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Abstract

We construct rotating magnetic solutions to the three-dimensional
Einstein-Maxwell-Chern-Simons-dilaton theory with a Liouville poten-
tial. These include a class of black hole solutions which generalize the
warped AdS black holes. The regular black holes belong to two disjoint
sectors. The first sector includes black holes which have a positive mass
and are co-rotating, while the black holes of the second sector have a
negative mass and are counter-rotating. We also show that a par-
ticular, non-black hole, subfamily of our three-dimensional solutions
may be uplifted to new regular non-asymptotically flat solutions of
five-dimensional Einstein-Maxwell-Chern-Simons theory.
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1 Introduction

Lower dimensional gravity provides an arena for constructing exact analyt-
ical black hole solutions in a wide variety of gravitating field theories. Most
of the known black hole solutions are static. The celebrated BTZ black hole
in 2 + 1 dimensions [1] can be either static or rotating, but the rotating
solutions can be transformed to the static one by a local coordinate trans-
formation. The first intrisincally rotating black holes, now known as warped
AdS3 black holes [2], were constructed as solutions to topologically massive
gravity [3] in [4], and then generalized to solutions of cosmological topologi-
cally massive gravity in [5], of topologically massive gravitoelectrodynamics
(TMGE) [6] in [7], of new massive gravity [8] in [9], of R3 extended new
massive gravity [10] in [11], and of generalized massive gravity [8] in [12].

In this paper, we shall extend the warped AdS black hole class to a more
general class of intrinsincally rotating black holes. The warped AdS black
holes of [7] were solutions of three-dimensional Einstein-Maxwell theory aug-
mented by both gravitational and electromagnetic Chern-Simons terms [6],
which reduces to Einstein-Maxwell-Chern-Simons theory when the gravita-
tional Chern-Simons term is absent. In [13], a class of rotating electric so-
lutions to the cosmological Einstein-Maxwell-Chern-Simons-dilaton theory
were obtained for a special relation between the model parameters. From
these solutions, a class of rotating magnetic solutions to the same theory
were generated in [14]. Considering this theory, we discuss in the next sec-
tion the reduction of the field equations along the lines followed in [7]. We
then show in Sect. 3 that a simple ansatz generalizing that of [7] leads
to rotating magnetic solutions more general than those of [14]. The global
structure of these solutions is analyzed in Sect. 4, where a subclass of reg-
ular black hole solutions is found in a certain parameter range. The mass,
angular momentum and other observables of these black holes are computed
in Sect. 5. In Sect. 6 we show that another subclass of our solutions may be
uplifted to new regular non-asymptotically flat solutions of five-dimensional
Einstein-Maxwell-Chern-Simons theory. Our results are summarized in the
final section.
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2 Reduction of the field equations

Self-gravitating dilatonic topologically massive electrodynamics is defined
by [13]

IE =
∫

d3x
√
|g|

[
1
2κ

R− 2gµν∂µφ∂νφ− Λ
κ

ebφ − 1
4
ecφgµνgρσFµρFνσ

]

+
µ

2

∫
d3xεµνρAµ∂νAρ , (2.1)

with κ = 8πG the Einstein gravitational constant (which in 2+1 dimensions
can be either positive or negative), b and c the coupling constants of the
dilatonic field φ to the cosmological constant Λ and to the Maxwell field F =
dA, and µ the Chern-Simons coupling constant (εµνρ is the antisymmetric
symbol).

Assuming the existence of two commuting Killing vectors, we choose the
parametrisation [15, 6]

ds2 = λab (ρ) dxadxb + ζ−2 (ρ) R−2 (ρ) dρ2 (a, b = 0, 1),
A = ψa (ρ) dxa (2.2)

(x0 = t, x1 = ϕ), where λ is the 2× 2 matrix

λ =
(

T + X Y
Y T −X

)
, (2.3)

R2 ≡ X2 is the Minkowski pseudo-norm of the vector X (ρ) = (T, X, Y )

X2 = ηijX
iXj = −T 2 + X2 + Y 2 , (2.4)

and ζ a scale factor. The stationary sector of the spacetime of metric (2.2)
corresponds to the spacelike sector R2 > 0 of (2.4), with the same signature
(−+ +).

This parametrisation reduces the action (2.1) to the form

I =
∫

d2x

∫
dρL (2.5)

where L is the effective Lagrangian

L =
1
2

[
ζ

2κ
X′2 − 4ζR2φ′2 − 2Λ

κζ
ebφ + ζecφψ

′ (Σ.X) ψ′ + µψψ′
]

, (2.6)
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where ′ = ∂/∂ρ, the ”Dirac” matrices Σi are defined by

Σ0 =
(

0 1
−1 0

)
, Σ1 =

(
0 −1
−1 0

)
, Σ2 =

(
1 0
0 −1

)
, (2.7)

and ψ ≡ ψT Σ0 is the Dirac adjoint of the ”spinor” ψ. In passing from (2.1)
to (2.6), we have set the sign convention for the antisymmetric symbol to
ε012 = −1 (corresponding to ε012 = +1).

