
Okapi : Causally Consistent Geo-Replication Made Faster, Cheaper
and More Available

Diego Didona, Kristina Spirovska, Willy Zwaenepoel
École polytechnique fédérale de Lausanne

Abstract
Okapi is a new causally consistent geo-replicated key-
value store. Okapi leverages two key design choices to
achieve high performance. First, it relies on hybrid log-
ical/physical clocks to achieve low latency even in the
presence of clock skew. Second, Okapi achieves higher
resource efficiency and better availability, at the expense
of a slight increase in update visibility latency. To this
end, Okapi implements a new stabilization protocol that
uses a combination of vector and scalar clocks and makes
a remote update visible when its delivery has been ac-
knowledged by every data center.

We evaluate Okapi with different workloads on Ama-
zon AWS, using three geographically distributed regions
and 96 nodes. We compare Okapi with two recent ap-
proaches to causal consistency, Cure and GentleRain.
We show that Okapi delivers up to two orders of magni-
tude better performance than GentleRain and that Okapi
achieves up to 3.5x lower latency and a 60% reduction of
the meta-data overhead with respect to Cure.

1 Introduction

Distributed data stores represent the backbone of many
large-scale online services. Such data stores are of-
ten geo-replicated to improve performance, by storing
a copy of the data closer to the clients, and to achieve
availability, by keeping multiple copies of the data at dif-
ferent sites [25]. A critical decision in designing a geo-
replicated store is the choice of its consistency model.
At one end of the spectrum, strong consistency [15] has
simple semantics, but incurs high latency and does not
tolerate network partitions. At the other end, eventual
consistency provides excellent performance and tolerates
partitions [33], but it is hard to program with.

Causal Consistency. Causal consistency [4] hits a sweet
spot in the ease of programming vs performance trade-
off and has emerged as an attractive model to build geo-

replicated data stores [5, 6, 8, 14, 22]. On the one hand,
it avoids the long latencies and inability to tolerate net-
work partitions of strong consistency. On the other hand,
it is easier to reason about than eventual consistency and
avoids some of eventual consistency anomalies.

Limitations of existing systems. At a very high level,
all causally consistent systems work in the same way.
Events, such as creation, reads and writes of data items,
are labeled with a timestamp. This timestamp is prop-
agated on communications between machines. New
events are then always labeled with timestamps higher
than the highest one received so far, thereby making sure
that timestamps reflect causal order. A variety of times-
tamping methods have been proposed, including in par-
ticular using the current value of the physical clock of the
machine on which the event occurs [5, 14]. The advan-
tage of using physical clocks is that it is a rather concise
encoding of causality, and that it is trivial to obtain.

The problem with using physical clocks for causal de-
pendency tracking is due to clock skew between different
machines. Consider, for instance, the creation of a new
version of data item X on machine A, occurring at time
t on the physical clock of A, and therefore labeled with
timestamp t. Let this version of X be read by a client on
machine B, and let that client then create a new version of
data item Y. In the absence of clock skew, the value t ′ of
B’s clock at this time would be larger than t. Hence, this
event can be timestamped with t ′, with the timestamp re-
flecting the causal order. However, if, due to clock skew,
the value of B’s clock at this time is smaller than t, then
the operation needs to block until B’s clock catches up to
the value of t [14].

Clock skew yields similar problems also with read-
only transactions, a powerful abstraction supported by
the majority of the causally consistent systems [5, 6, 14,
22, 23]. The timestamp assigned to a transaction, in fact,
can be higher than the value of the clock on a node in-
volved in the transaction [5]. Recent work has shown that
waits due to clock skew cause a significant reduction in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148028074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

performance (up to 25% even in a small deployment [5]).
State-of-the-art systems based on physical clocks also

make different trade-offs between dependency tracking
overhead and the latency of transactional operations.
They either use a single timestamp per item but achieve
poor performance for transactional operations [12], or
use a number of timestamps equal to the number of data
centers to implement efficient transactions [5].

Modern applications, however, need both fast transac-
tional read operations on a consistent snapshot of the data
store and low dependency tracking overhead. Multi-key
transactional reads are paramount, as they increase the
expressiveness of applications [22, 24]. For example, in
many services a single high-level user operation (e.g., re-
trieving the content of a page) translates to multiple read
operations from the underlying store [25]. It is, then,
highly desirable that all the retrieved values belong to a
consistent causal snapshot of the data store. Moreover,
small items dominate typical workloads, e.g., at Face-
book [7, 25], Twitter [1] and Instagram [3]. For such
workloads, dependency meta-data can easily grow big-
ger than the payload it refers to, with detrimental effects
on scalability, communication and storage overhead.

Okapi. This paper presents Okapi, a new causally con-
sistent geo-replicated data store. Okapi avoids the la-
tencies caused by clock skew and implements efficient
transactional reads at low dependency tracking cost.

