723 research outputs found

    Slot Filling

    Get PDF
    Slot filling (SF) is the task of automatically extracting facts about particular entities from unstructured text, and populating a knowledge base (KB) with these facts. These structured KBs enable applications such as structured web queries and question answering. SF is typically framed as a query-oriented setting of the related task of relation extraction. Throughout this thesis, we reflect on how SF is a task with many distinct problems. We demonstrate that recall is a major limiter on SF system performance. We contribute an analysis of typical SF recall loss, and find a substantial amount of loss occurs early in the SF pipeline. We confirm that accurate NER and coreference resolution are required for high-recall SF. We measure upper bounds using a naïve graph-based semi-supervised bootstrapping technique, and find that only 39% of results are reachable using a typical feature space. We expect that this graph-based technique will be directly useful for extraction, and this leads us to frame SF as a label propagation task. We focus on a detailed graph representation of the task which reflects the behaviour and assumptions we want to model based on our analysis, including modifying the label propagation process to model multiple types of label interaction. Analysing the graph, we find that a large number of errors occur in very close proximity to training data, and identify that this is of major concern for propagation. While there are some conflicts caused by a lack of sufficient disambiguating context—we explore adding additional contextual features to address this—many of these conflicts are caused by subtle annotation problems. We find that lack of a standard for how explicit expressions of relations must be in text makes consistent annotation difficult. Using a strict definition of explicitness results in 20% of correct annotations being removed from a standard dataset. We contribute several annotation-driven analyses of this problem, exploring the definition of slots and the effect of the lack of a concrete definition of explicitness: annotation schema do not detail how explicit expressions of relations need to be, and there is large scope for disagreement between annotators. Additionally, applications may require relatively strict or relaxed evidence for extractions, but this is not considered in annotation tasks. We demonstrate that annotators frequently disagree on instances, dependent on differences in annotator world knowledge and thresholds on making probabilistic inference. SF is fundamental to enabling many knowledge-based applications, and this work motivates modelling and evaluating SF to better target these tasks

    QAKiS @ QALD-2

    Get PDF
    International audienceWe present QAKiS, a system for Question Answering over linked data (in particular, DBpedia). The problem of question interpretation is addressed as the automatic identification of the set of relevant relations between entities in the natural language input question, matched against a repository of automatically collected relational patterns (i.e. the WikiFramework repository). Such patterns represent possible lexical-izations of ontological relations, and are associated to a SPARQL query derived from the linked data relational patterns. Wikipedia is used as the source of free text for the automatic extraction of the relational patterns, and DBpedia as the linked data resource to provide relational patterns and to be queried using a natural language interface

    Exploratory Search on Mobile Devices

    Get PDF
    The goal of this thesis is to provide a general framework (MobEx) for exploratory search especially on mobile devices. The central part is the design, implementation, and evaluation of several core modules for on-demand unsupervised information extraction well suited for exploratory search on mobile devices and creating the MobEx framework. These core processing elements, combined with a multitouch - able user interface specially designed for two families of mobile devices, i.e. smartphones and tablets, have been finally implemented in a research prototype. The initial information request, in form of a query topic description, is issued online by a user to the system. The system then retrieves web snippets by using standard search engines. These snippets are passed through a chain of NLP components which perform an ondemand or ad-hoc interactive Query Disambiguation, Named Entity Recognition, and Relation Extraction task. By on-demand or ad-hoc we mean the components are capable to perform their operations on an unrestricted open domain within special time constraints. The result of the whole process is a topic graph containing the detected associated topics as nodes and the extracted relation ships as labelled edges between the nodes. The Topic Graph is presented to the user in different ways depending on the size of the device she is using. Various evaluations have been conducted that help us to understand the potentials and limitations of the framework and the prototype

    Knowledge Base Population using Semantic Label Propagation

    Get PDF
    A crucial aspect of a knowledge base population system that extracts new facts from text corpora, is the generation of training data for its relation extractors. In this paper, we present a method that maximizes the effectiveness of newly trained relation extractors at a minimal annotation cost. Manual labeling can be significantly reduced by Distant Supervision, which is a method to construct training data automatically by aligning a large text corpus with an existing knowledge base of known facts. For example, all sentences mentioning both 'Barack Obama' and 'US' may serve as positive training instances for the relation born_in(subject,object). However, distant supervision typically results in a highly noisy training set: many training sentences do not really express the intended relation. We propose to combine distant supervision with minimal manual supervision in a technique called feature labeling, to eliminate noise from the large and noisy initial training set, resulting in a significant increase of precision. We further improve on this approach by introducing the Semantic Label Propagation method, which uses the similarity between low-dimensional representations of candidate training instances, to extend the training set in order to increase recall while maintaining high precision. Our proposed strategy for generating training data is studied and evaluated on an established test collection designed for knowledge base population tasks. The experimental results show that the Semantic Label Propagation strategy leads to substantial performance gains when compared to existing approaches, while requiring an almost negligible manual annotation effort.Comment: Submitted to Knowledge Based Systems, special issue on Knowledge Bases for Natural Language Processin

