaborative spam
detection with bloom filters.” In: Proceedings - Annual Computer Se-
curity Applications Conference, ACSAC, pp. 414—425 (cit. on p. 137).

Yu, Jingiao, Y V Ramana Reddy, Sentil Selliah, Sumitra Reddy, Vi-
jayanand Bharadwaj, and Srinivas Kankanahalli (2005). “TRI-
NETR: An architecture for collaborative intrusion detection and
knowledge-based alert evaluation.” In: Advanced Engineering In-
formatics 19.2, pp. 93—101 (cit. on p. 4).

Zhang, Bin, Jiahai Yang, Jianping Wu, Donghong Qin, and Lei Gao
(2012). “PCA-subspace method - Is it good enough for network-
wide anomaly detection.” In: Proceedings of the 2012 IEEE Network
Operations and Management Symposium, NOMS 2012, pp. 359—367
(cit. on pp. 18, 21).

Zhang, Qi and Ramaprabhu Janakiraman (2003). “Indra : A Distrib-
uted Approach to Network Intrusion Detection and Prevention.”
In: Access WUCS-01-30, pp. 1-6 (cit. on p. 28).

Zhang, Zheng, Jun Li, C N Manikopoulos, Jay Jorgenson, and Jose
Ucles (2001). “HIDE : a Hierarchical Network Intrusion Detec-
tion System Using Statistical Preprocessing and Neural Network
Classification.” In: IEEE Workshop on Information Assurance and
Security. IEEE, pp. 85—90 (cit. on p. 27).

Zhou, C V, S Karunasekera, and C Leckie (2007). “Evaluation of a De-
centralized Architecture for Large Scale Collaborative Intrusion
Detection.” In: IFIP/IEEE International Symposium on Integrated
Network Management. IEEE, pp. 80-89 (cit. on p. 27).

207

https://www.recode.net/2018/3/17/17130688/online-data-america-pew-research-obsession-facebook-google
https://www.recode.net/2018/3/17/17130688/online-data-america-pew-research-obsession-facebook-google

BIBLIOGRAPHY

Zhou, Chenfeng Vincent, Christopher Leckie, and Shanika
Karunasekera (2010a). “A survey of coordinated attacks
and collaborative intrusion detection.” In: Computers & Security
29.1, pp. 124-140 (cit. on p. 4).

Zhou, Chenfeng Vincent, Christopher Leckie, and Shanika
Karunasekera (2010b). “A survey of coordinated attacks
and collaborative intrusion detection.” In: Computers Security
29.1, pp. 124-140 (cit. on p. 6).

Ziviani, Artur, Antonio Gomes, Marcelo Monsores, and Paulo Ro-
drigues (2007). “Network anomaly detection using nonextensive
entropy.” In: IEEE Communications Letters 11.12, pp. 1034—-1036
(cit. on p. 25).

Zuech, Richard, Taghi M. Khoshgoftaar, Naeem Seliya, Maryam M.
Najafabadi, and Clifford Kemp (2015a). “A New Intrusion Detec-
tion Benchmarking System.” In: Proceedings of the Twenty-Eighth
International Florida Artificial Intelligence Research Society Conference
McHugh, pp. 252255 (cit. on p. 45).

Zuech, Richard, Taghi M Khoshgoftaar, and Randall Wald (2015b).
“Intrusion detection and big heterogeneous data: a survey.” In:
Journal of Big Data 2.1, p. 3 (cit. on p. 113).

Zulkernine, Mohammad and Anwar Haque (2008). “Random-Forests-
Based Network Intrusion Detection Systems.” In: IEEE Transac-
tions on Systems, Man, and Cybernetics 38.5, pp. 649-659 (cit. on

p- 89).

208

DECLARATION

I hereby confirm that the submitted thesis with the title “Improv-
ing the Capabilities of Distributed Collaborative Intrusion Detection
Systems using Machine Learning” has been done independently and
without use of others than the indicated aids. I assure that I have not
previously or concurrently applied for the opening of a promotion
procedure with the doctoral thesis submitted here.

Darmstadt, August 21, 2019

Carlos Garcia Cordero,
August 21, 2019

	Dedication
	Synopsis
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Intrusion Detection in Large Networks
	1.2 An Overview on CIDS
	1.3 Open Issues within Distributed CIDSs
	1.4 Research Goals and Objectives
	1.5 Scientific Contributions
	1.6 Publications
	1.7 Thesis Organization and Structure
	1.7.1 Margin Notes
	1.7.2 Structure of the Contributions
	1.7.3 General Outline

	2 Background and Related Work
	2.1 Machine Learning
	2.1.1 Performance Metrics
	2.1.2 Feature Types and Encodings
	2.1.3 Datasets and Model Training
	2.1.4 Anomaly Detection

	2.2 Network Intrusion Detection Systems
	2.2.1 NIDS Requirements and Difficulties
	2.2.2 NIDS Architecture and Classification
	2.2.3 Anomaly-based Network Intrusion Detection

	2.3 Collaborative Intrusion Detection Systems
	2.3.1 CIDS Communication Overlays
	2.3.2 CIDS Collaboration Levels
	2.3.3 CIDS Architectural Components

	3 Dataset Generation
	3.1 Introduction
	3.1.1 Problem Statement
	3.1.2 The Challenges of Creating Adequate Datasets
	3.1.3 Chapter Contributions