Variation of the Lagrangian L with respect to ψ gives the equation

∂ρ

[
µψ − ζecφ (Σ.X) ψ′

]
= 0 , (2.8)

which is integrated, up to a gauge transformation, by

ζψ′ =
µ

R2
e−cφ(Σ.X)ψ . (2.9)

Defining the wedge product of two vectors X and Y by

(X ∧Y)i = ηijεjklX
kY l (2.10)

with ε012 = +1, the spinor equation (2.9) can be shown [6] to be equivalent
to the vector dynamical equation

ζS′ =
2µ

R2
e−cφX ∧ S (2.11)

for the “spin” vector
S = −κ

2
ψΣψ (2.12)

of components

S0 =
κ

2
[
ψ2

0 + ψ2
1

]
, S1 =

κ

2
[
ψ2

0 − ψ2
1

]
, S2 = κψ0ψ1 . (2.13)

Note that our trading of a spinor equation (2.9) for a vector equation (2.11)
is possible only because the spin vector is null,

S2 = 0. (2.14)

Next, vary L with respect to X, leading to the equation

V ≡ X′′ + 8κXφ′2 = κecφψ
′
Σψ′ =

2µ2

ζ2R2
e−cφ

[
2

R2
(S.X)X− S

]
, (2.15)
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where we have used Eq. (2.9) and the definition (2.12). Similarly, variation
of L with respect to φ leads to

(
R2φ′

)′ = bΛ
4κζ2

ebφ − cµ2

4κζ2R2
e−cφ (S.X) . (2.16)

Finally, variation of the Lagrangian with respect to the Lagrange multiplier
ζ leads to the Hamiltonian constraint

H ≡ 1
4κ

[
X′2 − 8κR2φ′2 +

4Λ
ζ2

ebφ +
4µ2

ζ2R2
e−cφ (S.X)

]
= 0 . (2.17)

Equations (2.16) and (2.17) involve the scalar S.X which can be evalu-
ated by taking the scalar product of Eq. (2.15) with X as

(S.X) =
R2ζ2

2µ2
ecφ

(
X.X

′′
+ 8κR2φ′2

)
. (2.18)

Inserting this in Eqs. (2.16) and (2.17) we obtain the simplified equations

(
R2φ′

)′ + c

8κ

(
X.X

′′
+ 8κR2φ′2

)
− bΛ

4κζ2
ebφ = 0 (2.19)

and
X′2 + 2X.X

′′
+ 8κR2φ′2 +

4Λ
ζ2

ebφ = 0 . (2.20)

These last two equations may be combined to yield
(
R2φ′ − c

8κ

(
X.X′))′ = Λ

2κζ2

(
c +

b

2

)
ebφ . (2.21)

This last equation can be easily integrated only if the dilaton coupling con-
stants are related by

b + 2c = 0 ,

which we assume henceforth. This integration leads to

R2φ′ =
c

8κ

(
RR′ + d

)
, (2.22)

where d is an integration constant.
Finally, the independent reduced field equations can be taken to be

(2.22), (2.20) and (2.11) (where the spin vector S is given in terms of X
and φ by (2.15)), supplemented by the conditions, following from (2.14) and
(2.13), that the vector κ−1S is future null,

S2 = 0 , κ−1S0 > 0 . (2.23)
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3 Black Hole Solutions

3.1 Power-law ansatz

Black hole solutions were found in TMGE by making the ansatz [7]

X = αρ2 + βρ + γ , (3.1)

where α, β and γ are three linearly independent constant vectors, and the
vector α is null and orthogonal to the vector β,

α2 = 0 , α.β = 0 . (3.2)

In the present dilatonic context, we shall generalize this ansatz by as-
suming

X = αρq+p + βρq + γρq−p , (3.3)

where q and p 6= 0 are real numbers (the ansatz (3.3) degenerates for p = 0)
which should reduce to q = p = 1 in the limit c = 0 of vanishing dilaton
coupling, and the constant vectors α, β and γ are again constrained by
(3.2). It follows from these assumptions that

R2 = mρ2q + nρ2q−p + lρ2q−2p , (3.4)

with
m = 2α.γ + β2 , n = 2β.γ , l = γ2 . (3.5)

Inserting the functional form (3.4) of R2(ρ) into (2.22), we obtain

φ′ =
c

16κ

2qmρ2q−1 + (2q − p)nρ2q−p−1 + (2q − 2p)lρ2q−2p−1 + 2d

mρ2q + nρ2q−p + lρ2q−2p
. (3.6)

This can be easily integrated to φ ∝ ln ρ if 1) the constant 2d can be grouped
with one of the three monomials in the numerator, implying either 2q−1 = 0,
2q − p− 1 = 0, or 2q − 2p− 1 = 0, only the second possibility

p = 2q − 1 (3.7)

being consistent with the constraint that p and q reduce to 1 in the limit of
vanishing dilaton coupling; 2) the coefficients in the numerator are matched
to those in the denominator so that φ′ ∝ ρ−1:

n + 2d = 2qn , 2(1− q)l = 2ql . (3.8)
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(where we have replaced p in terms of q according to (3.7)). The first relation
fixes the integration constant d for the dilaton field equation (2.19) in terms
of the metric parameters. The second relation is solved either by q = 1/2,
leading to p = 0, which we have excluded, or by l = 0. We are thus led to
add to the ansatz (3.3), (3.2) the complementary assumption

γ2 = 0 , (3.9)

leading to the solution of (3.6)

φ =
cq

8κ
ln

(
ρ

ρ1

)
, (3.10)

with ρ1 > 0 a new integration constant.
Next, fixing without loss of generality the scale parameter ζ to

ζ = µ , (3.11)

we compute the left-hand side of Eq. (2.15):

V =
[
(3q − 1)(3q − 2) +

c2q2

8κ

]
αρ3q−3+

[
q(q − 1) +

c2q2

8κ

] (
βρq−2 + γρ−q−1

)
.