Okapi achieves the first goal by using hybrid logi-
cal/physical clocks (HLC) to timestamp events. HLC
have a physical and a logical component. Instead of wait-
ing for the physical clock to reach a value t, a server can
set the physical component of its hybrid clock to t. The
logical part of the clock is, then, incremented to generate
new timestamps that reflect causality among events.

To achieve the second goal, Okapi proposes a novel
stabilization protocol called Universal Stable Time
(UST). UST achieves higher resource efficiency and bet-
ter availability, at the expense of a slight increase in up-
date visibility latency. UST uses dependency vectors
only for local updates, to efficiently serve transactional
reads, and a single timestamp for replicated updates.
UST provides support for higher availability during net-
work partitions, by enforcing that data centers expose to
clients only items that have been received system-wide.
The (periodic and asynchronous) communication needed
to check the set of remotely received items induces a
slightly higher visibility latency for remote updates.

Contributions. This paper makes three contributions:

I) The design and implementation of Okapi, a causally
consistent data store that i) achieves low latencies by
means of a novel combination of HLC and dependency
vectors; and ii) proposes a novel stabilization protocol
that achieves higher efficiency and availability at the cost

of a slight increase in remote updates visibility latency.
II) The exploration of Okapi’s trade-offs among perfor-
mance, updates visibility latency and availability.
III) The evaluation of Okapi in a large scale Ama-
zon AWS deployment, in which we compare Okapi with
Cure and GentleRain, two state-of-the-art systems that
achieve causal consistency using physical clocks.

2 Definitions and System model

Causal consistency. Causal consistency requires that
servers of a system return values that are consistent
with the order defined by the causality relationship.
Causality is a happens-before relationship between two
events [19, 4]. For two operations a, b, we say that a
causally depends on b, and write a b, if and only if at
least one of the following conditions holds: i) a and b are
operations in a single thread of execution, and a happens
before b; ii) a is a write operation, b is a read operation,
and b reads the value written by a; iii) there is some other
operation c such that a c and c b.

We use lower case letters, e.g., x, to refer to a key and
the corresponding capital letter, e.g., X to refer to a ver-
sion of the key. We say that X depends on Y if the write
of X causally depends on the write of Y .

We define an item stable in a data center when it be-
comes visible to clients in that data center. An item
becomes stable when all its dependencies have been re-
ceived and made visible in the local data center.

We define the visibility latency of an item d in a data
center DC as the time between the moment in which d
has been created in its originating data center and the
moment in which d becomes stable in DC.
Convergent conflict handling. Two operations a, b are
concurrent if neither a b nor b a. If a and b are con-
current write operations to the same key, they conflict.
Two conflicting versions of a key can be propagated to
remote replicas in different orders, potentially leading to
replicas to diverge forever. Okapi implements the popu-
lar last-writer-wins rule [30] to arbitrate conflicting mod-
ifications to keys. Given two updates, the one with the
highest timestamp is deterministically decided to having
occurred later than the other, determining the value of the
value written (possible ties are settled by looking at the id
of the originating data centers of the items). Okapi can
easily integrate other mechanisms to achieve state con-
vergence, similarly to previous systems [5, 12, 14, 22].
System model. We assume a distributed key-value store
that manages a large set of data items. The data-set is
split into N partitions and each key is deterministically
assigned to one partition according to a hash function.
Each partition is replicated at M different sites, each cor-
responding to a different data center. Hence, a full copy

2

Client

p0 6

Put(x)

x2
10|0 Increment

HLC.l
6 ≤ 10

update HLC6|0 10|0 10|1x1

Client

p0 6

Put(x)

B	L	O	C	Kx1 x211
Wait until <

10

t10

physical
clock

hybrid
clockt p|l t

dependency
timep|l

Okapi

Cure/GentleRain

Figure 1: PUT implementation in Okapi (top) and Gen-
tleRain/Cure (bottom). The client dependency time (10)
is higher than the physical clock on p0 (6). To reflect
causality, Okapi sets its HLC to 〈10,1〉. GentleRain/Cure
must wait until the physical clock gets to 11.

of the data is stored at each site.
We assume a multiversion data store. An update oper-

ation creates a new version of a key. Each version stores
the value corresponding to the key and some meta-data to
track causality. The system periodically garbage-collects
old versions of keys. We further assume nodes commu-
nicate through point-to-point lossless FIFO channels.

The system supports the same programming model of
the vast majority of the existing causally consistent sys-
tems, e.g., COPS [22], Orbe [12], ChainReaction [6], and
Gentlerain [14], which is based on these operations:

PUT(key, val): A PUT operation assigns value val to
an item identified by key. If item key does not exist, the
system creates a new item with initial value val. Else, a
new version storing val is created.

val ← GET(key): A GET operation returns the value
of the item identified by key. A GET operation is such
that its return value does not break causal consistency as
explained in the following. Assume X Y and that a
client c issues a GET(y) operation, receiving Y as result.
Then, any subsequent GET(x) operation issued by c must
return either X or a version X ′ such that X ′�� X .

