research

Okapi: Causally Consistent Geo-Replication Made Faster, Cheaper and More Available

Abstract

Okapi is a new causally consistent geo-replicated key- value store. Okapi leverages two key design choices to achieve high performance. First, it relies on hybrid logical/physical clocks to achieve low latency even in the presence of clock skew. Second, Okapi achieves higher resource efficiency and better availability, at the expense of a slight increase in update visibility latency. To this end, Okapi implements a new stabilization protocol that uses a combination of vector and scalar clocks and makes a remote update visible when its delivery has been acknowledged by every data center. We evaluate Okapi with different workloads on Amazon AWS, using three geographically distributed regions and 96 nodes. We compare Okapi with two recent approaches to causal consistency, Cure and GentleRain. We show that Okapi delivers up to two orders of magnitude better performance than GentleRain and that Okapi achieves up to 3.5x lower latency and a 60% reduction of the meta-data overhead with respect to Cure

    Similar works