(3.12)
Squaring the right-hand side of Eq. (2.15), we find that this vector must be
null, as the spin vector S (Eq. (2.14)). This is ensured if V is collinear with
α, which is possible only if

q =
1

1 + c2/8κ
(3.13)

(the other possibility q = 0 does not lead to a consistent solution). It follows
that c2q/8κ = 1− q, so that

ecφ =
(

ρ

ρ1

)1−q

, V = 2(1− 2q)2α ρ3q−3 . (3.14)

Computing the spin vector from the inverse of (2.15),

S =
1
2

ecφ
[
2(V.X)X−R2V

]
, (3.15)

we obtain

S = (1− 2q)2ρq−1
1

[
2(α.γ)Xρq−1 −R2αρ2q−2

]

= (1− 2q)2ρq−1
1

[
kα ∧ β ρ4q−2 + 2kα ∧ γ ρ2q−1 + 2(α.γ)γ

]
.(3.16)
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To obtain the second form of S, we have used (3.4), and the vector relations,
which follow from (3.2)

α ∧ β = −kα , β2 = k2 , (3.17)

where k is some constant. We then see that the dynamical equation (2.11)
is satisfied provided

k =
ρ1−q
1

2q − 1
. (3.18)

Finally, the Hamiltonian constraint in the form (2.20) is also satisfied pro-
vided

α.γ =
q + 4(2q − 1)Λ/µ2

2(1− 3q)
k2 , (3.19)

for q 6= 1/3. For q = 1/3 (c2 = 16κ) and Λ = µ2/4, the value of the scalar
product α.γ remains arbitrary.

We choose for the basis vectors α, β and γ the parametrisation, which
generalizes that made in [7],

α = k3 (ε/2,−ε/2, 0) , β = k (ω,−ω,−1) , γ = k−1 (z + u, z − u, v)
(3.20)

(ε2 = 1). These automatically satisfy (3.2) and (3.17), while the constraint
(3.9) implies the relation

u = v2/4z . (3.21)

The value of the parameter z may be computed from α.γ = −εk2z, where
the scalar product α.γ is given by (3.19). The scalar function R2 is, from
(3.4),

R2 = k2β2ρ
(
ρ2q−1 − ρ2q−1

0

)
, (3.22)

where the parameters β2 (real) and ρ2q−1
0 (ρ0 > 0) are defined by

k2β2 = k2(1− 2εz) = β2 + 2α.γ ,

k2β2ρ2q−1
0 = 2(v + 2ωz) = −2β.γ , (3.23)

leading to
ω =

ε

2(1− β2)

(
k2β2ρ2q−1

0 − 2v
)

. (3.24)
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The resulting metric may be written in terms of the three parameters k, ρ0

and v as

ds2 =
ε(1− β2)

k
ρ1−q

[
dt− ε(k2ρ2q−1 − v)

1− β2
dϕ

]2

−εk3β2ρq(ρ2q−1 − ρ2q−1
0 )

1− β2
dϕ2 +

dρ2

k2µ2β2ρ
[
ρ2q−1 − ρ2q−1

0

] ,(3.25)

with β2 a real parameter given in terms of the model parameters by

β2 =
1− 2q

1− 3q

(
1− 4Λ

µ2

)
, (3.26)

when q 6= 1/3, β2 remaining arbitrary when q = 1/3 with Λ = µ2/4. Solv-
ing Eq. (2.13) for ψ, we obtain the electromagnetic field generating this
gravitational field:

A = ±
√

ε(1− 2q)
κ

[
ε(1− β2)dt− (k2ρ2q−1 − v)dϕ

]
. (3.27)

The constant electric potential is irrelevant and may be gauged away, the
magnetic potential Aϕ leading both to a magnetic field and to an electric
field F tρ because the metric (3.25) is non-diagonal. This electromagnetic
field is real provided

ε = sign[κ(1− 2q)] . (3.28)

For q = 1 (c = 0), the solution (3.25), (3.27) reduces to the non-dilatonic
solution obtained in [7] for λ = 0 (no gravitational Chern-Simons term).
Note however that the black holes of [7] are regular for 0 < β2 < 1, while as
we shall see in the next section the present dilatonic solution can correspond
to regular black holes only if β2 < 0.

The form of the metric (3.25) breaks down for β2 = 1 and β2 = 0. For
β2 = 1 (Λ = (q/(1 − 2q))µ2/4), z = 0 implying v = 0 from (3.21), so also
ρ0 = 0. The metric, depending on the two independent parameters ω and u,
may be written in the ADM form (4.1) with v2/(1− β2) replaced with 2εu.
For β2 = 0 (Λ = µ2/4 with q 6= 1/3), the metric is obtained from (3.25) by
replacing −k2β2ρ2q−1

0 with 2ν ≡ −2(v + εω) 6= 0.
To conclude this part, we comment on the relation of our magnetic

power-law solution with that of Castelo Ferreira [14] (similar comments can
be made concerning the electric solution of [13]). The space-metric metric
of [14] is parametrized by

ds2 = −f2(dt + Adϕ)2 + dr2 + h2 dϕ2 , (3.29)

9



with f2 ∝ r, h2 ∝ r2pCF−1, pCF = 4κ/c2. This metric can be transformed
to the form (2.2) by the radial coordinate transformation dρ = µRdr, with
R2 = f2h2 ∝ r2pCF , leading to ρ ∝ rpCF +1. The resulting vector X(ρ) is of
the form (3.3) with p = (pCF−1)/(pCF +1) and q = pCF /(pCF +1), different
from our exponents (3.7) and (3.13), the basis vectors α, β and γ obeying
the constraints (3.2) and (3.9), together with the additional constraint

β.γ = 0 , (3.30)

accounting for the fact that R2 ∝ ρ2q is a monomial. The price to pay for
this additional constraint is that the Hamiltonian constraint (2.17) can only
be satisfied if there is a specific relation between the dimensionless coupling
constants c2/κ and Λ/µ2, Eq. (3.6) of [14].

