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Abstract: Wave energy converters (WECs) require active control to maximise energy capture
over a wide range of sea conditions, which is generally achieved by making the device resonate.
The exaggerated device motion arising at resonance, however, may result in nonlinear effects
that are ignored by the linear models that are typically employed. In particular, nonlinear
viscous forces are significant for particular device types, such as hinged flaps, which we take as
a case study in this paper. The paper develops a general nonlinear WEC control methodology
based on pseudospectral methods. The continuous time energy maximization problem is fully
discretised (both state and control), and the optimal solution is obtained by solving the resulting
finite dimensional optimization problem. By way of example, the nonlinear viscous damping for
a hinged flap WEC is incorporate into the control model. It is shown that the ratio of energy
captured to energy dissipated is significantly increased with the nonlinear controller, compared
to the linear case.

1. INTRODUCTION

Wave energy conversion is the process of transforming
energy carried by water waves in the sea into a usable
form of energy, e.g. electricity. Devices designed to fulfil
this task are known as Wave Energy Converters (WECs),
and this paper concerns the control of a particular type
of device, where the objective of the control system is
to maximise the amount of energy absorbed. The device
considered in this paper is a bottom-hinged vertical plate
(Fig. 1) which which exploits the same conversion principle
as the Oyster WEC being developed by Aquamarine power
Ltd. (Folley et al., 2007). The force exerted by the incident
waves (excitation force) induces a pitching motion on the
plate. Part of the mechanical work done by the excitation
force is converted into a usable form of energy by means
of the Power Take Off (PTO), a component of the WEC
capable of doing mechanical work on the oscillating plate
by exerting a force, which is the control variable.

Most studies, academic and commercial, focus on the use
of linear models; their appeal is mainly due to the pos-
sibility of developing analytical solutions for the control
problems and analysis of performance (Falnes, 2002). A
variety of sources introduce nonlinearities in the model
of WECs, from the PTO (Engja and Hals, 2007; Bacelli
et al., 2008) to the fluid-body interactions. While it is
reasonable to assume a linear approximation for the radia-
tion (Gilloteaux, 2007), some studies have shown the wide
disparity between linear and nonlinear models of excita-
tion forces (Merigaud et al., 2012), viscous forces (Folley
et al., 2007) and hydrostatic restoring forces (Zurkinden
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and Kramer, 2012). This paper focusses on viscous drag
applied to a hinged flap WEC as an example to illustrate
the application of the pseudospectral methods for the
nonlinear control of wave energy converters. However, the
nonlinear control framework is general and can be applied
to other nonlinearities and WEC device types.

The control problem is an optimal control problem because
the objective is to find value of the control (PTO force)
which maximises the amount of absorbed energy. In this
paper, the solution to the nonlinear optimal control of
a WEC is obtained by means of pseudospectral meth-
ods, which are a subset of the class of techniques used
for the discretisation of integral and partial differential
equations known as mean weighted residuals (Fornberg,
1996; Canuto et al., 2006). The first applications of pseu-
dospectral optimal control has been presented more than
fifteen years ago (Elnagar et al., 1995; Vlassenbroeck and
Van Dooren, 1988); however, only in recent years has it
received increasing attention (Garg et al., 2010; Ross and
Karpenko, 2012) and found application, mostly in flight
control.

Previous approaches to nonlinear control of WECs include
the application of Pontryagin’s maximum principle to the
continuous time optimal control problem (Babarit and
Clément, 2006; Nielsen et al., 2013) and its discretisation
(Tom and Yeung, 2013; Richter et al., 2013). However, dis-
cretisation using pseudospectral methods generally gives
a faster convergence rate (Benson, 2005), which results
in a smaller nonlinear program and reduced computing
time, thus suitable for real-time applications. Additionally,
the discretisation by means of the pseudospectral method
presented in this paper allows the convolution integral that
models the radiation force to be simplified analytically,
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Fig. 1. Flap-type wave energy converter. The shaded area
indicates the submerged region.

instead of the classical approach of using system identifi-
cation to build a state space model (Tom and Yeung, 2013)
or being completely neglected (Richter et al., 2013).

The remainder of the paper is organised as follow: the
dynamical model of the flap-type WEC is described in
Sec. 2, and a brief overview of pseudospectral optimal
control is provided in Sec. 3, while Sec. 4 shows a case
study for the flap-type device. Simulation results are
illustrated and discussed in Sec. 5, with conclusions drawn
in Sec. 6.

