
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-19-2008

A Semi-Supervised Information Extraction Framework for Large A Semi-Supervised Information Extraction Framework for Large

Redundant Corpora Redundant Corpora

Eric Normand
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Normand, Eric, "A Semi-Supervised Information Extraction Framework for Large Redundant Corpora"
(2008). University of New Orleans Theses and Dissertations. 877.
https://scholarworks.uno.edu/td/877

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ The University of New Orleans

https://core.ac.uk/display/303943437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/877?utm_source=scholarworks.uno.edu%2Ftd%2F877&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

A Semi-Supervised Information Extraction Framework for Large Redundant Corpora

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science
Information Assurance

by

Eric Normand

B.G.S. University of New Orleans, 2002

December, 2008

Acknowledgements

Thanks must be extended to the following organizations and individuals:

Naval Research Laboratory

Kevin Shaw

John Sample

For generosity and support.

Mahdi Abdelguerfi

Shengru Tu

Golden Richard III

For guidance.

Bruce Lin

Elias Ioup

For advice and ideas.

My parents

For always being there.

Virginia Medinilla

For her unending patience.

ii

Contents

Acknowledgements ii

Contents iii

List of Figures v

Abstract vi

1 Introduction 1

1.1 Information Extraction . 2
1.2 Data Mining . 3
1.3 Natural Language Processing . 3
1.4 Common Information Extraction Tasks . 4
1.5 Evaluation Metrics . 5

2 Prior Works 7

2.1 Training . 7
2.2 Depth of Parsing . 7
2.3 Machine Learning Technique . 8

2.3.1 Rote techniques . 8
2.3.2 Information retrieval methods . 9
2.3.3 Statistical techniques . 9

2.4 Thought Experiment . 10
2.5 Literature Review . 11

2.5.1 Hand-written methods . 11
2.5.2 Supervised methods . 12
2.5.3 Unsupervised methods . 15
2.5.4 Semi-supervised methods . 16

3 Approach 20

3.1 The Three Major Axes . 20
3.2 Comments on the Approach . 23

3.2.1 Choice of classifier . 23
3.2.2 Use of domain knowledge . 24
3.2.3 Linguistic pitfalls . 25

4 Formal Methods 26

4.1 Definitions . 26
4.1.1 Tuples . 26
4.1.2 Classes . 26
4.1.3 Types . 27

iii

4.1.4 Relations . 28
4.1.5 Sentence . 28
4.1.6 Corpus . 28
4.1.7 Patterns . 29

4.2 Formal Problem Definition . 29
4.2.1 Proposed solution . 30

5 Evaluation 31

5.1 Level of Parsing . 31
5.1.1 Formal dependency tree model . 31
5.1.2 Pattern matching . 31
5.1.3 Pattern generation . 32

5.2 Evaluation Criteria . 32
5.3 Naive Bayes Classifier . 34
5.4 Support Vector Machines . 36
5.5 Countries in continents . 36

5.5.1 Classes . 37
5.5.2 Corpus . 37
5.5.3 Relation . 37
5.5.4 Results . 37
5.5.5 Analysis . 37

5.6 Capital cities of countries . 39
5.6.1 Classes . 39
5.6.2 Corpus . 39
5.6.3 Relation . 40
5.6.4 Results . 40
5.6.5 Analysis . 40

5.7 Comparisons . 42

6 Conclusions 50

6.1 Discussion . 50
6.2 Limitations . 50
6.3 Future Work . 51

Vita 55

iv

List of Figures

1.1 Part of Speech tagging . 4
1.2 Noun Phrase Grouping . 4
1.3 Syntax tree . 5
1.4 Dependency tree . 5
1.5 Named Entity Recognition . 6

2.1 Tradeoff when choosing training methods . 8
2.2 Tradeoff when choosing depth of parsing . 9
2.3 Tradeoff when choosing classification technique . 10
2.4 Prior Works table . 19

3.1 Icelandic Library task . 23
3.2 Completed Icelandic Library task . 24

5.1 Matching pattern . 33
5.2 Non-matching pattern . 33
5.3 Pattern generation . 34
5.4 The Recall of Country/Continent relation using Naive Bayes. 38
5.5 The Precision of Country/Continent relation using Naive Bayes. 39
5.6 The F-Measure of Country/Continent relation using Naive Bayes. 40
5.7 The Recall of Country/Continent relation using Support Vector Machine. 41
5.8 The Precision of Country/Continent relation using Support Vector Machine. 42
5.9 The F-Measure of Country/Continent relation using Support Vector Machine. 43
5.10 The Recall of Capital City relation using Naive Bayes . 44
5.11 The Precision of Capital City relation using Naive Bayes . 45
5.12 The F-Measure of Capital City relation using Naive Bayes . 46
5.13 The Recall of Capital City relation using an SVM . 47
5.14 The Precision of Capital City relation using an SVM . 48
5.15 The F-Measure of Capital City relation using an SVM . 49

v

Abstract

The vast majority of text freely available on the Internet is not available in a form that computers can
understand. There have been numerous approaches to automatically extract information from human-
readable sources. The most successful attempts rely on vast training sets of data. Others have succeeded
in extracting restricted subsets of the available information. These approaches have limited use and require
domain knowledge to be coded into the application.

The current thesis proposes a novel framework for Information Extraction. From large sets of documents,
the system develops statistical models of the data the user wishes to query which generally avoid the lim-
itations and complexity of most Information Extractions systems. The framework uses a semi-supervised
approach to minimize human input. It also eliminates the need for external Named Entity Recognition
systems by relying on freely available databases. The final result is a query-answering system which extracts
information from large corpora with a high degree of accuracy.

Keywords: Information Extraction, Natural Language Processing, Support Vector Machine, Machine Learn-
ing, Information Retrieval, unstructured text

vi

Chapter 1

Introduction

The amount of information available on the World Wide Web was estimated in 2003 at 167 terabytes [27].
This number is triple what was available in 2000, when a previous study was performed. The annual amount
of email generated in 2003 worldwide was 667,585 terabytes. There is obviously a vast amount of text
information available in digital form.

There are many documents that are about the same topic on the Internet, and therefore contain very
similar information using different wordings. Their information can be compared to verify the correctness
of the source. The redundancy is an asset that can be exploited.

While the amount of text being produced is continually increasing, so is the amount of computing power
available to process it. The large majority of these computers are dedicated to indexing for a human to
search through.

Further, there is a growing awareness of the richness of the text information available. Thousands of
people contribute to Wikipedia, a free encyclopedia, creating millions of entries. There is a strong desire to
make this information available not only to the 1.4 billion Internet users [12], but to make it available for
entry into databases, question-answering systems, and Artificial Intelligence efforts.

The efforts to make the large amount of textual information available in a structured, machine-usable
form have been largely successful. However, these efforts, in general, have focused on domain-dependant
approaches which do not transfer well to the problem in the large.

Presented here is a framework on which a semi-supervised Information Extraction system can be built.
The framework itself is relatively dynamic and flexible. It can be easily adapted by the end user to a wide
variety of domains with minimal effort. A system built on this framework will extract highly structured data
from large, unstructured text sources as typically found on the World Wide Web.

The current research borrows from work in the literature in a number of ways. Firstly, the current work
relies on and takes advantage of the redundancy of the information contained in large text databases. Textual
sources can be aggregated into large databases. The accuracy of the algorithm increases with the size of the
database. This idea is used in Etzioni et al. [15, 16] and Agichtein and Gravano [1].

Secondly, the current work approaches the problem from a typical point of view. Instead of modeling the
task as a textual understanding problem, the system models the problem as one of statistical correlation.
In essence, the system attempts to correlate syntactical and lexical features with semantic meaning. The
semantic meaning is inputed by the user in the form of a query. It is therefore a query-answering system as
opposed to a free-form extraction engine.

Finally, a semi-supervised algorithm is used to reduce human input. Several papers [1, 3, 14, 33] use a
bootstrapping algorithm which trains a system with a minimal set of seed values instead of the vast number
of training examples needed in a supervised learning method.

Although the current research owes a great debt to prior work, the system presented here diverges in
three important ways. Firstly, the current work does not depend on any one domain (as do the majority of
previous research; see Etzioni et al. [15] and Brin [3] for exceptions). Extending the system to work in new
contexts is trivially simple and requires minimal domain expertise. The system is also not dependant on a

1

particular representation of the sentence nor on the choice of classifier. Most prior work relies heavily on
these two choices.

Secondly, most systems that generate statistical models throw out features that correlate with undesirable
information [1, 6, 23, 33, 36, 37]. However, those features can help filter out information. The current system
uses patterns that correlate well with desirable data and patterns that correlate with undesirable data to
classify unknown values into the appropriate category.

Lastly, the system does not depend on sophisticated, statistical Named Entity Recognition systems (see
Section 1.4). The current Named Entity Recognition systems have limited domains or require large, tagged
training sets to extend their domain. The current system uses a simplified, lexical Named Entity Extraction
step that is simple to extend or modify.

There is a growing need to give programmatic access to the vast amount of information provided in
unstructured text on the Internet. The current work grows out of lessons learned from prior research,
while pursuing a novel approach to the task. The system described in this paper is a practical query-
answering system that can extract information from large document sets in a domain-independent way. A
demonstration system is developed that can accurately extract a variety of different kinds of information
from Wikipedia.

1.1 Information Extraction

This section will review the field of Information Extraction, its goals, and its relationship to other fields. By
the end of this chapter, the reader should have a feeling for the problems Information Extraction attempts
to solve and the potential issues that arise.

It is helpful to rely on a metaphor to explain the concept of Information Extraction. In describing
the problem and challenge of Information Extraction, this text will rely on the metaphor of reading and
understanding a completely foreign language. The reader might imagine text in a language as alien to him
or her as possible, such as Icelandic or Mandarin.

When given a sentence in Icelandic, a person unfamiliar with the language would have a difficult time
trying to understand it. The text is written in an unfamiliar script, with words and grammar that are
incomprehensible. One could imagine the difficulty the person would have to identify all of the place names
in the sentence. This is a typical task asked of Information Extraction systems. The challenge of Information
Extraction is to create an automated system that can identify specific information that is contained in that
sentence or texts like it.

The definition found in Moens [30] describes the field more precisely.

Information extraction is the identification, and consequent or concurrent classification and struc-
turing into semantic classes, of specific information found in unstructured data sources, such as
natural language text, making the information more suitable for information processing tasks.

Information Extraction seeks to use computers to automatically apply structure to unstructured infor-
mation. In the case of the current research, the unstructured information used is textual. Other possible
sources are audio, image, and video files [30].

The definition of the goal is left purposefully general. Any kind of structural information can be applied
to the unstructured source. Not only is Information Extraction applied to extract content from text, it is
also applied to extract meta-data such as authoring information (who wrote it, etc).

Some typical examples of the kinds of structure applied to text are:

• Names of people, places, and organizations

• Relationship between two people

• Geographic relationships (X is near Y)

• Dates of an event

2

The distinguishing characteristic between structured and unstructured data is that unstructured text is
computationally opaque [30]. That is, a computer cannot immediately interpret and make use of the data,
as one could with a database or XML file. Information Extraction creates structured information which can
be added to a database or queried in a structured way.

1.2 Data Mining

Data mining is often used in Information Extraction tasks. Data mining seeks to find patterns and rela-
tionships in data [38]. The methods developed in data mining include classifiers and statistical modeling
techniques.

Information Extraction tasks often (but not always) include a data mining step. Unstructured information
textual information is converted to some structured, numerical form. That structured data is then processed
using standard data mining techniques, such as clustering, probabilistic networks, and statistical classifiers.

The data mining methods used to train statistical models include supervised, unsupervised, and semi-
supervised.

Supervised training requires a training set that is completely labeled—that is, given a set of data points,
each data point in the set is correctly classified into the appropriate class. The computer then learns to
classify other points in the same way.

Unsupervised training uses properties of the data alone to find patterns. No other information is given
to the system. The system often finds new, unexpected patterns (like dividing the set into more classes than
a human would). The typical data mining technique in this category is clustering, where data points are
grouped based solely on similarity.

Semi-supervised learning is where only a (usually small) portion of the training data points are classified
into their categories. One could choose to ignore all of the unclassified data—leaving only a small number
of classified points. However, one is often able to improve the performance of the classification technique by
incorporating the unclassified data into the training phase.

1.3 Natural Language Processing

As will become clear in section 2, many approaches (including the current work) use Natural Language
Processing techniques. Natural Language Processing studies the understanding and generation of human
languages. The language understanding portion is what is mainly used in Information Extraction.

Three general subtasks of Natural Language Processing are often used in Information Extraction [18].
They are used because the information they generate can be useful to the pattern matchers and classifiers
used in Information Extraction.

When one is presented with a sentence in Icelandic, one might like to know which words were nouns,
which were verbs, and which were prepositions. That information could help one decipher the sentence. The
task of identifying the part of speech of words in a sentence is called Part of speech tagging. This information
can be useful for subsequent tasks because it provides more information than the sequence of characters that
make up the words. See Figure 1.1 for an example.

In English, some things are described with multiple words. One common examples is the “World Health
Organization”. Instead of interpreting those words separately, it could be helpful to group them together for
the purposes of interpretation. Noun phrase identification is another Natural Language Processing method
which serves to group nouns into noun phrases. Some Information Extraction methods treat noun phrase
groups in the same way they treat nouns.

Given a sentence in a foreign language, it could be useful to know which words were the subjects of which
verbs, what words are modified by adjectives, and so on. This information is gleaned from the text through
the action called deep parsing. Parsing is the task of grammatically deconstructing a sentence to understand
its syntactic structure. Parsing generates a tree or a graph from a sentence. It is thought by some that a
parse tree reveals more useful information than representing it as a series of words. However, parsing at a

3

Figure 1.1: The result of Part of Speech tagging on a sample sentence.

Figure 1.2: An example Noun Phrase Grouping. Highlighting represent noun phrases.

high accuracy can be computationally expensive. Figure 1.3 shows a syntax tree of a sentence. Figure 1.4
shows a dependency parse, which shows dependency relationships between words and phrases.

These three methods are all considered to be forms of parsing (with varying computational costs).

1.4 Common Information Extraction Tasks

The Message Understanding Conference (MUC) has essentially defined the tasks that Information Extraction
attempts to perform [19].