    Automatic Extraction and Assessment of Entities from the Web

    Get PDF
    The search for information about entities, such as people or movies, plays an increasingly important role on the Web. This information is still scattered across many Web pages, making it more time consuming for a user to find all relevant information about an entity. This thesis describes techniques to extract entities and information about these entities from the Web, such as facts, opinions, questions and answers, interactive multimedia objects, and events. The findings of this thesis are that it is possible to create a large knowledge base automatically using a manually-crafted ontology. The precision of the extracted information was found to be between 75–90 % (facts and entities respectively) after using assessment algorithms. The algorithms from this thesis can be used to create such a knowledge base, which can be used in various research fields, such as question answering, named entity recognition, and information retrieval

    Doctor of Philosophy

    Get PDF
    dissertationThe explosion of structured Web data (e.g., online databases, Wikipedia infoboxes) creates many opportunities for integrating and querying these data that go far beyond the simple search capabilities provided by search engines. Although much work has been devoted to data integration in the database community, the Web brings new challenges: the Web-scale (e.g., the large and growing volume of data) and the heterogeneity in Web data. Because there are so much data, scalable techniques that require little or no manual intervention and that are robust to noisy data are needed. In this dissertation, we propose a new and effective approach for matching Web-form interfaces and for matching multilingual Wikipedia infoboxes. As a further step toward these problems, we propose a general prudent schema-matching framework that matches a large number of schemas effectively. Our comprehensive experiments for Web-form interfaces and Wikipedia infoboxes show that it can enable on-the-fly, automatic integration of large collections of structured Web data. Another problem we address in this dissertation is schema discovery. While existing integration approaches assume that the relevant data sources and their schemas have been identified in advance, schemas are not always available for structured Web data. Approaches exist that exploit information in Wikipedia to discover the entity types and their associate schemas. However, due to inconsistencies, sparseness, and noise from the community contribution, these approaches are error prone and require substantial human intervention. Given the schema heterogeneity in Wikipedia infoboxes, we developed a new approach that uses the structured information available in infoboxes to cluster similar infoboxes and infer the schemata for entity types. Our approach is unsupervised and resilient to the unpredictable skew in the entity class distribution. Our experiments, using over one hundred thousand infoboxes extracted from Wikipedia, indicate that our approach is effective and produces accurate schemata for Wikipedia entities

    A Semi-Supervised Information Extraction Framework for Large Redundant Corpora

    Get PDF
    The vast majority of text freely available on the Internet is not available in a form that computers can understand. There have been numerous approaches to automatically extract information from human- readable sources. The most successful attempts rely on vast training sets of data. Others have succeeded in extracting restricted subsets of the available information. These approaches have limited use and require domain knowledge to be coded into the application. The current thesis proposes a novel framework for Information Extraction. From large sets of documents, the system develops statistical models of the data the user wishes to query which generally avoid the lim- itations and complexity of most Information Extractions systems. The framework uses a semi-supervised approach to minimize human input. It also eliminates the need for external Named Entity Recognition systems by relying on freely available databases. The final result is a query-answering system which extracts information from large corpora with a high degree of accuracy

    A Semi-Supervised Information Extraction Framework for Large Redundant Corpora

    Get PDF
    The vast majority of text freely available on the Internet is not available in a form that computers can understand. There have been numerous approaches to automatically extract information from human- readable sources. The most successful attempts rely on vast training sets of data. Others have succeeded in extracting restricted subsets of the available information. These approaches have limited use and require domain knowledge to be coded into the application. The current thesis proposes a novel framework for Information Extraction. From large sets of documents, the system develops statistical models of the data the user wishes to query which generally avoid the lim- itations and complexity of most Information Extractions systems. The framework uses a semi-supervised approach to minimize human input. It also eliminates the need for external Named Entity Recognition systems by relying on freely available databases. The final result is a query-answering system which extracts information from large corpora with a high degree of accuracy
    corecore