
Automatic Extraction and Assessment of
Entities from the Web

Dissertation

submitted in partial satisfaction of the requirements
for the degree of Doktoringenieur (Dr.-Ing.)

at
Technische Universität Dresden

Faculty of Computer Science

by
Dipl.-Medieninf. David Urbansky
born on November 25, 1984 in Dresden

Advisers:
Professor Dr. rer. nat. habil. Dr. h. c. Alexander Schill TUD, Dresden, Germany
Associate Professor Dr. James Thom RMIT, Melbourne, Australia
Professor Dr.-Ing. Michael Schroeder TU Dresden TUD, Dresden, Germany

Day of Defense: October 15, 2012

Dresden, October 17, 2012

Statement of Authorship

This dissertation has been conducted and presented solely by myself. I have not made use of
other peoples work (published or otherwise) or presented it here without acknowledging the
source of all such work.

Dresden, July 9, 2012

David Urbansky

Abstract

The search for information about entities, such as people or movies, plays an increasingly
important role on the Web. This information is still scattered across many Web pages, making
it more time consuming for a user to find all relevant information about an entity. This thesis
describes techniques to extract entities and information about these entities from the Web,
such as facts, opinions, questions and answers, interactive multimedia objects, and events.
The findings of this thesis are that it is possible to create a large knowledge base automatically
using a manually-crafted ontology. The precision of the extracted information was found to
be between 75–90 % (facts and entities respectively) after using assessment algorithms. The
algorithms from this thesis can be used to create such a knowledge base, which can be used in
various research fields, such as question answering, named entity recognition, and information
retrieval.

Acknowledgement

This thesis was written between 2009 and 2012 during my time as a research assistant at the
Chair of Computer Networks at the Dresden University of Technology. I want to thank my
doctoral adviser Professor Alexander Schill for giving me the opportunity and the freedom to
write my thesis about my own research interests. He also provided me with research positions
in the projects Aletheia, X2Lift, and Intellix which financed me during the three years of
writing my thesis. I am very grateful for the critical feedback that I received from Associate
Professor James Thom. Although we only met twice during these three years, our day-long
meetings and feedback over email were of great help to me and shaped my thesis substantially.
Also, I want to thank my adviser Dr. Daniel Schuster for constant feedback on my progress,
valuable tips from his experience, and insightful suggestions.

During my time at the Faculty of Computer Science, I supervised over thirty students. That
alone was an incredible experience from which I learned a lot about providing help, working
with different characters, and also myself. Some research areas in this thesis were studied in
detail in diploma theses of my students. I want to thank Christopher Friedrich, Christian
Hensel, Marcel Gerlach, Dmitry Myagkikh, Martin Werner, Robert Willner, and Martin
Wunderwald for writing their master theses under my supervision and producing outstanding
results.

I want to express my gratitude to my colleagues whom I was lucky enough to be working
with. My thanks go to Marius Feldmann who led me into the PhD program in the first
place. Furthermore, I highly appreciate working with Philipp Katz, Klemens Muthmann,
and Sandro Reichert on the Java toolkit “Palladian”, our joint effort in giving something
practical back to the information retrieval and machine learning community.

And of course I want to thank my parents for always being there for me even though they
have no idea what this thesis is all about. Lastly, I want to express my appreciation to my
lovely girlfriend Crystal, who not only read the thesis back to back several times, correcting
all my grammar and spelling errors, but who was also patient and understanding with me.

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Question Answering . 2

1.1.2 Entity Dictionary . 4

1.1.3 Dataset for the Semantic Web . 6

1.2 Requirements . 6

1.3 Focus and Limitations . 9

1.4 Research Questions and Hypotheses . 10

1.5 Summary . 11

2 Background 13

2.1 Definitions . 13

2.1.1 Concept . 13

2.1.2 Named Entity . 14

2.1.3 Attribute . 16

2.1.4 Statement . 16

2.2 Sources of Information on the Web . 16

2.2.1 Types of Structures . 17

2.2.2 Distribution of Document File Formats on the Web 18

2.2.3 Areas on the Web . 19

2.3 Evaluation Measures and Approaches . 21

2.3.1 Performance Measurements . 22

2.3.2 Evaluating Named Entity Recognition 25

2.3.3 Evaluating Named Entity Discovery 27

ii Contents

2.4 Related Systems and Knowledge Bases . 27

2.5 Summary . 31

3 Architecture 33

3.1 Components . 34

3.1.1 Controller . 34

3.1.2 Extraction and Assessment . 34

3.1.3 Retrieval . 35

3.1.4 Ontology . 35

3.1.5 Question Answering Interface . 36

3.1.6 Storage . 36

3.2 Summary . 36

4 Timely Source Retrieval 37

4.1 Feed Reading . 37

4.1.1 Related Work . 39

4.1.2 Feed Activity Patterns . 40

4.2 Update Strategies . 41

4.2.1 Fix . 42

4.2.2 Fix Learned . 42

4.2.3 Moving Average . 42

4.2.4 Post Rate . 43

4.3 Evaluation . 44

4.3.1 Dataset . 45

4.3.2 Network Traffic . 47

4.3.3 Timeliness . 47

4.4 Summary . 51

5 Extraction of Entities 53

5.1 Related Work . 53

5.1.1 Entity Types . 53

5.1.2 Language . 54

Contents iii

5.1.3 Source Types . 55

5.1.4 Research Tasks . 56

5.1.5 Techniques for Extracting Entities . 61

5.1.6 Summary of Related Work . 72

5.2 Extraction Techniques . 72

5.2.1 Extraction Using Phrase Patterns . 73

5.2.2 Focused Crawling Extraction . 73

5.2.3 List Extraction Using Seed Entities . 79

5.2.4 Named Entity Extraction from Plain Text 82

5.2.5 Entity Extraction from the Semantic Web 86

5.3 Evaluation . 91

5.3.1 Evaluation and Comparison of Entity Extraction Techniques 92

5.3.2 Semantic Web Extractor Experiments 102

5.3.3 Natural Language Processing-based Extraction Experiments 104

5.4 Summary . 109

6 Assessment of Extractions 111

6.1 Related Work . 111

6.1.1 Syntax-based . 111

6.1.2 Dictionary-based . 113

6.1.3 Redundancy-based . 113

6.1.4 Co-occurrence-based . 114

6.1.5 Graph-based . 117

6.1.6 Combination: Redundancy- and Syntax-based 119

6.1.7 Summary of Related Work . 119

6.2 Modifying Assessment Techniques for Assessing Extracted Entities 119

6.2.1 Pointwise Mutual Information . 120

6.2.2 Latent Relational Analysis . 121

6.2.3 Random Graph Walk . 121

6.2.4 Text Classification . 123

6.2.5 Feature-based Assessor . 123

iv Contents

6.2.6 Combined Assessor . 124

6.3 Evaluation of Entity Assessment Techniques 125

6.3.1 Dependency on the Amount of Training Data 125

6.3.2 Assessment Techniques Performance by Concept 128

6.3.3 Overall Comparison . 130

6.3.4 Trust Threshold Analysis . 132

6.4 Summary . 134

7 Extraction of Facts 135

7.1 Ontology Engineering . 136

7.1.1 Datatypes . 136

7.1.2 Unit Types . 137

7.1.3 Ranges . 137

7.2 Related Work . 139

7.2.1 Related Systems . 139

7.2.2 Fact Assessment . 140

7.3 Retrieving Fact Pages . 140

7.4 Extraction Techniques . 141

7.4.1 Phrase Extraction . 141

7.4.2 Table Extraction . 142

7.4.3 Colon Pattern Extraction . 142

7.4.4 Plain Text Extraction . 143

7.4.5 Semantic Web Extraction . 143

7.5 Assessing Fact Extractions . 145

7.5.1 Determining the Source Trust . 145

7.5.2 Determining the Extraction Technique Trust 146

7.5.3 Combining Source and Extraction Technique Trust 146

7.5.4 Normalization . 147

7.5.5 Validating Numeric Fact Values across Entities 147

7.6 Evaluation . 148

7.6.1 Ontology . 148

Contents v

7.6.2 Methodology . 152

7.6.3 Evaluation by Concept . 153

7.6.4 Evaluation by Datatype . 153

7.6.5 Evaluation and Comparison of Fact Extraction Techniques 154

7.6.6 Trust Threshold Analysis . 157

7.7 Summary . 158

8 Extraction of Multimedia Objects, Events, and Statements about Entities161

8.1 Extraction of Interactive Multimedia Objects and Images 161

8.1.1 IMO Types . 162

8.1.2 Related Work . 163

8.1.3 IMO Extraction . 164

8.1.4 IMO Interactivity Classification . 165

8.1.5 Image Retrieval and Extraction . 165

8.1.6 Evaluation . 166

8.1.7 Summary Multimedia Extraction . 170

8.2 Extraction of Events . 171

8.2.1 Related Work . 171

8.2.2 Extraction of 5W1H Events . 173

8.2.3 Evaluation . 176

8.2.4 Summary Event Extraction . 176

8.3 Extraction of Statements about Entities . 178

8.3.1 Statement Extraction Workflow . 178

8.3.2 Evaluation . 180

8.3.3 Summary Statement Extraction . 182

8.4 Summary . 182

9 Question Answering 183

9.1 Related Work . 183

9.1.1 Natural Language Question Answering 183

9.1.2 Query Intent Classification . 186

9.2 Question Intents . 186

vi Contents

9.3 Techniques for Question Answering . 188

9.3.1 Extracting Questions and Answers from QA-rich Websites 188

9.3.2 Computing Answers on a Knowledge Base 191

9.3.3 Extracting Answers from the Web . 193

9.4 Evaluation . 196

9.4.1 Dataset . 196

9.4.2 Focused Crawler Efficiency . 198

9.4.3 Question Intent Classification . 198

9.4.4 Comparison of Question Answering Systems 199

9.5 Summary . 205

10 Applications 207

10.1 Ontology Engineering with Ontofly . 207

10.2 Question Answering Portal . 209

10.3 Application Programming Interface . 210

10.4 Search Engine Enhancer . 212

10.5 Summary . 213

11 Epilogue 215

11.1 Chapter Review . 215

11.2 Fulfilling the Requirements . 216

11.3 Answers to Research Questions . 217

11.4 Contributions . 219

11.5 Future Work . 220

11.5.1 Knowledge Base Expansion . 220

11.5.2 Domain-dependent Extraction Algorithms 221

11.5.3 Linked Data Cloud Connections . 221

A Manually-assigned RDF Classes for Semantic Web Extraction Evaluation 223

B Trust Threshold Analysis of Combined Assessors 227

C Evaluation Entities for Fact Extraction 231

Contents vii

D Datatype Mapping for Fact Extraction 233

E Statement Extraction Entities and Results 235

viii Contents

List of Figures

1.1 Mockup of a Entity Information System Combining Different Pieces of Infor-
mation . 5

1.2 Linked Data on the Web as of September 2011 (Cyganiak and Jentzsch, 2011) 7

1.3 Differences among Data, Information, and Knowledge 9

2.1 Relationship between Concepts and Entities 15

2.2 Estimated Distribution of Document File Formats on the Web as of April 2010 19

2.3 Comparison of Web Areas . 22

2.4 Explanation of Possible and Actual Extractions 23

3.1 Overview of the WebKnox Architecture . 33

3.2 Overview of the Main Cycle of the Processes 34

4.1 Feed Activity Patterns . 41

4.2 Feed Activity Pattern Distribution . 42

4.3 Changing Update Intervals in the Moving Average Strategy 43

4.4 Example Post History . 44

4.5 Feed Size Histogram . 46

4.6 Number of Feeds versus Number of New Items 46

4.7 Transferred Data Volume During Three Weeks Using Different Update Strategies 48

4.8 Timeliness of the Update Strategies: 21 Polls 49

4.9 Timeliness of the Update Strategies: 300 Polls 49

4.10 Comparing Real and Predicted Update Intervals, Left: Fix Learned, Center:
Post Rate, Right: Moving Average . 50

5.1 Hierarchy of Named Entities by Sekine and Nobata (2004) 54

x List of Figures

5.2 Relationships between EE, ED, and ER . 57

5.3 Construction of Prefixes and Suffixes with Given Seed Entities (Wang and
Cohen, 2007) . 70

5.4 Web Page Fragment (Callan and Mitamura, 2002) 71

5.5 Overview of the Processes in the Entity Extraction Cycle 72

5.6 Examples of Pagination on Websites with Letters (a) and (b), Numbers (c),
and Drop Down Menu Texts (d) . 74

5.7 Example Web Page with an XPath Addressing Only One List Node (a) and
All List Nodes (b) . 76

5.8 Example Table with Only One Column of Uniform Entities 77

5.9 Target Web Page with an Entity List in the Green Content Area (a) and Sibling
Page with Different Content in the Green Area and the Same Content in the
Red Areas (b) . 78

5.10 Example of Generalizing an XPath from Two Seeds (a) and (b) to Address All
Target Nodes (c) . 81

5.11 HTML Markup of a Web Page with Two Seeds Marked Green (a) and Two-
character Prefix and Suffix around the Seeds (b) 81

5.12 Pseudocode for Generating Training Data . 83

5.13 Overview of the Processes for the Semantic Web Entity Extraction 86

5.14 Concept URI Detection Process of the Semantic Web Entity Extractor 87

5.15 Entity Extraction Process of the Semantic Web Entity Extractor 90

5.16 Entity Ranking Process of the Semantic Web Entity Extractor 91

5.17 17 Concepts for the Evaluation . 92

5.18 Precision in Each of the 17 Concepts by Each of the 18 Extraction Technique
Configurations . 95

5.19 Precision of the 18 Extraction Technique Configurations Averaged over All 17
Concepts . 96

5.20 Estimated Number of Correct Extractions of the 18 Extraction Technique Con-
figurations Averaged over All 17 Concepts . 97

5.21 The Performance of the Five Extraction Techniques Averaged over All 17 Con-
cepts . 98

5.22 Precision in Each of the 17 Concepts Averaged over All Five Extraction Tech-
niques . 99

5.23 Overlap Analysis of the Five Entity Extraction Techniques 101

5.24 Entity List Completion Precision across 17 Concepts 103

List of Figures xi

5.25 Comparison of Entity Recognizers with Supervised Learning on CoNLL Dataset107

5.26 Comparison of Entity Recognizers based on the Amount of Training Data on
CoNLL Dataset . 108

5.27 Comparison of Entity Recognizers with Supervised Learning on TUD Dataset 109

5.28 Comparison of Entity Recognizers based on the Amount of Training Data on
TUD Dataset . 110

6.1 Example Graph of Websites, Extractions, and Wrappers (Wang and Cohen,
2007) . 118

6.2 Example Graph for Graph-based Entity Assessment 122

6.3 Performance of PMI, Dependent on the Amount of Training Data 126

6.4 Performance of LRA, Dependent on the Amount Training Data 126

6.5 Performance of RGW, Dependent on the Amount of Training Data 126

6.6 Performance of Text Classification, Dependent on the Amount of Training Data127

6.7 Performance of NB, Dependent on the Amount of Training Data 127

6.8 Performance of KNN, Dependent on the Amount of Training Data 128

6.9 Performance of the Combined Assessor, Dependent on the Amount of Training
Data . 128

6.10 Per Concept Performance of PMI and LRA 129

6.11 Per Concept Performance of Text Classification and RGW 130

6.12 Per Concept Performance of Näıve Bayes Classification and KNN 130

6.13 Performance of the Combined Assessor per Concept 131

6.14 Trust Threshold Analysis of the Näıve Bayes Assessor 132

6.15 Trust Threshold Analysis of the Combined Assessor 133

6.16 Comparison of the Trust Threshold Analysis between Näıve Bayes Assessor
and Combined Assessor . 133

7.1 Overview of the Processes in the Fact Extraction Cycle 135

7.2 Modeling Range Types Using Blank Nodes 138

7.3 Example of Correctly (a) and Incorrectly (b) Extracted Facts from Phrases . 142

7.4 Example Table for Mobile Phone Specifications 142

7.5 Example of Fact Representation in a Colon Pattern, with HTML Structure (a)
and without HTML Structure (b) . 143

7.6 Example of Correctly (a) and Incorrectly (b) Extracted Facts from Plain Text 144

xii List of Figures

7.7 Fact Extraction Performance across All 17 Concepts 154

7.8 Fact Extraction Evaluation by Datatype . 155

7.9 Fact Extraction Evaluation by Extraction Technique 156

7.10 Overlap of the Fact Extraction Techniques . 157

7.11 Ratio of Facts Extracted Only by One Fact Extraction Technique 158

7.12 Trust Threshold Analysis of Extracted Facts 158

8.1 IMO Extraction Workflow . 164

8.2 IMO Extraction Evaluation . 168

8.3 WebKnox IMO Extraction versus Google Filetype Search 168

8.4 IMO Interactivity Classification Evaluation 169

8.5 Image Extraction Evaluation across 17 Concepts 170

8.6 Event Extraction Workflow . 174

8.7 Results of the User Study for the Event Extraction Component 177

8.8 Statement Extraction Workflow . 178

8.9 Comparison of Google, WebKnox, and Manually-selected Statements 181

9.1 Workflow for Answering a Question in WebKnox 188

9.2 Similar Layouts of QA-rich Websites . 189

9.3 Configuration File for Extraction from QA-rich Websites 190

9.4 Learning Process for URL Classification in Three Categories 192

9.5 Process of Computing an Answer Using a Knowledge Base of Factual Information192

9.6 Process of Retrieving and Extracting Answers from the Web 193

9.7 Example of an Answer Pattern for a Question 194

9.8 Distribution of Question Intents in the Six Datasets 197

9.9 Comparison of Efficiency between a Non-focused Baseline Crawler and the
Focused Crawler . 199

9.10 Overall Comparison of the Question Answering Systems 205

10.1 Architecture of Ontofly and Connection to WebKnox 208

10.2 Screenshot of the Web-based Ontology Engineering Tool Ontofly 208

10.3 Server Deployment of the WebKnox System 209

10.4 Entity-related Information on the WebKnox Web Interface 210

List of Figures xiii

10.5 Question Answering on the WebKnox Web Interface 210

10.6 Example JSON Response to a Request to the Entities Resource 211

10.7 Example JSON Response to a Request to the Questions Resource 212

10.8 Example Question and WebKnox Enhancement for Google on Chrome 212

B.1 Threshold Analysis of the Combined Assessor (NB + KNN) 228

B.2 Threshold Analysis of the Combined Assessor (NB + Text) 228

B.3 Threshold Analysis of the Combined Assessor (NB + KNN + Text) 228

B.4 Threshold Analysis of the Combined Assessor (RGW + NB + Text) 229

B.5 Threshold Analysis of the Combined Assessor (RGW + NB) 229

xiv List of Figures

List of Tables

2.1 Example Classification of Entities According to our Definition 15

2.2 Classification of Statements . 16

2.3 Estimated Distribution of Document File Formats on the Web in Absolute
Numbers as of April 2010 . 20

2.4 Example for Calculating Precision@k and Ranked List Average Precision . . 24

2.5 Named Entity Recognition Error Types (Nadeau, 2007) 26

2.6 Comparison of Knowledge Bases . 31

4.1 Overall Comparison of Update Strategies . 50

5.1 Intrinsic NER Features (Nadeau, 2007) . 64

5.2 Extrinsic NER Features (Nadeau, 2007) . 65

5.3 17 Features of the Rule Learner from Nadeau (2007) 66

5.4 Stripped XPaths and their Number of Occurrences on a Web Page 76

5.5 N-gram Dictionary with Relevances for Entity Types 83

5.6 Configurations of the Five Entity Extraction Techniques 94

5.7 Hit Counts on Google for the Top 10 Movies on IMDb 99

5.8 Hit Counts on Google for the Amazon Top 10 Selling Computer Mice 100

5.9 Overlap Matrix of Five Extraction Techniques 101

5.10 Number of Attempts and Seeds to Successfully Detect Entities Using Semantic
Web Entity Extraction . 104

5.11 Precision@10 Scores across Three Different ELC Systems for Five Concepts . 105

5.12 Number of Tagged Entities per Type in the CoNLL 2003 Dataset 105

5.13 Number of Tagged Entities per Type in the TUD 2011 Dataset 107

xvi List of Tables

6.1 Example LRA Co-occurrence Matrix . 115

6.2 Overall Comparison of Entity Assessment Techniques 131

7.1 Example of an Attribute Mapping to a Predicate and Unit 144

7.2 Fact Extraction Evaluation Ontology . 152

7.3 Overlap Matrix of Five Extraction Techniques 156

8.1 Features for IMO Extraction . 164

8.2 Indicator Terms for Strong and Weak Interactivity 165

9.1 Classification of Question Answering Systems According to their Approaches 185

9.2 Precision and Recall of the Question Answering Approaches by Dataset . . . 201

9.3 Precision and Recall of the Question Answering Approaches by Intent 203

9.4 Overall Comparison of the Question Answering Systems 204

9.5 Comparison of Question Answering Approaches 205

A.1 Manually-assigned URIs from the Semantic Web to the 17 Concepts Used for
the Evaluation . 225

C.1 Entities for the Fact Extraction Evaluation 232

D.1 Regular Expressions for Attribute Datatypes 233

E.1 Entities for the Statement Extraction Evaluation 235

E.2 Evaluation Results of the Statement Extraction 235

Chapter 1

Introduction

The World Wide Web is a huge repository of distributed information. Users of the Web create
millions of Web pages on a daily basis and the added information is highly diverse. Users
can find scientific papers, product reviews, news, videos, travel guides, and various other
types of information. The Web has evolved into a dynamic corpus in which users cannot only
consume information, but can also actively participate by booking hotels, playing browser
games, commenting on blogs and forums, drawing images, and much more. Currently, the
Web is primarily structured for easy user access, that is, Web pages are structured and
displayed for human users who consume or interact with the information. To provide the
users with even more sophisticated services that require information from multiple sources,
machines need to be able to read, “understand”, and interact with distributed data. For
this purpose, Web Services using the Simple Object Access Protocol (SOAP) (Mitra and
Lafon, 2007) and Representational State Transfer (REST) (Fielding, 2000) were developed to
allow data exchange. These services are often used to create so-called mashups. “Mashups”
are applications that use data and services from different sources to create new value for a
user. These mashups, however, are often hard coded by a human programmer because the
data from the services must be understood by a human and aggregated in a way that it can
be integrated. This approach is, however, highly unscalable but should be solved with the
Semantic Web. The vision of the Semantic Web (Berners-Lee et al., 2001) is to make the
Web more machine readable and to allow machines to integrate data from different sources
automatically following predetermined schemata and ontologies. One major goal over the
next few years will be to enhance, annotate, and structure available unstructured information
to make it more easily accessible for machines. This development would allow for much more
sophisticated applications, such as natural language question answering.

In the following sections, we will describe the motivation, requirements, focus and limitations
of this work.

1.1 Motivation

Recent studies have shown that between 40 % (Pound et al., 2010) and 71 % (Guo et al., 2009)
of user queries on search engines contain entities such as movies, people, and organizations.

2 Introduction

We can call those queries entity-centric. “Entity-centric” denotes all information related to
entities. It is therefore crucial that the search engine recognizes these entities in order to
provide the sought-after information. In the following sections, we outline scenarios that
require a knowledge base of entities and information related to those entities.

1.1.1 Question Answering

Information on the Web is highly distributed and most often not made for consumption by
machines. Much information is redundant, while other types of information can only be found
once (Afanasyev et al., 2011). From the Web user’s point of view, this information scattering
is not always beneficial. Imagine a user wants to inform himself about a specific movie. He
would need to search for it, click through the returned Web pages, and aggregate the listed
information manually. Some Web pages may have information about the cast of the movie,
but do not have any images. Another Web page may list related movies, whereas yet another
page may have products and reviews associated with the movie. The user must go through
a time-consuming process of searching and aggregating the information he finds on the Web
pages. Having a single access point for the user to look for information about the movie of
interest would significantly save the user’s time. Such a single access point could be a Web
page that enables the user to search for a general concept (a type of entity, for example
Movie) or a specific entity (an instance of an entity type, for example, The Dark Knight
as an instance of the concept Movie). The knowledge base that the user queries must be
up-to-date, that is, if the user’s query is valid and information about the queried entity exists
on the Web, the knowledge base must return this information. We will consider questions
about the movie The Dark Knight as an example scenario to better explain the possible needs
that a user will have. Users might also have certain questions about entities and do not want
to see all available information. For example, a user might ask “Who is the director of The
Dark Knight?”, in which case a system that understands the semantics of the question and
knows about the entity would be able to answer the question directly with Christopher Nolan
instead of providing a set of documents with possible answers.

Knowledge Base vs. Search Engine vs. Database

It is important to elaborate on the difference between a knowledge base, database, and search
engine. We define a knowledge base as information storage that can be queried and returns
machine-readable information, or as May (2001) explains it, “A knowledge base is not a static
collection of information, but a dynamic resource that may itself have the capacity to learn,
as part of an artificial intelligence expert system”. A database is an organized collection of
data without the learning capabilities of a knowledge base. The main difference between a
knowledge base and a search engine is that when a user queries a search engine, he gets a
ranked list of documents that include the search terms of his query, while a knowledge base
would try to answer the user’s information need directly. Consider a user searching for Mel
Gibson using a search engine and a knowledge base front end. The search engine would
return documents (usually Web pages) that are about Mel Gibson, while a knowledge base
is expected to compute or retrieve an answer in form of facts about Mel Gibson, a list of his
movies, and so on. In this thesis, we create a knowledge base, not a search engine.

Motivation 3

Types of Information

The information that might interest the user depends on the concept of the entity. The
following information types are typical in Web information retrieval:

� Facts and Relations: Almost every entity has attributes and thus facts attached to
it. A fact is a statement that holds true in the context of the entity. A relation is also a
fact, but it points to another entity instead of a literal. Facts provide a quick and easy
summary of an entity. Instead of reading long paragraphs in which the statements are
dispersed across the text, users often prefer to see those facts directly. In our example
scenario about the movie The Dark Knight, the facts that might interest the user are
runtime, aspect ratio, and release date.

� Images: Users often search the Web for images. We can classify images along three
dimensions: their semantic content (image about people, trees, or festivals), their se-
rialization (JPG, SVG, or PNG), and their source type (photo, drawing, computer-
generated image). If the user searches for information about a person, he might be
interested in photos of this person. However, he may also want to find paintings or vec-
tor graphics of the person. In our example scenario, the user might want to see photos
from the premiere party, images of the stars, and behind-the-scenes shots related to the
movie The Dark Knight.

� Videos: Videos are popular objects for information retrieval. We can classify videos
along the same dimensions as the images. In our example scenario, the user might be
interested in seeing a trailer, a “making of” video, or an interview with the director of
the movie.

� Audio: Users might also be interested in retrieving audio content. Over the last few
years, podcasts have spread and become popular, but music, audio lectures, or simply
sounds might also fulfill the information needs of the user. In our example scenario, the
user might want to hear the soundtrack of the movie or a critic’s review of the movie.

� Interactive Content: Interactive content refers to applications that enable users to
engage with the content. Interactive content is most often delivered in proprietary
formats, such as Adobe Flash movies, Java Applets, or Silverlight Applications. Tra-
ditional information retrieval has mainly focused on image, audio, and video, but the
widespread availability of interactive content demands a retrieval process for this type
of information as well. In our running example, the user might want to play a Flash
game about the movie or take part in a quiz delivered in Silverlight.

� Products: Today, over 72 % of Web users shop online (Reese, 2011). Clearly, products
are of major interest to users. Almost everything that can be purchased offline can be
bought online as well. In our scenario, it is easy to imagine that a user is interested
in buying the Blu-ray of the movie, a movie poster, the book upon which the movie is
based, merchandise, or the soundtrack on CD.

� Services: People to not only buy products but also services online. In our scenario a
service could be a streaming service to download the movie or a ticketing system which
lets users buy tickets to watch the movie in a cinema.

4 Introduction

� News: Many people like to stay informed and read the news frequently. Since there
are so many news items every day, publish-subscribe mechanisms such as Really Simple
Syndication (RSS) and Atom have become popular means of receiving information from
selected sources. There is still a lack of information services that enable users to specify
their information needs; instead, users must subscribe to all news stories from a certain
source. In our example scenario, it would be beneficial for the user if he could subscribe
to the single entity The Dark Knight and receive only relevant news (for example, a
DVD release, remake filmed, sequel planned, et cetera), instead of subscribing to the
complete movie channel.

� Opinions and Reviews: Often users are interested in what others say or think about
the entity. This does not apply to all searches, since a user searching for “Penguin”
most likely does not want a stranger’s opinion about penguins. Many searches, however,
pertain to man-made objects such as music albums, cars, movies, and so on. For most
of these man-made objects, there are reviews and opinions. In our example scenario,
the user searches for an entity that is also a product. He might therefore be interested
in how many people would recommend the movie or might want to read a review about
it.

Figure 1.1 depicts a mockup of a system that combines different types of information. In this
thesis, we will describe extraction techniques for each of the information types in the figure.
Chapter 10 shows our prototypical implementation of this mockup.

The question answering use case is the main use case that we will pick up again in Chapter 9,
when we show how we apply question answering techniques for structured and semi-structured
sources to answer user questions.

1.1.2 Entity Dictionary

Dictionaries about entities and their relations to each other are beneficial for a large variety
of applications; in particular, they help improve results in named entity recognition (NER)
(Chinchor, 1997). Named entity recognizers recently became available through Application
Programming Interfaces (APIs) such as OpenCalais1 or AlchemyAPI2, underlining their im-
portance for the industry.

The following two use cases outline how such an entity dictionary can be used within the
context of named entity recognition.

Semantic Search

The ability to recognize entities that belong to concepts allows one to semantically tag text.
A search agent can then find results for the search query not only on a keyword basis, but also
semantically. This function is especially helpful when an entity name is highly ambiguous,
as many person names are. The first type of ambiguity is an “inter-concept” ambiguity. For

1http://www.opencalais.com/, last accessed on 6th of May 2012
2http://www.alchemyapi.com/, last accessed on 6th of May 2012

Motivation 5

Figure 1.1: Mockup of a Entity Information System Combining Different Pieces of Information

example, a user could search for Sam Smith and the search engine could ask him whether he
wants to find more information about Sam Smith the rugby player, the football player, or the
sportswriter. After the user chooses an option, the results will no longer be mixed, allowing
the user to find what he needs faster. The second type of ambiguity is an “alias ambiguity”,
where different aliases all refer to the same entity. For example, a user searching for James
Eugene Carrey can now expect to get results where Jim Carrey is mentioned, since they refer
to the same entity.

Information Enrichment

Imagine the following scenario: A user browsing the Web runs across the name of a movie he
has never seen. He might leave the page and search for the movie using a search engine to learn
more about it. If we have a large knowledge base with semantic information about entities
(such as movies or people), we can recognize and enrich these entities for a human user. In the
described scenario, we could find additional information, such as the director or the release
date of the mentioned movie, and provide the user with this information directly on the
Web page mentioning the entity. Since the information from the knowledge base is semantic,
we could also disambiguate entity names, that is, we would provide information about the

6 Introduction

person Queen Elizabeth II on a Web page about the English queen and information about
the ship Queen Elizabeth II on a Web page about travel and cruise ships. This information
enrichment could happen using browser extensions that analyze the Web pages and enrich
detected entities on the client.

1.1.3 Dataset for the Semantic Web

In the vision of the Semantic Web, the information on the Web becomes more machine read-
able. The realization of this vision would allow for many new applications that would benefit
the human end user. Today, many domain ontologies have been created and connected (DB-
pedia, MusicBrainz, et cetera) in order to allow machines to reason over that information
and gain new insights for the human. The desired knowledge base will connected to existing
ontologies, and thus, be a part of open information for the Semantic Web. Figure 1.2 shows
a large part of the Linked Data Cloud available on the Web. Each circle represents a dataset.
The diameters of the circle hint at the size of the dataset (the relation between circle diameter
and the dataset size is not exactly correct). An arrow from one dataset to another means
that the source dataset links to the other dataset. There are three kinds of datasets: (1) one
that has only outgoing references to other datasets, for example the Gov Track dataset, (2)
a dataset that has only incoming references, such as Sem Web Central, and (3) datasets that
have in- and outgoing references, such as DBpedia. Datasets with many incoming references,
such as Music Brainz, DBpedia, ACM, and Gene ID, are very popular and thus their vocab-
ulary should be used by new datasets within the same domain. As of end of 2011, there are
over 31 billion Resource Description Format (RDF) triples with more than 504 million links
between them (Franzon, 2011). These numbers are growing exponentially3.

1.2 Requirements

This thesis focuses on the (semi-) automatic construction and maintenance of a domain-
independent knowledge base with the scenario of question answering in mind (as described in
Section 1.1.1). From this scenario, we derive the following requirements for the system which
we will call WebKnox (Web Knowledge Extraction) from now on.

Domain Independence

The knowledge base must be domain-independent. “Domain” describes a certain high level
area of knowledge. For instance, “products”, “nature”, and “travel” are all domains.

Domain-independence means that all techniques and approaches chosen to construct and
update the knowledge base do not rely on the aspects of a single domain.

3The number of datasets has almost doubled annually starting from 2007, see http://richard.cyganiak.

de/2007/10/lod/, last accessed on 25th of March 2012

Requirements 7

As of September 2011

Music
Brainz

(zitgist)

P20

Turismo
de

Zaragoza

yovisto

Yahoo!
Geo

Planet

YAGO

World
Fact-
book

El
Viajero
Tourism

WordNet
(W3C)

WordNet
(VUA)

VIVO UF

VIVO
Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UniRef

UniProt

UMBEL

UK Post-
codes

legislation
data.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov.

uk

Traffic
Scotland

theses.
fr

Thesau-
rus W

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

Open
Library
(Talis)

tags2con
delicious

t4gm
info

Swedish
Open

Cultural
Heritage

Surge
Radio

Sudoc

STW

RAMEAU
SH

statistics
data.gov.

uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

SSW
Thesaur

us

Smart
Link

Slideshare
2RDF

semantic
web.org

Semantic
Tweet

Semantic
XBRL

SW
Dog
Food

Source Code
Ecosystem
Linked Data

US SEC
(rdfabout)

Sears

Scotland
Geo-

graphy

Scotland
Pupils &
Exams

Scholaro-
meter

WordNet
(RKB

Explorer)

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS
KISTI

JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints dotAC

DEPLOY

DBLP
(RKB

Explorer)

Crime
Reports

UK

Course-
ware

CORDIS
(RKB

Explorer)
CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov.

ukRen.
Energy
Genera-

tors

reference
data.gov.

uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

Rådata
nå!

PSH

Product
Types

Ontology

Product
DB

PBAC

Poké-
pédia

patents
data.go

v.uk

Ox
Points

Ord-
nance
Survey

Openly
Local

Open
Library

Open
Cyc

Open
Corpo-
rates

Open
Calais

OpenEI

Open
Election

Data
Project

Open
Data

Thesau-
rus

Ontos
News
Portal

OGOLOD

Janus
AMP

Ocean
Drilling
Codices

New
York

Times

NVD

ntnusc

NTU
Resource

Lists

Norwe-
gian

MeSH

NDL
subjects

ndlna

my
Experi-
ment

Italian
Museums

medu-
cator

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

Weather
Stations

London
Gazette

LOIUS

Linked
Open
Colors

lobid
Resources

lobid
Organi-
sations

LEM

Linked
MDB

LinkedL
CCN

Linked
GeoData

LinkedCT

Linked
User

Feedback
LOV

Linked
Open

Numbers

LODE

Eurostat
(Ontology
Central)

Linked
EDGAR

(Ontology
Central)

Linked
Crunch-

base

lingvoj

Lichfield
Spen-
ding

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Klapp-
stuhl-
club

Good-
win

Family

National
Radio-
activity

JP

Jamendo
(DBtune)

Italian
public

schools

ISTAT
Immi-
gration

iServe

IdRef
Sudoc

NSZL
Catalog

Hellenic
PD

Hellenic
FBD

Piedmont
Accomo-
dations

GovTrack

GovWILD

Google
Art

wrapper

gnoss

GESIS

GeoWord
Net

Geo
Species

Geo
Names

Geo
Linked
Data

GEMET

GTAA

STITCH

SIDER

Project
Guten-
berg

Medi
Care

Euro-
stat

(FUB)

EURES

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

CORDIS
(FUB)

Freebase

flickr
wrappr

Fishes
of Texas

Finnish
Munici-
palities

ChEMBL

FanHubz

Event
Media

EUTC
Produc-

tions

Eurostat

Europeana

EUNIS

EU
Insti-

tutions

ESD
stan-
dards

EARTh

Enipedia

Popula-
tion (En-
AKTing)

NHS
(En-

AKTing) Mortality
(En-

AKTing)

Energy
(En-

AKTing)

Crime
(En-

AKTing)

CO2
Emission

(En-
AKTing)

EEA

SISVU

educatio
n.data.g

ov.uk

ECS
South-
ampton

ECCO-
TCP

GND

Didactal
ia

DDC Deutsche
Bio-

graphie

data
dcs

Music
Brainz

(DBTune)

Magna-
tune

John
Peel

(DBTune)

Classical
(DB

Tune)

Audio
Scrobbler
(DBTune)

Last.FM
artists

(DBTune)

DB
Tropes

Portu-
guese

DBpedia

dbpedia
lite

Greek
DBpedia

DBpedia

data-
open-
ac-uk

SMC
Journals

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Metoffice
Weather
Forecasts

Discogs
(Data

Incubator)

Climbing

data.gov.uk
intervals

Data
Gov.ie

data
bnf.fr

Cornetto

reegle

Chronic-
ling

America

Chem2
Bio2RDF

Calames

business
data.gov.

uk

Bricklink

Brazilian
Poli-

ticians

BNB

UniSTS

UniPath
way

UniParc

Taxono
my

UniProt
(Bio2RDF)

SGD

Reactome

PubMed
Pub

Chem

PRO-
SITE

ProDom

Pfam

PDB

OMIM
MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Com-
pound

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Affy-
metrix

bible
ontology

BibBase

FTS

BBC
Wildlife
Finder

BBC
Program

mes BBC
Music

Alpine
Ski

Austria

LOCAH

Amster-
dam

Museum

AGROV
OC

AEMET

US Census
(rdfabout)

Figure 1.2: Linked Data on the Web as of September 2011 (Cyganiak and Jentzsch, 2011)

Accuracy

The knowledge base must be accurate, that is, the reliability of the information must be very
high. Since automatic extraction of information will bring a certain amount of uncertainty
into the knowledge base, we must assign each information piece a confidence score, which we
call “trust”. Depending on the application, “very high” accuracy means that in 80–100 % of
the cases, information must be completely correct and reliable.

Up-to-Date

We want to continuously expand the knowledge base. While some concepts consist of a rather
fixed set of entities, others are very dynamic and new entities appear daily. For example, it
is rarely necessary to search for new entities belonging to the concept Country, since the
number of countries in the world rarely changes. On the other hand, the concepts Movie and
Mobile Phone are highly dynamic and new entities are mentioned very often. Current entity
extraction techniques focus on extraction of entities belonging to static concepts. For example,
there are techniques that search for lists of entities for a certain concept and extract these
entities without considering searching again. We need to automatically discover entity-rich
resources and check them periodically for new entity mentions.

8 Introduction

Semantic

Information in the knowledge base must be semantic. To define the term “semantic” in this
context, it helps to understand the differences among data, information, and knowledge. Since
there are no agreed-upon definitions of these three terms, we explain these terms again in the
context of this thesis. Figure 1.3 shows the three terms in relation to each other.

Data is pure syntax without semantics, that is, there is no meaning to the data. Consider
this data: 21, 25, 24, 32, 34, 31, 35. Without any interpretation and meaning, these
numbers could refer to anything. We could think of it as temperature data for one week or
the ages of a group of people.

As soon as we can construct relations between data and have an interpretation of the data
we can add meaning to it and have information.

Information is understood data, or data with meaning. For example, if we know that the
data series above is one week of temperature data, we have information.

When we aggregate information, put it in context, and are able to reason over it, we have
knowledge.

Knowledge is usable information in a certain context. For example, if we have information
about temperatures during a year and information about the growth speed of trees in the
context of researching tree populations, we can use and relate the available information to
gain new insights (reasoning) such as that the temperature has an influence on tree growth
speed.

Semantic refers to the meaning of data. We can extract data from the Web without “know-
ing” what it means. Such a database of terms would not be semantic. Semantic in our
knowledge base context means:

� Disambiguation of senses: A term (word or number) can have several meanings.
“Queen Elizabeth” might refer to the English Queen, a person, or to the cruiseship,
depending on the context in which the term appears. Similarly, 21 might mean 21
Euros (amount of money) or 21 ◦C (temperature) also depending on the context.

� Disambiguation of entities: Even when the sense of a term is understood, it can
still refer to several entities. For example, names of people are highly ambiguous. “Sam
Smith” is a football player, rugby player, or sportswriter. The correct entity must also
be disambiguated using the context.

� Relations: A term often has more information related to it. Words can have synonyms
and homonyms; entities can have facts, alternative names, and relations to other entities.
For example, the string “Jim Carrey” refers to the actor James Eugene Carrey. Having
facts about Jim Carrey ’s age, his list of movies, and his biography in the knowledge
base would enrich the semantics behind the string “Jim Carrey”.

Focus and Limitations 9

Figure 1.3: Differences among Data, Information, and Knowledge

1.3 Focus and Limitations

We have outlined several scenarios in which the knowledge base that we want to obtain
automatically would be beneficial. Since we cannot solve all the problems associated with
these use cases, we need to sharpen the focus and limit the scope.

Focus

The goal is to extract many information types mentioned under Section 1.1.1. The main
focus lies, however, on the entity extraction and assessment, as it is the basis for all other
extraction steps. We will therefore search for techniques to extract entity names with high
precision from the Web. The second most important focus of this thesis is facts because
we can build a Linked Data dataset using entities and factual information. We focus on the
extraction of facts with only one correct value (for example, facts for the attribute filming
location of a movie can have several correct values). Although there is a plethora of informa-
tion on the Deep Web (Web pages hidden behind forms of databases, usually not indexed by
search engines), in this thesis we focus on the Visible Web (easily accessible Web pages made
to be consumed by humans) and the Semantic Web (Web resources made to be consumed
by machines) for extracting information.

Limitations

The first limitation is that we can only extract entities that are mentioned on the Web. The
popularity of the entities or their concept also play an important role in extraction quality.
For example, on the Web, names of movies are more popular than names of ornithologists,
which will likely increase the precision with which we can detect movie names. We do not
extract multiple values for attributes although that might be possible in reality, for example,
the cast list attribute of a movie can have multiple correct values – actor names in this case.
We also do not try to build the biggest knowledge base, but rather show that a knowledge base
can be built automatically from multiple sources with high accuracy. The algorithms used
in this thesis are limited to the English language. Extractions from other languages are not

10 Introduction

considered. For most parts, we also do not address efficiency issues and speed of algorithms,
but only effectiveness. Exceptions to this limitation are the feed update strategies and the
focused crawler for question and answer extraction.

1.4 Research Questions and Hypotheses

This section covers the research questions we try to answer throughout this thesis. For each
question, we state a hypothesis that we will evaluate in later chapters.

Which techniques can be used to extract entity mentions on the Web and
how well do they perform?

Entities can be found in different structures on the Web. We need to find out which extraction
techniques are the best to extract a large amount of entities in a precise manner.

Hypothesis: Entities can be extracted from plain text using patterns and named entity
recognition techniques. Furthermore, we can employ wrapper and bootstrapping techniques to
increase the number of extracted entities. These techniques include algorithms for extracting
entities from lists and tables. Using a variety of different techniques on arbitrary Web pages
will yield entity extractions that are not available in DBpedia.

How can we efficiently poll Web sources to extract new entities?

New entities (for example, products) appear on the Web with a high frequency. To keep a
knowledge base up-to-date, we need to find efficient ways to poll Web sources in order to
apply extraction techniques.

Hypothesis: We can automatically read news feeds and apply a prediction strategy to
efficiently read news only when new messages are posted but without leaving out too many
opportunities to extract entities. We claim that using a moving average algorithm on the
update intervals of feeds will outperform fix polling intervals and algorithms relying on the
post distribution of feeds. We measure the quality of the update strategies regarding the
delay and the bandwidth consumption.

How can we ensure high precision of the extracted information?

Extracted information is by its nature noisy. To increase the quality of the final knowledge
base, we need to find mechanisms to effectively assess extracted entities and filter out incorrect
extractions.

Hypothesis: Given a small set of training data for each concept, we can employ a set of
machine learning algorithms to classify extracted information. Using a mixed set of features,
such as the extraction redundancy, the types of extraction sources, and generic language
features, we can yield a higher classification precision than reported in related work on the
same problem.

Summary 11

What entity-centric information is useful for question answering and how
can we extract it?

One use case of the knowledge base should be question answering. In order to answer user
questions we need to find out which types of information interest users and how we can extract
this information and store it in the knowledge base.

Hypothesis: Users benefit from additional multimedia with their answers. We can use a
keyword-based approach to find entity-related interactive multimedia objects and images.
Using a machine learning-based news extractor will furthermore link entities to related news
items. We can use a text classification approach to detect positive and negative sentiments
in about 90 % of the cases for short statements.

How do ontology-based question answering systems compare to Web ex-
traction-based question answering systems?

The knowledge base can be used as an RDF repository for facts. This repository can be used
for a question answering scenario. Thus, we need to find out what percentage of questions
can be answered using an ontology-based question answering system compared to systems
that extract answers from the Web without requiring an ontology.

Hypothesis: Fewer questions can be answered using an ontology-based question answering
system. The answers will, however, be more accurate.

1.5 Summary

We have now motivated use cases that would benefit from a knowledge base of entities and
entity-related information. Furthermore, we explained which requirements such a knowledge
base must meet and posed our research questions and hypotheses, which will be answered in
the following chapters.

The problem we are trying to solve in this thesis is the automatic generation of an accurate
knowledge base of entities and entity-centric information. As we will see in the next
chapter, existing approaches for building such a knowledge base rely either on user input,
extract information from a single or only few websites, or are very inaccurate.

The remainder of this thesis is structured as follows. First, we start by providing definitions,
background information about knowledge bases, and explanations of evaluation measures
in Chapter 2. In Chapter 3, we then introduce an architecture for our Web information
extraction system by describing its main components, which will be explained in more detail
throughout the thesis. Since our goal is to retrieve information in a fast manner, we begin
by describing a retrieval strategy for Web feeds in Chapter 4. In Chapter 5, we review
related work on entity extraction from the Web, describe five extraction techniques that
are used by our system in detail, and compare them against each other. We will see that
the extraction results are still very imprecise, which leads us to Chapter 6, which explains
different approaches for assessing uncertain extractions. The goal in this chapter is to find

12 Introduction

an algorithm that filters incorrect extractions to improve the precision without sacrificing the
recall. Chapter 7 then details five techniques to extract factual information about entities
from the Web. These techniques are essential in building the large knowledge base that we
envision. In Chapter 8, we describe further extraction techniques for additional, entity-centric
information, such as news, opinionated statements, and interactive multimedia objects. These
extraction objects are valuable for an entity-centric knowledge base as we have motivated
earlier. Chapter 9 reviews, develops, and compares question answering approaches. Our goal
in this chapter is to find out whether knowledge bases are better suited for natural language
question answering than systems that try to find answers on the Web. In Chapter 10, we
showcase some examples of practical applications that can be developed using the information
from the knowledge base that we build in this thesis before we conclude with the results and
findings in Chapter 11.

Chapter 2

Background

This chapter explains the basic terminology and ideas necessary to understand the next
chapters in this document. First, we will briefly describe information retrieval and define
the most important terms used throughout this thesis. Second, we will distinguish between
three kinds of sources on the Web since we make a differentiation in our algorithms later on.
In the last section of this chapter, we give an overview of the related knowledge bases and
information extraction systems. A more detailed review of several of these systems follows
later in the pertinent sections.

Most algorithms and approaches explained and used in this thesis belong to the field of infor-
mation retrieval. Information retrieval is a field of research that is concerned with searching
and ranking documents matching a user query. Sources used for answering the query can be
structured (such as databases or RDF repositories) or semi-structured (such as Web pages).
Information retrieval employs approaches from many disciplines such as statistics, linguistics,
information architecture, and information science. We will especially make use of the statistic
and linguistic aspects in this thesis.

2.1 Definitions

In this section, we define the terms concept, named entity, attribute, and statement, as they
are fundamental to other topics covered in this chapter.

2.1.1 Concept

A concept is a chunk of text that refers to “an abstract or general idea inferred or derived
from specific instances” (Stark and Riesenfeld, 1998)1. A concept is therefore a class of things
and it can be instantiated with a specific instance – an entity. We use the term “concept”
throughout this thesis. Other researchers also use the term “entity type” which is a synonym
to the term “concept” in the scope of this thesis. We will use both terms interchangeably.

1http://wordnetweb.princeton.edu/perl/webwn?s=concept, last accessed on 20th of June 2012

14 Background

2.1.2 Named Entity

There is no consensus on the definition of a named entity in the research community. Often,
only instances of concepts in a certain scenario are considered named entities. The following
definition is taken from the named entity recognition task from CoNLL 2002:

“Named entities are phrases that contain the names of persons, organizations, locations,
times, and quantities.” (Sang and Meulder, 2003a).

The CoNLL 2002 definition is useful when clarifying the goals of the NER task. It also
unnecessarily limits named entities to the concepts Person, Organization, Location, Time,
and Quantity. Also, it is arguable whether time and quantity are real named entities. The
term “named” restricts the task to entities that are rigid designators as defined by Kripke
(1981) who says that “A rigid designator designates the same object in all possible worlds
in which that object exists and never designates anything else” (LaPorte, 2006). Following
this path, however, leads us into a philosophical discussion about what an entity is. Nadeau
(2008) emphasizes how difficult the definition of a named entity actually is. He says, his
definition is “[...] ugly and circular, but [...] practical!”: “The types recognized by NER are
any sets of words that intersect with an NER type” (Nadeau, 2008).

The Message Understanding Conference (MUC) definition states that named entities are:
“proper names, acronyms, and perhaps miscellaneous other unique identifiers” which belong
to one of the following types “Organization: named corporate, governmental, or other or-
ganizational entity Person: named person or family, and Location: name of politically or
geographically defined location (cities, provinces, countries, international regions, bodies of
water, mountains, et cetera)” (Chinchor, 1997). Again, we see a very vague definition of what
named entities are.

Borrega et al. (2007) only considers nouns or noun phrases whose referent is unique and
unambiguous to be named entities. Furthermore, they distinguish between Strong Named
Entities (SNE) and Weak Named Entities (WNE). SNEs are “formed by a word, a number,
a date, or, in some cases, a string of words referring to a single individual entity in the real
world”. WNEs are syntactic elements consisting of at least one proper noun. Borrega et al.
(2007) provide a collection of guidelines to determine what entities fall into the groups SNE
and WNE. They base their guidelines on Spanish tests and admit that their definitions and
guidelines always have exceptions.

The organizers of the TREC 2010 entity track also call defining entities on the Web an
unsolved problem (Balog et al., 2010b), and Rössler (2007) reiterates that there is no consensus
on the definition of named entities. He concludes his research on the definition of named
entities stating that there are often no definitions but only guidelines. MUC and Automated
Content Extraction (ACE), for instance, have refactored their guidelines for named entity
tagging due to the difficulty of this task. The definitions, or rather, the guidelines, should be
tailored to the context of the application.

We will therefore define the term “entity” for the scope of this thesis. Some researcher also
call an entity that can be extracted from the Web a “Web object” (Nie et al., 2007). We
define a named entity as follows: “An entity is a collection of names that refer to exactly one
or to multiple identical, real or abstract concept instances. These instances can have several

Definitions 15

aliases and one name can refer to different instances. A ‘named entity’ is a reference to an
entity using one of the entity’s aliases.”

Figure 2.1 shows the relation between concepts and entities. The figure allows us to explain
our definition using some examples.

Figure 2.1: Relationship between Concepts and Entities

Ambiguity We can see that the movie entity Iron Man has another alias named Ironman,
which actually refers to the same entity, that is, their uuids are identical. Furthermore, we
can observe that the name “Iron Man” is ambiguous and might also refer to the Marvel comic
character. Names are often ambiguous and need to be disambiguated in the context in which
they are mentioned. The names must be rigidly designated; the name “the 2008 movie where
Robert Downey Jr. plays a comic hero” is therefore not an entity. Due to their ambiguity,
all entities must get a universally unique identifier (UUID) (Leach et al., 2005).

Table 2.1 shows four example entities classified along two dimensions.

Abstract Concrete

Specific $1,000,000 Jim Carrey

Generic Field Hockey Lumia 800

Table 2.1: Example Classification of Entities According to our Definition

Generic and Specific Jim Carrey, the actor, refers to exactly one real world instance,
while the mobile phone Lumia 800 refers to multiple similar real world instances. People are
specific in the sense that a concrete entity exists only once in the real world. Products are
generic. For example, the mobile phone Lumia 800 exists multiple times in the real world
so they are “identical concept instances”. We are not interested in these different instances,
but rather in their common name, since they all share the same attributes, such as display
size. Many concepts are generic, such as gene, car, or movie names. More information about
specific and generic entities can be found in the work by LingPipe (2007).

16 Background

Abstract and Concrete While Lumia 800 refers to a collection of real world objects, the
sport entity Field Hockey is an abstract instance. Playing hockey makes it real, but until
then it is an abstract instance of a concept. It is not a concept according to our definition
since there are no instances of Hockey itself, but only instances of hockey games. The same
is true for instances of event concepts, such as Concert or Conference. Our definitions also
allow us to have temporal and numerical instances, such as $1,000,000 as abstract entities.

2.1.3 Attribute

An attribute is a modifier for a concept. A concept can have multiple attributes and one
attribute can belong to multiple concepts.

Attributes have a domain and a range. The domain specifies the concepts they modify and
the range specifies the range of values. For example, the attribute display size belongs to the
concepts Mobile Phone and Notebook (domain) and can have values between 1 and 25 inches
(range). Multivalued attributes are beyond the scope of this thesis.

2.1.4 Statement

Statements are assertions about entities. While attributes modify concepts, statements are
assigned to entities. We can classify statements along the two dimensions “truth” and “repre-
sentation”. Along the “truth” dimension, such assertions can be falsehoods, facts, or opinions.
Along the “representation” dimension, statements can be unstructured (natural language) or
structured (for example, RDF). Table 2.2 provides examples of statements.

Falsehood Opinion Fact

Structured <earth>

<hasForm>

<flat>

<earth>

<is>

<gorgeous>

<earth>

<hasForm>

<ellipsoid>

Unstructured The earth is flat. The earth is gor-
geous.

The earth is an el-
lipsoid.

Table 2.2: Classification of Statements

2.2 Sources of Information on the Web

Our goal is to extract information, primarily in the form of named entities and facts from the
Web. Before we can develop techniques and algorithms to extract the desired information, we
need to analyze which types of sources we can find on the Web, how they are structured, and
how frequently they appear. In the following sections, we only analyze textual documents
on the Web; an information source can, however, be a Web user who interacts with a Web
application. For example, if a user searches for Jim Carrey using the search engine Google,
the user becomes an information source and intelligent algorithms could learn the actor entity
Jim Carrey from his input.

Sources of Information on the Web 17

2.2.1 Types of Structures

Textual documents on the Web can be classified into three major categories: unstructured,
semi-structured, and structured documents. Across different research domains, definitions
of these types vary (Chang et al., 2006) and often there are no exact distinctions. We will
therefore explain how we understand the different types in the context of this thesis.

Unstructured Information Sources

Unstructured sources have little or no structure to help a machine parse the data. A simple
text paragraph or this very sentence is called “plain text”. Both contains little or no markup
for machines and are thus considered unstructured. Note that even text is not completely
unstructured; sentences are made of words which are again made of letters. Words are most
often separated by white spaces and a sentence usually ends with a period. As soon as the
author of a text uses symbols to encode more advanced structured parts such as lists or tables
(as often found in wiki-style texts), the text is no longer unstructured.

Semi-structured Information Sources

Semi-structured sources must have some markup that can guide a machine that is extracting
information. In Web information extraction, semi-structured sources are mainly HTML files.
These files often contain a great deal of unstructured data in texts, but use tags to structure
this data for rendering purposes (Chang et al., 2006). The HTML structure can be parsed as
a Document Object Model (DOM) tree, which makes it easier to access and classify certain
information. Thus, HTML documents are semi-structured. Semi-structured sources are the
most common source on the Web because almost every website uses HTML for making the
content accessible. For this reason, semi-structured sources are the main focus for information
extraction (see Figure 2.2). Additionally, we can divide semi-structured sources into template-
based and non-template-based semi-structured sources.

Template-based Website content is often stored in databases and the Web page is built
at request time using the data from the database and a template. In this case, a template is
an HTML file populated dynamically with data. Templates have several advantages. First,
they are reusable, and a change to the template affects any Web pages that use the template.
Second, from the perspective of information extraction, templates can be detected across
several Web pages and make information extraction more reliable.

Non-template-based HTML pages that are coded by hand often do not follow a template.
Similarities between the DOM trees of two HTML pages become more difficult to find, which
impedes the information extraction task. Still, while many Web pages were hand coded in
the early years of the Web, today most professional, data-heavy pages rely on templates
(Bergman, 2001).

18 Background

Structured Information Sources

Structured information sources must have a schema that describes the syntax and, to some
extent, the semantics of the document (Chang et al., 2006). This schema makes it easier for
machines to parse and “understand” the data. Whether or not a document is structured also
depends on its content. A document might contain unstructured data in its structured parts
and thereby degrade to a semi-structured information source. Examples of structured sources
include databases or Extensible Markup Language (XML) files with a defined schema2. The
most important structured format for the Web is XML and the languages that use it, such
as RDF, Atom, and RSS (see Figure 2.2). We also consider the triples or quadruples of the
Semantic Web to be structured data. We consider XHTML documents to be unstructured
because they almost always contain large parts of unstructured data in form of plain text
which makes them semi-structured documents.

2.2.2 Distribution of Document File Formats on the Web

In this thesis, we concentrate primarily on extracting textual information. In order to extract
information, we need to know in which file types we can find it and how frequently those file
types appear on the Web.

To the best of our knowledge, the frequency of different file types on the Web has not yet
been researched. We therefore performed a simple experiment ourselves. To find the estimated
number of files for each document type, we typed “* filetype:XYZ” (where XYZ is the file
ending) into Google.com and took the number of indexed files as an estimate. One problem
with this method is that many Web pages are generated on request by the Web server and
do not even have a file ending, or they end on PHP, ASP, JSP, et cetera, which are also most
often HTML files. Although that is true for any file type, we believe that most of the time,
URLs without a file ending are HTML pages, which means that we have underestimated the
number of HTML pages. We searched for document formats with textual content and found
at least one million indexed files on Google.

In Figure 2.2, we can clearly see that (X)HTML files are the most common files on the Visible
Web totaling about 87 % of all indexed files. More interestingly, we have PDF files in second
place with about 2.7 % and XML in third place with just about 2.2 % of all files with a file
ending.

Our conclusion from this quick analysis is that we should focus on extracting information
from (X)HTML files, but might also need to look into techniques to find information in PDF
and XML files. However, this analysis shows only the distribution of file types, not the value
of the information within these documents.

2Note that a defined schema does not guarantee that the source is structured, it can still contain valid
unstructured data which can make the document semi-structured.

Sources of Information on the Web 19

HTML, XHTML, HTM,
XHTM; 87.69%

XML; 2.74% RDF (+RSS); 0.26%

Atom; 0.01%

OWL; 0.00%

PDF; 4.67%

PS; 0.10%

TXT, TEXT; 1.50%

DOC, DOCX; 2.24%
ODT; 0.01%

XLS, XLSX; 0.46%

CSV; 0.07%

PPT, PPTX;
0.07%

RTF; 0.14%

MW; 0.00%

TEX; 0.03%

Figure 2.2: Estimated Distribution of Document File Formats on the Web as of April 2010

2.2.3 Areas on the Web

The Web can be divided into at least three major areas: the Visible Web, the Deep Web,
and the Semantic Web. One resource on the Web can belong to multiple areas. In the
literature, there is much confusion about these areas and how to describe them properly. The
following paragraphs explain each of the three Web areas in more detail.

Visible Web

All resources that can be accessed using the link structure of the Web are considered to be on
the Visible Web. Sometimes the Visible Web is also referred to as Indexable Web or Surface
Web. The Visible Web contains at least eight billion Web pages3 at the time of this writing.
Assuming that the average Web page is about 25 kilobytes (King, 2009), the size of the Visible
Web is larger than 465 terabytes.

Deep Web

The Deep Web contains all resources on the Web that cannot be reached following the link
structure of the Web. More than 50 % of these resources are behind forms that provide access
to topic specific databases. After querying the databases, Web pages are dynamically created
dependent on the given query (Bergman, 2001). The content might also be secured and only
accessible to registered users of a website, but 95 % are publicly accessible. Automatically
exploring and retrieving information from the Deep Web is much more difficult than from

3http://www.worldwidewebsize.com/, last accessed on 25th of March 2012

20 Background

Document Extension Number of Documents

HTML, XHTML, HTM, XHTM 34,537,940,000

PDF 1,840,000,000

XML 1,080,000,000

DOC, DOCX 882,210,000

TXT, TEXT 591,120,000

XLS, XLSX 183,130,000

RDF (+RSS) 102,300,000

RTF 56,700,000

PS 38,800,000

CSV 26,900,000

PPT, PPTX 26,690,000

TEX 10,800,000

Atom 5,490,000

ODT 2,830,000

MW 1,160,000

OWL 1,050,000

Table 2.3: Estimated Distribution of Document File Formats on the Web in Absolute Numbers
as of April 2010

the Visible Web. The “entry points”, usually the Web forms, are sparsely distributed over
the Web (Barbosa and Freire, 2007) and need to be discovered by specialized crawlers. After
a set of forms has been found, it is a challenging task to submit the form with meaningful
queries in order to retrieve the hidden documents. Ntoulas et al. (2005) and Madhavan et al.
(2008) study the problem of automatically generating queries for these forms. Another way
to access the Deep Web is through APIs. These interfaces are provided by the content owner
and can be queried by a program to return data from the underlying database. The Deep
Web is also referred to as Deepnet, Invisible Web, Dark Web, or Hidden Web (Olston and
Najork, 2010). In 2001, it was estimated that the Deep Web is 400 to 550 times bigger than
the Visible Web (Bergman, 2001), which would amount to over 93,000 terabytes of textual
data.