Named Entity Recognition is the task of identifying and classifying the words associated with “entities”.
In the MUC sponsored tasks, the entities were classified as one of Person, Location, and Organization.
The task occasionally included Time/Date and Money. Named Entity Recognition is often performed as a
preprocessing step of other Information Extraction tasks. It is also sometimes used instead of a parsing step.
Figure 1.5 gives an example of the result of Named Entity Recognition.

Relation Extraction is the identification and classification of the relation between two entities in a text.
The current work addresses this task. The fundamental concept of this task is that much information that
is pertinent to the structure of a database deals with how the entities interact and relate. It is therefore
fruitful to extract information pertaining to the relations between entities.

Relations can include anything from familial relations to geographic relations (“Paris is the capital of
France” relates Paris to France; “Russia is near China” relates those two countries). Relation Extraction
attempts to determine what the nature of the relation is from textual evidence.

Coreference resolution seeks to identify cases where different words refer to the same entity or concept.
This occurs in several cases: when the same name is used in two different places to refer to the same entity;
when two different names refer to the same entity; when pronouns are used; when anaphoric phrases are
used (such as in the two sentences “I took a trip to Paris. When I arrived in the city, I found a hotel”; “the
city” refers to the same thing as “Paris”). This task can also inform later extraction tasks.

4

Figure 1.3: A syntax tree.

Figure 1.4: An example dependency parse. Note the labeled edges.

1.5 Evaluation Metrics

There are three standard metrics for evaluating an Information Extraction task. They are borrowed from
Information Retrieval [40].

Recall measures the proportion of target facts in a text that are correctly extracted. Recall is a measure
of completeness without attention to the incorrectly extracted facts.

5

Figure 1.5: An example result Named Entity Recognition task.

Recall =
|{extracted facts} ∩ {true facts}|

|{true facts}|
(1.1)

where the truth value of the fact is domain dependent. The fact can be compared to a database of known
facts or can be hand-tagged in the document.

Precision measures the proportion of extracted facts that are correct. Precision is a measure of correct-
ness.

Precision =
|{extracted facts} ∩ {true facts}|

|{extracted facts}|
(1.2)

F-measure combines Recall and Precision into a single metric. The F-measure is a weighted harmonic
mean of Recall and Precision. It allows for a single metric that weights Recall and Precision by their relative
importance to the task at hand.

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
(1.3)

where β is the relative importance of Recall over Precision. F1 weights Recall equally to Precision. F2

weights Recall twice as important as Precision. F0.5 weights Precision twice as important as Recall.
These metrics all fall in the range [0, 1]. This makes them useful to compare evaluations across algorithms

and implementations. There is, however, discrepancies in how the notion of truth is calculated. In general,
supervised training methods consider the annotations in the training and testing documents as truth. There
is therefore an explicitly defined set of true facts—those that occur in the annotations. In semi-supervised
methods, where no (or very few) annotations are available, other methods of determining truth are required
[1].

When no annotations exist, it is possible to evaluate one’s methods over a domain with known truth
values. The truth value of a fact can then be checked using that knowledge. The question then becomes
whether it is reasonable to expect the system to extract facts that are not available in the text. A measure
of what is extractable is then required.

The common method for evaluating a domain where no complete model of truth can be used is simply
to count the number of returned facts. Two algorithms can then compare the size of the dataset returned.

6

Chapter 2

Prior Works

This chapter organizes the related work in the field along three axes. Each axis forms a continuum along
which the techniques fall. The majority of research involved in evaluating different classifiers and their
parameters applied as different feature sets. The triadic taxonomy done here will encompass the majority of
prior research.

2.1 Training

The primary axis determines the type of training the system uses. The type of training that a research
approach uses is one of the ways the techniques differ from each other. The type training also determines to
a large extent how much human work is required to train the system.

Training techniques can range from fully hand-written to totally unsupervised methods. Figure 2.1 shows
an illustration of the tradeoffs made when choosing a training method.

Hand-written techniques are the most time consuming. People must analyze hundreds of documents
looking for patterns that will be useful for extracting the information. Not only is it expensive—it is also
error-prone, inaccurate, and tends to miss a large portion of patterns. Some approaches to hand-written
techniques do show promise, such as Fundel et al. [17] and Daraselia et al. [11], but they are still the most
time-consuming and inflexible.

Unsupervised methods require no human input to train the system. This can take the form of automati-
cally determining different groupings of data. Since no human input is required, the system can be applied
to many different domains without the expense of developing a new training corpus for each one. However,
these systems must deal with a grave difficulty: the data they get do not necessarily correspond to the user’s
idea of relevance. The systems have no human guide to learn from [38].

Between the two extremes are supervised and semi-supervised methods (sometimes called weakly super-
vised methods). Supervised methods generally require a large training corpus that is completely annotated
by hand by a domain expert. The system uses machine learning techniques to mimic the annotation choices
made by humans. It can be rather costly, but usually gives very accurate results. Often the results can take
into account the subtleties of human discernment.

Semi-supervised methods try to gain the advantages of human knowledge without the intensive labor of
a completely annotated corpus. These methods typically require only a fraction of the annotated data given
to supervised methods. Others provide a handful of examples of the kind of data one wishes to extract. The
disadvantage is that they are less accurate than supervised methods.

2.2 Depth of Parsing

The second axis is the depth of parsing performed on the sentences (see Section 1.3). A deeper parse is
computationally more expensive. Many algorithms have been derived using only part of speech tagging or

7

Figure 2.1: In general, training methods that result in higher accuracy require more human effort to port to
a new domain.

noun phrase clustering. Some systems use a Named Entity Recognizer as the only parse. Named Entity
Recognition can also be performed in addition to another form of parsing. Still others perform no parsing
at all and rely only on textual matching (such as Grishman [18]).

In general, the more computationally expensive an operation, the more information can be gleaned from
the sentence. Figure 2.2 visualizes this point.

2.3 Machine Learning Technique

The third axis is how the system learns to generalize from a training set. This axis can range from rote
techniques to advanced statistical machine learning.

Figure 2.3 illustrates the compromise necessary when choosing among the following classification tech-
niques.

2.3.1 Rote techniques

Rote techniques use a deterministic predicate to extract the information. A simple example is a regular
expression. If the regular expression matches a sentence, then the information contained in the groupings
(parentheses) of the regular expression form the entities in the data value. In general, rote techniques use
one or more patterns that match the parsed representation of the sentence. If at least one pattern matches,

8

Figure 2.2: Investing more computational time to parsing leads to higher syntactic information gains.

the data in the sentence is considered relevant and the system extracts it. If no pattern matches, the data
is not extracted.

The rote patterns are typically generated in one of two ways. The first way is exact matching. This
approach is where each training instance generates a single pattern. Those patterns are not modified,
though they can be kept or discarded (see Etzioni et al. [15] for an example).

The second way is called generalization. This is where some simple form of machine learning is used to
make the generated patterns more general, and therefore more resistant to the presence of noise (Califf and
Mooney [6], Huffman [23], and Soderland [35] use this method).

2.3.2 Information retrieval methods

In information retrieval methods, metrics of document relevance are used to measure the relevance of indi-
vidual sequences of words (example: Agichtein and Gravano [1]).

2.3.3 Statistical techniques

Statistical techniques are typified by the use of many training points. They rely on statistical averaging or
probability to find patterns in the data.

Probabilistic networks are trained statistical methods that label sequences of data [8]. The sentence can
be treated as a sequence of words. The network then predicts labels for the words that correspond to the
roles in the relation that is being extracted [25]. For instance, in the relation CapitalCityOf, Paris could

9

Figure 2.3: Techniques that are less sensitive to noise require more training.

be labeled as CITY and France could be labeled as COUNTRY. One can then extract the words with a
meaningful label. Examples of probabilistic networks are Hidden Markov Models and Conditional Random
Fields.

Statistical classifiers use data mining techniques. Sentences or facts can be modelled as feature vectors ap-
propriate for the classifier chosen. The classifier can be trained using traditional supervised, semi-supervised,
or unsupervised approaches. Examples of statistical classifiers are Naive Bayes and Support Vector Machines.
Examples include Culotta and Sorensen [10], Jie and Min [24], and Bunescu and Mooney [5].

2.4 Thought Experiment

This chapter also describes the problem definition each paper attempts to solve. There is a wide variety
of problem definitions, and their explanations can get quite tedious. To make it easier for the reader, a
thought experiment has been devised. It will make use of the same metaphor used previously which was
about deciphering a foreign language.

The thought experiment is called the Icelandic Library. It goes as follows. A person, named Bob, is in a
library in Iceland. To simplify matters, all books are written in Icelandic—and there are no pictures. The
person does not speak Icelandic. Bob is given a task, which is defined differently with each research paper
description. Bob is to use the resources of the library, which can differ with each prior research, to perform
the task. It should be understood that though the explanation for each problem is stated as if it were in
Icelandic, all papers in fact operate on English language text.

10

2.5 Literature Review

The following sections divide the literature into four categories along the axis of type of training. An
explanation of where each prior work falls in the remaining two axes is detailed in its description.

2.5.1 Hand-written methods

The hand-written methods generally consist of people writing regular expression-like patterns to match
certain patterns in text. The patterns are typically very specific to a few syntactic patterns. These kinds of
methods do not offer very much help for changing domains.

The following papers are classified as hand-written methods because they require a large, domain-specific
portion to be hand-coded.

Fundel et al. [17] was built to extract protein-protein interactions from biological paper abstracts. In this
paper, Bob’s task in the Icelandic Library to go through every book in the library, sentence by sentence, and
create a list of protein-protein interactions, cataloguing the type of interaction. Each sentence in the library
is already parsed into a dependency tree (an example of deep parsing. See Section 1.3) for Bob to use. Bob
also has a dictionary of protein names (in Icelandic) to guide the search.

The paper proposes the following solution. After finding a sentence with a protein name from the
dictionary, Bob will perform certain simple transformations to the dependency tree. These transformations
include building noun phrases and reconstructing lists from their syntactic interpretation. Bob then looks
for three syntactic patterns in the resulting tree. These patterns correspond to what the authors claim are
the three most important syntactic forms for expressing relations. Quoting the text:

Currently, we use three rules that reflect the constructs that are most frequently used in English
language for describing relations, namely:

1. effector-relation-effectee (‘A activates B’).

2. relation-of-effectee-by-effector (‘Activation of A by B’).

3. relation-between-effector-and-effectee (‘Interaction between A and B’).

The triplet <effector, relation, effectee >is extracted if it matches one of the patterns above. Each of
the patterns is hard coded (an example of a rote technique. See Section 1.3). These patterns are fixed at
design-time—and they are chosen based on the language patterns of biological abstracts. It is easy to see
that extending this system to new domains would necessarily require adding a new dictionary (to replace
the protein dictionary) and to reanalyze the new text sources for possible syntactic patterns that correspond
with the semantic meaning that is desired.

Daraselia et al. [11] uses a hand-generated ontology of protein-protein interaction. An ontology, in this
sense, is a collection of data structures describing how to translate between an input sentence and another
data structure called a frame. A frame is just a template with slots. The slots define admissible values.
Synonyms, keywords, and protein names are all defined in the ontology.

In this problem, Bob’s task is to choose a form (called a frame in the paper) from a list of possible forms
based on rules in the ontology. Then each form is filled out based on the same rules. Bob is again given a
dependency parse for each sentence. The rules are of the type “use the form called Inhibition when the verb
of the sentence is ’inhibits”’.

The paper analyzes the example sentence “P53 inhibits apoptosis.” The system performs a dependency
parse of the sentence, then applies the ontology to the resulting tree.

The word “inhibits” is in the ontology, and activates a frame. The frame is called “Inhibition” and describe
what useful information the system should look for in terms of chemical inhibition. The “Inhibition” frame
has an “agent” slot and a “patient” slot. The “agent” slot needs a protein name that is the subject of
the verb. A search through the ontology reveals that “P53” is a protein name, and fills the requirements
for “agent” in this frame. “P53” is inserted into the agent slot. The “patient” slot needs a direct object
that is a cell process. “apoptosis” is a cell process and a direct object of “inhibits” and therefore fulfils the

11

requirements for “patient”. The frame has been filled in successfully and can be stored in a database. The
tree is walked this way, until there is no more information to be extracted. This can be considered a rote
process since no machine learning is performed.

The construction of the ontology is very time-consuming. It is constructed by hand by domain experts.
And the ontology is domain-specific. Little or none of the domain knowledge encoded in the ontology can
be transfered to another application domain. For instance, in addition to the complex network of frames
and other concepts, the ontology includes 6,000 words and their meanings in the ontology. These words
are domain specific—words not meaningful to the search were not included. It would be very expensive to
generate a dictionary of that size for every domain one would like to query. Although this technique is very
powerful, the expense is prohibitive.

2.5.2 Supervised methods

The Message Understanding Conferences (MUC’s) encourage supervised models of the problem domain [19].
The corpora used in its proceedings are fully annotated. The domain is completely specified ahead of time.
This makes it easy to apply traditional machine learning techniques. The focus is placed on choosing an
appropriate feature set.

The main choices that must be made in a supervised model are the choice of feature set and the choice
of classifier.

Rote methods

The simplest classifier is a pattern matcher. It is a simple, deterministic function that classifies the type of
relation present in a sentence.

Huffman [23] presents a system that creates a dictionary of patterns from training examples that can be
later used to extract information from other documents. In this paper, Bob is given the task of generating
tree patterns that indicate a certain semantic meaning and can be applied to new sentences.

Bob is given a book of sentences that are parsed into a syntax tree. In each sentence, two words are
marked as different from the others. These are the two entities in the relation. From this book, Bob must
generate a small set of patterns that will be able to match entities that have the same relationship as the
words in the book.

The solution presented in the paper is that Bob should determine the path along the parse trees that
are important to the relation using a set of rules. The rules specify which words to ignore and which to
keep. These paths are written down, with the marked words replaced by blanks. When all of the sentences
in the book have been processed, Bob is to compare all of the patterns to each other, finding patterns
that have similar structure. When two patterns are similar, words from one pattern that do not match the
corresponding word in the other pattern are replaced by a wild-card and that new pattern replaces the other
two. In this way, the patterns are generalized

The list of patterns can then be applied to new sentences parsed into a syntax tree. If any other patterns
match, the words that correspond to blanks in the pattern are returned as extracted information.