	3.2 Requirements of Datasets and Injection Tools
	3.2.1 Requirements of Datasets Suitable in the Field
	3.2.2 Requirements for Creating Synthetic Traffic

	3.3 Related Work and Defect Analysis
	3.3.1 Static Datasets
	3.3.2 Dataset Generation Tools
	3.3.3 Classification of Dataset Defects

	3.4 The Intrusion Detection Dataset Toolkit (ID2T)
	3.4.1 The Architecture of ID2T
	3.4.2 The Modules of ID2T

	3.5 Testing Intrusion Detection Datasets (TIDED)
	3.5.1 Classification of Reliability Tests
	3.5.2 Reliability Test Metrics

	3.6 The Attack Scripts of ID2T
	3.6.1 Probe and Surveillance Attack Scripts
	3.6.2 Resource Exhaustion Attack Scripts
	3.6.3 Exploitation Attack Scripts
	3.6.4 Botnet Infection Attack Scripts

	3.7 Exemplary Evaluation by Use Cases
	3.7.1 Reproducing Anomaly-based Evaluation Results
	3.7.2 Validating Signature-based Configurations
	3.7.3 Discussion of the Use Cases

	3.8 Conclusion and Lessons Learned
	3.8.1 Future Work
	3.8.2 Chapter Summary

	4 Intrusion Detection
	4.1 Introduction
	4.1.1 Problem Statement
	4.1.2 Challenges
	4.1.3 Chapter Contributions

	4.2 Specialized Background
	4.2.1 Network Flows
	4.2.2 Characterizing Network Flow Features with Entropy
	4.2.3 The Subspace Method
	4.2.4 Replicator Neural Networks

	4.3 Related Work
	4.4 Intrusion Detection using Replicator Neural Networks
	4.4.1 Formal RNN Model
	4.4.2 Extracting Entropies
	4.4.3 Using RNNs to Detect Anomalies in Network Flows
	4.4.4 Detecting Anomalous Flows

	4.5 Evaluation
	4.5.1 Evaluation Dataset
	4.5.2 Experimental Setup
	4.5.3 Experimental Results
	4.5.4 Discussion of the Experiments

	4.6 Conclusion and Lessons Learned
	4.6.1 Future Work
	4.6.2 Chapter Summary

	5 Community Formation
	5.1 Introduction
	5.1.1 Problem Statement
	5.1.2 Challenges
	5.1.3 Chapter Contributions

	5.2 Specialized Background
	5.2.1 The LERAD Algorithm
	5.2.2 Ensemble Learning

	5.3 Related Work
	5.3.1 Rule-based Anomaly Intrusion Detection
	5.3.2 Distributed Machine Learning

	5.4 Communities for Collaborative Intrusion Detection
	5.4.1 The Community Formation Concept
	5.4.2 Mathematical Formalization
	5.4.3 The Community Building Parameters
	5.4.4 Community Formation
	5.4.5 Sensor Grouping Algorithms
	5.4.6 Community-based Collaborative Intrusion Detection

	5.5 Evaluation
	5.5.1 Modifications to the DARPA 99 Dataset
	5.5.2 Using LERAD in the Communities
	5.5.3 Experimental Setup
	5.5.4 Experimental Results

	5.6 Conclusion and Lessons Learned
	5.6.1 Future Work
	5.6.2 Chapter Summary

	6 Intrusion Information Dissemination
	6.1 Introduction
	6.1.1 Problem Statement
	6.1.2 Challenges
	6.1.3 Chapter Contributions

	6.2 Specialized Background
	6.2.1 The Count-Min Sketch Probabilistic Data Structure
	6.2.2 Divergences of Sketches
	6.2.3 Bayesian Networks

	6.3 Related Work
	6.4 Overview of the Dissemination Strategy
	6.5 Feature Processing: Encoding Counts with Sketches
	6.6 Similarity Deduction: Using Bayesian Networks
	6.6.1 Bayesian Networks for Deducing Similarities
	6.6.2 Learning the Bayesian Network Parameters

	6.7 Information Dissemination: Forwarding Sketches
	6.8 Evaluation
	6.8.1 Experimental Setup
	6.8.2 Deductions using Assumptions
	6.8.3 Deductions using Real-world Data

	6.9 Conclusion and Lessons Learned
	6.9.1 Future Work
	6.9.2 Chapter Summary

	7 Collusion Detection
	7.1 Introduction
	7.1.1 Problem Statement
	7.1.2 Challenges
	7.1.3 Chapter Contributions

	7.2 Specialized Background
	7.2.1 K-means Clustering
	7.2.2 Gaussian Mixture Models

	7.3 Related Work
	7.3.1 Bayesian Trust Models
	7.3.2 Machine Learning for Trust Modeling
	7.3.3 Trust Management within CIDSs

	7.4 Sphinx: a Colluder-resistant Trust Mechanism
	7.4.1 The Mechanism and its Assumptions
	7.4.2 Evidence-based Trust Score
	7.4.3 Reliability-based Trust Score
	7.4.4 Final Trust Score

	7.5 Evaluation
	7.5.1 Experimental Setup
	7.5.2 Experiments

	7.6 Conclusion and Lessons Learned
	7.6.1 Future Work
	7.6.2 Chapter Summary

	8 Conclusion
	8.1 Summary
	8.2 On the Usefulness of the Contributions
	8.3 Outlook

	 Bibliography
	Declaration