〈vals〉 ← RO-TX 〈keys〉: This operation implements
a causally consistent read-only transaction [22, 23]. If
a read-only transaction returns X and Y , then they are
causally consistent with the issuing client’s history and
there is no X ′, such that X X ′ Y .

At the beginning of a session, a client c connects to a
node nc in the closest data center according to some load
balancing scheme. c does not issue the next operation
until it receives the reply to the current one. Operations
towards data items that are not stored by nc are transpar-
ently forwarded to the node(s) responsible for such data
items, and the result is relayed back to c by nc.

Each server is equipped with a physical clock that ad-
vances monotonically. We assume such clocks to be
loosely synchronized by a time synchronization proto-

col, such as NTP [2]. The correctness of our protocol
does not depend on the synchronization precision.

3 The Design of Okapi

We now describe the design of Okapi, focusing on its two
key techniques: the use of HLC and the UST stabiliza-
tion protocol. We also qualitatively compare Okapi with
two state-of-the-art systems, GentleRain and Cure 1.

3.1 Using HLC to track time
Okapi uses HLC [16] to track the advancement of time,
and hence to timestamp updates. A hybrid timestamp t is
a tuple with a physical component t.p and a logical com-
ponent t.l. Two hybrid timestamps are compared by first
comparing their physical components, and then compar-
ing their logical components.

Each server p has a (software maintained) hybrid ma-
chine clock HLCp and a (hardware maintained) physical
clock Clockp. The physical component of the HLCp is in
general different from the current value of Clockp.

Each data item version stored on p has a (hybrid) up-
date timestamp. At the time of creation of a version, its
update timestamp is set to the current value of HLCp.

Each client c has a client dependency vector DVc, with
one entry per data center. DVc consists of hybrid times-
tamps that, roughly speaking, reflect the client’s depen-
dencies on data items created at each other data center.

We now show how Okapi leverages HLC to implement
clock-skew resilient PUT and RO-TX operations.
PUT. When client c performs a PUT on server p, it sends
its DVc along. The server p then computes the largest
element of DVc, noted maxc, and ensures that the update
timestamp of the newly created version is higher than
maxc and higher than the highest update timestamp p has
assigned so far. In this way, the generated timestamp
reflects causality.

To this end, the server first sets HLCp.p to the max-
imum of HLCp.p and Clockp. If maxc < HLCp, then
HLCp.l is incremented by one, so that the new update
timestamp is higher than any previous one assigned by
p. Otherwise, HLC is set to < maxc.p,maxc.l + 1 >,
to ensure that the new update timestamp is higher than
the highest dependency timestamp of the client. This en-
sures, without waiting, that the new update timestamp
reflects causality. The server also attaches an item depen-
dency vector to the new item. Such dependency vector is
a copy of DVc except for the entry corresponding to the
local data center, which stores the timestamp of the item.

1Cure exposes APIs different from Okapi’s and uses CRDTs [29]
for state convergence. We have implemented a version of Cure that
complies with the system model described in Section 2. We refer to
our implementation simply as Cure.

3

Client

*p0

Wait until ≤ 10
B	L	O	C	K

10

p1

p2

:13 ≥ 10

x1,	y1

: 6 ≤ 10⟾

Get(x)x1

RO-TX:{x, y}

13

y1 6 Get(y)10

10
y1

x1

physical
clock

snapshot
timet t t

dependency
time

Client

*p0 10

p1

p2

:13 ≥ 10

x1,	y1

Get(x)x1

RO-TX:{x, y}

13

y1 6 Get(y)

y1
x1

10|0
10|0

6|0

13|0

physical
clock

snapshot
timet p|l p|l

hybrid
clock

6 ≤ 10
update HLC

10|0

10|0

Client

*p0 10

p1

p2

:13 ≥ 10

x1,	y1

Get(x)x1

RO-TX:{x, y}

13

y1 6 Get(y)

y1
x1

10|0
10|0

6|0

13|0

physical
clock

snapshot
timet p|l p|l

hybrid
clock

6 ≤ 10
update HLC

10|0

10|0

Client

*p0 10

p1

p2

:13 ≥ 10

x1,	y1

Get(x)x1

RO-TX:{x, y}

13

y1 6 Get(y)

y1
x1

10|0
10|0

6|0

13|0

physical
clock

snapshot
timet p|l p|l

hybrid
clock

6 ≤ 10
update HLC

10|0

10|0

Client

*p0 10

p1

p2

:13 ≥ 10

x1,	y1

Get(x)x1

RO-TX:{x, y}

13

y1 6 Get(y)