Transferring this system to new domains is better than with the hand-written methods. In this case,
one needs only create a new training set (the book of marked sentences given to Bob). However, with small
training sets, the system can be inaccurate. If only one sentence exists in the training set, only one pattern
can be generated. A sentence must match it exactly to be extracted. Considering how many ways there are
to phrase the same fact, it would take many training examples to generate a system with many generalized
patterns to result in high Recall.

Califf and Mooney [6] has a similar system. It was designed to extract information from job postings
on Usenet. Bob is given one form to fill out that contain the attributes of job postings—including job title,
company, and salary. Bob is also given a set of postings in Icelandic and their corresponding filled-in form.
From this, Bob must generate a small set of patterns that can be applied to new job postings to automatically
fill in the forms. The job postings are given as-is—that is, no parsing is performed.

12

The solution is to have Bob write out the words surrounding the words from each blank in the form
as a pattern. When all of the training examples have been done this way, the patterns corresponding to
the same blanks are compared. Bob chooses two patterns at random, finds the similarities between them,
and generalizes the differences so that they will match the same set of sentences. The generalizations are
fixed. One example is to generalize “house” and “cup” to match any noun. The new generalized pattern
is then matched over the training set, extracting values. If it extracts any wrong values, the generalization
is discarded. If it does not match any wrong values, Bob iterates through generalizations until no more
generalizations can be performed that produce only correct extractions.

The generalized patterns are added back into the list, replacing the two patterns they were generalized
from. When there are no more possible generalizations, the list of patterns is returned.

Generalizations are performed in order to avoid over-fitting patterns to the training data. This process
lets the set of patterns remain small and also allows the system to deal with noise in the training set.

Although this method is more powerful than Huffman [23], it still requires an expert to create a training
set for each new domain. It is therefore time consuming and inflexible.

Califf et al. [7] extends the system from Califf and Mooney [6] to allow for generalizations from Wordnet
classes. For example, combining patterns for the words “house” and “apartment” could lead to a pattern
that matches any word in the “dwelling” category.

Soderland [35] uses a simple pattern matcher similar to regular expressions. The way it creates patterns is
not significantly different from other pattern matching systems. Bob is given the task of generating patterns
that will match a given relation between entities. In this research paper, Bob is allowed to ask a librarian to
read sentences and identify the relationship stated in the sentence. This lets Bob build a new training set.

The solution the paper proposes is one that tries to minimize the number of sentences that are required of
the librarian. It interactively asks the user to tag sentences. The pattern generation method is not materially
different from the previously described methods. The system selects the sentences the user will label based
on three categories: Instances covered by an existing pattern—to check the patterns, Instances not covered
by a pattern but covered by a generalization of a pattern—to confirm that a generalization is correct, and
Instances not covered by any pattern—to expand the number of patterns.

By randomly training and retraining from these three classes of sentence, the user slowly increases the
number of training instances available to the system. This process is called active learning. It uses feedback
to minimize the number of training instances required. The drawback is that the fundamental means of
learning has not changed, so only a small measure of efficiency is gained.

Statistical methods

Support Vector Machines are a state of the art statistical classifier. The kernel function is essentially a
measure of similarity. Much research is being done on the choice of features and the kernel function.
Research is on-going into new kernel functions that can act on trees—dependency parse trees specifically.

Bunescu and Mooney [4] builds a system that uses a kernel tailored for subgraphs of a dependency tree.
Bob is given a task of classifying the relationship between two given entities in a sentence into one of a set
of classes. He has at his disposal a set of dependency trees from sentences and the categories they should be
classified into.

The solution the authors propose is for Bob to find all sentences with the same training class. Bob then
must extract the shortest path in the tree from one entity to the next (since it works only on binary relations).
Bob can compare two sentences based on the number of words the shortest paths have in common.

An SVM is trained with this data. A new sentence is classified by extracting the shortest path between
entities and classifying it with the SVM. The authors make the hypothesis that the most important syntactic
and lexical features of a relation occur along the shortest path between the two entities on the dependency
tree. The shortest path is augmented with part of speech and Wordnet hypernym information.

Bunescu and Mooney [5] develops a kernel function that applies to sequences of words. It is equivalent to
the previous work except that it applies to word subsequences instead of dependency graphs. The subsequence
kernel counts the number of matching subsequences.

13

The target domain is protein-protein interactions in biological abstracts. The length of the sequences is
limited to four words. The insight in this paper is that only three common expressions of relationship are
considered. By restricting the feature set, they both speed up the algorithm and look only at very compelling
data.

Since the sequences are no longer than four, this is computationally inexpensive. Using a subsequence
kernel allows for a shallow parse or no parse at all instead of an expensive deep parse.

Culotta and Sorensen [10] develops a kernel function that operates on the dependency graph. The
hypothesis laid out is that the syntactic relation between two named entities is local—that it is expressed in
the shortest subtree of the dependency parse tree containing both entities. This hypothesis is not as strong
as the thesis proposed in Bunescu and Mooney [4]. The kernel recursively counts the number of common
subtrees two trees share. The dependency tree is augmented with many features—including the part of
speech and Wordnet hypernyms.

The entities of interest are identified in the sentence by using a Named Entity Recognition phase. This
technique allows for a fairly robust identification of names, places, and organizations. However, the Named
Entity Recognition system used and those in common use are limited in what types of entities they identify.
They also typically require supervised learning, so they are costly to extend to new domains.

Harabagiu et al. [20] augments the work in Culotta and Sorensen [10] by adding new features to the
dependency graph. An ontology of one million words was added to provide information about what noun
phrases are the arguments of which predicates.

Jie and Min [24] uses a Support Vector Machine to classify extracted relations. It performs noun-phrase
chunking instead of doing a deep parse. It argues (and its results confirm) that little extra precision is gained
from doing a full dependency parse. Its feature set is not different from the other work on SVM’s.

Liu et al. [26] considers a set of syntactic features to combine into a feature vector for input to a kernel.
The feature extractions are hand-coded. The syntactic features they develop include patterns such as “parent
node of protein name” in the parse tree. This is important because it tries to combine syntactic features
into a feature vector to be used in a classifier. Unfortunately, the syntactic features are selected by hand
specifically for the domain. This means that the features are likely not to work in a new domain.

The typical statistical approach is to find a sentence that has the entities in question and to try to extract
their relationship from the sentence. Culotta et al. [8] turns that around and assumes that the text is about
some entity—the subject of the text. The goal, then, is to find the relationships between the subject and
the other entities mentioned in the text. In this approach, Bob is given a sentence and the subject of the
document from which it is taken. Bob then is asked to find the relationship of the entities in the sentence
and the subject.

This approach models context in a simple way in which implicit mentions of the subject of a text can be
resolved to an explicit entity. For instance, in an article about Germany, one might find the sentence “The
capital is Berlin.” No where in the sentence is Germany mentioned. It is implied that Germany should be
understood because the entire document is about Germany. Most approaches miss these references. Section
6.3 discusses a way to augment the current work with a similar kind of context.

Culotta et al. [8] trains a Conditional Random Field (See Section 2.3) to label the words in a sentence.
The labels can be either IRRELEVANT or the name of the class. For instance, in an article about George
W. Bush, the sentence “He is married to Laura Bush.” would label the name “Laura Bush” as WIFE and
the rest of the words as IRRELEVANT. It is then trivial to extract out the information.

Another approach is taken in Xiao et al. [41]. The classification is done using a maximum entropy model.
Features include the words surrounding the entities. It performs a dependency parse, and uses features from
those trees.

The Supervised methods follow basically the same approach: use a standard classifier on a feature vector
derived from the sentence. The choice of classifier and the feature set are thus very important and form the
bulk of the research.

14

2.5.3 Unsupervised methods

Unsupervised methods do not require human input. They typically categorize or cluster data automatically
using standard clustering techniques.

Etzioni et al. [15] describes a system called “KnowItAll” that uses the World Wide Web as a giant corpus
of sentences (the library in the Icelandic Library metaphor). The user can ask Bob to give a list of entities
that are of a certain type, or to give a list of pairs of entities that are in a certain relationship.

The authors have developed a set of domain-independent extraction rules. These rules are not meant
to exhaustively cover every way an English sentence can describe a relation. The rules instead leverage the
sheer size of the Internet to “play the averages”. The principle is that on average, there is a sentence that
does match a certain rule somewhere on the Internet that contains the desired information.

The following are some example patterns. NP means noun phrase and {} means the surrounded text is
optional.

• NP1 {“,”} “such as” NPList2

• NP1 {“,”} “and other” NP2

• NP1 {“,”} “including” NPList2

• NP1 “is a” NP2

• NP1 “is the” NP2 “of” NP3

• “the” NP1 “of” NP2 “is” NP3

The user can query KnowItAll for “cities in France”. It will then search various search engines with the
queries “cities in France such as”, “and other cities in France” and “is a city in France”. The resulting pages
are scraped for the sentence containing the text. The patterns are applied and the resulting information is
extracted.

This system is interesting for three reasons. Firstly, it is more active than the normal approach. It seeks
the information that it knows how to extract instead of learning how to extract information that is given to
it.

Secondly, it uses the redundancy of the size of the dataset (effectively, the entire searchable Internet) to
make up for its lack of intelligence.

Lastly, it allows for a wide range of domains. The only human input needed is the expression of the
query.

The KnowItAll system is classified here as shallow parsing and rote. It is considered unsupervised since
it requires no human input to extend its domain.

Etzioni et al. [16] extends the KnowItAll system. Three unsupervised methods are added. The Rule
Learning system augments the domain-independent rules from the original KnowItAll system by extracting
text patterns using seeds generated by the domain-independent rules. This could be considered a case
of semi-supervised learning (i.e., learning from a small number of examples) but the seed examples are
automatically generated by the system itself. It has been classified here because there is no human input
required.

The second extension to KnowItAll is Subclass Extraction. The reasoning behind the system is simple.
If the user wants to query the system for a list of scientists, the original KnowItAll would use patterns
equivalent to “scientists such as” to find sentences that contain scientists. However, the system would miss
sentences that match “physicists such as”. The Subclass Extraction system uses KnowItAll to extract a list
of highly probable subclass names to augment the query. The system finds new subclass names by querying
itself for “types of scientist”.

The third extension is called List Extraction. In List Extraction, the system queries a search engine for
one of the many structured lists of items on the Internet. The items are chosen at random from the lists
generated by the original KnowItAll system. The goal is to find many structured lists containing the items
and correlate the results together. Many queries are made, and the items are ranked by the number of lists
they appear in.

15

This method is interesting because it shows that a high precision algorithm can be used as an initial
stage to generate high-precision seed candidates. Those seeds can then be fed to higher recall stages.

It also shows how useful redundancy can be. Instead of trying to deduce what a single sentence is saying,
the system uses the redundant nature of multiple documents to extract and verify the information.

Hasegawa et al. [21] introduces a system that clusters pairs of entities together based on similar contexts.
The algorithm works as follows: given a set of documents, a shallow parse is performed. The system identifies
pairs of entities that are near each other. The words that come between the pairs in the sentences are stored.
The system then clusters the pairs of entities based on the similarities of the set of intervening words.

After the clustering is performed, the most common words from each cluster are chosen as the cluster
label. The results indicated that this word was accurate for clusters of at least a certain size.

Shinyama and Sekine [34] develops a system for automatically classifying relations among entities. Their
system works on an entire document (as opposed to a sentence). It identifies entities in the document. The
system records the context words surrounding each entity. It then assumes that a relationship exists between
each pair of entities in the document by reasoning that if they did not have a relationship, they wouldn’t
be in the same document. The system performs this analysis on multiple documents, keeping the entities
separate.

The system then performs clustering on the pairs of entities across multiple documents. The goal is to
use the context surrounding each word to cluster entities with similar “roles” together. For instance, in an
article about Hurricane Katrina, the entity “New Orleans” might be surrounded by “was hit”. “Katrina”
would be surrounded by “headed” as in “Katrina headed North”. In another document about the tsunami
that ravaged Myanmar, “Myanmar” also is found near “was hit”. “Tsunami” contains the context “headed”
as well. These two pairs of entities would be clustered near each other, indicating the same basic relation.

Although this clustering approach was not taken in the current research, Shinyama and Sekine [34] is
interesting because it looks at a document as a whole. Most systems rely on the information contained in
one sentence. It has the possibility to extract information other systems miss.

Unsupervised methods are still cutting-edge. They do not perform as well as supervised methods. How-
ever, there is much promise that they will be able to recognize patterns and relations that humans cannot.

2.5.4 Semi-supervised methods

Semi-supervised methods usually involve applying machine learning to a set of seed values. These values are
a handful of examples, as opposed to an exhaustively tagged document set. These examples are then used
with an untagged document set to train the machine learning classifier. Very often, the classifier is then
applied to the documents to extract more values. These values are added to the seed set, and the algorithm
is iterated. By doing this, the seed set “grows” to a large enough size to achieve a high recall. If the seeds
are chosen well, high precision is possible as well.

The advantage of this approach is that only a few examples are needed from a human. The training
document set can be as large as one wants—no extra human input is required. It has the advantage of
generalizing well to many different domains. A domain is defined by its examples. But it also avoids the
disadvantage of unsupervised methods in that the categories are defined by the person giving the examples.

Riloff [33] develops a system that extracts relations from text. It requires only texts classified as relevant
or irrelevant to the domain. Bob is tasked with identifying sentences that specify a particular relation among
the entities in the sentence. At his disposal, Bob has a set of documents that he knows are relevant to the
relation at hand.

The solution is simple. Every potential entity is extracted from the document, including the surrounding
text. That text is made into a pattern. The patterns are then evaluated: they are rated as the ratio of
the number of times that pattern occurs in a relevant document over how many times it occurs in any
document. A confidence metric is then calculated from the matching patterns. Entries with high confidence
are considered relevant.

The system generates thousands of patterns, so only the highest ranked patterns are maintained. This
technique is interesting because it does not require the same amount of work a supervised system would

16

need. Instead, one only needs to indicate which documents are relevant to the domain. However, the task
of classifying and reclassifying documents for each domain would become tedious.

Brin [3] describes a program that uses the scale of the World Wide Web to extract information. Bob is
asked to find other pairs of entities that are in the same relation as a few examples. He can only use the
text of the books in the library for his search.

