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This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been
used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is
such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison,
minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results
give superior performance of the proposed neural control scheme.

1. Introduction

Process plants consist of hundreds, or even thousands, of
control loops all networked together to produce a product
to be offered for sale. Each of these control loops is designed
to keep some important process variables such as pressure,
flow, level, and temperature within a required operating
range to ensure the quality of the end product. Each of
these loops receives and internally creates disturbances that
detrimentally affect the process variable, and interaction from
other loops in the network provides disturbances that influ-
ence the process variable. To reduce the effect of these load
disturbances, sensors and transmitters collect information
about the process variable and its relationship to some desired
set points. A controller then processes this information and
decides what must be done to get the process variable back to
where it should be after a load disturbance occurs. When all
the measuring, comparing, and calculating are done, some
type of final control element must implement the strategy
selected by the controller. The most common final control
element in the process control industries is the control valve.
The control valve manipulates a flowing fluid, such as gas,
steam, water, or chemical compounds, to compensate for the
load disturbance and keep the regulated process variable as
close as possible to the desired set point. Control valves adjust

the temperature, pressure, flow rate, and so forth by changing
the flow rate. Figure 1 shows a reverse-acting diaphragm
actuator of pneumatic control valve. Pneumatic control valves
are still the most used valves in the process industries, due
to their low cost and simplicity. Pneumatic valves are used
extensively in various industries today. Industry standard
has been established that details the vibration, humidity,
thermal, salt spray, and temperature extremes that these
valves must operate within. This makes the design of valve
control systems a very challenging task. Control valves have
twomajor components, valve body housing and the actuation
unit. One factor in the quality of the final end product is
the improvement of the control loop performance. A critical
component in the loop is the final control element, the control
valve package. Optimized actuator parameters play a vital
role in the dynamic performance of the pneumatic control
valve. Hägglund [1] presented a procedure that compensates
for static friction (stiction) in pneumatic control valves.

The compensation is obtained by adding pulses to the
control signal. The characteristics of the pulses are deter-
mined from the control action. The compensator is imple-
mented in industrial controllers and control systems, and
the industrial experiences show that the procedure reduces
the control error during stick-slip motion significantly com-
pared to standard control without stiction compensation.
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Figure 1: Reverse-acting diaphragm actuator of a pneumatic control
valve.

The oscillations caused by static friction (stiction) in pneu-
matic control valves cause losses in quality and expense of
raw materials. The input-output behavior of a pneumatic
control valve is affected by stiction in valve. De Souza et al. [2]
presented a well-known stiction compensation method that
reduced variability both at process variable and pneumatic
valve stem movement. The two-move method was revisited
in their research and it was shown that assumptions on the
knowledge of steady-state stem position of control valve that
assured equality of set point and the controlled variable was
not easily achievable.

Champagne and Boyle [3] reviewed the pneumatic actua-
tor and positioner parameters that affect the control package
performance.Thiswas done through the use of a control valve
package computer model to assess the dynamic performance.
The attributes of spring return versus double-acting actuators
were illustrated. The effects of supply pressure, step size,
load margin, flow, actuator volume, and design style were
investigated through the use of mathematical simulations of
pneumatic control valve dynamic performance.

Bondgraph is a graphical representation of a physical
dynamics system. It is similar to the better known block
diagram and signal flow, with the major difference that
the arcs in bondgraphs represent bidirectional exchange of
physical energy, while those in block diagrams and signal-
flow graphs represent unidirectional flow of information.
Also, bondgraphs are multidomain and domain neutral. This
means that a bondgraph can incorporate multiple domains
simultaneously. The fundamental idea of a bondgraph is
that power is transmitted between connected components
by a combination of “effort” and “flow” (generalized effort
& generalized flow). Bondgraphs were devised by Paynter
[4] at MIT in April 1959 and subsequently developed into
a methodology together with Karnopp et al. [5]. Early
prominent promoters of bondgraph modeling techniques
among others were Thoma [6], Dixhoorn, and Dransfield.
They contributed substantially to the dissemination of bond-
graph modeling in Europe, Australia, Japan, China and
India. Athanasatos and Costopoulos [7] used the bondgraph
method for finding the proactive fault in 4/3 way direction