3.2 Case c2 = 8κ

For c2 = 8κ, (3.13) leads to q = 1/2, corresponding to p = 0 from (3.7), so
that the power-law ansatz (3.3) is degenerate. In this case, we replace this
ansatz by the logarithmic ansatz

X = αρ1/2 ln(ρ/ρ0) + βρ1/2 , (3.31)

with only two linearly independant constant vectors α and β obeying the
constraints (3.2). This leads to R2 = mρ, so that from (2.22),

φ′ =
m + 2d

2cmρ
. (3.32)

The computation of V then leads to

V =
d(m + d)

m2
ρ−2X , (3.33)

which is null, V2 = 0, only if d(m + d) = 0, leading to

φ′ = ± 1
2cρ

, V = 0 , (3.34)

implying also S = 0, which in turn means ψ = 0, and

φ = ± 1
2c

ln(4ρ/a) , (3.35)

with a > 0 an integration constant. Finally, insertion into the Hamilto-
nian constraint (2.17) shows that it can be satisfied only if the cosmological
constant vanishes, Λ = 0.
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Choosing the parametrisation

α = a−1/2(1/2, 1/2, 0) , β = a−1/2(0, 0, 1) , (3.36)

and taking in (2.2) x0 = v, x1 = u, ζ = 1, we obtain the metric

ds2 = −2
(ρ

a

)1/2
dudv +

(ρ

a

)1/2
ln(ρ/ρ0) du2 +

adρ2

ρ
. (3.37)

This may be simplified by the radial coordinate transformation ρ = ax2/4
(x > 0), leading to the solution

ds2 = −x dudv + x ln(x/x0) du2 + a2 dx2 ,

ecφ = x±1 , A = 0 . (3.38)

This is a solution of three-dimensional gravity without cosmological con-
stant minimally coupled to a scalar field. It can be related to known solutions
of four-dimensional vacuum gravity in the following manner. Assuming the
existence of a spacelike Killing vector ∂y, the Kaluza-Klein reduction ansatz

ds2
(4) = ecφdy2 + e−cφds2

(3) (3.39)

reduces the four-dimensional Einstein-Hilbert action to the three-dimensional
action (2.1) with A = 0, Λ = 0 and 2κ = c2/4. Conversely, the lift of the
three-dimensional solution (3.38) to four dimensions yields the two solutions

ds2
(4)+ = xdy2 − dudv + ln(x/x0) du2 + a2x−1 dx2 , (3.40)

ds2
(4)− = x−1dy2 − x2 dudv + x2 ln(x/x0) du2 + a2x dx2 . (3.41)

The metric (3.40) can be transformed into the special pp-wave solution [17]

ds2
(4)+ = dζdζ − dudv − 2Re f(ζ) du2 (3.42)

with
ζ = 2ax1/2eiy/2a , f(ζ) = − ln(ζ/2ax

1/2
0 ) , (3.43)

while the transformation x = (ξ/a)1/2 puts the metric (3.41) into the form

ds2
(4)− =

(
ξ

a

)−1/2

(dξ2 + dy2)− ξ

a
dudv +

ξ

2a
ln(ξ/ax2

0) du2 (3.44)

of a special van Stockum solution [18].
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4 Regularity and global structure

In this section, we investigate under which conditions the metric (3.25) is
regular. This metric, written in Arnowitt-Deser-Misner (ADM) form as:

ds2 = −β2ρ(ρ2q−1 − ρ2q−1
0 )

r2
dt2 + r2

[
dϕ− εε′

ρq − vρ1−q

r2
dt

]2

+
dρ2

µ2β2ρ(ρ2q−1 − ρ2q−1
0 )

, (4.1)

with

r2 = ε′
[
ρ3q−1 + 2εωρq +

v2

1− β2
ρ1−q

]
, (4.2)

depends on two arbitrary parameters ρ0 and v, to which ω is related by
(3.23). In (4.1), the real parameters β2 and q are related to the model
parameters by (3.26) and (3.13), and we have normalized the arbitrary scale
k defined in (3.18) so that k2 = 1. From Eq. (3.18), the sign of k is that of
(2q − 1), so that the condition (3.28) for the reality of the electromagnetic
field leads to k = εε′, with

ε′ = −sign(κ) , εε′ = sign(2q − 1) . (4.3)

The associated Ricci scalar is

R =
µ2

2

{
[(2q − 1)2 − (11q2 − 8q + 1)β2] ρ2q−2 + q(q − 1)β2ρ2q−1

0 ρ−1
}

.

(4.4)
For β2 6= 0 this diverges, whatever the value of q, for ρ → 0 if ρ2q−1

0 6= 0.
The corresponding curvature singularity is safely hidden behind the horizon
if ρ2q−1

0 > 0 and if ρ →∞ corresponds to spacelike infinity. For β2 = 0, the
constant β2ρ2q−1

0 is replaced with −2ν 6= 0, so that there is always a naked
curvature singularity at ρ = 0. Eq. (4.4) shows that there is also generically
a curvature singularity at ρ → ∞ if q > 1, so we must restrain q to the
range q < 1 for regularity (we exclude the value q = 1, which corresponds
to the case of TMGE treated in [7]).