The solution the author proposes is to search for the examples in the books and record the interleaving
text between them. Then, that interleaving text is searched for in the books. The words on either end of the
text (beginning and end) are assumed to be correct values. They are added to the seed set and the system
iterates.

There were several design decisions in this system. The first was that it was unimportant to have a
high recall since the scale of the Internet made even a poor recall system return many thousands of values.
Secondly, the precision was of utmost importance since bad seeds could cause the entire set to become
polluted with more bad seeds. The system therefore made no attempt at generalizing the patterns—it relied
only on the scale of the Web to generate enough values.

Unfortunately, this system had no automated method for making sure few bad seeds got into the seed
set. A manual “cleaning” stage was necessary to avoid very bad values.

Agichtein and Gravano [1] introduces a system called SnowBall. It follows the basic semi-supervised
model outlined above. Given a few seed values and a set of training documents, the system develops a set
of patterns.

The patterns match using an information retrieval algorithm. Specifically, it uses a method commonly
used to compare documents. The pattern is a weighted bag of words of all the words occurring around the
two entities in a sentence. The number of common words is summed up, weighted by the weight of each
word. This lets a score be calculated for how related a pattern is to a piece of text.

An implied negative set is created. The domain is assumed to be “many-to-one” or “one-to-one”. For
instance, the concept of which country is in which continent is many-to-one. A country can only be in one
continent and many countries are in a continent. The idea of capital cities is often one-to-one. A capital
belongs to one country, and the country belongs to one capital.

Because there is an assumed unique component (the country in the country-continent relation above), a
negative set is created. For instance, if “Paris is the capital of France” is a known value, it is implied that
no other city is the capital of France. This allows the seed set to be much larger than what the user enters
by hand.

The patterns are rated by how many positive and negative seeds they match in the text. This rating is
called the confidence. Patterns with high confidence match a high proportion of positive seeds and a low
proportion of negative seeds.

New values are generated by these patterns from the documents. The values are rated based on the
confidence of the patterns that match them. The highest rated values are then fed back into the seed set
and the entire algorithm is iterated.

The algorithm showed good results. There are several disadvantages to this approach, though. Firstly,
it assumes that a negative set can be created. This is not true in domains that are “many-to-many”. Many-
to-many domains do not have, in general, any easily calculable negative set. The range of many-to-many
domains is very large. Imagine the domain of what countries are allied together.

Secondly, the algorithm relies on a Named Entity Recognition step. While the authors claim that they
have used a very reliable and accurate NER system, the problem still remains of training that system.
The system they use categorizes entities into three broad categories: LOCATION, ORGANIZATION, and
PERSON. The paper also claims that its system can be trained for other categories. However, one of the
main advantages of a semi-supervised model is the need for very little human input during training. If the
NER system needs to be trained for every domain, then the advantage is lost.

SnowBall does present interesting ideas. First of all, it combines the results of multiple patterns over
many sentences. It relies on the idea of data redundancy in multiple documents to achieve higher accuracy.
Secondly, it presents a very clear bootstrapping technique. Both of these ideas are essential to the current
work.

17

Agichtein et al. [2] improves on the SnowBall system. It changes the pattern matching algorithm. The
original SnowBall system worked on a bag-of-words model of the words surrounding the entities. The
improvement is to take word order into account in the pattern matcher. The results of the two systems are
then combined to achieve better performance.

The interesting part of this is that SnowBall gives a framework to work in: the system only changed in
one part—the pattern matching algorithm. This shows that the overall bootstrapping algorithm is sound
and extensible.

Culotta and McCallum [9] creates a system to apply active learning techniques to the semi-supervised
approach. It takes the normal active learning approach of choosing the most important unknown values to
classify. However, it also weighs into the ranking a measure of the difficulty of classification. This allows the
system to more effectively reduce the human input necessary to achieve a desired level of precision.

Mann and Yarowsky [28] combines three different classifiers to match patterns. It uses a Rote system
(basic string pattern matching), Naive Bayes (bag of words), and a Conditional Random Field. Combining
the results of all of them (using a voting system) increased the accuracy significantly compared to using only
one.

The system bootstraps not only the seed set but also the document set. After generating the patterns from
a small corpus of tagged documents, it performs a web search of the seed values. The resulting documents
are then used to test the patterns and generate new values.

Stevenson and Greenwood [36] presents an interesting approach. It follows the basic bootstrapping
method described above. However, instead of adding new values to the seed set, it adds new patterns to
a pattern set. It compares the patterns “semantically” to existing, reliable patterns. The patterns are
compared based on Wordnet categories.

Pennacchiotti and Pantel [32] describes a system called Espresso. The system differs from the standard
bootstrapping algorithm by an adaptation to insufficient data. In small document sets, it queries the web
to expand the number of documents available. It also develops metrics for evaluating a patterns and the
generated values. These are helpful for filtering the seed set and pattern dictionary.

Pantel and Pennacchiotti [31] extends Espresso by treating patterns with high recall differently from
patterns with high precision. Their results are combined differently, giving patterns with high precision the
role of evaluating the high-recall patterns. This allows for a higher recall with a small loss in precision.

Suchanek et al. [37] builds a system called LEILA. LEILA parses sentences using a link grammar. A
link grammar builds links between pairs of words, similar to a dependency graph. The resulting graph can
be traversed as a sequence of words (nodes). The patterns LEILA generates use the path between the two
entities in the binary relation. LEILA is restricted to binary relations.

LEILA generates a set of patterns from a seed set of values and an untagged document set. Patterns
are then used to generate values. Any patterns that produce values that are in the negative seed set are
discarded. The remaining patterns are fed to a classifier, which is trained to identify good patterns.

This system avoids the problem of feature explosion. Since it trains a classifier to identify good patterns,
it does not need to compare each sentence with hundreds of generated patterns. It is different from other
approaches which aim to train a classifier with interleaving text ([4, 10]) in that it first filters the interleaving
text to make sure it does not generate known negative values.

Turney [39] describes a novel approach to relation extraction. The system, at heart, operates like this:
given two pairs of entities and a document set, the system discovers all of the intervening text between the
pairs in the documents. The system finds the pattern that is shared the most between them. The idea is
that what is important is what common relation they share.

The system answers analogy problems like those on the SAT. The approach is novel because it takes the
opposite approach to what is commonly taken. Instead of looking for a pattern that will extract a value from
a sentence, it compares the patterns generated by two values. In other words, the system asks the question
“what is the relationship between the relationship of these values?” For small domains (such as multiple
choice analogy problems), this approach has a lot of merit. Many questions could be formulated in this way.
For instance “Is Paris the capital of France?” could be formulated as “Does Paris have the same relation to
France as Berlin has to Germany’?”.

18

Paper Training Method Depth of Parsing Machine Learning Technique

Fundel et al. [17] Hand-Written Deep Exact Matching
Daraselia et al. [11] Hand-Written Deep Exact Matching
Huffman [23] Supervised Deep Generalization
Califf and Mooney [6] Supervised None Generalization
Soderland [35] Supervised None Generalization
Bunescu and Mooney [4] Supervised Deep Support Vector Machine
Bunescu and Mooney [5] Supervised None Support Vector Machine
Culotta and Sorensen [10] Supervised Deep Support Vector Machine
Jie and Min [24] Supervised Noun-phrase

Chunking
Support Vector Machine

Liu et al. [26] Supervised Deep Support Vector Machine
Culotta et al. [8] Supervised None Conditional Random Field
Xiao et al. [41] Supervised Deep Maximum Entropy
Riloff [33] Semi-supervised Part of Speech Bayesian Combination
Brin [3] Semi-supervised None Exact Matching
Agichtein and Gravano [1] Semi-supervised Named Entity

Recognition
Information Retrieval and
Bayesian Combination

Culotta and McCallum [9] Semi-supervised None Conditional Random Field
Mann and Yarowsky [28] Semi-supervised None Exact, Naive Bayes, and Con-

ditional Random Field
Stevenson and Greenwood [36] Semi-supervised None Information Retrieval
Pennacchiotti and Pantel [32] Semi-supervised Part of Speech Bayesian Combination
Suchanek et al. [37] Semi-supervised Deep k-Nearest Neighbor and Sup-

port Vector Machine
Turney [39] Semi-supervised None k-Nearest Neighbor
Etzioni et al. [15] Unsupervised Shallow Exact Matching
Hasegawa et al. [21] Unsupervised Shallow Clustering

Figure 2.4: The prior works broken down according to the three axes.

19

Chapter 3

Approach

This chapter deals with the problem of extracting text. The various decisions that have to be made will be
explained. The reasoning behind each decision will be detailed. And a list of advantages and disadvantages
will be made.

The following are system requirements interpreted from practical usage requirements and the limitations
of the systems presented in Chapter 2.

1. Many specific kinds of relations need to be extracted. The relations could be unary, binary, or n-ary.
The extraction framework cannot be limited to the order of the relation.

2. The relations are often unbounded. This means that the size of the set of facts corresponding to that
relation is unknown by anyone.

3. The relations will be used as specific fields in a database. They are therefore somewhat well-defined.
They must match an actual concept that is trying to be captured. Precision is more important than
recall since the extracted data will be inserted into a database to be used by other systems as known
facts.

4. The relations are not specified ahead of time. They need to be able to be added and modified by end
users. This implies that the human effort required to define a new relation is minimized.

5. The domains of the relations (types of entities) are not specified ahead of time. New entity types may
be added later. No domain-specific knowledge can be defined in the algorithm.

6. Large, untagged sets of documents are available.

7. The choice of classifier should be unimportant to the functioning of the framework. New classification
techniques should be used as they become available. Research is going on into new data mining
techniques at a fast rate. The system should be able to incorporate the new research.

8. The type and level of parsing should not factor into the framework. They should be considered
implementation details. A review of the literature indicates contentious ideas involving the benefits of
parsing [10, 24]. The best practices in parsing have yet to be determined and are likely to change.

3.1 The Three Major Axes

Each of the three axes described in Section 2 is a major decision point. These decisions must be made
regardless of the problem formulation. Type of training will be analyzed first.

20

Hand-written techniques allow for very well-defined domains 2.5.1. Any level of detail is available. It
depends only on the amount of effort and time available. Hand-written techniques work well for untagged
documents, since they do not require a statistical training stage.

Hand-written methods, however, are largely disused in more recent works. This could be due to the
fact that they are extremely time consuming. They do not extend well to new domains. Daraselia et al.
[11] builds a large, hand-written ontology. This case is exceptional, however, since the perceived value of
extracting very high-quality information exceeds the cost of generating the ontology. The domain of the
ontology is very large. However, hand-written methods do not meet the requirements enumerated above.
Hand-written methods do not minimize the amount of effort required to add new relations. They also require
the domain to be known ahead of time.

Supervised techniques have achieved very high Precision in the literature. This is their strong point.
They allow for relations to be well-defined. They can take into account as much subtlety of meaning as can
be encoded in the annotations of the documents.

Supervised methods, by definition, require much human input, usually in the form of hand-tagged text.
Either the domain of the relations must be known at the outset of training, or the text must be tagged anew
for each domain. This, too, does not meet the system’s requirements. The tagging of documents requires
experts in the domain. Those experts must also be trained to tag the documents consistently—which requires
a different kind of expertise. Supervised methods are therefore ruled out because they require an excess of
human input.

Unsupervised methods do not require the human input of hand-written and supervised methods. They
can adapt to new domains easily.

However, unsupervised methods cannot be relied on to create categories of relations that correspond to
a specific category in a database. This works for new domain discovery, but not for extracting a specific
kind of information, such as in response to a query from the user. Unsupervised methods will not meet the
requirements.

Semi-supervised methods strike a compromise between supervised and unsupervised methods. They
require domain knowledge. However, the required amount and precision of the domain knowledge is very
low. Often the required human input is trivial. Semi-supervised approaches rely on labeled examples and a
large set of unlabeled points [14]. The examples are very natural for humans to provide and large document
sets are free on the Internet. They allow users to tell the system “give me more facts like these”.

By providing examples, the user is also defining a well-understood concept. The facts extracted can
thus be placed into a database. Because the human input is minimal, adding new relations is trivial. A
semi-supervised technique has been chosen as the best way to achieve the stated goals for the system.

The next decision is level of parsing. As stated in section 1.3, parsing can range from deep parsing (full
syntax or dependency tree) to part of speech (POS) tagging to no parsing at all.

There are disadvantages to deep parsing. Besides the cost of parsing, there is a dependence on the parser.
Every parser is different, with differing strengths and advantages. The parser used is usually trained from
a corpus. The most common corpus is the Penn TreeBank [29], that has a large set of sentences with their
corresponding parse trees. The training parse trees were hand-generated by expert grammarians.

The information gained by deep parsing seems to subsume all of the other levels of parsing. It contains
information that is highly correlated to Part Of Speech tagging and noun phrase chunking [18]. The question
therefore is one of cost versus benefit.

It is assumed in Jie and Min [24] that by throwing more data at the problem, deep parsing is unnecessary.
That is, as the number of training points goes to infinity, the difference in accuracy between a deep-parse
solution and a no-parse solution goes to 0.

That being said, there is not infinite data. In fact, at the low number of points (around a few thousand),
there is in fact a large benefit from having a fully parsed solution.

Parsing is a relatively expensive operation. Depending on the parser, a sentence could take up to 3
seconds to parse. This is not trivial, especially when considering the sheer number of sentences needed for
statistical classification methods. However, there are several mitigating factors:

21

1. Parallel

Each sentence can be parsed independently of the others. This allows for massive parallelization of the
parsing operation.

2. Cacheable

For a deterministic parser, the parse for a sentence will always be the same. This means that a given
sentence will only need to be parsed once—no matter how many classifiers it passes through.

3. Easily Filtered

A simple dynamic programming optimization can be performed. An O(n) scan of the sentence can
determine if the sentence is worth parsing. If no value for the particular query one is looking for can
be extracted from the sentence, it is not worth parsing.

Given these three properties of the system, deep parsing is the best option. Culotta and Sorensen [10]
and Bunescu and Mooney [4] indicate that the dependency tree is the most fruitful form of parsing.

The framework of the current system does not rely on the level of parsing. The system is defined in a
general sense. It is perhaps not necessary to perform any parsing at all. The evaluation of the usefulness of
parsing is left as a subject of future research.