Sources of Information on the Web 21

Semantic Web

The Semantic Web, also called the Web of Data or Linked Data4, is an initiative of the World
Wide Web Consortium (Berners-Lee et al., 2001) that contains all resources on the Web that
can be parsed and “understood” by machines. The Semantic Web aims to allow a new set
of applications that compute and reason on the semantic information. The Semantic Web
contains at least 13 billion triples5 at the time of this writing. A triple consists of subject,
predicate, and object, and can be represented in many different ways, such as RDF/XML,
N3, or Turtle. Let us assume that one triple consists of 200 characters (200 bytes in ASCII).
With these estimated values, we can calculate that the size of the Semantic Web is bigger
than 2.3 terabytes.

To explain the differences among the three areas, we consider five dimensions shown in Fig-
ure 2.3. On all axes of the graphic, values range from one to three, except the size axis, which
is measured in terabytes and is logarithmic. The five dimensions are:

1. The size in terabytes of the sum of all documents.

2. The degree of human accessibility. About 95 % of the Deep Web data is freely accessible
(Bergman, 2001), but it is hidden behind forms and not accessible through multi-purpose
search engines such as Google. Humans can, however, easily access the data behind the
forms. The Semantic Web is primarily made for machines and is therefore not as easy
to access as the Visible Web, which is primarily made to be consumed by humans.

3. The degree of human understandability. The Deep Web and the Visible Web are often
encoded similarly and aim to be consumed by humans. Semantic Web documents are
not encoded in a way that they could be easily understood by humans.

4. The degree of machine accessibility. The Deep Web is hidden behind forms and therefore
is not easy to access for machines. The Semantic Web is primarily made for machines
and is therefore easier to access than the Deep Web. The Visible Web can be almost as
easily accessed by machines as by humans.

5. The degree of machine understandability. The Deep Web and the Visible Web are often
encoded similarly and aim to be consumed by humans, not machines. Semantic Web
documents are meant to be parsed and “understood” by machines

We have seen that the Web can be broadly divided into three major areas: the Visible Web,
the Deep Web, and the Semantic Web. In this thesis, we will focus on extracting information
from the Visible Web and the Semantic Web. We choose not to investigate the retrieval of
documents from the Deep Web since this part of the Web is much more difficult to access.
Ntoulas et al. (2005) and Madhavan et al. (2008) studied how to retrieve Web pages from the
Deep Web, but we focus on extraction rather than retrieval.

4We treat these terms as synonyms since there are no tangible differences, Tim Berners-Lee himself said
several times “Linked Data is the Semantic Web done right” (see LDOW workshop 2008 http://blog.dbtune.

org/post/2008/05/12/LDOW-and-WWW-2008, last accessed on 25th of March 2012).
5http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics, last ac-

cessed on 18th of June 2012

22 Background

Figure 2.3: Comparison of Web Areas

2.3 Evaluation Measures and Approaches

Next, we will discuss evaluation measures and approaches that are mentioned and used in
this work.

2.3.1 Performance Measurements

In information retrieval and information extraction, the most commonly used measures are
precision (Equation 2.1), recall (Equation 2.2), and the harmonic mean between the two,
which can be expressed in the F value (Equation 2.3). All measures have values between zero
and one (often expressed in percentages), where zero is the worst and one is the best.

Figure 2.4 visualizes correct and incorrect extractions in an extraction scenario. The largest
ellipse is the set of all possible extractions. The smaller black ellipse represents the set of
actual extractions. A green plus (+) stands for an entity that should be extracted and a minus
(−) stands for something that is not an entity and should not be extracted. “TP” are true
positives, that is, correct extractions; “FP” are false positives, that is, entities that have been
extracted but should not have been extracted. “FN” are false negatives, that is, entities that
should have been extracted, but were not. With TP, FP, and FN we can calculate precision
and recall of an extraction system in the context of a certain task. In a binary classification
scenario where we have to decide for each instance whether it belongs to the target class, we
have also true negative assignments (“TN”). TN are instances that were not assigned to the
target concept and do in fact not belong to the class. We will need true negatives for the

Evaluation Measures and Approaches 23

calculation of accuracy later on.

Figure 2.4: Explanation of Possible and Actual Extractions

In Web information extraction, precision measures the ratio of correct extractions to the total
number of actual extractions.

Precision =
Correct

Actual
=

TP

TP + FP
(2.1)

The recall is the ratio of correct extractions to the number of possible correct extractions.

Recall =
Correct

CorrectPossible
=

TP

TP + FN
(2.2)

Calculating the harmonic mean of precision and recall leads to the weighted F value (van
Rijsbergen, 1979):

Fβ = (1 + β2)× Precision × Recall

β2 × Precision + Recall
=

(1 + β2)× TP

(1 + β2)× TP + β2 × FN + FP
(2.3)

The parameter β can be used to weigh the importance of precision and recall. The higher β,
the more importance is given to precision instead of recall. To facilitate the comparison of
different results, the F1 value (Equation 2.4) has become the standard. For the F1 value, both
precision and recall are given the same weight (β = 1), which leads to the simpler equation:

F1 =
2× Precision × Recall

Precision + Recall
=

2× TP

2× TP + FN + FP
(2.4)

The accuracy is often used to evaluate classification tasks. To calculate the accuracy, we
simply take the ratio of all correct assignments to the number of all assignments as shown in
Equation 2.5.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.5)

Precision and recall do not take the order of the documents into account. If the order is
important (for example, for search engine result pages), the precision@k and the ranked list

24 Background

average precision (RLAP)6 can be used to determine the quality of the system that generated
the ranked list. Precision@k is the precision of the k top ranked documents from the ranked
list. Equation 2.6 shows how the precision@k is calculated, where rel(i) is zero if the document
at position i is not relevant and one if the document is relevant. “Relevant” is a document
if it “[. . .] increases the likelihood of accomplishing the goal [. . .]” (Lindsay and Gorayska,
2002). The goal in entity extraction usually is to find entities of a given concept. All correct
entity names that belong to the concept can therefore be considered relevant documents.

Precision@k =

∑k
i=1 rel(i)

k
(2.6)

The RLAP is the average for the precision for each relevant document in a ranked list.
Equation 2.7 shows how this measure is calculated, where l is the ranked list of n documents
and relExpected is the total number of relevant documents for the query.

RankedListAveragePrecision(l) =

∑n
k=1 Precision@k × rel(k)

relevantExpected
(2.7)

Table 2.4 shows an example of a ranked list of documents and the evaluation measures at
every rank k. The total number of relevant documents (relExpected) for this example is 5.

k Rel(k) Relevant Precision@k Ranked List Average Precision

1 1 1 1/1 = 1.00 1/5 = 0.2

2 0 1 1/2 = 0.50 1/5 = 0.2

3 1 2 2/3 ≈ 0.67 (1 + 2/3)/5 ≈ 0.24

4 1 3 3/4 = 0.75 (1 + 2/3 + 3/4)/5 ≈ 0.48

5 1 4 4/5 = 0.80 (1 + 2/3 + 3/4 + 4/5)/5 ≈ 0.64

6 1 5 5/6 ≈ 0.83 (1 + 2/3 + 3/4 + 4/5 + 5/6)/5 ≈ 0.81

7 0 5 5/7 ≈ 0.71 (1 + 2/3 + 3/4 + 4/5 + 5/6)/5 ≈ 0.81

Table 2.4: Example for Calculating Precision@k and Ranked List Average Precision

While precision@k is still independent of the order of documents, the RLAP takes the order
into account. For example, if we expect four relevant documents and get the ranked list 1100,
precision@4 and RLAP would be 0.5. However, if we get a ranked list 1001, the precision@4
would still be 0.5, but the RLAP would be 0.375 because the second relevant document comes
later in the list.

To evaluate the performance of a system that outputs several ranked lists, the mean average
precision (MAP) can be used. It is calculated by averaging the RLAP for a number of ranked
lists L as shown in Equation 2.8.

6In information retrieval, the measure is usually called “average precision”, but we use the term “average
precision” in our evaluation for arithmetic means of several precision scores since we do not evaluate with
ranked lists.

Evaluation Measures and Approaches 25

MeanAveragePrecision =

∑L
l RankedListAveragePrecision(l)

|L|
(2.8)

Just as precision@k, the R-precision measures a single point in the precision-recall curve. For
queries that have only r relevant documents, the R-precision makes more sense than preci-
sion@k with k > r. Only the top r documents are returned (R-precision equals precision@r).
The R-precision is calculated as the ratio of the number of relevant returned documents to
the total number of relevant documents r. The R-precision is always equal the recall and is
therefore the precision-recall break-even point of the precision-recall curve (Manning et al.,
2008).

2.3.2 Evaluating Named Entity Recognition

The output of NER systems is usually compared to the output of human linguists. The
evaluation goal is to determine a score for the system based on this comparison. There are
many different methods to calculate this score. To evaluate systems automatically, human
experts have to create annotated texts with the correct solutions. For example, let us assume
that a human expert created the following markup (Nadeau, 2007):

Unlike <PERSON>Robert</PERSON>, <PERSON>John Briggs Jr</PERSON> contacted

<ORGANIZATION>Wonderful Stockbrockers Inc</ORGANIZATION> in

<LOCATION>New York</LOCATION> and instructed them to sell all his shares in

<ORGANIZATION>Acme</ORGANIZATION>.

Let us also assume that an NER system created the following markup (Nadeau, 2007) for the
same text:

<LOCATION>Unlike</LOCATION> Robert,

<ORGANIZATION>John Briggs Jr</ORGANIZATION> contacted Wonderful

<ORGANIZATION>Stockbrockers</ORGANIZATION> Inc <DATE>in New York</DATE> and

instructed them to sell all his shares in <ORGANIZATION>Acme</ORGANIZATION>.

The only correct match between the correct solution and the named entity recognition system
output is <ORGANIZATION>Acme</ORGANIZATION>; all other markups are errors.

Error Types

In classification tasks, it is often possible to determine the true positives, false positives,
et cetera (see 2.4), but in NER it can help to be more precise about these classes. For
example, two false positives are not necessarily equally wrong. Consider a system that had
to tag person names in text, and it tagged “A good start” and “Jim Carrey was” as persons.
Obviously, the first occurrence is entirely wrong. The second occurrence, however, must also
considered wrong, although the system only failed to find the correct right hand boundary

26 Background

and mistakenly tagged the word “was” too. In the previous example (see Section 2.3.2), we
can see five different errors an NER system can make (Manning, 2006). The errors are shown
and explained in Table 2.5 (Nadeau, 2007).

Correct Solution System Output Error

Unlike <LOCATION> Unlike
</LOCATION>

The system tagged an entity
where none exists.

<PERSON>Robert</PERSON> Robert The system failed to tag an
entity.

<PERSON> John Briggs Jr
</PERSON>

<ORGANIZATION> John
Briggs Jr </ORGANIZATION>

The system tagged the en-
tity, but classified it incor-
rectly.

<ORGANIZATION> Won-
derful Stockbrockers Inc
</ORGANIZATION>

<ORGANIZATION> Stock-
brockers </ORGANIZATION>

The system tagged the en-
tity, but the boundaries are
incorrect.

<LOCATION>New
York</LOCATION>

<DATE>in New York</DATE> The system found an entity,
but classified it incorrectly
and chose incorrect bound-
aries.

Table 2.5: Named Entity Recognition Error Types (Nadeau, 2007)

Due to the variety of combinations to weigh the error types for evaluation purposes, three
main evaluation methods have evolved over the years:

Exact-match Evaluation

The exact-match evaluation is the simplest method. It does not take the different error types
into account. A correct assignment must have the boundaries and the classification correct.
The precision and recall are calculated as explained in Section 2.3.2. The final score for
the NER system is a micro-averaged F value (MAF). The NER system from the example
Section 2.3.2 would get the following scores according to Equation 2.1 and 2.2:

� Precision = Correct
Assigned = 1

5 = 20 %

� Recall = Correct
Possible = 1

5 = 20 %

� MAF = 20 %

MUC Evaluation

The MUC evaluation method takes all five errors from Table 2.5 into account and scores a
system along two axes: the TYPE and the TEXT axis. If an entity was classified correctly
(regardless of the boundaries), the TYPE is assigned correct. If an entity was found with

Evaluation Measures and Approaches 27

the correct boundaries (regardless of its type), the TEXT is assigned correct. For both
axes, three measures are used: the number of possible entities, called “POS”, the number of
actual assigned entities by the system, also referred to as “ACT”, and the number of correct
answers by the system called “COR”. MUC also uses the MAF as the final score for the
NER system. Like the usual F value, the micro-averaged F value is also the harmonic mean
between precision and recall. Using the example from Section 2.3.2, we can calculate the
MUC score for the system as follows according to Equation 2.1 and 2.2:

� Correct = COR = 4 (2 times TYPE correct, 2 times TEXT correct)

� Assigned = ACT = 10 (5 times TYPE assigned, 5 times TEXT assigned)

� Possible = POS = 10 (5 times TYPE, 5 times TEXT)

� Precision = Correct
Assigned = 4/10 = 40 %

� Recall = Correct
Possible = 4/10 = 40 %

� MAF = 40 %

ACE Evaluation

The ACE evaluation assigns weights to each entity type. For example, if an NER system
correctly classifies an organization it gets one point, whereas it only gets 0.5 points for correctly
tagging and classifying a person. Additionally, a cost value is set for the errors “false alarm”,
“missed entity”, and “wrong type”. The weights and costs are set for all types and their
subtypes, making ACE the most customizable evaluation procedure. The final evaluation
score is called Entity Detection and Recognition Value (EDR) and is calculated as 100 %
minus the accumulated penalties (costs). The actual EDR for our example from Section 2.3.2
depends on the values for weights and costs. This is also a major drawback for the ACE
evaluation since evaluation results might be difficult to compare. Moreover, the complex
formula for the EDR complicates the analysis of errors (Marrero et al., 2009).

2.3.3 Evaluating Named Entity Discovery

When we want to evaluate the performance of an entity discovery algorithm that operates on
the Web, we can calculate the precision but not the recall. The input for such an algorithm
is a name of a concept, such as Movies. The goal of the algorithm is to find as many correct
instances in the given corpus as possible. We can easily determine the precision by counting
the correctly extracted entities compared to the total number of extracted entities for the
given concept. We can only calculate recall, however, when we know the total amount of
correct entities in the corpus. In this thesis, we use the Web as a corpus, which makes it
often nearly impossible to know all the entities that can be found. While we can easily find
out all entities of the concept Country, we struggle to find all cars, movies, actors, plants, et
cetera. We therefore do not use recall as a performance measure for named entity discovery
but report the number of extractions. Without the recall, we also cannot measure a harmonic
mean (F value) to get a combined figure of the performance. We can, however, calculate the

28 Background

estimated number of correct extractions as shown in Equation 2.9, where β is the weighting
parameter for the precision. The higher β, the more important the precision becomes for the
final score.

EstimatedCorrect = SampledPrecisionβ ×NumberOfExtractions (2.9)

2.4 Related Systems and Knowledge Bases

We will now briefly review related information extraction systems and knowledge bases that
use the Web as a source of information. This section gives a rather broad overview of work
that is related to the goals of this thesis. Important parts of these works are explained in the
sections of other chapters in greater detail. We will end this section with a tabular comparison
of the knowledge bases.

DBpedia (Auer et al., 2007) is a project that reads factual information from semi-structured
Wikipedia7 “Infoboxes” and converts the data to Linked Data. Since the data is written
by different human users, it can vary on different pages about the same concept. DBpedia
cleans the data and stores it as RDF triples. These triples are then interlinked with other
datasets on the Web. Over the years, DBpedia has become an important dataset that has
many in- and outgoing links as shown in Figure 1.2. Since Wikipedia is the only information
source of DBpedia, it also shares the same range of concepts, such as cities, musicians, books,
computer games, and movies, to name a few. As of May 2010, the DBpedia dataset8 contains
over 3.6 million entities in 97 languages and over 6.2 million links to other RDF datasets
(Bizer, 2011). In total, this adds up to over one billion RDF triples, about 25 % of which are
extracted from the English edition of Wikipedia. The rest are extracted from other editions
of Wikipedia.

Powerset9 extracts facts from Wikipedia pages (Infoboxes and unstructured text) to allow
users simple question answering functionality over these facts (called “Factz” in Powerset).
If a user queries for an entity, Powerset provides information from Bing, Freebase, and Factz
if there is matching information. The knowledge base is limited to English.

EntityCube10 (Lee et al., 2010) is a research project that automatically generates summaries
about people from thousands of Web pages and shows relations to other entities. EntityCube
only works with entities of the people concept. It is also limited to the English Web, though
a Chinese version11 exists.

ReadTheWeb (Carlson et al., 2010a) is a project with the goal of continuously building a
knowledge base from the Web by reading un- and semi-structured Web pages. This goal is
very similar to ours as they use an ontology to guide the extraction process and to help assess
the extractions (Mitchell et al., 2009).

7http://en.wikipedia.org, last accessed 25th of March 2012
8http://wiki.dbpedia.org/Datasets, last accessed on 25th of March 2012
9Formerly http://www.powerset.com/ but it is now integrated into the Bing search engine.

10http://entitycube.research.microsoft.com/, last accessed on 25th of March 2012
11http://renlifang.msra.cn/, last accessed on 18th of June 2012

Related Systems and Knowledge Bases 29

YAGO (Kasneci et al., 2008) is similar to DBpedia, except it does not primarily focus on
Infoboxes, but rather on relation extraction from the unstructured text on Wikipedia pages.
Due to YAGO’s unifying and cleaning algorithms, information in the YAGO knowledge base
reaches an average accuracy of 95 %. Suchanek (2009) expands the knowledge base using
LEILA, which does not only work well on Wikipedia pages, but can extract facts and relations
on any corpora of text.

Freebase (Bollacker et al., 2008) stores human knowledge in a structured way comparable
to DBpedia. Freebase covers over 11 million entities, 125 million facts, and 4,000 concepts
with over 7,000 attributes at a precision of about 99 % (Bollacker et al., 2008). New data
is collaboratively added to the system by the community; Freebase also synchronizes with
information feeds and updates information from dumps.

True Knowledge12 is a question answering site that has a large knowledge base with entities
and facts about concepts such as people, places, and products. Answers are generated by
parsing the question and “calculating” the answer, that is, the machine answers, not another
user. The ontology has been modeled and pre-populated by domain experts and now relies
on the help of its two million users to expand the knowledge base. The knowledge base has
compiled over 275 million facts13 about over 9 million entities so far.

Wolfram |Alpha14 is a computational knowledge engine, which means that user queries are
processed and the answer is computed rather than retrieved from an existing knowledge base.
Wolfram |Alpha focuses on scientific data and computation; the range of concepts is therefore
not as wide as on Wikipedia. Among these are the concepts Person, Country, City, Mineral,
and Mountain. The actual data about the entities comes from curators and is manually
checked15 so that the knowledge base is very accurate.

Kosmix (Rajaraman, 2009a,b) is a service that tries to satisfy informational searches (for
example, a search for a name of an entity such as Jim Carrey). It categorizes the query
with the Kosmix Categorization Service (Rajaraman, 2009b) and selects relevant Web pages
to query. Kosmix has a large ontology with concepts and entities, information about the
entities, such as facts, images, videos, and news, are searched at query time from the Deep
Web through API calls. Kosmix’s knowledge base automatically grows by analyzing millions
of RSS entries for new entities, such as movies or artists.

Cyc (Lenat, 1995) is a manually-created knowledge base of common sense knowledge, such
as “You have to be awake to eat”. As the knowledge base developed, it is now possible
to automatically populate the knowledge base with facts from the Web about, for example,
famous people and organizations (Shah et al., 2006). However, the entities must have been
entered into the knowledge base beforehand. All knowledge is given in English. Cyc has been
released in two versions, “OpenCyc”, a free version of the knowledge base containing about
47,000 concepts and 306,000 facts, and “ResearchCyc”, a version for the research community,
which comes with tools for parsing, editing, querying, and inferring knowledge.

KnowItAll (Etzioni et al., 2005) is a domain-independent, unsupervised system that automat-
ically extracts entities and facts from the Web. The system’s strength is finding new entities

12http://www.trueknowledge.com/, last accessed on 25th of March 2012
13http://trueknowledge.com, last accessed on 25th of March 2012
14http://www.wolframalpha.com/, last accessed on 25th of March 2012
15http://www.wolframalpha.com/faqs9.html, last accessed on 20th of June 2012

30 Background

for a given concept using pattern learning and wrapper induction. The input for the system
is a set of concepts, attributes, and relations.

TextRunner (Banko et al., 2007) goes one step further beyond the capabilities of KnowItAll
because it does not require any user input. Its only input is the corpus of the Web pages,
thus the approach is more scalable and easier to apply for new domains. Unlike KnowItAll,
TextRunner does not use extractions from lists and is limited to the entities that can be found
in free text patterns.

Alice (Banko and Etzioni, 2007) is a system that tries to learn general world knowledge,
similar to that covered in Cyc, continuously from the Web. Alice builds upon TextRunner
and uses its relation extraction techniques to extract information such as “X grows in Y” where
X can be an instance of a fruit and Y can be an instance of a location. The system then creates
a learning agenda and tries to discover more concepts and learn about them. Alice relates to
this thesis as they try to learn a large knowledge base from the Web in a continuous manner.
Alice’s focus is, however, on “general knowledge” and topic detection instead of entity and
fact extraction.

DBLife (DeRose et al., 2007) is an instance of the Cimple Project on Community Information
Management. DBLife manages information about the database research community by ex-
tracting paper authors and relations between them from Web pages and bibliographies. The
knowledge base can then help people in the community to find related articles and researchers.
The knowledge base contains information about 407,000 entities16.

Factual17 is another knowledge base where users can read and submit structured data. Unlike
Freebase, users may add any kind of data in tables, regardless of concepts, attributes, or
entities.

Google Squared (Crow, 2010)18 was another way to compare entities and their facts. The
view is a database-like table with one entity per row and facts about the entity in the columns.
Google Squared supported theoretically every concept that can be found on the Web; entities
and facts were extracted from multiple sources.

Recently, Google also started building a huge graph connecting more than 200 million entities
(Ulanoff, 2012). Google can then employ these connected entities to generate quick answers
for search queries or propose related entities for example.

The Kylin Ontology Creator (KOG) (Wu and Weld, 2008) uses Wikipedia’s Infoboxes as
training data for a machine learning algorithm that uses the generated model to extract more
information from the textual parts of Wikipedia pages. They therefore refine the Infobox
ontology with information buried in the text. Avatar (Thathachar et al., 2006) is a rule-
based information extraction system that finds relations between entities.

Other knowledge bases, such as Wikipedia, Answers19, and START (Katz, 1997) 20, were not
discussed since their data is primarily meant to be consumed by human beings and not by
machines.

16http://dblife.cs.wisc.edu/, last accessed on 25th of March 2012
17http://www.factual.com/, last accessed on 25th of March 2012
18The service was shut down on 5th of September 2011.
19http://www.answers.com/, last accessed on 25th of March 2012
20http://start.csail.mit.edu/, last accessed on 25th of March 2012

Summary 31

Table 2.6 shows a comparison of the discussed knowledge bases (“K” stands for thousand
and “M” for million). The table allows us to see the approximate21 numbers of concepts,
attributes, entities, and facts. These numbers are difficult to compare since some knowledge
bases count entities as “topics”, “terms”, or even concepts. Attributes are also often relations,
such as “starsIn(Actor, Movie)”. We also reviewed how these knowledge bases are expanded.
Possible values are “auto” for automatically using extraction techniques and “user” when it
relies on input by users. If it extracts automatically, we also tried to find out which sources
are used for the extraction. Our findings are approximate since some of these systems are
commercial and this information is not easily available.

Knowledge Base #Concepts #Attributes #Entities #Facts Expansion

ReadTheWeb 250 550 ? 300 K auto/Web

DBpedia 320 1.6 K 3.6 M 1,000 M user/single source

Freebase 170 940 22 M 300 M auto&user/mult.sources

True Knowledge ? ? 27.8 M 635 M user

YAGO 250 K 92 10 M 80 M auto/Web

TextRunner - - - 7.8 M auto/Web

(Open)Cyc 500 K 26 K ? 5 M user

Table 2.6: Comparison of Knowledge Bases

The past paragraphs gave an overview of state-of-the-art knowledge bases and information
extraction systems. While many knowledge bases provide high quality information about
popular concepts, such as movies or cities, none of the knowledge bases provides sufficient
methods for automatically finding new entities on the Web across a wide range of domains.
Furthermore, even growing knowledge bases such as DBpedia and Freebase rely on a single
source (for example Wikipedia) or users to input data. We differentiate from the introduced
systems in the approach by using and comparing multiple automatic extraction
techniques, the focus on different areas of the Web, and the automatic assessment
of extracted information to improve the quality of the knowledge base.

2.5 Summary

In this chapter, we explained basic terms that are used throughout the rest of the thesis and
we briefly reviewed related systems. In Section 2.1, we defined the ontological terms that
we consistently use throughout the entire thesis. In Section 2.2, we outlined what kinds of
sources we can find in which areas of the Web. We concluded that our focus is on extracting
information from semi-structured HTML Web pages and that the Deep Web and the Semantic
Web provide growing sources of valuable information. In Section 2.4, we gave a broad overview
of related knowledge bases and information extraction systems. We compared the sizes and
precision values of the systems and concluded that although many of them provide high
quality information about popular concepts, few utilize methods for continuous, automatic

21Different sources have different numbers which is also due to the quick expansion of some of these knowledge
bases.

32 Background

expansion of their knowledge bases. In Section 2.3, we showed which evaluation measures can
be applied in order to evaluate entity extraction and assessment methods.

The next chapter will present an architecture for an ontology-driven information extraction
system. We will explain which entity extraction techniques we will employ, as well as how we
extract statements, facts, news, question and answers, and interactive content from the Web
to populate the knowledge base.

Chapter 3

Architecture

In this chapter, we introduce the architecture of the WebKnox system. The focus of the
system is to extract entities and information about those entities in a way that they can be
used for question answering.

Figure 3.1 presents a diagram of the components of the WebKnox system. The diagram
reveals the necessary components for each step, beginning with the creation of an ontology
to finally answering queries from a user. Each component will be explained in more detail in
the following sections.

Figure 3.1: Overview of the WebKnox Architecture

While Figure 3.1 depicts the main components of the system, Figure 3.2 shows a high-level
overview of the main cycle performed by the system. The main cycle consists of four basic
steps that are infinitely repeated. First, all extraction components run sequentially in the

34 Architecture

extraction phase. Second, extractions are assessed; extractions that are possibly incorrect are
discarded. Third, the system updates several models used in some of the extractors based
on new information acquired during the extraction phase. Finally, extracted information is
stored before the loop starts again.

Figure 3.2: Overview of the Main Cycle of the Processes

3.1 Components

In this section, the main components of the described architecture are explained in detail.

3.1.1 Controller

The controller component is responsible for managing the main cycle shown in Figure 3.2.
Each extraction component gets a time slice in which it runs its infinite extraction loop. After
the time in the slice runs out, the next component continues its extraction from where it last
stopped. Configurations for the length of the time slices and other meta information are
stored in the Control file, which is read by the Controller component.

3.1.2 Extraction and Assessment

The extraction and assessment part of the system is observed and controlled by the Controller
and consists of eight main components. All components have read and write access to the
Storage and use the retrieval part of the architecture. Each component is briefly described
here; a more detailed description of each component can be found in the sections dedicated
to these components later.

� Template Extractor: The Template Extractor uses ontological information to ex-
tract sentence patterns used online to describe facts about entities in plain text format.
Settings for how the extraction works are stored in the Template Settings file. Hensel
(2011) has in-depth information on this topic.

� Sentiment Extractor: The purpose of the Sentiment Extractor is to find sentences
about the entity that carry either positive or negative sentiment. See Section 8.3 for
more information about this component.

� Event Extractor: The Event Extractor reads online news and tries to correlate entities
to current events. See Section 8.2 for details about this component.

Components 35

� Entity Extractor: The Entity Extractor discovers named entities for the given con-
cepts in the ontology. The discovered entities are the basis for all the other extraction
components. The entity extraction components and methods are a major part of this
thesis and are explained in detail in Chapter 5.

� QA Extraction: The Question Answer Extractor uses focused crawling techniques
using the QA Sites configuration file to discover and extract questions and their answers
from answer-rich sites on the Web. A detailed description of the algorithm can be found
in Chapter 9.

� Media Extractor: Entities can often be described in or linked to media such as videos,
images, and interactive multimedia objects. A detailed explanation of this component
can be found in Section 8.1.

� Fact Extractor: The Fact Extraction component uses ontological information to dis-
cover and extract facts about the entities. Chapter 7 describes five techniques to extract
facts from the Web.

� Trust Assigner: The Trust Assigner component assesses extractions. Chapter 6 and
Section 7.5 explain assessment and trust calculation in more detail.

3.1.3 Retrieval

The retrieval part contains components for accessing resources on the Web.

� Web Searcher: The Web Searcher connects the WebKnox system to search engines
for the Visible Web, such as Google and Bing. Furthermore, it can connect the system
to APIs of several services, such as Twitter and Facebook, for more information.

� Linked Data Searcher: The Linked Data Searcher connects WebKnox to indices of
the Semantic Web, such as Sindice.

3.1.4 Ontology

WebKnox utilizes an extraction ontology that must be created by a human domain expert.
The expert is, however, supported by an ontology creation tool. The ontology is read and
written to an Ontology OWL file and the Storage. The tool called “Ontofly” is described in
more detail in Section 7.1 and Section 10.1 and by Willner (2010), Urbansky et al. (2010),
and Willner (2011).

� Domain Expert: The domain expert uses a Web browser to access the Ontology
Creator, a tool to browse the Web and create an ontology “on the fly”.

� Attribute Suggester: The Attribute Suggester supports the domain expert during the
ontology creation. It suggests synonyms, values, datatypes, and ranges for attributes of
the concepts of the ontology.

36 Architecture

� Ontology Creator: The Ontology Creator is a Web application that helps the domain
expert create an ontology while browsing the Web.

� Ontology Manager: The Ontology Manager reads and writes the ontology. It ensures
that synonyms, ranges, and specific labels are stored correctly for later use.

3.1.5 Question Answering Interface

The question answer interface allows people and automated agents to query the knowledge
base of WebKnox (see Chapters 9 and 10).

� Agent: A user or automated agent can access the interface via HTTP.

� Query Parser: The Query Parser analyzes the user query. It classifies the user intent
and decomposes the question before finding or computing an answer.

� Answer Computer: The Answer Computer tries to answer the analyzed question
using only the knowledge stored in WebKnox.

� Answer Finder: In contrast to the Answer Computer, the Answer Finder uses external
sources via the retrieval part of the system to find matching answers for the given
question.

� Answer Generator: The Answer Generator uses the extracted templates from the
Template Extractor to formulate a plain text answer to a posed question using the
information from the Storage (see Hensel (2011) for more information about template
extraction and usage with WebKnox).

3.1.6 Storage

The Storage is where all extractions are saved and managed. In addition to the Storage,
several files are used to configure and manage different components of the system. In addition
to the already mentioned files, Models are stored in the file system as well. These Models
have been learned in a supervised learning phase and are then used by different components
for their extraction processes.

3.2 Summary

In this chapter, we presented an architecture for an entity and entity-centric information
extraction system for question answering. We displayed the architecture overview before
briefly describing the purpose of each of the presented components. This chapter serves as an
overview of the entire system while also referring the reader to the sections in this document
where the components are explained in detail.

Chapter 4

Timely Source Retrieval

One central objective of this thesis is to keep the knowledge base of entities up-to-date. To
achieve this, we need to continuously retrieve new pages from the Web. The objects of interest
in this chapter are feeds because they were designed for the purpose of providing the latest
updates from a source. “Feeds” are a technology used in the World Wide Web to notify
interested users of recent updates and changes to a website’s content. They are transferred
as XML messages in one of the two standard formats, RSS and Atom, each with multiple
substandards. Usually they are fetched by programs called feed readers. Feeds are used
by news sites, blogs, and social media portals to announce new content to interested users.
We can therefore use this technology to inform ourselves about new updates of Web pages
to extract entities. For example, a movie insider website could post “J.J. Abrams started
shooting Mission Impossible 6 today”. We would then need to read the feed in a timely
manner and discover the new entity Mission Impossible 6. A small experiment on 15 news
articles found on the Web (five each from BBC, CNN, and The Guardian) has shown that
each news article contains about 17 entity mentions on average with four unique entities per
article. We therefore believe that news Web feeds are a good source for entity discovery.

Thesis 2 in Section 1.4 states that we are able to use a moving average algorithm on the
feed update intervals to outperform a fixed polling strategy and algorithms based on the post
distribution of feeds. We will evaluate this thesis at the end of this chapter.

4.1 Feed Reading

In many ways, feeds replace newspapers by providing the most recent content from news sites,
blogs, Web forums, and diverse social media pages. The original feed technology provides no
“publish-subscribe” mechanism, which means a client application trying to receive regular
updates from a feed must poll the feed’s address regularly. This has several drawbacks. First,
if the polling interval is too large, updates could be missed. The näıve solution is to poll
very often, increasing network traffic unnecessarily. Increased traffic is a burden on both feed
consumer and provider, since it requires more powerful hardware to handle all requests. This
traffic introduces more costs to server providers. For feed consumers, especially on mobile
devices, it can result in additional costs if they pay per use. Even if they have a flatrate,

38 Timely Source Retrieval

additional polls increase the currently growing disproportion between wireless Internet traffic
and its revenue (Allied Business Intelligence, 2010). On the other hand, there are instances
when one wants to be notified of updates as early as possible. One example is the stock
market; the reader should poll the feed right after an update occurred to be up-to-date. An
additional problem is that once a user subscribes to a feed, the feed is polled for a long period
of time, even if the user no longer reads it. This behavior does not occur with traditional
Web pages, which are accessed only when a user is interested in their content (Sandler et al.,
2005). In addition to classical feed readers, there is a growing number of systems such as
Watchdog (Hu and Chou, 2009) or LocalSavvy (Liu and Birnbaum, 2008) extracting and
processing information from feeds automatically, and thus putting even more load on the feed
servers.

To reduce traffic, most feeds – 83 % of those used in our research – provide some means to
return feed content only if it has changed since the last request. One method is the support of
HTTP “LastModified”, another option is the support for the “ETag” header field. Additional
methods are provided by the feed standards directly. The time to live (TTL) element provides
information on the time the next update will occur. To prevent polls during seldom updated
times, such as on the weekend or during the night hours, some feeds support “skipHours” and
“skipDays” elements. In addition, there are blogs streaming their content through an endless
HTTP stream removing the load imposed by feed readers. This technique is unfortunately
not adopted by many blog providers (Hurst and Maykov, 2009). Furthermore, there are patch
systems, such as “pubsubhubbub” (Google, 2010), which can be seen as a moderator between
feed readers and servers. All these solutions only work if both client and server support
the extensions. Pubsubhubbub, for example, is only supported by 2 % of the feeds in our
dataset. In fact, many clients still support only a fixed update interval, usually set to one
hour by default and never changed by most users (Liu et al., 2005). It becomes obvious that
inefficient polling will still be the predominant strategy for the next few years, thus motivating
the development of more efficient retrieval strategies.

The goal of our research is to reduce the problems mentioned so far without changing the
current technology. We show that it is possible to make a feed reader learn about the update
behaviors of different feeds. An optimal strategy will minimize the number of polls to find
a new item without increasing the delay between the publish time of the item and the poll
significantly. We call this approach the “min delay policy”.

We make the following contributions in this chapter:

� A set of algorithms to predict a feed’s future update behavior based on its update
history.

� An evaluation of these algorithms on a corpus of 180,000 real feeds from which we
collected an update history over a span of three weeks yielding over 19 million items.

� A classification of feeds into activity classes and an analysis of class distribution over
our corpus.

Feed Reading 39

4.1.1 Related Work

Polling item streams with irregular updates is relevant in several research areas. We consider
work in Web recrawling and previous work in feed polling.

Obtaining the most recent version of a changed Web page as early as possible is a problem
found in the area of recrawling Web pages for Web search engines, which is a very active
research area. Most approaches in this area model Web page updates with Poisson distribu-
tions (Tan and Mitra, 2010, Wang, 2006) and use some variation of the Post Rate approach.
Since a Poisson distribution simplifies the actual update behavior of Web pages, there are
other works using different probability distributions (Wolf et al., 2002), but still applying a
probabilistic Post Rate update strategy. Other researchers in this area focus on the distribu-
tion of limited crawler resources (Pandey et al., 2003, Xu et al., 2010, Edwards et al., 2001,
Cho and Garcia-Molina, 2003).

Over the last 10 years, the optimization of feed polling developed in two directions. The first
tries to explore alternative systems for feed propagation, while the second tries to develop
algorithms on top of the current feed technologies. Our approach is of the second type, but
since approaches in literature often have similar ideas, we review state-of-the-art systems from
both areas.

Mediator systems (Rose et al., 2007, Ramasubramanian et al., 2006, Chmielewski and Hu,
2005) are able to handle issues arising on the client side, but transfer the polling problem to
the mediator system. Except for Rose et al. (2007), none of these approaches considers the
problem of adaptive polling and even Rose et al. (2007) provide no solution. Sandler et al.
(2005) go one step further and propose a system that changes the basic feed technology from
the HTTP-based request-response paradigm to a peer-to-peer (P2P) approach. This change
would be quite hard to implement, since users are used to the way feeds work today.

The adaptive feed reader algorithms described by Lee et al. (2008) and Lee and Hwang (2009)
use a Post Rate update approach, calculating the probability that a new update occurs on
the next day. Both depend on the semantics of the day of the week (Sunday is different from
Monday) to predict the next update and both assume that a feed is run by a single person
with a fixed life cycle that causes a fixed update behavior. This is sufficient for average blogs
that are updated once a day (or even less often), but is insufficient for frequently updated
feeds, such as feeds from digg.com where people can collaboratively post news.

Also, Liu et al. (2005) show that feed readers could save 93 % of the bandwidth if they received
only deltas, and finally suggest that there are different update intervals suitable for different
feeds. Unfortunately, they do not provide any algorithms.

Most similar to our approach are the algorithms described by Adam et al. (2010), Han et al.
(2008), and Bright et al. (2006). All three propose adaptive feed polling algorithms to address
the problems mentioned so far. Adam et al. (2010) describe an algorithm for minimizing the
number of a feed’s pending articles, meaning all available but not yet retrieved items. They
apply static features and the feed’s update history. Their system is split into two phases: a
four-week training phase and an execution phase. During the training phase, the algorithm
learns the polling interval it uses during the execution phase. They evaluated their system
on a set of 460 feeds and achieved an improvement of 8.5 % less pending articles than with

40 Timely Source Retrieval

a simple round-robin approach. Unfortunately, they focus only on regularly-updated news
feeds. Similar work is presented by Bright et al. (2006). However, where other approaches
only consider adaptation to one update history, they propose to aggregate similar update
histories and make predictions based on this aggregated information. Unfortunately, they
did not specify how to find similar update histories. Their algorithm was evaluated over the
course of two weeks, with seven days of a learning phase and seven days of an execution
phase, on approximately 5,000 sources. It reduces requests by 47 % compared to an approach
using TTL. Both algorithms need a disproportional amount of time to adapt to changing feed
behavior and only Bright et al. (2006) propose a simple adaptation to feed update bursts.
This adaptation, however, is insufficient if a feed changes its interval slowly over time.

Han et al. (2008) propose two goals for optimization. They introduce a “minimum delay
policy” that should update each time a new item arrives and a “minimum missing policy”
that should check for new items as late as possible without missing any items. They assume
a constant update interval of a feed and a weight. The approach was evaluated on a dataset
of 1,000 RSS feeds with updates over a time frame of six weeks and update intervals of two
hours. It reduced missed items by 29 % compared to a static update policy. While their
work is very similar to our approach, their focus is quite different. Similar to the works on
Web recrawling, they concentrate on the assignment of limited resources and thus are only
complementary to our approach.

Another approach that tries to predict the most suitable polling time for Web feed updates
is proposed by Sia et al. (2007a) and Sia et al. (2007b). They try to assign polls to resources
similarly to Han et al. (2008). However, their algorithms are not adaptive to changing feed
behavior. Therefore, they might only work on their set of 12,000 feeds chosen from the syndic8
dataset because these feeds usually show a very periodic update behavior.

Several solutions have already been proposed to the polling problem. However, all of them
have different optimization goals and focus on a specific subset of feeds. Many of them cannot
adapt dynamically to changes in a feed’s update behavior. Most are following the probabilistic
Post Rate algorithm, which needs a large previous update history. The biggest problem for a
comparative analysis, however, is the lack of a common dataset on which similar algorithms
can be evaluated. We created such a dataset as described in Section 4.3.1 and made it publicly
available.

4.1.2 Feed Activity Patterns

In our study of the feeds’ update behaviors we defined six different patterns. These patterns
cannot always be isolated and a feed might change its behavior. Nevertheless, they help us
to classify feeds and develop a more sophisticated polling strategy. Figure 4.1 shows the six
different activity patterns. On each time line, the dots represent the points of time of a new
item in the feed. We used rule-based classification with the following features: gap between
items, standard deviation of items, time to last item, and average items per day. The six
patterns we identified are:

� Zombie: The feed is still available, but the last activity was a long time ago. We define
“long time ago” as about ten times the average update interval of the feed.

Update Strategies 41

� Spontaneous: Feeds post news every now and then without consistency. They often
belong to smaller blogs with single authors showing spontaneous update behavior. The
median item gap is at least one day.

� Sliced: These feeds exhibit a bursting behavior at certain times and inactivity at other
times. We found this behavior to be typical of newspapers, which update frequently
in the day time, but publish no news during the night. We classify all feeds between
spontaneous and constant as sliced.

� Constant: These feeds post news almost constantly – day and night, even in different
time zones. They often belong to large news organizations, such as BBC or Reuters.
The longest item gap must be smaller than two hours, and the feed must publish at
least four items each day on average.

� Chunked: Some feeds post several news items at exactly the same time. Therefore,
multiple items have the same publish date.

� On-the-Fly: Some feeds generate their content on request time and all items have the
current time as their publish date. This behavior makes it even harder for feed readers
to estimate an update interval.

Figure 4.1: Feed Activity Patterns

It becomes obvious that the usual polling strategy of requesting the feed every hour or any
other fixed time interval is not efficient. If we can classify a feed as a “zombie” we can
save a significant amount of bandwidth. The same is true for “spontaneous” feeds, where
most of the time there are no new items, and for “sliced” patterns, which we do not need
to check at certain times, such as during the night. Figure 4.2 shows the distribution of
the activity patterns in our dataset. For 94 % of the feeds (patterns “sliced”, “zombie”, and
“spontaneous”) the polling strategy with a fixed interval is not sufficient. Therefore, we now
propose our update strategies, which take the update behaviors of feeds into account.

4.2 Update Strategies

In this section, we describe four update strategies, three of which adapt to the feeds’ update
behaviors. In the “min delay policy”, we try to read a feed as soon as it has at least one new

42 Timely Source Retrieval

Spontaneous
42.90%

Sliced
28.50%

Constant
3.10%

Chunked
2.60%

On-The-Fly
0.30%

Zombie
22.60%

Figure 4.2: Feed Activity Pattern Distribution

item and use the following notation for modeling the problem: u is the update interval, that
is, the predicted time until a new item is posted in the feed; w is the window size of the feed,
that is, the number of items that can be collected at once when looking up the feed; in is the
publish time of the nth item; and p is the time of the poll. For all strategies, we limit the poll
interval to [2min, 31d] to prevent constant polling or not polling at all.

4.2.1 Fix

The Fix strategy is the simplest algorithm, which polls the feed in fixed intervals. We chose
one hour and one day as the two baseline intervals, Fix 1h and Fix 1d, as these intervals are
reportedly common change intervals of websites (Grimes, 2008). Furthermore, once per hour
is a common default update interval in feed readers.

4.2.2 Fix Learned

In this strategy, we learn the time between two new items and use it as a fixed interval for
future polls. At the very first poll, we collect all publish dates for the items, calculate the
average interval length as shown in Equation 4.1, and do not change this interval anymore
in the future. For feeds with the “chunked” pattern, the average difference between items is
likely to be zero; instead, we take the time difference from the current poll to the last entry.
We also cannot calculate the average difference for “on-the-fly” patterns, so we set a fixed
interval to one hour.

u =
iw−1 − i0
w − 1

(4.1)

4.2.3 Moving Average

The Moving Average strategy functions almost the same as Fix Learned, but updates the
predicted interval u continuously. The idea is that the last intervals between new items are a
good predictor for the publish time of the next item. As seen in Figure 4.2, about 28.50 % of

Update Strategies 43

the feeds are “sliced”, that is, they change their post frequencies quite often. By continuously
averaging the intervals, we can detect those frequency changes.

There are two possible observations at each time of poll p. Either there are new items in
the window of the feed or not. If there are new items, we apply the moving average formula
as shown in Equation 4.1. If there are no new items, we have polled too early and should
increase the update interval u. Calculating the update interval with Equation 4.1 would yield
no difference because we would still have the same items in the window as the last time we
polled. We therefore add a “virtual item” on the timeline at the time p so that ivirtual = p
and remove the oldest one from the window. If we now calculate the update interval again, we
have the chance to increase it and skip gaps of no postings in the feed. The update calculation
is shown in Equation 4.2.

u =
p− i1
w − 1

(4.2)

Consider the case shown in Figure 4.3. We have a feed with the fix window size w = 5 that
follows the “sliced” pattern, that is, there are periods of more frequent updates and periods
of rare updates (period 1 to period 3). We now poll the feed for the very first time at p0

and calculate the update interval u0 by averaging the update intervals of the five items in
our window w0. The next poll p1 is therefore p0 + u0. At p1, we have five items in our
window again and the new update interval will not change much since the one new item that
we found and the last one in our window have similar intervals. After p1, period 2 of less
frequent updates starts. At p2, we still have the same items in our window that we had at
p1, so calculating the new update interval u1 using Equation 4.1 would not change anything.
Since we want to increase u, we drop the oldest item in the window and replace it with the
virtual item (light gray circle). The following polls are farther apart from each other because
the update intervals u1 to u8 increase slightly due to fewer posted items. At p9, period 3 of
more frequent updates has started and we must decrease the update interval in order to lower
the delay between polls and new items. We find five new items in our window and the new,
smaller update interval stays about the same until p13 yielding only short delays between the
polls and each new posted item in the feed.

Figure 4.3: Changing Update Intervals in the Moving Average Strategy

4.2.4 Post Rate

The Post Rate strategy learns the update pattern for each feed and uses this data to predict
future updates. A very similar strategy has been described by Adam et al. (2010) and Bright

44 Timely Source Retrieval

et al. (2006) where it is called “individual-based history adaptive strategy”. Figure 4.4 shows
a sample post distribution for a feed with the hour of day on the x-axis and the probability
of a new item occurring at that hour on the y-axis.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2
1
3
1
4
1
5

1
6

1
7
1
8
1
9
2
0

2
1

2
2
2
3
2
4

P
ro

b
ab

ili
ty

 o
f

N
e

w
 It

e
m

Hour of Day

Figure 4.4: Example Post History

The goal is to find the update interval u when we can expect a new item to be posted. To find
this interval, we can add the probabilities of a new item at a certain time along the timeline
until the sum of probabilities is one (certainty). The sum of the number of time units that
we have to move along the timeline to reach a probability of one is then our interval u.
Equation 4.3 shows how to calculate the number of expected new items in a certain time
frame. Our update interval u is tgoal− tnow with tgoal being a future point in time so that the
number of expected new items is one or higher.

newItems(tgoal) =

tgoal∑
t=tnow

postRate(t) (4.3)

Consider that we poll a feed with the post distribution from Figure 4.4 at p = 8 a.m. We
now sum up all post rates for the subsequent time frames after 8 a.m. At 11 a.m. the number
of predicted items is greater than one (0.2 + 0.25 + 0.4 + 0.45); therefore, in this example
we should set our new update time u to three hours. While the time resolution in the given
example is hours, we use a finer resolution by employing the meticulous post distributions of
the feed, that is, we have 1,440 time frames with probabilities for a new item in each minute.

4.3 Evaluation

In this section, we evaluate the update strategy algorithms for the “min delay policy”, where
the goal is to minimize lookups while still getting the next new item as soon as possible. A
good strategy should therefore minimize the number of polls (and thereby also the network
traffic) and the delay between polls and publish times of new items. We analyze each goal
separately and discuss them afterwards. As baselines, we compare the Fix strategies Fix 1h
and Fix 1d with the Fix Learned, Post Rate, and Moving Average strategies.

Evaluation 45

4.3.1 Dataset

To evaluate feed reading algorithms and their update strategies, we need a dataset of feeds
and their items. Our most important requirement for the dataset was the diversity of the
feeds in order to represent a real world snapshot of the feeds on the Web. To the best of
our knowledge, no such dataset is available. For this reason, we created one and made it
publicly available at the research platform Areca1. Liu et al. (2005) and Rose et al. (2007)
used the feed collection from syndic8.com, however, we decided that this collection is not
broad enough. The dataset contains about 100,000 feeds, but only every fifth comes from
a different domain. Moreover, many feeds are not crawled, but rather inserted manually,
skewing the distribution.

Gathering Methodology

We created keyword lists with tags and categories from Web pages, such as delicious.com,
flickr.com, and dmoz.org. We used these more than 70,000 keywords and combinations of
them to query Yahoo and utilized the autodiscovery2 mechanism on the top 1,000 Web pages
returned for each query. This way we gathered 240,000 feeds for a wide variety of topics from
220,000 different domains. After merging our dataset with additional feeds from syndic8.com
and removing dead, empty, broken, and single item feeds, we ended up with over 180,000
feeds. It is also worth mentioning that our discovered feeds overlapped with the syndic8
dataset in only 143 URLs.

After polling each feed over the course of three weeks and storing each item along with its
timestamp, title, link, number of items, and size, we had a real dataset of over 19 million
items.

Characteristics

Despite standardization efforts, feeds are still heterogeneous in their structure and the data
formats in which they are delivered. We analyzed 11 versions of RSS and Atom. By further
analyzing the dataset, we discovered several feeds with up to 12,000 items per request. As
this is very unusual, we discarded every feed with more than 1,000 items.

Figure 4.5 shows the feed size histogram of our dataset. Interestingly, with an average size
of 55 kilobytes, a feed is more than double the size of an average Web page3, which is about
25 kilobytes (King, 2009). This distribution shows that feeds can grow to a significant size,
making an intelligent update strategy necessary. To reduce traffic, 83 % of the feeds in our
dataset support either ETags or LastModified, about 13 % even support both. When a feed
provides such a functionality, a feed reader that makes use of it only gets the HTTP header,
which is 210 bytes on average for the feeds in the dataset. Possible savings are evaluated in
Section 4.3.2.

1http://www.areca.co/1/Feed-Item-Dataset-TUDCS1, last accessed on 25th of March 2012
2Autodiscovery mechanism searches the Web page’s header for explicitly stated feed URLs.
3Considering the HTML content alone, not all the images and additional scripts that might be referenced

by the page.

46 Timely Source Retrieval

0%

5%

10%

15%

20%

25%

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

m
o
re

P
e

rc
e

n
ta

ge
 o

f
th

e
 F

e
e

d
s

Feed Size in Kilobytes

Figure 4.5: Feed Size Histogram

It is also worth mentioning that most of the feeds only had a few new items within the
observation period of three weeks. While half of the dataset had only 2 new items, 10,000
feeds had more than 180 new items, and some had more than 100,000. This Zipf-distribution
is shown in Figure 4.6.

1

10

100

1,000

10,000

100,000

1,000,000

0

1
0
,0
0
0

2
0
,0
0
0

3
0
,0
0
0

4
0
,0
0
0

5
0
,0
0
0

6
0
,0
0
0

7
0
,0
0
0

8
0
,0
0
0

9
0
,0
0
0

1
0
0
,0
0
0

1
1
0
,0
0
0

1
2
0
,0
0
0

1
3
0
,0
0
0

1
4
0
,0
0
0

1
5
0
,0
0
0

1
6
0
,0
0
0

1
7
0
,0
0
0

N
u

m
b

e
r

o
f

Fe
e

d
s

Number of New Items

Figure 4.6: Number of Feeds versus Number of New Items

Evaluation 47

4.3.2 Network Traffic

First, we compared the network traffic of the five strategies over the course of three weeks.
Figure 4.7(a) shows the total transferred amount of gigabytes for each strategy when ignoring
the ETag or LastModified headers. Polling a feed once every hour, regardless of its real update
behavior, leads to the highest traffic (Fix 1h).

Applying the Moving Average strategy leads to the lowest network traffic with a savings
of 98.3 % in traffic volume compared to the Fix 1h strategy. Interestingly, the Fix Learned
strategy performs only slightly better than Fix 1h although it takes the initial update interval
into consideration. Moving Average works the same as Fix Learned, but adjusts the update
interval at each new poll. We can therefore conclude that feeds change their update behaviors
frequently and the update strategy benefits from picking up on the change.

In Figure 4.7(b), we compared the network traffic again, but this time each strategy tries to
reduce traffic by using the ETag and LastModified headers. 83 % of the feeds in our dataset
support at least one of the two headers, which leads to an average savings in traffic volume
of 95.4 % compared to not using these headers. The Fix 1h and Fix Learned strategies are
still performing worst and the Moving Average is now at the level of the Post Rate strategy.
The savings of Moving Average and Post Rate compared to Fix 1h are still 89.5 % and 89.8 %
respectively.

4.3.3 Timeliness

After we have compared the network traffic costs for the strategies, we now compare the
delays in discovering newly posted items. Since Fix 1d polls once a day, we only selected
feeds that had at least 21 updates during the creation of our 21 days dataset. Figure 4.8
shows – as expected – that Fix 1h is about 30 minutes too late on average, while Fix 1d
reads each new item about 11 hours too late. Fix Learned is about 85 minutes behind on
average. Post Rate learns from the complete post history of a feed and can therefore improve
its update intervals. Within the first polls, it rapidly reduces its delay from seven to four
hours; after that, the delay decreases more slowly. Moving Average decreases its delay at the
same rate, so we are interested in how accurate they become after more polls. High average
delays are caused by feeds with large update intervals.

In Figure 4.9, we had a second look at the delays, averaging over all feeds that had at least
300 updates during the creation of our dataset. This subset contained 1,541 feeds, dominated
by the activity patterns Constant (54 %) and Sliced (45 %). Now it becomes obvious that the
learning strategies outperform Fix 1h (and Fix 1d, not shown). Fix Learned performs best
with a “constant” average delay of seven minutes, followed by Moving Average with eight
minutes after 25 polls with at least one new item. Post Rate continuously learns from the
growing history, but even after 300 polls, it still performs worse than Moving Average and
Fix Learned.

So far, we have determined that some strategies adapt their polling intervals and decrease
their average delays. As mentioned, infrequently updated feeds negatively influence the delay
in minutes when averaging over all feeds.

48 Timely Source Retrieval

0

1

10

100

1,000

10,000
0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

Tr
an

sf
e

rr
e

d
 D

at
a

V
o

lu
m

e
 in

 G
ig

ab
yt

e
s

Time in Hours

Moving Average Post Rate Fix Learned Fix 1h Fix 1d

(a) Traffic Without Using Traffic-Reducing Headers

0

1

10

100

1,000

10,000

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

Tr
an

sf
e

rr
e

d
 D

at
a

V
o

lu
m

e
 in

 G
ig

ab
yt

e
s

Time in Hours

Moving Average Post Rate Fix Learned Fix 1h Fix 1d

(b) Traffic Using Traffic-Reducing Headers

Figure 4.7: Transferred Data Volume During Three Weeks Using Different Update Strategies

Figure 4.10 compares the feeds’ real and predicted update intervals, using heatmaps with
log10 scales for all axes to show how precise the strategies for a variety of update intervals are.
A perfect strategy would be a straight line with f(x) = x. Polling with f(x) < x means too
often and f(x) > x results in a delay. We omitted plotting the baselines Fix 1h and Fix 1d
because they were horizontal lines at 1hr and 1d respectively. All figures have 31 days as the

Evaluation 49

0

60

120

180

240

300

360

420

480

540

600

660

720

780
1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

A
ve

ra
ge

 D
e

la
y

in
 M

in
u

te
s

Number of Poll with at Least One New Item

Moving Average Post Rate Fix Learned Fix 1h Fix 1d

Figure 4.8: Timeliness of the Update Strategies: 21 Polls

0

5

10

15

20

25

30

35

40

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

A
ve

ra
ge

 D
e

la
y

in
 M

in
u

te
s

Number of Poll with at Least One New Item

Moving Average Post Rate Fix Learned Fix 1h

Figure 4.9: Timeliness of the Update Strategies: 300 Polls

polling intervals’ upper bound (see Section 4.2). Fix Learned tends to poll too often since it
uses the feed’s first window to calculate the interval. The bottom line at two days is caused
by “zombie” feeds that once had a high update frequency, but relapsed into inactivity. Post
Rate performs better than Fix Learned. It has a lower variance and does not stay at the
lower bound of two minutes. Moving Average performs best. It shows a small variance at
the whole range of real update intervals. In contrast to Figures 4.8 and 4.9, the continuous

50 Timely Source Retrieval

Figure 4.10: Comparing Real and Predicted Update Intervals, Left: Fix Learned, Center:
Post Rate, Right: Moving Average

adapting algorithms are best when averaging over a large, broad dataset.

Table 4.1 compares the five update strategies. We compare the average delay between polls
and publish times of new items, the average number of polls needed to find a new item (PPI),
and the error which combines these two measures. As shown in Figure 4.6, there are few
feeds with many updates, but many zombie and spontaneous feeds. We therefore used two
different averaging modes, “Feeds” and “Polls”. In the averaging mode “Feeds” we averaged
the measures for all polls for each feed and averaged them per strategy (macro average). In
the “Poll” averaging mode, we averaged over all polls of all feeds so feeds with many polls
dominate the final result (micro average). We calculate the “Error” as shown in Equation 4.4.
The lower the error, the better the strategy.

Error = Delay × PPI (4.4)

Mode Strategy Delay PPI Error

Feeds

Fix 1h 30m 222.06 6,662

Fix 1d 12h:9m 9.52 6,931

Fix Learned 54h:33m 41.90 137,139

Post Rate 56h:51m 3.57 12,174

MAV 74h:37m 1.96 8,773

Polls

Fix 1h 30m 21.02 179

Fix 1d 12h:25m 1.91 1,423

Fix Learned 1h:14m 7.77 570

Post Rate 51m 5.88 300

MAV 4m 1.61 6

Table 4.1: Overall Comparison of Update Strategies

Summary 51

We can see that although the Fix 1h strategy has the smallest delay on average, it also polls
most often. The Post Rate and Moving Average strategy have similar delays, but the Post
Rate strategy polls more often on average.

The best strategy can only be determined in the context of a real application. If plenty of
resources are given and it is more important to get updates on time, the Fix 1h could be
appropriate. We can conclude, however, that the strategy that satisfies our two requirements
– a small delay and few polls – is the Moving Average strategy. Also, compared to the Post
Rate strategy, which has been proposed in literature before, the Moving Average stategy is
simpler since it does not require a post history to be stored.

4.4 Summary

In this chapter, we have developed and evaluated an efficient feed reading algorithm which is
able to read hundreds of thousands of news feeds. This algorithm is the foundation for the
extraction of entities from plain text as described in Section 5.2.4. Reichert (2012) has taken
the Moving Average algorithm and developed an improved version called MAVSync, which
additionally adjusts the polling intervals to synchronize with constantly updating feeds.

52 Timely Source Retrieval

Chapter 5

Extraction of Entities

Finding entities is the first step in building a large knowledge base. This chapter describes
state-of-the-art methods to extract named entities from the Web. First, we review related
work on entity types and sources for entity extraction. Second, we explain different ap-
proaches for extracting entities before we give a detailed description of five entity extraction
techniques used in WebKnox. In the last section of this chapter, we evaluate the used extrac-
tion techniques in respect to their extraction precision and the estimated number of correct
extractions. This chapter searches for answers to the first thesis of this work as described in
Section 1.4.

5.1 Related Work

Many researchers have dedicated their work to finding and extracting entities from text and
in the past decade, there has been more focus on extracting information from semi-structured
Web pages. In the following sections, we explain which entity type hierarchies have been used
for entity extraction, from which types of sources different approaches have extracted entity
mentions, and which extraction approaches have been employed.

5.1.1 Entity Types

Today, some NER systems recognize many types of entities, such as products, genes, or
molecules, and also subtypes of the initial entity types, such as actors (people) or mountains
(geographic locations). Sekine and Nobata (2004) have proposed 200 entity types and sub-
types in a hierarchy, which is depicted in Figure 5.1. We can see that they also included times,
such as months and days of the week, and numbers, such as monetary values and percentages,
in their hierarchy.

Another hierarchy has been presented by Brunstein (2002). She used 29 entity types for
a question answering task. It is rather common that high-level hierarchies (for example,
Location instead of City) are used for question answering. Consider the question “Where is

54 Extraction of Entities

Figure 5.1: Hierarchy of Named Entities by Sekine and Nobata (2004)

Melbourne?”. The answer is expected to be a location; it does not matter whether the entity
detector can distinguish between the concepts Country, Region, and City in this case.

Commercial NER systems such as OpenCalais1 and AlchemyAPI2 also offer up to several
hundred entity types.

5.1.2 Language

Most of the work on NER has been focused on English texts, but since many features are
language dependent, there are approaches for several other languages, such as French (Petasis
et al., 2001), Italian (Cucchiarelli and Velardi, 2001), Spanish (Sang and Meulder, 2003a),
Dutch (Meulder et al., 2002), and German (Sang and Meulder, 2003b). Languages with a
completely different set of characters, such as Chinese (Sun et al., 2002), Hebrew (Lemberski,
2003), Greek (Karkaletsis et al., 1999), Korean (Whitelaw and Patrick, 2003), and Arabic
(Huang, 2005) were studied in literature as well. To evaluate language independent NER,
Sang and Meulder (2003a) created a testbed with a German and English corpus at CoNLL
2003.

1http://www.opencalais.com/documentation/calais-web-service-api/api-metadata/

entity-index-and-definitions, last accessed on 4th of May 2012
2http://www.alchemyapi.com/api/entity/types.html, last accessed on 4th of May 2012

Related Work 55

In this work, we focus on extracting entities for the English language. Four out of five of
our extraction techniques are, however, language independent and could be applied to other
languages as well.

5.1.3 Source Types

Entities can be extracted from a variety of sources. This section describes related work
employing extraction techniques on different sources.

Structures on Web Pages

Many Web pages use templates to present contents from databases. Therefore, pages often
have a regular structure that can easily be learned. One can find many (semi-) structured
formats such as HTML lists and tables on these template pages. Exploiting these structures
can increase the number of entities one can extract from the Web. There are some systems
(Doorenbos et al., 1997, Cohen et al., 2002, Etzioni et al., 2005, Wang and Cohen, 2007) that
use techniques to extract named entities and/or relations from these structures.