We now determine the parameter ranges for which the metric has the
Lorentzian signature (−++), implying r2 = T−X > 0 and gρρ = µ−2R−2 >
0, outside the horizon ρ = ρ0. This signature depends on the signs of ε and
ε′, which depend on the sign of κ and the value of q through (4.3). It also
follows from the relation (3.13) defining the exponent q that

for κ > 0 (ε′ = −1) , 0 < q < 1 ,

for κ < 0 (ε′ = +1) , q < 0 . (4.5)
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We first consider the case κ > 0 (ε′ = −1). If q > 1/2 (ε = −1), r2 is
dominated for large ρ by the first term of (4.2), ε′ρ3q−1, which is negative, so
that there are closed timelike curves (CTC) at infinity. If q < 1/2 (ε = +1),
R2 is positive for large ρ provided β2 < 0, while if v 6= 0, r2 is now dominated
for large ρ by the last term of (4.2), ε′v2ρ1−q/(1−β2), which is again negative,
leading again to CTC at infinity. On the other hand, if q < 1/2 and v = 0,
r2 is dominated for large ρ by the middle term

2εε′ωρq =
−β2ρ2q−1

0

1− β2
ρq , (4.6)

which is positive. But the negative first term gains importance when ρ
decreases, so that r2 = T − X vanishes at some value ρc. It then follows
from (2.4) that R2(ρc) = Y 2(ρc) ≥ 0, so that ρc ≥ ρ0, i.e. the causal
singularity ρ = ρc is naked. The conclusion is that there are no regular
black holes for κ > 0.

Now we consider the case κ < 0 (q < 0, ε′ = 1, ε = −1). Again, R2 is
positive provided β2 < 0 but, for v 6= 0, the last term (dominant for large ρ)
of r2 is now positive. We show in Appendix A that r2 is everywhere positive
if v < v−(ρ0) or v > v+(ρ0), where

v±(ρ0) =
1±

√
1− β2

2
ρ2q−1
0 , (4.7)

leading to two disjoint sectors of regular black holes. In the third parameter
sector v−(ρ0) < v < v+(ρ0), there are CTC which, according to the above
argument, are naked.

However, the absence of naked curvature and causal singularities are not
enough to guarantee a regular black hole. One must also check that geodesics
do not terminate at spatial infinity. The first integral for the geodesics in
the metric (3.3) is [16]

(
dρ

dτ

)
2 + P.X + εR2 = 0 , (4.8)

where τ is an affine parameter, P a constant future null vector, and ε = +1, 0
or −1 for timelike, null, or spacelike geodesics, respectively. For q < 0, Eq.
(4.8) can be approximated for large ρ by

(
dρ

dτ

)
2 ' −P.γ ρ1−q . (4.9)

Using the fact that the null vector γ is, from sign[k−1(z+u)] = ε′sign(1−β2),
future in the present case, the right-hand side of (4.9) is generically positive.
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It follows that for −1 ≤ q < 0, geodesics extend to infinity and the black hole
metric is regular. The Penrose diagram is similar to that of the Schwarzschild
black hole (Fig. 1).

On the other hand, for q < −1 almost all geodesics terminate at ρ →
+∞. This is not a curvature singularity (the Ricci scalar (4.4) is finite), but a
second horizon through which the metric cannot be generically be extended.
However, as in the case of other “cold black hole” solutions of gravitating
field theories with negative gravitational constant in three [19] or four [20, 21]
dimensions, characterized by an infinite horizon area and vanishing Hawking
temperature, the metric and the geodesics can be analytically continued
across the horizon for discrete values of the model parameters. In the present
case, Eq. (4.9) suggests transforming to the radial coordinate x = ρ(1+q)/2,
in terms of which the geodesic equation (4.8) can be written

4
(q + 1)2

(
dx

dτ

)
2 + P.

(
γ + β xm + α x2m

)− εβ2 xn
(
ρ2q−1
0 − xm

)
= 0 ,

(4.10)
where we have put

n =
2q

q + 1
, m =

2(2q − 1)
q + 1

= 3n− 2 . (4.11)

It is clear that Eq. (4.10) is analytic, and therefore geodesics can be extended
from x > 0 to x < 0, if n is an integer, n > 2, corresponding to the
quantization condition

q = − n

n− 2
. (4.12)

Near the cold horizon x = 0, the lapse function in (4.1) is proportional to
xn, showing that this is a multiple horizon (hence its vanishing Hawking
temperature) of multiplicity n.

For n odd, ρ = x2−n and ρ2q−1 = x3n−2 change sign when the cold
horizon is crossed from the Lorentzian region I (0 < x < ρ

−1/(n−2)
0 ) to the

inner region III (x < 0) bounded by the spacelike singularity x = −∞
(ρ = 0). The resulting Penrose diagram is an infinite spacelike strip (Fig.
2). Using the fact that α and γ are both future null, one can show that
almost all timelike or null geodesics originate from the past spacelike singu-
larity, cross successively the two horizons, and end at the future spacelike
singularity. Exceptional timelike or null geodesics (those fine-tuned so that
P = cγ with c > 0) do not cross the cold horizon. Exceptional geodesics
with x > 0 are time-symmetric, originating from the past singularity and
ending at the future singularity after crossing twice the horizon ρ = ρ0.

14



Exceptional geodesics with x < 0 either originate from the past singularity
and asymptote the cold horizon, or follow the time-reversed history.

For n even, analytic extension from x > 0 to x < 0 leads from the
Lorentzian region I to an isometric Lorentzian region I ′, so that the corre-
sponding Penrose diagram paves the whole plane (Fig. 3). The effective po-
tential in (4.10) is now symmetrical in x. Typical timelike or null geodesics
either join a past singularity to a future singularity, without crossing, or
crossing only once the cold horizon x = 0, or cross periodically the cold
horizon and extend to infinity.

To summarize, the solution (3.25) or (4.1) (with k = ε = −1 and ε′ = +1)
and (3.27) corresponds to two disjoint sectors of regular black holes if the
model parameters are such that κ < 0, Λ > µ2/4 (ensuring from (3.26) that
β2 < 0 for q < 0), b = −2c, and either c2 ≥ −16κ (ensuring from (3.18) that
−1 ≤ q < 0), or c2 = −16κ(n− 1)/n (q = −n/(n− 2)) with n > 2.