control valve of a high-pressure hydraulic system. The accu-
racy of the bondgraph model was verified by comparing
its response to the response of an actual hydraulic system.
Zuccarini et al. [8] utilized the bondgraph as boundary
condition for a detailed model of an idealized mitral valve. A
specific application in cardiovascular modeling was demon-
strated by focusing on a specific example, a 3D model of
the mitral valve coupled to a lumped parameter model
of the left ventricle. Ekren et al. [9] used three different
control algorithms such as proportional, integral, differential
(PID), fuzzy logic, and artificial neural network (ANN)
for control of a variable speed compressor and electronic
expansion valve in a chiller system. The results showed
that ANN controller has lower power consumption of 8.1
percent and 6.6 percent than both PID and fuzzy controllers,
respectively. Choi et al. [10] havemodeled a systemof position
control which uses a single-rod cylinder activated by an
electrorheological (ER) valve. From the state-space model for
the governing equations, a neural network control scheme
has been synthesized to achieve the position control of the
cylinder system. The results showed the effectiveness of the
proposed methodology.

In this paper, a control scheme was investigated to
control a pneumatic control valve system. The robustness
of the proposed scheme was presented through computer
simulation and the efficacy of the scheme is shown both in
the time and amplitude domains. A sliding-stem pneumatic
control valve ismodeled by bondgraphmethod.Then, several
control schemes have been used for control of valve in order
to compare the response characteristics of these different
schemes.

This research is organized as follows. Section 2 recalls
the bondgraph model of valve and proposes equations of
motion of the valve. Section 3 develops the control schemes
of the valve. Simulation results and discussion of the control
schemes are given in Section 4. The paper is concluded with
Section 5.

2. Bondgraph Model of Valve and Equations

The bondgraph model of the valve is shown in Figure 2.
In this model, 𝑆𝐸 is the inlet pressure of the system. The
pressure changes to force by multiplying in effect area of the
diaphragm. In bondgraph, this transformer is modeled by
𝑇𝐹. Element 𝑅 is the friction of the system. Element 𝐼 is the
movable mass of valve and diaphragm Element 𝐶 represents
the spring of the valve actuator.

Also 1-junction is a common flow junction. 1-junctions
have equality of flows and the efforts sum up to zero with the
same power orientation. In fact, junctions can connect two
or more bonds. The direction of the half arrows (⇀) denotes
the direction of power flow given by the product of the effort
and flow variables associatedwith the power bond.The bonds
in a bondgraphmay be numbered sequentially using integers
starting with 1. The two 1-junctions in the bondgraph shown
can be uniquely identified as (S 1 2) and (S 4 5 6); similarly
symbols like 𝑆𝐸

1
, 𝑅
6
can be used to identify a particular

element. This system has two state variable 𝑃
4
and 𝑞

5
. 𝑞
5
is
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Figure 2: Bondgraph control valve actuator.

the displacement of valve stem and the variation of the spring
length. Also V

4
= 𝑃
4
/𝐼
4
is the velocity of the valve stem. The

equations of motion are derived using bondgraph method as
below:

�̇�
4
= 𝐴 × 𝑆𝐸

1
− 𝐾
3
𝑞
5
−
𝑅
6

𝐼
4

𝑃
4
, (1)

̇𝑞
5
=
𝑃
4

𝐼
4

. (2)

Now, if the velocity and position of stem are zero in the initial
condition,𝑋(0), then we have the following:

𝑋 (0) = [
𝑃
4
(0)

𝑞
5
(0)

] = [
0

0
] . (3)

By derivation of relation (2) with respect to time we have the
following:

̈𝑞
5
=
�̇�
4

𝐼
4

. (4)

By substitution of �̇�
4
from (1) into (4) we have the following:

̈𝑞
5
=
𝐴 × 𝑆𝐸

1
− 𝐾
3
𝑞
5
− (𝑅
6
/𝐼
4
) 𝑃
4

𝐼
4

. (5)

By substitution of 𝑃
4
from (2) into (5) we have the following:

̈𝑞
5
=
1

𝐼
4

(𝐴 × 𝑆𝐸
1
− 𝐾
3
𝑞
5
− 𝑅
6
̇𝑞
5
) . (6)

Using Laplace transformation of (6), we have the following:

𝑞
5
(𝑠)

𝑆𝐸
1
(𝑠)

=
(𝐴/𝐼
4
)

𝑠2 + (𝑅
6
/𝐼
4
) 𝑠 + (𝐾

3
/𝐼
4
)
. (7)

Equation (7) is the transfer function of the valve. The results
of bondgragh model of valve shows that the response of the
system is identical with the result in [11].