The final decision that must be made is the type of classifier used. Since one of the stated requirements
is that the system does not depend on any one specific kind of classifier, it is necessary to model the problem
in a way that can be classified by a large set of classifiers.

The Icelandic Library will serve as a metaphor for presenting a clear description of the problem.
Bob is in the Icelandic Library, but he is alone. He is given a sheet of paper.
On the left side of the paper, in a column, one word per line, are many Icelandic words. The person does

not understand them. On the right side, there is another list of words, one word per line, in Icelandic. The
words appear as no more than a cryptic sequence of characters.

There are lines connecting each of the first five words on the left to words on the right. No pattern is
discernible. One line leaves from every word on the left. Some words on the right have two lines connecting
to them. Some words on the left have two lines connecting to them. The lines are examples that are to be
used in the task. See Figure 3.1.

The task is to draw lines from the remaining words on the left to the appropriate word on the right,
based on the same relationship given in the lines already on the page. Any and all of the books in the library
can be used.

This paper proposes that Bob proceeds as follows. Bob picks a pair of words connected by lines. He
searches through all of the books in the library, looking for sentences that contain that pair of words. He
notes the shortest path on the dependency tree of the sentence in a notebook. He does this for each of the
example pairs. He then searches through the books again, this time looking for sentences that match those
patterns and who also have pairs of words from the sheet of paper. He notes which patterns matched each
pair. This information can then be used to determine which lines to draw. How this information is used
makes the current research novel.

This model is very similar to that used in the semi-supervised methods in [1, 3, 28, 31–33, 36, 37].
However, it differs in that the system does not look at one small portion of text at a time. It attempts to
model the information contained in the entire document set.

The current research proposes that a feature vector be constructed for each candidate fact to be extracted.
Each feature in the feature vector will represent a single pattern matching at least one sentence from the
document set. Each pattern represents a syntactic-lexical feature of the entities. The classifier is used to
determine a relationship between those syntactic-lexical features and semantic meaning. The system will use
the standard bootstrapping method to iteratively build a set of values from a small initial set of examples.
The approach is described more rigorously in Chapter 4.

22

Figure 3.1: A query task definition given to Bob in the Icelandic library. The task is to connect the remaining
words on the left with the words on the right in the same way as the examples.

3.2 Comments on the Approach

3.2.1 Choice of classifier

The choice of classifier ranges over many possibilities. In this report, Naive Bayes and Support Vector
machines are evaluated. However, most classifiers can be trained on vectors of numeric features. The
framework, therefore, remains general.

The Bayesian approach has some advantages (despite requiring some very strong assumptions). First,
Bayesian prediction does not require 100% knowledge. Bayesian prediction works on estimates of the various
parameters in Bayes’ formula. These estimates can be made with incomplete knowledge (see section 5.3).

The second reason the Bayesian approach was chosen was that it accumulates. Adding a new training
data point is a constant-time operation, as is reclassifying a point after a new training point is added. It is
quite simple to formulate a Bayesian classifier that operates over long periods of time. As more documents
are read containing the information to extract, the estimate of the probability of class membership becomes
more accurate. This is important in long-running databases, and in cases where the relation can change over
time.

Support Vector Machines have a high tolerance for noise and show strong resilience when facing complex
feature vectors. Support Vector Machines are expected to perform very well [38].

23

Figure 3.2: The result of Bob completing the task. Dotted lines are those drawn by Bob.

The three principle decisions have been made: Semi-supervised learning using dependency graph and a
statistical classifier (Naive Bayes and Support Vector Machine).

3.2.2 Use of domain knowledge

No domain knowledge is needed by the system besides what is given in the query. The possible entities in
the relationships are those listed on the page (in the metaphor). This is in contrast to most other research
which use a Named Entity Recognition system that is previously trained with domain knowledge, a static
list of possible entities (in the case of protein-protein interaction papers), or no system at all to limit the
types of entities returned.

The advantage of specifying the domain completely (as in the current system) are many. The first
advantage is that the query limits the search space to a large degree—leading to more refined results than
those returned by systems that do not limit the space.

The second advantage is that the domains are easily specified and are usually specified already in database
form. Many organizations already have a database of the kinds of information that is important to them.
These databases can be reused in the queries. Also, if the information is to be added to a database anyway,
the lists of entities in the domain probably already exist.

The drawback to the system is that it must be specified completely by a human. The Named Entity
Recognition systems in use today primarily use machine learning to identify entities that were not conceived
of by a human. However, those machine learning techniques require much more human input than a complete

24

specification of the domain. The current approach is a balance between the human input and expressive
power.

3.2.3 Linguistic pitfalls

Many linguistic pitfalls exist, including ambiguous names and the idea of negation. Ambiguous names
exist—for instance “Paris” names a city in France and a city in Texas. This phenomenon is not resolved
in the current work. It is assumed that the structure of the query will, on statistical average, eliminate the
ambiguity. For instance, if one wants to identify the capital cities of countries, it is unlikely that a sentence
talking about Paris, Texas will also talk about a country in the same way a sentence will talk about Paris,
France.

Negation is also not addressed. Negation is a problem because a sentence that says “Paris is the capital
of France” differs from a sentence that says “ Paris is not the capital of France” by one word. But that one
word makes the whole sentence mean exactly the opposite of what one would think it would mean based on
similarity of the sentences. This problem is usually dealt with either by throwing out negative sentences [17]
or by including negation as a feature in the patterns [4].

The reason for neglecting negation is that it was desired to minimize the complexity of the model.
Evaluating the importance of dealing with the negation problem is outside of the scope of the current
research.

Pronouns and anaphoric phrases are not attempted to be resolved. The low accuracy of the current
coreference resolution solutions does not indicate that they would add value to the system.

No context is taken into account. Each pattern matches individual sentences, with no accounting for
ideas that surround the sentence in the text. It is hypothesized that this identifying context is not strictly
necessary, though simple models of context might make for fruitful future work.

25

Chapter 4

Formal Methods

This chapter presents a formalized model of the problem. It is this model that will form the framework for
actually developing a solution. The definitions in this section will be referred to in later sections.

4.1 Definitions

4.1.1 Tuples

Data must be represented in a structured way in the computer. This section therefore defines a flexible
data structure that will be used for the known information and for the unknown information that is to be
extracted.

A tuple is defined as an ordered series of strings of characters. The choice of character set is arbitrary to
the algorithm and should be chosen to accord with the data being analyzed.

tk ≡ 〈tk1, tk2, · · · , tkn〉 (4.1)

Tuples represent relational data. That is, the strings in the tuple are in some relationship to each other
by the very act of being together in a tuple. The relationship might not be what is being looked for, or it
could be exactly what is being looked for.

The strings that make up the tuples each themselves represent the name of something. Resolving exactly
what each name refers to is its own research project. The problem will not be addressed here.

For instance, the system treats the string “Paris” which in one sentence refers to the capital of France
as equivalent to the string “Paris” that refers to the city in Texas. They are treated equivalently because
there is no simple way to disambiguate their meaning. It is hypothesized—and later confirmed (see section
5)—that on average, the system performs well even under that kind of ambiguity.

It must be stressed that tuples can contain ambiguity. The following is an example:

1. President Bush flew from Paris to his ranch in Texas.

2. A flash flood struck the city of Paris, Texas early Friday morning.

The tuple 〈Paris, Texas〉 can be extracted from each of these sentences. Though the meaning of each is
different, the system has no privilege to such knowledge. They are considered the same tuple.

The basic unit of data is now defined. The tuple will be the input to queries. It will also be the output
of queries.

4.1.2 Classes

The number of possible tuples makes it practically difficult to perform searches over all of them. A notion
of classes is defined to help focus the search. Classes refer to the type of entity a string names.

26

Classes are defined in a domain- and implementation-dependant way. If one wants to define a domain of
geographic entities, one might classify strings into Country, City, Mountain, etc.

Every string can belong to multiple classes. For instance, the string “France” refers to the country or to
many cities by the same name around the world. It would therefore be a member of the class Country and
the class City. We can refer to the set of classes of a string str as classstr.

To formalize classes more concretely, we can define an inclusion function that is a predicate indicating
whether a string belongs to the class.

country(str) ≡

{

true if str belongs to the class Country,

false otherwise.
(4.2)

Similarly, one can define inclusion functions for Continent, City, River, etc.
The inclusion functions can be implemented simply using a database lookup. Large databases of geo-

graphic names are available publicly. An inclusion function can return true if a string is contained in the
database of countries. An alternative implementation is to use a regular expression. As with all concrete
implementations, this implementation will inevitably miss some names—particularly colloquial names. The
system relies again on the law of averages to mitigate the problem.

One must take care to define the classes with knowledge of the kinds of information one is likely to
find in the documents. For example, one could limit the definition of Continent to “North America”,
“South America”, “Europe”, “Asia”, “Africa”, “Australia”, and “Antarctica”. However, the documents one
is analyzing could use a different model of the continents. Many people do not differentiate North and South
America as two separate continents, and so the continent of America is disregarded. Similar troubles occur
with names such as “Eurasia” or “Oceania”.

In order to allow multiple names for the same entity, an optional canonicalization function can be defined.
The canonicalization function takes a string and returns the canonical name for the entity the input string
names. Example:

CanonicalizeCountry(str) ≡



















France if str == “France”,

F rance if str == “Republic of France”,

F rance if str == “Republique Francaise”,

etc . . .

(4.3)

Similarly, one can define canonicalization functions for Continent, City, River, etc.
Classes are used to limit the search of a query. There are far too many possible tuples (all possible pairs

of words) to perform calculations on all of them. Limiting the query to focus on the kinds of information
that is important is a necessary step. It is also desirable to limit the number of tuples the system looks at.

4.1.3 Types

The system limits the focus of its search to strings that fall within a given class. Even with this limit, there
are still far too many tuples to process. It becomes important to define a limit on what tuples the system
should process.

Many of the queries that one would perform are the relations between known classes of entities. If one
would like to know the capital cities of all of the countries, one is only interested in tuples that represent
〈City, Country〉 pairs. When the system is queried for the cities near bodies of water, one is interested in
tuples that represent 〈City,BodyOfWater〉 pairs. Types define the range of interest.

A type is an ordered series of classes.

T ≡ 〈c1, c2, . . . , cn〉 (4.4)

A tuple belongs to a type if each string in the tuple belongs to the corresponding class in the type. For
instance, the tuple 〈France,Europe〉 belongs to the type 〈Country, Continent〉. Because of the way classes

27

are defined above, the same tuple belongs to the type 〈City, Continent〉 (it is noted that “France” is also
the name of many cities). One can refer to the set of tuples that belong to a type T as {T}.

Types define the kinds of entities one is interested in. They inform the system of the classes of entities
that could possibly fulfill the query. However, not all possible tuples of a given type represent data that one
would like to extract. Not all 〈City, Country〉 pairs represent capital cities. It becomes necessary therefore
to define even more precisely what relationship one is looking for.

4.1.4 Relations

Until now, all of the definitions have been precisely defined. They all lend themselves to concrete imple-
mentations. Even ambiguity was resolved by considering equivalent sequences of characters as equal. Now,
however, a way of describing human concepts must be formalized. Most text is written by a person to
communicate with another human. The concepts they use are fuzzy and imprecise. It is therefore important
to define a way to allow for that imprecision. This definition must allow for the widest possible variety of
concepts.

As in most bootstrapping methods, the system represents those human concepts as a set of examples.
The set of capital cities is represented by the set of 〈City, Country〉 pairs where the first element is the
capital of the second element. The set can be complete, if all of the members of the set are known, or
incomplete if only some are given.

Relations (the set of examples) are how one defines what a query should search for. They are also the
result of the query. The system tries to approximate a complete set as best it can from the documents
available to it.

A relation R is a set of tuples of a given type that define the same relationship between the elements of
the tuple. A tuple can belong to more than one relation. 〈Madrid, Spain〉 belongs to the relation one might
call “Capital Cities” and also to the relation “Cities in countries”. 〈Shanghai, China〉 would belong to the
latter and not the former.

The letter R will be used to refer to the complete set of tuples the user is querying for, whether they are
known or not. The letter K is used for the subset of R that is known.

4.1.5 Sentence

Information Extraction requires unstructured text to extract information from. English and many other
language break text up into sentences. The system will do the same, though it does not have to represent
them as a simple series of words.

Sentences need to be represented in a way that makes it convenient to search them. The specific imple-
mentation of sentences will be defined later, since there are many possible ways it can be done. It is possible,
however, to define certain properties of sentences that do not depend on the implementation.

A sentence is a representation of a natural language sentence made to be matched by a pattern. A tuple
tk is in a sentence si if all strings in the tuple are in the sentence.

tk ∈ si ↔ ∀n(tkn ∈ si) (4.5)

Sentences are the text the system will extract information from. Of course, since there are many of them,
it is useful to talk about the collection of sentences.

4.1.6 Corpus

A corpus C is a set of sentences.
C ≡ {s1, s2, · · · , sn} (4.6)

Note that information about the sequence of the sentences is not maintained, nor does the system keep
track of which sentences come from the same documents. All sentences are treated in the same way, though
supplementing the current algorithm with that information could prove fruitful in future research.

28

Just as a tuple can be in a sentence, a tuple can be in a corpus.

tk ∈ C ↔ ∃si(si ∈ C ∧ tkn ∈ si) (4.7)

One can express the subset of tuples in a corpus with a superscript, e.g., {T}C means all of the tuples of
type T in the corpus C.

4.1.7 Patterns

Patterns represent lexical and syntactic features of a sentence. They are used to match tuples that have a
certain grammatical relationship in a sentence. Patterns allow the system to search for syntactic features,
which will later be correlated with semantic meaning.

For example, a pattern could match “City, Country”, where the bold words are classes and the comma
is significant. This pattern would match tuples of type 〈City, Country〉 with only a comma between them.

The patterns are generated automatically. How they are generated and represented will be addressed in
Sections 5.1.2 and 5.1.3.