2. WEC DYNAMICAL MODEL

The device considered in this paper is depicted in Fig. 1.
It is a flap-type WEC hinged on the y axis at a depth
h=15m, with a width W=30m, thickness D=1m and a
uniform density ρb= 250kg/m3. The equation of motion is
derived from Euler’s second law, which says that the rate
of change of the angular momentum is equal to the sum
of the external moments of force about the axis y:

Iy θ̈ = γw(t) + γp(t).

Iy is the moment of inertia of the body with respect to the
axis y, γp is the torque applied by the PTO, and γw is the
resultant of the moments due to the interaction between
water and the oscillating body, which is composed of four
terms, as described by Folley et al. (2007):

γw(t) = γh(t) + γd(t) + γr(t) + γe(t).

The hydrostatic restoring moment γh is assumed to be
linearly proportional to the pitch angle (γh = Sh θ), where
Sh is the hydrostatic restoring coefficient. The excitation
torque γe is due to the effect of the incident waves, and is
calculated as γe(t) = he ∗ ζ, where ζ is the wave elevation
and ∗ denotes the convolution operator

f ∗ g =

∫ −∞
−∞

f(t− τ)g(τ)dτ.

The radiation torque γr is due to the motion of the body
which causes waves to be radiated away, and it depends
on the velocity and acceleration of the oscillating body as
(Cummins, 1962):

γr = −I∞ θ̈ − hr ∗ θ̇

The functions he and hr are, respectively, the impulse
responses of the excitation and radiation, while I∞ is
known as the asymptotic value of the added inertia for
“infinite frequency” (Falnes, 2002). The values of he, hr
and I∞ were calculated by means of the boundary element
software WAMIT (2013).

The nonlinear part of the dynamic model is due to the
moment of the drag force (fd), which is generally modelled
as proportional to the square of the fluid velocity normal
to the surface of the body (Journée and Massie, 2001):

fd = −(1/2)ρCdAv|v|,
where ρ is the density of the water, Cd is the drag
coefficient, A is the area normal to the direction of the
relative fluid flow and v is the velocity normal to the
surface (Fig. 1). When the body is in the vertical position
(θ = 0), for small oscillations, the normal velocity on the

vertical surface is related to the angular velocity as v ≈ rθ̇,
where r is the vertical distance between the hinge and the
point of the surface where the velocity is considered. The
contribution to the drag force of the infinitesimal surface
at distance r from the hinge, of width W and height dr
(Fig. 1) is dfd ≈ −(1/2)ρCdWr2θ̇|θ̇|dr. The infinitesimal
moment of the drag force applied with respect to the axis
y is dγv = r dfd; by integrating dγv from 0 to h, the total
moment of the drag force applied to the hinge is:

γv = −1

2

h∫
0

ρCdWr3θ̇|θ̇|dr = −Bv θ̇|θ̇|

where Bv = (1/8)ρCdWh4. According to Blevins (1992),
the drag coefficient of a plate orthogonal to the direction of
the flow is Cd = 1.9 (Blevins, 1992). The resulting equation
of motion is

It θ̈ = −Bv1 θ̇ − Bv2 θ̇|θ̇| − hr ∗ θ̇ − Sh θ + γp + γe. (1)

where It = (Iy + I∞), and Bv1 is the coefficient of a linear
dissipative term, which models additional losses occurring
at small velocities, when the effect of the quadratic term
is negligible (Journée and Massie, 2001).

3. PSEUDOSPECTRAL OPTIMAL CONTROL

Pseudospectral optimal control is a method for the direct
transcription of an optimal control problem (Ross and
Karpenko, 2012), which means that both control and state
variables are discretised, and the original control problem
is approximated by a nonlinear program.

Consider, for example, the optimal control problem: deter-
mine the control u(t) ∈ Rm, that minimises, or maximises,
the cost functional in the Lagrange form (Stengel, 1986):

J =

∫ T

0

g(x,u, t) dt, g : Rn × Rm × R→ R (2)

subject to the dynamic constraint

ẋ = f(x,u, t) t ∈ [0, T ], (3)

where x(t) ∈ Rn and f : Rn × Rm × R→ Rn.