Extracting Named Entities from Broadcast News

Miller et al. (1999) studied the task of extracting named entities from broadcast news. Instead
of relying on written text to find new entities, they analyzed the speech of 175 hours of
broadcast news and trained a statistical model on the transcripts. The difficulty here is
that the transcripts often do not contain any punctuation or case information, which are
often valuable features for recognizing entities. Miller et al. (1999) used the Hub4 DARPA
evaluation consisting of seven concepts (Person, Organization, Location, Time, Money, Date,
and Percent).

Extracting Named Entities from Tweets

“Tweets” are short messages (up to 140 characters) that are distributed on micro-blogging
platforms, such as Twitter3 or Tumblr4. The problem with tweets is that they often do not
adhere to grammar rules, such as capitalization or punctuation. These features are useful to
NER systems and their absence will impact the NER systems’ performance. The Stanford
NER system, which reaches about 90 % F1 value performance on the CoNLL 2003 shared
task5, loses about half its F1 socre and drops to about 46 % when used on tweets (Liu et al.,
2011). Liu et al. (2011) have built a KNN- and CRF-based NER that works on tweets. To
overcome the aforementioned problems, they use a set of orthographic and lexical features
and rely heavily on the use of gazetteers. Furthermore, they employ semi-supervised learning
using both recognizers to detect entities. Additionally, confidently tagged entities are fed back
to the training set for the next iteration. In their experiments on about 12,000 tweets, they

3http://www.twitter.com, last accessed on 25th of March 2012
4http://www.tumblr.com, last accessed on 25th of March 2012
5http://nlp.stanford.edu/projects/project-ner.shtml, last accessed on 18th of May 2012

56 Extraction of Entities

detected entities of the types Person, Location, Organization, and Product with an overall F1
value of about 80 %.

Extracting Named Entities from Queries

While NER is usually performed on long text documents, Guo et al. (2009) study the problem
of recognizing and disambiguating named entities in user queries. According to their study,
71 % of search engine queries contain named entities and recognizing them will yield better
search results. For example, they would recognize that the query “Harry Potter walkthrough”
is about the video game, not the book or movie. In order to classify the queries, they learn
a probabilistic model in a supervised way using a query log. They evaluated their approach
on the concepts Movie, Game, Book, and Music, and reached a precision@100 of 99 %.

Similarly, Paşca (2007) shows how he uses pattern learning techniques (see Section 5.1.5)
combined with seed instances to find more entities that were mentioned in user queries. In his
experiment, he showed that the automatically learned extraction patterns yield an extraction
precision@100 of 94 %. In a following study, Paşca and van Durme (2008) showed that query
logs can be used to improve open-domain information extraction from the Web.

More recently, Jain and Pennacchiotti (2010) have shown that entity extraction from query
logs can also be done in an unsupervised manner. Entity candidates are extracted by taking
sequences of capitalized words or alpha-numeric characters from the query. After cleaning
the candidates with a set of heuristics, each candidate is then given two scores, a Web-based
“representation score” and a query-log-based “standalone score”. The representation score
is high if the sequence of words with its capitalization is frequently found on the Web. The
standalone score is high if there are queries in the log that only contain the entity’s sequence
of words without any context – often only entity names are searched, increasing the chance
that the candidate is indeed an entity.

Other text types

While most NER researchers train NER algorithms with features that assume correct spelling
and a relatively uniform text style, Maynard et al. (2001) researched the problem of applying
NER on other types of texts, such as emails, blogs, clinical notes (Wang, 2009), transcribed
spoken text, Web pages, OCR output, and other text styles, such as report letters, books,
lists, and texts with layouts. In this work, we will focus on correctly spelled entity names
since our source is the Web and entity names usually appear more than once. We assume
that the entity name is more often correctly spelled than misspelled.

5.1.4 Research Tasks

Entity extraction has been researched in multiple aspects, all pursuing slightly different goals.
In this section, we review the most relevant tasks that require the extraction of entities.

Related Work 57

Entity Extraction

We can find several terms in the literature that mean the same thing, and sometimes one
term is used in different ways. We want to clarify these terms in the scope of this thesis.
Under entity discovery (ED) we understand techniques to retrieve and extract entities from
documents. For the scope of this thesis, ED is limited to documents that we can find on
the Web. Entity recognition (ER) is the task of recognizing and disambiguating known and
unknown entities in documents. Entity extraction (EE) encompasses the terms ED and ER.
Figure 5.2 shows the differences and similarities of entity discovery and entity recognition.

Figure 5.2: Relationships between EE, ED, and ER

Entity recognition is an information extraction task that was originally defined by the Message
Understanding Conference 6 (MUC-6) in 1996. The goal of the task was to identify six types
of entities – Person, Organization, Geographic Location, Time, Currency, and Percentage –
in texts (Grishman and Sundheim, 1996).

The input for an NER system is text and the output are named entities that were found in
the given text. According to McDonald (1996), there are usually three steps that an NER
system has to perform: finding entity candidates (entity delimitation), classifying candidates
(entity type detection), and optionally recording them using an “Alias Network”.

Entity Delimitation The first step is the entity delimitation or entity boundary detection
step. In this phase, possible candidates are marked in the given text. One simple approach
is to mark all sequences of capitalized words, which works well in the English language since
named entities are most often capitalized. However, more sophisticated methods have also
been applied. For example, Downey et al. (2007) use LEX, a statistical, n-gram-based, semi-
supervised learning method to detect entity boundaries. The entity type does not have to be
known in advance for their approach. Their algorithm assumes that sequences of capitalized
words denote an entity. Capitalized words at the beginning of sentences need to appear
sufficiently often in the text where they are not at the beginning of a sentence in order
to be considered. This assumption is not valid in all languages; in German, for example,
capitalization is a poor feature for entity recognition. Their approach is therefore targeted
and evaluated primarily on English texts. While the authors claim that their approach works
well for any entity type, they evaluate only on four relatively unambiguous types – Actor,

58 Extraction of Entities

Book, Company, and Film. Compared to state-of-the-art algorithms, they improved the
performance on these entity types by about 20 % in the F1 value. Although their work seems
promising, they only research the problem of detecting the entity boundaries, not the entity
types. Our goal, however, is to detect unknown entities of known types.

Entity Type Detection The second step is to find the type of the entity candidates. There
are three major approaches.

Lexicon-based Recognizers First, there are lexicon-based recognizers that can only de-
tect entities that they have stored in their lexicon or gazetteer (Milne and Witten, 2008,
Iacobelli et al., 2010). Often there are ambiguous entities, such as Paris, which is both a
city (and there are many cities called “Paris”) and a forename. Using lexicons is therefore
not simple and matches need to be disambiguated. This approach is not of interest to us,
however, since our goal is to recognize unknown entities.

Hand-crafted Rules Second, there are hand-crafted rules for NERs (McDonald, 1996,
Chiticariu et al., 2010). One such rule could be “the uppercase sequence of words after the
token ‘Mr.’ is a name”. Ripper (Cohen, 1995) is a system used to create such if-then rules.
Rule-based systems were mainly popular in the early days of NER research and resulted in
high precision. This approach does not scale well, however, since rules need to be created by
experts and must be maintained for every new entity type that should be recognized (Meulder
et al., 2002). For instance, the rule for detecting person names using the prefix “Mr.” has to
be refined when the NER is supposed to differentiate between various kinds of people, such
as politicians, actors, or professors.

Statistical Machine Learning Approaches Third, there are statistical machine learning
approaches that have become increasingly popular. These approaches can broadly be divided
into unsupervised and supervised machine learning. In unsupervised machine learning, the
learning algorithm does not know the entity types and clusters the detected mentions. This
approach often relies on patterns and lexical resources such as WordNet (Nadeau and Sekine,
2009). Downey et al. (2007) researched the task of detecting any type of entity in Web texts
instead of learning particular predefined classes. They do not propose a solution for entity
classification, however, but only provide a means to delimit boundaries. The most common
approach is supervised machine learning in which the NER is trained on a labeled corpus of
text, for example, “<PER>John Hiatt</PER> is a musician from <LOC>Indiana</LOC>”. The
NER builds a model from the training data and uses it to recognize the learned entity types
for untagged texts later. Many machine learning techniques have been applied, including
hidden Markov models (HMM) (Bikel et al., 1997), maximum entropy models (Borthwick
et al., 1998), support vector machines (SVM) (Asahara and Matsumoto, 2003), decision trees
(Sekine, 1998), and conditional random fields (CRF) (McCallum and Li, 2003). Also, various
researchers (Wu et al., 2002, Klein et al., 2003, Kozareva et al., 2005) have shown that
combining several weak classifiers yields a stronger single classifier.

Apart from these three main approaches, a number of hybrid methods have been developed,
which combine rules, lexicons, and machine learning (Meulder et al., 2002).

Related Work 59

Most approaches that we have reviewed research the problem on a very narrow domain of
about four classes, which are typically Person, Organization, Location, and Miscellaneous.
Some papers introduce other types, such as Products (Niu et al., 2003), which are still very
broad and insufficient for complex applications (Fleischman and Hovy, 2002). We want to be
able to recognize a wide variety of different entity types without creating and maintaining a
training corpus. Downey et al. (2007) observed this problem and researched the problem of
“Web NER”, that is, the problem of detecting entities of any type.

Training Set Generation Supervised Machine Learning

The problem of creating labeled training was quickly recognized and researchers have since
tried to ease the compilation of training data. One method to train a NER is to use a list
of seed entities per entity type. The contexts around the seeds can be gathered and used for
learning rules. There were several experiments with the size of the seed lists varying from
only 7 per entity type (Cucerzan and Yarowsky, 1999) up to 100 (Buchholz and van den
Bosch, 2000). The findings of different researchers are partly contradictory. While Collins
and Singer (1999) show that as few as seven seeds are needed to create well-performing rules,
Cucerzan and Yarowsky (1999) have tested the performance using between 40 and 100 seeds
and found that the larger the number of seeds, the higher the F1 value due to an increased
recall. Furthermore, Buchholz and van den Bosch (2000) showed that precision increased
when using smaller lists with only a slight drop in recall. Whether long or short lists, seeds
are a simple and fast way to train an NER, but as Meulder et al. (2002) pointed out, the
recall of those systems is usually unsatisfactorily low. The recall problem can be countered
using the so-called “bootstrapping” technique. In this technique, the rules learned from the
contexts of the seed entities are again used to find other entities, which are then again seeds
for the next learning phase (Cucerzan and Yarowsky, 1999, Niu et al., 2003, Kozareva, 2006,
Whitelaw et al., 2008).

This iterative process can be performed several times to increase the number of recognizable
instances; typically, the precision decreases with each iteration. Bootstrapping is also called
a “semi-supervised” or “weakly-supervised” learning approach because less supervision is
necessary to build the training data. Several learning strategies such as co-training (Blum
and Mitchell, 1998), self-learning (Nigam and Ghani, 2000, Liu et al., 2011), using concept-
based seeds (Niu et al., 2003), or domain adaptation (Wu et al., 2009) have been proposed
to improve bootstrapping. However, bootstrapped approaches do not usually yield the same
high performance as completely supervised methods (Kozareva, 2006).

Szarvas et al. (2007) improve the best CoNLL 2003 NER F1 value by more than 1 % by using
search engine hit counts to improve the boundary detection of the token-based NER. Further-
more, they use Hearst patterns (Hearst, 1992) queries and WordNet with entity candidates
to perform disambiguation between ambiguous entities.

Another approach for automatically creating training data is by automatically annotating
Wikipedia texts (Kazama and Torisawa, 2007, Nothman, 2008, Balasuriya et al., 2009).
Nothman et al. (2012) automatically create “silver”-standard training corpora across nine
languages on Wikipedia that are comparable with manually created gold-standard corpora
such as CoNLL. First, every Wikipedia article is classified and an entity type is assigned.

60 Extraction of Entities

Links between articles become annotations with the entity type of the article that is linked.
More refinement is then required to create a well-performing training corpus. For example,
the first sentence of an article is often rich in proper nouns and links to other articles which
makes these sentences good candidates for inclusion in the training data. Nothman et al.
(2012) test their approach on a fine-grained taxonomy which only contains high-level 10 en-
tity types, such as Person and Product. Our work differs from this approach in that we do not
restrict our training set generation to Wikipedia and we test it on a finer-grained taxonomy of
17 entity types. Furthermore, we are not trying to generate a complete training corpus that
can be used by every NER since that requires tagging all occurrences of entities in a text.
Instead, we will show how we can create an NER that can be trained from sparsely-annotated
texts.

Entity List Completion

Entity list completion (ELC), entity set expansion, or related entity finding is the task of
finding and ranking related entities to a given set of “seed entities” and sometimes a descrip-
tion of the desired relation. For example, using the seeds Homer Simpson, Ned Flanders, and
Barney Gumble, we would expect an ELC system to extract more characters from the TV
show The Simpsons, such as Bart Simpson or Lisa Simpson. A given explicit description of
the expected relation could, however, state that more “male cartoon character” would make
the list complete.

Entity list completion is a entity extraction task that needs both entity discovery and entity
recognition. Since 2007 the ELC task is regularly part of the Initiative for the Evaluation of
XML Retrieval (INEX) entity ranking track, and became part of the TREC competition in
the entity track6 in 2010. We have seen that lists of entities can be used to automatically
create training data for a supervised-learning-based NER which emphasizes the importance
of the ELC task.

Dalvi et al. (2011) use the SEAL/Boo!Wa! system (Wang and Cohen, 2007)7 to extract
entity candidates from semi-structured Web pages that can be found in similar contexts as
the seed entities. They then rank the candidates for which they found a matching URI in the
billion triple index (BTC 2009 corpus). The ranking is done by comparing the type of entity
candidate with the target type given in the query with the seeds. If the entity type matches
the given type from DBpedia, a score of two is given, if the broader given type matches, a
score of one is given, and if nothing matches, a score of zero is given. Their system reached
a MAP score of only 0.0755 in the TREC 2010 ELC competition.

Google Sets (Google, 2008) is another example of a Web-based set expansion technique. Like
Dalvi et al. (2011), it uses HTML patterns around the seeds to find similar entities.

Zhang and Liu (2011) research the problem of ELC in opinionated documents. Their approach
is based on rule-based entity candidate extraction using Part-of-Speech tags and candidate
ranking using extracted feature sets and Bayesian sets. Their main focus is finding related en-
tity mentions in an opinionated document and not within an entire corpus. This requirement

6See TREC entity track website: http://ilps.science.uva.nl/trec-entity/, last accessed on 5th of
March 2012

7A live demo of ELC with seal can be found at http://boowa.com/, last accessed on 25th of March 2012

Related Work 61

makes the task harder since distributional similarity techniques and statistical pattern learn-
ing techniques cannot easily be applied due to a lack of data. In an evaluation of their system
across ten different concepts, they achieved a precision@15 of around 78 % while Google Sets
and Boo!Wa! achieved both about 69 %.

Similarly to Zhang and Liu (2011) and Bron et al. (2010), Sarmento et al. (2007) treat ELC
as a ranking problem. They put all entity candidates from a given corpus into a vector space
using their co-occurrence features. Features are gathered from entity listings using “and”,
“or”, and commas in the corpus. As a ranking function, they use the cosine similarity measure
between the seed set and the entity in the vector space.

Building upon the work of Sarmento et al. (2007), Pantel et al. (2009) use “distributional
similarity” by comparing pointwise mutual information (PMI) features for vectors with the
cosine similarity measure. Each term’s vector consists of pointwise mutual information scores
of the term and the terms in the term’s immediate context. The more often terms appear in
the same contexts, the more likely it is that they belong to the same concept.

ELC research has focused primarily on English texts so far, but as with NER, researchers
have been applying ELC to other languages, such as Japanese (Sadamitsu et al., 2011) and
Vietnamese (Tran et al., 2010).

Furthermore, Vyas et al. (2009) and Pantel et al. (2009) have shown that the performance
of ELC systems is highly dependent on the choice of the seed entities. Randomly selected
seeds and manually selected seeds influence the system’s performance by as much as 41 % in
R-precision in experiments conducted by Vyas et al. (2009).

As of this writing, there are very few related works pursuing the ELC task on the Semantic
Web. Lehmann et al. (2007) and Heim et al. (2009) created a system called “RelFinder”,
which takes a few seeds from DBpedia (and the LOD cloud in general) and visually represents
relations between them. They use a distance measure based on the connection path length
between the entities – a variant of Dijkstra’s shortest path algorithm (Dijkstra, 1959). The
fewer hops one has to take to arrive at another node, the more likely it is to be related. In these
visualizations you can also see other related entities of the same type. Nonetheless, the ELC
task is not their goal, but rather the visualization part. More related, Balog et al. (2010a) use
a Semantic Web crawl to answer queries from the entity finding task. For each seed entity,
given relation, and target entity type they search for entities that match that relation. Their
first approach is a simple SPARQL query that returns all entities that are either subject
or object in at least one triple with the source entity, and are of the target type. This
approach assumes that there are explicit statements about related entities. These statements
are, however, not always available. Their second approach is based on exhaustive searching,
following all links from the source entity to the target type. All instances that are on the
path are considered to be entities fulfilling the given relation. Since there is plenty of research
on the ELC task using the Visible Web, researchers have begun employing the Semantic Web
for the ELC task. They have not, however, compared the results to existing work. We will
close this gap by crafting an entity extraction technique that works on interlinked data of the
Web of Data, comparing it to state-of-the-art approaches that do not use the LOD cloud.

Lastly, Pantel et al. (2009) have also shown in a large empirical study that only a small
number of seeds are needed for this task. This observation confirms similar experiments from

62 Extraction of Entities

the NER domain. One or two seed entities are not enough to expand entity sets effectively.
Between 5 and 20 seeds yields the best performance on average. Beyond 20, the performance
almost does not improve at all. We will use their observations in the evaluation of our ELC
system by sampling several small and randomly selected seed sets per concept.

In conclusion, we can say that ELC is an interesting research task, which enables and improves
other research fields, such as search query analysis, relation detection, automatic training
set generation, and question answering. Moreover, the task has gained popularity in the
community as shown by the increased amount of research papers and the recently added ELC
track to TREC 2011.

5.1.5 Techniques for Extracting Entities

Now that we have explained which entity types are commonly used (see Section 5.1.1), from
which types of sources (see Section 5.1.3) entities can be extracted, and in which research tasks
(see Section 5.1.4) entity extraction is of importance, we review the abundance of different
techniques that are used in related work.

In general, we can divide the entity extraction in approaches based on knowledge, rules,
patterns, and ontologies.

Knowledge-based Approach

The knowledge-based approach uses existing knowledge of entities to recognize them in the
text. We will only briefly review this approach since our goal is to extract unknown entities
rather than to recognize known entities.

Wang et al. (2009) study the problem of finding misspelled or differently spelled named entities
in texts by using a dictionary and the string edit distance to compare entity names. They
show that using the edit distance they were able to increase the recall of the NER system.

Milne and Witten (2008) use Wikipedia as a large lexicon for entity detection, disambiguation,
and linking in natural language texts, a process they call “wikification”. We should note
that their definition of an entity is very different from ours. For instance, an “algorithm”
should be detected and linked to the correct Wikipedia page. Following the definitions we
use in this thesis, an algorithm is a concept and only instances (for example “A* search”)
are considered entities. To detect entities and concepts, they employ machine learning and
especially make use of the contexts around the words which are link candidates. Depending
on the context, they can calculate a “link probability”, which is one indicator for the final link.
Other indicators are the “relatedness” (similarity to surrounding content), “disambiguation
confidence”, “generality” (more specific linking wins over more general linking), and “location
and spread” (frequency and position in text). Using their machine learning approach based
on bagged C4.5 trees, they were able to reach an F1 value of about 74 % on Wikipedia texts
and non-Wikipedia texts.

Similarly, Iacobelli et al. (2010) create an entity detector based on Wikipedia called Wikipedia
Entity Detector (WPED). Wikipedia concepts are stored in a “trie data structure” and entities
are detected by comparing the words in the given text character by character to the trie path.

Related Work 63

If the end of the word matches a leaf node in the trie, the word is considered an entity.
Ambiguous entities are resolved using either popularity, that is, the more common one entity
is, the higher the prior, and therefore the chance that it is correct or using proximity, that is,
entities of the same kind are more likely to be found together. WPED is of course only able
to detect entities that are present in the Wikipedia. The authors decided to combine their
approach with the OpenCalais entity detector to improve their recall. In their research field
of news articles, they were able to show that the use of a large dictionary such as Wikipedia
improves the state-of-the-art NER OpenCalais by about 1 % in the F1 value.

Another problem with using dictionaries is that entities might be referred to by shortened or
alternative names in the text, so that they cannot be matched exactly with the entries in the
dictionary. The alternative names can be so different that normal string similarity measures
and the string edit distance can no longer help. For example, a product called Sony Cybershot
DSC11 might be referred to on a Web page as Cybershot DSC11 or just DSC11. Chaudhuri
et al. (2009) came up with an approach to compile a list of shortened alternative names of the
entity. They generated subsets of the original entity name by querying Web search engines
and analyzing the context of the entity mentions.

Rule-based Approach

Rules are combined “if-then” statements that can be applied to text to extract entities. Before
rules can be applied, they must either be hand-crafted or automatically learned by a machine.
In this section, we also consider models that are the output of supervised machine learning as
rules since, regardless of the underlying classification algorithm, one could break these models
down to if-then rules.

Features Features can be understood as small information units that can be used to charac-
terize an entity. For entity extraction, we distinguish between two kinds of features, “intrinsic”
and “extrinsic” features (McDonald, 1996).

Intrinsic Features Intrinsic or internal features are built from the characters that make
up the words (McDonald, 1996). Table 5.1 shows a set of these features.

Extrinsic Features In contrast to the intrinsic word-level features, the extrinsic or ex-
ternal document features are taken from the structure of the document and/or the corpus
(McDonald, 1996). Table 5.2 (Nadeau, 2007) shows a set of this feature type.

Lists Lists are simple enumerations of words or phrases. In NER they are used interchange-
ably with the terms gazetteers, lexicons, and dictionaries. Most often lists enumerate named
entities such as cities, person names, or company names. Lists can also be used, however, to
store abbreviated or alternative versions of the same entity, for example, GM and General
Motors. Furthermore, lists can store entity cues such as common prefixes or suffixes (Nadeau,
2007). For example, the prefixes “Mr.”, “Mrs.”, and “Miss” are often followed by a person
name, whereas the suffixes “Inc.”, “Corp.”, and “Ltd.” are usually preceded by the name of

64 Extraction of Entities

Feature Explanation Examples

Capitalization The capitalization of the
word. It can start with a
capital letter, be all lower-
case, all uppercase, or mixed
case.

Java, yahoo, IBM, Google-
Search

Patterns and case signatures Patterns are sequences of
character types (Collins,
2002).

Airbus 380 (Aaaaaa-000 or
summarized as Aa-0)

Punctuation Hyphens, ampersands, and
apostrophes within the
word.

I.B.M., O’Connor

Digit Digits within the word. W3C, 3M

Character The character set that is
used to encode the word.

Greek letters, Chinese sym-
bols

Morphology The prefix, suffix, singular
version, stem, or a common
ending of the word.

Google Inc., Yahoo Inc.
(Inc. = common ending)

Part-of-Speech The types of words in the en-
tity name (noun, verb, ad-
jective, et cetera).

The (article) Hangover
(noun)

Function Arbitrary functions can be
applied to the entity, such
as counting the tokens,
constructing all n-grams
(Patrick et al., 2002), or iso-
lating non-alpha characters
(Collins and Singer, 1999).

A.T.&T (..&.)

Table 5.1: Intrinsic NER Features (Nadeau, 2007)

a company (Rau, 1991). Due to the polysemy, that is, the ambiguity of terms, even complete
lists are not sufficient to recognize entities reliably. Two lists for different concepts might
contain the same terms; for example, the term “New York” might refer to the city, the state,
a movie, or a song. Entity names can also be mistaken for common words. For example,
the band called A might be hard to recognize in text since it could also just be the very
common article. Mikheev et al. (1999) reports that in his test corpus over 20 % of entities are
ambiguous.

Hand-crafted Rules One of the first rule-based systems was presented by McDonald
(1996). His system called “PNF” (proper name recognition and classification facility) makes
use of intrinsic and extrinsic features and works in three phases: delimit, classify, and record.

Related Work 65

Feature Explanation

Document Frequency Entities might appear several time in the
document, maybe also in different casing.

Corpus Frequency How often the entity name appears in
the corpus, also called prior probability
(Whitelaw et al., 2008).

Local syntax Position of the entity in a list, sentence,
paragraph, and document.

Local context The tokens to the left and right can give
further evidence about the entity (Whitelaw
et al., 2008). For example, having “Mr.” to
the left of a word increases the chance for
that word being a (male) person’s name.

Meta information URI, meta keywords, document title, names
of lists and figures.

Diversity The number of occurrences across document
boundaries (Whitelaw et al., 2008).

Co-occurrence Co-occurrences of entity names, for example
book titles and author names often appear
together.

Informativeness Several scores can be used as informative-
ness scores for single words, such as in-
verse document frequency (IDF), residual
IDF, x1, and mixture models (Rennie and
Jaakkola, 2005).

Table 5.2: Extrinsic NER Features (Nadeau, 2007)

The delimitation phase searches for contiguous sequences of capitalized words. In the sen-
tence “The well-known Wall Street Journal reported that Mr. Bill Gates and his Microsoft
Corporation are working on a new operating system”, the character sequences “The”, “Wall
Street Journal”, “Mr. Bill Gates”, and “Microsoft Corporation” would be extracted.

In the classification phase, rule checks are applied to all candidates. The first candidate
“The” is classified as non-entity because the rule “single word sequences consisting solely
of an article are not to be treated as names” applies. The next candidate “Wall Street
Journal” is classified as an Organization because the keyword “Journal” is commonly used
in organization names. “Mr. Bill Gates” contains the known person identifier “Mr.”, which
triggers the people classification rule and labels “Bill Gates” as an instance of the concept
Person. The last candidate “Microsoft Corporation” contains the keyword “Corporation”,
which is known to often be a part of an organization’s name. Thus, the candidate is labeled
as an Organization.

In the recording phase, each word of the classified candidates is given a role or interpretation.

66 Extraction of Entities

Bill Gates, for example, matches the rule “first name<space>last name” so that “Bill” is
assigned “first name” and “Gates” is assigned “last name”.

Collins and Singer (1999) use a set of seven seed rules to find accurate mentions of entities.
For example, they use simple containment and capitalization rules such as “if the sequence
contains ‘Mr.’, it is a person” or “if the sequence is all uppercase, it is a company”. These
simple rules have proven to be very precise, although recall is low.

The advantage of hand-crafted rules is that they are easy for humans to understand. We
will see in the next sections that once machine learning is involved, the “transparency” for
the human is somewhat lost. Furthermore, hand-crafted rules are more precise. Consider
the rule “if the instance contains ‘Mr.’ then it is a person”. There are few instances in
which this rule results in false positives. Also, although there is the initial effort of creating
the rules, we do not have to label many instances as is necessary for supervised machine
learning. Manually-constructed rules do have some major disadvantages. First, the recall is
generally low. Consider the “Mr.”-rule one more time. Person names often appear without
these hints in texts and rules cannot be applied. Second, the rules are domain dependent.
If the underlying taxonomy of entity types changes, rules must be manually revised. For
example, what if we want to extract entities from subclasses of Person such as Professor?
The “Mr.”-rule would need to be revised to recognize “Professor” or “Prof.”.

Rule Learning Rule learning refers to generating rules or models automatically using a
supervised machine learning algorithm. There is a large body of related work concerning
supervised machine learning for NER as described in Section 5.1.4. In this section, we will
select only a few different approaches and explain them in more detail.

Rule Learning on Semi-structured Text Nadeau (2007) extended a rule learner from
Cohen and Fan (1999) who used a rule learning algorithm called Ripper (Cohen, 1995).
Nadeau (2007) uses seed entities to generate training instances with the 17 features shown in
Table 5.3.

1. Tag name (nominal) 10. Number of siblings (numeric)

2. Text length (numeric) 11. Normalized number of siblings (numeric)

3. Non-white text length (numeric) 12. Parent tag name (nominal)

4. Recursive text length (numeric) 13. Node prefix count (numeric)

5. Recursive non-white text length (numeric) 14. Node suffix count (numeric)

6. Depth (numeric) 15. Normalized node suffix count (numeric)

7. Normalized depth (numeric) 16. Cell row in innermost table (numeric)

8. Number of children (numeric) 17. Cell column in innermost table (numeric)

9. Normalized number of children (numeric)

Table 5.3: 17 Features of the Rule Learner from Nadeau (2007)

An example vector that represents one (training) HTML node could be represented as follows:

Related Work 67

<a,6,0,0,402,26,0.68,8,0.22,1,0.027,td,104,0.51,0,0,2,1>

After several training vectors have been created (positive and negative), rules can be gener-
ated. One such rule could be described in prose text as “A city name is contained in an HTML
node of type <a>, with text length between 4 and 20 characters, in the first or second column
of a table of depth 2, and with at least 20 other nodes in the page that satisfy the same rule.”
(Nadeau, 2007). The rules are learned using a supervised machine learning algorithm. The
resulting model can then be applied to all entity candidates (for example, all terms in HTML
tags) in order to classify them as entity or non-entity.

Paşca and van Durme (2008) show a weakly-supervised approach for extracting concepts,
attributes for the concepts, and entities using both query logs and Web documents. Using
pattern matching on queries from the 50 million query log and a set of 100 million English
articles, they are able to cluster similar phrases, which are then processed to find concept
labels and attributes. They manually construct 40 classes and use between 30 and 1,500
manually compiled entities for each concept. With this prior knowledge and WordNet, they
are able to automatically match 37 extracted classes to their 40 classes in the gold standard.
They report an accuracy of 90 % for extraction of concept names and about 80 % for entity
extraction across their selected concepts. The number of entities is relatively low for many of
the selected concepts. For example, they are only able to automatically extract 696 actors,
49 mountains, and 3,642 cities. The focus of their work, however, is extracting concepts and
their attributes. They were able to reach a precision@10 of 70 % for automatically extracted
attributes for the automatically extracted classes given only five seed attributes per class.
For the concept Accounting System, given seed entities such as flexcube, myob, and oracle
financials, they extracted the top ten concept attributes overview, architecture, interview
questions, free downloads, canadian version, passwords, modules, crystal reports, property
management, and free trial. It is questionable, however, whether these attributes can be used
later in a meaningful way. The attributes price or user rating seem to make more sense than
overview, for example.

Rule Learning on Unstructured Text: NER Supervised machine learning is the pre-
ferred technique when it comes to recognizing named entities in unstructured texts. The
features for learning the model can often be used in different classifiers. Over the years, re-
searchers have employed a wide variety of techniques to the entity recognition problem such as
hidden Markov models (Bikel et al., 1997), maximum entropy models (Borthwick et al., 1998),
support vector machines (Asahara and Matsumoto, 2003), decision trees (Sekine, 1998), and
conditional random fields (McCallum and Li, 2003). The latter has shown to be superior to
the others in several tests. It is out of the scope of this thesis to explain the machine learning
approaches in greater detail. A detailed description of several machine learning algorithms is
provided by Mitchell (1997).

The following example illustrates how a named entity recognizer works:

The well-known <ORG>Wall Street Journal</ORG> reported that Mr.

<PER>Bill Gates</PER> and his <ORG>Microsoft Corporation</ORG> are working on

a new operating system called <PRODUCT>Windows 8</PRODUCT>.

68 Extraction of Entities

Note that there are different approaches and the example just shows one possibility. For
supervised learning, we need labeled training data. Training data can be labeled in differ-
ent formats (Urbansky et al., 2011a), but the XML annotations are common and easy to
understand. The following excerpt could be part of the training data where the XML tags
determine the concept and the content of the XML annotations determine the entity string.
It is extremely important to note that all words not tagged in the training data are known to
be non-entities. This closed-world requirement makes the process of creating labeled training
data labor intensive.

The NER now creates feature vectors for the tagged entities in the unstructured text. Let
us take the intrinsic features capitalization (boolean), case signature (string), part-of-speech
(string), character count (numeric), and the extrinsic feature local context (string) for this
example. The feature vectors representing the tagged entities in the example would be:

Wall Street Journal

<111,Aa-Aa-Aa,Noun-Noun-Noun,19,well-known,reported> = ORG

Bill Gates

<11,Aa-Aa,Noun-Noun,10,Mr.,and> = PER

Microsoft Corporation

<11,Aa-Aa,Noun-Noun,21,his,work> = ORG

Windows 8

<1,Aa-0,Noun-Num,9,called,.> = PRODUCT

We could also create feature vectors for all unlabeled tokens, such as well-known, and learn
them as NON-ENTITY.

From these feature vectors, we could now learn a decision tree and finish the training phase.
The saved decision tree (rules / model) can now be applied to unseen text. After delimiting
the entity candidates (for example, by taking only contiguous uppercase words), we create
the feature vectors and classify them using the learned decision tree.

Learning rules automatically has several advantages over crafting them by hand. First, we
can let the system decide which features are important to distinguish entity types. Second,
we can create a large set of features for classification, which would be difficult to maintain
and understand in hand-crafted rules. Third, supervised methods scale better when we have
many different entity types. Finally, the recall is generally higher than with hand-crafted
rules.

On the other hand, we have disadvantages, such as the need for labeled training data, but
as we have shown earlier, “bootstrapping” techniques were used to reduce this problem.
Furthermore, the created model is seldom human understandable. The output is not readable,
especially when creating statistical models by using machine learning algorithms, such as
support vector machines.

Related Work 69

Pattern-based Approach

Patterns are a special type of boolean rule and can be seen as a sequence of characters – if the
pattern matches the rule applies. Patterns are used in a variety of different ways in related
work and therefore deserve their own section. As with the rules, we distinguish between hand-
crafted and automatically learned patterns. Both approaches are explained in the following
sections in more detail.

Hand-Crafted Patterns A popular type of patterns are Hearst patterns (Hearst, 1992).
These patterns are specific to English and can be used to detect the concept membership of
an entity in unstructured text. Etzioni et al. (2005) use Hearst patterns such as the following,
where CS is the singular name of a concept, CP is the plural name of a concept, and X is the
name of an entity:

"CP such as X"

"such CP as X"

"CP like X"

"CP especially X"

"CP including X"

"X and other CP"

"X or other CP"

"X is a CS"

"X is the CS"

The KnowItAll information extraction system (Etzioni et al., 2004) initializes these patterns
with a concept name, queries a search engine such as Google with the pattern, finds all
occurrences of the patterns on the retrieved pages, and tries to instantiate X with the name
of an entity. For example, if KnowItAll wants to find new instances of the concept City, it
would query the search engine with the phrase “cities such as”. It would likely retrieve Web
pages with sentences such as “cities such as Los Angeles”, and it would extract Los Angeles
as a new entity of the concept City.

Paşca (2004) also uses the Hearst pattern, but additionally learns the concept to which the
entity belongs. The pattern is therefore not instantiated with “cities such as” but only with
“such as”. It can then learn from the sentence “[...] other programming languages such as
Java have always [...]” that “Java” is a “programming language”. A similar approach was
used by Evans (2003) to find new concepts in an open domain.

Pattern Learning Patterns can be constructed to find relations between entities or to
extract new entities. For example, the pattern “Movies such as LIST” can be used to find
new entities of the concept Movie. Constructing such patterns for every domain is too labor
intensive, hence, many approaches (Talukdar et al., 2006, Agichtein et al., 2001, Brin, 1998,
Etzioni et al., 2005) use pattern learning techniques that basically apply the following five
steps:

70 Extraction of Entities

1. Obtain a seed set of entities, either by using domain independent patterns (Downey
et al., 2004), or by manually or automatically extracting entities from lists (Whitelaw
et al., 2008, Talukdar et al., 2006).

2. Find mentions of the seed entities and create patterns which consist of the contexts of
these seed entities. The context often consists of a few words from the left and right
hand sides of the seed entity.

3. Find the best general patterns by filtering low frequency patterns and too short patterns.
Talukdar et al. (2006) remove all patterns that can be used to extract entities from
different classes. If the pattern’s precision is much more important than its coverage,
the learned patterns are sometimes called “sure-fire rules” (Alfonseca and Ruiz-casado,
2005).

4. Induce generated patterns to find new entities. Instead of discovering new entities,
Whitelaw et al. (2008) use the learned patterns to detect “trusted mentions” of already-
known entities.

5. Optionally, the newly found entities can be added to the seed set and the algorithm
could start over with a larger seed set (bootstrapping).

For example, having found the entity Jim Carrey for the concept Actor, a search engine is
queried with the term “Jim Carrey”. On the retrieved pages, the entity appears in different
patterns, such as “great performance by Jim Carrey” or “Jim Carrey played the role of his
life”. After ruling out bad patterns (those with few occurrences), the good patterns can be
domain dependently used. For example, “X played the role of his life” could be a generated
pattern where X is the placeholder for the entity name that belongs to the concept Actor.

We now explain these basic steps in more detail using the techniques described in SEAL
(Set Expander for Any Language) (Wang and Cohen, 2007). For every seed instance, the
complete prefix and complete suffix is found, that is, all characters that appear before or
after the seed mention respectively. Then, all prefixes and suffixes are compared for each
entity and shortened until they are the same for all seeds. The shortened wrappers can now
be applied to find more instances that are encoded in the same way as the seeds.

Figure 5.3 shows an example of the wrapper construction. Figure 5.3(a) depicts an excerpt of
HTML code from a Web page that mentions a number of car makes. The wrapper construction
is initialized with two seed entities Nissan and Toyota (bold in (a) in Figure 5.3). Figure 5.3(b)
lists the shortened prefixes and (c) lists the shortened suffixes for both seeds. These prefixes
and suffixes have as many characters as both seeds have in common. For example, the second
suffix ends at [...] alt=" because for the seed Nissan the value of the alt attribute is 6

while the Toyota seed has the alt attribute value of 7.

The prefixes and suffixes can now be applied to the given document and to this document
only. A wrapper has to be constructed for each new document and is afterwards dismissed.
Applying the wrappers in the example from Figure 5.3 would lead to the new entity extractions
Acura and acura.

Cucerzan and Yarowsky (1999) used hierarchically smoothed trie structures for modeling
contextual and morphological probabilities in a language independent manner. That is, they

Related Work 71

Figure 5.3: Construction of Prefixes and Suffixes with Given Seed Entities (Wang and Cohen,
2007)

built a prefix and a suffix tree with the probability for each token they encounter. In a
further bootstrapping phase, they employed a discrete form of the expectation maximization
algorithm on the trees.

Talukdar et al. (2006) tried to find a set of trigger words that often appear near an entity in
the text and are very specific to the entity. To do so, they found a set of dominating words
in all contexts around an entity. A word is dominating if it has the highest inverse document
frequency weight.

Carlson et al. (2010b) showed that it is useful to couple multiple extraction techniques, assum-
ing they make independent errors. Learning patterns from some seeds, using these patterns
to extract more instances and using these new instances to learn new patterns eventually
leads to a “concept drift”. Concept drift means that at some point the learned patterns for
the concept Country might be the same as for the concept City, such as the pattern “lived
for many years in X”, where X could be a country or a city. Carlson et al. (2010b) avoid that
problem by mutually excluding patterns from different concepts, that is, one pattern cannot
be used for multiple concepts.

Rosenfeld and Feldman (2006) applied a similar technique for relation extraction as Know-
ItAll, but they aimed to capture relations between two entities instead of unary relations. In
their work they used patterns such as “X is mayor of Y” to find instances of mayors (X) and
cities (Y). Some seed patterns must be given as an input to the system in advance.

Callan and Mitamura (2002) developed a “generate-and-test” approach called “KENE” to ex-
tract author and institution names from Web pages about conferences and workshops. Instead
of learning the pattern across documents, they learn document-specific patterns by construct-

72 Extraction of Entities

<body> ... <table> ... <tr> ... <td> ...

<p>

INTERNATIONAL PROGRAM

COMMITTEE:

J. Aguilar, University of the Andes, Venezuela

S.E. Anderson, University of North Dakota, USA

K. Araki, Hokkaido University, Japan

... </td> ... </tr> ... </table> ... </body>

Figure 5.4: Web Page Fragment (Callan and Mitamura, 2002)

ing paths to known named entities. For example, the path body/table/tr/td/p/br/list[1]

-comma is learned for a document given some known entities. If the path appears several time
in the document it becomes a candidate. If the path is now applied to the Web page fragment
from Figure 5.4, the organization names University of Andes, University of North Dakota,
and Hokkaido University can be extracted (Callan and Mitamura, 2002).

Ontology-based Approach

We can classify information extraction approaches as “open information extraction”, in which
the extractor does not know what kind of relations it has to extract, or as “ontology-driven
information extraction”, in which the system knows an ontology to guide the extraction
process. The ReadTheWeb system (Mitchell et al., 2009) is one of few existing systems
using the latter approach. The ontology is not only used to know what to extract, but also to
validate the extractions themselves. We focus on ontology-driven entity extraction techniques
in this thesis since we believe that they yield a higher precision, which is important for a
knowledge base of entities and facts.

We have now reviewed related work on entity extraction and the different tasks in this field.
Our system will utilize several of the described techniques, but always within the context of
ontology-driven entity extraction.

5.1.6 Summary of Related Work

We have now reviewed related work on entity extraction and found several shortcomings.
First, we have shown that there are many general extraction approaches which can be applied
to entity extraction but a detailed analysis and comparison of the different approaches does
not yet exist. Second, many researchers focus only on a small number of concepts (typically
four) which is often not enough for real world applications8. Third, the problem of creating
training data for machine learning algorithms has been researched more intensively in the
recent past but is still an open problem, especially for larger ontologies of concepts. Finally,
there are still untapped sources for entity extraction, such as the Semantic Web.

8Commercial services such as AlchemyAPI and Open Calais offer larger ontologies. We assume this is due
to the demand in the industry.

Extraction Techniques 73

In the next sections, we will describe five entity extraction techniques that solve parts of the
open problems mentioned.

5.2 Extraction Techniques

The following sections describe five extraction techniques used by WebKnox. Our contribu-
tions are the adaption and modification of two existing entity extraction algorithms and the
development of three novel techniques. The last section of this chapter evaluates the described
approaches.

Figure 5.5 depicts the entity extraction cycle, which runs in an infinite loop until the time
slot for entity extraction expires and the next extraction component takes over. First, the
ontology is loaded. Second, for each selected concept, five entity extraction techniques are
used in sequence. Finally, the results are stored for later assessment.

Figure 5.5: Overview of the Processes in the Entity Extraction Cycle

5.2.1 Extraction Using Phrase Patterns

The Phrase Extraction technique borrows the basic idea from the KnowItAll system (Etzioni
et al., 2005) and queries a search engine with phrases that are likely to link a concept to
several entities of that concept.

Queries

The following queries are used by the Phrase Extraction technique where CP is the plural
name of a concept. The quotes are part of the query, that is, only phrase matches are sought.

"CP such as"

"CP like"

74 Extraction of Entities

"CP including"

"CP especially"

Extraction

For each concept, all queries are instantiated with the concept name and sent to a search
engine. WebKnox then searches the phrases on the returned pages for each query and proper
nouns after each phrase are extracted as entities. For example, for the concept Country the
first query would be instantiated with “countries such as” and might return a Web page that
states the phrase “[...] countries such as Australia, New Zealand, and Fiji are known for
their strength in rugby”. The countries after the phrase are proper noun entities and can be
extracted as instances of the concept Country.

5.2.2 Focused Crawling Extraction

The Focused Crawl Extraction technique queries a search engine with generic queries targeted
toward finding pages with lists of entities. The focused crawler tries to detect a list on the
page and also searches for signs of pagination. Pagination is often used to limit the results
to one page and make it possible for the website visitor to view the data page by page.
Figure 5.6(a) to (d) show such typical paginations. If pagination is detected, the focused
crawler starts on the first page, tries to detect a list, and then extracts entities from the list.
If a list is detected and entities are extracted, the focused crawler moves on to the next page
in the pagination. The process repeats until all pagination links are crawled. If no pagination
is found, the focused crawler tries to detect a list on the Web page and extracts entities from
that list.

Figure 5.6: Examples of Pagination on Websites with Letters (a) and (b), Numbers (c), and
Drop Down Menu Texts (d)

The following sections explain which queries are used to find pages with lists of entities, how
these lists and pagination links are detected, and how the extraction is performed.

Extraction Techniques 75

Queries

The focused crawler processes pages that are retrieved with the following queries, where CS

is the name of the concept and CP is the plural of the concept name:

"list of CP"

"CS list"

"index of CP"

"CS index"

"browse CP"

CS A-Z

These queries aim to find pages that explicitly state to have a “list” (or “index”) of the
desired concept on it. The “browse” keyword aims to find pages that allow a user to browse
entities of a concept. A user can find information on a website in two ways: by searching for
it using a website-specific search functionality, or to browse for it, that is, to follow links on
the Web pages until the sought information is found. Sometimes websites explicitly use the
term “browse” to indicate to the user that he can try to stumble upon the information he
wants. These websites often use pagination to provide a page-by-page view of information
coming from a database.

List Detection

List detection aims to find the XPath that points to all entities of a list. This is a complicated
task since lists can be encoded in a variety of ways, and it is often not even clear what should
be considered a list and what should not. For the list detection algorithm, a list must have
the following features:

1. The entries of the list are structured in a very similar way, that is, the XPaths that
address the entries are the same (only indices on XPaths differ).

2. There are at least 10 entries in the list.

3. The entries of the list are uniform, that is, they have a similar format (for example,
word length or capitalization is consistent among the entries).

4. The list is in the content area of the Web page. Enumerations in the Web page’s header,
navigation, or footer are not considered to hold entities of interest.

The correct path can rarely be found by looking solely at the page’s DOM tree. For this
reason, the content of a list is also analyzed in order to find the sought list. The list detection
algorithm explained here makes use of many heuristics, which were determined by analyzing
a wide variety of list pages.

76 Extraction of Entities

Content Tags Entities are expected to be in one of the following tags:

LI, TD, H2, H3, H4, H5, H6, A, I, DIV, STRONG, SPAN, OPTION

The list detector does not construct an XPath to every tag that can be used in HTML since
some tags are not designed to contain text content, such as TABLE, TR, and SELECT.

The list detector creates a simple XPath to all occurrences of all the tags listed above. XPath
is flexible and allows us to address one and the same node in different ways; the list detector
creates each XPath in the simplest way by going from the addressed node to the parent node
until it reaches the root node.

Highest Count XPath Every constructed XPath addresses exactly one node. To find
the XPath that addresses all entities, that is, multiple nodes, the indices of the nodes in the
XPath are removed (only the index of the TABLE tag remains in order to handle pages with
multiple tables). Figure 5.7 visualizes this step. In (a) only one li node is addressed, while in
(b) the indices of the XPath are removed and all li nodes are addressed. The path addressed
by the XPath in (a) and (b) is marked by green rectangles around the nodes. An XPath with
its indices removed is called a “stripped XPath”.

Figure 5.7: Example Web Page with an XPath Addressing Only One List Node (a) and All
List Nodes (b)

After the indices are removed, all XPath instances that lead to the same stripped XPath can
be counted and sorted by the number of occurrences. We assume that the XPath with the
most occurrences on a Web page encodes a list, since list entries are most often encoded the

Extraction Techniques 77

same way. This process is often called searching for the highest fanout of a DOM tree. For
example, the sorted list of stripped XPath for the DOM tree from Figure 5.7 would be as
shown in Table 5.4.

Stripped XPath #Occurrences

HTML/BODY/DIV/UL/LI 4

HTML/BODY/DIV/UL/LI/A 4

HTML/BODY/DIV 2

HTML/BODY/DIV/A 1

Table 5.4: Stripped XPaths and their Number of Occurrences on a Web Page

By now, the list detector found that the XPath HTML/BODY/DIV/UL/LI addresses at least as
many nodes as any other XPath for that Web page and is likely to be the one used to encode
a list.

Longest XPath and Tables The list detector favors longer XPaths over shorter ones
because we assume that the deeper the hierarchy, the more precise the node text and therefore
less noise around an entity is extracted. Consider Table 5.4, which shows the counts of the
XPaths for the example page. The second XPath has the same number of occurrences, but
is longer. Thus it is favored over the first one. If the list detector finds that the entries in
the longer XPath are not uniform, it takes a shorter path by removing one element after
another until the top ranked XPath is reached again. If the entries for the second XPath
are not uniform, the shorter but equally ranked XPath would be taken in the example from
Table 5.4.

Lists are often encoded using tables, that is, using the TABLE, TR, and TD tags. A stripped
XPath will point to every cell of a table, which is usually not helpful since often not all
columns of the table are used to list entities. Figure 5.8 shows an example table9 where the
sought entities (here of the concept Country) are listed in column two of the table.

The list detector notices when a list is encoded in a table and tries to find the column with
uniform entries. Uniformity heuristics are explained in the next paragraph. If a uniform
column is found, the index is added to the TD tag of the stripped XPath. In Figure 5.8, for
example, the XPath would be /HTML/BODY/DIV/DIV/DIV/DIV/TABLE[2]/TBODY/TR/TD[2]/A
since only column 2 has uniform entries.

Entity Uniformity Heuristics As explained in the beginning of this section, lists must
have certain features in order to be detected and used for entity extraction. Most lists are
used to present something other than entities. For example, lists can contain links to blog
entries, numeric values such as prices, and so forth. For this reason, heuristics have to be
employed to determine whether the detected XPath really addresses a list of entities that

9Screenshot taken from http://en.wikipedia.org/wiki/List_of_countries_by_population (last ac-
cessed on 25th of March 2012).

78 Extraction of Entities

Figure 5.8: Example Table with Only One Column of Uniform Entities

should be extracted. A detected list is only used for extraction if all the following features
are fulfilled:

1. Less than 15 % of the entries in the list are numeric values. Entities are usually names
that have letters and sometimes numbers, but are rarely numeric values. A series of
numbers is therefore not considered to be relevant for entity extraction. For example,
in Figure 5.8 the table columns one, three, and five are ruled out by this heuristic.

2. Less than 50 % of the entries in the list are completely capitalized. Completely capital-
ized means that all characters of a word are uppercase; sometimes captions that appear
between lists are completely capitalized. If too many of those entries appear, the list is
not used for entity extraction.

3. On average, each entity consists of 12 words or fewer. Entity names are usually short –
only one or two words. If an average of more than 12 words per list entry is found, it
is very likely that the detected XPath does not point to an entity list, but rather to a
set of paragraphs containing no listed entities.

4. Less than 10 % of the entries in the tables are duplicates. Lists of entities rarely contain
duplicates. For example, in Figure 5.8 the table column 4 would be ruled out by this
heuristic.

5. Less than 10 % of the entries in the list are missing. There are usually no gaps in lists
of entities. If too many gaps appear, it is more likely that the list is an incomplete
descriptive column of a table that also lists entities.

Lists in Navigation, Header, or Footer of a Web Page An entity list must appear in
the content area of a Web page. Often the navigation of a Web page contains many entries that
might look like a list and thus must be filtered out. Figure 5.9 depicts the problem by showing
two Web pages from the same domain in (a) and (b). The green rectangles in (a) and (b) are
the page specific content areas that are different for each page. The red rectangles are areas

Extraction Techniques 79

that are similar or even exactly the same since they are used for navigation, advertisement,
or similar purposes.

Figure 5.9: Target Web Page with an Entity List in the Green Content Area (a) and Sibling
Page with Different Content in the Green Area and the Same Content in the Red Areas (b)

The list detector tries to find all elements on a Web page that do not belong to the page
specific content by comparing it to a “sibling Web page”. A sibling Web page is found by
analyzing all links from the target Web page, that is, all contents of the href attribute of the
A tag. The link to a URL with the highest similarity to the URL of the target Web page is
taken as the sibling URL. The similarity between the two URLs is calculated by the number
of characters from left to right that the two URLs have in common. This way the list detector
is likely to retrieve a sibling Web page that has a similar structure as the target Web page.

We generate all stripped XPaths to content tags on the sibling Web page. We then compare
the first 200 characters of the content targeted by the stripped XPaths to the targeted content
on the sibling page with the same XPath. We use the Q-Grams10 (Ukkonen, 1992) distance
metric for string comparison. If the similarity is less than 70 %, the content is considered to
be different and we assume that the XPath points to some nodes in the content area. If the
similarity is greater than 70 %, the XPath is removed from the set of candidates and is not
considered when searching for the highest count XPath. The similarity does not need to be
100 % because many websites use dynamic elements, such as advertisements in the navigation
or header area, which yield different content for the same XPath on sibling pages. Also, it is
very unlikely that the text is more than 70 % similar for pages with different content.

10Q-Grams can be used for approximate string matching by sliding a window of the length q over two strings.
The more Q-Grams two strings share, the smaller the edit distance (higher similarity).

80 Extraction of Entities

Pagination Detection

The pagination detector aims to find the most common paginations. It recognizes two main
types of pagination, uppercase letters and a series of numbers, which are depicted in Figure 5.6.
Pagination elements are almost always links, that is, using the A tag, since they are used to
point to another page with more content. The pagination detector therefore constructs all
XPaths to A tags and adds those to a candidate set which only consist of a digit or an uppercase
letter. The process of finding the highest count XPath is similar to the one described for the
list detector. The indices for the elements A, TR, TD, P, SPAN, and LI are removed since those
elements are more often used to encode pagination lists. The highest ranked XPath is then
taken as the XPath addressing pagination links. If a pagination consists of digits, it must
have at least three entries and most of the entries must be subsequent. Therefore, a random
set of linked digits is not a pagination, since page numbers are usually in an (ascending) order.

Once the pagination XPath is found, the focused crawler uses this very same XPath on every
sibling page that it comes across by following the pagination URLs.

Extraction

If a list has been detected, the stripped XPath pointing to this list is used and all addressed
elements are extracted as entities for the sought concept. If a pagination is found, the focused
crawler uses the same stripped XPath pointing to the list of entries for every new page that
is reached by following the pagination URLs.

5.2.3 List Extraction Using Seed Entities

Seed extraction aims to implicitly find pages with lists of entities by querying the search
engine with seeds. Retrieval using seeds has already been used extensively by the KnowItAll
system (Etzioni et al., 2005). There are some disadvantages to this retrieval mechanism
since it requires correct seeds for a concept and seeds have to be combined correctly for each
search query. WebKnox uses automatically obtained entities as seeds for the seed extraction
technique. The seeds are either extracted with the phrase extraction technique or the focused
crawl extraction technique. Thus, no human involvement is necessary.

Queries

While the focused crawl extraction technique queries a search engine by explicitly mentioning
“list” or “index”, the seed extractor queries a search engine with seed entities of a concept.
It is then assumed that pages with lists including the seed entities and other entities are
returned from the search engine.

There are many possibilities to find “good” combinations of entities (for example, using seeds
that start with the same letter), but it is most important that the seed is a correct entity.
The seed extractor therefore prefers to use entities from the knowledge base that have been
extracted more than once, as they are more likely to be correct extractions.

Extraction Techniques 81

XPath Wrapper Inductor

The XPath Wrapper Inductor (XWI) aims to find the XPaths that point to the seeds and
generalize it so that all entities that are encoded in the same way as the seeds are addressed
and can be extracted. XWI needs at least two seeds in order to find such a “generalized
XPath”. The next section describes the process in greater detail.

Generalized XPath For each seed, all XPaths that point to the seed occurrences on a Web
page are constructed. Each seed can potentially occur more than once and thus more than
one XPath per seed may be constructed. After all XPaths for all seeds have been constructed,
we search for a generalized XPath by comparing each index for each element of the XPath.
Any multiple indices are deleted, which increases the number of elements addressed by the
XPath. Figure 5.10 shows this process for two seeds. In (a) and (b) the XPaths to Seed1

and Seed2 are marked with green rectangles in the DOM tree respectively. Both XPaths
are the same until the last index, indicating that more nodes with the same structure exist.
The index is deleted and in Figure 5.10 (c) all siblings of the two seeds are addressed by the
generalized XPath. If one or more seeds appear in different elements on the Web page, the
stripped XPath with the highest count is taken.

Figure 5.10: Example of Generalizing an XPath from Two Seeds (a) and (b) to Address All
Target Nodes (c)

Affixes XWI occasionally uses prefixes and suffixes around the seeds. This is necessary
because the generalized XPath addresses the complete tag content, even though there is
sometimes information around the seed that should not be extracted. Figure 5.11 visualizes
the problem. In (a) the HTML markup for a small Web page is shown. Two seeds are given:
Japan and New Zealand. The generalized XPath for that example is /HTML/BODY/UL/LI, as
shown in Figure 5.10, which addresses all LI tags. To avoid extracting the number before
and after the seed, a two-character prefix and suffix is constructed around the seed instances,
illustrated as red characters in Figure 5.11 (b). The complete wrapper for this Web page now
consists of the generalized XPath and the small prefix and suffix. Applying this wrapper to

82 Extraction of Entities

the example would extract the entities USA, Japan, Australia, and New Zealand without the
noise (rank and population) around the entities.

Figure 5.11: HTML Markup of a Web Page with Two Seeds Marked Green (a) and Two-
character Prefix and Suffix around the Seeds (b)

Uniformity Check The extraction results of the XWI are also checked for uniformity (see
Section 5.2.2) to ensure that fewer incorrect lists of entities are extracted. XWI aims for high
precision and prefers to extract nothing from a Web page than a few correct entities with low
precision.

Extraction

Unlike the Affix Wrapper Inductor (see Figure 5.3), XWI only works for (X)HTML documents
that can be represented with a DOM tree. Since some documents are plain text, WebKnox
makes use of both wrapper techniques to cover a greater variety of documents. For every
(X)HTML document, WebKnox uses XWI to create a wrapper and extract entities; if the
document is a text file, WebKnox utilizes the Affix Wrapper Inductor for extraction. Text
files are mainly of the types TXT, DAT, or CSV.

5.2.4 Named Entity Extraction from Plain Text

Our hypothesis states that we can train an NER from the Web using only seed lists for each
type as learning input. In order to test our hypothesis, we designed a named entity recognizer
that can be trained with sparsely-annotated training data. Usually, supervised NERs need
to be trained on completely annotated input data, such as the CoNLL 2003 dataset, and
each token must be labeled by an expert. In the case of the CoNLL corpus, this means
that every token has either the label PER (Person), LOC (Location), ORG (Organization), MISC
(Miscellaneous), or O (no entity / outside). As discussed in the previous section, compiling
such a training set is tremendously labor intensive. Our NER must therefore be able to learn
from sparsely-annotated texts in which not every token has a label. Thus, we have an open
world instead of a closed world as in supervised learning. If a token has no label, we cannot
assume that it is not an entity.

Extraction Techniques 83

Training the NER

We divide the training on sparse data into three parts: (1) creating the training data, (2)
training the text classifier, and (3) analyzing the contexts around the annotations.

Creating the Training Data The input for our named entity recognizer is not a com-
pletely annotated corpus, but rather a set of “seed entities”. For example, for the concept
Actor we could use Jim Carrey as one of the seeds. While there are no limitations on the
selection of the seeds, popular, and more importantly, unambiguous entities with many men-
tions on the Web are the preferred input. Figure 5.12 shows the algorithm for creating the
training data. We have n concepts C = [S1, ..., Sn], each with a set of seeds S. We now query
a search engine11 with the exact seed name and its concept and take the top URLs from the
result set. Each of the result URLs is downloaded, and we extract the textual content of the
page using the Palladian Content Extractor (Urbansky et al., 2011a), removing the header,
footer, and navigational elements to acquire only the “main content” of the Web page. Next,
we annotate all our seed entities for the given concept in the text and save it. We use XML
annotations in the form of <TYPE>seed</TYPE>. The last operation is cleaning and merging
the annotated text files into one. In the cleaning process, we remove all lines that have no
annotated seed, are shorter than 80 character, or have no context around the seed.

begin
mentions := 50;
for c := 1 to |C|

S := C[c]
for s := 1 to |S|

seed := S[s]
concept := Sc
URLs := querySearchEngine(seed,concept,mentions)
for u := 1 to |URLs|

webPage := download(URLs[u])
text := extractPageText(webPage)
for s := 1 to |S|

text := annotateSeed(S[s],text)
save(text)

end
cleanAndMerge()

end
end

end
end

Figure 5.12: Pseudocode for Generating Training Data

11We used http://www.bing.com (last accessed on 25th of March 2012) in our experiments.

84 Extraction of Entities

Train the Text Classifier After generating the training data, we train a dictionary-based
text classifier using the seed entities and the surrounding contexts that we found on the Web.
Unlike many other NERs, we do not employ a large feature vector of numeric features such
as TFxIDF, token position, or length. Instead, we treat the entity classification purely as a
text classification problem. The input for our text classifier is a sequence of characters that
is then divided into n-grams. The dictionary is built by counting and normalizing the co-
occurrences of one n-gram and an entity type. The dictionary might then resemble Table 5.5
in which each column is an entity type (Person, Location, and Product) and each row is an
n-gram. In each cell, we now have the learned relevance for each n-gram and entity type
relevance(ngram, entityType). The sum of the relevances in each row must add up to one.
The n-gram “John” is more likely to indicate a Person (relevance(John, Person) = 0.9) than
a Location (relevance(John, Location) = 0.05), while the n-gram “Gibson” is a little more
likely to be a Person than a Product (relevance(Gibson, Person) = 0.5.

N-Gram Person Location Product

John 0.9 0.05 0.05

Indiana 0.1 0.85 0.05

Gibson 0.5 0.1 0.4

Table 5.5: N-gram Dictionary with Relevances for Entity Types

We build four dictionaries of this kind. One holds only the seed names and their relevance
with the entity types. A second one uses the complete context before and after the annotation
within a certain window size. A third one uses only the three context words before and after
the mention of the seed entity. A fourth one holds case signatures for all tokens in the
training data. We store three case signatures, “A” for completely uppercase words, “Aa” for
capitalized words, and “a” for lowercase words. We will show how we use these dictionaries
to classify entity candidates in Section 5.2.4.

Analyze Contexts In addition to training a text classifier on the context around the seeds,
we also build a dedicated context dictionary with the context patterns. The rationale behind
this approach is that the sequence of words before or after a word are good indicators for the
entity type. For example, consider the following phrases: “X traveled to Y”, “X was born in
Y”, or “X came back from Y”. All of these two to three word contexts indicate that Y might be
a location when used as a left context pattern and that X might be a person when used as a
right context pattern. We therefore build a dictionary similar to the one shown in Table 5.5,
but with context phrases instead of n-grams. This approach is similar to the one described by
Fleischman and Hovy (2002). We use context phrases with a length between one and three
words. Also, we map all numeric expressions to the word NUM. This gives us a higher recall in
context phrases with numbers. For instance, since it does not matter whether the phrase is
“X paid 2 dollars” or “X paid 3 dollars” we capture “paid NUM dollars” as the context phrase.
The context dictionary will be used in the last step of the entity recognition in Section 5.2.4.

