553 research outputs found

    Bootstrapped Low-Voltage Analog Switches

    Get PDF

    Low-Voltage Fully Differential CMOS Switched-Capacitor Amplifiers

    Get PDF

    A 12-bit SAR ADC for a flexible tactile sensor

    Get PDF
    Successive Approximation Register (SAR) Analog-to-Digital Converters (ADC) are some of the most efficient ADC topologies available, allowing excellent performance values at low power consumption across a wide range of sampling frequencies. The proposed ADC is aimed at a tactile sensor application, requiring a low-noise and lowpower solution. In addition, it should have high SNDR to detect even the weakest signals with precision. This thesis presents a 12-bit 400 kS/s SAR ADC implemented in a 180 nm CMOS technology for such a task. The designed SAR ADC uses a hybrid R-C DAC topology consisting of a chargescaling MSB DAC and a voltage-scaling LSB DAC, allowing a good trade-off between power consumption, layout area and performance while keeping the total DAC capacitance under reasonable values. Bootstrapped switches have been implemented to preserve high-linearity during the sampling period. A double-tail dynamic comparator has been designed to obtain a low-noise measurement while ensuring suitable delay values. Finally, regarding the logic, an asynchronous implementation and the conventional switching algorithm provide a simple but effective solution to supply the digital signals of the design. Pre-layout noise simulations with input frequencies around 200 kHz show SNDR values of 72.07 dB, corresponding to an ENOB of 11.67 bits. The total power consumption is 365 ?W while the Walden and Schreier figure-of-merit (FoM) correspond to values of 275 fJ/conversion and 160 dB, respectively

    A 10b SAR ADC with an Ultra-Low Power Supply

    Get PDF
    A 0.2V 10-bit 5 kS/s Successive Approximation Register ADC design is presented. This design achieves a very low power consumption due to the ultra-low power supply voltage used. Different aspects in the ADC design are optimized for 0.2V and modified to meet the speed requirements for the ADC. Preliminary Cadence simulations show a 4nW total power consumption with a peak SNDR of 57 dB and a FOM of 1.3 fJ/conversion-step

    Analysis of Analog to Digital Converter for Biomedical Applications

    Get PDF
    This paper presents an ADC which can be used for biomedical application like pacemaker. For the low-power operation, monotonic switching scheme and operating voltage reduction have been implemented in the design. The 10bit 1.8V rail-to-rail (SAR) ADC is realized using UMC 0.18µm CMOS process. Simulations are performed by spectre simulation. From static performance, offset error and full scale error are noticed. This performance issue can be corrected by reducing discharge in capacitor by implementing sampling switch as bootstrapped switch and proper selection of common-mode voltage where 20fF is used as unit capacitance

    A 10-bit SAR ADC with an Ultra-Low Power Supply

    Get PDF
    This paper presents a successive approximation analog-to-digital converter (SAR ADC) design, which operates with a 0.2 V power supply. The design utilizes a dynamic bulk biasing scheme to dynamically adjust the relative NMOS and PMOS strengths, which are very sensitive to temperature, process, and mismatch variations at low supply voltages. The design achieves a very low power consumption due to the 0.2 V supply. Several circuits in the design are optimized for full functionality at 0.2 V. Extracted simulations show a total power consumption of 9 nW with a peak SNDR of 61.3 dB and a Walden Figure of Merit of 1.91 fJ/conversion-step

    Design of Low-Voltage High-Performance Sample and Hold Circuit in 0.18μm CMOS Technology

    Get PDF
    Over the last two decade, digital signal processing (DSP) has grown rapidly in electronic systems to provide more reconfigureability and programmability in the applications, compared to analog component, which allows easier design and test automation. Digital circuit usage is increasing because of scaling properties of very large scale integration (VLSI) processes. This has allowed new generation of digital circuit to attain higher speed, more functionality per chip, low power dissipation, lower cost. Analog world, analog to digital converter (ADC) are used to convert the signal from analog to digital domain. For interfacing with DSP sample and hold (S/H) circuit is a key building block in, and is often used in front end of the ADCs to relax their timing requirement. The function of S/H circuit is to take samples to its input signal and hold these samples in its output for some period of time. The analog circuits in low voltage and low power have assumed great significance due to mixed-mode design required for modern electronic gadgets that demand portability and little power consumption. The mixed mode circuit has existence of both analog and digital circuits on the same chip and it is possible to have low voltage digital circuit in modern scaled-down technologies. However the same is not always true with analog circuits due to the constrains of device noise level and threshold voltage (VT) of MOSFET. Thus for analog circuit to co-exist on the same substrate along with digital system and share same supply voltage, the operation of analog circuit in low voltage environment is essential. The objective of this research is to design a low-voltage, high-performance S/H circuit that will address the above problems. A typical switch capacitor S/H circuit needs amplifier, switches and capacitor. New amplifier have been designed by using the architecture of single stage fully differential folded cascode low voltage operation transconductance amplifier (OTA) which has high gain and speed; the gin boosting technique was used for purpose of increasing the gain of the OTA. This technique does not affect the speed of the single stage. The transmission gate switches using CMOS devices, which have higher linearity and higher speed over a single MOS switch, have been designed for use in the S/H circuit. The switches are operated by clock generator with two non overlapping clock signals having low rise and fall time offering low noise for the S/H circuit. The clock was designed with 77.17ps rise and fall time to reduce the errors of driving MOS switches which results in higher linearity. The S/H circuit was designed to operate with 1.8V supply voltage in 0.18um technology. The sampling rate is 40MSPS with spurious free dynamic range (SFDR) 65.7dB and SNR 70dB
    corecore