y1
x1

10|0
10|0

6|0

13|0

physical
clock

snapshot
timet p|l p|l

hybrid
clock

6 ≤ 10
update HLC

10|0

10|0

Client

*p0

Wait until ≤ 10
B	L	O	C	K

10

p1

p2

:13 ≥ 10

x1,	y1

: 6 ≤ 10⟾

Get(x)x1

RO-TX:{x, y}

13

y1 6 Get(y)10

10
y1

x1

physical
clock

snapshot
timet t t

dependency
time

Client

*p0

Wait until ≤ 10
B	L	O	C	K

10

p1

p2

:13 ≥ 10

x1,	y1

: 6 ≤ 10⟾

Get(x)x1

RO-TX:{x, y}

13

y1 6 Get(y)10

10
y1

x1

physical
clock

snapshot
timet t t

dependency
time

Okapi

Cure

Figure 2: RO-TX implementation in Okapi (top) and
Cure (bottom). The local snapshot time of the transac-
tion (10) is higher than the value of the physical clock on
p2 (6). To avoid the creation of later items with a times-
tamp still ≤ 10, Okapi simply moves its HLC to 〈10,0〉.
Cure needs to wait until the clock gets to 10.

In contrast, if timestamping is done using a physical
clock alone, as in Cure and Gentlerain, then in the case
of clock skew, the server has no other option but to wait
until the physical clock catches up with maxc.

Figure 1 (top) and Figure 1 (bottom) depict the be-
havior of Okapi and, respectively, Cure and GentleRain
when a node p with Clockp = 6 receives a PUT operation
from a client with maxc = 10.

RO-TX. The advantages of HLC are even greater for
read-only transactions. In this case the transaction coor-
dinator computes a transaction snapshot time, essentially
the upper bound on timestamps corresponding to local
items that are visible to the transaction 2.

The coordinator then sends requests to all the servers
storing data items requested in the transaction, asking
them to return the values of the versions of those data
items with the largest timestamp smaller than or equal to
the snapshot time.

Intuitively, when using hybrid timestamps, the server
can respond immediately, regardless of clock skew, by if
necessary advancing its HLC to the transaction snapshot
time. This disallows “later” items from being created by
the server with a timestamp smaller than or equal to the
snapshot time, thereby preventing the transaction from
“missing” any item that it should be able to access.

If, instead, physical clocks are used, then the server

2The coordinator also determines upper bounds for the remote de-
pendencies, as we shall discuss in the next section. We omit them here
for simplicity, as they are not affected by clock skew and do not induce
any waiting time in Okapi and Cure.

has no other option than to wait for the clock to catch up
to the snapshot time.

The benefits of hybrid clocks are more pronounced
with transactions because with physical clocks it suffices
that the clock of any of the contacted servers runs be-
hind for the waiting to occur. This easily results in a
major performance impairment for systems based only
on physical clocks because high-level application oper-
ations typically translate to contacting several servers at
once. For example, the median number of servers con-
tacted to retrieve a Facebook page is about 20 [25].

Figure 2 (top) and Figure 2 (bottom) compare the be-
havior of Okapi and Cure when serving a RO-TX with
snapshot time 10 and with a contacted server p2 whose
physical clock value is 6. We only compare Okapi with
Cure because the implementation of RO-TX in Cure is
more efficient than in GentleRain. We shall discuss the
limitations of the RO-TX implementation in GentleRain
in the following section.

3.2 Efficient dependency tracking by UST

Okapi incorporates UST, a new stabilization proto-
col that addresses availability issues in state-of-the-art
causally consistent systems. As a by-product, it consid-
erably reduces the amount of consistency meta-data that
is communicated and stored, compared to Cure, approxi-
mating that required in GentleRain. As a tradeoff, Okapi
incurs a modestly higher update visibility latency.

UST in a nutshell. As with most causally consistent
systems, UST allows updates originating in a data center
to become visible immediately in that data center. For
updates originating elsewhere, it makes them visible only
when they have been replicated at all data centers.

UST works by a combination of version vectors on
each server that record the latest remote updates received
from their replicas in other data centers and a decentral-
ized protocol for exchanging this information to deter-
mine what data items are fully replicated. Periodically,
nodes within a data center exchange their version vectors
to compute the Global Stable Vector (GSV) as the entry-
wise minimum of all the version vectors in the data cen-
ter. If the i-th entry of the GSV takes the value t, it means
that all the servers in the data center have installed all up-
dates originated at data center i with timestamp up to t.
Periodically, peer replicas exchange their GSV to com-
pute the Universal Stable Vector (USV), as entry-wise
minimum of all the exchanged GSV. If the i-th entry of
the USV takes the value t, then all updates originated at
data center i have been fully replicated.