Extraction Techniques 85

Using the NER

Once we have trained our named entity recognizer on the automatically generated training
data, it is ready to be used. We divide the recognition process into three parts: (1) en-
tity detection, (2) entity classification, and (3) post processing. These steps are executed
sequentially on each given text.

Entity Detection In the entity detection phase we need to find entity candidates in the
text. An entity candidate is a sequence of characters of an unknown type. The output
of the entity detection phase is a list of candidate annotations. For instance, given the
text “John Hiatt is a great musician from Indiana, USA”, we expect the entity detector
to tag the candidates as “<CANDIDATE>John Hiatt</CANDIDATE> is a great musician from
<CANDIDATE>Indiana</CANDIDATE>, <CANDIDATE>USA</CANDIDATE>”. Our NER is intended
to work for English language texts only. We therefore employ rule-based detection using
regular expressions to find possible entity mentions. In particular, our expression covers
sequences of capitalized words, but also allows a few lowercase words. For example, it covers
“of” in order to detect United States of America. For each detected entity candidate, we
perform the same feature generation as shown before.

Entity Classification The second phase is the classification of the candidates. To classify
an entity candidate, we again create all n-grams, look up the relevance scores in the dictionary,
and assign the entity type with the highest score S to the candidate. The score for each entity
type and given entity candidate is calculated as shown in Equation 5.1 and 5.2 whereNcandidate

is the set of n-grams for the given entity candidate and T is the set of possible types that the
NER was trained to recognize.

S (type | candidate) =
∑

n∈Ncandidate

relevance(n, type) (5.1)

entityType = arg max
type∈T

S (type | candidate) (5.2)

Post Processing In the last phase of entity recognition, we filter the classified entities,
change their boundaries if necessary, and reclassify their types using the learned patterns.
We apply the following six post processing steps:

1. We remove all entities that are date fragments, such as Monday and July. This step is
necessary because these fragments are capitalized like the entities we actually want to
detect, and because they fall under the tagging rules of the entity candidate detector.
We lose a little recall since there are people named “April” and movies with the name
“August”, but the precision rises significantly more than the recall drops when applying
this filter.

2. We remove those date fragments from other entity candidates and change their bound-
aries. For instance, “July John Hiatt” becomes the entity John Hiatt.

86 Extraction of Entities

3. In the entity detection phase, we will generate many entity candidates that consist
of words from the beginnings of sentences. For instance, with “This is a sentence”, we
would generate “This” as a candidate entity, which it is not. To filter out these incorrect
detections, we employ the case dictionary that we have generated in the training phase.
We calculate the ratio of uppercase to lowercase occurrences and remove the entity if
the ratio is lower than or equal to one. The rationale behind this approach is that
capitalized words at the beginning of sentences might appear more often in a lowercase
form indicating that they are not entities. The word “This” from the example has a
very low uppercase to lowercase ratio since it most often appears in the lowercase form.
We borrow this idea from Millan et al. (2008).

4. We correct the classified entity type when we found the entity in the training data but
classified it incorrectly.

5. We now apply the information from the context dictionary that we trained. Again, we
take the context around the candidate and look up the probability of each entity type
matching the context words. We merge the outcomes of the entity classification, the
context classification, and the context words to reassign the most likely entity type to
the candidate. For example, if we classified “Paris” as a person, but the context “born
in Paris” now suggests that the candidate is much more likely a location, the context
classifiers overrule the candidate-only classifier and switch the label. Next, we use our
set D of dictionaries. These are (1) candidate-only, (2) context n-grams, and (3) context
patterns. As shown in Equation 5.3, we combine the scores. We then use Equation 5.2
to get the most likely entity type for the candidate.

S (type | candidate) =
∑
d∈D

Sd (type | candidate) (5.3)

6. In the last step, we use the learned left context information to change the boundaries
on multi-token candidates. For example, we have detected the candidate “President
Obama”, but knowing that the token “President” appeared many times before the
actual entity in the training set, we drop this token and change the boundaries so that
the candidate represents “Obama” only.

5.2.5 Entity Extraction from the Semantic Web

The previously described entity extraction algorithms all use the Visible Web (compare Sec-
tion 2.2.3) as their extraction corpus. In the Visible Web, unstructured and semi-structured
documents (see Section 2.2.1) dominate. The Semantic Web is growing at a fast rate and
contains billions of structured data entries that can be used as a extraction corpus too. The
Semantic Web Extractor (SWE) is targeted at exactly this corpus with the goal of extracting
as many correct entities for our given ontology as possible. This task is often referred to as
entity list completion.

Extraction Techniques 87

Querying the Semantic Web

Information pieces on the Semantic Web adhere to ontologies and therefore make it easy for
machines to read and process the data. However, the information is highly distributed over
thousands of Web pages. The Semantic Web contains a few major sources, such as DBpedia
and Freebase (see Figure 1.2), but Web pages containing RDFa, for example, provide more
triples for the Web of Data. In the conception of the algorithm, we assume that there is an
index12 or triple store that aggregated triples from many different sources. We then use this
index as the single query point, removing the need to work with distributed data.

Figure 5.13 shows the different processes in the SWE. The next sections explain these steps
in more detail.

Figure 5.13: Overview of the Processes for the Semantic Web Entity Extraction

Detecting Ontology Concepts with Seed Entities

Figure 5.14 illustrates the first step of the SWE in greater detail.

Figure 5.14: Concept URI Detection Process of the Semantic Web Entity Extractor

Having only the concept names (concept) and a few instances per concept (SeedSetconcept)
we need to find out which ontological concepts the seeds belong to. We therefore load a
combination of seeds and query the index with each seed and its concept . We then find
the seedURI that is about our seed and extract all triple objects that might state the type
(type ∈ TypePredicateSet) of the entity. Next, we put all found type candidates in a candidate
list TypeCandidateList . After doing this for all the seed entities, we need to determine to
which of the concepts in our candidate list all the seed entities belong. We therefore eliminate
all concepts in the set that appeared fewer times than the number of seed entities we have.

12In our later experiments we will use http://sindice.com (last accessed on 25th of March 2012).

88 Extraction of Entities

Furthermore, we might have extracted concepts and their super concepts. We want the most
detailed concepts and need to remove their broader super concepts. We do this by resolving
each concept URI and eliminating their super concepts, or eliminating the concept if we find
out that it is a super concept of another concept in our candidate set. If the TypeCandidateSet
is not empty after the process, we move on to entity extraction. If we have not detected a
concept, we use a different combination of seeds and try again until we find at least one
common concept. To make this process clear, we provide the following example:

Let us assume we have the following seed entities of the actor concept: SeedSetActor =
{Jim Carrey , Josh Brolin}. First, we search the index for URIs with information about these
seeds. From the result list, we now need to find the URI that is most likely about the seed
entity. We do this by detecting the label of the subject that is described by the URI (see
Section 5.2.5). If the label matches our seed entity name exactly, we take the URI as the
subject and query the index for all triples that belong to that subject.

In our example we have found that the URI http://rdf.freebase.com/ns/en.jim_carrey
matches our seed Jim Carrey. We would then retrieve the following triples for this URI (s is
the subject, p is the predicate, and o is the object):

s: <http://rdf.freebase.com/ns/en.jim_carrey>

p: <http://rdf.freebase.com/ns/common.topic.image>

o: <http://rdf.freebase.com/ns/wikipedia.images.commons_id.4945051>

s: <http://rdf.freebase.com/ns/en.jim_carrey>

p: <http://rdf.freebase.com/ns/base.popstra.celebrity.supporter>

o: <http://rdf.freebase.com/ns/m.064hfhb>

s: <http://rdf.freebase.com/ns/en.jim_carrey>

p: <http://rdf.freebase.com/ns/film.actor.film>

o: <http://rdf.freebase.com/ns/m.0jykww>

s: <http://rdf.freebase.com/ns/en.jim_carrey>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/film.actor>

s: <http://rdf.freebase.com/ns/en.jim_carrey>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/award.award_nominee>

s: <http://rdf.freebase.com/ns/en.jim_carrey>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/people.person>

In the next step, we need to find out which type our seed is. We can use different vocabularies
to find the type of the entity. We want the algorithm to extract from arbitrary ontologies
and use only the following ontology independent predicates in the TypePredicateSet :

p: http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Extraction Techniques 89

p: http://www.w3.org/2004/02/skos/core#subject

p: http://purl.org/dc/terms/subject

We remove all triples that do not contain a predicate which is element of the TypePredicateSet .
We are now left with the following triples:

s: <http://rdf.freebase.com/ns/en.jim_carrey>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/film.actor>

s: <http://rdf.freebase.com/ns/en.jim_carrey>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/award.award_nominee>

s: <http://rdf.freebase.com/ns/en.jim_carrey>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/people.person>

After processing the first seed, the TypeCandidateList contains the following URIs:

o: http://rdf.freebase.com/ns/film.actor

o: http://rdf.freebase.com/ns/award.award_nominee

o: http://rdf.freebase.com/ns/people.person

We can now process our next seed, seed = Josh Brolin. We use the same procedure as
with the first seed with one difference: when finding the seedURI for the seed , we limit the
results to URIs from the same ontology that the first URI is from. This step is necessary for
finding the common entity type among all seeds element SeedSet . For example, if the first
seedURI is from DBpedia http://dbpedia.org/resource/Jim_Carrey and the second one
is from Freebase http://rdf.freebase.com/ns/en.josh_brolin, their candidate types will
not match since both ontologies are likely to use their own terms for the type. For example,
in DBpedia Jim Carrey is of type http://dbpedia.org/ontology/Actor while in Freebase
his type would be http://rdf.freebase.com/ns/film.actor.

After processing our second seed, seed = Josh Brolin and finding its seedURI http://rdf

.freebase.com/ns/en.josh_brolin, we can add types to the TypeCandidateList from the
following triples:

s: <http://rdf.freebase.com/ns/en.josh_brolin>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/film.actor>

s: <http://rdf.freebase.com/ns/en.josh_brolin>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/tv.tv_guest_role>

90 Extraction of Entities

s: <http://rdf.freebase.com/ns/en.josh_brolin>

p: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

o: <http://rdf.freebase.com/ns/people.person>

After adding the types to the TypeCandidateList , it contains the following URIs:

o: http://rdf.freebase.com/ns/film.actor

o: http://rdf.freebase.com/ns/award.award_nominee

o: http://rdf.freebase.com/ns/people.person

o: http://rdf.freebase.com/ns/film.actor

o: http://rdf.freebase.com/ns/tv.tv_guest_role

o: http://rdf.freebase.com/ns/people.person

We now want to find all types that all seeds from the SeedSet have in common, that is, we
remove all types from the TypeCandidateList that occur fewer times than |SeedSet |. After
this step our set is reduced to two types:

o: http://rdf.freebase.com/ns/film.actor

o: http://rdf.freebase.com/ns/people.person

Our goal, however, is to find the most precise concept among all seeds. In a last step, we resolve
the URIs from the TypeCandidateSet and remove all super concepts from each candidate
from the set. We remove all concepts that are objects to the predicate http://www.w3.org/

2000/01/rdf-schema#subClassOf for a subject from the TypeCandidateSet . In our example,
we can remove freebase:people.person from the set after discovering that freebase:film.actor
is a subclass of that concept. Our final detected concept URI in this example is therefore
http://rdf.freebase.com/ns/film.actor.

Extraction of Entities

Figure 5.15 shows the second step of the SWE in greater detail.

Figure 5.15: Entity Extraction Process of the Semantic Web Entity Extractor

After we have detected the common type URIs for all the seeds from the SeedSet , we
can query the index to find more entity mentions and extract them. First, we collect an
EntityCandidatesSet . Figure 5.15 shows the first way to accomplish this. We resolve each
URI from the TypeCandidateSet and add all subject URIs to the EntityCandidatesSet that
have a predicate which is element of TypePredicateSet and have a URI that is element of

Extraction Techniques 91

the TypeCandidateSet as object. In a second step, we query the index for all combinations
of predicates and detected types. This means we have numQueries = |TypePredicateSet | ×
|TypeCandidateSet |. In our example, we would query the index with one detected concept
URI (freebase:film.actor) and the three URIs from the TypePredicateSet . From each result,
we add the subject URI to the EntityCandidatesSet .

After having collected candidate URIs in the EntityCandidatesSet , we need to find the cor-
responding label for each of the candidate URIs. To retrieve the label, we resolve the entity
candidate URI and analyze all triples with a predicate element of LabelPredicateSet . Again,
we want to be ontology independent and use only generic vocabulary13. The LabelPredicateSet
contains the following predicates:

p: http://www.w3.org/2000/01/rdf-schema#label

p: http://www.purl.org/dc/elements/1.1/title

If we find a label we extract the entity. If there are several labels, we search until we find
the English one. Usually the language is denoted with a @LANGUAGE_CODE after the literal.
If we are unable to find the label by analyzing the entity candidate’s triples, we try to guess
the label from the entity candidate URI itself. The URI does not have to be human readable
and contain the entity label but sometimes it still does. For example, the following two URIs
describe the same entity Jim Carrey :

s: http://sw.opencyc.org/concept/Mx4rvo3dlZwpEbGdrcN5Y29ycA

s: http://dbpedia.org/resource/Jim_Carrey

If we were not able to find a proper label, we take the last part of the URI (everything after
the last slash), clean the string (replace underscores with spaces), and perform a plausibility
check. For this last check, we use simple heuristics. We consider a label implausible if

� the longest consecutive string in the label is longer than 25 characters, or

� the longest consecutive string in the label is longer than 15 characters and contains
more than two digits, or

� the label starts with an @ symbol.

In the example above, if we did not find a proper label for either of the two URIs, we would
consider “Mx4rvo3dlZwpEbGdrcN5Y29ycA” implausible, but would extract the term “Jim
Carrey” from the DBpedia URI.

We perform these steps for each candidate entity from the EntityCandidateSet and proceed
to the ranking step once we have processed all candidates.

13An example of an ontology dependent vocabulary is http://rdf.freebase.com/ns/type.object.name,
which is similar to http://www.w3.org/2000/01/rdf-schema\#label, but is primarily used by Freebase and
not by other ontologies.

92 Extraction of Entities

Ranking Extractions

Figure 5.16 shows the third and last step of the SWE in greater detail.

Figure 5.16: Entity Ranking Process of the Semantic Web Entity Extractor

After we extract entities from the EntityCandidateSet , we have an ExtractedEntitiesSet . To
ensure we only use the most likely entities, we need to rank the entities from the set.

To rank the entities, we calculate the similarity of each entity from the ExtractedEntitiesSet
with the entities from the SeedSet . The more similar the entity, the higher the rank. As a
similarity function, we use the Jaccard similarity coefficient as shown in Equation 5.4, where
Triplesseeds is the union of the sets of all predicates and objects (URIs and literals) that were
found for the seed entities from the SeedSet . Triplesentity is the set of all predicates and
objects that were found for the entity that is being ranked.

Rank(entity) =
Triplesseeds ∩ Triplesentity
Triplesseeds ∪ Triplesentity

(5.4)

The rationale behind this similarity approach for ranking is that ranking should be relative
to the entities from the SeedSet. For example, if we used only comedy actors as seeds, other
comedy actors should be ranked higher than musical actors. The amount of predicates and
objects that comedy actors have in common is usually higher than the amount of predicates
that musical actors and comedy actors have in common.

5.3 Evaluation

In this section, we evaluate the performances of the extraction techniques. We compare them
against each other in regards to precision and to the number of expected extractions. Our
evaluation results are all based on search indices; therefore, a recall cannot be calculated.
Please revisit Section 2.3 for detailed information about evaluation measures.

While some techniques might work well for a certain concept, they might be useless for all
other concepts. The goal of WebKnox, however, is to work across a set of different concepts.
We therefore chose to evaluate the entity extraction techniques on a set of 17 concepts as
shown in Figure 5.17.

In the following sections, we evaluate the entity extraction techniques (Section 5.3.1), the
performance of the Semantic Web extraction technique for the ELC task (Section 5.3.2), and
provide a more detailed evaluation and comparison of the natural language-based extractor
(Section 5.3.3).

Evaluation 93

Figure 5.17: 17 Concepts for the Evaluation

5.3.1 Evaluation and Comparison of Entity Extraction Techniques

In this section, we evaluate the precision of each extraction technique across the 17 concepts
from our ontology provided in Figure 5.17. Each of the five extraction techniques can be
used in different settings, which influence their performance. We evaluate the precision of
each technique in detail, which results in 18 different extraction technique configurations.
Table 5.6 describes these configurations in detail14 ; CP is the plural of a concept name and
CS is the singular of a concept name.

Experimental Setup

To evaluate the entity extraction techniques, we applied the techniques to the Visible Web
and Semantic Web in mid-August 2011.

For all extraction techniques that extract entities from the Visible Web, we used the API
from Bing to perform searches and took the top 20 results per query into consideration for
extraction. For the Semantic Web Extraction technique, we used Sindice as an index of the
Semantic Web and used the top 10 results for extraction.

Phrase Extraction We queried with four patterns per concept and took the top 20 doc-
uments per query. This resulted in 4 × 20 × 17 = 1, 360 documents, which led to 3,096
extractions.

Seed Extraction We manually created a set of 20 seeds per concept (340 seeds in total)
and queried with 20 random seed combinations per concept. We took the top 10 documents

14For the Focused Crawl Extraction we have to exclude results with “arizona” because “AZ” is the state
abbreviation for the US state Arizona.

94 Extraction of Entities

for extraction. This led to 20 × 10 × 17 = 3, 400 analyzed documents yielding 1,291,843
extracted entities.

Focused Crawl Extraction We queried the search engine with six queries per concept
and retrieved the top 20 documents for extraction. This approach led to 20× 6× 17 = 2, 040
analyzed documents and yielded 699,616 extracted entities.

Natural Language Processing-based Extraction We used the top 20 “hot searches”
from 19th of August 2011 on Google Hot Trends15. For each of the 20 search terms we used
the named entity recognizer on the top 10 news pages delivered by Google to extract entities.
In doing so, we analyzed 20 × 10 = 200 documents and were able to extract 4,457 entities.
We call this extraction technique NLPE in the future.

Semantic Web Extraction We queried Sindice with 65 manually assigned concept URIs
listed in Appendix A and a random combination of four to one seeds. First, we attempted
maximally 40 combinations of four seeds. If no results were returned, we attempted maximally
40 times with three seeds. We continued until a result was returned or until we had no more
concept URIs or seeds to query with. Using this approach, we posed 1,512 queries to Sindice
resulting in 31,409 extractions.

Altogether, we extracted over two million possible entities across the 17 evaluation concepts.
Since this amount of entities is too large for evaluation purposes, we randomly selected about
380 entities per concept (6,489 in total) to manually evaluate whether extractions were correct.
This number of 380 entities per concept allows us to calculate precision scores within small
confidence intervals (the exact confidence interval will be reported in the pertinent sections).
We use a confidence level of 95 % to determine the confidence levels for each reported precision.

Extraction Techniques Performance by Concept

Figure 5.18 depicts the extraction precision for each of the 17 concepts and each of the 18
extraction technique configurations in form of a heat map. White signifies low precision and
dark blue signifies high precision. In this particular chart, the confidence interval is about
13 % on average for a confidence level of 95 %.

The figure shows which extraction technique configuration works best for each concept. While
the “2 Seeds” configuration of the Seed Extraction technique performs rather well across all
concepts, the “Browse” configuration of the Focused Crawl extraction technique works par-
ticularly well for the concepts Politician, Country, Band, Airport, Actor, and Movie, but fails
to extract the other concepts precisely. As long as we have one dark blue square in each row,
we can extract entities from that concept with at least one extraction technique confidently.
Furthermore, the figure justifies extraction technique configurations which rarely extract en-
tities precisely but excel in at least one concept. For example, the “AZ” configuration of the
Focused Crawl extraction technique generally does not extract with high precision, but is

15http://www.google.com/trends/hottrends?date=2011-8-19&sa=X, last accessed on 25th of March 2012

Evaluation 95

Technique Configuration Explanation

Phrase Extraction Such As Web pages were retrieved with the query type “CP
such as”.

Like Web pages were retrieved with the query type “CP
like”.

Including Web pages were retrieved with the query type “CP
including”.

Especially Web pages were retrieved with the query type “CP
especially”.

Seed Extraction

2 seeds Two seeds were used when querying a search en-
gine.

3 seeds Three seeds were used when querying a search en-
gine.

4 seeds Four seeds were used when querying a search en-
gine.

5 seeds Five seeds were used when querying a search en-
gine.

Focused Crawl

List Of Web pages were retrieved with the query type “list
of CP”.

List Web pages were retrieved with the query type “CS
list”.

Index Of Web pages were retrieved with the following query
type “index of CP”.

Index Web pages were retrieved with the query type “CS
index”.

Browse Web pages were retrieved with the following query
type “browse CP”.

AZ Web pages were retrieved with the two query types
“CP ‘a-z’ -arizona” and “CP ‘a to z’”.

NLPE
Sparse Model The NLPE used a sparsely-trained model with 50

seeds per concept to discover new entities.

Complete Model The NLPE was trained on the TUDCS4 corpus.

SWE
Assigned Classes For each of the 17 concepts we manually assigned a

set of matching RDF classes found on the Semantic
Web. See Table A.1 in Appendix A for a complete
list.

Detected Classes We used between one and four seeds to automati-
cally detect the mutual RDF type of the seeds.

Table 5.6: Configurations of the Five Entity Extraction Techniques

96 Extraction of Entities

Figure 5.18: Precision in Each of the 17 Concepts by Each of the 18 Extraction Technique
Configurations

still valuable because it is one of only four configurations that extracts city names with high
precision.

Extraction Techniques Averaged over 17 Concepts

Figure 5.19 depicts the precision scores of each individual extraction technique configuration
averaged over all 17 concepts. Additionally, Figure 5.20 shows the estimated number of correct
extractions (see Equation 2.9 with β = 1).

The Semantic Web Extractor extracts entities with the highest precision of 81 % on average.

Evaluation 97

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AZ

Browse

Index

Index Of

List

List Of

Compl. Trained

Spars. Trained

Especially

Including

Like

Such As

2 Seeds

3 Seeds

4 Seeds

5 Seeds

Auto. Detected

Man. Assigned

 Average

Precision

SWE

Seed Extraction

Phrase Extraction

NLPE

Focused Crawl

Figure 5.19: Precision of the 18 Extraction Technique Configurations Averaged over All 17
Concepts

Interestingly, the configuration with automatically detected RDF classes is only about 3 %
less precise than the configuration where we have manually assigned the correct concepts.
The manual effort for finding URIs does not yield much better results and could be avoided
altogether.

The Seed Extraction technique is the second most precise with about 57 % precision on
average. We expected the precision to increase as we used more seeds. This expectation was
confirmed by the precision scores for two to four seed queries, but not when we used five seeds.
In the case of five seed queries the precision dropped back to the level of two seed queries.
Intuitively, the more seeds we use to search for Web pages, the more “hidden” pages will be
retrieved from the search engine index. These pages might be lower in quality (therefore also
more “hidden”) and the extraction techniques might extract more false positives. Using three
to four seeds also yields the highest number of estimated correct extractions, around 275,000.

The Phrase Extraction technique varies considerably in precision depending on which terms
are used for retrieval and extraction. While more than every second extracted entity is correct
(59 %) using the phrase “such as”, only about every fourth extraction (25 %) is correct when
using the phrase “especially”. A variety of patterns is necessary, however, since the number
of instances found per pattern is relatively low compared to other techniques. The number
of estimated correct extractions is below 350.

The NLPE (extraction of entities from plain text) is only about 16 % precise, which we
expected due to the lack of “guidance” through HTML structures or hand-crafted patterns. It

98 Extraction of Entities

68,330

61,252

42,746

20,884

29,005

35,356

278

283

76

425

347

541

163,243

276,592

273,841

143,052

13,412

15,553

63,623

1 10 100 1,000 10,000 100,000 1,000,000

AZ

Browse

Index

Index Of

List

List Of

Compl. Trained

Spars. Trained

Especially

Including

Like

Such As

2 Seeds

3 Seeds

4 Seeds

5 Seeds

Auto. Detected

Man. Assigned

 Average

Estimated Number of Correct Extractions

SWE

Seed Extraction

Phrase Extraction

NLPE

Focused Crawl

Figure 5.20: Estimated Number of Correct Extractions of the 18 Extraction Technique Con-
figurations Averaged over All 17 Concepts

is intriguing, however, that the configuration with the model that was automatically learned
on sparse data is only about 2 % less precise than the model trained on the completely
annotated TUDCS4 corpus. Just as with the Phrase Extraction, the estimated number of
correct extractions is comparatively low with about 300 extractions.

The extraction precision of the Focused Crawl extraction technique depends on the phrases
used to retrieve the list pages. Even the difference between the retrieval phrases “list” and
“list of” yielded a precision difference of almost 5 %, although this was not the case for the
similar pair “index of” and “index”. The pattern “AZ” results in the lowest precision. In
general, the Focused Crawl technique always tries to detect lists on retrieved pages. Query
phrases that lead a search engine to bring up predominantly pages without lists will therefore
decrease the extraction precision tremendously. Depending on the configuration, between
20,000 and 70,000 estimated correct instances were found.

Figure 5.21 shows the precision and the estimated number of correctly extracted instances
of the five main extraction techniques averaged over their configurations and all 17 concepts.
All calculated scores are within a confidence interval of about 5 % at a confidence level of
95 %.

Evaluation 99

 0.32

 0.16

 0.43

 0.57

 0.81

 0.46

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Focused Crawl

NLPE

Phrase Extraction

Seed Extraction

SWE

Average

Precision

(a) Averaged Precision

42,929

281

347

214,182

14,483

54,444

1 10 100 1,000 10,000 100,000 1,000,000

Focused Crawl

NLPE

Phrase Extraction

Seed Extraction

SWE

Average

Estimated Number of Correct Extractions

(b) Sum of Estimated Correct Extractions

Figure 5.21: Performance of the Five Extraction Techniques Averaged over All 17 Concepts

Concepts Averaged over Five Extraction Techniques

Figure 5.22 depicts how many entities were extracted across the 17 concepts and how precisely
they were extracted. The data is averaged over the 18 extraction technique configurations.

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actor

Airplane

Airport

Athlete

Band

Car

City

Computer Mouse

Country

Lake

Mobile Phone

Movie

Newspaper

Politician

Restaurant

Sports Team

University

Average

Estimated Number of Correct Extractions

Precision

Precision Estimated Number of Correct Extractions

Figure 5.22: Precision in Each of the 17 Concepts Averaged over All Five Extraction Tech-
niques

On average, about 43 % of all extractions were correct, and an estimated 67,000 correct
instances per concept could be extracted16. We can see that extraction precision varies greatly
depending on the concept. Movie names were extracted with a precision of almost 71 % while
only about every fourth (26 %) computer mouse extraction was correct. An explanation for

16The extractions are not unique, the same entity name might have been extracted multiple times from
different sources.

100 Extraction of Entities

this gap in precision is the popularity of the entities of the concepts. Popular concepts such
as movies are much more frequently mentioned on the Web than computer mice, for example.
To verify this claim, compare Table 5.7 and Table 5.8.

In Table 5.7, we retrieved the hit counts on Google for the top 10 movies on the Internet
Movie Database (IMDb)17. The average hit count is about 18.7 million indexed pages on
Google.

Entity Google Hit Counts

The Shawshank Redemption 5,270,000

The Godfather 30,600,000

The Godfather: Part II 1,700,000

The Good, the Bad and the Ugly 22,200,000

Pulp Fiction 11,300,000

12 Angry Men 2,060,000

Schindler’s List 4,320,000

One Flew Over the Cuckoo’s Nest 3,440,000

The Dark Knight 82,400,000

Inception 24,200,000

Average 18,749,000

Table 5.7: Hit Counts on Google for the Top 10 Movies on IMDb

In Table 5.8, we retrieved the hit counts on Google for the top 10 best selling computer mice
on Amazon.com18. The average number of indexed pages containing the names of the mice
is only about 1.5 million.

There are more than ten times more indexed pages for movies than computer mice. Therefore,
it is also more likely that we extract a popular movie several times from different pages and
get a higher precision.

Furthermore, movies, actors, and bands are often listed in databases which can be browsed
on the Web. The Web pages containing lists of entities of these concepts are usually not
hand-written HTML but templates with repeating patterns, making it easier to extract from
them.

Again, all calculated scores are within a confidence interval of about 5 % at a confidence level
of 95 %.

An average precision of 43 % is not satisfactory. We will show how to assess extracted entities
in order to increase precision in Chapter 6.

17http://www.imdb.com/chart/top, top 10 movies on 5th of September 2011
18http://www.amazon.com/Best-Sellers-Electronics-Computer-Mice/zgbs/electronics/11036491/

ref=zg_bs_nav_e_4_172493, best-selling computer mice on 5th of September 2011

Evaluation 101

Entity Google Hit Counts

Logitech Wireless Mouse M305 2,000,000

Microsoft Arc Touch Mouse 1,660,000

Apple Magic Mouse 6,950,000

Logitech B100 Optical USB Mouse 432,000

Logitech M305 Wireless Mouse 1,310,000

Logitech Wireless Performance Mouse MX 522,000

HP 2.4 GHz Wireless Optical Mobile Mouse 763,000

Logitech Wireless Anywhere Mouse MX 405,000

Logitech Wireless Mouse M510 971,000

Logitech Wireless Trackball M570 558,000

Average 1,557,100

Table 5.8: Hit Counts on Google for the Amazon Top 10 Selling Computer Mice

Overlap of the Extraction Techniques

In previous sections, we have compared the extraction precision and the estimated number of
correct extractions across the five techniques. We saw that some techniques, such as NLPE,
perform rather poorly with only about 15 % precision and only about 280 estimated correct
extractions. In this section, we calculate how often the extraction techniques overlap to
determine whether it is even necessary to use all the techniques. Equation 5.5 shows how we
calculate the overlap using Jaccard.

Overlap(T1 ,T2) =
|T1 ∩ T2 |
|T1 ∪ T2 |

(5.5)

Table 5.9 lists the overlap scores between all techniques. Since the overlap is symmetric
(Overlap(T1 ,T2) = Overlap(T2 ,T1)), only half the matrix is filled. We can clearly see that
none of the techniques overlap very much.

Focused Crawl NLP Phrase Seed Semantic Web

Focused Crawl 1 0.0012 0.0021 0.0312 0.0130

NLPE 1 0.0101 0.0012 0.0026

Phrase 1 0.0017 0.0072

Seed 1 0.0138

Semantic Web 1

Table 5.9: Overlap Matrix of Five Extraction Techniques

102 Extraction of Entities

In Figure 5.23(a), we visualize what percentage of the total number of about 876,000 entity
extractions was extracted by only one of the five techniques19. For simplicity we call such an
extraction a “one technique extraction”. Interestingly, less than 4 % of the extracted entities
were found using two or more extraction techniques; the rest of the extractions were one
technique extractions. In Figure 5.23(b), we show the one technique extractions for each
technique relative to the total number of extractions by that technique. Here we can see a
much more balanced distribution. For example, while only 0.37 % of all extracted entities
were only found by NLPE, we can also say that about three out of four extractions that were
performed by NLPE are only found using NLPE. Even 49 % of the extracted entities using
the Semantic Web Extraction technique were not found using a different technique. This
result is interesting because a large amount of information on the Semantic Web is identical
to information found on the Visible Web.

53.01%

0.37%

40.83%

1.73% 0.16% 3.89%

Seeds NLPE

Focused Crawl Semantic Web

Phrase Multiple Techniques

(a) Distribution of One Technique Extractions in the
Entire Dataset

70%

74%

85%

49%

53%

Seeds

NLPE

Focused Crawl

Semantic Web

Phrase

0% 20% 40% 60% 80% 100%

Seeds NLPE Focused Crawl

Semantic Web Phrase

(b) Distribution of One Technique Extractions in Re-
lation to Total Number of Extractions per Technique

Figure 5.23: Overlap Analysis of the Five Entity Extraction Techniques

We can conclude that even though some techniques are less precise than others, each technique
is able to extract entities that cannot be found using any of the other techniques. Hence, all
techniques should be used in the final system.

Overlap with DBpedia and Freebase

Thesis 1 (compare Section 1.4) of this work states that using multiple extraction techniques
on arbitrary Web pages will find entities that are not already available in DBpedia. To test
this hypothesis, we checked the overlap of our evaluation set of 2,885 correctly extracted
entities with DBpedia entities. We found that only 1,504 of these entities are also available
in DBpedia. This means that about 48 % of our extractions are not part of DBpedia.

19Since we do not know which entities are correctly extracted, we took all extractions into account.

Evaluation 103

We also tested how many entities overlapped with Freebase and found that Freebase did not
contain 14.2 % of the 2,885 correct test entities in its knowledge base20.

We can therefore contribute to the Semantic Web, as well as to systems that rely on large
knowledge bases of entities, such as named entity recognizers.

So far, we were only able to compare the entity extraction techniques to each other. In the
following two sections, we will evaluate SWE and NLPE on other research tasks. This gives
us the opportunity to compare the approaches to other techniques on the same data and we
can test the robustness of our algorithms when switching to different problems. We chose
SWE and NLPE for this analysis, because they are the main contribution of this chapter and
there are comparable approaches on other research tasks to compare against.

5.3.2 Semantic Web Extractor Experiments

We now evaluate the entity extraction approach from the Semantic Web in two further exper-
iments on the entity list completion task. First, we use the extraction technique to complete
lists of entities from our ontology of 17 concepts, and second, we compare the performance to
the best-known entity list completion algorithms in literature on a smaller set of five concepts.

Entity List Completion on 17 concepts

Figure 5.24 shows the precision of Semantic Web Entity List Completion (SWELC) on a
set of 17 different concepts. For each concept, we evaluated SWELC with and without the
automatic concept detection step. We also manually assigned over three URIs on average
from different ontologies to each concept.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actor

Airplane

Airport

Athlete

Band

Car

City

Computer Mouse

Country

Lake

Mobile Phone

Movie

Newspaper

Politician

Restaurant

Sports Team

University

Average

Precision

Manually-Assigned Concepts Automatically-Detected Concepts

Figure 5.24: Entity List Completion Precision across 17 Concepts

20Date of the experiment was the 23rd of March 2012.

104 Extraction of Entities

For the automatic detection step, we used four randomly selected seeds and tried to detect
a concept with at most 40 attempts. If nothing was found, we reduced the seed set size to
three, attempted 40 times again, and so on. Table 5.10 shows the number of attempts and
seeds that were needed to either find a matching result or to cancel the process shown in
Figure 5.15. The table also reflects the availability and absence of certain information on
the Semantic Web. Products such as computer mice and mobile phones are not yet on the
Semantic Web or are difficult to find. Computer mice were not even found after 320 attempts
in our experiment; mobile phones were only detected after 282 attempts with only one seed,
which usually yields imprecise extractions. Countries and bands, on the other hand, could be
detected after just one try using four random seed entities. Ontologies such as MusicBrainz21

for music information and the CIA world factbook22 for geographic information provide easy
access to these kind of entities.

Concept Attempts Number of Seeds

Actor 9 4

Airplane 151 3

Airport 194 2

Athlete 44 4

Band 1 4

Car 42 4

City 7 4

Computer Mouse 320 no success

Country 1 4

Restaurant 47 4

Lake 195 2

Mobile Phone 282 1

Movie 3 4

Newspaper 1 4

Sports Team 46 4

Politician 164 2

University 5 4

Table 5.10: Number of Attempts and Seeds to Successfully Detect Entities Using Semantic
Web Entity Extraction

Surprisingly, the average precision of SWELC was only about 3 % lower when automatically
detecting the concept compared to using the manually assigned concept URIs as shown in

21http://musicbrainz.org/, last accessed on 5th of March 2012
22Copied to the Semantic Web by the FU-Berlin http://www4.wiwiss.fu-berlin.de/factbook/, last ac-

cessed on 5th of March 2012

Evaluation 105

Figure 5.24. In fact, for several concepts, we seemed not to have chosen the optimal concept
URIs manually, and the automatic detection actually found better matching URIs (e.g. for
Sports Team).

Comparison to Related Work

In this section, we compare SWELC to the two state-of-the-art systems Boo!Wa! and Google
Sets. We selected five concepts from different domains – Lake (Location), Movie (Product),
Politician (Person), Newspaper (Organization), and Airport (Construction). Since the ELC
task is mainly user oriented, we use the precision@k measure for evaluation, which correlates
well with the user’s satisfaction. We use k = 10 mainly because Google Sets seldom returns
more results. For each concept, we evaluated the result lists three times, each time with three
randomly selected seed entities. If a system did not produce an answer, we removed an entity
and attempted again. We also removed the seed entities from the result list since they would
be of no help to a human user. Table 5.11 shows the comparison of the precision@10 values
for the three systems across the five concepts. Interestingly, the Boo!Wa! system was unable
to answer any of the 15 queries with a result list. Google Sets performs well on the popular
concept Movie, but is often concept dependent. Overall, SWELC performs 5 % better than
Google Sets in our evaluation. It is worth mentioning that SWELC returned many more
results (up to 6,000 movies, for example) than Google Sets. The problem with SWELC is the
concept detection. If the right seeds were selected and the concept was detected correctly,
almost all the answers were correct. If a wrong concept was detected, almost all results were
wrong. Improving the concept detection will therefore yield much higher precision scores.

Concept Boo!Wa! Google Sets SWELC

Lake - 0.07 0.50

Movie - 1.00 0.33

Politician - 0.27 0.33

Newspaper - 0.87 1.00

Airport - 0.70 1.00

Overall - 0.58 0.63

Table 5.11: Precision@10 Scores across Three Different ELC Systems for Five Concepts

5.3.3 Natural Language Processing-based Extraction Experiments

In this section, we evaluate the NLPE technique in more detail and compare it to related work.
We have seen that NLPE yields rather low extraction precision in our previous experiments.
We now evaluate this technique on two datasets to put the performance of our approach in
relation to state-of-the-art NER techniques.

106 Extraction of Entities

Datasets

We use two datasets for our evaluation, the CoNLL 2003 and the TUD 2011 dataset. In this
section, we will describe the properties, similarities, and differences between the datasets.

CoNLL 2003 The CoNLL 2003 dataset23 was developed for the shared task at CoNLL in
2003. The task participants were asked to provide a language-independent NER tool that
can process English and German texts recognizing the entity types Person, Organization,
Location, and Miscellaneous. In our evaluation, we will only use the English part of the
dataset. The dataset also comes with additional data, such as list of names, POS-tags, and
non-annotated data, which we also will not use in our experiments. The data is separated
into training (68 %), validation (for tuning the systems, 17 %), and test (15 %). A Reuters
corpus of news wire articles was annotated by the University of Antwerp for this dataset.

Table 5.12 shows the number of tagged entities per type in the three parts of the dataset. We
can see that the main types are almost evenly distributed in the dataset. Altogether, almost
35,000 mentions were annotated.

Entity Type Training Validation Test Total

Person 6,560 1,832 1,602 9,994

Organization 6,276 1,341 1,642 9,259

Location 7,119 1,830 1,661 10,610

Misc 3,371 910 691 4,972

Table 5.12: Number of Tagged Entities per Type in the CoNLL 2003 Dataset

Although the CoNLL 2003 dataset is a valuable resource, it comes with a number of draw-
backs. Most importantly, only three entity types in addition to MISC type are tagged. We
have noticed that the MISC type very often represents a nationality identifier such as Span-
ish. Since there are many more entities that could fall into this category (Products, Buildings,
Landmarks, etc.) it is questionable whether the annotated articles cover enough variety. This
categorization is too broad for many real world applications. Therefore, the performance lev-
els that NERs can reach on this dataset might be misleading. It is unclear whether they would
work with a much finer-grained classification. Furthermore, we found that some documents
in the dataset do not seem to resemble a real text, but rather look as if they were scraped
table contents. Long sequences of space-separated digits or lines of completely uppercase
characters seem unusual for real news articles. Lastly, we found several inconsistencies in the
annotation. For example, “Dublin-born” is not annotated while “Suriname-born” is tagged
as MISC, and sometimes even the languages German and English are mixed up.

TUD 2011 The TUD 2011 dataset24 was developed at the Dresden University of Technol-
ogy to evaluate named entity recognition on a finer-grained level. It was important to us that

23http://www.cnts.ua.ac.be/CoNLL2003/ner, last accessed on 25th of March 2012
24http://areca.co/7/Web-Named-Entity-Recognition-TUDCS4, last accessed on 25th of March 2012

Evaluation 107

we did not get data solely from one source as the writing tends to be too homogeneous. We
therefore used different Web pages as sources for the dataset. Two annotators spent about
100 hours annotating 22 entity types in the dataset. In the first step, 20 seed entities per
entity type were collected from Web sources. We then used the algorithm from Figure 5.12
to automatically find possible mentions of the seed entities on the Web. Documents for each
entity type were then hand tagged for about four hours. We tried to assign the most specific
type to each entity; if there was no fitting type we went up in the hierarchy. If nothing
matched there, we had to assign MISC. For example, Jim Carrey would be annotated as
Actor while Bill Gates would be a Person since there is no specific matching type. The 127
documents are divided equally into training and test sets.

The TUD 2011 dataset contains 22 entity types in two hierarchy levels as shown in Figure 5.17.

Table 5.13 shows the number of tagged entities per type in the training and test part of the
dataset. While the five top level types are almost evenly distributed, the 17 more specific
types show more variation in the number of annotated instances. This variation is due to the
fact that country names, for example, also occur in documents about airplanes, but not the
other way around. Altogether, 3,400 mentions were annotated.

Entity Type Training Test Total Entity Type Training Test Total

Person 216 166 382 Car 19 14 33

Politician 54 66 120 Comp. Mouse 18 21 39

Actor 59 28 87 Movie 28 30 58

Athlete 60 78 138 Mobile Phone 24 24 48

Location 178 145 323 Organization 201 231 432

Country 143 119 262 Newspaper 70 39 109

City 142 142 284 Team 60 75 135

Lake 28 14 42 University 14 17 31

Airport 40 30 70 Restaurant 19 20 39

Product 64 44 108 Band 37 20 57

Airplane 92 118 210 Misc 243 150 393

Table 5.13: Number of Tagged Entities per Type in the TUD 2011 Dataset

Comparisons

In this section, we evaluate our NER (see Section 5.2.4) on the two datasets and compare it
to state-of-the-art NERs. In particular, we compare it to LingPipe25 (Alias-i, 2011), which
employs a character language model on top of a hidden Markov model, OpenNLP26, which

25http://alias-i.com/lingpipe/, last accessed on 25th of March 2012
26http://incubator.apache.org/opennlp/, last accessed on 18th of June 2012

108 Extraction of Entities

follows a maximum entropy approach for tagging, and the Illinois LBJ Tagger27 (Ratinov
and Roth, 2009), which is based on conditional random fields. All these recognizers work
in a supervised manner, needing manually-labeled training data. The WebKnox NER works
in supervised mode (called “WebKnox” in the charts), but can also learn from sparsely-
annotated training data on the Web (called “WebKnox Web” in the charts). We use the
MUC evaluation scores for precision, recall, and the F1 value. Furthermore, it is important
to note that evaluation is done on “unseen” data, that is, we ignored annotations in the test
set which could have been learned in the training data. We do this to penalize dictionary-
based recognition approaches since our goal is to extract new entities from text, not just to
recognize what we know already.

Evaluation on CoNLL 2003

Figure 5.25 shows the comparison of the four NERs on the CoNLL data. All NERs were
trained on 68 % training data and tested on 15 % test data from the dataset. This graphic
shows what we can reach when using supervised learning with the training data.

0.82

0.61

0.83

0.85

0.86

0.62

0.83

0.87

0.84

0.62

0.83

0.86

0.0 0.2 0.4 0.6 0.8 1.0

WebKnox

OpenNLP

LingPipe

Illinois LBJ

MUC Precision MUC Recall MUC F1

Figure 5.25: Comparison of Entity Recognizers with Supervised Learning on CoNLL Dataset

Figure 5.26 shows the performance of the NERs based on the size of the training data. We
evaluated the performance by continuously increasing the training set by ten documents (in
total, CoNLL provides about 600 training documents). We can see that all NERs benefit from
more training data. The dashed line signifies the performance of WebKnox Web (the NER
in Web training mode). We used 1 to 50 seed entities per type and automatically generated
training data using the algorithm from Figure 5.12. The upper x-axis shows the number
of seeds that were used for training WebKnox Web. While this approach works without
hand-labeled training data, the F1 value is about 29 % below the maximum F1 value of the
best NER when using completely annotated training data. Still, even when LingPipe uses 20
training documents, the Web training approach still outperforms the NER, and even when
OpenNLP’s NER uses over 250 training documents, the WebKnox NER still performs better.

27http://cogcomp.cs.illinois.edu/page/software_view/4, last accessed on 18th of June 2012

Evaluation 109

1 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501

Number of Training Seeds

M
U

C
 F

1

Number of Training Documents

Illinois LBJ LingPipe OpenNLP WebKnox WebKnox Web

Figure 5.26: Comparison of Entity Recognizers based on the Amount of Training Data on
CoNLL Dataset

Evaluation on TUD 2011

Figure 5.27 shows the comparison of the four NERs on the TUD data. All NERs were trained
on 50 % training data and tested on the other 50 % test data from the dataset. It is clear that
all NERs perform far worse on the TUD dataset than on the CoNLL dataset. The worsened
performance stems from a smaller number of training documents, more diverse training data,
and, most importantly, from the higher number of entity types that need to be recognized.
From this chart, we can conclude that even state-of-the-art NERs perform poorly on diverse
Web text when the task is to extract unseen entity mentions. The performance could be
improved by allowing gazetteers, but this is not our focus.

Figure 5.28 shows the performance of the NERs based on the size of the training data from
the TUD dataset (in total, the dataset provides about 60 training documents). We increased
the number of training documents by five for each evaluation. We can see a similar behavior
of the NERs as in Figure 5.26. We trained the WebKnox Web NER the same way as before,
supplying it with automatically generated training data. It takes the Illinois LBJ NER about
ten training documents to reach the performance of the WebKnox Web NER trained on 10
seeds. This time, however, the number of training documents is too small for LingPipe and
OpenNLP to reach the automatically trained NER’s performance at all. Training WebKnox
Web with 50 seed entities per type performs only about 9 % worse than the Illinois LBJ after
56 training documents.

We can see a promising direction of automatically training the NER on the Web. We believe
more research will be targeted in this direction since acquiring training data is extremely
costly and when a new entity type should be recognized, the complete dataset needs to be
manually re-annotated.

110 Extraction of Entities

0.53

0.22

0.35

0.52

0.53

0.26

0.25

0.50

0.52

0.18

0.59

0.55

0.0 0.2 0.4 0.6 0.8 1.0

WebKnox

OpenNLP

LingPipe

Illinois LBJ

MUC Precision MUC Recall MUC F1

Figure 5.27: Comparison of Entity Recognizers with Supervised Learning on TUD Dataset

The experiments of this section have shown that our NER that was also used for the extraction
of entities from plain text (NLPE in previous experiments) is comparable to the best NERs.
We want to make two points in this conclusion. First, NER is far from being a solved
problem. The low scores for NLPE in our entity extraction task on 17 concepts show that
the best algorithms are not yet good enough to recognize and extract entities precisely – at
least not without large dictionaries of known entities. Second, we have shown that we can
train a named entity recognizer on sparsely-labeled training data which can be automatically
generated. This approach is another step in solving the problem of generating training data
for supervised machine learning approaches.

1 10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 6 11 16 21 26 31 36 41 46 51 56

Number of Training Seeds

M
U

C
 F

1

Number of Training Documents

Illinois LBJ LingPipe OpenNLP WebKnox WebKnox Web

Figure 5.28: Comparison of Entity Recognizers based on the Amount of Training Data on
TUD Dataset

Summary 111

5.4 Summary

This chapter reviewed techniques to extract entities from the Web. First, we classified different
approaches for entity extraction and presented related work. After reviewing the related
work, we have not found any research comparing different extraction techniques regarding
their precision or number of extractions. We close this gap by presenting five extraction
techniques and comparing their extraction precision and number of extractions on a set of 17
concepts. We found that there are large differences in extraction precision, but in the end,
all the techniques should be used since none of the techniques find all entities that the other
techniques find. It is also noteworthy that the average extraction precision of about 45 % is
much too low to create a knowledge base with reliable information about entities. In the next
chapter we will present methods to assess the extracted entities and raise the ratio of correct
entities in our knowledge base.

112 Extraction of Entities

Chapter 6

Assessment of Extractions

As seen in Chapter 5, extracting information from semi- or unstructured information sources
is far from 100 % accurate. Information extraction systems extract the desired information
from these sources under certain assumptions that do not always hold true. Every extraction
technique has its own shortcomings and is error prone in some sense. This makes it necessary
to assess the extracted information to ensure high precision. In this section, we show existing
techniques to score and assess extracted named entities. The assessment of extracted facts
is another interesting and important topic, but it is beyond the scope of this thesis. Please
refer to Wu and Marian (2007) and Urbansky et al. (2008) for further reading on assessing
extracted facts.

In this chapter, we give a brief overview of the related work, design our own assessment algo-
rithms, and compare our algorithms to state-of-the-art techniques. In Thesis 3 in Section 1.4,
we state that we can use a novel set of features for machine learning for the entity assessment
problem to reach a higher precision than comparable techniques. We will evaluate this thesis
at the end of this chapter.

6.1 Related Work

We group the assessment techniques into five main techniques: syntax, dictionary, redun-
dancy, co-occurrence, and graph-based. We review the work most related to the focus of this
thesis and discuss its applicability to our problem.

6.1.1 Syntax-based

Agrawal et al. (2009) study the problem of enhancing Web search results with structured
information from databases. For example, a user might search for “small, fast, and handy
digital cameras” and retrieve a list of documents from the search engine. Agrawal et al.
(2009) developed a system that automatically extracts entity mentions from the first couple
of search results, classifies them as true or false mentions, and looks for information about
those entities in structured databases. The user in our example would therefore not only get

114 Assessment of Extractions

a list of documents that mention small, fast, and handy digital cameras, but also concrete
instances, such as the Sony Cybershot. Their system is related to our goals because they
perform an entity extraction and classification step. The entity extraction step, as they call
it, is more a recognition step since they simply compare entities from the database with
phrases in the documents on a purely syntactic level. For long, specific entity names, such
as the product name Sony Cybershot DSC-hx9v, this matching strategy is likely to recognize
true mentions of the entity in the documents. For movie titles such as Pi, Avatar, or 300, it
is more complicated since these movie names can also be used as general terms in documents
and may not refer to the entity. Therefore, the entity mention classification step is needed.
The entity mention classification uses a linear support vector machine to classify an entity
mention as true or false. Agrawal et al. (2009) train the SVM with four types of features:

1. Document Level: The type of entity often depends on the content of the whole
document in which it appears. Agrawal et al. (2009) train the classifier with a set of
30,000 n-gram features with 0 < n < 4.

2. Entity Context: The context of the entity mention is the text just before and right
after the entity mention. These context words give strong clues about the entity type.
For example, the preceding context words “directed the movie” would strongly hint that
the following entity is a movie. In their system, they learn the 10,000 most frequent
n-grams for both the preceding and following contexts of the entity mention.

3. Entity Token Frequency: This feature is the prior probability that an entity name
really refers to an entity and not to a general phrase. For example, they train the system
to recognize that the movie 300 has many false mentions (used as the number 300 and
not the movie). Thus, the system is less likely to classify a mention of “300” as a movie
compared with the mention No Country for Old Men, which almost always refers to the
movie.

4. Entity Token Length: The number of words in an entity mention is another indicator
for the classifier. Short entity mentions are more likely to be generic phrases (for
example, Avatar compared to longer mentions such as No Country for Old Men).

In their evaluation, Agrawal et al. (2009) have shown that their entity classifier works with
an accuracy of 97.2 % when tested on 100,000 movie entities. Their approach might be
applicable in our system as well. The basic problem, however, is different from ours – they
only recognize already known entities from a database and classify whether their recognition
worked correctly. In this thesis, we study the problem of entity discovery, that is, finding
unknown instances of entities and assessing our extractions.

Lin and Hung (2002) also use the left and right contexts of the named entity candidates in
addition to the entity candidate’s structure to verify it. Instead of just learning the assessor
model from positive examples, they use negative examples as well, and compute the proba-
bility that the candidate is correct. According to their evaluation on Chinese person names,
their probabilistic approach led to an increase in F1 value of about 8 %.

Furthermore, Florian (2002) and Florian et al. (2003) have shown that a combination of clas-
sifiers (robust linear classifier, maximum entropy, transformation-based learning, and hidden
Markov models) results in better overall classification performance.

Related Work 115

6.1.2 Dictionary-based

Another way to check the validity of extracted entities is to look them up in dictionaries,
databases, gazetteers, or knowledge bases. This technique is often an integral part of state-
of-the-art NER systems. After the delimitation phase, NERs need to classify the entity
candidates. Recognition can be supported by a source of known entities which can be queried
to look up entities (see Section 5.1.5 for a detailed explanation). Similarly, these lists can
help when assessing known entities.

Tanaka (2008) tries to improve Web search by re-ranking information based on search engine
hit counts and number of social bookmarks. The Social Bookmark Rank (SBRank) can be
used to look up the word “Java”, for example, and count the number of social bookmarks.

This assessment technique is less relevant to our work since we focus on discovering unknown
entities, which we could not look up in a list.

6.1.3 Redundancy-based

One of the simplest approaches to assess extracted entities is to apply the hypothesis that
“extractions drawn more frequently from distinct sentences in a corpus are more likely to
be correct.” (Downey, 2008). One could determine a frequency threshold and only classify
entities that are extracted more frequently than the threshold as correct. The problem is,
however, to determine this threshold which calls for more sophisticated models based on
redundancy.

Riloff and Jones (1999) use automatically learned extraction patterns and rank extracted
entities by the number of distinct patterns used to find them. Instead of relying on the
frequency of the extraction, they also take the extraction type into account. They do not,
however, calculate any kind of threshold to separate the correct and incorrect extractions.

The “URNS model” (Downey et al., 2005, Downey, 2008) is a redundancy-based, unsupervised
approach to determine whether an entity extraction is correct or not. It uses the classic,
probabilistic “balls and urns” model from combinatorics. In this model, each extraction is
equal to a labeled ball that is put into the urn. The label can either be a correct entity
extraction for a concept or an error. URNS relies on redundancy on the Web and therefore
assumes that correct labels appear on several balls in the urn. For example, the entity Jim
Carrey for the actor concept might have been extracted on several pages, which supports the
belief that Jim Carrey is really an actor. Jim Carrey then becomes a correct label found on
several balls in the urn.

The redundancy is modeled as a monotonic feature, that is, a feature that with increasing
value (all other feature values being equal) increases probability of concept membership. For
classifying named entities, there must be more correct extractions than incorrect extractions
in the urn, otherwise the model will provide inaccurate probability estimates (Downey, 2008).
This requirement limits the applicability of URNS for assessing extracted named entities from
the Web since there are many entities that appear only sparsely and can therefore not be
assessed correctly using this model.

The extraction process is then handled as repeated draws from the urn with replacement.

116 Assessment of Extractions

The question that URNS tries to answer is: “given that a particular label x was extracted k
times in a set of n draws from the urn, what is the probability that x ∈ C [C is the set of
correct labels]?” (Downey et al., 2005), or more formally as shown in Equation 6.1 (Downey
et al., 2010).

P(x ∈ C |x appears k times in n draws) =

P(x appears k times in n draws | x ∈ C)× P (x ∈ C)

P(x appears k times in n draws)
(6.1)

In information extraction, different patterns and extraction techniques are often applied that
have different failure rates. For example, to extract entities for the concept Actor the two
patterns “actors such as” and “stars in this movie” could be used. The entities that are
extracted by the first pattern might be correct more often than the ones extracted by the
latter pattern. Moreover, entities that have been extracted with multiple patterns are more
likely to be correct than entities that only appear in one. To model this additional knowledge,
URNS can be generalized using multiple urns where each urn stands for a different extraction
technique or pattern (Downey et al., 2005).

URNS can be seen as a binary classifier that assigns true or false to an extraction after
estimating the likelihood that it belongs to a certain concept. Other classification models can
also be applied for that task (such as support vector machines, noisy-or, or Bayes Classifiers),
but experiments have shown that URNS performs better than comparable techniques (Downey
et al., 2005).

6.1.4 Co-occurrence-based

The techniques described next make use of co-occurrence statistics between the entity and its
type.

Latent Relational Analysis

Latent relational analysis (LRA) is a technique to measure the semantic similarity between
word pairs (Turney, 2005). Two pairs are called analogous when they have a high semantic
similarity. For example, the two word pairs “airplane:flight” and “car:drive” are very similar;
one could say “airplane” is to “flight” as “car” is to “drive”. This measurement can now also
be used to assess entity extractions. Nadeau (2007) calls his technique “Statistical Semantics
Filter” and it uses word pairs consisting of the assigned concept and the extracted entity
(CONCEPT:ENTITY). For example, “City:London”, “City:Dublin”, “Actor:Bruce Willis”, and
“City:Click Here” are such pairs. The semantic similarity between the pairs “City:London”
and “City:Dublin” is very high (both are correct extractions), whereas the similarity between
“City:London” and “City:Click Here” is very low (since “Click Here” is not a correct extraction
for the concept City). To calculate the semantic similarity between word pairs, a matrix of
word pairs and extraction patterns is built. An extraction pattern for this algorithm is a
regular expression that finds the entity and the concept in a text with a maximum of three

Related Work 117

intervening words. For example, if the passage “in the city of London” is found in a text, the
pattern “city * London” is created. There can be several extraction patterns for one word
pair.

An example matrix is shown in Table 6.1. The bold word pairs are seeds that are known to
be correct. The entries in the matrix represent how frequently a word pair was found using
an extraction pattern. In the algorithm from Nadeau (2007) these values are smoothed using
entropy and log transformations. The matrix will contain many zero values and is compressed
using singular value decomposition (SVD).

Word Pair “city * CITY” “CITY * * city”

City:London 10 50

City:Dublin 8 66

City:New York 12 55

City:Click Here 5 2

Table 6.1: Example LRA Co-occurrence Matrix

The scores for the extracted word pairs are now determined by calculating the cosine similarity
of the row vector of the word pairs with the average vector from all seed word pairs. A score
threshold is determined by taking the smallest cosine similarity of all seed vectors. If the
resulting similarity is bigger than the threshold, the extraction is considered to be correct; if
it is not, the extraction will be considered an error. Equations 6.2 – 6.6 show the calculations
for the example from Table 6.1. We can see that the correct extraction “City:New York”
has a score above the threshold and is therefore considered to be a correct extraction. The
incorrect extraction “City:Click Here” yields a low semantic similarity with the average seed
vector and is therefore discarded. Equations 6.2 and following show how the similarities are
calculated for the example from Table 6.1.

~AverageSeedVector = 〈(10 + 8)/2, (50 + 66)/2〉 = 〈9, 58〉 (6.2)

sim(~a,~b) = cos(~a,~b) =
~a ·~b

‖~a‖ × ‖~b‖
(6.3)

ScoreThreshold = sim(〈10, 50〉, 〈8, 66〉) = 0.997 (6.4)

score(City : NewYork) = sim(〈12, 55〉, ~AverageSeedVector) = 0.998 (6.5)

score(City : ClickHere) = sim(〈5, 2〉, ~AverageSeedVector) = 0.509 (6.6)

In experiments LRA has shown slight but statistically significant improvements on named
entity assessment (Nadeau, 2007). However, due to the many search queries that have to be
generated, it is not the first choice for assessing named entity extractions.

118 Assessment of Extractions

Pointwise Mutual Information

Pointwise mutual information (PMI) (Church and Hanks, 1990) is a statistical technique to
calculate how often two words or phrases occur together in a document collection. PMI
was first used by Turney (2001) in his PMI-IR algorithm. Etzioni et al. (2004) use patterns
as discriminators to ensure the correctness of an extracted fact or entity. This means they
use these discriminators as queries for Web search engines and calculate pointwise mutual
information between the extraction and the discriminator with the hit counts. If E is an
extracted entity and D is the discriminator phrase, the PMI can be calculated as shown in
Equation 6.7.

PMI =
Hits(E + D)

Hits(E)
(6.7)

For example, the PMI for the discriminator phrase “Jim Carrey is an actor” and the entity
Jim Carrey can be used to calculate the probability that the discriminator phrase and the
entity are found together on a Web page. Even for correctly extracted entities, this number
is very small, perhaps 1:100,000. Using several automatically generated discriminators and
the entity name leads to many PMI values that are treated as features for a näıve Bayes
classifier. A set of k positive examples and k negative examples for each concept is used to
automatically find the threshold to determine whether the entity really belongs to the concept
or not (Yates, 2007).

There are several disadvantages of PMI for assessing named entity extractions. First, the
seeds used for the threshold determination tend not to be representative of the whole set
of extractions. In combination with the probability polarization behavior of the näıve Bayes
classifier, it tends to estimate probabilities incorrectly (Downey, 2008). Second, this approach
has more problems with classifying actually correct entities as incorrect (false negatives)
than with classifying incorrect entities as correct (false positives) (Yates, 2007). This is
because some entities (such as obscure movies) have low hit counts and always fall below the
automatically determined threshold. Third, computing the PMI scores is expensive (time and
computing resources) since there are two queries to a search engine for each extracted named
entity that should be assessed.

REALM

The REALM system uses hidden Markov models (Rabiner, 1990) and n-gram-based (Manning
and Schütze, 2002) language models to rank candidate extractions by the likelihood that
they are correct (Downey, 2008). Unlike URNS, REALM can also be used to assess sparse
extractions. An extraction for the REALM system is a relation consisting of two or more
named entities. For example, Headquartered(Google, Mountain View) is such a relation where
the company Google is located in Mountain View. The goal of REALM is to assess whether
the relation holds true. It uses a set of automatically extracted seeds to learn the models for
the assessment phases. The system performs two assessment steps separately. First, it checks
the types of the relation arguments, that is, it checks whether Google is really a company
and whether Mountain View is really a location. Second, it determines whether the relation

Related Work 119

Headquartered holds for the two arguments. Before the two steps are performed, the LEX
method (Downey et al., 2007) is used to recognize proper nouns and to combine multi-token
proper nouns (such as Los Angeles) into a single token.