5 Mass, angular momentum and thermodynamics

The metric (4.1) is neither asymptotically flat nor asymptotically AdS, so
that neither the ADM approach [22] nor the Abbott-Deser-Tekin (ADT)
approach [23, 24], which involve linearization around a flat or constant cur-
vature background, can be used to compute the conserved black hole charges,
which are its mass and angular momentum. In [5] the ADT approach was
extended to compute the conserved charges of a solution of topologically
massive gravity linearized around an arbitrary background. This approach
was further generalized in [7] to the case of TMGE, and in [25] to that of new
massive gravity. However, the authors of [25] pointed out that for warped
AdS3 black holes the angular momentum obtained in these approaches was
quadratic rather than linear in the black hole parameters, so that, while the
mass and angular momentum obtained satisfied the first law of black hole
thermodynamics and so appeared to be correct, there was a problem with
the self-consistency of their derivation.

The solution to this problem was given recently in [27], generalizing
an approach proposed in [26]. Warped AdS3 black holes — and this is
also true for the dilatonic black holes considered here — depend on two
arbitrary parameters (integration constants). Their asymptotics are such
that their metric cannot be considered to match at spacelike infinity that of
any arbitrarily given background solution, except one which is infinitesimally
near in parameter space to the solution under consideration. Following
the generalized ADT approach of [5], one can compute the corresponding
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differential conserved charges, from which the finite conserved charges can
be obtained as line integrals in parameter space.

The differential mass and angular momentum of our dilatonic black hole
solutions are the Killing charges, defined as integrals over the boundary ∂M
of a spacelike hypersurface M

δQ(ξ) =
1
κ

∫

∂M

√
|g|δF0i(ξ)dSi , (5.1)

of the superpotentials

δFµν(ξ) = δFµν
g (ξ) + δFµν

e (ξ) (5.2)

associated with the Killing vectors ξ = ∂t and ξ = ∂ϕ. In (5.2) the gravita-
tional contribution is the Einstein superpotential given in [5] (Eq. (2.14)),
and the electromagnetic contribution is obtained from that of [28] by replac-
ing the fields canonically conjugate to the vector potential A by ecφF ,

δFµν
e (ξ) =

κ√
|g|δ

[√
|g|ecφFµν − µεµνλAλ

]
ξρAρ

+κecφ

[
Fµνξρ + F νρξµ + F ρµξν

]
δAρ . (5.3)

For a rotationally symmetric configuration, the relevant component is δF02
e (ξ).

The first bracket of (5.3) vanishes by virtue of (2.9), and there remains

δF02
e (ξ) = −κF 2aεabξ

bδψ1 = −κζ2(ξT ψ)δψ0 =
ζ2

2

[
ξTΣ.δS− κ(δψψ)ξT

]0

,

(5.4)
as in [7]. Therefore, the Killing charges are obtained from those given there
by omitting the gravitational Chern-Simons term:

δQ(ξ) =
πζ

κ

[
ξT (Σ.δJ + ∆)

]0
, (5.5)

where J is the super angular momentum [6],

J = X ∧X′ + S , (5.6)

which is constant by virtue of (2.15) and (2.11), and ∆ is the scalar

∆ = X.δX′ − κ
(
δψψ

)
. (5.7)
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For our black hole solutions we obtain, from (3.3), (3.16) and (3.18) with
k = −1,

J = (1− 2q)[β ∧ γ + 2(α.γ)γ] , (5.8)

and,

∆ = (1−2q)(2−β2) (β.δγ)+qδ(β.γ) = −β2 δ
[
(1− 2q)v +

q

2
ρ2q−1
0

]
. (5.9)

We note here that, had we defined δX′ not as a differential, but as the finite
(linearized) difference X′ − X′

0, with X0 a given background solution, ∆
would have contained in addition a non-constant contribution proportional
to (γ.(γ − γ0))ρ1−2q, which is absent here because (γ.δγ) = 0 by virtue
of the constraint (3.9). So in the present case the definition of the Killing
charges as differentials is essential to guarantee their conservation.

The black-hole mass and angular momentum are respectively the Killing
charges for the vectors ξ = (−1, 0) and ξ = (0, 1),

M = −πµ

κ

(
δJY +

∫
∆

)
,

J =
πµ

κ

(
δJT − δJX

)
, (5.10)

where the integral over ∆ is a line integral from the “vacuum” solution
v = ρ2q−1

0 = 0 to the solution under consideration. We obtain from (5.8)
and (5.9):

M =
πµβ2

κ

[
2(1− 2q)v − 1− 3q

2
ρ2q−1
0

]
, (5.11)

J =
πµβ2

κ

1− 2q

1− β2
v

(
v − ρ2q−1

0

)
. (5.12)

Noting that for our black holes κ < 0 and β2 < 0, we find that the mass
M is positive in the black-hole sector v > v+ (> ρ2q−1

0 ), and negative in the
black-hole sector v < v− (< 0), while the angular momentum J is positive
in both sectors.