The system defines set of patterns P ≡ {p1, p2, . . . , pn}.
One expresses a matching function m that returns the set of tuples matched by pattern pi in sentence sj .

m(pi, sj) ⊆ {T}
C (4.8)

m can return many tuples or no tuples at all (the empty set). m is constrained to not return a tuple that is
not in the sentence.1 More formally:

∀pi∀sj(tk ∈ m(pi, sj)↔ tk ∈ sj) (4.9)

If tk ∈ m(pi, sj), then one can say that pi matches tk in sj .
The system needs to know what tuples a pattern matches over the entire corpus from different sets of

tuples. For instance, it might be useful to know what tuples from the relation R a particular pattern matches.
The system also needs to know what tuples from the entire type T a pattern matches. A match function is
defined using a set parameter G as the set over which the matches are accumulated.

If G is a set of tuples of type T , the system defines a value matchGpi
as the set of tuples from G matched

by pi in C. This value is the number of times pi matches a tuple from G in the corpus. It should be noted
that G is a placeholder and could be any named set.

matchGpi
= G ∩

⋃

sj∈C

m(pi, sj) (4.10)

4.2 Formal Problem Definition

Now that the terms have been defined precisely, the problem can be formulated using them:
Given corpus C, T , and K ⊆ R, determine whether a given tk ∈ {T} is also in R, the theoretical

“complete” set. A solution will give a set approximating RC .
This is the definition of the problem this paper attempts to solve. For evaluation purposes, a relation one

can have complete knowledge of (such as the capital cities of countries) will be used. However, in general,
one does not have complete knowledge. In fact, if one did, there would be no need to use the system. It
is useful to use the case where complete knowledge is at hand to evaluate one’s algorithm. If one does not
know the right answers, one cannot grade the system.

1In theory, a pattern can use other information besides information directly stated in the sentence (i.e., context). This is
outside the scope of the current research.

29

4.2.1 Proposed solution

Given C, T , and K ⊂ R, generate patterns P . Create feature vectors for each tuple tk ∈ {T}
C . Use those

feature vectors to train a classifier. Classify the tuples in {T}C using the classifier. Those that are classified
as in R are added to K. Repeat until no more tuples are added to K.

This algorithm is a standard bootstrapping algorithm.

Bootstrapping

Bootstrapping refers to a semi-unsupervised technique. The bootstrapping process starts with a handful of
seed tuples. These seed tuples are a subset of the positive set (R). They constitute a known set of positive
values.

Bootstrapping occurs iteratively. Using tuples from the seed set, the system generates patterns from the
corpus. The matches of those patterns are used as features in a feature vector and trained in a classifier.
Those tuples that are classified positively are added to the seed set and the process is iterated. The process
stops when no new tuples are added during an iteration.

1. K ′ ← K ⊂ R

2. Generate patterns P using C and tuples from K ′.

3. Generate feature vectors of positive matches.

4. Train classifier using K as class 1, and g randomly selected values from {T}C −K ′ as class 2.

5. Apply classifier to {T}C .

6. Add the tuples classified as class 1 to K ′.

7. if K ′ grew, go to step 2.

8. else return

Either the tuples in K ′ can be returned or the patterns in P can be returned. If the tuples are returned,
the system can be considered a query system. It accepts a query definition and returns an answer in the
form of a set of tuples.

If the patterns are returned from this algorithm, the bootstrapping phase can be considered a training
phase. The patterns can be used later to extract more tuples from new document sources.

g can be chosen to tune the algorithm. A low value of g will tend to accept more tuples into K ′ with
each iteration. This inevitably will accept more incorrect tuples (lower Precision). A higher value will tend
to be more conservative leading to a higher Precision but a lower Recall.

When g = 0, all tuples in {T}C will be added to K ′ since no training examples from class 2 were given.

30

Chapter 5

Evaluation

Part of the purpose of the current research is to create a general model for the problem of Information
Extraction used. It is desirable to perform many different extraction tasks with minimal human effort.

It is therefore important to show here that the algorithm achieves a high level of accuracy on a variety
of extraction tasks. Consequently, the system was queried for the following relations: which countries are
located in which continent and identifying the capital cities of countries.

The definition of how sentences are represented and consequently how patterns are matched is described
here since they are implementation details.

5.1 Level of Parsing

Of the two most promising levels of parsing, dependency graphs were chosen over word sequences (see Section
3.1). Dependency graphs capture much more information. Also, a proper parse of a sentence can alleviate
the problems of interleaving dependant clauses.

For instance, in the following sentence, the words interleaving Paris and France are unimportant to the
capital city relation.

Paris, which has some of the best restaurants in the world, is the capital of France.

In a dependency tree, the dependant clause about the quality of restaurants would be a subtree of the
node for Paris. The uninteresting subtree can be ignored by the pattern. This alleviates the ordering
problem, and allows a clear view of the relationship between words and phrases that are not adjacent.

5.1.1 Formal dependency tree model

A dependency tree is a tree structure with labeled nodes and labeled edges. The label at a node is a word
from the sentence. The label at an edge is the grammatical relationship between the two nodes. A node
may have 0 or more subtrees. The subtrees are unordered. If a node has no subtrees, it is called a leaf. All
nodes but one have exactly one parent. The single node without a parent is called the root node. For more
information about parsing dependency trees, see de Marneffe et al. [13].

It is necessary to define a few conventions:
One can refer to nodes with the letter n. The label of a node is labeln. The set of subtrees of node n

subtreesn → 〈edgelabel, subtree〉. Subtrees of n with a specific edge label are noted subtreesn(label). The
root node of s is roots.

5.1.2 Pattern matching

Since it has been decided to use the dependency tree of the sentence as its representation. A pattern matching
mechanism can therefore be defined.

31

A pattern p is a tree. Each node has a matcher and each edge has a label. A matcher is a predicate
that takes a word and returns true to represent a match (to be defined shortly). The label at an edge is
the grammatical relationship between the two nodes. Each node also has an optional return label. If the
pattern matches a given tree, the word from a node in s that matches a corresponding node in p is given a
label. All of these are combined into the final tuple.

For instance, a node could have the return label arg1. Another could have the return label arg2. It may
be that the node with label arg1 matches “Paris” and the node with label arg2 matches “France”. If the
entire pattern matches, the pattern will return the tuple 〈Paris, France〉 since a tuple is constructed using
the arguments in order.

If |s| is the number of nodes (number of words) in s, then there are |s| potential matches of a pattern p
in s. Each node in s could potentially match p and contribute to the set of tuples returned by m(p, s). m is
extended to operate also on individual nodes (m(p, n)).

Intuitively, a pattern p matches a node n if the root of p matches the label of n and all of the subtrees of
rootp match unique subtrees of n. When matching subtrees, both the label of the node and the label of the
edge have to match. Matching a pattern to a node is defined recursively and non-deterministically to make
the intention more clear.

m(p, s) = m(p, roots) (5.1)

m(p, n) = subtreesp = ∅ ∨matcherrootp
(labeln) ∧ alltreesmatch(subtreesp, subtreesn) (5.2)

where
alltreesmatch(j, k) = ∃x∈j,y∈km(x, y) ∧ alltreesmatch(j − x, k − y) (5.3)

The matcher function stored at each node of the pattern tree has yet to be defined. The matcher function’s
role is to encode what kind of match is to be performed. Two kinds of matchers are implemented, though
more are possible. The first type of matcher is the Exact match. The function matches one and only one
sequence of characters. For instance, an exact match for the word “car” does not match the word “cars”.

Class inclusion functions can also serve as matcher functions. This is done for the nodes in a pattern
that return a value to become part of the returned tuple. This ensures that the returned tuples are of the
desired type.

Other matchers can be implemented that use Wordnet hypernym data, wild-card matchers, or regular
expression matchers. Integrating these matchers into the system is left to future work.

5.1.3 Pattern generation

A pattern can be generated from a tuple and a sentence with that tuple. The nodes along the shortest path
between the strings in the tuple from the dependency tree are extracted. A pattern tree is created in the
same form (corresponding nodes and links). Each tuple value in the shortest path corresponds to its class
inclusion function in the pattern tree. All other strings correspond to exact string matchers. Figure 5.3
shows an example of creating a pattern from a sentence.

5.2 Evaluation Criteria

The standard Information Retrieval metrics detailed in Section 1.5 are used to evaluate the algorithms.
There are certain difficulties with evaluating the knowledge contained in documents that are not read and

annotated by an expert. It is therefore necessary to calculate them using an objective, algorithmic metric.
Specifically, Recall (equation 1.1) is calculated as follows:

Recall =
|K ′ ∩R|

|R|
(5.4)

32

Figure 5.1: A pattern can match a sentence represented as a dependency tree. All nodes and their labels
must match.

Figure 5.2: Patterns match only specific patterns. In this example, the pattern does not match the root
of the dependency tree (its label is not a city) and “Berlin” does not have a subtree. The pattern fails to
match.

Precision (equation 1.2) is calculated as follows:

Precision =
|K ′ ∩R|

|K ′|
(5.5)

33

Figure 5.3: The stages of generating a pattern from a dependency tree and a tuple. Note that the values
“Paris” and “France” get replaced in the pattern by their class inclusion functions.

The Recall formulation punishes the algorithm when a tuple in R is not returned by the algorithm because
it is not in any sentence in the corpus. This is fair since this algorithm will need to be compared to ground
truth (R)—not an unfairly selected subset of it—and a more advanced algorithm which can extract more
information (i.e. an algorithm that is not limited to extracting tuples from RC).

In order to value Precision twice as much as Recall (to value a low False Positive rate), β = 0.5 in the
F-measure (equation 1.3).

5.3 Naive Bayes Classifier

The Naive Bayes Classifier is one of two classifiers used to evaluate the framework. It is important to evaluate
the framework using two different classifiers. The choice of classifier is left up to the implementor of the final
system. Two classifiers are tested here to evaluate whether the framework can support different classifiers
and that the accuracy of the results is not due solely to the qualities of any one classifier. The specifics of
the Naive Bayes Classifier will be derived here.

First, in order to use Naive Bayes, the system must assume that the patterns match statistically inde-
pendent features.

Because of the above assumption, Bayes’ formula holds.

P (tk ∈ R|C) =
P (C|tk ∈ K ′)P (tk ∈ K ′)

P (C)
(5.6)

and

P (tk /∈ R|C) =
P (C|tk ∈ {T}

C −K ′)P (tk ∈ {T}
C −K ′)

P (C)
(5.7)

34

where C is the corpus. The category of tk (either R or −R) is determined by the one that has the highest
probability.

inR(tk) =

{

true P (tk ∈ R|C) > P (tk /∈ R|C)

false otherwise
(5.8)

P (tk ∈ R|C) >P (tk /∈ R|C) (5.9)

P (C|tk ∈ R)P (tk ∈ R)

P (C)
>

P (C|tk ∈ {T}
C −K ′)P (tk ∈ {T}

C −K ′)

P (C)
(5.10)

P (C|tk ∈ R)P (tk ∈ R) >P (C|tk ∈ {T}
C −K ′)P (tk ∈ {T}

C −K ′) (5.11)

Because the patterns are independent, one can define the likelihood P (C|tk ∈ R) therefore as

P (C|tk ∈ R) = P (tk ∈ match{T}Cp1
|tk ∈ R)

× P (tk ∈ match{T}Cp2
|tk ∈ R)

...

× P (tk ∈ match{T}Cpn
|tk ∈ R)

P (C|tk ∈ R) =
∏

pi∈P

P (tk ∈ match{T}Cpi
|tk ∈ R) (5.12)

And its is noted that
P (tk ∈ match{T}Cpi

|tk ∈ R) ≈ P (tk ∈ matchK′pi
) (5.13)

where

P (tk ∈ matchK′pi
) =
|matchK′pi

|

|K ′|
(5.14)

Described another way, it is the proportion of tuples in K ′ matched by pattern pi.
So

P (C|tk ∈ R) =
∏

pi∈P

P (tk ∈ matchK′pi
) (5.15)

Similarly,

P (C|tk /∈ R) =
∏

pi∈P

P (tk ∈ match({T}C−K′)pi
) (5.16)

The initial prior is

P (tk ∈ R) =
|K ′|

|K ′|+ |{T}C −K ′|
(5.17)

and

P (tk /∈ R) =
|{T}C −K ′|

|K ′|+ |{T}C −K ′|
(5.18)

The inR function is now specified and will determine whether a tuple is desirable.

Practical details

There are a handful of details that must be discussed. These details arise from the practical need to implement
the system in order to evaluate it.

Firstly, this is a statistical algorithm. The algorithm cannot work with a small number of sentences. It
relies on the redundancy inherent in large corpora of documents.

Since all of the calculations are statistical, it is important to remove patterns that match less than a
certain number of tuples. This exclusion will ensure a level of statistical certainty. For instance, a pattern
that matches only one tuple will be unreliable.

35

Similarly, the tuples that are matched by less than a certain number of patterns should also be excluded.
The statistical methods used here break down with a small number of samples. They are only accurate when
the number of samples is very large. The current system throws out sentences matched by less than three
patterns. And it removes patterns that match fewer than six tuples.

Secondly, there are certain minor changes to be made to the evaluation metrics. Specifically, the way
they are currently calculated allows for P (tk ∈ R) = 1 or P (tk ∈ R) = 0. Both of these cases should be
avoided, since they indicate certainty—the system is never certain. It is necessary to add in “dummy tuples”
to the calculation. More specifically, four dummy tuples are added—one from each of the following cases:

1. True Positive—a tuple in R matched by the pattern

2. False Positive—a tuple not in R matched by the pattern

3. True Negative—a tuple not in R not matched by the pattern

4. False Negative—a tuple in R not matched by the pattern

Adding these dummy tuples that all patterns match will ensure that no pattern matches all seed tuples.
The probability will only asymptotically approach 1 or asymptotically approach 0.

The likelihoods now become

P (C|tk ∈ R) =
∏

pi∈P

|matchRCpi
|+ 1

|RC |+ 2
(5.19)

and

P (C|tk /∈ R) =
∏

pi∈P

|match({T}C−K′)pi
|+ 1

|{T}C −K ′|+ 2
(5.20)

These changes should not be considered significant to the correctness of the derivations of the formulas.
These are standard statistical techniques to avoid problems that would not occur if the sample size were
infinite. It should be noted that were the sample size infinite, the addition of a small constant would not
change the value.

5.4 Support Vector Machines

Because the system can work for a number of different classifiers, this section will detail the use of the
Support Vector Machine as a classifier.