Type Checking The first step is type checking, which is done using an HMM. It exploits
the distributional hypothesis, that is, it assumes that correct seed entities are likely to appear
in similar contexts as the entity that should be assessed (Downey, 2008). The HMM is
constructed for the seed entities and for the unknown entities. The more similar the state
distributions P (t | ei), where t is the step in the HMM and ei is the entity, between the seed
and the unknown entity, the more likely is it that the assessed entity is correct. For example,
the two extracted phrases Chicago, Illinois (seed) and Pickerington, Ohio (to be assessed)
are given. While Pickerington is a very sparse entity (it might even appear only once in
the corpus), the state distributions for Illinois and Ohio are quite similar, so Pickerington is
likely to be assessed as a correct type (Downey, 2008).

Relation Assessment The second step is to assess whether the relation of the two entities
is correct. Downey (2008) calls the component for this step REL-GRAMS, which again relies
on the distributional hypothesis. All contexts around seed entities in the given corpus are
collected. A context consists of n words around the seed entity. For example, in the sentence
“companies such as Google are headquartered in” the following contexts (n = 3) are collected
for the seed entity Google: “such as Google”, “as Google are” and “Google are headquartered”.
All contexts from all seed entities form a set C. For any extracted relation, the contexts are
extracted in the same manner and a context vector v(ej ,ek) with the dimension of |C| is built,

where the ith dimension is the number of times the context ci occurred for the two entities
ej and ek (Downey, 2008). This vector is then compared to a seed vector using a distance
metric. The lower the distance, the more similar the contexts, and therefore the more likely
that the relation holds true for the two given entities.

REALM ranks candidate extractions instead of classifying them as correct or incorrect. This
is a limitation since most real systems need to know whether an entity is correct or incorrect
instead of being presented with a probability of the entity being correct.

Wisdom of the Masses

Zhou et al. (2007) present an entity classification method that assigns a type to the entity
depending on how the top-ranked Web pages refer to the entity. They send the entity name
to a search engine, retrieve the top-ranked documents, extract the context around the entity
mention, build a feature vector with features such as term and document frequency, and
classify the entity using these features. The taxonomy of possible entity types has to be
modeled before using this technique. A demonstration1 of the system is available online.

1http://dragon.ischool.drexel.edu/cptc.asp, last accessed on 23rd of March 2012

120 Assessment of Extractions

6.1.5 Graph-based

Wang and Cohen (2007) build a graph of websites, wrappers, and extracted entities in order
to rank the list of extractions with a random graph walk (RGW) algorithm. Figure 6.1 shows
such an example graph.

Figure 6.1: Example Graph of Websites, Extractions, and Wrappers (Wang and Cohen, 2007)

They build a transition matrix for the random walker. The transition matrix is a square
matrix with nodes for Web pages, entities, and wrappers. Equation 6.8 shows how the
transition probabilities are calculated. For example, the transition probability from node
curryauto.com to node Wrapper 1 in Figure 6.1 would be 1

4 since there are four edges from
and to curryauto.com.

Mxy = P(y | x) =
1

|x→ y|
(6.8)

The probability vector ~v stores the probabilities for all nodes at certain time steps t. Equa-
tion 6.9 shows how the probability vector is updated iteratively. The probability vector is
initialized with seeds in the beginning (~v0). Positive seeds get a probability of 1, negative
seeds get a probability of 0, and every unknown node is initialized with a probability value
of 0.5. The parameter γ is used to restart the random walk. Wang and Cohen (2007) use a
value of 0.5 to put more weight on the seeds.

~vt+1 = γ × ~v0 + (1− γ)×Mxy~vt (6.9)

After some iterations (the number depends on the size of the graph), the probabilities for
the nodes converge. It is now possible to rank the nodes by their scores. A high score on
an extraction node indicates that the extraction was correct, while a lower score indicates
that the extraction failed. For the example from Figure 6.1, that would mean we would get
a sorted list of extractions with their scores from acura (score: 34.6 %) to volvo chicago

(score: 8.4 %). Wang and Cohen (2007) use this ranking to show the extractions in this order
to the user. To further process extracted named entities, it might be necessary to classify

Related Work 121

them as correct or incorrect, which means we need a threshold to decide whether an entity is
correct.

TrustRank (Gyöngyi et al., 2004) is a graph-based algorithm that aims to classify pages as
“good” or as “spam”. The algorithm can then be used to rank search results from general
purpose search engines such as Google. TrustRank uses the Web’s link structure to construct
a huge graph where each node is a Web page and each edge is a link between the pages. This
graph is represented in a transition matrix. Each page is assigned a probability indicating
how likely it is that the page is “good”. These probabilities are stored in a probability vector.
This vector is initialized with “good” (score 1) and “spam” (score 0) seed pages, and is
updated iteratively using the transition matrix. Trusted pages spread their score to the pages
to which they link. Thus, these pages are ranked more trustworthy. After a certain amount
of iterations, the spam pages should have a low score (since few trustworthy pages link to
them) and can be sorted out of the search results. In the next section, we will adopt this idea
and present how we can use a similar algorithm to assess extracted entities.

6.1.6 Combination: Redundancy- and Syntax-based

Nadeau (2007) studied the value of syntactical features for assessing entities, and combined
a frequency-based noise filter (URNS) with a lexical noise filter. Both assessment techniques
assign probability estimates for an entity extraction. The final estimate for a combined
assessor is the average of the both estimates. Nadeau’s hypothesis was that entities within
the same concept must have similar lexical features. For example, person names usually
consist of two words where the first word is relatively short. Company names, on the other
hand, can be much longer, contain special characters, have different capitalization, et cetera.
His noise filter system uses a list of 50 features, including text length, number of words,
number of white spaces, and so on. The features are all drawn from a commonly used pool
of features in NER as shown in Table 5.1. He used positive and negative examples and the
SMOTE one-class learner (Chawla et al., 2002) to build a model for a classifier.

6.1.7 Summary of Related Work

In this section, we have grouped related work on assessment of extraction results into five main
groups, namely syntax, dictionary, redundancy, co-occurrence, and graph-based assessment
methods. Combinations of several methods can also be used, but there is still little insight
on which combinations are suited for the task of assessing extracted entities. In this thesis,
we have a scenario where we extract entities using different extraction techniques applied to
different sources on the Web. In this scenario, we are able to extract a large set of features,
which can be used to determine the correctness of an extraction. We will therefore build an
entity extraction assessor that combines several assessment methods and compare it to the
methods from the related work.

122 Assessment of Extractions

6.2 Modifying Assessment Techniques for Assessing Extracted
Entities

We will now build several entity assessment algorithms based on the ideas presented in the
related work section and compare them with each other. The goal is to find out which
assessment technique works best for our set of extractions across the 17 concepts. In the
following sections, we will explain how we modified and implemented each algorithm before
we compare them in the last section.

Each assessment strategy has to instantiate Equation 6.10, that is, given an entity , a concept
it supposedly belongs to, and context information, the assessment strategy has to determine
whether the entity is a correct or incorrect extraction for that concept. The context can hold
meta information that is needed by the assessment algorithm, which differs in each approach.
We provide an instantiation of this equation for each of the assessment strategies that we
evaluate in this thesis.

assess(entity , concept , context) =

{
correct
incorrect

(6.10)

6.2.1 Pointwise Mutual Information

We explained the basic principles of this approach in Section 6.1.4. In this section, we provide
more details on how we modified PMI for the evaluation. We implemented it very closely
according to the descriptions given by Yates (2007), Etzioni et al. (2004) and Soderland et al.
(2004) and use the following discriminator patterns, where CS is the singular of the concept
name (for example Car), CP is the plural of the concept name (for example Cars), and X

is the name of the entity that should be assessed (for example Fiat Evo). One complete
discriminator phrase could be “Cars such as Fiat Evo”, which is then used to query a search
engine (using phrase matching).

"CP such as X"

"such CP as X"

"CP like X"

"CP especially X"

"CP including X"

"X and other CP"

"X or other CP"

"X is a CS"

"X is the CS"

PMI uses training and tuning entities for each concept, which we denote with trainingSet . We
use the same number of positive and negative labeled entities for training. Negative instances
are entities that were extracted for the concept, but marked as incorrect. We could also use
correct entities from other concepts. We now calculate the PMI values for all discriminator
phrases disc and all entities in the trainingSet . Equation 6.11 shows how we calculate the

Modifying Assessment Techniques for Assessing Extracted Entities 123

average positive and average negative PMI per concept using training sets. Positive training
entities should have higher PMI values than negative training entities.

AveragePMI +/−(trainingSet+/−, disc) =

∑
d∈disc

∑
e∈trainingSet+/−

PMI (e, d)

|trainingSet+/−|
(6.11)

We now search for a threshold to separate positive and negative instances. This threshold
is different for each concept and is determined by Equation 6.12. For each concept we have
trainingSet and disc to calculate the average PMI for positive and negative instances as shown
in Equation 6.11, but for brevity we left out these arguments in Equation 6.12.

threshold(concept) = AveragePMI− +
AveragePMI+ −AveragePMI−

2
(6.12)

After determining the threshold for each concept using training entities, we use a subset
tuningSet ⊂ trainingSet with tuningSet ∩ (trainingSet \ tuningSet) = ∅ of k positive and k
negative entities. We then calculate the following four probabilities for each concept, where
e is the entity, d is the discriminator pattern, and threshold is the PMI threshold that we
determined for the given concept:

1. P(PMI (e, d) > threshold |+)

2. P(PMI (e, d) > threshold | −)

3. P(PMI (e, d) ≤ threshold |+)

4. P(PMI (e, d) ≤ threshold | −)

We can now use the learned probabilities and näıve Bayes classifier to calculate the prob-
ability that an entity belongs to the concept. Equation 6.13 now instantiates our target
Equation 6.10, where context holds information about the learned probabilities which are
then used in the classify function of the näıve Bayes classifier.

assessPMI (entity , concept , context) =

{
correct if classify(probabilities) > 0.5
incorrect if classify(probabilities) ≤ 0.5

(6.13)

6.2.2 Latent Relational Analysis

The second co-occurrence-based assessor we evaluate is based on latent relational analysis
and works as described in Section 6.1.4. Similar to PMI, LRA is based on frequencies of
discriminator phrases. We use the same set of phrases that we used for PMI as shown in
Section 6.2.1.

For each concept, we calculate an ~averageSeedVector and a scoreThreshold (see Section 6.1.4).

124 Assessment of Extractions

Equation 6.14 instantiates our target Equation 6.10, where context holds information about
the scoreThreshold we calculated for each concept .

assessLRA(entity , concept , context) ={
correct if score(concept : entity) > scoreThreshold
incorrect if score(concept : entity) ≤ scoreThreshold

(6.14)

6.2.3 Random Graph Walk

Our graph walk assessment algorithm uses an idea similar to the TrustRank presented in
Section 6.1.5. Figure 6.2 shows a sample graph consisting of extracted entities (rectangles),
the Web pages from which they have been extracted (rounded boxes), and the techniques
used for extraction (triangles).

Figure 6.2: Example Graph for Graph-based Entity Assessment

We divide our training set into two smaller sets. One set contains “seed entities”, that is,
entities for which we know whether they were correctly extracted (compare with spam page
or authority page in TrustRank). The other set consists of “control entities”, that is, entities
for which we know whether they belong to the concept but treat them during the random
walks as if we did not know. In Figure 6.2, the positive seed entity is E2 (green) and the
negative seed is E1 (red). The control entities in the sample graph are the correct entity E5

(yellow-green) and the incorrect entity E8 (yellow-red).

Now we build a transition matrix for the random walker. The transition matrix is a square
matrix with nodes for Web pages, entities, and extraction techniques. Equation 6.15 shows
how the transition probabilities are calculated, where x is the source node and y is the target
node. For example, the transition probability from node E7 to node Website 3 in Figure 6.2
would be 1

3 since there are three edges from and to E7.

Mxy = P(y | x) =
1

|x→ y|
(6.15)

Modifying Assessment Techniques for Assessing Extracted Entities 125

Equation 6.16 shows how the vector ~v is updated iteratively (compare to Equation 6.9). It is
important to note that the transition probability matrix Mxy is transposed. The transposition
means that the scores of neighbor nodes are now distributed by their number of outgoing edges,
which has the effect that we no longer have probabilities at the nodes, but scores instead. For
example, in Figure 6.2, Website 1 does now get 1

3 from E2, E5, and E3 instead of 1
2 from E2,

1
4 from E5, and 1

2 from E3.

~vt+1 = γ × ~v0 + (1− γ)×Mxy
>~vt (6.16)

After some iterations (the number depends on the size of the graph), the scores for the nodes
converge. We now calculate the average trust of all positive control entities and negative
control entities to determine the threshold for assessing the unknown entities. Equation 6.17
shows how the trust threshold is calculated, where C+ is the set of positive control entities
and C− is the set of negative control entities. The parameter δ is used to shift the threshold
toward the negative (δ < 0.5) or toward the positive (δ > 0.5) threshold boundary and
therefore we can make the precision-recall trade-off. We calculate one threshold per concept.

threshold = (1− δ)×
∑

c∈C− ~v(c)

|C − |
+ δ ×

∑
c∈C+ ~v(c)

|C + |
(6.17)

Equation 6.18 is now an instantiation of our target Equation 6.10, where context holds infor-
mation about the score vector ~v and threshold we calculated for each concept .

assessRGW (entity , concept , context) =

{
correct if score of node entity in ~v > threshold
incorrect if score of node entity in ~v ≤ threshold

(6.18)

6.2.4 Text Classification

The text classification assessor uses only character level n-grams of the entity name itself for
assessment. Intuitively, entities within one category often have repeating character sequences.
For example, in car names, the manufacturer is repeated (for example, Ford Mustang, Ford
Shelby). The text classifier is supposed to find these sequences and classify entities accord-
ingly. For each concept, we learn one binary text classifier using correct extractions and
incorrect extractions. See Section 5.2.4 for more detail on how the text classifier functions.
Equation 6.19 shows the instantiation of the target Equation 6.10.

assesstext(entity , concept , context) =

{
correct if arg maxtype∈T S (type | candidate) = +
incorrect if arg maxtype∈T S (type | candidate) = −

where

S (type | candidate) =
∑

n∈Ncandidate

relevance(n, type)

(6.19)

126 Assessment of Extractions

6.2.5 Feature-based Assessor

We have more information about the extracted entities than we use in previous assessment
strategies. This assessor tries to use as many relevant features as possible to improve assess-
ment performance. We found a set of seven of relevant features to train and use a näıve Bayes
(NB) classifier and a k-nearest neighbor (KNN) classifier. We tried using more features, such
as the number of sources from which the entity has been extracted, but not all features im-
proved the classification accuracy. Our methodology was adding feature by feature, keeping a
feature if it improved the classification accuracy, and dropping it if it did not (this approach
assumes feature independence but decreases the search space tremendously).

1. Number of Concepts: The number of concepts to which the extraction has been
assigned, for instance, the extraction Australia could belong to the concept Country
and Movie.

2. Word Count: The number of words belonging to an entity.

3. Special Character Count: The number of non-alphanumeric characters in the entity
name, such as - or :.

4. Digit Start: Whether the entity name starts with a digit.

5. Uppercase: Whether the entity name starts with an uppercase letter.

6. Trusted Source: Whether the entity was extracted from a Web page from which one
of the trusted entities was also extracted.

7. Syntactical Similarity: The idea behind this feature is that entities of the same type
often contain similar words, for example, entities of the Mobile Phone concept often
contain the manufacturer name, such as Nokia or Samsung. An unknown entity that
contains similar words as the seed entities is therefore more likely to be correct. We
therefore compare the candidate to all known positive entities.

Equation 6.20 is the instantiation of the target Equation 6.10 for the näıve Bayes classifier.
The context contains information about the sources from which the entity and positive seed
entities were extracted and the positive seed entities themselves.

assessNB (entity , concept , context) ={
correct if P(+ | entity , concept) > P(− | entity , concept)
incorrect if P(+ | entity , concept) ≤ P(− | entity , concept)

(6.20)

Equation 6.21 is the instantiation of the target Equation 6.10 for the KNN classifier, where
context is all training instances for the given concept. We use a Euclidean distance function
for the classifier with k = 3.

Evaluation of Entity Assessment Techniques 127

assessKNN (entity , concept , context) ={
correct if the majority of neighbors are correct
incorrect if the majority of neighbors are incorrect

(6.21)

The näıve Bayes classifier uses all seven features listed above. For the k-Nearest Neighbor it
has been shown that using only the syntactical similarity feature yields the best performance.

6.2.6 Combined Assessor

The combined assessor uses at least two independent assessors and classifies an entity as
correct if all assessors independently classify the entity as correct. We have tried several
combinations of existing assessors, if we write “combined” without further descriptions, we
mean the combination of the random graph walk and the näıve Bayes assessor as we found
this combination to be the best (the charts in Appendix B explain this finding in detail).

Equation 6.22 shows the assessment function for the RGW+NB combination. An entity is
only classified correct if both assessors classify it independently as correct. Note that we left
out the arguments entity, concept, and context for brevity.

assessComb =

{
correct if assessRGW ∧ assessNB = correct
incorrect if assessRGW ∨ assessNB = incorrect

(6.22)

6.3 Evaluation of Entity Assessment Techniques

To evaluate the performance of the presented assessment strategies, we extracted over 6,000
entities from the Web using the extraction techniques described in Chapter 5. For each
concept, we divided the data into training (including tuning if necessary) and test data
(between 54 and 180 entities per concept). The training set and the test set each hold an
equal number of positive and negative entities. As performance measures we use precision,
recall, F1, and accuracy.

6.3.1 Dependency on the Amount of Training Data

In this experiment, we want to find out how much the performance of each assessor depends
on the size of the training set. We ran all assessors 10 times using 10–100 % of the training
data.

Each chart shows precision, recall, and F1 curves for the assessors. Additionally, we plotted
an F1 threshold, which shows the F1 value for precision@recall=1. The test set is equally
split into positive and negative entities. A recall of 1 would yield a precision of 0.5 and an F1
of 2

3rd. An F1 value below this threshold therefore means that the assessor performs worse
than classifying each entity as correct.

128 Assessment of Extractions

Figure 6.3 and Figure 6.4 show that both co-occurrence-based classifiers (PMI and LRA) are
relatively independent of the amount of training data given. PMI has learned thresholds that
are too high and therefore classifies only few extracted entities as correctly extracted. This
high threshold yields a low recall which decreases the F1 value to under 20 % – below the F1
threshold. The LRA assessor seems to classify almost every entity as correct leaving out only
very few instances and therefore the F1 value is close to the F1 threshold. We can conclude
that the amount of training data does not play an important role for neither PMI nor LRA.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

Training Data Used in %

Precision Recall F1 F1-Threshold Accuracy Accuracy-Threshold

Figure 6.3: Performance of PMI, Dependent on the Amount of Training Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

Training Data Used in %

Precision Recall F1 F1-Threshold Accuracy Accuracy-Threshold

Figure 6.4: Performance of LRA, Dependent on the Amount Training Data

Figure 6.5 shows the performance of the Random Graph Walk assessor. This assessor is also
largely independent of the amount of training data given. A few seed and tuning entities
seem adequate to determine thresholds to separate correct and incorrect extractions. If we
use more than 70 % of the training data, we can see that the accuracy, precision, and F1 value
increase. Both F1 value and accuracy are above their thresholds when we use all available
training data.

Figure 6.6 shows the performance of the text classification-based assessor dependent on the
size of the training data. We can see that using more training data closes the gap between
precision and recall scores. The precision decreases as the recall increases and at about 30 %
of the training data, the precision equals the recall. The F1 value stays below the F1 threshold

Evaluation of Entity Assessment Techniques 129

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

Training Data Used in %

Precision Recall F1 F1-Threshold Accuracy Accuracy-Threshold

Figure 6.5: Performance of RGW, Dependent on the Amount of Training Data

all the time but the accuracy is about 12 % above the accuracy threshold, largely independent
of the amount of training data used.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

Training Data Used in %

Precision Recall F1 F1-Threshold Accuracy Accuracy-Threshold

Figure 6.6: Performance of Text Classification, Dependent on the Amount of Training Data

Figure 6.7 shows the performance of the näıve Bayes assessor using seven features. Contrary
to what we observed with the text classification assessor, the precision stays about the same
with increasing training data and the recall rises slightly. For the seven features, the amount
of training data could still be too little to successfully learn the conditional probabilities.
Both F1 value and accuracy are above their respective thresholds.

In Figure 6.8, we see the performance of the KNN using only the syntactic similarity features.
The assessor is also largely independent of the amount of training data used. The näıve
Bayes assessor, however, clearly outperforms KNN. It is interesting though that using only
few syntactic features yields a better performance than both co-occurrence-based approaches,
the graph-based approach and the text-classification-based approach. Syntactic features are
obtained faster than search engine hit scores (as needed for the co-occurrence-based asses-
sors), for example. Further tests with combinations between the two classifiers did not yield
performance improvements.

Figure 6.9 shows the performance of the combination of random graph walk and the näıve

130 Assessment of Extractions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

Training Data Used in %

Precision Recall F1 F1-Threshold Accuracy Accuracy-Threshold

Figure 6.7: Performance of NB, Dependent on the Amount of Training Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

Training Data Used in %

Precision Recall F1 F1-Threshold Accuracy Accuracy-Threshold

Figure 6.8: Performance of KNN, Dependent on the Amount of Training Data

Bayes dependent on the size of the training data. We can observe that the precision and
accuracy rise more with increasing training data compared to random graph walk (compare
Figure 6.5) or näıve Bayes alone (compare Figure 6.7). The combined assessor is slightly
worse than the näıve Bayes assessor when comparing the F1 value and accuracy and using all
available training data. The precision peak of the combined assessor, however, is about 5 %
better than the one of the näıve Bayes assessor.

6.3.2 Assessment Techniques Performance by Concept

In this experiment, we want to find out how concept-dependent the assessment algorithms
function. We use 100 % of the available training data for each assessor and report the precision,
recall, and F1 value for each assessor and concept.

Figure 6.10(a) shows the performance of the PMI assessor for each concept. We can see that
the average low recall and F1 value are due to the fact that PMI does not classify many
entities across the different concepts as correct. Note that the precision for the concepts
without a bar in the graphic is undefined, not zero. The precision is undefined because PMI
never classified entities as correct. Recall and F1 value, on the other hand, are zero because

Evaluation of Entity Assessment Techniques 131

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

Training Data Used in %

Precision Recall F1 F1-Threshold Accuracy Accuracy-Threshold

Figure 6.9: Performance of the Combined Assessor, Dependent on the Amount of Training
Data

in each concept, there were entities to classify correct.

Figure 6.10(b) shows that LRA is rather consistent across all concepts except Computer
Mouse. LRA classifies almost every entity as correctly extracted, hence the recall for every
concept is almost always close to one while the precision is almost always nearly 0.5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Politician

Airplane

Mobile Phone

Country

Band

City

University

Newspaper

Car

Athlete

Restaurant

Airport

Actor

Sports Team

Computer Mouse

Movie

Lake

Average

Precision Recall F1

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Politician

Airplane

Mobile Phone

Country

Band

City

University

Newspaper

Car

Athlete

Restaurant

Airport

Actor

Sports Team

Computer Mouse

Movie

Lake

Average

Precision Recall F1

(b)

Figure 6.10: Performance of PMI (a) and LRA (b) per Concept

Figure 6.11(a) and Figure 6.11(b) show the performances of the text classification-based
assessor and the Random Graph Walk-based assessor on a concept level using all the available
training data. On average, the text classification approach yields almost equal precision and
recall values. As expected, concepts in which entity names are more similar are classified more
precisely. For example, the concept Lake often uses the word “Lake” in entity names and
can therefore be classified more precisely by using the intrinsic n-gram features. The random
graph walk assessor tends to either be selective, yielding a high precision (for example, for the
concepts Movie and Computer Mouse) or it classifies all entities as correct, yielding a high
recall (for example, for the concept Lake). Note that the precision for the concept Band is

132 Assessment of Extractions

not zero, but rather undefined as no bands were classified to be correct.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Politician

Airplane

Mobile Phone

Country

Band

City

University

Newspaper

Car

Athlete

Restaurant

Airport

Actor

Sports Team

Computer Mouse

Movie

Lake

Average

Precision Recall F1

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Politician

Airplane

Mobile Phone

Country

Band

City

University

Newspaper

Car

Athlete

Restaurant

Airport

Actor

Sports Team

Computer Mouse

Movie

Lake

Average

Precision Recall F1

(b)

Figure 6.11: Performance of Text Classification (a) and RGW (b) per Concept

Figure 6.12(a) and Figure 6.12(b) show the performances of the näıve Bayes and the KNN
assessors on a concept level. On average, both assessors are similar with a slight advantage
to näıve Bayes, which benefits from more features than the KNN assessor. The only outlier is
the concept City for which KNN outperforms näıve Bayes by almost 45 %. Cities might have
similar features to countries, which can cause the confusion, but they are often syntactically
more similar, which explains the KNN advantage. For example, “New” appears in multiple
city names, and some cities even have the exact same name.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Politician

Airplane

Mobile Phone

Country

Band

City

University

Newspaper

Car

Athlete

Restaurant

Airport

Actor

Sports Team

Computer Mouse

Movie

Lake

Average

Precision Recall F1

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Politician

Airplane

Mobile Phone

Country

Band

City

University

Newspaper

Car

Athlete

Restaurant

Airport

Actor

Sports Team

Computer Mouse

Movie

Lake

Average

Precision Recall F1

(b)

Figure 6.12: Performance of NB (a) and KNN (b) per Concept

Figure 6.13 depicts the classification performance of the combined assessor on a concept level.
We can see fundamental differences between the combination and each of the single assessors.
In general, the precision for each concept is much higher, while the recall is lower. The

Evaluation of Entity Assessment Techniques 133

higher precision is due to the fact that both assessors have to independently classify an entity
as correct. For the concept Band, for example, the assessors never agreed, hence no entity
was considered correctly extracted. The precision for the concepts Movie, Computer Mouse,
Sports Team, and Country increased to 100 % at the cost of a sharp drop in recall.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Politician

Airplane

Mobile Phone

Country

Band

City

University

Newspaper

Car

Athlete

Restaurant

Airport

Actor

Sports Team

Computer Mouse

Movie

Lake

Average

Precision Recall F1

Figure 6.13: Performance of the Combined Assessor per Concept

6.3.3 Overall Comparison

Table 6.2 compares all evaluated assessors using 100 % of the training data without any trust
thresholds. The näıve Bayes classification yields the highest F1 value and accuracy compared
to all other techniques. LRA classifies almost everything as correct, yielding high recall at
the cost of low precision. The combined assessor (RGW, NB, and Text) yields the highest
precision (see Appendix B for a detailed threshold analysis of the five combined assessors).

The goal of the assessment algorithms is to filter out wrong extractions (high precision)
while keeping correct extractions in the knowledge base (high recall). However, we put more
importance on a knowledge base that contains fewer but usually correct extractions. To find
out which assessor is better suited for the assessment of the entity extractions, we analyze
the evaluation measures of the näıve Bayes approach and the combined assessor when we use
a trust threshold.

6.3.4 Trust Threshold Analysis

As mentioned earlier, we prefer an accurate knowledge base to a knowledge base with many
incorrect entities. We now analyze how to increase the assessment precision using trust scores
from the assessors. The näıve Bayes assessor assigns trust scores to each entity classification
indicating their confidence. These values are within the interval of [0, 1]. For the random

134 Assessment of Extractions

Assessor Precision Recall F1 Accuracy

PMI 0.6059 0.1026 0.1754 0.5169

LRA 0.5144 0.9280 0.6620 0.5248

Text 0.6413 0.6291 0.6352 0.6235

RGW 0.6305 0.8009 0.7056 0.5587

NB 0.7881 0.8285 0.8078 0.7966

KNN 0.7254 0.7281 0.7268 0.7157

Combined (NB+KNN) 0.7931 0.8014 0.7972 0.7838

Combined (NB+Text) 0.7541 0.7553 0.7547 0.7507

Combined (NB+KNN+Text) 0.7925 0.7840 0.7882 0.7796

Combined (RGW+NB+Text) 0.8694 0.4363 0.5810 0.6788

Combined (RGW+NB) 0.8460 0.6610 0.7422 0.7577

Table 6.2: Overall Comparison of Entity Assessment Techniques

graph walk algorithm, we use the threshold parameter δ as shown in Equation 6.16 within
the interval of [0, 1] to increase (δ = 0) or decrease (δ = 1) the likelihood of classifying an
entity as correctly extracted.

Figure 6.14 shows how the näıve Bayes approach performs when we increase the trust scores.
The blue, vertical line at 0.5 shows the standard setting that we used to compare each
assessment technique in Table 6.2. We can see that the precision increases only slightly
between a trust threshold of 0.1 and 0.7. This behavior is due to the nature of the näıve
Bayes classifier, which is prone to polarizing. “Polarizing” means that the classifier is always
rather certain, which leads to very high scores for positively assigned instances (trust threshold
> 0.7) and very low scores for negatively classified instances (trust threshold < 0.1). The
highest precision we were able to achieve is about 85.6 % at a recall of about 45.1 %.

The recall keeps dropping above a trust threshold of 0.3, and because it drops quicker than
the precision rises, the F1 value declines as well.

Figure 6.15 shows the trust threshold analysis of the combined assessor (RGW and NB).
Unlike the näıve Bayes classifier, the precision scores for the combined assessor increase rather
continuously between the trust threshold of 0.1 and 0.7. In general, the higher precision of
the combined assessor compared to the precision of the näıve Bayes classifier comes at the
cost of a lower recall. By raising the trust threshold to 0.8, we can reach a maximum precision
of about 91.9 % at a recall of roughly 44.6 %.

Both assessors have their precision-recall break-even point at about 80 %, but we can call the
combined assessor “better” in the sense that it can yield a higher precision than the näıve
Bayes classifier, and reacts more predictably to an increased trust threshold. Figure 6.16
compares the two assessment techniques. Not only can we reach a precision gain of about
6 % using the combined assessor, the figure also shows that we reach the same precision as

Summary 135

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Threshold

Precision Recall F1 Accuracy

Figure 6.14: Trust Threshold Analysis of the Näıve Bayes Assessor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Threshold

Precision Recall F1 Accuracy

Figure 6.15: Trust Threshold Analysis of the Combined Assessor

the näıve Bayes classifier at a much lower trust threshold with a much higher recall. At a
trust threshold of 0.4, the precision of the combined assessor is about 85 % at a recall of
almost 72 %. The same precision can only be reached by the näıve Bayes classifier at a trust
threshold of roughly 0.87 at a recall of only about 50 %.

6.4 Summary

In this section, we presented several assessment algorithms and evaluated them using extracted
entities from our set of 17 concepts. The highest gain in precision of up to 41 % (from the
baseline of 50 % to over 91 %, that is a relative gain of 82 %) was achieved using a combined
assessor (random graph walk and näıve Bayes) at the cost of a recall drop of about 56 % (from

136 Assessment of Extractions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Threshold

Precision-Combined Recall-Combined Precision-Naive Bayes Recall-Naive Bayes

Figure 6.16: Comparison of the Trust Threshold Analysis between Näıve Bayes Assessor and
Combined Assessor

100 % to about 44 %).

The precision-recall break-even point of the best assessors is at about 80 %, which is still
a 30 % gain in precision at a loss of “only” 20 % recall. In Figure 5.21, we have seen the
average precision values of the entity extraction techniques. The total average was about
45 %. Using the entity assessment techniques presented in this chapter, we can increase the
average precision to over 80 % on average which meets our requirement that at least 80 % of
the entities in the knowledge base are correct.

We confirmed Thesis 3 in this chapter, that is, we have shown that using small sets of training
instances and a combination of machine learning algorithms can outperform current state-of-
the-art algorithms for entity assessment such as PMI.

Chapter 7

Extraction of Facts

This chapter introduces the design of a component for extracting factual information from
the Web. Until now, we have shown how we can extract entities for certain concepts from
the Web. These concepts have attributes attached, and this chapter explores the extraction
of facts for these attributes. First, the knowledge to be extracted is encoded in an ontology.
Then, entities are given and the fact extraction process completely automatically finds the
values for the specified attributes. We use an assessment phase to assign trust values to the
extractions before storing the found facts. This approach enables us to filter facts for which
the extraction system is low in confidence.

Figure 7.1 depicts the fact extraction cycle, which runs in an infinite loop until the time slot
for fact extraction expires and the next extraction component takes over. First, the ontology
is loaded. All concepts, and all entities for each concept, are then examined and follow the
extraction pipeline. For each concept and entity, all queries for all attributes are generated
and result pages from search engines and Semantic Web indices are retrieved. On these
result pages, the five extraction techniques that examine different structures and formats
are processed. After processing, the system calculates and updates the trust value for all
extractions in the cycle and stores the results. The following sections describe the ontology
engineering process, the retrieval of result pages, the five extraction techniques, and the trust
calculation. The last section of this chapter evaluates the described approaches in detail.

Figure 7.1: Overview of the Processes in the Fact Extraction Cycle

138 Extraction of Facts

7.1 Ontology Engineering

Before the extraction process can begin, WebKnox needs to know which concepts, attributes,
and entities exist. This knowledge is called prior knowledge. The prior knowledge for
WebKnox is modeled in an ontology using the Web Ontology Language (OWL) (Schreiber,
2004). Therefore, all concepts and attributes are defined in the knowledge ontology and the
entities and facts that are extracted are stored in another separate data ontology.

The process of creating an ontology is often called ontology engineering. This process requires
a domain expert to create and refine an ontology. The fact extraction process of WebKnox
requires the names of attributes and concepts to be the same as they are found on the Web.
Intuitively, a domain expert would visit Web pages that display relevant information about
an entity of a concept and copy the attribute names into the ontology. This manual process
is very labor intensive. For this reason, we created a tool called “Ontofly” (Willner, 2010,
Urbansky et al., 2010, Willner, 2011) to ease this process. The tool is explained in more
detail in Section 10.1. In this section, we will only describe the conceptional ideas used in the
ontology engineering process.

7.1.1 Datatypes

The purpose of the knowledge ontology is to define the knowledge represented in the data
ontology and to serve as an input for the extraction process. An OWL datatype property
is assigned to every attribute in the knowledge ontology. This property determines which
type of value the attribute will have. It can also be used by other programs reading the
ontology, that try to parse the data, and to guide the extraction process in finding matching
extraction candidates for the attribute. A datatype property can have any XSD datatype1,
but WebKnox uses only the following:

1. String: A string is a sequence of characters. WebKnox, however, only considers proper
nouns as fact candidates for a string attribute, that is, only a sequence of words starting
with a capitalized character or a number are considered to be possible answers.

2. Boolean: Attributes with a boolean value have either true or false as a value. WebKnox
only searches boolean values in tables and looks for “yes” and “no” occurrences.

3. Decimal, Double, Float, Integer, Int, Long: WebKnox handles these numeric
attributes identically. Every numeric attribute is treated as a double and only numbers
are extracted as fact candidates for the attribute.

4. Date: An XSD date is a string given in a standardized UTC format: YYYY-MM-
DD. WebKnox looks for several representations of dates from Web sources and tries to
transform these back to the UTC format.

5. AnyURI: The Uniform Resource Identifier is a string in a special format pointing
to a resource. All correctly formatted URIs are taken as candidates by WebKnox for
attributes with this data type.

1http://www.w3.org/TR/xmlschema-2/\#d0e11239, last accessed on 4th of February 2012

Ontology Engineering 139

6. AnyType: Attributes with values that do not match any previously mentioned datatype
can have the AnyType property. WebKnox takes all characters around or after the at-
tribute on the Web source into account when determining the fact candidates. Thus,
AnyType can be used for strings that are not proper nouns.

Each of these datatypes is internally mapped to a regular expression. The mapping is shown
in Appendix D in Table D.1.

Many attributes have special formats, which would need to be set to the AnyType datatype.
This datatype, however, gives WebKnox no information about how the expected value is
formatted. For example, the geographic coordinates attribute for the Country concept has
a fixed format with numbers and letters, such as 27 00 S, 133 00 E. Using the AnyType
datatype, WebKnox would not know the appropriate format and would extract not only the
correct value, but also incorrect text before and after this value. To solve this problem and
make the approach more practical, we include another annotation called “regularExpression”
in the OWL definition of the datatype object. If such an annotation exists, WebKnox will
use the expression and overwrite the given datatype.

7.1.2 Unit Types

Knowing the unit type of the expected answer benefits the fact extraction process for numeric
attributes. The length of a River should be a physical length (in meters, for instance) while
the length of a Movie should be a time (in minutes or seconds, for instance). Knowing the
expected measurement for numeric attributes aids the extraction process by ensuring that
numbers in the appropriate units (for example, “meters” or “km” for the concept River)
obtain a higher confidence than values without a unit.

When extracting numeric facts from the Semantic Web, we even need to know the exact unit
that belongs to the facts for each predicate. For example, two triples from different ontologies
might appear as follows:

<dbpedia:Nile> <dbpedia:length> "6650000"

<freebase:Nile> <freebase:length> "6650"

DBpedia normalizes the length values to meters, while Freebase normalizes to kilometers2.
Not knowing the unit of a number would lead us to two different results, although they should
corroborate each other since they resolve to the same value.

7.1.3 Ranges

Since the main purpose of the ontology is to guide the extraction process, we introduce a few
new vocabulary terms to specify the range of values for an attribute. These terms use the
WebKnox namespace “wx:” (the URI of the namespace is http://webknox.com).

2This is not really the case, but it serves as an example to explain the problem.

140 Extraction of Facts

1. The hasRange property connects an ontology attribute with a blank node. More infor-
mation about the range is attached to this blank node. One attribute can have several
hasRange properties.

2. The rangeType is the type of range we want to specify. We distinguish between “min-
max” and “possible”. The term “minmax” means that we know the numeric range
of values for the attribute, while the term “possible” means that we know all possible
values that the attribute can have.

3. The properties rangeMin, rangeMax, and rangePossible specify the values in the range
of the attribute. If the rangeType is “minmax”, we specify the minimum and maximum
values with “rangeMin” and “rangeMax” respectively. If the rangeType is “possible”,
we enumerate all possible values using “rangePossible”.

Figure 7.2 shows an example graph for the attribute memory. We see that the attribute can
belong to several domains (Phone and Camera), which we declare using rdfs:domain. We use
rdfs:range to specify that the values are integer values and make it an OWL “datatypeProp-
erty” using rdfs:type. We now declare one range for the memory attribute using wx:hasRange
and connect it with a blank node (rn1). We use rdfs:domain again to declare that the blank
node specifies the range type for the memory attribute that belongs to the Phone concept since
the memory attribute also belongs to the Camera concept but might have different ranges in
that concept. Finally, we use wx:rangeType, wx:rangeMin, and wx:rangeMax to declare that
the memory attribute for mobile phones always has a minimum value of 0.5 megabytes and
a maximum value of 32,000 megabytes. The extraction process can now use this information
and discard all extractions that do not fall into the defined range.

Figure 7.2: Modeling Range Types Using Blank Nodes

Related Work 141

7.2 Related Work

In this section, we review related work in the field of fact extraction. First, we review complete
systems that are in some aspects comparable to WebKnox, and second, we review assessment
algorithms that can be used to assign confidence scores to the extracted facts.

7.2.1 Related Systems

KnowItAll (Etzioni et al., 2004) is an unsupervised system that can automatically extract
facts about entities from the Web. KnowItAll is redundancy-based, which means it relies on
the assumption that a fact occurs many times on the Web. The system mainly extracts facts
from plain text, but much information, especially numbers (for example, the population of a
Country), is given in table structures that are not evaluated by KnowItAll. Also, the PMI
score for validating the extractions would most likely not work with numeric extractions as
the redundancy assumption does often not hold for specific numeric values. We differ from
KnowItAll in that we make use of HTML structures to extract fact mentions precisely.

Textrunner (Yates et al., 2007) is a system that builds upon the concepts of KnowItAll but
without requiring user input. Textrunner extracts information from a corpus of Web pages
in three steps: (1) The noun phrases of the sentence are tagged, (2) nouns that are not too
far away from each other are put into a candidate tuple set, and (3) the tuples are analyzed
and classified as true or false. Our approach is very different from Textrunner. Textrunner
avoids ontologies allowing for “open information extraction” at the cost of precision. We use
an ontology which allows us to guide the extraction process and obtain more precise results.
Both approaches have their advantages and disadvantages. Our disadvantage is that we
need initial labor to create the ontology, but the advantage is the quality of the extractions.
Textrunner does not “know” which entities, concepts, and attributes belong together. It
is therefore difficult or even impossible to find the display size of a phone, for example, if
Textrunner does not find it mentioned in some text within one of the rigid rules it uses3.
TextRunner also focuses more on relations between concepts and entities than on entities and
their facts.

GRAZER (Zhao and Betz, 2007) is a system that learns new facts from the Web. The input
for GRAZER is seed facts (attribute-value pairs) for given entities. Entities and seed facts
are automatically generated using specialized wrappers. The system then obtains relevant
pages for the given entities. Relevant pages are those that mention the entity in the text. On
these pages, the seed facts are corroborated and new facts are extracted. The system searches
for mentions of the seed facts on the relevant pages and adds the source if the fact is found
on the page. The corroboration happens in free text and in structured HTML as all tags
are removed and only the area around the attribute name is searched for the mention of the
value. Although GRAZER does not need an ontology of the knowledge domain as an input it
relies on a set of seeds for entities and facts. These seeds are obtained in a non-generic way by
inputting the data by hand, which is labor intensive or by scraping sources with specialized
wrappers. The same facts are extracted several times and are treated as new facts when
they have a different attribute that is just a synonym, for example, “Birthday: 17.01.1962” is

3The system can be tested on http://openie.cs.washington.edu/, last accessed on 4th of February 2012.

142 Extraction of Facts

different from “Date of Birth: 17.01.1962”. Similar to Textrunner, GRAZER does not use an
ontology and therefore has little information about the type of relations it can expect between
entities and facts. For example, it is difficult to transform the extracted factual information
to Semantic Web RDF triples in a normalized manner since the datatype (XSD) is unknown
and the normalization has not taken place.

DBpedia (Auer et al., 2007) is the Semantic Web equivalent of Wikipedia. Most of the valuable
information in DBpedia comes from the so-called “Infoboxes” from Wikipedia. Auer et al.
(2007) created certain extraction, normalization, and mapping rules to store the data in a
machine-readable manner as RDF triples. The drawback of DBpedia is that any information
not contained in Infoboxes and, more importantly, not in Wikipedia, will not make it to
the RDF store. We differentiate from this approach in that we do not rely on a single Web
Source and hard-coded wrappers for certain tables, but rather aim to extract information
from arbitrary Web pages.

7.2.2 Fact Assessment

Traditional information extraction focuses on extracting as much information as possible from
a small corpus whereas Web information extraction systems often rely on the redundancy
of Web content (Yates, 2007). This corpus shift means that the focus of the extraction
techniques should be set on precision since a high recall can be achieved by relying on the
high number of mentions of the entity or fact that is extracted. One major problem with Web
information extraction systems is that the quality of the extractions can vary, for example,
extracted entities may not really belong to the concept they were assigned to or extracted
facts are wrong. In Chapter 6, we discussed several methods to assess extracted information.
For extracting factual information, the following two approaches are mentioned in literature
frequently:

1. Simple Scoring: For the fact extraction task a simple scoring based on the number
and quality of sources can be used to decide which fact extraction is correct and which
is not (Zhao and Betz, 2007). The effectiveness of simple scoring relies, however, on the
assumption that correct facts are extracted more often than incorrect facts which also
depends on the extraction technique and the type of the fact. Rare facts, for example,
might be extracted correctly but do not score very high.

2. Pointwise Mutual Information: Etzioni et al. (2004) use patterns as discriminators
to ensure the correctness of an extracted fact or entity. These discriminators are trans-
formed to queries for Web search engines and the PMI between the extraction and the
discriminator using the hit counts is computed (see also Section 6.1.4).

7.3 Retrieving Fact Pages

Retrieving relevant pages that contain facts is a crucial process that has to be tightly coupled
with the extraction process. The source retrieval process uses the names of the searched for
entities and attributes as input data. The process then queries a search engine and outputs

Extraction Techniques 143

the retrieved pages together with information about which attributes are expected on the
page. This output is then fed into the extraction process. The focus lies on retrieving semi-
structured HTML pages as they are easy to access via generic search engines such as Google
and are the predominant format on the Web4. However, we also search the Semantic Web of
Linked Data to find mentions of facts.

To retrieve sources that contain the searched facts, WebKnox uses two kinds of generic queries:

1. Multi-attribute queries: These kinds of queries try to find pages relevant to the
entity and extract all searched facts from the retrieved pages (for example, the query
“Australia”). It is expected that the highest ranked pages the search engine returns
are information rich and show the entity from different angles. Therefore, we search for
all attributes connected to the concept to which the entity belongs. For querying the
Semantic Web we only use this type of query.

2. Single-attribute queries: These kinds of queries focus on a single attribute at a
time (for example, “Australia population”). Using these very precisely targeted queries
allows us to find more relevant pages that definitely mention the sought after information
piece.

The retrieved sources are then passed to the fact extraction process along with information
about the type of the query. Using this information, the system only extracts single attributes
on pages returned from single-attribute queries, but tries to find all attributes on pages
retrieved from multi-attribute queries.

7.4 Extraction Techniques

After WebKnox retrieves the sources, it uses different techniques to extract the facts for which
it knows it should search. We can increase the quality of extracted facts by using different
extraction structures for different types of facts. As covered in the background, a common
approach for fact extraction is to use the complete Web page content and simply remove all
HTML tags (as done by the GRAZER system (Zhao and Betz, 2007)). This method, however,
also removes all advantages that come with the semi-structured type of HTML documents.
WebKnox differs from current approaches because it takes the different generic formats and
structures into account that are used to represent facts on Web pages. Furthermore, WebKnox
also searches and extracts fact mentions from the Web of Data.

WebKnox employs five extraction techniques that focus on the different structures in which
the facts can be found. These techniques are Phrase Extraction, Table Extraction, Colon
Pattern Extraction, Plain Text Extraction, and Semantic Web Extraction.

7.4.1 Phrase Extraction

Phrases are natural language representations of facts for a specific entity. For example,
Figure 7.3 (blue box in (a)) shows an example of how the phrase “The capital of Australia

4http://www.google.com/help/faq_filetypes.html, last accessed on 25th of March 2012

144 Extraction of Facts

is Canberra” is used on a website. The phrase covers the fact “capital:Canberra” for the
entity Australia. Part (b) in Figure 7.3 shows, however, that these patterns can also lead
to incorrect extractions (purple boxes). There are only a small number of generic phrases
that can be applied to many different concepts and attributes, but these often lead to very
reliable results. This occurs because, ideally, the searched value for the attribute appears
right after “is” in the phrase. WebKnox uses only two phrases: “the ATTRIBUTE of ENTITY
is” and “ENTITY‘’s ATTRIBUTE is”. The source retrieval process also uses these phrases to
discover pages containing them.

Figure 7.3: Example of Correctly (a) and Incorrectly (b) Extracted Facts from Phrases

7.4.2 Table Extraction

Tables are important HTML structures on the Web used to represent factual information.
Their prevalence has led to numerous wrapping techniques. Maintaining the HTML structure
allows us to traverse in the DOM tree of the Web page and find corresponding attribute-value
pairs in tables. Figure 7.4(a) provides an example of a rendered HTML table and Figure 7.4(b)
exhibits the DOM representation of the table. This is a simple example of a table, but also
a very common one. By identifying the td-tag with the attribute, the sibling td-tag with the
value can be found and only the text inside that element is extracted. Extracting a fact from
a table is often more reliable than from free text because the boundary for the value is given
by the td-tags.

Figure 7.4: Example Table for Mobile Phone Specifications

Extraction Techniques 145

7.4.3 Colon Pattern Extraction

Colon pattern text refers to the text directly following a colon (:). Facts are often given in an
unstructured way (no HTML tags), but with the format ATTRIBUTE:VALUE so that only the
text after the colon needs to be extracted. Figure 7.5 shows an example of this representation.
Figure 7.5(a) depicts the HTML rendered version while Figure 7.5(b) shows the text as it
is seen when the separating tags are removed (replaced with whitespaces). If one would try
to extract the weight attribute (weight in Figure 7.5(b)), expecting a numeric value and not
recognizing the format, the 90 cc would be extracted as it is closer to the weight attribute
than the correct value 120 g after the colon. The colon pattern can therefore increase the fact
extracting precision in a very simple manner.

Figure 7.5: Example of Fact Representation in a Colon Pattern, with HTML Structure (a)
and without HTML Structure (b)

7.4.4 Plain Text Extraction

Plain text is the absence of structure (tags) and additional formatting (phrase or colon pat-
tern). Facts can also appear in long paragraphs of text, but since no further information
about the structure and format is given, all text around the attribute must be considered
a valid answer for the attribute’s value. It is always assumed that the next matching value
closest to the attribute is extracted. WebKnox takes the sentence in which the attribute
appears as the boundary. This way incorrect information further away is not extracted as
well. Figure 7.6(a) provides an example of free text that states facts about area and largest
city of the entity Australia. The connected green boxes represent correct attribute-value pairs
found in the text. However, information found in free text is the least reliable, which can be
seen in Figure 7.6(b) in which the red boxes represent incorrect extractions for the attribute
population. Nevertheless, using information found in free text increases the recall and should
still be considered, especially for rare facts that do not appear in tables or other structures
and formats.

7.4.5 Semantic Web Extraction

The Semantic Web contains billions of statements in the form of triples. Many of these
statements are facts about entities. Hence, the Semantic Web is a valuable source for fac-
tual extraction and corroboration of already extracted facts. While the previously described
techniques focus on the extraction of facts from the Visible Web where we deal with semi-
structured HTML pages, the Semantic Web Extraction technique retrieves RDF triples.

146 Extraction of Facts

Figure 7.6: Example of Correctly (a) and Incorrectly (b) Extracted Facts from Plain Text

In order to extract information from the Semantic Web we need to map attributes from the
ontology to predicates in the Semantic Web. We could employ a fuzzy matching technique
using the attribute’s name, but since URIs do not have to be human readable and might be
cryptic, we decided to opt for the direct mapping approach.

Additionally, as mentioned in Section 7.1.2, we need to specify the unit belonging to numeric
predicates. A complete mapping of an attribute of the WebKnox ontology to a predicate and
a unit type is shown in Table 7.1.

WebKnox Attribute Name Semantic Web URI Unit

length http://dbpedia.org/ontology/length “m”

weight http://dbpedia.org/ontology/weight “g”

Table 7.1: Example of an Attribute Mapping to a Predicate and Unit

The extraction works in the following steps:

1. We query an index of the Semantic Web5 with the entity name alone.

2. In the result list, we get all URIs that have the entity name as a label.

3. For each candidate URI, we then get all triples and add all URIs that are in an OWL
“#sameAs” relationship with the candidate URI. This step allows us to find facts present
in other ontologies about the exact same entity.

4. We get all triples for all URIs in the extended candidate list. For each triple, we try to
find the mapped entity (see Table 7.1) for the given predicate in the triple. If a mapping
is found, we extract the value. If the attribute is a numeric attribute, we normalize the
value with the given unit information.

5The best freely available index at the time of this writing (4th of February 2012) is http://sindice.com/.

Assessing Fact Extractions 147

Intuitively, if we find a fact using several techniques, it is likely correct. We will show the
value of the different techniques in the evaluation, for preliminary results see also Urbansky
(2009). The next section describes how the trust in extracted facts is calculated.

7.5 Assessing Fact Extractions

Once we have extracted facts, we rank them in order to determine the fact value that is most
likely to be the correct value for the attribute. It is now necessary to find the correct values
by assigning trust to each extraction.

The absolute trust is a non-negative number that indicates the confidence in the extraction.
The higher the number, the more reliable the extracted value.

The following equations assign trust values and aim to improve the ranking of the extracted
values.

The easiest way to rank the extracted values is to count the number of extractions. The
more often a value has been extracted, the higher the trust value. Equation 7.1 shows how
the trust value is calculated in this case, with N being the number of extractions for the
given value, and x being a tuple consisting of concept, entity, attribute, and value: x =
〈xconcept , xentity , xattribute , xvalue〉. This way of assigning a trust value is called QuantityTrust
from now on.

QuantityTrust(x) = N (7.1)

The Quantity Trust does not make use of additional information such as where (the source)
and how (extraction technique) the fact was extracted. This information should, however,
be considered when determining the trust for an extraction.

7.5.1 Determining the Source Trust

Some pages that are retrieved for the extraction process mention the attribute and its value
several times. For example, suppose a page is retrieved when searching for the entity Nokia
N95 and the attribute talk time. The page mentions the attribute several times, two times
with the correct value of 6.5 hours, but three times with different values that do not relate to
the entity but to other mobile phones. The source trust can therefore be reduced whenever
there is more than one value for the searched attribute, as shown in Equation 7.2 where D is
the number of different values found for the given attribute and source. The source trust can
have values between zero and one with one being the most trust and zero being no trust.

SourceTrust(attribute, source) =
1

D
(7.2)

148 Extraction of Facts

7.5.2 Determining the Extraction Technique Trust

Extraction techniques have different levels of precision, which must be taken into consider-
ation when calculating the trust for a fact. The values determined in the test set are not
representative of all possible concepts and domains. Since WebKnox aims to be domain in-
dependent, the precision values determined for the test set cannot be taken as references.
WebKnox uses self-supervised machine learning to automatically estimate the trust for the
five extraction techniques used (Urbansky, 2009). The trust value for the extraction tech-
niques is an estimated precision, meaning it is a number between zero and one with one
being highest trust (all extractions were correct) and zero being no trust (all extractions were
incorrect).

For all extraction techniques e, information about the number of extractions N(e), and the
number of correct extractions C(e) is kept. The ExtractionTechniqueTrust is then calculated
as the ratio of correct extractions to total extractions (Equation 7.3):

ExtractionTechniqueTrust(e) =
C(e)

N(e)
(7.3)

Initially all extraction techniques are initialized with a trust value of 0.5. The next three
steps are then as follows:

1. The input for the first step is the extraction result with an assigned trust. In the first
step, the most trusted fact is searched throughout all concepts and attributes. It is
then assumed that this fact is really correct, since it has a high trust. All extraction
techniques used to extract that very fact value get credit for a correct extraction, that
is, C ′(e) = C(e)+1 and N ′(e) = N(e)+1. Extraction techniques that led to wrong fact
values for that attribute, are penalized for a wrong extraction, that is, N ′(e) = N(e)+1.
In the next iteration, this highly trusted fact is no longer considered when looking for
the highest trust.

2. In the second step, the trust for the extraction techniques is updated based on the
number of correct and total extractions that have been revised in the former step, that
is, the ExtractionTechniqueTrust is recalculated using Equation 7.3.

3. In the third step, the trust for all extracted values is recalculated using the updated trust
for the extraction techniques. After this step, the ranking of the extracted values for each
attribute could change. The newly-ranked list is then input for the first step to repeat
the process. The iteration can be stopped when the trusts for the different extraction
techniques converge, that is, when the trust values no longer change considerably. In
case the trusts never converge, the iteration will only stop after all highest trusted facts
have been evaluated in step one.

7.5.3 Combining Source and Extraction Technique Trust

Taking both the source trust and the trust in the extraction technique into consideration,
the trust for an extracted value can be calculated as shown in Equation 7.4. S is the set

Assessing Fact Extractions 149

of sources from which the given fact has been extracted, ExtractionTechniqueTrust(e) is the
trust of the extraction technique e used, and SourceTrust(s) is the trust of the sth source.
The trust will therefore be high when the value has been extracted in many trustworthy
sources using numerous highly trusted extraction techniques. This trust formula shall be
called CombinedTrust .

CombinedTrust ′(x) =
∑
s∈S

(
∑
e∈E

ExtractionTechniqueTrust(e)× SourceTrust(xattribute , s))

(7.4)

7.5.4 Normalization

Facts can be presented in different formats yet still represent the same information. For
example, dates can be written in many ways, such as January 17th, 1962 or 17/01/1962.
Moreover, many numeric facts have units. Not taking the unit into account leads to the
extraction of two unique facts when actually only a single fact is mentioned; for example,
2 inch and 5.08 cm is the same fact presented in different units. Normalization helps locate
facts in different formats and clusters them.

7.5.5 Validating Numeric Fact Values across Entities

Another problem with extracted facts is that some attributes do not have a single absolutely
correct value. The population attribute, for instance, is not mentioned correctly on any
website on the entire Web as it changes almost every second6. Instead, there are values that
are almost the same and can be considered correct. Fact values for attributes with fuzzy
values tend to not corroborate well. Consider the following fact values that might have been
extracted for the population attribute for the entity Australia:

300 (3 times)

21,000,000 (1 time)

21,340,000 (1 time)

22,578,420 (1 time)

20,452,340 (1 time)

The problem here is that the exact same number for the population is not mentioned on
more than one source. The incorrect extraction 300, however, is extracted several times and
therefore gains higher trust.

To solve this problem, two assumptions are made:

1. The order of magnitude (OOM) for numeric facts is often the same for entities within
the same concept. Exceptions to this include population of countries and prices for
products.

6Example for a constantly changing fact value: http://www.usatoday.com/news/nation/

2006-10-12-population-milestone_x.htm, last accessed on 25th of March 2012

150 Extraction of Facts

2. There are well-known entities that appear on many Web pages. Due to the high number
of mentions, values for numeric attributes can be extracted with a relatively high trust.

Both assumptions were supported in our test set for most of the fact values. A larger test set
with more (and more well-known) entities would most likely further support this assumption.

To take advantage of the fact that the OOM is often the same, WebKnox uses a validation
process across all entities for a given attribute. This process is called CrossValidation and is
part of the second step in the self-supervised learning loop. It works as follows:

1. For all numeric attributes, an OOM distribution is constructed.

2. If the highest trusted value from the first step of the learning loop is a numeric value,
the number is considered to be correct and the OOM of that number is given credit in
the attribute’s OOM distribution.

3. In the next iteration, the trust in the fact values of the same attribute will be calculated
as shown in Equation 7.6. The CrossValidationFactor for a numeric fact value is one
plus the support of the OOM, which is a number between zero and one with one being
100 % support (all other entities of the concept had values with exactly the same OOM
for that attribute) and zero being 0 % support (no other entity of the same concept had
the same OOM for that attribute).

CrossValidationFactor(x) = 1 + support(blog10 (xvalue)c, xconcept) (7.5)

CombinedTrust(x) = CrossValidationFactor(x)× CombinedTrust ′(x) (7.6)

The cross validation component has been evaluated in Urbansky et al. (2008) and Urbansky
(2009).

7.6 Evaluation

In this section, we evaluate the performance of the fact extraction techniques on a test on-
tology. First, we describe how we created the ontology and what we consider the ground
truth. Then, we evaluate the extraction techniques, how well the extraction works for differ-
ent datatypes, how well it works for different concepts, and how we can increase the precision
by using the extraction trust. See also Urbansky et al. (2008) and Urbansky (2009) for
a comparison of four of the described extraction techniques with the GRAZER extraction
system.

Evaluation 151

7.6.1 Ontology

Figure 5.17 shows the concepts of the test ontology for WebKnox that have already been used
in the evaluation of the entity extraction. For each of the 17 concepts we selected 10 entities.
Whenever possible, we selected the entities for each concept randomly; for some concepts we
searched for lists of well-known and lesser-known entities and took every nth entity where n
is the length of the list divided by ten. This way we have a range of popular and less-popular
entities for each concept in the evaluation ontology. The Table C.1 in Appendix C lists all
170 entities used for the evaluation.

Table 7.2 shows the complete ontology, including the attributes for each concept, the number
of synonyms for these attributes, the number of mappings of the attributes to Semantic Web
URIs, the attributes’ datatypes, and the expected units of the attributes. In total, we assigned
101 attributes (1,010 facts in total) to the 17 concepts. These 101 attributes divide into the
five datatypes as follows: 36 String, 43 Numeric, 8 Date, 6 AnyURI, and 8 Boolean. The
attributes that have a datatype with a * symbol in Table 7.2 have special regular expressions
attached to them. For example, dimensions are usually given in length x width x height, (for
example, 3cm x 5cm x 10cm), which can easily be captured with a regular expression.

Concept Attribute #Synonyms #Mappings Datatype Unit

Actor

Birth Name 1 1 String -

Place of Birth 3 3 String -

Date of Birth 2 2 Date -

Height 0 3 Numeric cm

Athlete

College 0 4 String -

Place of Birth 3 3 String -

Nationality 0 2 String -

Date of Birth 2 2 Date -

Height 0 3 Numeric cm

Airplane

Manufacturer 0 2 String -

First Flight 0 3 Date -

Range 0 2 Numeric m

Weight 3 3 Numeric kg

Wingspan 0 1 Numeric cm

Length 0 3 Numeric cm

Numbers Built 1 2 Numeric -

Top Speed 2 1 Numeric km/h

Airport

Location 0 3 String -

Operator 0 2 String -

152 Extraction of Facts

Airport Type 0 0 String -

Passengers 0 1 Numeric -

Website 0 1 AnyURI -

Band
Origin 0 4 String -

Grammy Awards 2 0 Numeric -

Website 0 1 AnyURI -

Car

Wheelbase 0 0 Numeric mm

Curb Weight 3 4 Numeric kg

Top Speed 2 2 Numeric km/h

Horsepower 0 2 Numeric HP

Torque 0 2 Numeric Nm

Length 0 3 Numeric cm

City

Time Zone 0 2 String -

Altitude 1 2 Numeric m

Annual Rainfall 0 1 Numeric mm

Area 0 9 Numeric m2

Population 0 9 Numeric -

Comp. Mouse
Dimensions 0 1 String* -

Wireless 0 0 Boolean -

Optical 0 0 Boolean -

Country

Currency Code 1 3 String -

Capital 0 4 String -

Largest City 0 3 String -

Area 0 9 Numeric m2

HDI 0 0 Numeric %

Population 0 9 Numeric -

Calling Code 0 1 Numeric -

Pop. Growth Rate 0 1 Numeric %

Unempl. Rate 0 2 Numeric %

Coastline 0 2 Numeric km

Lake

Shore Length 0 2 Numeric m

Depth 0 3 Numeric cm

Surface Elevation 0 2 Numeric m

Surface Area 1 2 Numeric m2

Evaluation 153

Mobile Phone

Dimensions 0 1 String* -

Display Resol. 2 0 String* -

Talk Time 0 1 Numeric s

Stand-by Time 1 0 Numeric s

Camera Resol. 0 2 Numeric -

Weight 3 4 Numeric g

Internal Memory 0 1 Numeric Byte

Display Size 0 0 Numeric m

Wifi 2 2 Boolean -

Bluetooth 0 2 Boolean -

Card Slot 0 1 Boolean -

Infrared Port 0 0 Boolean -

USB 0 2 Boolean -

EDGE 0 0 Boolean -

Movie

Director 1 5 String -

Writer 1 4 String -

Aspect Ratio 0 1 String* -

Cinematography 0 0 String -

Genre 1 5 String -

Release Date 0 3 Date -

Budget 0 2 Numeric $

Runtime 1 4 Numeric s

Newspaper

Publisher 1 2 String -

Editor 2 3 String -

Owner 0 2 String -

Founded 0 0 Date -

Circulation 0 2 Numeric -

Website 0 1 AnyURI -

Politician

Birth Name 1 1 String -

Place of Birth 3 3 String -

Date of Birth 2 2 Date -

Nationality 0 2 String -

Restaurant

Headquarters 0 1 String -

154 Extraction of Facts

Employees 1 2 Numeric -

Revenue 0 1 Numeric $

Website 0 1 AnyURI -

Sports Team

Manager 0 2 String -

Coach 1 1 String -

President 0 1 String -

Founded 0 1 Date -

Website 0 1 AnyURI -

University

Motto 0 3 String -

President 0 1 String -

Mascot 0 2 String -

Location 0 3 String -

Established 0 0 Date -

Website 0 1 AnyURI -

Employees 1 2 Numeric -

Table 7.2: Fact Extraction Evaluation Ontology

7.6.2 Methodology

To evaluate the fact extraction component, we let WebKnox retrieve the top 10 ranked pages
for each query using the Bing Search API. A human interpreted the extracted results and
classified them as either correct, almost correct, or wrong. The following guidelines were used
when judging the extractions:

� Correct: The extracted value is correct in the sense that one or multiple trustworthy
websites confirm the fact. “Trustworthy” describes any page that seems to be reliable
or an expert on the topic. For example, imdb.com is considered a trustworthy resource
for movie facts, the CIA World Factbook is considered trustworthy for country data,
and Wikipedia is considered trustworthy in general. It is also important to mention
that some facts do not have a single absolute ground truth; for example, the price of
a mobile phone cannot be stated correctly by any source as it changes constantly and
depends on the merchant as well.