3. Control Schemes

For completeness, this section briefly reviews the control
schemes, which are the observer control and the NN control
proposed in this paper.

3.1. State Observer. The state observer estimates the state
variables using the output and control input value. At this
time, it can be configured only when the system is observable.
𝑥 is the observed state vector. Let us consider the system that
is defined in form of a state-space representation as follows:

�̇� = 𝐴𝑥 + 𝐵𝑢, (8)

𝑦 = 𝐶𝑥 + 𝐷𝑢, (9)

where 𝑥 is called the state vector, �̇� the derivative of the state
vector with respect to time, 𝑦 the output vector, and 𝑢(𝑡) the
input or control vector. Also 𝐴 is the system matrix, 𝐵 the
input matrix, 𝐶 the output matrix, and𝐷 direct transmission
matrix. Suppose that 𝑥 is an estimation for the state vector 𝑥.
Then, we have the following:

̇̃𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐾
𝑒
(𝑦 − 𝐶𝑥) . (10)

Formula (10) indicates the state observer. 𝑦 and 𝑢 are inputs
and 𝑥 is output. The term at the right end of (10) corrects the
difference between the measured output 𝑦 and the estimated
output 𝑥. 𝐾

𝑒
works as the weighting matrix. Even though

there is a difference between the matrix 𝐴 and 𝐵 of the
actual system and the model, the influence is reduced by this
correction. Deduct formula (10) from formula (8) to get the
error of the observer. Then,

�̇� − ̇̃𝑥 = (𝐴 − 𝐾
𝑒
𝐶) (𝑥 − 𝑥) . (11)

The result is formula (11). Suppose that the observer error (𝑥−
𝑥) is 𝑒; that is to say, 𝑒 = (𝑥 − 𝑥), formula (12) is arranged as
follows:

̇𝑒 = (𝐴 − 𝐾
𝑒
𝐶) 𝑒. (12)

From formula (12), we can recognize that the dynamic
characteristics of the observer error are determined by the
eigenvalue of 𝐴 − 𝐾

𝑒
𝐶. If 𝐴 − 𝐾

𝑒
𝐶 is a stable matrix, the

error vector approaches zero related to any initial value 𝑒(0).
That is to say, 𝑥(𝑡) approaches 𝑥(𝑡) irrespective of the value
of 𝑥(0) and 𝑥(0). If we select the eigenvalue of this matrix
well, the error vector can approach to zero fast. If the given
system is completely observable, we can make the eigenvalue
of 𝐴 − 𝐾

𝑒
𝐶 as we want as selecting 𝐾

𝑒
well. That is to say,

𝐾
𝑒
is selected to make 𝐴 − 𝐾

𝑒
𝐶 as we want and this is the

gain matrix of the state observer. The observer discussed
thus far is designed to reconstruct all of the state variables.
In practice, some of the state variables may be accurately
measured. Such accurately measurable state variables need
not to be estimated. An observer that estimates fewer than
𝑛 state variables, where 𝑛 is the dimension of the state vector,
is called a reduced-order observer. The details of designing a
minimum-order observer have been presented in [12].

3.2. Proposed Neural Controller. The neural networks
employed in this work were of the recurrent type. Recurrent
networks have the advantage of being able to model dynamic
systems accurately and in a compact form [13]. A recurrent
network can be represented in a general diagrammatic form
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Figure 3: (a) Recurrent hybrid network structure. (b) Block diagram of recurrent hybrid network.

as illustrated in Figure 3(a). This diagram depicts the hybrid
hidden layer as comprising a linear part and a nonlinear
part and shows that, in addition to the usual feedforward
connections, the networks also have feedback connections
from the output layer to the hidden layer and self-feedback
connections in the hidden layer. The reason for adopting a
hybrid linear/non-linear structure for the hidden layer will
be evident later.