A Support Vector Machine requires a kernel function. The kernel function chosen was the Radial Bias
Function (RBF), defined as

RBF (xi, xj) = e−γ|xi−xj |
2

(5.21)

This kernel function has a single parameter, γ. The Support Vector Machine itself has a second parameter,
C. Using a parameter search over the data, it was found that γ = 0.5 and C = 2.0 were the best choices
[22]. These parameters were used in the the evaluation of the algorithm.

5.5 Countries in continents

For the initial evaluation of this method, the relation of which countries are in which continent was chosen
as a query. The relation is of type 〈Country, Continent〉. This needs two classes Country and Continent.
The system also need to provide a corpus and specify the implementation of sentences and patterns.

36

5.5.1 Classes

The Country class contains 193 countries (each with a variety of aliases, for instance “France” and “Republic
of France”—the synonyms were taken from the NGA GEOnet Names Server dataset). Any string matching
one of those names is considered part of the class. Synonyms are resolved to a canonical form (using the
canonicalization function) so that synonyms like “France” and “Republic of France” are equivalent.

The Continent class contains 6 continents—“Europe”, “Asia”, “Africa” “Oceania”, “America”, and
“Antarctica”. The word “Australia” is taken to mean the country to avoid the ambiguous tuple
〈“Australia”, “Australia”〉. Alternatives names and sub-continents are canonicalized to the single word form
(i.e. “East Asia” becomes “Asia”). Although East Asia is technically not a continent, a cursory examina-
tion of Wikipedia articles indicated that countries were often listed with their sub-continent and not their
continent. It was considered a trivially simple improvement to the class definition.

5.5.2 Corpus

The corpus contains 8050 sentences that have a 〈Country, Continent〉 pair. These sentences were excerpted
from Wikipedia.

Although in theory 1158 tuples are possible, the corpus has only 633 tuples. 193 of the tuples were from
R, 441 were not from R, giving a prior of 0.30. Since there are 193 countries, RC covers 100% of R.

5.5.3 Relation

The ground truth for the relation is defined by the CIA World Factbook. When two continents are listed (as
in the case of Russia, which has a large portion in Europe but the majority in Asia), the primary location
is considered correct, while the secondary continent is considered incorrect.

5.5.4 Results

The algorithm was run over the corpus with randomly selected seed sets. The seed sets were selected from
the ground truth R described in section 5.5.3. Three runs of the algorithm (with different seed sets) were
performed. The mean of the results of the runs was calculated. Figures 5.4, 5.5, and 5.6 show the mean
results of the algorithm using the Naive Bayes Classifier with g = 4.

Figures 5.7, 5.8, and 5.9 show the mean results of the algorithm running with a Support Vector Machine
with g = 4. The Support Vector Machine outperformed the Naive Bayes model. This is not surprising since
the Support Vector Machine is a better classifier in general.

5.5.5 Analysis

Both clearly methods show the effectiveness of the algorithm. While maintaining high precision, the algo-
rithm can effectively select a much large subset of R than what is initially given in the seed set.

When looking at the aforementioned figures, one might wonder why the iterative algorithm does not
continue iterating indefinitely. When given three seeds, it can identify 20% of the relation. When given 40
seeds (approximately 20%) of the relation as seeds, it identifies 60% of the relation. Why, then, does it stop
after 20%? The current algorithm does not stop after a certain threshold is reached, as some do. It only
stops when no new tuples are added to the set.

The most plausible explanation is that the false positive tuples dampen the training of the classifier.
As more tuples are added to the seed set, more unknowns are trained in the classifier. This increase in
the number of training samples tends to make the classifier more accurate for the training it receives. But
because the training set is becoming more and more polluted with incorrect tuples, the classifier finds a
suitable class division with increasing difficulty.

The Support Vector Machine clearly outperforms the Naive Bayes Classifier. This is to be expected.
However, not only does the Naive Bayes Classifier perform less accurately than the SVM, the graph does not

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

R
ec

al
l

Seed Set Size

Recall vs. Seed Set Size of Naive Bayes Classifier for Country/Continent Problem

Figure 5.4: The Recall of Country/Continent relation using Naive Bayes.

present a consistent shape. This indicates that the Naive Bayes solution is erratic and should be avoided. It
does not deal well with noise and propagates error.

One source of error in the results is the fact that the idea of continents is not completely clear-cut.
In the case of Europe and Asia, there is an especial problem. Since Europe and Asia are not separate
landmasses, there are countries that overlap. The way the data was modeled in this experiment classed
countries that overlap into exactly one continent, even though they are located in two. For instance, the
tuple 〈Russia,Europe〉 is considered incorrect, though a person reading it might not consider it incorrect.

Another source of error is the use of the name “Oceania” instead of the more common “Australia” in
common English usage. As noted in Section 5.5.1, this was done to distinguish the name for the continent
from the name of the country. Sentences that indicate countries as being in “Australia” instead of in
“Oceania” were not considered as having a valid tuple in T . This could have affected the outcome.

Another source of error is in the name Eurasia to denote the combined landmass of Europe and Asia.
“Eurasia” was not considered a continent name in the current model, though it certainly could have been.
These problems are considered modeling problems and not problems with the Information Extraction frame-
work presented here. The choice of model can always be made more accurate with increasing work. What
is indicated, though, is that the system dealt well with the inadequacies of the models.

A final source of error is the document set itself. At base, the algorithm tries to fit the information
contained in the documents to a model built from another source. There is bound to be discrepancy between
the two models. This can be considered noise in the signal. The results indicate that the framework dealt
well with this noise gracefully.

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

P
re

ci
si

on

Seed Set Size

Precision vs. Seed Set Size of Naive Bayes Classifier for Country/Continent Problem

Figure 5.5: The Precision of Country/Continent relation using Naive Bayes.

5.6 Capital cities of countries

A second problem for which the algorithm was tested was a query for the capital city of each country. The
relation R is of type 〈Country, City〉. Two classes need to be defined.

5.6.1 Classes

The Country class is defined as it was for the Country/Continent problem (see section 5.5.1).
The City class is defined as all names from the National Geospatial-Intelligence Agency’s GEOnet Names

Server database with a Feature Code of PPLA, PPLC, or PPLG. It contains approximately ten thousand
names. Many of the names are duplicates (as in Paris, France and Paris, Texas). Many of the names are
alternate spellings or alternate language forms of the same name (as in Kiev and Kyiv). No attempt to
canonicalize the names is performed.

5.6.2 Corpus

The corpus contains 63652 sentences that have a 〈Country, City〉 pair. These sentences were excerpted from
Wikipedia.

The corpus has approximately ten thousand tuples (|{T}C | ≈ 10000). All tuples from R are in the
corpus. The prior for the relation is 0.018 or one in fifty-six.

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
-M

ea
su

re

Seed Set Size

F-Measure vs. Seed Set Size of Naive Bayes Classifier for Country/Continent Problem

Figure 5.6: The F-Measure of Country/Continent relation using Naive Bayes.

5.6.3 Relation

The ground truth for R was taken from the CIA World Factbook. Only one capital for each country was
counted. In the case where two capitals exist for the same country (Administrative and Judicial), only the
administrative capital was kept. Only one possible form of the name for each capital city was chosen based
on the principle spelling in the CIA World Factbook.

5.6.4 Results

The algorithm was run over the corpus with randomly selected seed sets. The seed sets were selected from
the ground truth R described in section 5.6.3. Three runs of the algorithm (with different seed sets) were
performed. The mean of the results of the runs was calculated. Figures 5.10, 5.11, and 5.12 show the results
of the algorithm using Naive Bayes as a classifier with g = 20.

Figures 5.13, 5.14, 5.15 show the results of the Capital City problem using the Support Vector Machine
solution with g = 50. Again, the Support Vector Machine has outperformed the Naive Bayes Classifier.

5.6.5 Analysis

The Naive Bayes Classifier performs significantly better than random guessing, though it shows the same
lack of coherent shape as before.

The graphs from the Support Vector Machine clearly show an upward trend in the Recall with an increased
seed set size. This is what one would expect from such an algorithm. As more seed values are given, the
classifier has a higher confidence that the returned values are correct.

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

R
ec

al
l

Seed Set Size

Recall vs. Seed Set Size of Support Vector Machine for Country/Continent Problem

Figure 5.7: The Recall of Country/Continent relation using Support Vector Machine.

The Precision remains relatively high throughout the graph, though lower than in the previous problem
(Figure 5.8). The data were analyzed and two principle reasons were found for the decrease in Precision.
Firstly, the prior for this data set (1/56) is much lower than in the Country/Continent data set (1/3). This
means that there is more chance for error.

The second reason is more subtle. After reviewing the returned data, it was noticed that many of what
the algorithm was considering false positives were in fact alternative spellings of the correct city name.
For instance, Bern, Switzerland was spelled “Berne”, which is an accepted alternate spelling. Because no
canonicalization was performed on the city names, and the ground truth from the CIA World Factbook
spelled the city “Bern”, that returned value was counted as incorrect.

The city name class was intentionally left without canonicalization. In the case of country names,
canonicalization was simple and virtually error-free. Only one pair of countries had any difficulty: The
Democratic Republic of the Congo and The Republic of the Congo. Both share the same alias Congo.

However, cities much more commonly share the same name, so it was thought unwise to perform any
kind of canonicalization. Many of the false positives are incorrect. But a large number are simply alternate
spellings. This small error is indicative of how the classes could be defined in the real world. However, even
with this discrepancy, the results still indicate that the algorithm was able to extract correct information to
a significant degree. Further, the spelling differences would not be considered errors by a human user.

The spelling discrepancies also explain the dip in Precision seen towards the end of the graph. As more
examples are given to the algorithm, it finds an increasing number of matching tuples that are alternate
spellings. If this duplication of data is a problem for an application, it should be avoided by canonicalizing
the data or developing a more comprehensive model.

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

P
re

ci
si

on

Seed Set Size

Precision vs. Seed Set Size of Support Vector Machine for Country/Continent Problem

Figure 5.8: The Precision of Country/Continent relation using Support Vector Machine.

5.7 Comparisons

Comparing the results of different Information Extraction systems is difficult. Each paper presents its system
run under different conditions: different corpora and different relations. A bit of analysis, therefore, is needed
to compare results.

The system from prior research that is most similar to the current system is SnowBall [2]. SnowBall was
evaluated at a constant seed set size of five items. The value that varied was the amount of redundancy
of the five seeds in the document set. However, the results are sufficiently similar to what was found here
to make a useful comparison. SnowBall’s Recall varied from approximately 78% to 85%. Its Precision was
approximately between 72% and 90%. The evaluation problem SnowBall used was Organization/Location.
The system was queried to return where organizations were located.

Although the numeric results in this chapter do not approach the levels indicated for SnowBall, there
are some mitigating factors that have to be taken into account. The Organization/Location corpus was
also tested against a baseline extraction method. This method naively counted the nearest location to each
organization and chooses the most frequent location as its answer. This baseline system achieved 75% Recall
and over 75% Precision.

These baseline results indicate that the data was highly favored toward Organization/Location pairs that
matched the relation the authors tried to extract. The SnowBall system only achieved a 15–20% increase
over the naive baseline. In contrast, the current system was tested on data sets and relations whose priors
were very low (1/3 and 1/56). Therefore, the discrepancy between the current results and SnowBall’s results
cannot be seen as a deficiency.

However, SnowBall has two main disadvantages that the current system does not have. Firstly, SnowBall
requires the relation to be in a many-to-one form. It uses that constraint to develop a negative seed set.

42

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
-M

ea
su

re

Seed Set Size

F-Measure vs. Seed Set Size of Support Vector Machine for Country/Continent Problem

Figure 5.9: The F-Measure of Country/Continent relation using Support Vector Machine.

The current system does not have this limitation (though see section 6.3).
Secondly, SnowBall depends on a Named Entity Recognizer that has limited entity types. It only rec-

ognizes the broad categories of People, Organizations, and Locations. Although this NER system can be
modified, it is expensive. The current system allows a much wider variety of entity types (defined using
classes). These limitations allow the system to perform better within the limitations but cannot be as
broadly applicable.

Bunescu and Mooney [4] presents a system that uses a completely supervised method. It is similar to the
current system because it uses the shortest path on the dependency tree between the strings in the tuple. It
would be useful to compare the current semi-supervised system to one that is completely supervised.

The system in Bunescu and Mooney [4] is evaluated on a corpus using five binary relations simultaneously.
The corpus is completely annotated with the entity types and the relations. The paper assumes the entities
are known (it does not discover them independently but uses those in the annotations).

The system achieved 39.2% Recall and 71.1% Precision. These results are more in-line with what was
achieved in the current research. However, the current research had obstacles the system in Bunescu and
Mooney [4] did not. For one, the current research identifies its own interesting entities and can be extended
easily to identify new ones. Secondly, the current system does not have 100% knowledge. It achieves its level
of accuracy using only a few seed values.

These comparisons, though not easily analyzed, show that the current system is an improvement over
previous work.

43

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

R
ec

al
l

Seed Set Size

Recall vs. Seed Set Size of Naive Bayes Classifier for Capital City Problem

Figure 5.10: The Recall of Capital City relation using Naive Bayes

44

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

P
re

ci
si

on

Seed Set Size

Precision vs. Seed Set Size of Naive Bayes Classifier for Capital City Problem

Figure 5.11: The Precision of Capital City relation using Naive Bayes

45

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
-M

ea
su

re

Seed Set Size

F-Measure vs. Seed Set Size of Naive Bayes Classifier for Capital City Problem

Figure 5.12: The F-Measure of Capital City relation using Naive Bayes

46

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

R
ec

al
l

Seed Set Size

Recall vs. Seed Set Size of Support Vector Machine for Country/Capital City Problem

Figure 5.13: The Recall of Capital City relation using an SVM

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

P
re

ci
si

on

Seed Set Size

Precision vs. Seed Set Size of Support Vector Machine for Country/Capital City Problem

Figure 5.14: The Precision of Capital City relation using an SVM

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

F
-M

ea
su

re

Seed Set Size

F-Measure vs. Seed Set Size of Support Vector Machine for Country/Capital City Problem

Figure 5.15: The F-Measure of Capital City relation using an SVM

49

Chapter 6

Conclusions

6.1 Discussion

The goal of this paper was to develop an Information Extraction framework that could extend easily to many
domains of differing degree. This was further constrained by a need to respond to user-generated queries for
specific information—as opposed to unconstrained clustering of results. The system needs to give a definitive
answer whether a tuple is relevant.