� Almost Correct: The extracted value is correct, but less precise than the optimal
answer. For example, the foundation date of a sports team can sometimes be stated
exactly with date, month, and year. If only the year is found, the answer is still correct,
but not precise enough. Thus, the answer is considered almost correct. The same applies
to person names when a middle name is omitted, for instance. For numeric facts, we
consider values almost correct if they come from sources that are not trustworthy, but
close to the values (about 10 % margin) found on trustworthy pages. We also consider

Evaluation 155

absolutely correct values to be only almost correct if their trust values are not higher
than those of the less correct values. We speak of “almost precision” or short a-precision
when we mean the precision that includes almost correct fact values.

� Wrong: The value is either completely wrong or could not be confirmed by a trustwor-
thy source.

In the following sections, we use the well-known information retrieval evaluation metrics
precision, recall, and F1. We calculate precision once with only correct values and once with
the correct and almost correct values combined. Recall and F1 use the almost correct values in
all following evaluations. Additionally, we evaluate how often the correct (or almost correct)
value is extracted in the top five extractions.

7.6.3 Evaluation by Concept

In this section, we evaluate the fact extraction performance across all entities and facts for
each of the 17 concepts. Figure 7.7 shows the results of the evaluation including the macro-
averaged performance.

The first thing to notice is that the fact extraction performance seems to be highly dependent
on the concept (and attributes within that concept). While extractions for the concept Mobile
Phone are by far the most precise with about 83 % precision, extracted facts for the concept
Sports Team only have an a-precision of about 26 %.

In general, the fact ranking could be improved since there is a 10 % gap between the correct
top five measure and the recall. That means that the almost correct value was within the
top five extracted facts, but the trust value was not the highest. This ranking deficit seems
to be especially problematic for the concepts Sports Team and Actor where the gap is over
30 % and over 15 % respectively.

The recall could also be improved by using several search engines at the same time and
taking more than just the top 10 results per query into account. The focus of our evaluation
is on precision, but on average only about six out of ten extracted facts are correct. We
can, however, use the trust and introduce a threshold to improve the precision as shown in
Section 7.6.6.

7.6.4 Evaluation by Datatype

In this section we evaluate how well we are able to extract the different datatypes. Figure 7.8
shows the evaluation metrics for the five datatypes.

We can see that the “String” datatype extraction yields the lowest F1 value due to its low
precision of about 35 %. This result is not surprising since this datatype is the least restrictive
and therefore we extract many false positives. We can greatly improve the precision, however,
when we allow slightly less precise answers that are still considered valid by a human judge.
In this case, the precision increases to almost 50 %.

156 Extraction of Facts

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actor

Airplane

Airport

Athlete

Car

Band

City

University

Computer Mouse

Country

Movie

Lake

Newspaper

Mobile Phone

Politician

Restaurant

Sports Team

Average

Precision Almost Precision Recall F1 Correct Top 5

Figure 7.7: Fact Extraction Performance across All 17 Concepts

For more than 70 % of the expected “Numeric” facts, we find an almost correct answer within
the top five extractions. Again, we observe a large discrepancy between precision and a-
precision since many numeric values are within a range of correct values. An almost correct
numeric value is often seen as perfectly correct by a human judge.

The “Date” datatype is extracted with the highest precision of about 86 % (considering almost
correct dates as well). This level of precision can easily be explained since dates can be found
using very specific patterns. However, we only find about 53 % of the expected dates within
the top five extractions. Only a few dates were ranked incorrectly so that the correct date did
not have the highest trust value. This observation becomes clear by comparing the correct
top five bars (red) with the recall bars (green) in the figure.

The “Boolean” datatype can also be extracted with a rather high precision of over 80 %
(including almost correct facts), though it yields the lowest recall with about 38 %. All the
extracted boolean values were, however, ranked correctly so that the correct value had the
highest trust (no difference between correct top five and recall). Since six of the eight boolean
attributes are in the Mobile Phone concept, the precise extraction of those facts explains the
superior extraction performance for this concept as shown in Figure 7.7.

The “AnyURI” datatype extraction leads to the highest F1 value of just over 70 %. Like
dates, URIs follow very specific formats and can therefore be easily extracted.

Evaluation 157

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AnyURI

Boolean

Date

Numeric

String

Precision Almost Precision Recall F1 Correct Top 5

Figure 7.8: Fact Extraction Evaluation by Datatype

7.6.5 Evaluation and Comparison of Fact Extraction Techniques

In this section, we evaluate the performance of the five fact extraction techniques. Figure 7.9
shows the performance measures for each technique on the given dataset. We can see that
three out of five techniques yield about the same a-precision of approximately 76 %. Plain
Text and Phrase Extraction are the least precise. Extracting information without knowing the
format is of course more difficult and explains the low precision of the Plain Text Extraction.
The Plain Text Extraction technique, however, yields the highest recall, which is also expected
since most of the information is given in plain text. Only a few of the searched facts were
even found in phrases, explaining the low recall for the Phrase Extraction technique.

Clearly some techniques function better than others. Now the question is whether we need
all the different techniques or whether all the facts can be found using just a subset of the five
techniques. In a first analysis, we calculated the overlap of correctly found facts for all five
extraction techniques using Equation 7.7 (Jaccard coefficient), where T1 and T2 are sets of
correct fact extractions by two techniques. In each set, we have entity-attribute combinations
for which a correct value was found. For example, T1 = {JimCarrey − birthname} and
T2 = {Australia − capital}. Interestingly, only one out of the about 1,000 expected facts
was extracted by two techniques (the manager of the Sports Team Real Madrid). Other fact
values were only found once by one technique. An overlap of 1.0 means that the sets are
identical.

Overlap(T1 ,T2) =
|T1 ∩ T2 |
|T1 ∪ T2 |

(7.7)

158 Extraction of Facts

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Colon Pattern

Plain Text

Phrase

Table

Semantic Web

Precision Almost Precision Recall F1 Correct Top 5

Figure 7.9: Fact Extraction Evaluation by Extraction Technique

Table 7.3 shows the overlap scores among all five techniques. The overlap is symmetric
(Overlap(T1 ,T2) = Overlap(T2 ,T1)), hence only half the matrix is filled. We can clearly
see that the techniques rarely overlap. To better visualize the overlap among all ten technique
combinations, see the Venn diagrams shown in Figure 7.10. For each pair, the circles are scaled
to reflect the relation of correctly extracted facts compared to the other technique. This figure
also reconfirms that many correct extractions come from plain text. The largest overlap can
be seen between the Phrase Extraction and the Semantic Web Extraction, that is, simple
facts such as “the capital of Australia is Canberra” can often be found in phrases as well as
in Semantic Web triples.

Colon Pattern Phrase Plain Text Semantic Web Table

Colon Pattern 1 0.0067 0.0584 0.0361 0.0256

Phrase 1 0.0284 0.1429 0.0060

Plain Text 1 0.0492 0.0473

Semantic Web 1 0.0483

Table 1

Table 7.3: Overlap Matrix of Five Extraction Techniques

Even after calculating the overlap, we still cannot conclude whether we need all the techniques.
Despite small overlaps among the different techniques, we still assume that all techniques are
valuable. To test this assumption, we ran a second analysis. Figure 7.11 shows the distribution

Evaluation 159

Figure 7.10: Overlap of the Fact Extraction Techniques

of correctly extracted facts by the number of techniques that found facts for entity-attribute
combinations. The diagram also reveals that 46 % of the correct facts for entity-attribute
combinations were only extracted by the Plain Text Extraction technique. Only 17 % of the
facts were found using two or more extraction techniques. Even the very imprecise Phrase
Extraction technique adds another 3 % of correct fact extractions that were not found by any
other technique.

From this analysis, we conclude that all techniques should be used for the fact extraction
process. It is important, however, to remember how facts were extracted since the techniques
vary greatly in their extraction precision.

7.6.6 Trust Threshold Analysis

In Section 7.5 we have demonstrated how to calculate a trust value (CombinedTrust , see
Equation 7.4 and Equation 7.6) for each extracted fact value. Based on this fact trust, we
can discard extractions about which we are not confident. We re-evaluated the averaged
a-precision, recall, and F1 values for all concepts, datatypes, and extraction techniques in
dependency on the assigned trust. With rising trust values, we expect precision to increase
while the recall drops. In Figure 7.12, we witness exactly this behavior. We calculated

160 Extraction of Facts

Plain Text
46%

Colon Pattern
12%

Table
15% Semantic Web

7%

Phrase
3%

Multiple
Techniques

17%

Figure 7.11: Ratio of Facts Extracted Only by One Fact Extraction Technique

the performance measures in 0.1 increments in the interval [0, 1]. For each trust increment,
only extracted values with a CombinedTrust greater or equal to this value were used for the
calculation.

We now see that we can reach a maximum precision of 74.9 % (including almost correct values)
at the cost of recall, which drops to 19.3 %.

7.7 Summary

In this chapter, we have introduced the concept of fact extraction from the Web. First, we
showed how the fact extraction is coupled with the entire WebKnox architecture and which
steps are performed. Second, we discussed ontology engineering to create an ontology for
the fact extraction process. Third, we examined related work in the field of fact extraction
and explained why our approach is different and what advantages it presents. Fourth, we
described the retrieval and extraction techniques, which use different sources, structures, and
formats in which facts for entities can be found. Fifth, we described a set of equations for
assigning a trust value to each extraction. In the last section of this chapter, we evaluated
the extraction results on an ontology with over 100 attributes in 17 concepts. In conclusion,
we can say that after filtering low-trusted extractions, WebKnox can correctly find every fifth
fact we are looking for and about three out of four extracted facts are (almost) correct.

We have used a self-supervised fact assessment algorithm to assign trust values to the ex-
tracted facts. To improve the assessment quality, a supervised assessment algorithm, similar
to the approaches in Chapter 6, could improve the overall results. Furthermore, we have
seen that structured values such as dates and URIs were extracted with almost double the

Summary 161

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CombinedTrust

Almost Precision Recall F1

Figure 7.12: Trust Threshold Analysis of Extracted Facts

precision than facts that are just expected to be some sort of string. We therefore believe that
using regular expressions to specify the expected fact value format can increase the extraction
precision significantly.

Fact extraction is an important part of the complete WebKnox system. After entities have
been extracted, we use a hand-crafted ontology to find facts about these entities. Having this
information allows for many applications. For example, factual information could be exported
as triples for the Semantic Web and linked to other datasets, or could be used for question
answering, which will be discussed later.

162 Extraction of Facts

Chapter 8

Extraction of Multimedia Objects,
Events, and Statements about
Entities

As we stated in the motivation of this thesis, a knowledge base of entities is beneficial in many
use cases. For question answering, additional information is of importance. In our fourth
research question (see Section 1.4), we ask what entity-centric information would be useful
for that purpose and how we can extract it. In this chapter, we now present techniques for
extracting multimedia objects (images, interactive objects), events, and (opinionated)
statements about the extracted entities. All this information is connected to the entities in
our knowledge base and can be used for the question answering use case described in the first
chapter. For example, the following questions benefit from a question answering approach
that has entity-centric information available:

� “What does a goat look like?” asks for an image of an entity.

� “Where did Barack Obama give his inauguration speech?” asks for a place which is
part of an event.

� “What do people think of the iPhone 5?” asks for opinionated statements about an
entity.

The next three sections are structured similarly. First, we briefly motivate the extraction of
the information type (multimedia, events, and statements). Next, we review related work on
the topic. We then present our own approaches and finally, we evaluate our claims in Thesis 4
and compare our algorithms to the state-of-the-art whenever possible.

8.1 Extraction of Interactive Multimedia Objects and Images

The overall goal for WebKnox is to give the user an enhanced experience of the entity for
which he searches. Entities, especially products, may be better presented in an interactive

164 Extraction of Multimedia Objects, Events, and Statements about Entities

form. For example, mobile phones may be presented in a simple applet1 that enables the
user to rotate the virtual phone and thereby get more visual information about the product.
Another example could be a movie that the production company promotes with little games2.
These games should be shown to the user who is looking for information about the film.
Searching for those multimedia objects using multi-purpose search engines such as Google or
Bing is a tedious task since the search engines do not always explicitly index these objects
(Werner, 2010). We therefore need an automatic mechanism to find and extract relevant
interactive multimedia objects for given entities. In this chapter, we also briefly describe an
image retrieval algorithm and evaluate it across a set of 17 concepts to demonstrate how much
easier it is to extract still images compared to interactive multimedia objects.

In this section we describe how we can search and extract these interactive multimedia objects
which we call IMOs. “IMOs” are Web objects that combine media such as images, video, or
sound. These media must have an interface for users to interact with them. The objects run
in a Web browser on the client with or without additional plugins.

A simple IMO is a video that allows the user to play, pause, and control the volume. Although
this fits our definition, we are more interested in strongly interactive objects, such as 3D
applets where the user can rotate an object.

8.1.1 IMO Types

There are five main formats that are used to create IMOs on the Web today:

1. Flash: Adobe Flash applications are the most widespread type of interactive applica-
tions on the Web today. 96 % of all Web browsers have a Flash plugin (OWL, 2012)
and are therefore able to show Flash applets. The files are SWF files, which can also be
indexed using a special parser that Adobe developed for search engines (Adobe, 2008).
Using this parser, search engine bots can simulate users and virtually click through the
content of the application. This way, they are also able to read text and extract images
from the Flash file. Since HTML 5 is trying to provide all the features of Flash using
an open standard, Flash can now be exported to HTML 5 Canvas as well.

2. Silverlight: Silverlight is the Microsoft pendant for Adobe’s Flash. Browsers need a
special plugin in order to see the applications, but only roughly 60 % of all Web browsers
have this plugin installed (OWL, 2012). The application is packaged in a XAP file,
which contains an application markup file (XAML), the application itself (DLL), and
additional contents such as images and videos. Search engines can also look into these
XAP files, read the XML, and find the additional contents. The developer, however,
decides how much information is put into these files to make it easier for search engines.

3. Java Applets: Java Applets are Java-based applications that run in the Java Vir-
tual Machine on computers that have a Java runtime installed. Java is widespread –
approximately 79 % of computers have a Java runtime. Still, Java applets are in the

1GSMArena uses little 3D applets for many of the reviewed phones: http://www.gsmarena.com/samsung_

galaxy_ace_s5830-3d-spin-3724.php, last accessed on 25th of March 2012
2For example, for the movie Ice Age a series of games have been developed: http://www.y8.com/games/

Ice_Age_Dawn_of_the_Dinosaurs, last accessed on 25th of March 2012

Extraction of Interactive Multimedia Objects and Images 165

minority and are also quite difficult to index for search engines. The code is packaged
in a JAR file in CLASS files. Similar to Java applets, Java FX runs on any client that
can host the Java Virtual Machine. The focus of JavaFX is platform independence, so
the applications can run on desktop computers, smart phones, and even some television
sets.

4. QuickTime Applets: Apple’s QuickTime is a multimedia architecture consisting of a
framework, an API, and a data format. QuickTime applications can embed multimedia
content and interaction features. The file formats are usually MOV, QT, and QTVR,
and search bots do not have easy access to the file contents. Additionally, only about
59 % of the browsers had QuickTime installed (OWL, 2012).

5. HTML 5: HTML 5 is a set of new markups that aim to replace the need for proprietary
applets such as Flash and Silverlight. Modern browsers already support large parts of
the standard3 and no plugin is necessary to see the applications. The most important
tag in HTML 5 is the canvas, which allows a developer to draw on it. This way, features
such as video playback, which is still the main application for Flash, can be done without
proprietary tools. HTML 5 objects are easier to index since all the parts that make the
application are on the Web server (or reachable over another one) and no proprietary
formats such as Flash need to be employed. The division of the actual application
into several files such as JavaScript and Cascading Style Sheets, however, also poses
a problem for our purpose of finding the “object” and referring to it. An HTML 5
application is essentially an HTML page.

8.1.2 Related Work

In general, we can distinguish between two approaches in finding and extracting IMOs:
context-based and content-based. Searching the context of an IMO candidate can give more
information on which topic/entity is presented in the IMO. For example, when we detect an
IMO on a Web page, we can read the text around the IMO to get a better understanding
of what the IMO is about. WebSeer (Frankel et al., 1996) indexes images using terms found
in HTML headlines, ALT-tags, hyperlinks, and other context features. The content-based
approach, on the other hand, does not always work since it is sometimes difficult to search
inside the IMOs content when it is delivered in a binary form. Yang et al. (2005) and Meng
and Liu (2008) have shown, however, that searching the contents of Flash applets can be
rewarding. They were able to find components such as images and videos, and could also
detect user interaction components such as buttons and scrollbars.

Since it is not possible to perform generic content-based extraction techniques on all the
main formats we have described, we use a context-based approach with only minor content-
based features for Flash. We manually searched for eight entities for each of the concepts
Mobile Phone, Printer, Movie, Car, and Headphone on Google to find out how IMOs can be
found manually and which formats dominate. As a result, we discovered that Flash is the
dominating format for IMOs. For all 40 entities we found at least one Flash IMO (Werner,
2010).

3Wikipedia keeps a compatibilty chart up-to-date: http://en.wikipedia.org/wiki/Comparison_of_

layout_engines_(HTML5), last accessed on 25th of March 2012

166 Extraction of Multimedia Objects, Events, and Statements about Entities

8.1.3 IMO Extraction

The IMO extraction component works as shown in Figure 8.1. We use the entities and their
concepts from the knowledge base to formulate search queries with a vocabulary. Terms in
the vocabulary are concept dependent. For example, when searching for mobile phones we
use “360 view” as a search term, so the complete query that we send to the search engine
might be “Samsung Galaxy S 360 view”. All retrieved pages are then candidates for IMO
extraction. We now look for terms that indicate an IMO format. For example, we search
for application/x-shockwave-flash on the page and can find embedded Flash files. A
complete list of IMO indicator terms were described by Werner (2010).

Figure 8.1: IMO Extraction Workflow

For each IMO candidate, we now analyze the context, that is, we search for the entity name in
ALT-tags, link titles, the IMO file name, HTML headlines, and in surrounding text. Table 8.1
shows a list of elements that we compare to the entity name. Each comparison results in a
relevance score between the element and the entity which is calculated using string similarity.
For Flash applets we also decompile the file and search the text content of the file itself for
occurrences of the entity name. Flash applets are often ad banners, which are not necessarily
the type of IMO we want. For this reason, we discard all applets that have a typical width
and height of an ad banner4.

Feature Type IMO-Oriented Page-Oriented

Contextual FileName score, FilePath
score, blackList score, ALT
text score, surrounding text
score, XML-FileName score,
XML-FileContent score

Headline score, page title
score, IMO page URL score,
link name score, link ti-
tle score, iframe parent title
score, dedicated page trust

Content banner score, text content
score

-

Table 8.1: Features for IMO Extraction

Once we have extracted a list of features, we use a trained model to calculate the IMO trust
value. The last part of the IMO classification step is the interactivity classification, which is
explained in the next section.

4These are some of the most widespread banner formats: http://www.bannergarage.com/bannerAds.aspx,
last accessed on 25th of March 2012

Extraction of Interactive Multimedia Objects and Images 167

8.1.4 IMO Interactivity Classification

The goal is to extract highly interactive multimedia objects, rather than videos, which only
allow the user to play, pause, and control volume, for example. We therefore classify IMOs into
weakly and strongly interactive. Weakly interactive is only video control, whereas strongly
interactive is every additional interaction possibility.

The classification works by searching for indicator terms for weak and strong interactivity in
the file name, the page title, the closest headline, and the surrounding text. Table 8.2 shows
the terms that indicate weak and strong interactivity. This table has been compiled by man-
ually analyzing Web pages with IMOs, so it can be seen as heuristics. Further investigation
into which terms indicate strong or weak interactivity could be done using machine learning.

Strongly Interactive Weakly Interactive

interactive, click, try, 360, view, index,
main, spin, tour, virtual, gallery, play, drag,
keys, game, showroom, microsite, minisite,
xap, panorama

unboxing, video, preview, review, overview,
movie, trailer, promotion, youtube, player,
logo

Table 8.2: Indicator Terms for Strong and Weak Interactivity

For each strong interactivity term that is found in the context, we add one point to the
interactivity score. For each weak interactivity term that is found in the context, we subtract
one point from the interactivity score. If the final score is above zero, the IMO is considered
strongly interactive, if it is below zero, it is considered weakly interactive, and if the score
is zero, we have no indication of the interactivity. Formula 8.1 shows the interactivity score
calculation.

InteractivityScore =
∑

strongIndicators−
∑

weakIndicators (8.1)

Once we extract and classify the IMOs, we assign the URL of the IMO to the entities they
belong to and store them as facts in the knowledge base.

8.1.5 Image Retrieval and Extraction

Not only interactive multimedia objects, but also images can interest the user. WebKnox is
able to search for images and assign the URL of the image to the fact as an answer. In the
knowledge ontology, one can specify how many images should be retrieved for the attribute,
which is then taken into account during the retrieval process.

First, WebKnox queries the image index of a search engine with the entity name and –
if specified in the ontology – the attribute name for which images should be found. For
example, for the flag attribute for the entity Australia of the concept Country, the following
query is built: “Australia flag”. When searching for an image for the entity Jim Carrey, on
the other hand, only the entity name is used in the search query.

168 Extraction of Multimedia Objects, Events, and Statements about Entities

WebKnox now retrieves a list of images returned by the search engine. It does not only rely
on the first results. Instead, the goal is to find the image that best represents the sought
attribute and entity. It is assumed that images that appear several times in the results are
the best matching images. For example, when searching for Jim Carrey, some pictures appear
more often because they are more widely spread on the Web and are probably more relevant.

Next, the retrieved list of images is checked for duplicates; the more duplicates a certain
image instance has, the higher it is ranked. If two images have the same number of duplicates,
WebKnox favors the image with the higher average position from the search engine. WebKnox
then takes the top ranked images (depending on how many images are sought for the attribute
and entity) and assigns the URLs of the images to the attribute.

To find duplicates, WebKnox uses an algorithm that detects differences among the images.
Other algorithms such as the mean square error (van der Weken et al., 2002) or the Minkowski
distance (based on mean square error) (van der Weken et al., 2002) have been tested but did
not perform very well. Our duplicate checking algorithm for two images works as follows:

1. The two images are scaled to the same width. Often images with the same content are
found in different sizes on the Web and must therefore be normalized. We assume that
the ratio of duplicate images must be nearly the same, that is, a 250 x 100 pixel image
is not likely to be the same as a 250 x 250 image.

2. If the images have almost the same ratio, both images are transformed into gray scale
and a difference image is calculated by taking the absolute differences of the gray values
for each pixel in both images. The more similar the images, the darker the resulting
difference image. If both images are exactly the same the difference image must be
black.

3. The average gray value of the difference image is calculated. If the average gray value
is below a certain threshold, the images are considered identical.

8.1.6 Evaluation

In this section, we evaluate the IMO extraction component and the performance of the image
extraction. For the IMO component evaluation, our evaluation measures will be precision,
that is, the percentage of correctly found IMOs, and the absolute number of IMOs found. We
cannot use recall as a measure since we apply all techniques on the Web and do not know
the total number of relevant IMOs for our entities. For the image extraction evaluation, we
use the same ontology of 17 concepts that we have used in the fact extraction evaluation
(compare to Section 7.6).

Test Set

Our test set consists of two parts, a base test set and an extended test set. For the base
test set, we created a vocabulary of search terms to allow the query generation process to
create more focused queries for a search engine. We did use a common vocabulary for all the
concepts in the extended test set to find out how domain dependent the approach is. The

Extraction of Interactive Multimedia Objects and Images 169

base test set consists of the following five concepts with seven entities in each: Mobile Phone,
Printer, Headphone, Movie, and Car. The extended test set consists of the following four
concepts with five entities in each: Organization, Sight, Person, and Country. Additionally,
we added the concepts Computer Mouse, Digital Camera, and Electronic Gadget with five
entities each to the extended test set. These additional three concepts are related to those in
our base test set, so the vocabulary should work similarly for them. Overall, the total test
set contains 12 concepts and 110 entities.

Manual Search vs. WebKnox

To evaluate how well the IMO extraction component works, we need to establish a baseline
for comparison. We decided to compare our system to the manual approach since there are no
state-of-the-art systems with similar goals available for evaluation. We therefore performed a
manual search for all entities in the test set using Google. We limited the time for searching
to ten minutes per entity since we assume that users would not spend more time searching
for this kind of information.

WebKnox searched with six queries on average (dependent on the vocabulary) for each of the
110 entities, taking only the top five results returned from the search engine for each query.
We will now compare the results of the manual search and WebKnox with regard to precision
and the total number of relevant IMOs. “Match” is the number of IMOs that were in both
sets, the manually found IMOs and the IMOs found by WebKnox. As shown in Figure 8.1, the
IMO classification process uses features on the Web page and in the IMO to calculate a trust
value, which represents its confidence that the extraction is in fact an IMO. We compare the
results with and without this trust filter. To filter out irrelevant IMOs, we need a threshold
for the trust value. We found this threshold by searching IMOs for 12 sample entities. We
then manually classified the IMOs as relevant or irrelevant. The manual classification resulted
in a set of 371 ratings, which were used to determine a threshold where the harmonic mean
between precision and recall had a peak. This peak was found at a trust value of 30.2 %.

Figure 8.2 shows the evaluation across all 12 concepts. The purple bar (4th bar) shows the
precision and the orange bar (6th bar) shows the absolute number of the extracted IMOs
before the trust filtering. The turquoise bar (5th bar) shows the precision and light blue bar
(7th bar) show the absolute number of extracted IMOs after the trust filtering. The blue
bar (1st bar) shows the absolute number of relevant IMOs that were found when searching
manually. The green bar (3rd bar) shows how many relevant IMOs were found by WebKnox
and the red bar (2nd bar) shows how many of these overlap with the IMOs that we found
manually. In general, we can observe that WebKnox finds many more relevant IMOs than
we were able to find manually. Also, the relevancy in all concepts went up after the trust
filtering while avoiding many false negatives.

Comparison with Google Filetype Search

In this experiment we compare the IMO extraction component with the most similar state-of-
the-art system – the Google filetype search. Google indexes SWF files and we can search for
them by adding filetype:swf to a entity name in the query. This limits the results to Flash

170 Extraction of Multimedia Objects, Events, and Statements about Entities

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

50

100

150

200

250

300

350

400

Mobile
Phone

Printer Headphone Movie Car Computer
Mouse

Digital
Camera

TecMix Organisation Sight Person Country

Manually Found Match WebKnox Found Relevant (%) Relevant after Trust Filtering (%) Relevant Relevant after Trust Filtering

Figure 8.2: IMO Extraction Evaluation

files, but in our evaluation we found that about 90 % of multimedia files are in fact Flash
files. We compare the top 10 search results from Google against the top 10 from WebKnox.
In order to compare fairly, we ranked our IMO extractions by their trust value and took only
the top 10 IMOs. Figure 8.3 shows the absolute number of relevant IMOs for Google (blue)
and WebKnox (green). The red bars show the number of relevant IMOs found in both sets.
We used our basic test set with five concepts and seven entities each. The maximum number
of relevant IMOs per concept for the top 10 list is therefore 70.

0 10 20 30 40 50 60 70

Mobile Phone

Printer

Headphone

Movie

Car

Average

Number of IMOs Found

Google Match WebKnox

Figure 8.3: WebKnox IMO Extraction versus Google Filetype Search

Extraction of Interactive Multimedia Objects and Images 171

On average, we were able to find 2.55 times more relevant IMOs than Google in the top 10
results. Interestingly, the match between the filetype search and our results is quite small
with only 10.26 % on average. The low match percentage shows that we might need to
consider adding a filetype search approach to our IMO extraction component. We have not
yet tested this search approach since we want to look for different IMO types on multi-purpose
search engines and only Google supported the filetype search for SWF files at the time of the
experiment.

Interactivity Classification

In this section, we evaluate how well the interactivity classification of the IMOs worked. We
used both the basic and the extended test sets. We extracted 647 IMOs and were able to
correctly classify 277 (about 42.8 %) as weakly or strongly interactive. We were not able to
classify 224 IMOs (about 34.6 %) and left them “unknown”. The remaining 146 IMOs (about
22.6 %) were incorrectly classified. Figure 8.4 shows the distribution of the classifications.
Ultimately, the precision of the interactivity classification is 65.48 %, the recall is 42.8 %
and the F1 value is 51.76 %. These results are not satisfactory, but classifying the level of
interactivity is of minor importance compared to finding the relevant IMOs. More work on
the vocabulary terms for judging the interactivity level is needed and a higher precision can
probably be achieved by analyzing content-based features of Flash files.

correct
43%

unknown
33%

incorrect
24%

Figure 8.4: IMO Interactivity Classification Evaluation

Image Extraction

For the image extraction evaluation, we used the same test set of 17 concepts used in the
entity and fact extraction evaluations. Figure 8.5 shows the precision, (almost) precision,
recall, and the F1 value across all 17 concepts. We expected four images per entity for a total
of 680 images. We considered an image to be correct if it was unique and depicted (part of)
the entity. All images that were duplicates or only partially related (for example, a picture
with several people including the person for whom we were looking) were considered almost
correct.

We can see that the F1 values are between 82 % (Computer Mouse) and 100 % (University).
On average, about 96.5 % of the extracted images are (almost) correct. The full recall was not

172 Extraction of Multimedia Objects, Events, and Statements about Entities

reached because some image formats were not extracted correctly. The false positive extrac-
tions were almost always for rather ambiguous entities. For example, not all the extracted
images for the movie Super 8 were correct since “Super 8” is also the name of a motel chain
and a film format. The film format is more of a problem since it also belongs to the Movie
concept.

This experiment shows how much easier it is to extract still images in contrast to more
complex IMOs.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actor

Airplane

Airport

Athlete

Car

Band

City

University

Computer Mouse

Country

Movie

Lake

Newspaper

Mobile Phone

Politician

Restaurant

Sports Team

Average

Precision Almost Precision Recall F1

Figure 8.5: Image Extraction Evaluation across 17 Concepts

8.1.7 Summary Multimedia Extraction

In this section, we have motivated, described, and evaluated a component for extracting
interactive multimedia objects and images from the Web. We were able to show that the
manual search is tedious and yields a much lower number of relevant IMOs than our automated
approach. We were able to find about 80 % more relevant IMOs compared to searching
manually. We then compared our system to the Google filetype search, which is the best
freely available system to solve the problem we face. Our extraction component finds as
many as 2.55 times more relevant IMOs when comparing the top 10 results for 70 entities
in our basic test set. The classification of the IMOs’ interactivity works with a precision of
about 65 %, leaving much room for improvement. Nevertheless, to the best of our knowledge,
the WebKnox IMO extraction component is now the only system for finding and extracting
interactive multimedia objects from the Web. In addition to the IMO evaluation, we evaluated

Extraction of Events 173

entity image extraction for 170 entities across 17 concepts and reached an F1 value of about
95 %. In conclusion we can say that image extraction is much easier than IMO extraction
which is mostly due to the image search support of search engines. It is, however, not
(yet) possible to search for IMOs on search engines and we need to employ intelligent query
and extraction algorithms. Furthermore, IMOs are by nature more diverse (formats, HTML
embedding) and more complex (layout, function) than images.

8.2 Extraction of Events

In this section, we describe an event extraction component that reads news articles and
extracts information related to the events in the news. In the WebKnox knowledge base,
events are interesting pieces of information since they can link and put entities in context.
For example, when we extract entities for the concept Actor, we are also interested in news
about the extracted actors.

An event consists of answers to the six questions “Who”, “What”, “Where”, “When”, “Why”,
and “How”, also known as 5W1H. The answers to these questions are enough to understand
the event (Carmagnola, 2008). In the following sections, we will briefly review related work
on event extraction, explain our event extraction approach, and evaluate our method.

8.2.1 Related Work

In the past ten years, interest in event and news summarization has spiked. Several use cases
were studied and systems for disease outbreak extraction (Grishman et al., 2002) and conflict
events (King and Lowe, 2003, Atkinson et al., 2008, Tanev et al., 2008) were created, for
instance. In 1998, the National Institute of Standards and Technology supported the topic
detection and tracking (TDT) project. The goal of TDT was to allow a comparison between
systems that detect and track events in news streams over time (Yang et al., 1998, Allan
et al., 1998, Yang et al., 1999). TDT ended in 2004, but event extraction research continued
with the Automated Content Extraction program of the Message Understanding Conference
(MUC). The goal of the MUC’s Scenario Template Task was to “extract prespecified event
information and relate the event information to particular organization, person, or artifact
entities involved in the event” (Marsh and Perzanowski, 1998). For each event type, there
were templates that needed to be filled with related information from the text. Systems
competing in this task achieved precision and recall scores between 50 % and 60 %. The
templates in this task were rather rigid and could only detect prespecified event types. More
complex templates capturing a wider range of event types were introduced in tasks of ACE.
The goal in this task was to find mentions of events in plain text and merge them into one
representation object. These representation objects hold information about entities, values,
and time expressions. The ACE 2007 had only one participant in the Event Detection and
Recognition (VDR) task reaching a task score of 13.4 %. This result shows how difficult it is
to extract a wide range of events confidently.

174 Extraction of Multimedia Objects, Events, and Statements about Entities

Event Extraction Approaches

In general, we can distinguish three approaches for event extraction:

Pattern-based Approach Events can be captured using predefined patterns such as “in
an attack, NUMBER people were killed in LOCATION on DATE”, which would then be able to
find instances of the pattern in texts such as “in an attack, 24 people were killed in Tehran
on May 5th”. The more specific a pattern, the higher the precision, but the lower the recall
since fewer matching instance will be found. The problem with a pattern-based approach is
the initial manual labor that is necessary to define good patterns.

Event-oriented Approach Events are usually reported many times in different sources.
The event-oriented approaches take advantage of the different representations of the same
event. Many of these approaches employ statistical features and apply clustering on the
detected events to summarize news from multiple sources. Ji and Grishman (2008) use cross-
sentence and cross-document evidence to detect, classify, and cluster events. This method
results in higher scores in the ACE evaluation. Filatova and Hatzivassiloglou (2004), Li et al.
(2006) and Liu et al. (2007) extract and organize summary sentences about events in order
to have multiple sources of evidence for each event. Similarly, Naughton et al. (2008) merge
news event descriptions from multiple sources into one representation. First, they identify
text spans related to event mentions. Then, they link these mentions to event mentions
in other documents. In a last step, they create a single coherent summary of the different
event mentions. Further examples of systems using this approach are News in Essence, which
uses MEAD (Radev et al., 2004), the Columbia Newsblaster (McKeown et al., 2003), and
GISTexter (Finley and Harabagiu, 2002).

Semantic-based Approach More recently, Yaman et al. (2009) have applied semantic
role labeling (SRL) to extract 5W1H for question answering. In SRL, different words of
the sentences are labeled with their semantic roles, which could be agent, patient, source,
sender, goals, good, or destination, for example. Differently-phrased sentences can have the
same semantic role labels, which allows clustering of event mentions on semantic instead
of syntactic representations only. In 2006, the AAAI-06 workshop on event extraction and
synthesis focused on the role of semantics for event extraction. Already then, McCracken
(2006) presented a promising approach combining statistical machine learning and SRL for
event extraction, emphasizing the benefits of semantics.

Related Systems

In our work, we focus on extracting events by finding answers to the 5W1H. The two systems
most closely related to our approach are NEXUS and CNFE.

NEXUS News Cluster Event Extraction Using Language Structures (NEXUS) (Piskorski
et al., 2007) is an event extraction system that focuses on extracting violent incidents and

Extraction of Events 175

security-related facts from online news articles. The news articles are aggregated using a
media monitoring system, which already clusters news for different topics. NEXUS then uses
keyword-based heuristics to detect security-related event mentions. For each mention the
following actions are taken: sentence boundary disambiguation, named entity recognition,
and labeling of action words and unnamed person groups.

Hand-crafted patterns, such as “killed X” are applied to find the events. Based on the found
instances, a bootstrapping algorithm is applied to find more patterns automatically. For
example, if X in the hand-crafted pattern “killed X” is instantiated with Al Zarkawi in a news
text, another pattern “body of X was found” can be learned automatically.

The system’s performance is very dependent on the type of extracted information. While
country names can be detected with an accuracy of 95 %, cities, towns, and villages are only
correct 28 % of the time. Dates were recognized with a precision of about 76 % (Piskorski
et al., 2007).

CNFE The Chinese News Fact Extractor (CNFE) (Wang et al., 2010) is a news extraction
system addressing the 5W1H task on single Chinese documents. They argue that SRL is
computationally expensive and does not scale to large news corpora. Instead, they use a
“lighter” method to extract the 5W1H. Their extraction pipeline includes topic sentence
extraction, event classification, and 5W elements extraction. Interestingly, they use “Whom”
instead of “Why” for one of the Ws, which is an uncommon definition of the 5W1H. This
change makes the task easier since answering “Why” is often one of the hardest parts, which
we will see in the evaluation later in this section.

Their extraction relies on a combination of rule-based methods and supervised machine learn-
ing using SVMs for detecting events in sentences. The 5W1H are extracted as follows:

� Who, Whom: Answers to these questions are identified using regular expressions
with trigger rules. For example, the expression (.*)/n(.*)/trigger(.*?)/n(.*)/n.*

matches NP1+V+NP2+NP3. Named entities and noun phrases are identified according
to the sentence’s syntactic structure before roles for each of the matches are determined
using SRL.

� What: The answer to this question is a verb. The first verb that is classified by the
SVM as “What” becomes the answer.

� Where, When: Outputs of the NER are taken to answer these questions. NERs
work with a rather high precision for detecting locations. If no time or location entities
are found, they use heuristics to find expressions that might express answers to these
questions in the sentence.

� How: The answer to this question is a summary of the previous answers. They generate
a sentence answering “Who did What to Whom” as the answer for “How”.

Our approach uses different methods to extract the 5W1H. Unlike NEXUS, we do not only
consider the security-relevant domain but aim to extract events from arbitrary domains. In
contrast to CNFE, we focus on English news and really conform with the 5W1H instead of
substituting the “Why” with “Whom”.

176 Extraction of Multimedia Objects, Events, and Statements about Entities

8.2.2 Extraction of 5W1H Events

This section describes our approach to the 5W1H event extraction task. A more elaborate
explanation is provided by Wunderwald (2011). The input for the Event Extractor (EvE) is a
news item with its headline and content. We use a step-by-step extraction approach and apply
the idea of deferred commitment (Yangarber, 2006), that is, we carry answer candidates into
the next step and see whether they are still likely to be correct considering the information
from the next step. Figure 8.6 shows the workflow for extracting the 5W1H.

Figure 8.6: Event Extraction Workflow

WHO Extraction

The WHO is the subject of an event. Often this subject is a named entity of the type Person,
Organization, or Country. Unnamed groups can also be the subject, such as “volcano” in
the sentence “The volcano erupted and damaged hundreds of houses”. In our experiments,
we found that in 80 out of 100 cases, the subject is mentioned in the headline. This makes
sense since the headline is often a short summary of what is written in the article. We apply
NER on the article text and add noun phrases that we find in the title to the list of WHO
candidates. Named entities are often mentioned several times in the text, but not always with
the same syntax. We therefore apply co-reference resolution so that we can group semantically
equivalent entities together (for example, Bill Gates and Mr. Gates). Each of these entity
groups is a WHO candidate for which we extract the following features for the classifier:

� Occurrences: The number of occurrences is an indicator of how important the entity
is to the given article. We distinguish between the number of occurrences in the text
and in the headline.

� Position: The average position of the entity relative to the length of the text. The
subject of the article is usually mentioned early in the article, which makes position a

Extraction of Events 177

good indicator for finding the subject.

� Type: The detected entity type from the NER.

We tested four different classifiers (Bayes networks, decision trees, bagging, and näıve Bayes)
using a training set of 1,000 WHO annotations, and found that bagging works best for this
task (Wunderwald, 2011). After classifying the named entities and noun phrases, we get a
ranked list of WHO candidates. We store this list, but due to “deferred commitment”, the
ranking might still change in later extraction steps.

WHAT Extraction

The WHAT describes an action or change of state. We therefore consider verbs to be candi-
dates for the WHAT. The WHAT is tightly coupled to the WHO since the subject carries out
the action. For this reason, we search for co-occurrences between the two. If one of the WHO
candidates appears in the headline, we extract the subsequent verb phrase as the WHAT.
If we do not find a subject in the headline, we search for the first occurrence of the highest
ranked WHO in the text and extract the verb phrase after that mention.

WHERE Extraction

The WHERE is the location where the event has taken place. Sometimes the location is
irrelevant to the reported event and is not mentioned. For example, in the sentence “Barack
Obama visits Germany”, the location is an important part of the event, while it is not of
importance in the sentence “Last Saturday, Barack Obama announced that he will run for
President”. We use the WHERE classifier using the same features (except the entity type) to
classify location NERs. The location with the highest classification confidence becomes the
WHERE of the event.

WHEN Extraction

The WHEN is the date and time that the event took place or is planned to take place. We
use regular expressions to find explicit mentions of dates in the text. If we do not find any
dates in the text, we assume that the publishing date of the news has the same date as the
event.

WHY Extraction

The WHY is the reason that WHO did WHAT. Such an explanation is difficult to extract
since semantics play a huge role in this answer type. There are, however, indicators that
can be used to find likely reasons. Altenberg (1984) created a typology of causal links that
he classified into four main types: “adverbial links” (for example, “hence” or “therefore”),
“propositional links” (for example, “because of” or “on account of”), “subordination” (for
example, “because” or “since”), and “clause-integrated lines” (for example, “that is why”

178 Extraction of Multimedia Objects, Events, and Statements about Entities

or “the result was”). These words and phrases are hints for finding causal relations, but
some hints are better than others. We tested the phrases from Altenberg (1984) on a set of
100 news articles and determined the accuracy of each phrase for correctly finding a causal
relation. Each phrase was then used as a regular expression to extract WHY candidates.
The candidate that is extracted from the expression with the highest confidence becomes the
WHY of the event (Wunderwald, 2011). We found that the word “since” is the least precise
indicator for WHY answers while the form “to + infinitive” after the WHAT is the most
precise.

HOW Extraction

The HOW is a more detailed description of the way WHO did WHAT. Just as with WHY, it
requires deep semantic analysis. Also, there is often not a single correct answer for the HOW.
In our approach, we take the sentence that best summarizes the event because this sentence is
most likely to be related to the WHO and the WHAT. We therefore compute the similarity of
each sentence with the WHO and WHAT. The sentence with the highest similarity becomes
the HOW of the event. If two sentences have the same similarity, the sentence that comes
first in the text is chosen because the most relevant information has been shown to appear in
the beginning of an article.

The following sentence provides a complete example of all question words: “On September
12, 2012, Barack Obama gave an eloquent speech to impress the voters in Washington D.C.”.
In this sentence the 5W1H are assigned as follows: WHO = Barack Obama”, WHAT = “gave
a speech”, WHEN = “2012-09-12”, WHERE = “Washington D.C.”, WHY = “to impress the
voters”, and HOW is the complete sentence.

8.2.3 Evaluation

To evaluate the performance of the event extraction component, we let 12 users rate the
extraction quality of the 5W1H for 56 news articles. Each user was given the original article,
and for each question, the user had to choose whether the extraction was correct, incorrect,
or partially correct. We computed a Fleiss Kappa score (Fleiss, 1981) for the user agreement
of approximately 0.33 which can be interpreted as “fair agreement” (not every user rated
every news which led to a modification in the score computation) (Wunderwald, 2011). The
agreement among raters for WHY and HOW answers was unsurprisingly the lowest with
about 0.2 and 0.25 respectively. As discussed earlier, even humans find it difficult to agree
on answers to these questions.

Figure 8.7 shows the results of the user study. We can see that the WHEN answers were
extracted with the highest accuracy of 75 % while the WHAT answers contained the most
incorrect extractions with 36 %. As expected, the HOW and WHY have the highest proportion
of partially correct answers, which, again, is due to the difficulty of agreeing on a correct
answer even among human raters.

Extraction of Events 179

48%

21%

31%

HOW

75%

21%

4%

WHEN

42%

34%

24%

WHY

51%

41%

8%

WHERE

51%

32%

17%

Average

Correct Incorrect Partially Correct

47%

36%

17%

WHAT

41%

40%

19%

WHO

Figure 8.7: Results of the User Study for the Event Extraction Component

8.2.4 Summary Event Extraction

In this section, we described the WebKnox approach for event extraction from news articles.
We have shown related work in the field and evaluated our own approach. On average, 51 % of
the extracted answers were correct, and in total, about 68 % of the extractions were at least
partially correct. Events are another interesting information element that can be related
to entities in the knowledge base. Among many other use cases, event information can be

180 Extraction of Multimedia Objects, Events, and Statements about Entities

used for question answering, which is the main purpose of the knowledge base in this thesis.
For example, we could match the question “Why does Jim Carrey star in the movie The
Incredible Burt Wonderstone?” to an extracted event from the sentence “Jim Carrey stars
in The Incredible Burt Wonderstone because he likes director Don Scardino”, and thereby
answer the question with “because he likes director Don Scardino”.

8.3 Extraction of Statements about Entities

While the fact extraction component of WebKnox searches for “common” facts, the state-
ment extraction component searches for assertions about entities that are rarely stated in a
structured form. For example, the birth place of a person is a fact that all entities from the
concept Person must have. This information should be found with the fact extractor. A more
unique fact about a person could be an event that happened to this person. For example, we
might find the statement “Jim Carrey dropped out of school when he was 16”. We could not
find this information with the fact extractor because it uses an ontology. The information
about when a person dropped out of school is too focused, many people did not drop out
of school so searching for it would not be useful. It is not a “common” fact. However, this
information about an entity can be of interest so we need an approach to find and extract
those entity statements.

Statements are short pieces of text (one to three sentences) that provide information about
an entity. The less common this piece of information is, the more interesting and valuable the
statement. Entity statements can also express opinions, which classifies them as opinionated
entity statements.

8.3.1 Statement Extraction Workflow

The statement extraction component works as shown in Figure 8.8. We use the entities and
their concepts from the knowledge base to formulate search queries. The queries are built
following the pattern “CONCEPT ENTITY”, for instance, “Actor Jim Carrey”. These queries
are sent to several search engines. From each Web document, we extract all sentences from
the main content block of the page. That is, we seek to remove header, footer, and other
navigational elements that do not belong to the content. We then take all sentences in which
our sought entity appears. The last step ranks the extracted statements using a trained model
for regression analysis on the list of features shown below (Friedrich, 2010).

Figure 8.8: Statement Extraction Workflow

� Search Result Position: The position in which the Web page was found after being
queried for the entity.

Extraction of Statements about Entities 181

� Search Engine: The name of the search engine. Different search engines return dif-
ferent results, and one might be better than another.

� Google Page Rank: Google’s page rank is a quality indicator for the page (Page
et al., 1999). The rank is in the interval of [0,10] where 10 is the highest quality.

� Top Level Domain (TLD): “.com” domains hold different kinds of contents than
“.edu” domains, for example. We use the TLD as another feature to rank the statements.

� Main Content Percentage: The main content percentage measures what percentage
of the Web page is in the main content block. Highly commercial sites might set up
low-content pages to attract page view and money, whereas valuable Wikipedia pages
have a high score in main content percentage.

� Character Count: The number of characters in the statement.

� Letter Number Percentage: The percentage of numbers in the statement.

� Capitalized Word Count: The number of capitalized words in the statement.

� Syllable Per Word Count: The average number of syllables per word in the state-
ment.

� Word Count: The number of words in the statement.

� Unique Word Count: The number of unique words in the statement.

� Complex Word Percentage: The percentage of words with more than two syllables
in the statement.

� Sentence Count: The number of sentences in the statement.

� Words Per Sentence Count: The average number of words per sentence in the
statement.

� Contains Proper Noun: Whether or not the statement contains a proper noun.

� Entity Concept: Whether or not the concept or one of its synonyms co-occurs with
the entity in the statement.

� Entity Head: Whether the statement starts with the entity name.

� Related Entity Count: The number of other entities that belong to the same concept
and occur in the same statement as our target entity.

We used 200 manually scored statements to learn a linear regression model. Each statement
was ranked 1 if it was relevant, 0.5 if it was somewhat relevant, and 0 if it was not relevant.
The linear regression model is used for all extracted statements disregarding their entities.
It could be beneficial to train a model for each concept of entities. For example, entities
from the concept Professor might score higher from “.edu” pages, while statements about the
concept Car might have a higher percentage of numbers due to technical data. The labor to

182 Extraction of Multimedia Objects, Events, and Statements about Entities

create training data for each concept is, however, tremendous and is outside of the scope of
this thesis.

To classify the sentiment of a statement, we use the text classifier that was already used for
the NER from Section 5.2.4. We train a model with positive and negative statements and
use this model to classify unknown statements.

8.3.2 Evaluation

Statements about entities need to be relevant, interesting, and make a reader curious.
We measure the quality of the extracted statements in these dimensions because the goal is
that human readers will find them valuable. We adapt the evaluation methodology from von
Brzeski et al. (2007) which is outlined in the following paragraphs.

Methodology

Our extracted statements are presented to human judges. Each judge can rate each statement
along the dimensions. Relevance and interestingness can be rated with “yes”, “somewhat”,
“no”, and “can not tell”; curiosity can be rated with “yes”, “no”, and “can not tell” only.

Before the evaluation, we presented each judge with guidelines. This was necessary to ensure
that all judges have the same understanding of the evaluation options. We used the guidelines
suggested by Friedrich (2010):

Evaluation of Relevance The relevance judgment is necessary to determine whether the
statement is about the entity. The judges were told to keep the following guidelines in mind
before judging the relevance:

1. Does the summary provide on-topic information for the specified object?

2. Is the summary provided in any way relevant to the object named above (in the title)?

3. Relevant are facts and opinions of any kind, as long as they are on-topic.

4. Summaries must refer to or must provide information about the object directly.

5. Summaries of websites that are talking about an object are considered somewhat rele-
vant.

6. The object in question must be the subject of the sentence or paragraph to be relevant.

Evaluation of Interestingness The interestingness judgment is necessary to determine
whether the judge found the statement interesting. To help the judges pick the right choice,
they were told to keep the following guidelines in mind:

1. Do you find the information provided interesting?

Extraction of Statements about Entities 183

2. Interesting are, for instance, facts, experiences, and opinions about the object in ques-
tion, especially when unknown to the reader.

3. A summary is interesting if it is easily understood by the reader, potentially useful,
novel, or validates some hypothesis that a user seeks to confirm.

Evaluation of Curiosity The curiosity judgment determines whether the reader is in-
terested in learning more about an entity after reading the statement. It differs from the
interestingness in that a reader might find the information interesting, but would not want
to know more background information. The curiosity score should measure those ambitions.
The following guidelines were given to the judges to help them pick the right choice:

1. Based on the summary provided, would you be interested to learn more about that
content or the topic (the named object)?

2. Is the message, or part of a message, designed to arouse curiosity and interest and cause
the reader to explore further, but without revealing too much?

3. If the object is underlined and clickable as a link, based on the summary around it
would you actually click on it to learn more about it?

User Study Results

We extracted statements for 20 entities across four concepts. Table E.1 shows the entities
used for our evaluation.

To see how our extracted statements performed compared to the state-of-the-art, we used
the Google Web Search snippets that are returned for each query. Additionally, we manually
searched for statements that should be relevant, interesting, and make the reader curious. We
call these manually selected. For each entity and approach, we presented the top three results
to the judges. We collected 1,785 judgments by 18 judges in this experiment. Figure 8.9
shows the results of the user evaluation and compares our approach to Google and to the
manually selected statements (detailed numbers are shown in Table E.2 in Appendix E).

Sentiment Classification Results

We used a dataset5 of 20,486 statements (10,593 positive, 9,893 negative, random accuracy
about 52 %) that we gathered from 6,275 popular topics from Amplicate6. A 5-fold cross
validation test with this dataset led to a classification accuracy of 89.7 %.

5The dataset and the results of our text classification approach can be found on Areca at http://areca.

co/16/Short-Opinionated-Sentences-about-Diverse-Topics, last accessed on 25th of March 2012
6http://amplicate.com, last accessed on 18th of February 2012

184 Extraction of Multimedia Objects, Events, and Statements about Entities

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relevant

Interesting

Would Like to Learn More

Manually Selected WebKnox Google

Figure 8.9: Comparison of Google, WebKnox, and Manually-selected Statements

8.3.3 Summary Statement Extraction

In this section, we have motivated, described, and evaluated a component for extracting
statements about entities from the Web. The goal was to find relevant, interesting, and
intriguing facts that are unique to the entity and are less likely to be found with the fact
extraction component. We evaluated our system in a user study with 18 judges on a set of 20
entities from four concepts. As a comparison, we chose the Google snippets and editorially
selected statements. The evaluation has shown that WebKnox surpasses the Google snippets
by over 20 % on average in the measures relevancy, interestingness, and curiosity. However,
there is still a huge gap between WebKnox and the editorially selected results. In future
research, training a larger model or one model for each concept might narrow the gap. Another
goal was to identify opinionated statements. Using a text classification algorithm, we were
able to correctly separate positive and negative opinions 89.7 % of the time.

8.4 Summary

This chapter presented extraction approaches for multimedia objects, events, and (opinion-
ated) statements about entities. We showed that using keywords and search engines such as
Google, we are able to find more relevant interactive multimedia objects than we find manu-
ally. Concerning the event extraction, we showed that using machine learning for identifying
parts of the 5W1H yields an accuracy of at least 51 % in our user study. We consider this
result a proof of concept, but using more training data, explicit event patterns, and other
hints can certainly improve event detection. Lastly, we have shown how to extract statements
about entities from the Web. These statements are on average better than the snippets shown
by Google under the search result. We also evaluated our hypothesis that text classification
on opinionated statements yields high accuracy (see Thesis 4 in Section 1.4). In fact, we
achieved almost 90 % accuracy on positive and negative sentiment statements.

We have now shown how to extract entities and fill the knowledge base with facts, interactive
multimedia objects, events, and statements related to these entities. The next chapter will
demonstrate how to use the knowledge base for a question answering use case.

Chapter 9

Question Answering

Our fifth research question (see Section 1.4) asks how well ontology-based question answering
performs and how it compares to answer extraction approaches that operate on the Web.
In this chapter, we introduce three different approaches for answering a natural language
question, with and without a given knowledge base. We briefly review related work on
question answering before we explain our three approaches in detail. In the final section of
this chapter, we evaluate 13 different approaches for question answering on a set of real world
questions.

Thesis 5 (see Section 1.4) states that ontology-based question answering systems are more
precise but yield a lower recall on average. We will evaluate this thesis at the end of this
chapter.

9.1 Related Work

In this section, we review the most relevant question answering systems and query intent
taxonomies. We focus on question answering systems that process natural language questions
instead of structured queries that can be formed using languages such as the Structured Query
Language (SQL) or SPARQL Protocol and RDF Query Language (SPARQL).

9.1.1 Natural Language Question Answering

We can distinguish between three types of question answering systems: systems that match a
user question to a known question and answer, systems that compute an answer by employing
a knowledge base, and systems that extract an answer from a corpus of text, such as the
Web.

Matching Systems

A simple approach toward question answering is to match a given user question to a database
of already answered questions. If the system finds a good match, it presents the answers to

186 Question Answering

the matching question to the user.

WikiAnswers1, Yahoo! Answers2, kgb Answers3, and Mahalo Answers4 are examples of this
type of system which gets the questions and answers from an online community. FAQFinder
(Burke et al., 1997) is a system that retrieves frequently asked question (FAQ) files to build
a database of questions and answers. The challenge of finding and extracting FAQs using
heuristics and machine learning has been studied by Jijkoun and de Rijke (2005) and sheng
Lai et al. (2002) and this approach can be considered reliable with about 94 % precision and
recall. More recently, Cong et al. (2008) studied the detection and extraction of questions
and answers in online forums using labeled sequential patterns and machine learning. They
were able to extract over two million questions with a precision of up to 88 %.

This approach can only perform well, however, if there is a large database of questions and
answers to match new questions against. Most of these systems rely heavily on a community
that asks and answers questions. Moreover, only questions that have already been answered
can be answered again.

Computing Systems

With the rise of ontologies and Linked Data, approaches for computing an answer have become
more popular. In this approach, the user question is analyzed by a query parser, which
reformulates the question in order to send it to an underlying knowledge base. The answer
to the question is not necessarily stored in the knowledge base already, but can be computed.
For example, questions such as “How old is Jim Carrey?” or “What is the distance between
Los Angeles and Chicago?” are very easy for these kinds of systems because they only require
simple facts, such as the birth date of Jim Carrey or the geographic coordinates of Los Angeles
and Chicago to compute the age or distance, respectively. These kinds of questions are much
more difficult for systems that match questions to already answered questions since a previous
user has to have asked the same question. Even if the question has been asked before, the
answer might no longer be correct. In our example, the age of Jim Carrey changes, so previous
answers about his age are likely outdated and therefore incorrect. Computing systems can
deliver an up-to-date answer.

True Knowledge5, Wolfram |Alpha6, AquaLog (Lopez et al., 2007), PowerAqua (Lopez et al.,
2006), Groovy Answers (Myagkikh, 2012), and the direct answers on the Google Web search
page are examples of this kind of system.

This approach relies on a knowledge base of factual information that can be used to compute
highly accurate answers. These knowledge bases, however, rarely contain opinions, explana-
tions, or procedural information. For this reason, computing systems fail to answer questions
such as “Why is the sky blue?” or “Should I buy an ultrabook now or wait a couple months?”.

1http://wiki.answers.com/, last accessed on 16th of March 2012
2http://answers.yahoo.com/, last accessed on 16th of March 2012
3http://www.kgbanswers.com/, last accessed on 16th of March 2012
4http://www.mahalo.com/answers/, last accessed on 16th of March 2012
5http://trueknowledge.com, last accessed on 16th of March 2012
6http://wolframalpha.com, last accessed on 16th of March 2012

Related Work 187

Extracting Systems

The Web is a large corpus of text. Many questions a user might have are likely already
answered on one of the billions of Web pages that are indexed by modern search engines.
This assumption is made by great variety of systems that try to understand the question
intent of the user and to find and extract an answer to the question on the Web. In general,
these systems all work similarly. First, the question is analyzed. In the analysis step, questions
might be translated (Zheng, 2002), part-of-speech tags might be added (Gerlach, 2012), the
query intent might be analyzed, and answer patterns might be generated (Schlaefer, 2005).
Second, the analyzed question is sent to one or more search engines and answers are extracted
on the retrieved pages. The systems differ in how well they classify the retrieved texts as
answers and rank them to match the intent of the question.

One of the earliest systems in this group is START (Katz, 1997) but many more have been
created by scientists in the following years. These systems include MULDER (Kwok et al.,
2001), Omnibase (Katz et al., 2002), the Boulder and the Columbia System (Pradhan et al.,
2002), Tritus (Agichtein et al., 2004), NSIR (Radev et al., 2005), (Open)Ephyra (Schlaefer,
2005), Aranea (Lin et al., 2006), and AQUA (Gerlach, 2012).

The strength of this approach is that the data source – the Web – is likely to contain the
answers to many questions. The weakness is that the retrieval and extraction process is
resource and time consuming. Gerlach (2012) reported an average answer time to opinion-
targeted questions of about 14 seconds – too long for a user to wait.

Table 9.1 classifies the mentioned systems according to their approaches. Systems with hybrid
components are classified according to their main approach. For example, if True Knowledge
cannot compute the answer, it tries to match the user question to kgb Answers. It is still
primarily a computing system.

Matching Computing Extracting

WikiAnswers True Knowledge START

Yahoo! Answers Wolfram |Alpha OpenEphyra

FAQFinder PowerAqua AQUA

kgbAnswers Groovy Answers AnswerBus

Mahalo Answers Google MULDER

AquaLog OmniBase

NSIR

Tritus

Aranea

Boulder/Columbia

Table 9.1: Classification of Question Answering Systems According to their Approaches

188 Question Answering

9.1.2 Query Intent Classification

Knowing the intent of the user’s query can help a question answering system find the right
answer. For example, OpenEphyra tries to detect the intent of the question using a simple
decision tree. If the system finds out that the user is looking for a date, it can focus its
extraction process toward finding dates.

Most researchers agree on the query intent taxonomy that was introduced by Broder (2002).
He classifies intents into “navigational” (the user tries to reach a certain website, such as
Wikipedia), “informational” (the user searches for a piece of information, such as movie re-
lease date), and “transactional” (the user wants to perform an action such as booking a
vacation). Later, Rose and Levinson (2004) refined this taxonomy by adding subcategories
to informational and transactional intents. According to Rose and Levinson (2004), infor-
mational queries can be “directed” (the user wants to know a certain fact about a topic),
“undirected” (the user wants to learn something about a topic), “advice” (the user wants to
get advice, instructions, or suggestions), “locate” (the user wants to find out where something
can be found in the real world), and “list” (the user wants to obtain a list about something).
Jansen et al. (2008) compared user intent taxonomies proposed by different researchers and
none of the compared works created more than six subcategories for the informational in-
tent. For question answering, the available categorization proposed in research is not detailed
enough. We argue that user intents can be categorized in a much more fine-grained taxonomy
which supports question answering.