At a given discrete time 𝑡, let 𝑢(𝑡) be the input to a
recurrent hybrid network, 𝑦(𝑡) the output of the network,
𝑥
1
(𝑡) the output of the linear part of the hidden layer, and

𝑥
2
(𝑡) the output of the nonlinear part of the hidden layer.

The operation of the network is summarized by the following
equations (also see Figure 3(b)):

𝑥
1
(𝑡 + 1) = 𝑊

𝐼1
𝑢 (𝑡 + 1) + 𝛽𝑥

1
(𝑡) + 𝛼𝐽

1
𝑦 (𝑡) ,

𝑥
2
(𝑡 + 1) = 𝐹 {𝑊

𝐼2
𝑢 (𝑡 + 1) + 𝛽𝑥

2
(𝑡) + 𝛼𝐽

2
𝑦 (𝑡)} ,

𝑦 (𝑡 + 1) = 𝑊
𝐻1
𝑥
1
(𝑡 + 1) + 𝑊

𝐻2
𝑥
2
(𝑡 + 1) ,

(13)

where 𝑊𝐼1 is the matrix of weights of connections between
the input layer and the linear hidden layer,𝑊𝐼2 is the matrix
of weights of connections between the input layer and the
non-linear hidden layer, 𝑊𝐻1 is the matrix of weights of
connections between the linear hidden layer and the output
layer, 𝑊𝐻2 is the matrix of weights of connections between
the non-linear hidden layer and the output layer, 𝐹{ } is the
activation function of neurons in the non-linear hidden layer
and 𝛼 and 𝛽 are the weights of the self-feedback and output
feedback connections. 𝐽

1
and 𝐽
2
are, respectively, (𝑛

𝐻1
× 𝑛
𝑂
)

and (𝑛
𝐻2

× 𝑛
𝑂
) matrices with all elements equal to 1, where

𝑛
𝐻1

and 𝑛
𝐻2

are the numbers of linear and non-linear hidden
neurons, and 𝑛

𝑂
is the number of output neurons. If only

linear activation is adopted for the hidden neurons, the above
equations are simplified to

𝑦 (𝑡 + 1) = 𝑊
𝐻1
𝑥 (𝑡 + 1) , (14)

𝑥 (𝑡 + 1) = 𝑊
𝐼1
𝑢 (𝑡 + 1) + 𝛽𝑥 (𝑡) + 𝛼𝐽

1
𝑦 (𝑡) . (15)

Replacing 𝑦(𝑡) by𝑊𝐻1𝑥(𝑡) in (15) gives

𝑥 (𝑡 + 1) = 𝑊
𝐼1
𝑢 (𝑡 + 1) + (𝛽𝐼 + 𝛼𝐽

1
𝑊
𝐻1
) 𝑥 (𝑡) , (16)

where 𝐼 is a (𝑛
𝐻1

× 𝑛
𝐻1
) identity matrix.

Equation (16) is of the form
𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡 + 1) , (17)

where 𝐴 = 𝛽𝐼 + 𝛼𝐽
1
𝑊
𝐻1 and 𝐵 = 𝑊

𝐼1. Equation (17)
represents the state equation of a linear system of which
𝑥 is the state vector. The elements of 𝐴 and 𝐵 can be
adjusted through training so that any arbitrary linear system
of order 𝑛

𝐻1
can be modelled by the given network. When

non-linear neurons are adopted, this gives the network the
ability to perform non-linear dynamic mapping and thus
model non-linear dynamic systems [14, 15]. The existence
in the recurrent network of a hidden layer with both linear
and non-linear neurons facilitates the modeling of practical
non-linear systems comprising linear and non-linear parts.
Figure 4 shows the proposed control system for a pneumatic
valve actuator. The system comprises a PD controller and
an NN controller, which is a recurrent hybrid network used
to model inverse dynamics of the valve. The NN is trained
online during the control to make the system able to adapt to
changes. The control architecture illustrated in Figure 3 was
implemented on a personal computer using Neural Network
Toolbox of MATLAB [16].