Availability. In Cure and GentleRain the failure or dis-
connection of a data center can cause the states of healthy
data centers to diverge. Namely, it can happen that some

4

data items originating at that failed data center are vis-
ible in some healthy data centers but not in other ones.
UST disallows this behavior by making a remote data
item visible only when it has been replicated at every
data center. This ensures that healthy data centers have
made visible the same set of items from the failed data
center and hence see the same set of remote stable de-
pendencies even after the failure.

Meta-data overhead. UST only requires a single scalar
value to be communicated and stored with a remote up-
date to determine its visibility. In fact, when a remote
update d coming from data center i arrives in data cen-
ter j, all the remote dependencies of d have been already
fully replicated. Hence, UST determines the visibility of
d by only checking that all of d’s local (i.e., of data cen-
ter i) dependencies have been fully replicated. This is
accomplished by simply checking if the i-th entry of the
USV is lower or equal than the timestamp of d.

UST achieves the same dependency meta-data over-
head for remote updates as GentleRain, but it represents
a considerable improvement over Cure, which needs to
store a vector of size equal to the number of data centers
with each remote data item.

Unlike GentleRain, instead, UST requires that the lo-
cal copy of an item d stores a dependency vector with one
entry per data center (with the local entry corresponding
to the timestamp of d). By this vector, Okapi can deter-
mine, at the data center granularity, the snapshot of the
data store to which an item belongs. This allows Okapi to
implement RO-TX efficiently by overcoming a key limi-
tation of the design of GentleRain, which only stores the
timestamps of local items.

Support for fast RO-TX. In Okapi, when receiving a
RO-TX request from a client, the transaction coordinator
determines the snapshot vector of the transaction. Such
vector has one entry per data center and represents the
freshest snapshot corresponding to stable items and in-
cluding all the dependencies of the client. Every item
belonging to such snapshot must be visible by the trans-
action. To determine whether a local item is visible to
the transaction, Okapi exploits the available item’s de-
pendency vector, and checks whether it is entry-wise
smaller than or equal to the snapshot vector. To deter-
mine whether a remote item d created at the i-th data
center is visible to the transaction, Okapi checks if the
item timestamp is lower than or equal to the i-th entry
in the transaction vector. This condition is sufficient be-
cause the transaction vector includes only stable items by
construction. Hence, if the condition is met, UST ensures
that all of d’s dependencies have already been received in
the data center and are, hence, visible to the transaction.

In GentleRain, instead, the snapshot visible to a trans-
action is determined by a single snapshot timestamp. Ev-

Symbol Definition
N # partitions
M # replicas per partition
pm

n The m−th replica of the n−th partition
dtc Dependency time at client c

GSV m
n Global stable vector on pm

n
USV m

n Universal stable vector on pm
n

USVc Universal stable vector at client c
Clockm

n Physical clock time on pm
n

VV m
n Hybrid version vector of pm

n
d A tuple 〈k,v,ut,sr,DV 〉

Table 1: Definition of symbols.

ery item with a timestamp lower than such value is vis-
ible to a transaction. A transaction’s timestamp has to
be higher than the highest dependency timestamp at the
client to include all the client’s dependencies. Let t be
the snapshot timestamp of a transaction. To enforce that
the transaction does not “miss” any item that it should
be able to access, GentleRain must ensure that the local
data center has received all items from all data centers
with a timestamp lower than or equal to t. The duration
of this synchronization step is potentially proportional to
the communication delay between the local data center
and the furthest data center.

Visibility latency. The inevitable price to be paid for
the increase in availability is that the visibility latency
of remote updates is increased, because there needs to be
communication between replicas in different data centers
to compute visibility. We believe the availability gains
well warrant the slight increase in update latency.

4 Protocols in Okapi

We now describe in detail the protocols run by Okapi3.
Algorithm 1 and Algorithm 2 describe, respectively, how
clients and servers implement PUT, GET and RO-TX
operations. Algorithm 3 describes the management of
clocks on servers. Algorithm 4 reports the UST stabi-
lization protocol. We indicate a target client as c. At the
beginning of a session, c is provided with the id m of the
data center it is connected to, referred to as the local data
center. We refer to the server that handles c’s request as
pm

n . pm
n can be the node with which c has established a

session, or the node to which the request has been for-
warded (as described in Section 2). Table 1 provides a
summary of the symbols used in the discussion.

4.1 Meta-data
Item. An item d is a tuple 〈k,v,ut,sr,DV 〉. k is the unique
id that identifies the key of which d is a version. v is the
value of d. sr is the source replica of d, i.e., the id of the

3The correctness proof is omitted for space constraint.