The first step is to approximate the state and control
variables by considering, for the i-th components, the
following expansion:
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xi(t) ≈ xNi (t) :=

N∑
k=1

x̂ikφk(t) = Φ(t)x̂i (4)

ui(t) ≈ uNi (t) :=

N∑
k=1

ûikφk(t) = Φ(t)ûi (5)

where

x̂i = [x̂i1, x̂i2, . . . , x̂iN ]
T
,

ûi = [ûi1, ûi2, . . . , ûiN ]
T
,

and

Φ(t) = [φ1(t), φ2(t), . . . , φN (t)]

form a basis for an N -dimensional vector space, on which
the state and control variables are approximated. It is also
convenient to define the vectors X ∈ RNn and U ∈ RNm:

X =
[
x̂T1 , . . . , x̂

T
n

]T
U =

[
ûT1 , . . . , û

T
n

]T
.

As the result of the approximations, the cost functional
(2) depends only on the N(n + m) coefficients in X and
U , thus the optimisation problem is finite dimensional.

To illustrate the effect of the approximation on the dy-
namic equation, the derivative of the approximated state
variable is considered first, that is:

ẋNi =

N∑
k=1

x̂ikφ̇k(t) = Φ̇(t)x̂i. (6)

By substituting (4), (5) and (6) into (3), the approximated
dynamic equation in the residual form is then

ri(t) = ẋNi (t)− fi(xN (t),uN (t), t), i = 1, . . . , n (7)

where xN and uN are, respectively, the vectors of the
approximated state variables and control variables, the
elements of which are xNi defined in (4) and uNi defined in
(5). The coefficients x̂i and ûj for which the n residuals
(7) are minimised are calculated by using the pseudospec-
tralpectral method (Elnagar et al., 1995), also known as
collocation method. The method consists of collocating the
system dynamics at a number of time points tk, called
nodes, meaning that the coefficients x̂i and ûj are such
that the dynamic equation is satisfied at a number of
points tk, or equivalently, the residuals ri are zero at the
Nc nodes:

ri(tj) = Φ̇(tj)x̂i − fi (X,U , tj) = 0 (8)

which is a system of n×Nc equations because j = 1, . . . , Nc
and i = 1, . . . , n.

The functional J in (2) is also approximated by an appro-
priate quadrature formula with weights wj , as

JN =

∫ T

0

g(X,U , t) dt ≈
Nc∑
j=0

g(X,U , tj)wj , (9)

and the optimal control problem defined by the cost func-
tional (2) and the dynamic constraint (3) is transformed
into the finite dimensional optimisation problem: find U
and X to maximise (or minimise) (9) subject to the
constraints (8).

The collocation of the dynamic equation and of the cost
functional, that is the choice of the nodes tj , depend on
a number of factors, among which the expansions (4) and
(5) (Ross and Karpenko, 2012; Garg et al., 2010)

4. OPTIMAL WEC CONTROL

The optimal control problem that we are aiming to solve
is the maximisation of the absorbed energy, which is
equivalent to maximising the amount of work done by the
PTO moment

J =

∫ T

0

γp(t) θ̇(t) dt, (10)

subject to the constraint given by the dynamic model
in (1). The first step is to choose the expansion for
the state and control and, given the oscillatory nature
of the problem, a zero-mean trigonometric polynomial
(truncated Fourier series) is a sensible choice, thus:

xi(t) ≈
N/2∑
k=1

xcik cos(kω0t) + xsik sin(kω0t) = Φ(t)x̂i (11)

u(t) ≈
N/2∑
k=1

uck cos(kω0t) + usk sin(kω0t) = Φ(t)û (12)

where

x̂i =
[
xci1, x

s
i1, . . . , x

c
iN2

+ xs
iN2

]T
û =

[
uc1, u

s
1, . . . , u

c
N
2

+ usN
2

]T
Φ(t) =

[
cos(ω0t), sin(ω0t), . . . , cos

(
N

2
ω0t

)
, sin

(
N

2
ω0t

)]
and the fundamental frequency is ω0 = 2π/T .

By substituting the state (11) and control (12) expansions
into the cost function (10), the approximated absorbed
energy is

JN =

∫ T

0

ûTΦT (t) Φ(t)x̂2 dt =
T

2
ûT x̂2, (13)

because of the orthogonality of the basis Φ, that is
〈φi, φj〉 = δijT/2, where δij is the Kronecker delta.

The derivative of the state variables in (6), given the
approximation of the state in (11), becomes

ẋNi = Φ̇(t)x̂i = Φ(t) Dφ x̂i (14)

where Dφ ∈ RN×N is a block diagonal matrix, with the
k-th block is defined as

Dk
φ =

[
0 k ω0

−k ω0 0

]
.

