80 research outputs found

    Model based control strategies for a class of nonlinear mechanical sub-systems

    Get PDF
    This paper presents a comparison between various control strategies for a class of mechanical actuators common in heavy-duty industry. Typical actuator components are hydraulic or pneumatic elements with static non-linearities, which are commonly referred to as Hammerstein systems. Such static non-linearities may vary in time as a function of the load and hence classical inverse-model based control strategies may deliver sub-optimal performance. This paper investigates the ability of advanced model based control strategies to satisfy a tolerance interval for position error values, overshoot and settling time specifications. Due to the presence of static non-linearity requiring changing direction of movement, control effort is also evaluated in terms of zero crossing frequency (up-down or left-right movement). Simulation and experimental data from a lab setup suggest that sliding mode control is able to improve global performance parameters

    Scaling behaviour of pressure driven micro hydraulic systems

    Get PDF
    This paper presents a lumped network approach for the modelling and design of micro-hydraulic systems. A hydraulic oscillator has been built consisting of hydraulic resistors, capacitors and transistors (pressure controlled valves). The scaling of micro-hydraulic networks consisting of linear resistors, capacitors and inertances has been studied. An important result is that to make smaller networks faster, driving pressures should increase with reducing size

    Comparison of linear control algorithms for a class of nonlinear mechanical actuators

    Get PDF
    This paper presents a comparison between various control strategies for a class of mechanical actuators common in heavy-duty industry. Typical actuator components are hydraulic or pneumatic elements with static nonlinearities, which are commonly referred to as Hammerstein systems. Such static nonlinearities may vary in time as a function of the load and hence classical inverse-model based control strategies may deliver sub-optimal performance. This paper investigates the ability of classical linear control strategies as lead, P, PI and PID control to satisfy tolerance interval for position error values, overshoot and settling time specifications. Due to the presence of static nonlinearity, control effort is also evaluated in terms of zero crossing frequency (up-down or left-right movement). Simulation and experimental data from a lab setup suggest that advanced control strategies may be needed to improve global performance parameters

    Nonlinear optimal wave energy converter control with application to a ap-type device

    Get PDF
    Wave energy converters (WECs) require active control to maximise energy capture over a wide range of sea conditions, which is generally achieved by making the device resonate. The exaggerated device motion arising at resonance, however, may result in nonlinear effects that are ignored by the linear models that are typically employed. In particular, nonlinear viscous forces are significant for particular device types, such as hinged aps, which we take as a case study in this paper. The paper develops a general nonlinear WEC control methodology based on pseudospectral methods. The continuous time energy maximization problem is fully discretised (both state and control), and the optimal solution is obtained by solving the resulting finite dimensional optimization problem. By way of example, the nonlinear viscous damping for a hinged ap WEC is incorporate into the control model. It is shown that the ratio of energy captured to energy dissipated is significantly increased with the nonlinear controller, compared to the linear case
    • …
    corecore