5

Algorithm 1 Okapi client c at data center m.
1: function GET(key k)
2: send 〈GETReq kkk,,,UUUSSSVVV ccc〉 to server
3: receive 〈GETReply vvv,,,UUUSSSVVV mmm

nnn ,,,uuuttt,,,sssrrr〉
4: USVc← max{USV m

n ,USVc}
5: if (sr == m) then dtc = max{dtc, ut} endif
6: return v
7: end function

8: function PUT(key k, value v)
9: DVc←USVc; DVc[m]← max{dtc,DVc[m]}

10: send 〈PUTReq kkk,,,vvv,,,DDDVVV ccc〉 to server
11: receive 〈PUTReply uuuttt〉
12: dtc← ut . Update client’s dependency at local data center
13: end function

14: function RO-TX(key-set χ)
. Send remote dependencies (USV m

n) and local dependencies (dtc) info
15: send 〈RO-TX-Req χχχ,,,UUUSSSVVV ccc,,,dddtttccc〉 to server pppnnn

mmm
16: receive 〈RO-TX-Resp DDD,,,UUUSSSVVV mmm

nnn 〉
17: USVc← max{USV m

n ,USVc}
18: for (d ∈ D) do
19: read d as if it were the result of a GET . This updates dtc if necessary
20: end for
21: end function

data center in which d has been created. ut is the update
time, i.e., the creation time of the d at its source replica.
DV is a dependency vector with M entries. For a local
update, DV [i], i 6= m, is the update time of the item d′

with the highest timestamp such that i) d′ has originated
at the i−th replica and ii) d depends on d′. DV [m] is
equal to ut. For remote updates, DV is null.

Client. A client c maintains one vector USVc with one
entry per data center. USVc indicates the freshest sta-
ble snapshot from which any server has served a GET or
a read-only transaction issued by c. c also maintains a
dependency time dtc, corresponding to the highest times-
tamp of any local item read or written by c.

Server. A server pm
n has access to a monotonically in-

creasing physical clock, Clockm
n . pm

n also maintains three
vector clocks with M entries: VV m

n , GSV m
n and USV m

n .
VV m

n is a version vector of hybrid clocks. VV m
n [i], i 6= m,

indicates the timestamp of the latest update/heartbeat re-
ceived by pm

n that comes from the replica at the i−th data
center. VV m

n [m] is the version clock of pm
n and it is used to

timestamp updates. GSV m
n [i] = t means that pm

n is aware
that all the nodes in the m−th data center have processed
all events generated in the i−th data center with times-
tamp up to t. USV m

n [i] = t indicates that pm
n is aware

that every node in every data center has installed all the
updates generated in data center i whose timestamps are
smaller than or equal to t. GSV m

n and USV m
n are read and

written atomically. Okapi uses optimistic locking [21] to
keep the corresponding overhead low.

4.2 Operations

GET. c sends a request 〈GET k, USVc〉, where k is the
key to be read. pm

n uses USVc to advance USV m
n if neces-

Algorithm 2 Okapi server pm
n serving clients requests.

1: upon receive 〈GETReq kkk,,,UUUSSSVVV ccc〉 from c do
2: USV m

n ← max{USV m
n ,USVc}

3: Dk ←{d : d.k == k} . Versions chain of the desired key
. Visible version with highest timestamp

4: d← argmaxd.ut{D} : (d.sr == m ∨ d.ut ≤USV m
n [d.sr])

5: send 〈GETReply UUUSSSVVV mmm
nnn ,,,ddd...vvv,,,ddd...uuuttt,,,ddd...sssrrr〉 to client

6: upon receive 〈PUTReq kkk,,,vvv,,,DDDVVV ccc〉 from c do
7: updateClockOnPut(DVc) . Update version vector
8: d.k← k; d.v← v; d.ut←VV m

n [m]; d.sr← m; d.DV ← DVc
9: d.DV [m]← d.ut

10: insert d in the version chain of key k
11: send 〈PUTReply ddd...uuuttt〉 to client
12: for (i← 0 . . .M, i 6= m) do
13: send 〈RRReeepppllliiicccaaattteee d.k, d.v, d.ut〉 to pi

n
14: end for
15: lastOutMsg←Clockm

n

16: upon receive 〈RO-TXReq χχχ,,,UUUSSSVVV ccc,,,dddtttccc〉 from c do
17: updateClockOnT x(dtc)
18: USV m

n ← max{USVc,USV m
n } . Install newer USV if needed

19: lts←VV m
n [m] . Take freshest local snapshot

20: χi←{k ∈ χ : partition(k) == i} . Set of requested keys per node
21: D← /0 . Items to return to client
22: for (i s.t. χi 6= /0) do . Done in parallel
23: send 〈SSSllliiiccceeeRRREEEQQQ χχχ iii,,, llltttsss,,,UUUSSSVVV mmm

nnn 〉 to pm
i

24: receive 〈SSSllliiiccceeeRRREEESSSPPP DDDiii〉 from pm
i

25: D← D∪Di
26: end for
27: reply 〈DDD,,,UUUSSSVVV mmm

nnn 〉 to c

28: upon receive 〈SliceREQ χχχ,,, llltttsss,,,UUUSSSVVV mmm
iii 〉 from the coordinator pm

i do
29: updateClockOnT x(lts) . Update Clockm

n to cope with clock skew.
30: USV m

n ← max{USV m
i ,USV m

n } . Install newer USV if needed
31: T S←USV m

i ;T S[m]← lts . Transaction snapshot vector
32: D← /0
33: for k ∈ χ do
34: Dk ←{d : d.k == k∧