The state vector is composed of the angular position and
velocity, that is, x = [x1, x2]T = [θ, θ̇]T , and the control
input is the PTO moment (u = γp), thus n = 2 and
m = 1. Consequently, the dynamic equation (1) can be
transformed into the system of equations:

ẋ1 = x2 (15)

It ẋ2 = −Bv1x2 −Bv2x2|x2| − hr ∗ x2

− Shx1 + u− γe (16)

By applying the approximations (11) and (14) to the first
state equation (15), the result is

Φ(t) Dφ x̂1 − Φ(t) x̂2 = 0 ⇔ Dφ x̂1 − x̂2 = 0. (17)

because the elements of Φ form basis.

The residuals of the second state equation (16), collocated
at the nodes tj are
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rj = It Φj Dφ x̂2+Bv1Φj x̂2+Bv2Φj x̂2|Φj x̂2|+ShΦj x̂1

+ (hr ∗ Φ)tj x̂2 − Φj û− γe(tj). (18)

where Φj = Φ(tj). The convolution term can be sim-
plified by substituting the approximation (11) into the
convolution integral; after some basic derivations involving
trigonometric identities and the definition of the sine and
cosine transforms, which we omit for brevity, the result is

(hr ∗ Φ)tj x̂2 =

∫ +∞

−∞
hr(tj − τ)xN2 (τ) dτ (19)

= Φj (G − I∞DΦ) x̂2, (20)

where the matrix G ∈ RN×N is block diagonal, and the
k-th block is

Gk =

[
B(k ω0) k ω0A(k ω0)

−k ω0A(k ω0) B(k ω0)

]
.

The frequency domain coefficients A and B are related
to the impulse responses by means of the Cummins rela-
tions (Cummins, 1962), and they are provided directly by
WAMIT (2013).

Substituting (20) into (18), the residuals simplify to

rj = IyΦj Dφ x̂2 +Bv1Φj x̂2 +Bv2Φk x̂2|Φj x̂2|
+ Φj G x̂2 + ShΦj x̂1 − Φj û− γe(tj) = 0. (21)

The nodes tj are uniformly spaced between 0 and T −∆t:

tj = j∆t, with ∆t = T/(N + 1) and j = 0, . . . , N.

The vectors U and X, that give the optimal profile for the
PTO moment and the motion of the flap, respectively, are
the solutions of the nonlinear program which maximises
the absorbed energy (13), subject to the 2N equality
constraints due to the dynamic equations (17) and (21).

5. RESULTS

Simulations have been carried out in Matlab and the
algorithm used for solving the optimisation problem is the
Sequential Quadratic Programming implemented by the
fmincon function included in the Optimization Toolbox.

Figure 2 presents simulation results for an incident wave of
amplitude |ζ|=2m and period T=10s, where the state vari-

ables (θ, θ̇) and the control input (γp) have been approx-
imated using seven frequency components each (N=14).
Figure 2a clearly shows that the controller aims to limit
the angular velocity of the device, as the time profile of
θ̇ resembles a “flattened” sinusoid and time profile of the
angular position seems to approach a motion at constant
speed in the time intervals t ∈ [1.5, 4] and t ∈ [6, 8.5]. The
PTO and the excitation moments are depicted in Fig. 2b
while the instantaneous absorbed power is in Fig. 2c. Com-
parison of Fig. 2a and 2b also shows that the controller
tries to keep the velocity in phase with the excitation, as
in happens in the linear case (Falnes, 2002).

Figure 3 shows the frequency contents of the state and
control variables, in addition to the absorbed power. The
amplitude of the frequency components decay quickly as
the frequency increases, meaning that only a few com-
ponents are necessary for a good approximation. This
is confirmed by looking at Table 1, where the average
absorbed power (Pu), defined as

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

20

Time (s)

 

 

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4
x 10

7

Time (s)

M
o
m

e
n
ts

 (
N

m
)

 

 

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

A
b
s
. 
p

o
w

e
r 

(M
W

) 

Time (s)

position (deg)

velocity (deg/s)

PTO force

Exc force

Fig. 2. Motion, forces and absorbed power for T = 10s,
ζa = 2m and for N = 14.
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Pu =
1

T
JN =

1

2
ûT x̂,

is listed for different values of the expansion order N , and
for different values of the wave period. The computation
times of the optimisation problems, using a laptop com-
puter with a Core i7 processor working at 2.8GHz are
listed in brackets. Based on the results given in Table 1,
the value of N = 10 has been used for the simulations
presented in the rest of this paper as the best trade-off
between speed and accuracy. Thus, position, velocity and
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PTO force are each approximated with a trigonometric
polynomial with five frequency components, and the re-
sulting approximate optimal control problem is a nonlinear
program with 30 variables and 20 constraints.

