9,348 research outputs found

    PaRiS: Causally Consistent Transactions with Non-blocking Reads and Partial Replication

    Get PDF
    Geo-replicated data platforms are at the backbone of several large-scale online services. Transactional Causal Consistency (TCC) is an attractive consistency level for building such platforms. TCC avoids many anomalies of eventual consistency, eschews the synchronization costs of strong consistency, and supports interactive read-write transactions. Partial replication is another attractive design choice for building geo-replicated platforms, as it increases the storage capacity and reduces update propagation costs. This paper presents PaRiS, the first TCC system that supports partial replication and implements non-blocking parallel read operations, whose latency is paramount for the performance of read-intensive applications. PaRiS relies on a novel protocol to track dependencies, called Universal Stable Time (UST). By means of a lightweight background gossip process, UST identifies a snapshot of the data that has been installed by every DC in the system. Hence, transactions can consistently read from such a snapshot on any server in any replication site without having to block. Moreover, PaRiS requires only one timestamp to track dependencies and define transactional snapshots, thereby achieving resource efficiency and scalability. We evaluate PaRiS on a large-scale AWS deployment composed of up to 10 replication sites. We show that PaRiS scales well with the number of DCs and partitions, while being able to handle larger data-sets than existing solutions that assume full replication. We also demonstrate a performance gain of non-blocking reads vs. a blocking alternative (up to 1.47x higher throughput with 5.91x lower latency for read-dominated workloads and up to 1.46x higher throughput with 20.56x lower latency for write-heavy workloads)

    Entropic N-bound and Maximal Mass Conjecture Violations in Four Dimensional Taub-Bolt(NUT)-dS Spacetimes

    Full text link
    We show that the class of four-dimensional Taub-Bolt(NUT) spacetimes with positive cosmological constant for some values of NUT charges are stable and have entropies that are greater than that of de Sitter spacetime, in violation of the entropic N-bound conjecture. We also show that the maximal mass conjecture, which states "any asymptotically dS spacetime with mass greater than dS has a cosmological singularity", can be violated as well. Our calculation of conserved mass and entropy is based on an extension of the path integral formulation to asymptotically de Sitter spacetimes.Comment: 37 pages, 22 figures, 3 tables, few typos corrected, version to appear in Nucl. Phys.

    Okapi: Causally Consistent Geo-Replication Made Faster, Cheaper and More Available

    Get PDF
    Okapi is a new causally consistent geo-replicated key- value store. Okapi leverages two key design choices to achieve high performance. First, it relies on hybrid logical/physical clocks to achieve low latency even in the presence of clock skew. Second, Okapi achieves higher resource efficiency and better availability, at the expense of a slight increase in update visibility latency. To this end, Okapi implements a new stabilization protocol that uses a combination of vector and scalar clocks and makes a remote update visible when its delivery has been acknowledged by every data center. We evaluate Okapi with different workloads on Amazon AWS, using three geographically distributed regions and 96 nodes. We compare Okapi with two recent approaches to causal consistency, Cure and GentleRain. We show that Okapi delivers up to two orders of magnitude better performance than GentleRain and that Okapi achieves up to 3.5x lower latency and a 60% reduction of the meta-data overhead with respect to Cure

    A Review of the N-bound and the Maximal Mass Conjectures Using NUT-Charged dS Spacetimes

    Full text link
    The proposed dS/CFT correspondence remains an intriguing paradigm in the context of string theory. Recently it has motivated two interesting conjectures: the entropic N-bound and the maximal mass conjecture. The former states that there is an upper bound to the entropy in asymptotically de Sitter spacetimes, given by the entropy of pure de Sitter space. The latter states that any asymptotically de Sitter spacetime cannot have a mass larger than the pure de Sitter case without inducing a cosmological singularity. Here we review the status of these conjectures and demonstrate their limitation. We first describe a generalization of gravitational thermodynamics to asymptotically de Sitter spacetimes, and show how to compute conserved quantities and gravitational entropy using this formalism. From this we proceed to a discussion of the N-bound and maximal mass conjectures. We then illustrate that these conjectures are not satisfied for certain asymptotically de Sitter spacetimes with NUT charge. We close with a presentation of explicit examples in various spacetime dimensionalities.Comment: 49 pages, 17 figures, a few typos corrected, addendum added with regard to some references that were later brought to our attentio

    On the Thermodynamics of NUT charged spaces

    Full text link
    We discuss and compare at length the results of two methods used recently to describe the thermodynamics of Taub-NUT solutions in a deSitter background. In the first approach (\mathbb{% C}-approach), one deals with an analytically continued version of the metric while in the second approach (R\mathbb{R}-approach), the discussion is carried out using the unmodified metric with Lorentzian signature. No analytic continuation is performed on the coordinates and/or the parameters that appear in the metric. We find that the results of both these approaches are completely equivalent modulo analytic continuation and we provide the exact prescription that relates the results in both methods. The extension of these results to the AdS/flat cases aims to give a physical interpretation of the thermodynamics of nut-charged spacetimes in the Lorentzian sector. We also briefly discuss the higher dimensional spaces and note that, analogous with the absence of hyperbolic nuts in AdS backgrounds, there are no spherical Taub-Nut-dS solutions.Comment: 35pages, 4 figures. v.4 references added,few typos corrected, to appear in Phys. Rev.

    Large N Phases, Gravitational Instantons and the Nuts and Bolts of AdS Holography

    Get PDF
    Recent results in the literature concerning holography indicate that the thermodynamics of quantum gravity (at least with a negative cosmological constant) can be modeled by the large N thermodynamics of quantum field theory. We emphasize that this suggests a completely unitary evolution of processes in quantum gravity, including black hole formation and decay; and even more extreme examples involving topology change. As concrete examples which show that this correspondence holds even when the space-time is only locally asymptotically AdS, we compute the thermodynamical phase structure of the AdS-Taub-NUT and AdS-Taub-Bolt spacetimes, and compare them to a 2+1 dimensional conformal field theory (at large N) compactified on a squashed three sphere, and on the twisted plane.Comment: 20 pages, three figures. (uses harvmac.tex and epsf.tex

    Chern-Simons dilaton black holes in 2+1 dimensions

    Get PDF
    We construct rotating magnetic solutions to the three-dimensional Einstein-Maxwell-Chern-Simons-dilaton theory with a Liouville potential. These include a class of black hole solutions which generalize the warped AdS black holes. The regular black holes belong to two disjoint sectors. The first sector includes black holes which have a positive mass and are co-rotating, while the black holes of the second sector have a negative mass and are counter-rotating. We also show that a particular, non-black hole, subfamily of our three-dimensional solutions may be uplifted to new regular non-asymptotically flat solutions of five-dimensional Einstein-Maxwell-Chern-Simons theory.Comment: 26 pages, 3 figures, published versio
    • …
    corecore