(
(d.sr == m∧d.DV ≤ T S) ∨

35: (d.sr 6= m∧d.ut ≤ T S[d.sr])
)
}

36: D← D∪argmaxd.ut{Dk} . Freshest visible version
37: end for
38: reply 〈SSSllliiiccceeeRRREEESSSPPP DDD〉 to pm

i

39: upon receive 〈Replicate kkk,,,vvv,,,uuuttt〉 from pi
n do

40: create new item d
41: d.k← k; d.v← v; d.ut← ut; d.sr← i
42: insert d in the version chain of key d.k
43: VV m

n [i]← d.ut

sary, so as to be sure to install a snapshot that is at least
as fresh as the one that c has been served from so far. pm

n
then selects the version d of k with the highest timestamp
such that either d is local or d’s update time is smaller
than or equal to the entry in USV m

n corresponding to d’s
originating data center. pm

n returns USV m
n and d’s value,

timestamp and source replica to c. Upon receiving such
reply, c updates USVc and, if d is local, dtc.

PUT. c sends a request 〈PUT k,v,DVc〉, where k is the key
to be written and v is the desired value to associate with
k. DVc is a dependency vector whose remote entries are
equal to the ones in USVc; the local entry is the maximum
between the local entry in USVc and dtc. DVc represents
all dependencies established by c so far.

Upon receiving c’s request, pm
n first determines the hy-

brid timestamp to associate with the new update. To this
end, pm

n invokes the updateClockOnPut function (re-
ported in Algorithm 3). This function advances the local

6

Algorithm 3 Okapi server pm
n : clock management.

1: function UPDATECLOCKONPUT (DVc)
2: hd← max{DVc} . Find highest dependency
3: maxp← max{VV m

n [m].p,Clockm
n ,hd.p} . Max physical clock

4: if (maxp ==VV m
n [m].p == DVc[m].p) then . Local phys clock behind

5: l = max{VV m
n [m].l,DVc[m].l}+1

6: else if (maxp ==VV m
n [m].p) then l =VV m

n [m].l +1
7: else if (maxp == DVc[m].p) then l = DVc[m].l +1
8: else l = 0 . Local phys clock higher than dependency
9: end if

10: VV [m].p← maxp;VV [m].l← l
11: end function

12: function UPDATECLOCKONTX(ts)
13: if (ts >VV [m]∧ ts >Clockm

n) then VV [m]← ts endif
14: end function

15: function UPDATECLOCKONHEARTBEAT
16: if (Clockm

n >VV m
n [m].p) then

17: VV m
n [m].p←Clockm

n ; VV m
n [m].l← 0

18: end if
19: end function

20: upon every ∆ time do
21: if Clockm

n ≥≥≥ lllaaassstttOOOuuutttMMMsssggg+∆ then
22: updateClockOnHeartbeat()
23: for each server ppp jjj

nnn, j ∈ {0 . . .M−1},k 6= m do
24: send 〈HEARTBEAT VVVVVV mmm

nnn [[[mmm]]]〉 to ppp jjj
nnn

25: end for
26: end if
27: lastOutMsg←Clockm

n

28: upon receiving 〈HEARTBEAT ct〉 from ppp jjj
nnn do

29: VVVVVV mmm
nnn [j]←ct

entry of the version clock of pm
n , VV m

n [m], with a hybrid
timestamp that is higher than the highest entry in DVc and
than the current version clock VV m

n [m]. Then, pm
n creates

a new version d of k, and replies to c with d’s timestamp.
This is used by c to update dtc. Finally, pm

n replicates d
by sending to its replicas a copy of d, except d.DV .

Upon receiving such replication message, a replica pi
n

inserts a copy of d in the version chain corresponding to
d.k and sets VV i

n[m] = d.ut.

RO-TX. c sends a request 〈RO−T XReq,χ, USVc,dtc〉,
where χ is the set of keys to be read. USVc and dtc are
provided so that the transaction is served from a snapshot
that includes c’s dependencies.