4. Results and Discussion

Table 1 shows the parameters of a sliding-stem pneumatic
control valve.
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Table 1: Valve parameters [11].

Name of variable Parameter Value
Effective area of diaphragm 𝐴 0.196 ft2

Spring constant 𝐾 6790
Movable mass 𝐼 (𝑀) 0.03 slug
Resistance and friction coefficient 𝑅 1 lb ⋅ s/ft
Air pressure SE 140 lb/ft2

system
Neural 

controller

PD
controller

u y

+

Valve actuator

+

+

Figure 4: Block diagram of the proposed neural control system.

By substitution of Table 1 into (7), we have the following:

𝑞
5
(𝑠)

𝑆𝐸
1
(𝑠)

=
6.53

𝑠2 + 33.33𝑠 + 226333.3
. (18)

Matrices of the state space equations of the valve are as
follows:

𝐴 = [
0 1

−226333.33 −33.33
] , 𝐵 = [

0

914.2
] ,

𝐶 = [1 0] , 𝐷 = 0.

(19)

In this section, the design of control systemwith full- and
minimum order observers is considered, when the system
has reference inputs or command inputs. The output of
the control system should follow the input. In following,
the command input, the system should exhibit satisfactory
performance (a reasonable rise time, overshoot, settling time,
and so on). We consider control systems that are designed by
use of the pole placement with observer approach. When a
system has a reference input, several different block diagram
configurations are conceivable, each having an observer
controller. Two of these configurations are feedforward
and feedback path. We would like to design the full- and
minimum order observer controllers such that in the unit
step response the maximum overshoot is less than 10% and
settling time is about 0.5 sec. We first design the controller by
finding the desired characteristic equation. A 10% overshoot
and a settling time of 0.5 second yield 𝜉 = 0.591 and 𝜔

𝑛
=

13.53; thus, the characteristic equation for dominant poles is
𝑠
2
+ 16𝑠 + 183.1 = 0, where the dominant poles are located at

−8±𝑗10.91 [17]. Hence, choose the desired closed-loop poles
at 𝑠 = 𝜇

𝑖
(𝑖 = 1, 2), where

𝜇
1
= −8 + 𝑗10.91, 𝜇

2
= −8 − 𝑗10.91. (20)
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Figure 5: The unit step response of control system with full-order
observer in feedforward path.

Also, we choose the desired observer poles at 𝑠 = −680,
𝑠 = −680. These poles create a stable controller. The state
feedback gain matrix 𝐾 and the observer gain matrix 𝐾

𝑒
can

be obtained as follows:

𝐾 = [−247.3389 −0.019] ,

𝐾
𝑒
= [1326.67 191882.08]

𝑇

.

(21)

The transfer function of the controller observer is obtained as
follows:

𝐺
𝑠
(𝑠) =

−331800𝑠 − 52710000

𝑠2 + 1343𝑠 + 213300
. (22)

If the full-order observer controller is placed in the feedfor-
ward path, from this block diagram, the closed-loop transfer
function (CLTF) is obtained as follows:

CLTF =
𝑁(𝑠
2
9.43𝑒 − 9 − 303300000𝑠 − 4.818𝑒10)

(𝑠4 + 1376𝑠3 + 484300𝑠2 + 7647000𝑠 + 84630000)
.

(23)

We can determine the value of the gain𝑁, such that for a unit
step input 𝑟, the output 𝑦 is unity as time approaches infinity.
Thus we choose the following:

𝑁 =
84630000

−4.818𝑒10
= −1.7565𝑒 − 3. (24)

The unit step response of the system is shown in Figure 5.
Notice that the maximum overshoot is 9.99% and the settling
and rise times are 0.384 and 0.198 second, respectively.

If we choose the full observer controller in the feedback
path, then, the closed-loop transfer function is obtained as
follows:

CLTF =
𝑁(914.2𝑠

2
+ 1227000𝑠 + 1.95𝑒8)

(𝑠4 + 1376𝑠3 + 484300𝑠2 + 7647000𝑠 + 84630000)
.