A third black-hole observable is its entropy, proportional to its horizon
areal radius rh (computed in Appendix A),

S =
4π2

κ
rh =

4π2

κ
√

1− β2
ρ
(1−q)/2
0 |v − ρ2q−1

0 | , (5.13)
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which is negative. The other thermodynamical observable is the Hawking
temperature,

T =
µ(R2)′(ρ0)

4πrh
= −µβ2

√
1− β2(1− 2q)

4π

ρ
(5q−3)/2
0

|v − ρ2q−1
0 | . (5.14)

Finally, the horizon angular velocity is

Ωh = −Y (ρ0)
r2
h

=
1− β2

v − ρ2q−1
0

. (5.15)

This is positive in the sector v > v+ (co-rotating black holes) and negative
in the sector v < v− (counter-rotating black holes). Let us recall that
counter-rotating black holes (whose horizon rotates in the opposite sense
to the angular momentum) have previously been numerically constructed
in four-dimensional Einstein-Maxwell-dilaton theory (with dilaton coupling
constant larger than

√
3) [29], and in five-dimensional Einstein-Maxwell-

Chern-Simons theory (with Chern-Simons coefficient larger than 1) [30].
These values can be checked to be consistent with the first law of black

hole thermodynamics for independent variations of the black hole parame-
ters v and ρ0,

dM = TdS + ΩhdJ . (5.16)

We also note that the Chern-Simons dilaton black holes satisfy the integral
Smarr-like relation

M =
1− 3q

2(1− 2q)
TS + 2ΩhJ , (5.17)

which generalizes that given in [7] for Chern-Simons black holes (q = 1).

6 Solution of five-dimensional Einstein-Maxwell-
Chern-Simons theory

Dimensional reduction of higher-dimensional field theories generically leads
to the appearance of dilaton fields, so one can surmise that, at least in
a domain of parameter space, the theory (2.1) results from the reduction
of some higher-dimensional field theory. In [31], five-dimensional Einstein-
Maxwell-Chern-Simons theory was reduced, by monopole compactification
on a constant curvature two-surface, to three-dimensional Einstein-Maxwell-
Chern-Simons theory with an additional constraint. This “hard” reduction
led to five-dimensional solutions which included a class generated from the
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three-dimensional warped AdS black holes. We now show that a special
“soft” reduction, where the constraint is avoided by introducing a dilaton
field, leads to a subclass of the theory (2.1). Conversely, oxidation of a
subclass of the solutions derived in the present paper therefore leads to
non-asymptotically flat solutions of the five-dimensional theory.

Five-dimensional Einstein-Maxwell-Chern-Simons theory is defined by
the action

S5 =
1

16πG5

∫
d5x

[√
|g(5)|

(
R(5)−

1
4
Fµν

(5)F(5)µν

)
− γ

12
√

3
εµνρσλF(5)µνF(5)ρσA(5)λ

]
,

(6.1)
where F(5) = dA(5), µ, ν, · · · = 1, · · · , 5, and γ is the Chern-Simons cou-
pling constant, the value γ = 1 corresponding to minimal five-dimensional
supergravity. Let us assume for the five-dimensional metric and the vector
potential the warped product ansätze

ds2
(5) = e−cφ(xγ)gαβ(xγ)dxαdxβ + ecφ(xγ)/2 a2(dx2 + dy2) ,

A(5) =
√

2κAα(xγ)dxα +
e

2
(xdy − ydx) , (6.2)

where α, β, γ = 1, 2, 3, x4 = x, x5 = y are the transverse space coordi-
nates, and a > 0 is an arbitrary scale. The constant transverse magnetic
field Fxy = e solves identically the corresponding Maxwell equations, and
its contribution to the five-dimensional energy-momentum tensor is propor-
tional to the flat transverse space metric. The remaining five-dimensional
field equations reduce to three-dimensional equations deriving from the ac-
tion (2.1), with b = −2c and the identifications

Λ =
e2

4a4
, c = 4

√
2κ

3
, µ =

2γe√
3a2

. (6.3)

These equations are solved by (3.14), (3.25) and (3.27) with

q =
3
7

, β2 = −1
2

(
1− 3

4γ2

)
, k = −7ρ

−4/7
1 , (6.4)

Because in the present case κ is positive and q < 1/2, it follows from the
analysis of Sect. 4 that this is a stationary solution (gρρ is positive for ρ > ρ0)
if β2 < 0, i.e. γ >

√
3/2. Carrying out the coordinate transformation

t =
√

7
1− β2

τ , ρ = (αr)7 ,

ϕ =
3α

7(4γ2 − 3)

√
8(4γ2 − 1)

7
ρ
8/7
1 r3

0

e
ψ , (6.5)
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with α > 0 arbitrary, and fixing r1 = a, we find that this three-dimensional
solution oxidizes according to (6.2) to the solution of the five-dimensional
theory (6.1)

ds2
(5) = −

[
dτ +

(
w − br0

r

)
dψ

]2

+ r2(dx2 + dy2)

+
β

2
b2

r0

[
r2dr2

4r2
0(r − r0)

+
r2
0(r − r0)

r2
dψ2

] (
b =

√
3r2

0

γeβ
2

)
,

A(5) = ±
√

2(1 + β
2)

[
dτ +

(
w − br0

r

)
dψ

]
+

e

2
(xdy − ydx) (6.6)

(with β
2 = −β2) depending on three parameters e, r0 and w. This solution

has a bolt singularity at r = r0, but becomes regular if ψ is an angle (with
period 2π). Then the range of r is r > r0 > 0, so that the singularity at
r = 0 becomes irrelevant.

One could expect the “soft” solution (6.6) to reduce to the “hard” Gödel
class solution of [31] in the near-bolt limit r → r0, where the dilaton field
can be replaced by a constant. This turns out not to be possible because,
for β2 < 0 (γ >

√
3/2), the constant curvature transverse two-spaces of the

Gödel class solutions are not flat but hyperbolic (with negative curvature).
However we show in Appendix B that there is indeed a connection, the
“double near-bolt” limit of the hard solution coinciding with the near-bolt
limit of the soft solution.