9.2 Question Intents

Every question has an intent. We created a question intent taxonomy that is much more
fine-grained than the most detailed taxonomy found by Jansen et al. (2008). The following
list describes our taxonomy, which was developed in cooperation with Gerlach (2012) by
analyzing hundreds of questions on WikiAnswers and Yahoo! Answers.

� Number: The user wants to know a particular numeric fact. We classify all questions
about “How often...”, “How long...”, “How much/many...”, et cetera into this category.
For example, the question “How many stomaches does a cow have?” belongs to this
intent category.

� Subject: The user wants to know about the “who” of the question. For example, “Who
was the 4th U.S. president?” asks for a person name. The subject can also be another
entity, such as an organization or a country, as in the question, “Who is the successor
of the League of Nations?”.

� Definition: The user wants to know the definition of a term or phrase, for example,
“What does xenophobia mean?”.

� Translation: The user wants to get a term or phrase translated, for example, “What
does ‘gato’ mean in English?”.

Question Intents 189

� Thing: The user asks for an entity or concept, for example, “What kind of gas does
the Honda Civic need?”.

� Location: The user wants to know where something is. We distinguish between abso-
lute and relative locations. Absolute locations include objects of the real world. The
question “Where is the city Chicago?” belongs to this category. Absolute locations in
the virtual world could also be intended, as in the question, “Where can I download
pictures of cats?”, which asks for one or multiple URLs. Relative locations, on the other
hand, often require more explanation in the answer. For example, “Where can I find
the volume switch on my iPhone?” or “Where is the battery in my Honda Civic?” are
questions asking about a location relative to an object.

� Date: The user wants to know when something happens or happened, such as, “When
did Hawaii become a state?”. We also include date ranges in this category; the question:
“From when to when was the Peloponnesian War?” therefore belongs to this category
as well.

� Procedure: The user wants to know how something is done, for example, “How can I
download YouTube videos?”.

� Difference: The user wants to get an explanation about the difference between certain
topics, for example, “What is the difference between a netbook and an ultrabook?”.

� Explanation: The user wants to get an explanation about something, for example,
“Why is the sky blue?”.

� Opinion: The user wants to know what other people think about a certain topic, for
example, “Who are you voting for in the next presidential election?”.

� Prediction: The user wants to get a prediction about a topic, for example, “Approxi-
mately how much will the new ultrabook from Lenovo cost?”.

� TrueFalse: Questions that only ask for a “yes” or “no” fall into this category. For
example, “Is Elvis alive?” is one question with this intent.

� LooksLike: The user wants to know what something looks like, for example, “What
does a baby goat look like?”.

� SoundsLike: The user wants to know what something sounds like, for example, “What
do singing whales sound like?”.

� Choice: The user has two answers to a question, but does not know which is correct
or better, for example, “Is Elvis dead or alive?”.

� List X: The user wants to retrieve a list of entities or concepts, for example, “Which
Asian countries are democracies?”.

A question can be tagged with multiple intent categories. For example, “Where are good
places to go surfing?” is asking for both an opinion and a list of locations. We will later
see in Figure 9.8, in the evaluation section, how these question intents are distributed in
different datasets.

190 Question Answering

We use a simple rule-based question intent classifier for our system. We make use of the
observation that the question word often already determines the intent of the question. For
example, the question word “when” is usually used when asking for a date.

9.3 Techniques for Question Answering

We now describe the question answering approach of the WebKnox system. Our approach
consists of three components, one for each of the reviewed approaches matching, computing,
and extracting. Figure 9.1 depicts the question answering process. We assume that when
we have a human-written answer to a given question, it is relevant, and we use this answer. If
we do not find the exact question, we try to compute an answer over a knowledge base. If we
are not able to compute an answer, we use the last approach and try to extract an answer to
the question from the Web. Because the extraction approach is time and resource consuming,
we start it only if the other two approaches fail to answer the question.

Figure 9.1: Workflow for Answering a Question in WebKnox

The next three sections explain each of the three approaches in detail.

9.3.1 Extracting Questions and Answers from QA-rich Websites

In this section, we describe the basic design of question answer (QA) websites and how we
can use it to configure the QA extractor. Furthermore, we explain our focused crawling
algorithm, which increases the extraction efficiency. This extraction component makes the
matching approach in question answering possible by providing a large database of questions
and answers. We will use this database in our evaluation of the different approaches.

Techniques for Question Answering 191

QA Website Design

QA-rich sites all have a similar layout, which we can use to define areas of interest. There
are three possible states for a question page on a QA website:

1. There is only one question and nobody has answered it yet.

2. There is one question and one or more answers.

3. There is one question, one “best answer”, and possibly, but not necessarily, other an-
swers.

We are only interested in pages that have a question with at least one answer. To extract
the question and its answer(s), we assume that every question and answer is structured using
(X)HTML elements, that is, we assume that we can create an XPath (Clark and DeRose,
1999) that targets the question or answer without too much noise around it. Instead of
detecting questions and their answers by lexical or semantic analysis, we take user-given
XPaths to the question and answer part(s) of the page. Since the path is generated by a
user and since parsing and classifying would be time and resource consuming, this is a much
more effective and efficient way than using heuristics and machine learned classifiers. The
downside, however, is that we need the user to find those XPath in advance. Since the number
of QA-rich websites is quite small, we think the benefit of having accurate extractions is worth
the additional effort.

Figure 9.2 shows the layouts of question pages on the QA-rich websites Wiki Answers,
ChaCha, and Yahoo! Answers. The first two are in state two, that is, the question has
been answered at least once. The last one is in state three since we have one “Best Answer”
and additional answers. The red frames point to the questions, the blue frames point to the
best answer, and the green frame points to additional answers.

QA Configuration

We want to extract the question and answer tuples using prior knowledge about the layout of
the website. A human expert must make this knowledge explicit by creating a configuration
file. Figure 9.3 shows an excerpt of the file that we use to configure the extraction component.
We have chosen the JavaScript object notation (JSON)7 as a serialization format because it
can be read and edited easily by human users.

We need seven parameters per page, which can be obtained in less than two minutes by an
experienced user. The name parameter is optional and specifies the name of the website,
entryURL specifies the start page for the crawler, questionXPath is the XPath that points
the question section of the page (red frame in Figure 9.2), bestAnswerXPath points to the
section with the chosen answer (blue frame in Figure 9.2), and allAnswersXPath points to
all (additional) answers for a given question (green frame in Figure 9.2). Not every website
makes a distinction between the “best answer” and additional answers, but if they do, often

7http://www.json.org/, last accessed on 18th of March 2012

192 Question Answering

Figure 9.2: Similar Layouts of QA-rich Websites

different XPaths must be used to extract the answers. The answerPrefix and answerSuffix

parameters are used to extract the answer string without the nearby noise by specifying
what must appear before and after the answer string. The extraction is then performed
by retrieving the contents of the XPath for every candidate page. To clean up the answer
string, the answerPrefix and answerSuffix are deleted from the string. Which pages are
candidates for QA extraction is explained in the following section.

Focused Crawling

The simplest way to find all question pages in a certain domain is to crawl the complete
domain from one start page. On every page, all hyperlinks are added to the URL stack and
we try to find the question and answers by using the specified XPaths. This approach is a
breadth-first search without any focus, and is therefore inefficient. We use focused crawling to
retrieve QA pages much faster. For that purpose, we assume that the URLs that point to QA
pages all have a similar prefix. For example, the two QA pages http://wiki.answers.com/
Q/What_is_the_speed_of_light and http://wiki.answers.com/Q/Why_is_the_sky_blue

have the common prefix http://wiki.answers.com/Q/. This assumption is likely to be
true for many QA-rich websites, since the pages are generated with database contents and
templates. To focus the crawler, we classify every page in a given domain into one of three

Techniques for Question Answering 193

{

"sites":

{

"name": "Yahoo! Answers",

"entryURL": "http://answers.yahoo.com",

"questionXPath": "//div[1]/div[1]/div[2]/h1",

"bestAnswerXPath": "//div[1]/div[1]/div[2]/div[2]/div[1]",

"allAnswersXPath": "//div[3]/div[2]/ul/li/div/div[2]/div[1]",

"answerPrefix": "ratings) ",

"answerSuffix": " Comments Sign in"

}

}

Figure 9.3: Configuration File for Extraction from QA-rich Websites

categories:

1. Green, that is, a question and an answer are found on the page.

2. Yellow, there are no QAs on the page, but it directly links to “green” pages with QAs.

3. Red, there are no QAs on the page, and it is unknown whether the page links to “green”
pages.

For the green category, we learn one common prefix and the number of / separations (address
depth) in the URL. For the yellow and red categories we learn a set of common prefixes
for each and also store the address depth for common prefixes from the red category. The
classification is done using prefix filtering which works as shown in Figure 9.4. A Web page
is taken from the URL stack (the first page is the entryURL as specified in the configuration
file). All links to other pages within that domain are added to the URL stack. Then we search
for a question and an answer and extract them using the specified XPaths. If no question is
found, the page is added to the red category. If a question is found, the common prefix for
green pages is updated with the current URL. Its parent URL, the URL that linked to the
current page, is classified as yellow. In the next iteration, a green category URL is retrieved
from the stack, that is, the prefix of the URL from the stack must match the learned common
prefix for the green category. If no green page is found, we attempt to find a page from
the yellow category since we know that these pages point to more green pages. If there are
neither green nor yellow URLs in the stack, a URL that is not from the red category is taken
from the stack. We do this to get an unclassified URL since we know that URLs from the
red category definitely do not contain questions and we should explore another URL path.
After only a few analyzed URLs, the prefixes for all three categories are learned, and pages
containing QAs (green category) are preferred over yellow and red pages. This leads to more
extracted questions after the same amount of time while the recall stays the same compared
to non-focused crawling.

The approach presented here is novel with regard to the extraction source. There has been
no previous work on extracting questions and answers from QA-rich websites.

194 Question Answering

Figure 9.4: Learning Process for URL Classification in Three Categories

9.3.2 Computing Answers on a Knowledge Base

This section explains an approach to answer simple factual questions using a knowledge base
of RDF triples. Figure 9.5 outlines the process of the answer computation component.

Figure 9.5: Process of Computing an Answer Using a Knowledge Base of Factual Information

First, the question is analyzed and prepared for the next steps. Next, we try to find entities
in the question. To do this, we build word n-grams from the questions with 1 ≤ n ≤ 3. Each
of the n-grams is a candidate for an entity. We then search for entities in the knowledge base
that match one of the n-grams. For example, for the question “Where was Jim Carrey born?”,
we find the 2-gram “Jim Carrey”, which we then find in the knowledge base. The same step
repeats with the detection of attributes. Additionally, we try to find attribute synonyms and
alternative spellings in the database but lower the trust in these additional search terms. For
instance, in our example question, we would find “born” to be a synonym for the attribute
birth date. Once we have found an entity and an attribute, we search for triples that contain
both. The value we are searching for can be either the subject or the object of the triple.
We therefore search with the following two queries, where the question mark symbolizes the
answer to our question:

1. <Entity> <Attribute> <?>. For example, <Jim Carrey> <birthdate> <?> would

Techniques for Question Answering 195

instantiate <?> with 1962-01-17.

2. <?> <Attribute> <Entity>. For example, <?> <founded> <Microsoft> would instan-
tiate <?> with Bill Gates.

If we find more than one matching triple to our query, we rank the resulting triples by trust
values. The best-ranked answer is then cleaned up and the process ends. If no triple is found
the process ends immediately.

9.3.3 Extracting Answers from the Web

In this section, we describe an extraction component that searches for answers to given
questions using search engines such as Google and Bing. In contrast to the focused crawling
approach from Section 9.3.1, this approach is not limited to QA-rich websites. It can use
any Web page containing possible answers to the given question. In a first experiment, we
selected 87 random questions and asked Google for answers. For 97 % of the questions, we
were able to find a correct answer on one of the pages of the top ten results; in 81 % of the
cases, it was already the first result given by Google (Gerlach, 2012). This experiment shows
that using search engines and their ranking for Web pages could be a viable approach for
answer extraction.

Figure 9.6 illustrates each step in the answering process. First, the question is analyzed and
answer patterns are created. We send these answer patterns to search engines before we try
to match them on the textual content of the retrieved Web pages. If an answer is found,
we clean up the answer and the process ends. If we are not able to detect an answer using
a pattern, we send the original question to search engines and generate answer candidates
from the retrieved Web pages. If we find candidates, we rank them and clean up the best-
ranked answer before we end the process. We explain each of these steps in more detail in
the following sections.

Figure 9.6: Process of Retrieving and Extracting Answers from the Web

196 Question Answering

Analysis of the Question

Before we send the question to the search engines, we analyze the question word by word.
First, a part-of-speech tagger is used to assign a POS tag to each word. Subsequently, a
named entity recognizer is used to find named entities in the question. Knowing which type
the entities in the question are can help us to better understand the semantics of the question
and rank the answer candidates later on. For example, to answer the question “Who is more
popular than Jim Carrey?”, it is helpful to know that Jim Carrey is an entity of the concept
Actor because we then know that the sought-after person is likely also an entity from the
concept Actor. Later we will be able to apply NER on the answer candidates to find other
actors. We also remove stop words in this step.

Answer Patterns

An “answer pattern” is a reformulation of the question so that it states the answer. For ex-
ample, the question “Where was Jim Carrey born?” can be reformulated to “Jim Carrey was
born in ANSWER”, where ANSWER is the location that we want to know. One question can also
be reformulated to multiple answer patterns. The assumption behind question reformulation
is that answers that conform with the answer pattern contain precise answers. Also, the Web
is a large corpus of text, requiring us to formulate precise queries to limit the number of
matching search results.

Creating an answer pattern is a difficult task because there are many ways to formulate the
same question, and there are no general rules on how to phrase a question as an answer.
Nonetheless, for many simple questions, we can find certain patterns that repeat frequently.
We analyzed hundreds of questions from the TREC dataset, WikiAnswers, True Knowledge,
and Yahoo! Answers to find regularities in the questions and their answer patterns.

We identified five part-of-speech tag groups that are necessary to rephrase a question. These
five groups are:

1. Question words, such as “What”, “Who”, or “Where”

2. Auxiliary verbs, such as “is” or “did”

3. Verbs, such as “jump” or ”run”

4. Subjects, such as the (proper) nouns “Jim Carrey” or “castle”

5. Other, all text that does not belong in one of the other groups

Figure 9.7 provides a simple example of a question and one answer pattern for that question.
We manually created 27 of these patterns to capture questions starting with “Who”, “What”,
“When”, “Where”, “Why”, and “How”.

The answer pattern contains a placeholder for the answer (ANSWER in Figure 9.7). The answer
placeholder can be anywhere in the pattern. The answer pattern has two purposes. First, we
build a phrased search engine query to retrieve only Web pages containing the exact answer

Techniques for Question Answering 197

Figure 9.7: Example of an Answer Pattern for a Question

pattern, and second, we create a regular expression to search for the pattern on the text of
the retrieved Web pages.

One interesting alternative to manually mapping question patterns to answer patterns is
to apply supervised machine learning to this task. Creating a dataset of training data is,
however, beyond the scope of this work.

Retrieving Result Pages

As our experiment with 87 test questions demonstrated, we were able to find correct answers
within the top 10 results from a search engine for almost all questions. In this step, one or
more search engines are queried with the question and the top result pages are analyzed. For
each of the retrieved pages, the main text content is extracted. We have already shown in
Section 5.2.2, that the navigation, header, and footer of a Web page contain useless content.
We therefore need to find the elements of the page that contain most of the textual content
that is likely to contain the answer we are looking for. We use a rule-based content extraction
system for this purpose (Urbansky et al., 2011a).

Generating Answer Candidates

After extracting the main textual content of each retrieved Web page, we now create answer
candidates from these pages. Every page can contain zero or more answer candidates. One
answer candidate belongs to exactly one page. The answer candidate algorithm checks the
relevance of each sentence in the text. A sentence is considered relevant if it contains a word
from the question or a semantically related term. For example, if the question asked for
“favorite movies”, all detected movie names in the answer text are related to the question
and the sentences containing them are considered relevant. The answer candidate extraction
algorithm adds all relevant sentences to a candidate until two irrelevant sentences are detected
in sequence. In this case, one answer candidate is complete, and the algorithm continues
through the rest of the text.

After the answer candidate extraction step, we have a set of answer candidates, which now

198 Question Answering

need to be ranked in order to find the best matching answer.

Ranking Answer Candidates

When we have several answer candidates, we need to decide which one is most likely to
answer the user’s question. We use a sliding window similarity approach to rank the answers.
The assumption is that the answer will have a high similarity with the question. Therefore,
we slide the question character by character over each answer candidate and calculate the
similarity8 between the question and answer. The highest sliding window similarity for each
answer candidate is kept and compared to the highest sliding window similarities of the other
answer candidates. The answer candidate with the highest sliding window similarity becomes
our top-ranked answer.

We handle questions that ask for a number or a date differently than we handle other question
intents. Knowing that the user is looking for one of these two answer types can be used to
improve the answer extraction.

Questions with Date Intents If the user is looking for a date, we extract all mentions
of dates in the main text areas of the retrieved Web pages. After normalizing all dates to
the UTC format, we count their occurrences and create an answer using the date that occurs
most often on the answer pages.

Questions with Number Intents If the user is asking a question to find a numeric value,
we extract all numeric expressions from the main text area of the retrieved Web pages. For
each extracted number, we calculate a score based on how similar the sentence containing
the number is to the question. We then rank the extracted numbers by their number of
occurrences and their calculated scores. We use the highest-ranked number to create the
answer.

Cleaning Up the Answer

Before presenting the answer to the user, we clean up the text by applying simple styling
rules. For example, we change “u” to “you”, replace multiple question or exclamation marks
“!!!!” with single ones “!”, remove questions at the beginning of the answer, and force capi-
talization on the first word of every sentence. We found that these styling rules are necessary
since answers might be extracted from user-generated content, which is often poorly written.
Applying spelling correction could be beneficial as well.

8Experimentally, we found Smith-Waterman (Waterman and Smith, 1981) to be a good similarity metric
to use for our purpose.

Evaluation 199

9.4 Evaluation

This section evaluates 13 different question answering approaches. To the best of our knowl-
edge, this is the most comprehensive evaluation combining research and commercial ap-
proaches on a large set of 600 questions. Additionally we evaluate selected parts of the
introduced question answering components of the WebKnox system.

9.4.1 Dataset

Our dataset9 consists of 600 questions drawn equally from the following six sources:

1. QALD-2 (QA): We took the 100 training questions from the 2nd Open Challenge on
Question Answering over Linked Data (QALD-2)10.

2. Search Engine (SE): Bloor (2011) compiled a list of the most frequently asked ques-
tions on Google in 2011. We added 100 of these questions to our dataset.

3. TREC-9 (TR): We used the first 100 questions from the TREC-9 dataset11.

4. YahooAnswers (YA): We took 100 of the 1,000 most recent questions on the Yahoo!
Answers website12.

5. WikiAnswers (WA): We selected 100 random questions from WikiAnswers using their
random question function13.

6. True Knowledge (TK): We crawled a set of approximately 11,000 questions from the
True Knowledge website14 on 11th of February 2012. We then randomly sampled 100
questions from this set.

Figure 9.8 shows the question intent distribution of the 100 questions from each of the six
datasets.

We can clearly see that the question intents are different in each dataset. Questions on
WikiAnswers and YahooAnswers, for example, are often questions that ask for opinions or
explanations, rather than factual information. Most of the questions on Google are about
procedural information or explanations. On True Knowledge, people generally ask questions
about entities (Subject, Location, Thing) or let the system define a term. Presumably, people
feel that the system does not provide good answers to opinion questions and hence they do
not ask the system these questions. Interestingly, the QALD-2 dataset is the only dataset that
contains questions about lists of things. The questions in the QALD-2 dataset are supposed

9We made the dataset publicly available under http://areca.co/17/

600-random-questions-from-six-datasets, last accessed on 19th of March 2012.
10http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php?x=challenge&q=2, last

accessed on 16th of March 2012
11http://trec.nist.gov/data/topics_eng/qa_questions_201-893, last accessed on 16th of March 2012
12http://answers.yahoo.com/, last accessed on 16th of March 2012
13http://wiki.answers.com/Q/Special:Randompage, last accessed on 16th of March 2012
14http://www.trueknowledge.com/new-questions/, last accessed on 16th of March 2012

200 Question Answering

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Total

True Knowledge

WikiAnswers

YahooAnswers

TREC-9

Search Engine

QALD-2
Number

Subject

Definition

Translation

Thing

Location

Date

Procedure

Difference

Explanation

Opinion

TrueFalse

LooksLike

Choice

List X

Figure 9.8: Distribution of Question Intents in the Six Datasets

to be answered using Linked Data where lists can be generated automatically. The reality,
however, is that these types of questions are – at least at the moment – not frequently asked
by people on the Web.

9.4.2 Focused Crawler Efficiency

In this section, we evaluate the efficiency of our focused crawling approach by comparing the
number of extracted questions and the size of the URL stack to the trivial crawling approach.
Since we use XPaths to find questions and answers on Web pages that have the same layout,
we do not evaluate the precision of the extractions as it has to be 100 % under the given
assumptions.

We use seven QA-rich websites for this experiment – WikiAnswers15, Yahoo! Answers, Stack-
Overflow16, ChaCha17, Mahalo Answers18, Nobosh Answers19, and HubPages20. We add up
the number of extracted QAs over all websites. As a baseline, we use the trivial approach,
which does not perform any classification and simply takes the next available URL from the
stack. In Figure 9.9, we can see that after 5,000 URLs have been visited, WebKnox was able
to extract almost twice as many questions using focused crawling compared to the baseline
crawling approach. Since WebKnox prefers URLs with QAs, the stack size increases about
30 % slower and thus saves resources. Also, URLs with red prefixes are deleted from the stack,
which explains the slight drops of the URL stack size in Figure 9.9 (red line) at about 300
and 2,000 visited URLs.

15http://Wiki.Answers.com, last accessed on 20th of June 2012
16http://StackOverflow.com, last accessed on 20th of June 2012
17http://ChaCha.com, last accessed on 20th of June 2012
18http://Mahalo.com, last accessed on 20th of June 2012
19http://Answers.Nobosh.com, last accessed on 20th of June 2012
20http://HubPages.com/Answers/latest, last accessed on 20th of June 2012

Evaluation 201

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1 501 1001 1501 2001 2501 3001 3501 4001 4501

Number of Extracted QAs Number of URLs on the Stack

Number of Visited URLs

WebKnox URLs on stack Baseline URLs on stack

WebKnox QA extractions Baseline QA extractions

Figure 9.9: Comparison of Efficiency between a Non-focused Baseline Crawler and the Focused
Crawler

9.4.3 Question Intent Classification

Our rule-based question intent classifier classifies 53 % of the questions in the dataset correctly.
Our question answering approach that extracts answers from the Web is the only approach
that makes use of the classified question intent. This approach makes a distinction between
the date and number intents of questions while treating all other intents (see Section 9.2)
identically. It is therefore important that the detection of the date and number intents
performs well. The classification precision of the date intent is about 87 % at a recall of about
71 %. The precision for the number intent is approximately 92 % at a recall of about 65 %.

The precision is more important than the recall since false negative classifications are treated
the same as other questions and could still result in correct answers. False positive classifi-
cations, however, would most likely lead to wrong answers since only dates or numbers are
considered possible answers, and in these cases no date or number is expected.

9.4.4 Comparison of Question Answering Systems

We now compare the performances of the 13 question answering approaches on each of the
six datasets and on each of the 15 question intents.

Since not all questions have only one correct answer, we could not evaluate the systems
automatically. Instead, we decided to conduct a user study. We let three raters judge each

202 Question Answering

answer in terms of relevance and rank. The relevance value for an answer could have three
values: “x” when there was no answer, zero if the answer was not relevant to the question,
and one if the rater decided that the answer was related to the question (regardless of whether
it was correct or not). If an answer was judged relevant, the rater then had to decide about
the quality of the answer relative to the other relevant answers from other systems. For this
purpose, the rater assigned a rank value between 1 (best answer) to 13 (worst answer) to each
relevant answer. If two answers were the same quality, they could also get the same rank. If
only one answer was correct and the system did not find the correct answer, the rank of the
system is “x”.

We calculated the Fleiss Kappa (Fleiss, 1981) value between the three raters to be 0.63, which
is “substantial agreement” according to Landis and Koch (1977).

A “true positive” for the precision, recall, and F1 calculation is an answer that was judged
relevant by the raters. Relevant answers can still be incorrect for factual questions so we
capture these cases with an “Error Rate”, which is the ratio of incorrect answers to relevant
answers.

We evaluated the three question answering approaches of WebKnox against all the other
approaches. The matching approach is denoted with “WX: Match”, the computation ap-
proach is labeled “WX: Compute” and additionally, the approach that extracts answers from
the Web is divided into “WX: Extraction Ref” (using reformulation and answer patterns)
and “WX: Extraction Sim” (utilizing the similarity of answer candidates to the question).
For the “WX: Match” approach, we used the focused crawler (see Section 9.3.1) to create a
database of 293,089 questions and 1,540,174 answers. For the question matching, we used
simple natural language matching provided by the database.

Comparison by Dataset

We first compare the precision and recall of the 13 question answer approaches across all
intents in each of the six datasets. Table 9.2 shows the precision (first lines) and recall
(second lines) values of the systems for each dataset.

We can see that whenever Google gave a direct answer, it was always relevant. Google did
not answer any questions from the YahooAnswers and WikiAnswers datasets in which many
questions require a rather complicated explanation. In general, Google is very selective about
which queries to answer, yielding a low recall of only 3 %. Groovy Answers’ strength in
answering factual questions over RDF is seen in its high precision and the highest recall for
questions from the QALD-2 dataset.

AQUA was built to answer opinion-related questions especially well and shows a compara-
tively high recall for the Search Engine, YahooAnswers, and WikiAnswers datasets, which
contain many of these question intents.

OpenEphyra brings up relevant answers for more than half of the questions from the TREC-9
dataset – more than any other system – but fails for questions from other corpora such as
YahooAnswers. The highest precision in the TREC-9 dataset is again reached by Google.

Unsurprisingly, True Knowledge retrieves 81 % relevant answers with 99 % precision to ques-

Evaluation 203

tions from the True Knowledge dataset. Google answers only 2 % of the questions but all
answers are relevant. More interestingly, however, True Knowledge – a system built primar-
ily on a knowledge base – was able to produce between 93 % and 100 % relevant answers to
questions from the datasets YahooAnswers and WikiAnswers, even though they often require
more sophisticated answers. Even the Yahoo! Answers system was not able to answer ques-
tions taken from its own platform with a precision higher than 84 %. Unsurprisingly, 70 %
of the questions from the YahooAnswers dataset could be answered using Yahoo! Answers
itself. However, Yahoo! Answers did not perform well on questions from WikiAnswers, which
are generally rather similar. The Web extraction approach of WebKnox yields the highest
recall for the WikiAnswers dataset.

On average, Google answers questions with 100 % precision but the WebKnox Web extraction
approach yields the highest recall with 42 % relevant answers over all six datasets.

Against our expectations, WX: Compute achieved a lower precision than the Web extraction-
based approaches of WebKnox. We think this is due to the rather simple answer computing
approach. A similar approach to WX: Compute is Groovy Answering which yields more than
twice the precision. Moreover, the computing approach is rather selective and answers were
found for only few questions which gives us a low confidence in the precision and recall values.

With 35 % precision and 14 % recall on average, the questions from the YahooAnswers dataset
were the most difficult for the systems to answer. Scores for the WikiAnswers dataset are
only slightly better. We can therefore conclude that current approaches still have problems
answering questions that need a long, narrative answer.

D
a
ta

se
t

T
ru

e
K
n
o
w
le
d
g
e

G
ro

o
v
y

A
n
sw

e
rs

W
o
lf
ra

m
|A

lp
h
a

G
o
o
g
le

S
T
A
R
T

Y
a
h
o
o
!
A
n
sw

e
rs

A
Q
U
A

O
p
e
n
E
p
h
y
ra

P
o
w
e
r
A
q
u
a

W
X
:
M

a
tc
h

W
X
:
C
o
m
p
u
te

W
X
:
E
x
tr
a
c
t
R
e
f

W
X
:
E
x
tr
a
c
t
S
im

A
v
g

QA
0.96 0.80 0.82 1.00 0.68 0.19 0.14 0.49 0.21 0.10 0.55 0.67 0.32 0.53
0.32 0.43 0.14 0.06 0.18 0.12 0.14 0.22 0.15 0.10 0.17 0.15 0.32 0.19

SE
0.65 0.47 0.67 1.00 0.58 0.48 0.60 0.23 0.03 0.33 0.00 0.49 0.56 0.47
0.18 0.12 0.08 0.01 0.20 0.37 0.58 0.16 0.01 0.32 0.00 0.30 0.54 0.22

TR
0.94 0.64 0.85 1.00 0.83 0.43 0.34 0.56 0.16 0.20 0.25 0.59 0.51 0.56
0.35 0.28 0.21 0.09 0.38 0.35 0.32 0.52 0.09 0.20 0.03 0.35 0.51 0.28

YA
1.00 0.13 0.00 - 0.67 0.84 0.51 0.02 0.04 0.22 0.00 0.37 0.44 0.35
0.01 0.01 0.00 0.00 0.02 0.70 0.44 0.00 0.01 0.22 0.00 0.03 0.42 0.14

WA
0.93 0.49 0.83 - 0.79 0.31 0.37 0.39 0.03 0.20 0.04 0.27 0.41 0.42
0.05 0.06 0.07 0.00 0.06 0.13 0.33 0.18 0.01 0.19 0.00 0.08 0.39 0.12

TK
0.99 0.78 0.93 1.00 0.85 0.38 0.40 0.60 0.11 0.20 0.50 0.59 0.42 0.60
0.81 0.27 0.26 0.02 0.26 0.13 0.23 0.32 0.06 0.19 0.01 0.21 0.34 0.24

Avg
0.91 0.55 0.68 1.00 0.73 0.44 0.39 0.38 0.10 0.21 0.22 0.50 0.44
0.28 0.20 0.13 0.03 0.19 0.30 0.34 0.23 0.06 0.21 0.04 0.19 0.42

Table 9.2: Precision and Recall of the Question Answering Approaches by Dataset

204 Question Answering

Comparison by Intent

We now compare the precision and recall of the 13 question answering approaches across all
datasets in each of the 15 question intents. Table 9.3 shows the precision (first lines) and
recall (second lines) values of the systems for each question intent.

To our surprise, the Web extraction-based system OpenEphyra scored the highest recall on
questions with numeric intents with 55 %. We expected a computation-based approach to
score highest, but True Knowledge has only the third best recall for this intent. We make a
similar observation for questions that expect a date as an answer.

The table supports the thesis that Google only answers factual questions. Again, Google’s
answer precision is 100 % for the intents it answers. Definitions are answered by Google too,
but not in the same way as other questions, hence it does not show up in the table. WebKnox’s
computation approach was able to answer questions with a definition intent most precisely.

Only TrueKnowledge, Wolfram |Alpha, and Power Aqua seem to have appropriate support
for questions that ask for translations, reaching a maximum precision of 78 %.

Procedure questions are answered equally well with 53 % precision by Yahoo! Answers and
AQUA, while other systems with similar approaches, such as OpenEphyra, seem to fail com-
pletely. As expected, systems following the computing approach to question answering (for
example, Groovy Answers, Power Aqua, and WX: Compute) fail in answering procedural
questions as well.

Questions asking about the difference between things can be answered with a precision of up
to 100 % by True Knowledge and START. True Knowledge can also answer explanation intent
questions with a precision of 97 %. This result is interesting because we expected explanation
intent questions to be as difficult as procedural questions, but on average they are answered
20 % more precisely.

Also to our surprise, True Knowledge was able to come up with 100 % relevant answers for
opinion-related questions. We expected the matching and extraction-based systems to achieve
a higher precision for this intent. As expected, however, opinion-related questions cannot be
answered with a high recall by computation-based approaches. For this intent, only systems
designed to match questions against a knowledge base or extract opinions related to the
question from the Web succeed. Yahoo! Answers, AQUA, and WX: Extract show the highest
recalls for opinion intents.

TrueFalse and Choice questions were answered with 100 % relevant answers by True Knowl-
edge. LooksLike and List X questions could be answered with 100 % precision by START,
WX: Compute, and Google.

Questions that ask for lists of things were only present in the QALD-2 dataset, which can be
especially well answered by Groovy Answers. Groovy Answers only reaches a recall of 36 %,
but that is almost twice the recall from the second best system – True Knowledge – for this
intent.

On average, Google is the system with the most precise answers, mostly because it leaves
out many complex questions. Although Google and True Knowledge are the most precise
systems, other systems can answer some question intents more precisely. If one could classify

Evaluation 205

the question intent accurately, a combination of these systems could increase the average
answering precision further.

The best recall scores are reached primarily by systems that use the Web extraction approach,
such as AQUA, OpenEphyra, and WX: Extract Sim. WebKnox’s Web extraction approach
scores the highest recall with 41 % on average over all intents, while Google – the system with
the most precise answers – exhibits the lowest recall of only 2 %.

Questions regarding definitions can be answered with an average precision of 61 % and an
average recall of 32 %, making them the easiest questions across all systems. Questions with
a procedural and a TrueFalse intent are the most difficult, and can only be answered with a
precision of 25 % and a recall of 10 % respectively on average over all 13 systems.

Overall Comparison

We have compared the precision and recall for all 13 approaches across the six datasets and
all 15 question intents. We have to combine this information to see which system is best
overall. Table 9.4 shows the overall performance of the systems. “Rank” is the average rank
that the raters have assigned to a relevant (and correct) answer. The lower the average rank,
the better the average quality of relevant answers. “OAR” stands for Only Answer Resource
and shows what percentage of questions could only be answered by that one system. The
“Error Rate” is the percentage of answers that were rated relevant to the factual questions
but were definitely wrong.

Yahoo! Answers has the best rank on average, which is not surprising since human users
write better quality answers than machines can compute or extract from websites. Yahoo!
Answers is also the system that has the highest OAR, that is, for 2.08 % of the questions,
only this system was able to produce a relevant answer.

Google has the highest answering precision, but also the lowest recall of all systems. Addition-
ally, Google’s error rate of only 1.85 % emphasizes its focus on answering questions correctly
and precisely, at the expense of answering far fewer questions. All the relevant answers Google
produced could also be produced by one of the other systems, hence the OAR of 0 %.

The Web extraction approach of WebKnox (WX: Extract Sim) yields the highest recall of
relevant answers with 42 % and shares the highest F1 value of 43 % with True Knowledge.
The error rate of True Knowlege is only 4.10 % – much lower than WebKnox’s 19.68 % error
rate. True Knowledge’s rank is also 0.36 lower than WebKnox’s rank. Thus, True Knowledge
is the overall best question answering system in this evaluation.

Figure 9.10 visually compares the precision, recall, and F1 values for each system on average
over all datasets used.

Thesis 5 (see Section 1.4) stated that ontology-based question answering systems that compute
answers are more precise at the cost of a lower recall. Table 9.5 shows the average precision,
recall, and F1 values of the 13 evaluated systems grouped by their approach (see Table 9.1 for
information about which systems belong in which groups). The data confirms our hypothesis
– computing approaches are the most precise with 58 % on average, but also yield the lowest
recall of only 12 %. The best approach is the extraction from the Web with an average F1

206 Question Answering
In

te
n
t

T
r
u
e
K
n
o
w
le
d
g
e

G
r
o
o
v
y

A
n
sw

e
r
s

W
o
lf
r
a
m
|A

lp
h
a

G
o
o
g
le

S
T
A
R
T

Y
a
h
o
o
!
A
n
sw

e
r
s

A
Q
U
A

O
p
e
n
E
p
h
y
r
a

P
o
w
e
r
A
q
u
a

W
X
:
M

a
tc
h

W
X
:
C
o
m

p
u
te

W
X
:
E
x
tr
a
c
t
R
e
f

W
X
:
E
x
tr
a
c
t
S
im

A
v
g

Number
0.97 0.42 0.94 1.00 0.89 0.36 0.27 0.65 0.01 0.19 0.08 0.39 0.52 0.51
0.38 0.16 0.31 0.03 0.23 0.16 0.23 0.55 0.01 0.19 0.01 0.16 0.47 0.22

Subject
0.94 0.89 0.76 1.00 0.73 0.47 0.33 0.35 0.27 0.22 0.52 0.42 0.53 0.57
0.33 0.33 0.11 0.08 0.16 0.38 0.30 0.25 0.18 0.22 0.07 0.19 0.52 0.24

Def.
0.93 0.97 0.76 - 0.78 0.52 0.56 0.31 0.17 0.26 1.00 0.59 0.54 0.61
0.75 0.68 0.15 0.00 0.65 0.31 0.30 0.20 0.05 0.24 0.03 0.34 0.42 0.32

Transl
0.78 - 0.67 - - 0.33 - - 0.67 0.07 - - 0.27 0.46
0.47 0.00 0.13 0.00 0.00 0.07 0.00 0.00 0.40 0.07 0.00 0.00 0.27 0.11

Thing
0.94 0.74 0.97 1.00 0.82 0.48 0.40 0.43 0.08 0.27 0.33 0.63 0.42 0.58
0.34 0.20 0.16 0.08 0.19 0.33 0.36 0.25 0.04 0.27 0.05 0.24 0.41 0.22

Loc.
0.97 0.64 0.83 1.00 0.87 0.37 0.26 0.65 0.29 0.20 0.33 0.84 0.35 0.58
0.47 0.33 0.12 0.07 0.36 0.16 0.22 0.47 0.17 0.19 0.06 0.41 0.34 0.26

Date
1.00 0.53 0.94 1.00 0.83 0.29 0.27 0.90 0.08 0.05 0.08 0.42 0.60 0.54
0.61 0.23 0.37 0.07 0.18 0.17 0.20 0.64 0.04 0.05 0.01 0.29 0.54 0.26

Proc.
0.13 0.00 - - 0.27 0.53 0.53 0.01 0.00 0.33 0.00 0.46 0.45 0.25
0.02 0.00 0.00 0.00 0.06 0.41 0.52 0.01 0.00 0.33 0.00 0.21 0.43 0.15

Diff.
1.00 - 0.33 - 1.00 0.50 0.47 0.00 0.00 0.11 0.00 - 0.33 0.37
0.50 0.00 0.11 0.00 0.17 0.17 0.39 0.00 0.00 0.11 0.00 0.00 0.28 0.13

Expl.
0.97 0.64 0.42 - 0.69 0.49 0.59 0.27 0.03 0.24 0.00 0.55 0.52 0.45
0.14 0.14 0.02 0.00 0.17 0.31 0.58 0.12 0.01 0.24 0.00 0.24 0.50 0.19

Opinion
1.00 0.17 - - 0.00 0.80 0.54 0.10 0.03 0.22 0.00 0.33 0.49 0.34
0.02 0.02 0.00 0.00 0.00 0.63 0.48 0.02 0.01 0.22 0.00 0.04 0.49 0.15

TrueF.
1.00 - 0.33 - 0.78 0.54 0.25 0.00 0.08 0.11 0.33 - 0.28 0.37
0.16 0.00 0.03 0.00 0.08 0.33 0.23 0.00 0.03 0.11 0.03 0.00 0.28 0.10

LooksL.
- - 0.00 - 1.00 0.11 0.56 0.00 0.00 0.44 1.00 0.33 0.67 0.41

0.00 0.00 0.00 0.00 0.33 0.11 0.56 0.00 0.00 0.44 0.11 0.33 0.67 0.20

Choice
1.00 - - - - 0.50 0.67 - 0.00 0.08 - - 0.33 0.43
0.25 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.08 0.00 0.00 0.33 0.13

List X
0.97 0.79 0.88 1.00 0.75 0.09 0.11 0.58 0.21 0.06 0.69 0.83 0.16 0.55
0.20 0.36 0.15 0.02 0.13 0.05 0.10 0.13 0.16 0.06 0.17 0.03 0.16 0.13

Avg
0.90 0.58 0.65 1.00 0.72 0.43 0.42 0.33 0.13 0.19 0.34 0.53 0.43
0.31 0.16 0.11 0.02 0.18 0.27 0.33 0.18 0.07 0.19 0.04 0.17 0.41

Table 9.3: Precision and Recall of the Question Answering Approaches by Intent

value of 33 %, but since this score is still unsatisfactory, a combination of different approaches
should be favored. True Knowledge already combines approaches by presenting answers from
the kgb Answers database when it is unable to compute an answer.

Summary 207

System Rank OAR Error Rate Precision Recall F1

True Knowledge 1.21 1.28 % 4.10 % 0.91 0.28 0.43

Groovy Answers 1.44 0.28 % 5.98 % 0.55 0.20 0.29

Wolfram |Alpha 1.35 0.19 % 5.70 % 0.68 0.13 0.21

Google 1.32 0.00 % 1.85 % 1.00 0.03 0.06

START 1.38 0.06 % 3.88 % 0.73 0.19 0.30

Yahoo! Answers 1.27 2.08 % 9.11 % 0.44 0.30 0.36

AQUA 1.40 1.69 % 10.02 % 0.39 0.34 0.36

OpenEphyra 1.82 0.25 % 33.57 % 0.38 0.23 0.29

Power Aqua 1.82 0.39 % 69.90 % 0.10 0.06 0.07

WX: Match 1.64 0.47 % 20.00 % 0.21 0.21 0.21

WX: Compute 1.60 0.06 % 10.94 % 0.22 0.04 0.06

WX: Extract Ref 1.56 0.39 % 8.96 % 0.50 0.19 0.27

WX: Extract Sim 1.57 1.94 % 19.68 % 0.44 0.42 0.43

Table 9.4: Overall Comparison of the Question Answering Systems

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

WX: Extract Sim

WX: Extract Ref

WX: Compute

WX: Match

Power Aqua

OpenEphyra

AQUA

Yahoo! Answers

START

Google

Wolfram|Alpha

Groovy Answers

True Knowledge

Average Precision Average Recall Average F1

Figure 9.10: Overall Comparison of the Question Answering Systems

9.5 Summary

This chapter reviewed and compared state-of-the-art question answering systems. First, we
gave an overview of related work on systems and approaches for answering natural language

208 Question Answering

Approach Precision Recall F1

Matching 0.32 0.25 0.28

Computing 0.58 0.12 0.19

Extracting 0.49 0.27 0.33

Table 9.5: Comparison of Question Answering Approaches

questions and query classification. We classified question answering systems into three groups:
matching, computing, and extracting. We then created three WebKnox question answer-
ing techniques – one for each of the approaches. For a fair comparison of the 13 question
answering systems, we created a set of 600 questions from six different datasets. After read-
ing hundreds of real user questions, we also identified 17 question intents and classified all
questions in the dataset manually. A group of raters manually evaluated the answers of the
systems allowing us to compare all systems across the six datasets and the question intents.
Our hypothesis stating that systems that compute an answer are most precise with a low
recall was confirmed by the evaluation.

There are interesting directions for future work that are out of the scope of this thesis. We
have seen that different approaches excel at different question intents; a combination of these
systems could create a meta question answering system that is more precise than any single
system. We have presented a rule-based answer pattern generation algorithm to support
extraction of answers from the Web. It would be interesting to find out whether answer
patterns can also be automatically learned using supervised machine learning. Furthermore,
generating texts for computed answers from a knowledge base is a topic that has much
potential. Furthermore, Hensel (2011) has presented a pattern extraction approach using the
WebKnox knowledge base showing how simple answer sentences can be created. The quality
of the generated sentences was already comparable to Wikipedia texts.

Chapter 10

Applications

In this chapter, we show how WebKnox components and the knowledge base that we create
with WebKnox can be used in practical applications. Before we present practical applications,
we briefly give implementation details about which languages were used and which other
libraries and toolkits were employed to create WebKnox.

The core WebKnox project is written in Java 7 and built with the project management tool
Maven1. The entire project consists of about 25,000 lines of code in over 330 classes. The
most important libraries WebKnox depends on are:

� Jena (Carroll et al., 2004) and Sesame (Broekstra and Kampman, 2002) for storing and
querying ontological information

� Apache Commons2 for common programming tasks that are not natively supported by
the Java programming language

� HTML Unit3 and NekoHTML4 for parsing HTML pages

� Palladian (Urbansky et al., 2011a) for a collection of named entity recognizers, part-of-
speech taggers, Web page retrievers, and classification approaches

10.1 Ontology Engineering with Ontofly

Ontofly is a Web-based ontology engineering tool devloped by Willner (2011). In Section 7.1,
we showed how WebKnox uses this tool to create an ontology to guide the fact extraction pro-
cess. The dependency between the two projects is bidirectional, since Ontofly uses WebKnox
to detect fact candidates on Web pages. Figure 10.1 depicts the architecture of Ontofly and
shows how it is connected to WebKnox. The user browses online on the Ontofly Web applica-
tion. Requests are sent to the Jersey API which communicates with Ontofly. Ontofly serves
as a component between the user and WebKnox and its ontology.

1http://maven.apache.org/, last accessed on 19th of March 2012
2http://commons.apache.org/, last accessed on 19th of March 2012
3http://htmlunit.sourceforge.net/, last accessed on 19th of March 2012
4http://nekohtml.sourceforge.net/, last accessed on 19th of March 2012

210 Applications

Figure 10.1: Architecture of Ontofly and Connection to WebKnox

Figure 10.2 shows a screenshot of Ontofly’s Web view. At the top, the user types a term into
the search bar and visits a Web page. On this Web page, WebKnox detects fact candidates.
A fact consists of an attribute (marked orange) and a value (marked green). All attributes
and values that have not yet been stored in the ontology are framed with a red border. The
user can now quickly see attributes that might match the concept he is working on.

Figure 10.2: Screenshot of the Web-based Ontology Engineering Tool Ontofly

Question Answering Portal 211

10.2 Question Answering Portal

We devoloped an online search service to allow users to access information from the WebKnox
knowledge base and to ask questions. The website webknox.com is the frontend to all the
information that we extracted from the Web with the techniques that we described in the
previous chapters. In our motivation, we argued that question answering can improve user
satisfaction compared to standard search, where the user enters a query and has to click
through result documents to find what he needs. The goal of the website is to answer questions
as quickly, directly, and completely as possible.

Figure 10.3 depicts the deployment architecture of the WebKnox system. We have two servers,
each connected to a different database. The Web server hosts the Web application and the
application server runs the WebKnox extraction services. The two server architecture is due
to the resource requirements of the extraction services. New extractions are written to the
core database, which is copied to the Web server once a day.

Figure 10.3: Server Deployment of the WebKnox System

The Web application is written in the scripting language PHP Hypertext Processor (PHP)
and employs the Model View Controller (MVC) pattern. To fulfill our goal of making the
information available quickly, we utilize server side caching techniques and employ several
best practices for making the site load fast. These best practices include combining multiple
JavaScript and style sheet files, reducing the number of HTML tags in the page, and using
sprite images.

Figure 10.4 and Figure 10.5 show the Web interface of WebKnox. In Figure 10.4, the user
query was just the name of an entity (Jim Carrey). In Figure 10.5, the user asked a non-
factual question. We can see that in both cases the user gets direct answers to his or her
questions.

At the time of this writing, the WebKnox knowledge base5 contains over 17 concepts, 1.3

5Not all the entries in the knowledge base are correct; the application filters entries with a low trust score.

212 Applications

Figure 10.4: Entity-related Information on the WebKnox Web Interface

Figure 10.5: Question Answering on the WebKnox Web Interface

million entities, 60 thousand facts, 325 thousand questions, and 1.8 million answers. This is
still far from our goal to make the knowledge base complete.

10.3 Application Programming Interface

We want to allow not only human beings, but also machines to access the information in the
knowledge base. To accomplish this, we developed an API that allows machines to read and
process information from the knowledge base in a structured manner. We decided to follow
the REST (Fielding, 2000) architecture for our API and use JSON as a serialization format.
In REST, every URI is a resource. Our resources are entities and questions. Information
about entities and answers to questions can be obtained by sending HTTP GET requests to
the following URIs6:

6Note that we use an application id and application key to authorize requests. The API can be tested
online at http://webknox.com/api.

Application Programming Interface 213

� http://webknox.com/api/entities/filter?entityName=ENTITY retrieves all entities
that match the given name ENTITY. Since entity names can be ambiguous, the applica-
tion has to decide about which entity it wants to obtain more information. Each entity
in the result has an identifier and the name of the concept to which it belongs. The
identifier ENTITYID can then be used in the next call to retrieve information about the
entity.

� http://webknox.com/api/entities/ENTITYID retrieves information about the entity
with the identifier ENTITYID.

� http://webknox.com/api/questions/answers?question=QUESTION retrieves answers
for the question QUESTION.

Figure 10.6 shows an example JSON response to a request to the entities resource with the
entity Canon EOS 50D.

[

{

"mentionUrls": [

"consumersearch.com/digital-cameras/index",

"en.wikipedia.org/wiki/List_of_cameras_supporting_a_raw_format",

"alamy.com/contributor/help/recommended-digital-cameras.asp",

"en.wikipedia.org/wiki/List_of_cameras_supporting_a_raw_format"

],

"facts": [

{

"effective pixels": "10100000"

},

{

"image processor": "DIGIC 4"

},

{

"weight": "730"

},

{

"monitor": "3 inch TFT LCD"

}

],

"name": "Canon EOS 50D",

"confidence": 0.5

}

]

Figure 10.6: Example JSON Response to a Request to the Entities Resource

Figure 10.7 shows an example JSON response to a request to the questions resource with the
question “Where was Jim Carrey born?”.

214 Applications

{

"answer": "Jim Carrey was born in Canada. He was the younger [sic] of four

siblings and once admitted that had he not become a comedian,

he would have worked probably been working [sic] the steel

mills of Ontario. Jim Carrey was born in Newmarket, Ontario,

Canada on January 17th, 1962 [...]"

}

Figure 10.7: Example JSON Response to a Request to the Questions Resource

10.4 Search Engine Enhancer

Since most Web users use the same search engine on a daily basis, it is unlikely that they
will visit a certain platform to search for answers. For example, many users even search
on Google when they know that they want information from Wikipedia. Because of this
behavior, we cannot expect users to visit the portal described in Section 10.2. We therefore
built a browser extension for Chrome to enhance the search with results from WebKnox.
Figure 10.8 shows the enhancer in action on the Google search result page. The box with the
green border contains an answer to the Google query that comes from WebKnox. For many
simple questions, users no longer need to follow links to get their answers.

Figure 10.8: Example Question and WebKnox Enhancement for Google on Chrome

The enhancer extension for Chrome supports Google, Bing, Yahoo, DuckDuckGo, and Ask,
which means that 93.84 % of searches on the Web7 could be enhanced using the extension.

7According to http://www.karmasnack.com/about/search-engine-market-share/ (last accessed on 19th
of March 2012) the search engine market share is as follows: Google: 86.77%, Baidu: 4.46%, Yahoo: 4.40%,
Bing: 2.11%, and Ask: 0.56%.

Summary 215

10.5 Summary

This chapter presented examples of practical applications that we developed using the knowl-
edge base. We created proof-of-concept applications that show that machines as well as human
beings can benefit from the extracted information using the API and the Web application
respectively.

216 Applications

Chapter 11

Epilogue

To summarize this thesis, we will review the conclusions of each chapter and describe the
answers to our research questions. Furthermore, we will outline the main contribution of this
work and highlight interesting directions for future research.

11.1 Chapter Review

Chapter 1 motivated this thesis by presenting three use cases in which a knowledge base is
beneficial. We paid particular attention to the question answering use case throughout the
thesis and devoted an entire chapter to this subject. After stating the requirements that the
desired knowledge base should fulfill, we set the focus and limitations for the scope of this
thesis. We finished the first chapter by stating the research questions and hypotheses that
guide the rest of the thesis.

Chapter 2 defined the most important terms used in this thesis. We explained which sources
of information there are on the Web and reviewed the evaluation measures that we used in
subsequent chapters. We finished the background chapter by reviewing related systems that
have similar goals.

Chapter 3 introduced the overall architecture of the WebKnox system. We described how
components are connected to each other and explained which steps are processed in the main
extraction cycle of WebKnox.

Chapter 4 was concerned with finding an update strategy to keep the knowledge base up-
to-date without wasting resources. We decided to concentrate on processing news feeds and
developed the moving average polling strategy. We also created a large dataset that we used
to evaluate our algorithms. We concluded the chapter by stating that the choice of a retrieval
algorithm depends on the requirements of the application that uses it. For the purpose of our
work, the moving average strategy performed best in terms of low resource consumption and
few missed items.

Chapter 5 was concerned with extracting entities from the Web – the main focus of this
thesis. We reviewed related work on entity extraction algorithms before introducing five entity

218 Epilogue

extraction techniques that we use in WebKnox. We created techniques that extract entities
from HTML structures such as lists and tables, from plain text, and from RDF triples on the
Semantic Web. In the last section of this chapter, we compared these extraction techniques
against each other, and additionally compared named entity recognition and extraction from
the Semantic Web with state-of-the-art algorithms in both fields. We concluded the chapter
by saying that despite large differences in precision, all developed extraction techniques are
justified.

Chapter 6 was about assessing the extracted entities to increase the precision of the knowledge
base. We first identified six different approaches in the related work that could be used for
assessing entities before introducing six techniques that we then used for the evaluation.

Chapter 7 described approaches for extracting factual information from the Web. First, we
explained how we engineered our ontology that guides the fact extraction process. We then
briefly reviewed related work on the subject before we presented five fact extraction algorithms
that exploit different source formats on the Web.

Chapter 8 was concerned with the extraction of entity-related information, such as interac-
tive multimedia objects, events, and statements about entities. We reviewed related work,
described our own approaches, and evaluated our techniques. Whenever possible, we com-
pared our solutions to state-of-the-art systems.

Chapter 9 was concerned with question answering using the Web and a knowledge base.
We reviewed the best-known commercial and educational question answering systems before
experimentally developing our own techniques. We then evaluated 13 different approaches to
find out which question intent can be best answered using a knowledge base and the Web.

Chapter 10 briefly showed prototypical applications that were created using the techniques
and the knowledge base described in previous chapters. We were able to show that the
knowledge base is beneficial to both users and machines.

11.2 Fulfilling the Requirements

In Section 1.2, we introduced requirements with which our knowledge base should comply.
We will now check which requirements have been met.

Domain Independence

We developed our algorithms to be domain-independent. For the entity and fact extraction
evaluation, we used an ontology of 17 concepts ranging from types of people to products to
locations. The developed algorithms do not use any domain knowledge unless it was manually
assigned for a particular experiment (mentioned in the experimental setup).

Answers to Research Questions 219

Accuracy

We required an extraction accuracy of 80–100 % for both entity and fact extractions. Before
entity assessment, the entity extractions are only about 45 % correct on average. The ex-
tracted facts are only correct about 60 % of the time. We can increase the precision, however,
by assessing entities and using trust thresholds. Using a combined assessor (see Section 6.3.4),
we are able to raise the average precision of entities in the knowledge base to over 80 %. We
can also increase the fact extraction precision up to about 75 % using a trust threshold.
With 75 % precision, we still failed to meet our requirement. Domain-dependent extraction
techniques could, however, help improve the extraction precision.

Up-to-Date

We developed an efficient feed polling strategy to retrieve many fresh Web sources in a
timely manner. This retrieval strategy is one of the foundations for continuously expanding
the knowledge base. We consider this requirement partially met since we did not evaluate
whether Web feeds are sufficient to find all new entities. This evaluation was out of the scope
of this thesis and is considered a direction for future research.

Semantic

We use an ontology to guide the extraction processes which allows us to export extracted
information in RDF triples. This information can be added to the Semantic Web and linked
to the Linked Data cloud.

11.3 Answers to Research Questions

We stated our research questions in Section 1.4. Throughout this thesis, we found answers
to each of these questions by creating hypotheses, developing prototypes, setting up experi-
ments, and evaluating these hypotheses. This section summarizes the answers to our research
questions.

Which techniques can be used to extract entity mentions on the Web and
how well do they perform?

Our hypothesis that we can find entities in multiple structures from different sources on
the Web is correct. In Chapter 5, we discussed five entity extraction techniques, which we
developed to find and extract entities from HTML structures such as lists, from plain text,
and from RDF tuples of the Semantic Web. We evaluated how well these techniques perform.
While the precision of the techniques ranges from about 15 % (the extraction from plain text
using an NER approach) to slightly over 80 % (extracting entities from the Semantic Web),
we concluded that all techniques are valuable since there are entities that can often be found
with only one of the extraction techniques.

220 Epilogue

Another conclusion that we draw from the obtained results is that extracted entities need to
be assessed in an additional step to filter incorrect extraction results.

Furthermore, our hypothesis stated that using multiple techniques on different sources would
yield entity extractions that are not available in DBpedia. One of our experiments showed
that almost half of our correct extractions are indeed not available in DBpedia.

How can we efficiently poll Web sources to extract new entities?

We compared several polling strategies and found that a modified moving average polling
strategy was the best trade-off between resource limitations and missed items. This line of
research was further extended by Reichert (2012), who modified the algorithms presented in
this thesis and concluded that they surpass the state-of-the-art polling strategies.

How can we ensure high precision of the extracted information?

We have seen that entity extraction techniques are imprecise (as low as 15 % precision). To
filter incorrect extractions, we hypothesized that using only a small set of training data, a
set of features, and a supervised machine learning algorithm, we would be able to classify
extracted entities as correct or incorrect better than the state-of-the-art algorithms in this
field. In Chapter 6, we developed such a setup and showed that it does in fact perform
better than all the reviewed techniques, which we implemented and tested on the same data.
We developed a combined assessor (using random graph walks and näıve Bayes) to lift the
precision of extracted entities to about 80 %.

What entity-centric information is useful for question answering and how
can we extract it?

We analyzed hundreds of user questions and found that interactive multimedia objects, factual
information, events, statements, and answers can all be related to entities and therefore be
of interest to the user. We have shown where each of these information groups can be found
and how they can be extracted. Once the information is extracted, it can be connected to a
question answering component, which wraps this information into answers.

Our hypothesis stated that we could use a keyword-based approach to find interactive multi-
media objects. We applied this approach and were able to show that the techniques yielded
2.55 times more relevant multimedia objects in the top 10 results than our baseline (Google).
Concerning the event extraction, we hypothesized that we could use machine learning to ex-
tract 5W1H events from news articles. After evaluating this approach we found that about
68 % of the extracted events were at least partially correct. These results are not yet satisfac-
tory but we can say that machine learning is a possible approach for this problem. Regarding
the statement extraction, we hypothesized that we would be able to distinguish between pos-
itive and negative sentiment of an entity-related statement in 90 % of the cases using text
classification. After our evaluation on over 20,000 statements, we reached an accuracy of
89.7 %, which is close to what we expected.

Contributions 221

How do ontology-based question answering systems compare to Web ex-
traction-based question answering systems?

Our hypothesis stated that an ontology-based question answering system would answer fewer
questions, but would also be more precise than a system that answers questions using the Web.
In Chapter 9, we compared 13 different question answering systems to find out whether this
thesis was true. The evaluation confirmed our hypothesis; ontology-based systems performed
most precisely with 58 % on average, compared to the 49 % precision of Web extraction-based
systems. Also as predicted, the recall of these systems (12 %) was lower compared to the
recall of extraction-based systems (27 %).

11.4 Contributions

Besides the answers to the posed research questions, we want to reiterate the contributions
made in this thesis.

1. Entity Extraction: To the best of our knowledge, this is the first thesis on extracting
entities from the Web that uses different approaches and compares them against each
other. We contribute three new extraction techniques and modify two existing ones
(see Chapter 5 and Urbansky et al. (2009a)). Furthermore, we show how one of these
extraction algorithms can be used for the task of entity list completion, outperform-
ing the two state-of-the-art approaches Boo!Wa and Google Sets (see Section 5.3.2 and
Urbansky et al. (2011d)). Additionally, our named entity recognition technique for ex-
tracting entities from plain text uses a novel semi-supervised training approach to learn
a model from the Web. Our named entity recognizer can be trained with sparse training
data which is impossible for the reviewed state-of-the-art named entity recognizers (see
Section 5.2.4 and Urbansky et al. (2011e)). We were also able to show that neither
DBpedia nor Freebase contains all the entities we are able to find (see Section 5.3.1).

2. Entity Assessment: For entity extraction, there has been no research devoted to
comparing different assessment approaches. We compared three successful assessment
algorithms reported in the literature and built our own assessment technique upon
existing work. Our approach outperforms the best approach from the related work by
over 10 % in F1 value (see Chapter 6).

3. IMO Extraction: Before this thesis, there was no documented approach on how to
extract interactive multimedia objects from the Web. We created an algorithm for
extracting this kind of information and outperformed the closest competitor, Google
(see Section 8.1 and Werner (2010)).

4. Fact Extraction: Despite the plethora of work in information extraction, there are
no research results available that compare different fact extraction techniques from the
Web. We contribute five techniques for fact extraction and compare them regarding
precision and recall (see Chapter 7 and Urbansky et al. (2008)).

222 Epilogue

5. Feed Polling Strategy: We contributed a polling strategy for Web feeds, which is
superior to other state-of-the-art strategies under certain criteria (see Chapter 4 and
Urbansky et al. (2011c), Reichert et al. (2011) and Reichert (2012)).

6. Question Answering: To the best of our knowledge, we created the most comprehen-
sive evaluation of 13 question answering approaches on a set of real world questions. We
also contributed three approaches to question answering in this thesis (see Chapter 9
and Urbansky et al. (2009b)).

7. Ontology Creation: WebKnox both uses and enables Ontofly, a Web-based ontology
creation tool (see Urbansky et al. (2010), Willner (2010), and Willner (2011)).

8. Datasets: For all evaluations in this thesis, we tried to fairly compare different al-
gorithms on the same datasets. Whenever possible and reasonable, we used existing
datasets. Often, however, researchers do not make their test data available, making a
fair comparison difficult. For several evaluations we therefore created our own datasets
to allow for a fair evaluation. We made these datasets publicly available on the dataset
platform Areca (Urbansky et al., 2011b). These datasets are summarized in the follow-
ing list.

(a) Web Feeds Items1

(b) Sentiment Statements2

(c) Web Named Entity Recognition3

(d) Question Answering4

9. Palladian: Many of the algorithms introduced in this thesis are now freely available for
research purposes in the Java library Palladian (Urbansky et al., 2011a). This allows
other researchers to compare their algorithms in a fair manner to our approaches and
advance research in this field.