(25)
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Table 2: Structural and training parameters of neural controllers.

Controller 𝜂 𝜇 𝛼 𝛽 𝑛 𝑁 𝐴
𝐹

NC 0.0001 0.01 0.9 0.8 8 + 8 30000 𝐻
𝑇

Note. 𝜂: learning term; 𝜇: momentum term; 𝛼: feedback gain from output layer to hidden layer; 𝛽: feedback gain from hidden layer to itself; 𝑛: linear + nonlinear
neurons in the hidden layer;𝑁: iteration numbers; 𝐴𝐹: activation function for non-linear neurons;𝐻𝑇: hyperbolic tangent.
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Figure 6: The unit step response of control system with full-order
observer in feedback path.
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Figure 7: The unit step response of valve without any controller.

Thus, we can determine the value of the gain𝑁 as follows:

𝑁 =
84630000

1.95𝑒8
= 0.434. (26)

The unit step response of control system with full-order
observer in feedback path is shown in Figure 6. Notice that
themaximumovershoot is 10% and the settling and rise times
are 0.384 and 0.198 second, respectively.

Figure 7 shows the step response of valve stem without
any controller.Here, the over shoot is too high and the settling
time is also 0.178 second. The output has an overshoot less
than 90% and rise time is 0.00337 second. But the design of
full- and minimum order observer controller for valve led to
the well unit step response characteristic.

The valve system was controlled using the proposed
neural control system. Structural and learning parameters of
the proposed neural network are given in Table 2.

If the learning rate is made too large, the algorithm
becomes unstable. If the learning rate is set too small,
the algorithm takes a long time to converge. Usually the
learning rate is a constant real number between 0.1 and
1. It is not practical to determine the optimal setting for
the learning rate before training and, in fact, the optimal
learning rate changes during the training process, as the
algorithm moves across the performance surface. The Mean
square error (MSE) is defined as performance of the net.
A backpropagation (BP) algorithm is designed to reduce
error between the actual output and the desired output of
the network in a gradient descent manner [13]. The hidden
layer is responsible for internal representation of data and
the information transformation between input and output
layers. If there are too few neurons in the hidden layer, the
network may not contain sufficient degrees of freedom to
form a representation (i.e., in sufficient learning capacity). If
too many neurons are defined, the networkmay become over
trained (i.e., they classify training patterns well but lack the
ability to generalize other independent data). Therefore, an
interesting design for the number of neurons in the hidden
layer, to determine the optimum network, will be important.
Momentum can be added to backpropagation learning by
making weight changes equal to the sum of a fraction of the
last weight change and the new change suggested by the back
propagation rule. The magnitude of the effect that the last
weight change is allowed to have is mediated by amomentum
constant, which can be any number between 0 and 1. So, here,
different forms in the hidden layers are considered for the
network. As a final result, the network with 16 neurons in
hidden layer, learning, and momentum term in Table 2 has
minimum performance with MSE = 0.02.

From Figure 8, the overshoot is initially very small. The
output has an overshoot less than 7% and settling time shorter
than 0.4 s.

5. Conclusion

Actuator valve systems aremultivariable dynamic systems for
which it is difficult to derivemathematical models.Therefore,
analytical control schemes based on suchmodels are complex
to construct and generally do not perform well in practice.
This paper has described a proposed neural control scheme
for actuator of the pneumatic control valve. The aim of
this study is the development of design procedure of an
NN controller to meet transient response specifications of
a sliding-stem pneumatic control valve. A type of actua-
tor pneumatic control valve is modelled using bondgraph
method. For comparison, full- and minimum order observer
controllers are applied to the control of stem position in
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Figure 8:The unit step response of the valve using proposed neural
controller.

a pneumatic control valve system. From this study, the
following conclusions can be drawn.

(1) NN controller has smaller overshoot rather than
minimum- and full-order observer.

(2) Minimum observer controller has smaller settling
time and rise time respect to full-order observer.

(3) The full- and minimum order observers in feedback
and feedforward path have the same overshoot, rise
time, and settling time, if the normalization constants
(𝑁) are not the same.

References
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