The system developed here succeeded in those goals and has several advantages above and beyond the
original objectives. The framework is not dependant on the type of classifier nor on the level of parsing.
This lets the implementor decide what kind of parsing is best for the particular application and what kind
of classifier would best suit the needs. In cases where performance is a concern, lower-cost algorithms can
be used.

One of the stated goals was to develop a system that was not constrained to the arity of the relation it
supported. Although the framework was not tested with tuples other than binary, the system is trivially
extended to those cases.

Another interesting property is that the system can be tuned using the g parameter (see Section 4.2.1).
A lower g value will make the system more zealous with its suggestions—at the risk of Precision. A higher
g value will make the system more conservative—causing a lower Recall.

The results showed that the system can deal with noise in the query (poor or incomplete modeling of
the problem) and noise in the document set (Wikipedia contains factual errors). This kind of noise is to be
expected from the type of text typically found on the Internet.

6.2 Limitations

There are several potential limitations to the definition of the framework presented here. The KnowItAll
system [15] can discover new members of a class by using open-ended patterns. For instance, to find new
names of plants, it searches its corpus for the phrase “plants like . . .” and considers the resulting strings.

The current system assumes that the classes of strings that can be answers to a query are known. They
do not have to be completely enumerated—the class inclusion function can be defined as a regular expression
or other text matching function. However, using a wild-card inclusion function (which constantly returns
true) would likely violate the assumption that a highly structured query will eliminate ambiguity (see Section
3.2.3). Using a wild-card inclusion function needs to be tested.

Another feature that needs to be tested is reflexive relations. In the Country/Continent problem, “Aus-
tralia” was defined as a country and not a continent in order to avoid the tuple 〈“Australia′′, “Australia′′〉.
A relation between two entities of the same type could in theory be extracted. For example, a relation of
type 〈Country, Country〉 is reflexive. This kind of relation could show problems. One obvious problem is

50

that any sentence that has a Country will have a tuple of type 〈Country, Country〉. This might affect the
efficiency of the algorithm with a large number of useless tuples. Further research is required.

A limitation in the testing presented in Chapter 5 is that no relations other than binary are tested. It is
assumed that ternary and higher-order relations are trivial extensions, but this was not tested.

6.3 Future Work

There are several interesting extensions to the system that could prove promising.
The first is to test the system using no parsing. A pattern matching scheme could be developed as in

Agichtein and Gravano [1], Bunescu and Mooney [5], Riloff [33], and Jie and Min [24] that works merely on
the words in the interleaving text of the tuple. It could be the case that the extra effort of parsing is not
justified given its high cost. The most promising of those methods is Bunescu and Mooney [5], which counts
the number of subsequences that match between two sequences of words.

Agichtein and Gravano [1] and Suchanek et al. [37] use a negative seed set as well as a positive seed set.
The current work could be extended to use knowledge of what is not desired to help find what is desired.
The classification can be trained to identify three classes: Positive, Negative, and Unknown. This could
prove fruitful.

If the previous negative-seed-set extension is implemented, another powerful extension is possible. Snow-
Ball [1] uses an implied negative seed set created from the positive seed set. Since it only supports many-to-
one or one-to-one relationships, SnowBall can infer values that cannot be correct. For instance, if it knows
that Paris is the capital of France, it can infer that Madrid is not the capital of France.

It is contrary to the goals of the system to force such a restriction on the queries. However, in the
case where the user knows the type of relation (one-to-one, many-to-one, or many-to-many), the query can
include this as an optional parameter. An inferred seed set can be created automatically and used in the
extension described previously.

Another possible extension is to build the system to not require that the tuple be in a sentence. Some
simple model of context could be created, where the subject of the document could always be implied and
matched by a special part of the pattern. Alternatively, the context can contain the last values of each class
mentioned in the text. When a pattern needs to match a Country, for instance, and it matches the word
“it”, the pattern would use the Country stored in the context. This might increase the accuracy of the
framework. It could also merely complicate it with out much gained.

The system can also be made to use an active learning approach as in Culotta and McCallum [9] and
Soderland [35]. Those systems queried the user for more training examples. The current system has an
advantage, though, in that it extracts new tuples with every bootstrapping iteration. The extraction step
can be performed in a separate process from the user interface. The values it extracts can be fed to the
user interface as they are generated. The user can then select which values he/she knows to be correct or
incorrect, and add them to the appropriate seed set. As the user’s seed set changes, the extraction system
can be restarted with those values. This would effectively build the initial seed set interactively with the
user.

As the number of patterns increases, the size of the feature vector increases, as well. A large number of
features makes training the classifier more costly, even if the features contribute very little to the accuracy
of the classifier. A branch of data mining called feature subset selection could play a role in finding those
features that are most important to the classification [38]. A feature subset selection stage could be added
after the bootstrapping process is complete.

Finally, work needs to be done into how the g parameter (see Section 4.2.1) should best be chosen.
Currently, it is chosen interactively until the best Recall/Precision ratio is found. It might be automated to
relieve the burden on the user. Clearly, there is much more room for exploration using this framework.

51

Bibliography

[1] E. Agichtein and L. Gravano. Snowball: extracting relations from large plain-text collections. Proceed-
ings of the fifth ACM conference on Digital libraries, pages 85–94, 2000.

[2] E. Agichtein, E. Eskin, and L. Gravano. Combining Strategies for Extracting Relations from Text
Collections. Proceedings of the 2000 ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD 2000), May, 2000.

[3] S. Brin. Extracting patterns and relations from the world wide web. WebDB Workshop at 6th Interna-
tional Conference on Extending Database Technology, EDBT98, pages 172–183, 1998.

[4] R.C. Bunescu and R.J. Mooney. A shortest path dependency kernel for relation extraction. Proceed-
ings of the Human Language Technology Conference and Conference on Empirical Methods in Natural
Language Processing, pages 724–731, 2005.

[5] R.C. Bunescu and R.J. Mooney. Subsequence kernels for relation extraction. Advances in Neural
Information Processing Systems, 18:171–178, 2006.

[6] M.E. Califf and R.J. Mooney. Relational learning of pattern-match rules for information extraction.
Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), pages 328–334,
1999.

[7] M.E. Califf, R.J. Mooney, and D. Cohn. Bottom-Up Relational Learning of Pattern Matching Rules for
Information Extraction. Journal of Machine Learning Research, 4(2):177–210, 2004.

[8] A. Culotta, A. McCallum, and J. Betz. Integrating probabilistic extraction models and data mining
to discover relations and patterns in text. Proceedings of the main conference on Human Language
Technology Conference of the North American Chapter of the Association of Computational Linguistics,
pages 296–303, 2006.

[9] Aron Culotta and Andrew McCallum. Reducing labeling effort for structured prediction tasks. In
Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI, pages 746–751. AAAI Press / The
MIT Press, 2005. ISBN 1-57735-236-X.

[10] Aron Culotta and Jeffrey Sorensen. Dependency tree kernels for relation extraction. In ACL ’04:
Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, page 423, Mor-
ristown, NJ, USA, 2004. Association for Computational Linguistics.

[11] Nikolai Daraselia, Anton Yuryev, Sergei Egorov, Svetalana Novichkova, Alexander Nikitin, and Ilya
Mazo. Extracting human protein interactions from medline using a full-sentence parser. Bioinformatics,
20(5):604–611, 2004. ISSN 1367-4803.

[12] E. de Argaez. Internet world stats. Internet world stats, 15(3).

[13] M.C. de Marneffe, B. MacCartney, and C.D. Manning. Generating typed dependency parses from phrase
structure parses. LREC 2006, 2006.

52

[14] E. Dimitriadou, A. Weingessel, and K. Hornik. A mixed ensemble approach for the semi-supervised
problem. Proceedings of the International Conference on Artificial Neural Networks, pages 571–576,
2002.

[15] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.M. Popescu, T. Shaked, S. Soderland, D.S. Weld, and
A. Yates. Web-scale information extraction in knowitall:(preliminary results). Proceedings of the 13th
international conference on World Wide Web, pages 100–110, 2004.

[16] O. Etzioni, M. Cafarella, D. Downey, A.M. Popescu, T. Shaked, S. Soderland, D.S. Weld, and A. Yates.
Methods for Domain-Independent Information Extraction from the Web: An Experimental Comparison.
Proceedings of the AAAI Conference, pages 391–398, 2004.

[17] K. Fundel, R. Kuffner, and R. Zimmer. RelEx–Relation extraction using dependency parse trees.
Bioinformatics, 23(3):365, 2007.

[18] R. Grishman. Information Extraction: Techniques and Challenges. Information Extraction (Interna-
tional Summer School SCIE-97), 1997.

[19] R. Grishman and B. Sundheim. Message Understanding Conference-6: a brief history. Proceedings of
the 16th conference on Computational linguistics-Volume 1, pages 466–471, 1996.

[20] S. Harabagiu, C.A. Bejan, and P. Morarescu. Shallow semantics for relation extraction. Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI), pages 1061–1066,
2005.

[21] T. Hasegawa, S. Sekine, and R. Grishman. Discovering Relations among Named Entities from Large
Corpora. Proceedings of the Annual Meeting of Association of Computational Linguistics (ACL), 2004.

[22] C.W. Hsu, C.C. Chang, C.J. Lin, et al. A practical guide to support vector classification. National
Taiwan University, Tech. Rep., July, 2003.

[23] Scott B. Huffman. Learning information extraction patterns from examples. In Learning for Natural
Language Processing, pages 246–260, 1995.

[24] Z.G.D.S.U.J.Z. Jie and Z. Min. Exploring Various Knowledge in Relation Extraction. Ann Arbor, 100,
2005.

[25] J.D. Lafferty, A. McCallum, and F.C.N. Pereira. Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. Proceedings of the Eighteenth International Conference on
Machine Learning table of contents, pages 282–289, 2001.

[26] Y. Liu, Z. Shi, and A. Sarkar. Exploiting Rich Syntactic Information for Relation Extraction from
Biomedical Articles. Procs. of NAACL/HLT, 2007.

[27] P. Lyman, H.R. Varian, et al. How much information. at http://www. sims. berkeley. edu/how-much-
info, 2003.

[28] G.S. Mann and D. Yarowsky. Multi-field information extraction and cross-document fusion. Proceedings
of the 43rd Annual Meeting on Association for Computational Linguistics, pages 483–490, 2005.

[29] M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of English: the
penn treebank. Computational Linguistics, 19(2):313–330, 1993.

[30] M.F. Moens. Information extraction: algorithms and prospects in a retrieval context. Springer, Dor-
drecht, 2006.

53

[31] P. Pantel and M. Pennacchiotti. Espresso: leveraging generic patterns for automatically harvesting
semantic relations. Proceedings of the 21st International Conference on Computational Linguistics and
the 44th annual meeting of the ACL, pages 113–120, 2006.

[32] M. Pennacchiotti and P. Pantel. A Bootstrapping Algorithm for Automatically Harvesting Semantic
Relations. Proceedings of Inference in Computational Semantics (ICoS-06), Buxton, England, 2006.

[33] E. Riloff. Automatically Generating Extraction Patterns from Untagged Text. Proceedings of the
Thirteenth National Conference on Artificial Intelligence, 2:1044–1049, 1996.

[34] Y. Shinyama and S. Sekine. Preemptive information extraction using unrestricted relation discovery.
Proceedings of the main conference on Human Language Technology Conference of the North American
Chapter of the Association of Computational Linguistics, pages 304–311, 2006.

[35] S. Soderland. Learning Information Extraction Rules for Semi-Structured and Free Text. Machine
Learning, 34(1):233–272, 1999.

[36] M. Stevenson and M.A. Greenwood. A Semantic Approach to IE Pattern Induction. Ann Arbor, 100,
2005.

[37] F.M. Suchanek, G. Ifrim, and G. Weikum. LEILA: Learning to Extract Information by Linguistic
Analysis. Proceedings of the ACL-06 Workshop on Ontology Learning and Population, 2006.

[38] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2005.

[39] P.D. Turney. Expressing Implicit Semantic Relations without Supervision. Proceedings of the 21st
International Conference on Computational Linguistics and the 44th annual meeting of the ACL, pages
313–320, 2006.

[40] CJ Van Rijsbergen. Information Retrieval. Butterworth-Heinemann Newton, MA, USA, 1979.

[41] J. Xiao, J. Su, G. Zhou, and C. Tan. Protein-Protein Interaction Extraction: A Supervised Learning
Approach. Proc Symp on Semantic Mining in Biomedicine, pages 51–59, 2005.

54

Vita

Eric Normand was born in New Orleans, Louisiana, to Rick Normand and Elizabeth Williams. After
attending Benjamin Franklin High School, he went on to study the connections between Computer Science,
Philosophy, and Linguistics at the University of New Orleans, where he earned his Bachelor of General
Studies. Before completing his Master’s degree requirements, Mr. Normand served in the Peace Corps for
two years during which he taught secondary school Mathematics in a remote village in Guinea, West Africa.

55

	A Semi-Supervised Information Extraction Framework for Large Redundant Corpora
	Recommended Citation

	Acknowledgements
	Contents
	List of Figures
	Abstract
	Introduction
	Information Extraction
	Data Mining
	Natural Language Processing
	Common Information Extraction Tasks
	Evaluation Metrics

	Prior Works
	Training
	Depth of Parsing
	Machine Learning Technique
	Rote techniques
	Information retrieval methods
	Statistical techniques

	Thought Experiment
	Literature Review
	Hand-written methods
	Supervised methods
	Unsupervised methods
	Semi-supervised methods

	Approach
	The Three Major Axes
	Comments on the Approach
	Choice of classifier
	Use of domain knowledge
	Linguistic pitfalls

	Formal Methods
	Definitions
	Tuples
	Classes
	Types
	Relations
	Sentence
	Corpus
	Patterns

	Formal Problem Definition
	Proposed solution

	Evaluation
	Level of Parsing
	Formal dependency tree model
	Pattern matching
	Pattern generation

	Evaluation Criteria
	Naive Bayes Classifier
	Support Vector Machines
	Countries in continents
	Classes
	Corpus
	Relation
	Results
	Analysis

	Capital cities of countries
	Classes
	Corpus
	Relation
	Results
	Analysis

	Comparisons

	Conclusions
	Discussion
	Limitations
	Future Work

	Vita