In Fig. 4, the average absorbed power is depicted as func-
tion of the wave period and wave amplitude. It is inter-
esting to note that, with the model including a quadratic
viscous damping term, the absorbed power increases with
|ζ| 32 rather than |ζ|2, as in the linear case (Falnes, 2002).
This fact is highlighted in Fig. 5, where the solid curve is
the absorbed power as function of the wave amplitude |ζ|,
when only the linear dissipative term is present (Bv2 = 0);
in this case, Pu is proportional to the square of the wave
amplitude (Pu ∝ |ζ|2). The dashed curve is the absorbed
power when the nonlinear term is also included (Bv1 6=
0, Bv2 = 0), and Pu increases with the wave amplitude as

Pu ∝ |ζ|
3
2 .

Of particular interest is Fig. 6, which depicts the ratio of
the average absorbed power over the sum of the power
radiated and the power dissipated by the linear and
quadratic terms, Pu/Pd, where

Pd =
1

T

∫ T

0

(
Bv1 θ̇ +Bv2 θ̇|θ̇|+ hr ∗ θ̇

)
θ̇dt.

Note that the ratio Pu/Pd is always greater than one,
which is the value of Pu/Pd when the model is linear
(Falnes, 2002). This fact does not imply that more en-
ergy is being absorbed, but only that a larger fraction
of the total power flowing through the device is being
converted, as the overall absorbed power is smaller because
it increases with |ζ| 32 . This result is consistent with the
linear absorption theory; in fact, when the amplitude of
the incident wave is small, the linear dissipative term is
dominant with respect to the quadratic term, and the ratio
Pu/Pd → 1, which is what happens in the linear case. The
ratio Pu/Pd becomes close to 1 also when the wave period
is close to T = 5s, for which the linear radiation damping
B becomes the dominant term (Fig. 7).

An additional significant difference with the linear case can
be observed in Fig.8, which depicts the ratio of the reactive
power over the absorbed power, where the average reactive
power is defined as the power that the PTO returns to the
oscillating body:

Preac = − 1

T

∫ T

0

min [P (t), 0] dt, where P (t) = θ̇ γp.

The ratio Preac/Pu is generally small for the range of wave
periods and amplitudes considered, when the quadratic
term becomes dominant, which is a favourable characteris-
tic when designing a wave energy converter, because PTOs
that are unable to return power to the oscillating body are
generally less expensive. The consistency with the linear
model can also be observed from the results in this figure
(Fig.8) when considering small wave amplitudes, where
the amount of reactive power compared to the absorbed
power increases considerably. It is well known that, with
an optimal linear controller, the amount of reactive power
is large when the period of the incident wave is far away
from the resonance period (Falnes, 2002).

Table 1. Absorbed energy (kW) and computing
time (in brackets), as function of the order of
the approximation (N) and of the wave period

(T) for a wave amplitude of |ζ| = 2m.

N T=4s T=8s T=14s T=20s

6 563.7 (0.16) 1463 (0.19) 685.5 (0.14) 399.8 (0.18)
10 564.5 (0.43) 1472 (0.31) 687.5 (0.32) 401.5 (0.37)
14 654.6 (0.89) 1473 (0.64) 687.7 (0.58) 401.6 (0.56)
18 1473 (1.17) 687.7 (0.98) 401.6 (0.79)
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6. CONCLUSION

This paper presents a nonlinear WEC control framework
using pseudospectral methods, which are known for their
convergence properties, in the sense that few coefficients
are required for obtaining a good approximation, con-
firmed by the data in Table 1. The consequence is that
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the dimension of the nonlinear program and its computing
time are small, thus the technique is a good candidate for
being implemented in real time applications.

Analysis of results for monochromatic waves at different
frequencies and amplitudes show significant differences
with linear theory. In particular the optimal nonlinear
controller provides better ratio between the average ab-
sorbed power and dissipated power, when the effect of the
nonlinear terms are predominant. This is the case for the
hinged flap device which provides the application example.
Additionally, the optimal nonlinear control law requires
the PTO to return a smaller fraction of reactive power to
the oscillating body compared to the optimal linear control
law, placing less demands on the PTO system. In addition,
more cost effective and reliable PTO configurations, such
as hydraulic PTOs, which are not well suited for the im-
plementation of the linear control law, due to their strong
nonlinearities (Bacelli et al., 2008), can be employed.
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