11.5 Future Work

In the process of answering the posed research questions, many new questions have arisen
that could not all be answered within the scope of this thesis. We now outline directions for
future research.

11.5.1 Knowledge Base Expansion

The number of entities is growing on a daily basis, so we have to find ways of extracting new
entities quickly. In this thesis, we have shown an efficient news feed polling strategy which
makes it possible to read and scan thousands of news articles for entity mentions. We have to

1http://areca.co/1/Feed-Item-Dataset-TUDCS1, last accessed on 20th of March 2012
2http://areca.co/16/Short-Opinionated-Sentences-about-Diverse-Topics, last accessed on 20th of

March 2012
3http://areca.co/7/Web-Named-Entity-Recognition-TUDCS4, last accessed on 20th of March 2012
4http://areca.co/17/600-random-questions-from-six-datasets, last accessed on 20th of March 2012

Future Work 223

evaluate, however, how many new entities are indeed mentioned in news feeds and whether
other sources are necessary to quickly find new entities. We have not studied entity extraction
from the Deep Web in this thesis, although the size of the Deep Web makes it a potentially
good source for extracting entities. The approaches for extracting entities from the Deep Web
will likely differ from the domain-independent techniques presented in this work.

11.5.2 Domain-dependent Extraction Algorithms

We have researched domain-independent extraction algorithms in this thesis. The domain
independence comes at the cost of a reduced extraction precision. Knowing about the do-
main or, more specifically, about the concept for which entities are extracted, could improve
extraction precision considerably. For example, knowing the textual contexts in which entities
of a particular concept appear enables phrase extraction algorithms with a higher recall than
generic phrases, such as “movies like X”. Also, we could improve fact extraction accuracy by
allowing extraction only from trustworthy sources or even limiting extraction to pages that
follow a certain pattern. We have used this approach for extraction from QA-rich websites
and learned that this method can yield high extraction precision at the cost of manual labor
beforehand.

11.5.3 Linked Data Cloud Connections

Our knowledge base can be represented in RDF, which makes it a contribution to the Semantic
Web movement. A successful integration of our knowledge base into the Linked Data cloud
requires much more effort. Most importantly, we need to match schemata and connect entities
to identical resources in other datasets. A first step would be to use heuristics to automatically
link popular entities to well-known Linked Data repositories, such as DBpedia, MusicBrainz,
and Freebase.

The Web is a vibrant network of people and information. Structuring, filtering, and mining
information from the immense stream of new data that becomes available on the Web every
second is one of the most interesting and challenging tasks in the next few years.

224 Epilogue

Appendix A

Manually-assigned RDF Classes for
Semantic Web Extraction
Evaluation

Concept Semantic Web URI

Actor

http://dbpedia.org/ontology/Actor

http://www.mpii.de/yago/resource/wordnet_actor_10976527

http://data.linkedmdb.org/resource/movie/actor

http://rdf.freebase.com/ns/film.actor

http://rdf.freebase.com/ns/tv.tv_actor

http://sw.opencyc.org/concept/Mx4rvVjaHZwpEbGdrcN5Y29ycA

Airplane

http://rdf.freebase.com/ns/aviation.aircraft_model

http://sw.opencyc.org/concept/Mx4rvViuUJwpEbGdrcN5Y29ycA

http://dbpedia.org/resource/Category:Low_wing_aircraft

http://dbpedia.org/resource/Category:Multiple_engine_aircraft

http://dbpedia.org/resource/Category:Jet_aircraft

Airport

http://airports.dataincubator.org/schema/LargeAirport

http://airports.dataincubator.org/schema/SmallAirport

http://dbpedia.org/ontology/Airport

http://sw.opencyc.org/concept/Mx4rvVj-r5wpEbGdrcN5Y29ycA

Athlete
http://dbpedia.org/ontology/Athlete

http://sw.opencyc.org/concept/Mx4rvVi--5wpEbGdrcN5Y29ycA

http://rdf.freebase.com/ns/sports.pro_athlete

Band

http://musicbrainz.org/mm/mm-2.1#Artist

http://purl.org/ontology/mo/MusicArtist

http://purl.org/ontology/mo/MusicGroup

226 Manually-assigned RDF Classes for Semantic Web Extraction Evaluation

http://dbpedia.org/ontology/Band

http://sw.opencyc.org/concept/Mx4rvgEZGJwpEbGdrcN5Y29ycA

Car
http://rdf.freebase.com/ns/base.sportscars.sports_car

http://sw.opencyc.org/concept/Mx4rvViVwZwpEbGdrcN5Y29ycA

http://dbpedia.org/ontology/Automobile

City

http://www.mpii.de/yago/resource/wordnet_city_108524735

http://rdf.freebase.com/ns/location.citytown

http://semanticweb.org/id/Category-3ACity

http://dbpedia.org/ontology/City

Comp. Mouse
http://sw.opencyc.org/concept/Mx4rvVjLo5wpEbGdrcN5Y29ycA

http://dbpedia.org/resource/Category:Computing_input_devices

Country

http://rdf.freebase.com/ns/location.country

http://www4.wiwiss.fu-berlin.de/factbook/ns#Country

http://semanticweb.org/id/Category-3ACountry

http://sw.opencyc.org/concept/Mx4rvViIeZwpEbGdrcN5Y29ycA

http://airports.dataincubator.org/schema/country

http://dbpedia.org/ontology/Country

Lake
http://rdf.freebase.com/ns/geography.lake

http://dbpedia.org/ontology/Lake

http://sw.opencyc.org/concept/Mx4rvVi4IpwpEbGdrcN5Y29ycA

Mobile Phone
http://sw.opencyc.org/concept/Mx4rvVjj6pwpEbGdrcN5Y29ycA

http://dbpedia.org/resource/Category:Smartphones

Movie

http://rdf.freebase.com/ns/film.film

http://data.linkedmdb.org/resource/movie/film

http://dbpedia.org/ontology/Film

http://sw.opencyc.org/concept/Mx4rv973YpwpEbGdrcN5Y29ycA

Newspaper

http://sw.opencyc.org/concept/Mx4rv4ByW5wpEbGdrcN5Y29ycA

http://rdf.freebase.com/ns/book.periodical

http://rdf.freebase.com/ns/book.newspaper

http://dbpedia.org/ontology/Newspaper

Politician
http://dbpedia.org/ontology/Politician

http://sw.opencyc.org/concept/Mx4rvVjntpwpEbGdrcN5Y29ycA

http://rdf.freebase.com/ns/government.politician

Restaurant

http://rdf.freebase.com/ns/base.popstra.restaurant

http://sw.opencyc.org/concept/Mx4rLYFgxAhuEduVMwDggVaqog

http://dbpedia.org/resource/Category:Multinational_food_companies

227

http://dbpedia.org/resource/Category:Fast-food_franchises

http://dbpedia.org/resource/Category:Fast-food_hamburger_restaurants

Sports Team
http://dbpedia.org/ontology/SportsTeam

http://sw.opencyc.org/concept/Mx4rvViwbJwpEbGdrcN5Y29ycA

http://rdf.freebase.com/ns/sports.sports_team

University
http://dbpedia.org/ontology/University

http://rdf.freebase.com/ns/education.university

http://sw.opencyc.org/concept/Mx4rvVjjvpwpEbGdrcN5Y29ycA

Table A.1: Manually-assigned URIs from the Semantic Web to the 17 Concepts Used for the
Evaluation

228 Manually-assigned RDF Classes for Semantic Web Extraction Evaluation

Appendix B

Trust Threshold Analysis of
Combined Assessors

In Section 6.2.6, we argue that the combined assessor using RGW+NB is superior to other
combinations. Looking at Table 6.2 does not provide evidence to our claim as the combination
RGW+NB+Text yields the highest precision and the combination NB+KNN yields the high-
est F1 value and accuracy. The values from the table are, however, only one possible setting
of the trust threshold that we can use with the combined assessors. The following figures show
the trust threshold analysis for all five combinations. We decided to use RGW+NB because
it is the only combination for which the precision can increase with a trust threshold > 0.5
without an immediate decrease in accuracy.

The NB+KNN combination (see Figure B.1 – the combinations NB+Text and NB+KNN+Text
behave very similarly, see Figure B.2 and B.3 respectively) has the potential to reach a pre-
cision of about 90 % at a trust threshold of 0.9, but at the cost of a recall of only slightly
over 35 %. The RGW+NB combination (see Figure B.5) reaches roughly the same level of
precision at a lower trust threshold of 0.7 and therefore yields a higher recall at that level.

The RGW+NB+Text combination (see Figure B.4) reaches the 90 % precision level even
earlier at a trust threshold of about 0.6. Due to the combination of three classifiers that all
have to independently classify the entity as correct for it to be finally classified as correct,
the drop in recall is sharp with increasing trust thresholds.

In conclusion, we can say that combining RGW+NB results in a combination that reaches a
precision level of 90 % with the highest accuracy and is therefore considered best.

230 Trust Threshold Analysis of Combined Assessors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Threshold

Precision Recall F1 Accuracy

Figure B.1: Threshold Analysis of the Combined Assessor (NB + KNN)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Threshold

Precision Recall F1 Accuracy

Figure B.2: Threshold Analysis of the Combined Assessor (NB + Text)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Threshold

Precision Recall F1 Accuracy

Figure B.3: Threshold Analysis of the Combined Assessor (NB + KNN + Text)

231

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Threshold

Precision Recall F1 Accuracy

Figure B.4: Threshold Analysis of the Combined Assessor (RGW + NB + Text)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Trust Threshold

Precision Recall F1 Accuracy

Figure B.5: Threshold Analysis of the Combined Assessor (RGW + NB)

232 Trust Threshold Analysis of Combined Assessors

Appendix C

Evaluation Entities for Fact
Extraction

Concept Entities

Actor
Jim Carrey, Mel Gibson, Laura Dern, Monica Potter,
James Stewart, Ken Watanabe, Orlando Bloom,
Tom Wilkinson, Chace Crawford, Natalie Portman

Airplane
IAR 95, Reggiane Re 2001, Folland Gnat, Dassault Mirage IIIV,
Bristol Scout, North American FJ-1 Fury, Douglas F5D Skylancer,
Parnall Plover, Sukhoi Su-7, Boeing P-12

Airport

Hong Kong International Airport, Heathrow Airport,
Detroit Metropolitan Wayne County Airport,
George Bush Intercontinental Airport, Frankfurt Airport,
John F. Kennedy International Airport,
O’Hare International Airport, Paris-Charles de Gaulle Airport,
Dubai International Airport, Orlando International Airport

Athlete
Kareem Abdul Jabbar, Peyton Manning, Davor Suker, Mark Messier,
Babe Ruth, Willie Mays, Michael Jordan, Aaron Rodgers,
Michael Ballack, Wayne Getzky

Band
Led Zeppelin, The Beatles, Pink Floyd,
The Jimi Hendrix Experience, Van Halen, Queen,
Eagles, Metallica, U2, Bob Marley and the Wailers

Car

2006 Bugatty Veyron16.4, 2008 Lamborghini Reventon,
2009 Jaguar XF, 2012 Lotus Exige,
2009 Tesla Roadster, 2009 Maserati Grand Turismo S,
2009 Aston Martin VS Vantage, 2012 Fiat 500,
2012 Audi R8 Spyder, 2011 Bentley Continental GTC

City
Gustavia, Brasilia, Jerusalem, Tallin, Baku,
Tashkent, Damascus, Cairo, Tripoli, Beirut

234 Evaluation Entities for Fact Extraction

Comp. Mouse

Microsoft Wireless Mouse 5000, Microsoft Arc Mouse,
Microsoft Natural Wireless Laser Mouse 6000,
Microsoft Wireless Mobile Mouse 6000,
Verbatim Wireless Optical Touch Mouse 97564,
Logitech M305 Wireless Mouse, Nexus SM-7000B Silent Mouse,
Kensington K72356US, 2.4G Nano Wireless Blue Optical/light Mouse,
Saitek W07 Touch Force Gaming Mouse

Country
China, Italy, Nepal, Malawi, Austria, Finland,
Kuwait, Cyprus, Vanuatu, Tuvalu

Lake
Lake Lugano, Lake Champlain, Issyk Kul, Kaptai Lake,
Lake Balaton, Lake Chad, Lake Kaindy, Sea of Galilee,
Lake Kivu, Lake Assad

Mobile Phone

BlackBerry Bold Touch 9000, Apple iPhone 4S, Alcatel OT-807,
Dell Venue, Sony Ericsson Cedar, Icemobile Tornado II,
Samsung Galaxy SII Epic 4G Touch, LG Optimus 2X SU 660,
Philips W625, Nokia Lumia 800

Movie
Braveheart, The Dark Knight, Idiocracy, Code 46, Iron Man,
The Descendants, A Dangerous Method, Super 8,
Tower Heist, Puss in Boots

Newspaper
The Wall Street Journal, The New York Times, The Washington Post,
New York Post, Chicago Tribune, The Philadelphia Inquirer,
The Denver Post, Star Tribune, The Plain Dealer, Chicago Sun-Times

Politician
Carlos P. Romulo, Eelco van Kleffens, Barack Obama, Cheddi Jagan,
Angela Merkel, Osvaldo Aranha, Dmitry Medvedev,
Anders Fogh Rasmussen, Giorgio Napolitano, Donna Shalala

Restaurant
Pollo Campero, MOS Burger, Shakey’s Pizza, Hard Rock Cafe,
Red Lobster, The Keg, Carl’s Jr., Quiznos, Telepizza, Panera Bread

Sports Team
Manchester United, Dallas Cowboys, New York Yankees,
Washington Redskins, Real Madrid, New England Patriots,
New York Giants, Houston Texans, New York Jets, Arsenal F.C.

University

Harvard University, California Institute of Technology,
University of Toronto, University of California, Berkeley,
Tsinghua University,
University of Michigan, University of Washington,
University of Alberta, University of York, Emory University

Table C.1: Entities for the Fact Extraction Evaluation

Appendix D

Datatype Mapping for Fact
Extraction

Datatype Regular Expression

Numeric (?<!(\w)-)(?<!(\w))-?((\\d){1,}((,|\.|\s))?){1,}

(?!((\d)+-(\\d)+))(?!-(\d)+)

Boolean (?<!(\w))(?i)(yes|no|true|false|n.a.) (?!(\w))

String ([A-Z.]{1}([A-Za-z-0-9.]*)(\s)?)+ ([A-Z.0-9]+([A-Za-z-0-9.]*)

(\s)?)*

AnyURI ((http://|www.).*?(?=[.,;?!]? (\s |\]|\))|[.,;?!]?$))|

([A-Za-z.0-9-]*? \\.(de|com|cc|tv|us|net|org|gov|mil

|edu|fr|it|com.au|co.uk)[/A-Za-z0-9-]* (\.[A-Za-z]{2,5})?)

Date ((\d){4}-(\d){2}-(\d){2})|((\d){1,2}

[\.|/|-](\\d){1,2}[\.|/|-](\d){1,4}) |((?<!(\d){2})

(\d){1,2}(th)?(\.)?(\s)? ([A-Za-z]){3,9}((\,)|(\s))+([’])?

(\d){2,4})|((\w){3,9}\s (\d){1,2}(th)?

((\,)|(\s))+([’])?(\d){2,4})

AnyType (.)*

Table D.1: Regular Expressions for Attribute Datatypes

236 Datatype Mapping for Fact Extraction

Appendix E

Statement Extraction Entities and
Results

Concept Entities

Product Palm Pre, MacBook Pro, Bugatti Veyron 16.4, Volvo C30 BEV, The Lost
Symbol

Location San Francisco, Frankfurt, Riesa, Gilroy, Luxor

Person Barack Obama, Amy MacDonald, Robin Williams, Bill Gates, Reiner Kraft

Organization Yahoo Inc., AT&T Inc., Rotary International, IKEA, Live Like A German

Table E.1: Entities for the Statement Extraction Evaluation

Measure Assignment Google Web Editorial Pick WebKnox

Relevance
Relevant 29.6 % 68.3 % 56.2 %

Somewhat Relevant 34.2 % 27.1 % 25.2 %

Not Relevant 36.2 % 4.6 % 18.7 %

Interestingness
Interesting 18.5 % 55.8 % 41.4 %

Somewhat Interesting 36.0 % 68.3 % 32.7 %

Not Interesting 52.6 % 8.2 % 25.8 %

Curiosity
Learn More 27.8 % 67.4 % 40.7 %

Not Learn More 72.2 % 32.6 % 59.3 %

Table E.2: Evaluation Results of the Statement Extraction

238 Statement Extraction Entities and Results

Bibliography

George Adam, Christos Bouras, and Vassilis Poulopoulos. Efficient extraction of news articles
based on RSS crawling. In Proceedings of the International Conference on Machine and
Web Intelligence, 2010.

Adobe. http://www.adobe.com/devnet/flashplayer/articles/swf searchability.html, 2008.

Alexander Afanasyev, Jiangzhe Wang, Chunyi Peng, and Lixia Zhang. Measuring redundancy
level on the Web. In Proceedings of the 7th Asian Internet Engineering Conference, 2011.

Eugene Agichtein, Luis Gravano, Jeff Pavel, Viktoriya Sokolova, and Aleksandr Voskoboynik.
Snowball: A prototype system for extracting relations from large text collections. ACM
SIGMOD Record, 2001.

Eugene Agichtein, Steve Lawrence, and Luis Gravano. Learning to find answers to questions
on the web. ACM Transactions on Internet Technology, 2004.

Sanjay Agrawal, Kaushik Chakrabarti, Surajit Chaudhuri, Venkatesh Ganti, Arnd Christian
König, and Dong Xin. Exploiting web search engines to search structured databases. In
Proceedings of the 18th International Conference on World Wide Web, 2009.

Enrique Alfonseca and Maria Ruiz-casado. Learning sure-fire rules for named entities recog-
nition. In Proceedings of the International Workshop in Text Mining Research, Practice
and Opportunities, in conjunction with RANLP Conference, 2005.

Alias-i. LingPipe 4.0.1, 2011. URL {http://alias-i.com/lingpipe}.

James Allan, Jaime Carbonell, George Doddington, Jonathan Yamron, and Yiming Yang.
Topic Detection and Tracking Pilot Study. In Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop, 1998.

Allied Business Intelligence. Mobile Data Usage Grows Exponentially but Data Revenue Lags,
2010.

Bengt Altenberg. Causal linking in spoken and written English. Studia Linguistica, 1984.

Masayuki Asahara and Yuji Matsumoto. Japanese named entity extraction with redundant
morphological analysis. In Proceedings of Human Language Technology Conference, 2003.

Martin Atkinson, Jakub Piskorski, Bruno Pouliquen, Ralf Steinberger, Hristo Tanev, and
Vanni Zavarella. Online-monitoring of security-related events. In Proceedings of the 22nd
International Conference on Computational Linguistics: Demonstration Papers, 2008.

240 Bibliography

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary G. Ives. DBpedia: A Nucleus for a Web of Open Data. In Proceedings of the
6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, 2007.

Dominic Balasuriya, Nicky Ringland, Joel Nothman, Tara Murphy, and James R. Curran.
Named entity recognition in Wikipedia. In Proceedings of the Workshop on The People’s
Web Meets NLP: Collaboratively Constructed Semantic Resources, 2009.

Krisztian Balog, Edgar Meij, and Maarten de Rijke. Entity Search: Building Bridges between
Two Worlds. In Proceedings of the Semantic Search Workshop at WWW, 2010a.

Krisztian Balog, Pavel Serdyukov, and Arjen P. de Vries. Overview of the TREC 2010 Entity
Track. In TREC 2010 Working Notes, 2010b.

Michele Banko and Oren Etzioni. Strategies for Lifelong Knowledge Extraction from the Web.
In Proceedings of the 4th International Conference on Knowledge Capture, 2007.

Michele Banko, Micheal J. Cafarella, Stephen Soderland, Matt Broadhead, and Oren Etzioni.
Open Information Extraction from the Web. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, 2007.

Luciano Barbosa and Juliana Freire. An adaptive crawler for locating hidden-Web entry
points. In Proceedings of the 16th International Conference on World Wide Web, 2007.

Michael K. Bergman. The Deep Web: Surfacing Hidden Value. The Journal of Electronic
Publishing, 2001.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American,
2001.

Daniel M. Bikel, Scott Miller, Richard Schwartz, and Ralph Weischedel. Nymble: a high-
performance learning name-finder. In Proceedings of the 5th Conference on Applied Natural
Language Processing, 1997.

Chris Bizer. DBpedia 3.7 released, including 15 localized Edi-
tions, 2011. URL {http://blog.dbpedia.org/2011/09/11/

dbpedia-37-released-including-15-localized-editions/}.

Duncan Bloor. The most asked questions on Google, 2011. URL {http://searchinsights.

wordpress.com/2011/09/01/the-most-asked-questions/}.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the 11th Conference on Computational Learning Theory, 1998.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A
Collaboratively Created Graph Database For Structuring Human Knowledge. In Proceed-
ings of the 2008 SIGMOD International Conference on Management of Data, 2008.

Oriol Borrega, Mariona Taulé, and M. Antø’nia Martı. What do we mean when we speak
about Named Entities. In Proceedings of Corpus Linguistics, 2007.

Bibliography 241

Andrew Borthwick, John Sterling, Eugene Agichtein, and Ralph Grishman. NYU: Description
of the MENE named entity system as used in MUC-7. In Proceedings of the 7th Message
Understanding Conference, 1998.

Laura Bright, Avigdor Gal, and Louiqa Raschid. Adaptive pull-based policies for wide area
data delivery. ACM Transactions Database Systems, 2006.

Sergey Brin. Extracting Patterns and Relations from the World Wide Web. WebDB Workshop
at 6th International Conference on Extending Database Technology, 1998.

Andrei Broder. A taxonomy of web search. In SIGIR Forum, 2002.

Jeen Broekstra and Arjohn Kampman. Sesame: A generic Architecture for Storing and
Querying RDF and RDF schema. The Semantic WebISWC 2002, 2002.

Marc Bron, Krisztian Balog, and Maarten de Rijke. Related Entity Finding Based on Co-
Occurrence. In Proceedings of the 18th Text REtrieval Conference, 2010.

Ada Brunstein. Annotation guidelines for answer types. Linguistic Data Consortium, 2002.
URL http://www.ldc.upenn.edu/Catalog/docs/LDC2005T33/BBN-Types-Subtypes.

html.

Sabine Buchholz and Antal van den Bosch. Integrating seed names and n-grams for a named
entity list and classifier. In Proceedings of the 2nd International Conference on Language
Resources and Evaluation, 2000.

Robin D. Burke, Kristian J. Hammond, Vladimir Kulyukin, Steven L. Lytinen, Noriko To-
muro, and Scott Schoenberg. Question Answering from Frequently Asked Question Files:
Experiences with the FAQFinder system. AI Magazine, 1997.

Jamie Callan and Teruko Mitamura. Knowledge-based extraction of named entities. In Pro-
ceedings of the 11th International Conference on Information and Knowledge Management,
2002.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr.,
and Tom M. Mitchell. Toward an Architecture for Never-Ending Language Learning. In
Proceedings of the 24th Conference on Artificial Intelligence, 2010a.

Andrew Carlson, Justin Betteridge, Richard C. Wang, Estevam R. Hruschka Jr., and Tom M.
Mitchell. Coupled Semi-Supervised Learning for Information Extraction. In Proceedings of
the 3rd International Conference on Web Search and Data Mining, 2010b.

Francesca Carmagnola. The five Ws in user model interoperability. In Workshop on Ubiqui-
tous User Modeling at the Intelligent User Interfaces Conference, 2008.

Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne, and Kevin
Wilkinson. Jena: implementing the semantic web recommendations. In Proceedings of the
13th International World Wide Web Conference on Alternate track papers & posters, 2004.

Chia-Hui Chang, Mohammed Kayed, Mohed R. Girgis, and Khaled F. Shaalan. A Survey of
Web Information Extraction Systems. IEEE Transactions on Knowledge and Data Engi-
neering, 2006.

242 Bibliography

Surajit Chaudhuri, Venkatesh Ganti, and Dong Xin. Exploiting web search to generate
synonyms for entities. In Proceedings of the 18th International Conference on World Wide
Web, 2009.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
synthetic minority over-sampling technique. Artificial Intelligence Research, 2002.

Nancy Chinchor. MUC-7 Named Entity Task Definition. In Proceedings of the 7th Message
Understanding Conference, 1997. URL {http://acl.ldc.upenn.edu/muc7/ne_task.

html}.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Frederick Reiss, and Shivakumar
Vaithyanathan. Domain adaptation of rule-based annotators for named-entity recognition
tasks. In Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, 2010.

David Chmielewski and Gongzhu Hu. A Distributed Platform for Archiving and Retrieving
RSS Feeds. In Proceedings of the 4th ACIS International Conference on Computer and
Information Science, 2005.

Junghoo Cho and Hector Garcia-Molina. Effective page refresh policies for Web crawlers.
ACM Transactions Database Systems, 2003.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information, and
lexicography. Computational Linguistics, 1990.

James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0. Technical report,
World Wide Web Consortium, 1999. URL {http://www.w3.org/TR/xpath}.

William W. Cohen. Fast effective rule induction. In Proceedings of the 12th International
Conference on Machine Learning, 1995.

William W. Cohen and Wei Fan. Learning page-independent heuristics for extracting data
from web pages. Computer Networks-the International Journal of Computer and Telecom-
munications Networking, 1999.

William W. Cohen, Matthew Hurst, and Lee S. Jensen. A flexible learning system for wrapping
tables and lists in HTML documents. In Proceedings of the 11th International Conference
on World Wide Web, 2002.

Michael Collins. Ranking algorithms for named-entity extraction: Boosting and the voted
perceptron. In Proceedings of the 40th Annual Meeting of Association for Computational
Linguistics, July, 2002.

Michael Collins and Yoram Singer. Unsupervised models for named entity classification. In
Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing
and Very Large Corpora, 1999.

Gao Cong, Long Wang, Chin-Yew Lin, Young-In Song, and Yueheng Sun. Finding question-
answer pairs from online forums. In Proceedings of the 31st annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2008.

Bibliography 243

Dan Crow. Google Squared: Web scale, open domain information extraction and presentation.
In Proceedings of the 32nd European Conference on Information Retrieval, Industry Day,
2010.

Alessandro Cucchiarelli and Paola Velardi. Unsupervised Named Entity Recognition Using
Syntactic and Semantic Contextual Evidence. Computational Linguistics, 2001.

Silviu Cucerzan and David Yarowsky. Language Independent Named Entity Recognition
Combining Morphological and Contextual Evidence. In Proceedings of the Workshop on
Very Large Corpora at the Conference on Empirical Methods in NLP, 1999.

Richard Cyganiak and Anja Jentzsch. Linking Open Data cloud diagram, 2011. URL {http:

//lod-cloud.net/}.

Bhavana Dalvi, Jamie Callan, and William Cohen. Entity List Completion Using Set Expan-
sion Techniques. In Proceedings of the 19th Text REtrieval Conference, 2011.

Pedro DeRose, Warren Shen, Fei Chen, Yoonkyong Lee, Doug Burdick, AnHai Doan, and
Raghu Ramakrishnan. DBLife: A Community Information Management Platform for the
Database Research Community (Demo). In CIDR, 2007.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1959.

Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. A scalable comparison-shopping
agent for the World-Wide Web. In Proceedings of the 1st International Conference on
Autonomous Agents, 1997.

Doug Downey. Redundancy in Web-scale Information Extraction: Probabilistic Model and
Experimental Results. PhD thesis, University of Washington, 2008.

Doug Downey, Oren Etzioni, Stephen Soderland, and Daniel S. Weld. Learning Text Patterns
for Web Information Extraction and Assessment. In Workshop on Adaptive Text Extraction
and Mining, 2004.

Doug Downey, Oren Etzioni, and Stephen Soderland. A Probabilistic Model of Redundancy
in Information Extraction. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence, 2005.

Doug Downey, Matthew Broadhead, and Oren Etzioni. Locating complex named entities in
web text. In Proceedings of International Joint Conference on Artificial Intelligence, 2007.

Doug Downey, Oren Etzioni, and Stephen Soderland. Analysis of a Probabilistic Model of
Redundancy in Unsupervised Information Extraction. Artificial Intelligence, 2010.

Jenny Edwards, Kevin McCurley, and John Tomlin. An adaptive model for optimizing perfor-
mance of an incremental web crawler. In Proceedings of the 10th International Conference
on World Wide Web, 2001.

Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu, Tal
Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Web-scale informa-
tion extraction in knowitall: (preliminary results). In Proceedings of the 13th International
Conference on World Wide Web, 2004.

244 Bibliography

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Steven
Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised named-entity extraction
from the Web: An experimental study. Artificial Intelligence, 2005.

Richard Evans. A framework for named entity recognition in the open domain. Recent
advances in natural language processing III: selected papers from RANLP 2003, 2003.

Roy T. Fielding. Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine, 2000.

Elena Filatova and Vasileios Hatzivassiloglou. Event-Based Extractive Summarization. In
Proceedings of the ACL Workshop, 2004.

Sanda Harabagiu Finley and Sanda M. Harabagiu. Generating single and multi-document
summaries with gistexter. In Proceedings of the Workshop on Automatic Summarization,
2002.

Michael Fleischman and Eduard Hovy. Fine Grained Classification of Named Entities. In
Proceedings of the 19th International Conference on Computational Linguistics, 2002.

Joseph L. Fleiss. The Measurement of Interrater Agreement. Statistical Methods for Rates
and Proportions, 1981.

Radu Florian. Named entity recognition as a house of cards: Classifier stacking. In Proceedings
of the 6th conference on Natural language learning, 2002.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named Entity Recognition
through Classifier Combination. In Proceedings of CoNLL, 2003.

Charles Frankel, Michael J. Swain, and Vassilis Athitsos. WebSeer: An Image Search Engine
for the World Wide Web. Technical report, University of Chicago, 1996.

Eric Franzon. LOD Cloud Updated - Time to Change Your Slide
Decks! Blog Article, 2011. URL {http://semanticweb.com/

lod-cloud-updated-time-to-change-your-slide-decks_b23252}.

Christopher Friedrich. WebSnippets: Extracting and Ranking of entity-centric knowledge
from the Web. Master’s thesis, Dresden University of Technology, 2010.

Marcel Gerlach. Verbesserung von Question/Answering mithilfe von Suchmaschinenanfragen.
Master’s thesis, Dresden University of Technology, 2012.

Google. Google Sets. System and methods for automatically creating lists, March 2008.

Google. pubsubhubbub, 2010. URL {http://code.google.com/p/pubsubhubbub/}.

Carrie Grimes. Microscale evolution of web pages. In Proceedings of the 17th International
Conference on World Wide Web, 2008.

Ralph Grishman and Beth Sundheim. Message Understanding Conference-6: A brief history.
In Proceedings of the 16th Conference on Computational Linguistics, 1996.

Bibliography 245

Ralph Grishman, Silja Huttunen, and Roman Yangarber. Real-time event extraction for
infectious disease outbreaks. In Proceedings of the 2nd International Conference on Human
Language Technology Research, 2002.

Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named entity recognition in query. In
Proceedings of the 32nd International SIGIR Conference on Research and Development in
Information Retrieval, 2009.

Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating Web Spam with
TrustRank. In Proceedings of the 30th International Conference on Very Large Data Bases,
2004.

Young G. Han, Sang H. Lee, Jae H. Kim, and Yanggon Kim. A new aggregation policy for
RSS services. In Proceedings of the International Workshop on Context Enabled Source and
Service Selection, Integration and Adaptation, 2008.

Martin A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings
of the 14th Conference on Computational Linguistics, 1992.

Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and Timo Stegemann.
RelFinder: Revealing Relationships in RDF Knowledge Bases. In Proceedings of the 4th
International Conference on Semantic and Digital Media Technologies, 2009.

Christian Hensel. Automatische Fließtexterstellung aus Entitätsfakten in einer Wissensbasis.
Master’s thesis, Dresden University of Technology, 2011.

Chih Hu and Chung-Kuang Chou. RSS watchdog: an instant event monitor on real on-
line news streams. In Proceedings of the 18th Conference on Information and Knowledge
Management, 2009.

Fei Huang. Multilingual named entity extraction and translation from text and speech. PhD
thesis, Carnegie Mellon University, 2005.

Matthew Hurst and Alexey Maykov. Social Streams Blog Crawler. In Proceedings of the 25th
International Conference on Data Engineering, 2009.

Francisco Iacobelli, Nathan Nichols, and Larry Birnbaum Kristian Hammond. Finding new
information via robust entity detection. In Proceedings of Proactive Assistant Agents, 2010.

Alpa Jain and Marco Pennacchiotti. Open entity extraction from web search query logs. In
Proceedings of the 23rd International Conference on Computational Linguistics, 2010.

Bernard J. Jansen, Danielle Booth, and Amanda Spink. Determining the informational, nav-
igational, and transactional intent of Web queries. Information Processing & Management,
2008.

Heng Ji and Ralph Grishman. Refining Event Extraction through Cross-Document Inference.
In Proceedings of ACL, 2008.

Valentin Jijkoun and Maarten de Rijke. Retrieving answers from frequently asked questions
pages on the web. In Proceedings of the International Conference on Information and
Knowledge Management, 2005.

246 Bibliography

Vangelis Karkaletsis, Georgios Paliouras, Georgios Petasis, Natasa Manousopoulou, and Con-
stantine D. Spyropoulos. Named-entity recognition from Greek and English texts. Journal
of Intelligent and Robotic Systems, 1999.

Gjergji Kasneci, Maya Ramanath, Fabian M. Suchanek, and Gerhard Weikum. The YAGO-
NAGA approach to knowledge discovery. SIGMOD Record, 2008.

Boris Katz. Annotating the World Wide Web using natural language. In Proceedings of the
5th RIAO Conference on Computer Assisted Information Searching on the Internet, 1997.

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy J. Lin, Gregory Marton, Al-
ton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform access to heterogeneous
data for question answering. Lecture notes in computer science, 2002.

Jun’ichi Kazama and Kentaro Torisawa. Exploiting Wikipedia as external knowledge for
named entity recognition. In Proceedings of the Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, 2007.

Andy King. The Average Web Page. Blog Entry, 2009. URL {http://www.

optimizationweek.com/reviews/average-web-page/}.

Gary King and Will Lowe. An automated information extraction tool for international con-
flict data with performance as good as human coders: A rare events evaluation design,
International Organization. International Organization, 2003.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christopher D. Manning. Named entity recog-
nition with character-level models. In Proceedings of CoNLL, 2003.

Zornitsa Kozareva. Bootstrapping named entity recognition with automatically generated
gazetteer lists. In Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics: Student Research Workshop, 2006.

Zornitsa Kozareva, Boyan Bonev, and Andres Montoyo. Self-training and co-training applied
to spanish named entity recognition. Advances in Artificial Intelligence, 2005.

Saul A. Kripke. Naming and necessity. Wiley-Blackwell, 1981.

Cody C. Kwok, Oren Etzioni, and Daniel S. Weld. Scaling question answering to the Web.
In Proceedings of the 10th International Conference on World Wide Web, 2001.

J. Richard Landis and Gary G. Koch. The Measurement of Observer Agreement for Cate-
gorical Data. Biometrics, 1977.

Joseph LaPorte. Rigid Designators. Stanford Encyclopedia of Philosophy, 2006. URL {http:

//plato.stanford.edu/entries/rigid-designators/}.

Paul J. Leach, Michael Mealling, and Rich Salz. RFC4122 - A Universally Unique IDentifier
(UUID) URN Namespace. Technical report, Microsoft Inc., Refactored Networks, LLC,
DataPower Technology, Inc., 2005. http://www.faqs.org/rfcs/rfc4122.html.

Bum-Suk Lee, Jin W. Im, Byung-Yeon Hwang, and Du Zhang. Design of an RSS Crawler
with Adaptive Revisit Manager. In Proceedings of the 20th International Conference on
Software Engineering and Knowledge Engineering, 2008.

Bibliography 247

Bumsuk Lee and Byung-Yeon Hwang. An Efficient Method Predicting Update Probability
on Blogs. In Proceedings of the International Conference on Mathematics and Computers
in Science and Engineering, 2009.

Jongwuk Lee, Seung won Hwang, Zaiqing Nie, and Ji-Rong Wen. Navigation System for
Product Search. In Proceedings of the 26th International Conference on Data Engineering,
2010.

Jens Lehmann, Jörg Schüppel, and Sören Auer. Discovering Unknown Connections - the
DBpedia Relationship Finder. In Proceedings of the 1st Conference on Social Semantic
Web, 2007.

Gennadiy Lemberski. Named entity recognition in Hebrew language; Hebrew Multiword
Expression: approaches and recognition methods. Master’s thesis, Ben-Gurion University
of the Negev, 2003. URL http://www.cs.bgu.ac.il/~gennadaa/thesis.pdf.

Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastructure. Communica-
tions of the ACM, 1995.

Wenjie Li, Mingli Wu, Qin Lu, Wei Xu, and Chunfa Yuan. Extractive summarization us-
ing inter- and intra-event relevance. In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th Meeting of the Association for Computational
Linguistics, 2006.

Jimmy Lin, Aaron Fernandes, Boris Katz, Gregory Marton, and Stefanie Tellex. Extract-
ing answers from the web using knowledge annotation and knowledge mining techniques.
Technical report, DTIC Document, 2006.

Yi-Chung Lin and Peng-Hsiang Hung. Probabilistic named entity verification. In Proceedings
of the 2nd International Workshop on Computational Terminology, 2002.

Roger Lindsay and Barbara Gorayska. Relevance, Goals and Cognitive Technology. Interna-
tional Journal of Cognitive Technology, 2002.

LingPipe. Genes are Generic, People are Specific. Blog Post, 2007. http://lingpipe-
blog.com/2007/08/23/genes-are-generic-people-are-specific/.

Hongzhou Liu, Venugopalan Ramasubramanian, and Emin Gün Sirer. Client behavior and
feed characteristics of RSS, a publish- subscribe system for web micronews. In Proceedings
of the 5th SIGCOMM Conference on Internet Measurement, 2005.

Jiahui Liu and Larry Birnbaum. What do they think?: aggregating local views about news
events and topics. In Proceedings of the 17th International Conference on World Wide
Web, 2008.

Maofu Liu, Wenjie Li, Mingli Wu, and Qin Lu. Extractive Summarization Based on Event
Term Clustering. In Proceedings of the 45th Annual Meeting of the Association for Com-
putational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,
2007.

248 Bibliography

Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming Zhou. Recognizing Named Entities in
Tweets. In Proceedings of the 49th Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, 2011.

Vanessa Lopez, Enrico Motta, and Victoria Uren. Poweraqua: Fishing the semantic web. The
Semantic Web: Research and Applications, 2006.

Vanessa Lopez, Victoria Uren, Enrico Motta, and Michele Pasin. AquaLog: An ontology-
driven question answering system for organizational semantic intranets. Web Semantics:
Science, Services and Agents on the World Wide Web, 2007.

Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex Rasmussen, and Alon
Halevy. Google’s Deep-Web Crawl. Proceedings of the VLDB Endowment, 2008.

Christopher D. Manning. Doing named entity recognition? don’t optimize
for f1. Website, Blog, 2006. URL http://nlpers.blogspot.com/2006/08/

doing-named-entity-recognition-dont.html.

Christopher D. Manning and Hinrich Schütze. Foundations of statistical natural language
processing. MIT Press, 2002.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

Mónica Marrero, Sonia Sánchez-Cuadrado, Jorge Morato Lara, and George Andreadakis.
Evaluation of named entity extraction systems. Advances in Computational Linguistics,
Research in Computing Science, 2009.

Elaine Marsh and Dennis Perzanowski. MUC-7 Evaluation of IE Technology: Overview of
Results. In Proceedings of the 7th Message Understanding Conference, 1998.

Johanna May. Definition: knowledge base, 2001. URL {http://searchcrm.techtarget.

com/definition/knowledge-base}.

Diana Maynard, Valentin Tablan, Cristian Ursu, Hamish Cunningham, and Yorick Wilks.
Named entity recognition from diverse text types. In Recent Advances in Natural Language
Processing 2001 Conference, 2001.

Andrew McCallum and Wei Li. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In Proceedings of the 7th
Conference on Natural Language Learning, 2003.

Nancy McCracken. Combining Techniques for Event Extraction in Summary Reports. In
Proceedings of the Workshop on Event Extraction and Synthesis, held in conjunction with
the AAAI Conference, 2006.

David D. McDonald. Internal and external evidence in the identification and semantic cate-
gorization of proper names. Corpus processing for lexical acquisition, 1996.

Kathleen McKeown, Regina Barzilay, John Chen, David K. Elson, David K. Evans, Judith
Klavans, Ani Nenkova, Barry Schiffman, and Sergey Sigelman. Columbia’s newsblaster:
New features and future directions. In Proceedings of NAACL-HLT, 2003.

Bibliography 249

Xiangzeng Meng and Lei Liu. On Retrieval of Flash Animations Based on Visual Features.
Technologies for E-Learning and Digital Entertainment, 2008.

Fien De Meulder, Walter Daelemans, and Veronique Hoste. A named entity recognition
system for dutch. Language and Computers, 2002.

Andrei Mikheev, Marc Moens, and Claire Grover. Named entity recognition without
gazetteers. In Proceedings of the 9th Conference on European Chapter of the Association
for Computational Linguistics, 1999.

Miquel Millan, David Sánchez, and Antonio Moreno. Unsupervised Web-based Automatic
Annotation. In Proceedings of the 4th STAIRS Conference: Starting AI Researchers’ Sym-
posium, 2008.

David Miller, Richard Schwartz, Ralph Weischedel, and Rebecca Stone. Named entity ex-
traction from broadcast news. In Proceedings of the Broadcast News Workshop, 1999.

David Milne and Ian H. Witten. Learning to link with wikipedia. In Proceedings of the 17th
Conference on Information and Knowledge Management, 2008.

Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

Tom M. Mitchell, Justin Betteridge, Andrew Carlson, Estevam R. Hruschka Jr., and
Richard C. Wang. Populating the Semantic Web by Macro-Reading Internet Text. In
Proceedings of the 8th International Semantic Web Conference, 2009.

Nilo Mitra and Yves Lafon. Soap version 1.2 part 0: Primer. Technical report, W3C, 2007.

Dmitry Myagkikh. Anfrage strukturierter Datenbasen mithilfe natürlicher Sprache im Kon-
text des Question-Answering. Master’s thesis, Dresden University of Technology, 2012.

David Nadeau. Semi-Supervised Named Entity Recognition: Learning to Recognize 100 Entity
Types with little Supervision. PhD thesis, Ottawa-Carleton Institute for Computer Science,
2007.

David Nadeau. What is a Named Entity? Blog Post, 2008.
http://yooname.wordpress.com/2008/02/12/what-is-a-named-entity/.

David Nadeau and Satoshi Sekine. A Survey of Named Entity Recognition and Classification.
Named Entities: Recognition, Classification and Use, 2009.

Martina Naughton, Nicola Stokes, and Joe Carthy. Investigating statistical techniques for
sentence-level event classification. In Proceedings of the 22nd International Conference on
Computational Linguistics, 2008.

Zaiqing Nie, Yunxiao Ma, Shuming Shi, Ji-Rong Wen, and Wei-Ying Ma. Web object retrieval.
In Proceedings of the 16th International Conference on World Wide Web, 2007.

Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability of co-training.
In Proceedings of the 9th International Conference on Information and Knowledge Man-
agement, 2000.

250 Bibliography

Cheng Niu, Wei Li, Jihong Ding, and Rohini K. Srihari. Bootstrapping for named entity
tagging using concept-based seeds. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Technology,
2003.

Joel Nothman. Learning Named Entity Recognition from Wikipedia. Master’s thesis, The
University of Sydney Australia, 2008.

Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, and James R. Curran. Learning
multilingual named entity recognition from Wikipedia. Artificial Intelligence, 2012.

Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. Downloading hidden web content. In
Proceedings of the Joint Conference on Digital Libraries, 2005.

Christopher Olston and Marc Najork. Web Crawling. Foundations and Trends in Information
Retrieval, 2010.

STAT OWL. StatOwl.com - Statistical analysis and market research of Internet usage trends.
Website, 2012. URL {http://www.statowl.com/}.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation
ranking: bringing order to the web. Technical report, Stanford InfoLab, 1999.

Sandeep Pandey, Krithi Ramamritham, and Soumen Chakrabarti. Monitoring the Dynamic
Web to respond to Continuous Queries. In Proceedings of the 12th International Conference
on World Wide Web, 2003.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-Maria Popescu, and Vishnu Vyas.
Web-Scale Distributional Similarity and Entity Set Expansion. In Proceeings of EMNLP,
2009.

Marius Paşca. Acquisition of categorized named entities for web search. In Proceedings of the
13th International Conference on Information and Knowledge Management, 2004.

Marius Paşca. Weakly-supervised discovery of named entities using web search queries. In
Proceedings of the 16th Conference on Information and Knowledge Management, 2007.

Marius Paşca and Benjamin van Durme. Weakly-supervised acquisition of open-domain
classes and class attributes from web documents and query logs. In Proceedings of the
46th Annual Meeting of the Association for Computational Linguistics, 2008.

Jon Patrick, Casey Whitelaw, and Robert Munro. Slinerc: The Sydney language-independent
named entity recogniser and classifier. In Proceedings Conference on Natural Language
Learning, 2002.

Georgios Petasis, Frantz Vichot, Francis Wolinski, Georgios Paliouras, Vangelis Karkaletsis,
and Constantine D. Spyropoulos. Using machine learning to maintain rule-based named-
entity recognition and classification systems. In Proceedings of the 39th Meeting on Asso-
ciation for Computational Linguistics, 2001.

Jakub Piskorski, Hristo Tanev, and Pinar O. Wennerberg. Extracting violent events from
on-line news for ontology population. In Proceedings of the 10th International Conference
on Business Information Systems, 2007.

Bibliography 251

Jerrey Pound, Peter Mika, and Hugo Zaragoza. Ad-hoc object retrieval in the web of data.
In Proceedings of the 19th International Conference on World Wide Web, 2010.

Sameer S. Pradhan, Gabriel Illouz, Sasha J. Blair-Goldensohn, Hazen Schlaikjer, Valerie
Krugler, Elena Filatova, Pablo A. Duboue, Hong Yu, Rebecca J. Passonneau, Steven
Bethard, Valileios Hatzivassiloglou, Wayne Ward, Dan Jurafsky, Kathleen R. McKeown,
and James H. Martin. Building a foundation system for producing short answers to factual
questions. In Proceedings of the 11th Text Retrieval Conference, 2002.

Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Readings in speech recognition, 1990.

Dragomir Radev, Timothy Allison, Sasha Blair-Goldensohn, John Blitzer, Arda Celebi,
Stanko Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam, Danyu Liu, Jahna Otterbacher,
Hong Qi, Horacio Saggion, Simone Teufel, Adam Winkel, and Zhu Zhang. Mead - a plat-
form for multidocument multilingual text summarization. In Proceedings of LREC, 2004.

Dragomir Radev, Weigua Fan, Hong Qi, Harris Wu, and Amardeep Grewal. Probabilistic
question answering on the web. Journal of the American Society for Information Science
and Technology, 2005.

Anand Rajaraman. Kosmix: Exploring the Deep Web using Taxonomies and Categorization.
IEEE Data Engineering Bulletin, 2009a.

Anand Rajaraman. Kosmix: high-performance topic exploration using the deep web. Pro-
ceedings of the VLDB Endowment, 2009b.

Venugopalan Ramasubramanian, Ryan Peterson, and Emin Gn Sirer. Corona: A high perfor-
mance publish-subscribe system for the world wide web. In Proceedings of the 3rd USENIX
Symposium on Networked Systems Design and Implementation, 2006.

Lev Ratinov and Dan Roth. Design challenges and misconceptions in named entity recogni-
tion. In Proceedings of the 13th Conference on Computational Natural Language Learning,
2009.

Lisa F. Rau. Extracting company names from text. In Proceedings of the 7th Conference on
Artificial Intelligence Applications, 1991.

Stephanie Reese. Quick Stat: 72.6% of Internet Users Will Buy Online
in 2011, 2011. URL {http://www.emarketer.com/blog/index.php/tag/

percent-of-internet-users-who-shop-online/}.

Sandro Reichert. Analyse und Vorhersage der Aktualisierungen von Web-Feeds. PhD thesis,
Dresden University of Technology, 2012.

Sandro Reichert, David Urbansky, Klemens Muthmann, Philipp Katz, Matthias Wauer, and
Alexander Schill. Feeding the world: a comprehensive dataset and analysis of a real world
snapshot of web feeds. In Proceedings of the 13th International Conference on Information
Integration and Web-based Applications and Services, 2011.

252 Bibliography

Jason D. Rennie and Tommi Jaakkola. Using term informativeness for named entity detection.
In Proceedings of the 28th International SIGIR Conference on Research and development
in Information Retrieval, 2005.

Ellen Riloff and Rosie Jones. Learning Dictionaries for Information Extraction by Multi-Level
Bootstrapping. In Proceedings of the 16th National Conference on Artificial Intelligence,
1999.

Daniel E. Rose and Danny Levinson. Understanding user goals in web search. In Proceedings
of the 13th International Conference on World Wide Web, 2004.

Ian Rose, Rohan Murty, Peter Pietzuch, Jonathan Ledlie, Mema Roussopoulos, and Matt
Welsh. Cobra: Content-based Filtering and Aggregation of Blogs and RSS Feeds. In
Proceedings of the Symposium on Networked Systems Design and Implementation, 2007.

Bemjamin Rosenfeld and Ronen Feldman. URES: an unsupervised web relation extraction
system. In Proceedings of the COLING/ACL on Main Conference Poster Sessions, 2006.

Marc Rössler. Korpus-Adaptive Eigennamenerkennung. PhD thesis, Universität Duisburg-
Essen, 2007.

Kugatsu Sadamitsu, Kuniko Saito, Kenji Imamura, and Genichiro Kikui. Entity set expansion
using topic information. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, 2011.

Daniel Sandler, Alan Mislove, Ansley Post, and Peter Druschel. FeedTree: Sharing Web
Micronews with Peer-to-Peer Event Notification. In Proceedings of the 4th International
Workshop on Peer-to-Peer Systems, 2005.

Erik F. Sang and Fien De Meulder. Introduction to the CoNLL-2002 shared task: Language-
independent named entity recognition. In Proceedings of the 7th Conference on Natural
Language Learning, 2003a.

Erik F. Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. Development, 2003b.

Luis Sarmento, Valentin B. Jijkoun, Maarten de Rijke, and Eugenio Oliveira. “More like
these”: growing entity classes from seeds. In Proceedings of the 16th Conference on Infor-
mation and Knowledge Management, 2007.

Nico Schlaefer. Pattern learning and knowledge annotation for question answering, 2005.

Guus Schreiber. OWL: the Web Ontology Language, 2004. URL {http://www.cs.vu.nl/

~guus/public/2004-owl-brisbane/all.htm}.

Satoshi Sekine. NYU: Description of the Japanese NE System used for MET-2. In Proceedings
of the 7th Message Understanding Conference, 1998.

Satoshi Sekine and Chikashi Nobata. Definition, dictionaries and tagger for extended named
entity hierarchy. In Proceedings of the Language Resources and Evaluation Conference,
2004. URL {http://nlp.cs.nyu.edu/ene/zentaizu6_1_2eng.jpg}.

Bibliography 253

Purvesh Shah, David Schneider, Cynthia Matuszek, Robert C. Kahlert, Bjorn Aldag, David
Baxter, John Cabral, Michael Witbrock, and Jon Curtis. Automated population of Cyc:
Extracting Information about Named-Entities from the Web. In Proceedings of the 19th
International FLAIRS Conference, 2006.

Yu sheng Lai, Kuao ann Fung, and Chung hsien Wu. Faq mining via list detection. In
Proceedings of the International Conference on Computational Linguistics, 2002.

Ka C. Sia, Junghoo Cho, and Hyun-Kyu Cho. Efficient Monitoring Algorithm for Fast News
Alerts. Transactions on Knowledge and Data Engineering, 2007a.

Ka C. Sia, Junghoo Cho, Koji Hino, Yun Chi, Shenghuo Zhu, and Belle L. Tseng. Monitoring
RSS Feeds Based on User Browsing Pattern. In Proceedings of the International Conference
on Weblogs and Social Media, 2007b.

Steven Soderland, Oren Etzioni, Tal Shaked, and Daniel S. Weld. The use of Web-based
statistics to validate information extraction. In Papers from the AAAI-2004 Workshop on
Adaptive Text Extraction and Mining, 2004.

Michael M. Stark and Richard F. Riesenfeld. Wordnet: An Electronic Lexical Database. In
Proceedings of the 11th Eurographics Workshop on Rendering, 1998.

Fabian M. Suchanek. Automated Construction and Growth of a Large Ontology. PhD thesis,
Saarland University, 2009.

Jian Sun, Jianfeng Gao, Lei Zhang, Ming Zhou, and Changning Huang. Chinese named entity
identification using class-based language model. In Proceedings of COLING, 2002.

György Szarvas, Richard Farkas, and Róbert Ormándi. Improving a state-of-the-art named
entity recognition system using the world wide web. Advances in Data Mining. Theoretical
Aspects and Applications, 2007.

Partha P. Talukdar, Thorsten Brants, and Mark L. Pereira. A Context Pattern Induction
Method for Named Entity Extraction. In Proceedings of the 10th Conference on Computa-
tional Natural Language Learning, 2006.

Qingzhao Tan and Prasenjit Mitra. Clustering-based incremental web crawling. Transactions
on Information Systems, 2010.

Katsumi Tanaka. Web knowledge extraction for improving search. In Proceedings of the
2nd International Conference on Ubiquitous Information Management and Communication,
2008.

Hristo Tanev, Jakub Piskorski, and Martin Atkinson. Real-Time News Event Extraction for
Global Crisis Monitoring. In Proceedings of the 13th International Conference on Natural
Language and Information Systems, 2008.

Jayram S. Thathachar, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar
Vaithyanathan, and Huaiyu Zhu. Avatar Information Extraction System. IEEE Data
Engineering Bulletin, 2006.

254 Bibliography

Mai-Vu Tran, Tien-Tung Nguyen, Thanh-Son Nguyen, and Hoang-Quynh Le. Automatic
Named Entity Set Expansion Using Semantic Rules and Wrappers for Unary Relations. In
Proceedings of the International Conference on Asian Language Processing, 2010.

Peter D. Turney. Mining the Web for synonyms: PMI-IR versus LSA on TOEFL. Lecture
Notes in Computer Science, 2001.

Peter D. Turney. Measuring Semantic Similarity by Latent Relational Analysis. In Proceedings
of the 19th International Joint Conference on Artificial Intelligence, 2005.

Esko Ukkonen. Approximate string-matching with q-grams and maximal matches. Theoretical
Computer Science, 1992.

Lance Ulanoff. Google Knowledge Graph Could Change Search Forever, 2012. URL {http:

//mashable.com/2012/02/13/google-knowledge-graph-change-search/}.

David Urbansky. WebKnox: Web Knowledge Extraction. Master’s thesis, Dresden University
of Technology, 2009.

David Urbansky, James A. Thom, and Marius Feldmann. WebKnox: Web Knowledge Ex-
traction. In Proceedings of the 13th Australasian Document Computing Symposium, 2008.

David Urbansky, Marius Feldmann, James A. Thom, and Alexander Schill. Entity Extrac-
tion from the Web with WebKnox. In Proceedings of the 6th Atlantic Web Intelligence
Conference, 2009a.

David Urbansky, Daniel Schuster, Maximilian Walther, and Alexander Schill. Focused Ques-
tion Answer Extraction From Q/A Rich Websites. In Proceedings of the 8th IADIS Inter-
national Conference WWW/Internet, 2009b.

David Urbansky, Robert Willner, and Alexander Schill. Ontofly: Ontology Engineering using
the Web. In Proceedings of the International Conference on Machine and Web Intelligence,
2010.

David Urbansky, Klemens Muthmann, Philipp Katz, and Sandro Reichert. Palladian: A
toolkit for Internet Information Retrieval and Extraction. Website, 2011a. URL {http:

//www.palladian.ws/documents/palladianBook.pdf}.

David Urbansky, Klemens Muthmann, Lars Kreisz, and Alexander Schill. Areca: Online
Comparison of Research Results. In Proceedings of the 5th International Conference on
Weblogs and Social Media, 2011b.

David Urbansky, Sandro Reichert, Klemens Muthmann, Daniel Schuster, and Alexander
Schill. An Optimized Web Feed Aggregation Approach for Generic Feed Types. In Pro-
ceedings of the 5th International Conference on Weblogs and Social Media, 2011c.

David Urbansky, James A. Thom, Daniel Schuster, and Alexander Schill. Entity List Com-
pletion using the Semantic Web. In Proceedings of the 10th International Semantic Web
Conference, 2011d.

David Urbansky, James A. Thom, Daniel Schuster, and Alexander Schill. Training a named
entity recognizer on the web. In Proceedings of the 12th International Conference on Web
Information System Engineering, 2011e.

Bibliography 255

Dietrich van der Weken, Mike Nachtegael, and Etienne E. Kerre. An overview of similarity
measures for images. In Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, 2002.

Cornelius J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 1979.

Vadim von Brzeski, Utku Irmak, and Reiner Kraft. Leveraging context in user-centric entity
detection systems. In Proceedings of the 16th Conference on Information and Knowledge
Management, 2007.

Vishnu Vyas, Patrick Pantel, and Eric Crestan. Helping editors choose better seed sets for
entity set expansion. In Proceedings of the 18th Conference on Information and Knowledge
Management, 2009.

Richard C. Wang and William W. Cohen. Language-Independent Set Expansion of Named
Entities Using the Web. In IEEE International Conference on Data Mining, 2007.

Wei Wang, Chuan Xiao, Xuemin Lin, and Chengqi Zhang. Efficient approximate entity
extraction with edit distance constraints. In Proceedings of the 35th SIGMOD International
Conference on Management of Data, 2009.

Wei Wang, Dongyan Zhao, Lei Zou, Dong Wang, and Weiguo Zheng. Extracting 5W1H Event
Semantic Elements from Chinese Online News. In WAIM, 2010.

Yefeng Wang. Annotating and recognising named entities in clinical notes. In Proceedings
of the International Joint Conference on Natural Language Processing: Student Research
Workshop, 2009.

Ziyang Wang. Incremental Web Search: Tracking Changes in the Web. PhD thesis, New
York University, 2006.

Michael S. Waterman and Temple F. Smith. Identification of common molecular subsequences.
Journal of Molecular Biology, 1981.

Martin Werner. Suche und Indexierung multimedialer Objekte im Web. Master’s thesis,
Dresden University of Technology, 2010.

Casey Whitelaw and Jon Patrick. Evaluating corpora for named entity recognition using
character-level features. Lecture notes in computer science, 2003.

Casey Whitelaw, Alex Kehlenbeck, Nemanja Petrovic, and Lyle Ungar. Web-Scale Named
Entity Recognition. In Proceedings of the 31st International SIGIR Conference on Research
and Development in Information Retrieval, 2008.

Robert Willner. Browserbasierte Erstellung und Erweiterung von Domänenontologien. Mas-
ter’s thesis, Dresden University of Technology, 2010.

Robert Willner. Erzeugung von klassifizierten Vorschlägen für die semi-automatische Er-
weiterung von Domänenontologien im Browser. Master’s thesis, Dresden University of
Technology, 2011.

256 Bibliography

Joel L. Wolf, Mark S. Squillante, Philip S. Yu, Jayachandran Sethuraman, and Leyla Ozsen.
Optimal crawling strategies for web search engines. In Proceedings of the 11th International
Conference on World Wide Web, 2002.

Dan Wu, Wee Sun Lee, Nan Ye, and Hai Leong Chieu. Domain adaptive bootstrapping
for named entity recognition. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2009.

Dekai Wu, Grace Ngai, Marine Carpuat, Jeppe Larsen, and Yongsheng Yang. Boosting
for named entity recognition. In Proceedings of the 6th Conference on Natural Language
Learning, 2002.

Fei Wu and Daniel S. Weld. Automatically refining the wikipedia infobox ontology. In
Proceedings of the 17th International Conference on World Wide Web, 2008.

Minji Wu and Amelie Marian. Corroborating Answers from Multiple Web Sources. In Pro-
ceedings of the 10th International Workshop on Web and Databases, 2007.

Martin Wunderwald. NewsX: Event Extraction from News Articles. Master’s thesis, Dresden
University of Technology, 2011.

Xiao Xu, Weizhe Zhang, Hongli Zhang, and Binxing Fang. Scale-adaptable recrawl strategies
for DHT-based distributed web crawling system. In Proceedings of the IFIP International
Conference on Network and Parallel Computing, 2010.

Sibel Yaman, Dilek Hakkani-Tur, and Gokhan Tur. Combining Semantic and Syntactic In-
formation Sources for 5-W Question Answering. In Proceedings of the 10zh Conference of
the International Speech Communication Association, 2009.

Jun Yang, Qing Li, Liu Wenyin, and Yueting Zhuang. Searching for flash movies on the Web:
A content and context based framework. World Wide Web, 2005.

Yiming Yang, Tom Pierce, and Jaime Carbonell. A study of retrospective and on-line event
detection. In Proceedings of the 21st International SIGIR Conference on Research and
Development in Information Retrieval, 1998.

Yiming Yang, Jaime G. Carbonell, Ralf D. Brown, Thomas Pierce, Brian T. Archibald, and
Xin Liu. Learning Approaches for Detecting and Tracking News Events. IEEE Intelligent
Systems, 1999.

Roman Yangarber. Verification of facts across document boundaries. In Proceedings of the
International Workshop on Intelligent Information Access, 2006.

Alexander Yates. Information Extraction from the Web: Techniques and Applications. PhD
thesis, University of Washington, 2007.

Alexander Yates, Michael J. Cafarella, Michele Banko, Oren Etzioni, Matthew Broadhead,
and Stephen Soderland. TextRunner: Open information extraction on the web. In Pro-
ceedings of Human Language Technologies: The Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Demonstrations, 2007.

Bibliography 257

Lei Zhang and Bing Liu. Entity set expansion in opinion documents. In Proceedings of the
22nd Conference on Hypertext and Hypermedia, 2011.

Shubin Zhao and Jonathan Betz. Corroborate and Learn Facts from the Web. In Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2007.

Zhiping Zheng. AnswerBus question answering system. In Proceedings of the 2nd International
Conference on Human Language Technology Research, 2002.

Xiaohua Zhou, Xiaodan Zhang, and Xiaohua Hu. Dragon Toolkit: Incorporating Auto-learned
Semantic Knowledge into Large-Scale Text Retrieval and Mining. In Proceedings of the 19th
IEEE International Conference on Tools with Artificial Intelligence, 2007.