7 Conclusion

We have constructed rotating magnetic solutions to the three-dimensional
Einstein-Maxwell-Chern-Simons-dilaton theory defined by the action (2.1)
with b = −2c. These include for κ < 0 and Λ > µ2/4 a class of black hole
solutions, which generalize the warped AdS black holes of [7]. In the range
c2 > −16κ of the dilaton coupling constant c, the regular black holes are
Schwarzschild-like, with a horizon shielding a spacelike singularity. For the
discrete values c2 = −16κ(n − 1)/n (with n > 2), null infinity is replaced
by a second multiple horizon with vanishing Hawking temperature. We
have also computed the mass, angular momentum and other thermodynamic
observables for these solutions. The regular black holes belong to two disjoint
sectors. The black holes of the first sector have a positive mass and are co-
rotating, while the black holes of the second sector have a negative mass
and are counter-rotating.
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We have also shown that a particular, non-black hole, subfamily of our
three-dimensional solutions may be uplifted to new regular non-asymptotically
flat solutions of five-dimensional Einstein-Maxwell-Chern-Simons theory. We
conjecture that it might be possible to generalize such a construction, both
by taking into account a five-dimensional cosmological constant, and by ex-
tending the reduction ansatz (6.2) to a constant curvature transverse two-
space, provided that the solution-generation technique of the present paper
could be extended to the case of a dilaton potential more general than the
Liouville potential in (2.6).

Returning to the three-dimensional theory (2.1), we comment on our
apparently arbitrary choice of the relation b + 2c = 0 between the dilaton
couplings. We would not expect non-trivial closed-form solutions for dilaton
couplings not satisfying this constraint, which might lead to a symmetry
enhancenent of the theory. In this respect, the situation might be similar
to that of four-dimensional Einstein-Maxwell-dilaton theory, which admits
closed form rotating solutions only for specific values of the dilaton coupling
constant α (α = 0 or α =

√
3), which are precisely the values for which the

symmetries of the theory are enhanced [32]. Whether this is indeed the case
for our three-dimensional theory remains to be investigated.
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Appendix A

From (2.4),
r2 = gϕϕ = [−gtt]

−1 (Y 2 −R2) , (A.1)

where, for the metric (4.1) with κ < 0 (q < 0, ε′ = 1, ε = −1) and β2 < 0,

gtt = (1−β2)ρ1−q > 0 , Y = ρ1−q
(
ρ2q−1 − v

)
, R2 = −β2ρ

(
ρ2q−1
0 − ρ2q−1

)
.

(A.2)
Putting x = ρ2q−1, this leads to

r2 =
ρ1−q

1− β2

[
(1− β2)x2 − (2v − β2x0)x + v2

]
. (A.3)
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The discriminant of the quadratic polynomial in brackets

∆ = −4β2
[−v2 + vx0 − β2x2

0

]
(A.4)

has two roots
v±(x0) =

[
1±

√
1− β2

] x0

2
. (A.5)

For v− < v < v+, the discriminant is positive, so that r2 has two roots r±
which are both of the same sign as

2v − β2x0 > 2v− − β2x0 =
[√

1− β2 − 1
]
x0 > 0. (A.6)

These two roots correspond to two causal singularities of the metric (4.1),
which are naked because R2(x±) = Y 2(x±) > 0. Thus, this metric leads
to regular black holes only if either v > v+, or v < v−. From (A.1) the
corresponding horizon radii are

v > v+ : rh =
ρ
(1−q)/2
0√
1− β2

(v − x0) >
ρ
(3q−1)/2
0√
1− β2

(
√

1− β2 − 1) ,

v < v− : rh =
ρ
(1−q)/2
0√
1− β2

(x0 − v) >
ρ
(3q−1)/2
0√
1− β2

(
√

1− β2 + 1) ,

(A.7)

where we have used v+ > x0 > 0 and v− < 0 < x0.

Appendix B

The “Gödel class” solution (3.22) of [31] for β2 < 0, with k = −1 (nega-
tive constant curvature transverse two-space) and vanishing five-dimensional
cosmological constant (g = g = aβ

−1) is

ds2
(5) = − (dt− g cosχdψ)2 + g2β

2 [
dχ2 + sin2 χdψ2 + dθ2 + sinh2 θ dϕ2

]
,

A(5) = ±
√

2(1 + β
2) (dt− g cosχdψ) + e cosh θ dϕ (g = 2γe/

√
3) . (B.1)

In the double near-bolt limit χ → 0, θ → 0, this goes to

ds2
(5) ' −

(
dt +

g

2
χ2 dψ

)2
+ g2β

2 [
dχ2 + χ2 dψ2 + dθ2 + θ2 dϕ2

]
,

A(5) ' ±
√

2(1 + β
2)

(
dt +

g

2
χ2 dψ

)
+

e

2
θ2 dϕ , (B.2)

with t = t− gψ.
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On the other hand, the near-bolt limit r → r0 of the solution (6.6) yields

ds2
(5) ' −

(
dt +

b

4
χ2 dψ

)2

+
b2β

2

4
[
dχ2 + χ2 dψ2 + dθ2 + θ2 dϕ2

]
,

A(5) ' ±
√

2(1 + β
2)

(
dt +

b

4
χ2 dψ

)
+

eb2β
2

8r2
0

θ2 dϕ , (B.3)

where we have put t = τ + (w − b)ψ, and

r ' r0(1 + χ2/4) (χ → 0) , x =
bβ

2r0
θ cosϕ , y =

bβ

2r0
θ sinϕ .

The two limits (B.2) and (B.3) coincide if g = b/2, leading from the defini-
tions of g in (B.1) and of b in (6.6) to e = (b2β

2
/4r2

0)e.
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Figure 1: Penrose diagram of the black holes with −1 ≤ q < 0.

Figure 2: Penrose diagram of the cold black holes with n odd; (a) is a normal
geodesic, (b) and (c) are exceptional geodesics.
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Figure 3: Penrose diagram of the cold black holes with n even.
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