Upon receiving c’s request, pm
n acts as the coordina-

tor for the corresponding transaction. First, pm
n computes

the local transaction snapshot time, lts. This time repre-
sents the highest timestamp of local items visible to the
transaction. lts is computed as the maximum between the
local clock at the coordinator and dtc. pm

n also updates
USV m

n if necessary. In this way, the snapshot defined by
USV m

n and lts is the freshest snapshot that includes all the
dependencies established by c. pm

n sends USV m
n and lts

to every node pm
i that holds at least one key in χ , together

with the set of keys to be read.
Upon receiving such message, pm

i invokes the
updateClockOnTx function (reported in Algorithm 3).
This function advances VV m

i [m] in case it is lower than
lts. pm

i also updates its USV m
i if it is smaller than the

Algorithm 4 Okapi server pm
n : GSV and USV computa-

tion.
1: upon every ∆G time do
2: GSV m

n [j]← min{VV m
i [j]},∀ j = 0 . . .M−1,∀i = 0 . . .N−1

3: upon every ∆U time do
4: V [j]← min{GSV i

n [j]},∀ j = 0 . . .M−1,∀i = 0 . . .N−1
5: USV m

n ← max{V,USV m
n } . Enforce monotonicity of USV

one proposed by the coordinator. Then, pm
i computes

the transaction’s snapshot vector TV starting from the
USV and lts proposed by pm

n . TV is equal to USV m
n in

the remote entries. The local entry is, instead, the lo-
cal transaction timestamp proposed by pm

n . For each key
to be read, pm

i determines the version d with the highest
timestamp such that d is visible to c according to TV .

A local item is visible if its update time and its de-
pendencies fall within the boundaries defined by TV
(Line 34). A remote item is visible if its update time
falls within the boundaries of TV (Line 35). Since TV
is computed starting from a USV , this condition implies
that the remote item is also stable.

The set of all read items is sent back to pm
n . Upon

collecting all such replies, pm
n forwards them back to

c together with USV m
n . Finally, c updates USV m

n and,
for each item in the returned set, updates its dependency
meta-data as when processing the result of a GET.

Heartbeats. If pm
n does not receive update requests

from clients, it does not send replication messages to
its replicas either. Therefore, other replicas cannot in-
crease the m-th entry in their version vector, and the
m−th entry of the USV cannot advance. To avoid this
scenario, a partition that does not receive updates for a
period of time longer than ∆, broadcasts its latest lo-
cal hybrid version clock time to its replicas. The func-
tion UpdateClockOnHeartbeat computes the heart-
beat timestamps by advancing the local version clock
VV m

n [m] to Clockm
n if Clockm

n is higher than VV m
n [m].

Heartbeat messages and update replication messages are
sent (and received) in order of increasing update times-
tamps and clock values. Upon receiving a heartbeat with
timestamp t from pm

n , pi
n sets VV i

n[m] = t.

Stabilization protocol. Every ∆G time units, partitions
within a data center exchange their version vectors. pm

n
computes GSV m

n as the aggregate minimum of known
version vectors. Similarly to previous work [14, 5],
Okapi organizes nodes within a data center as a tree to
reduce message exchange. Every ∆U time units, replicas
at different partitions exchange their GSV and compute
the USV as the aggregate minimum of the received GSV .
Because USV m

n is also updated when serving client re-
quests, it can happen that USV m

n becomes greater than
GSV m

n in some entries. Thus, pm
n enforces that entries in

USV m
n are monotonically increasing.

7

0.05

0.2

0.4

0.6

2 4 8 16 24 32

T
h
ro

u
g

h
p

u
t

(M
o

p
s
/s

e
c
)

Number of partitions

GentleRain
Cure

Okapi

(a) Throughput scalability.

1

2
3
5

80
140

2 4 8 16 24 32

R
e
s
p

.
ti
m

e
 (

m
s
e

c
,
lo

g
)

Number of partitions

(b) RO-TX avg. resp. time (log).

1

2

5

10

30

2 4 8 16 24 32

R
e
s
p

.
ti
m

e
 (

m
s
e

c
,
lo

g
)

Number of partitions

(c) PUT avg. resp. time (log).

Figure 3: Performance with increasing scales of the system. Clients perform a RO-TX involving two partitions and a
PUT on a random partition. Okapi achieves better or similar peak throughput with respect to GentleRain and Cure but
considerably lower latencies. This is because, thanks to HLC, Okapi never blocks when serving an operation.

Garbage collection. Servers within a data center peri-
odically exchange the transaction snapshot vector corre-
sponding to their oldest active transactions and compute
the garbage collection vector GV as the entry-wise min-
imum of those vectors. If no transaction is active on pm

n ,
pm

n sends a fake transaction snapshot vector, as computed
in Algorithm 2 Line 31. A server retains every version
of any key k it stores up to and including the freshest
version that would be visible to a transaction with trans-
action vector GV . Older versions are removed. That is,
Okapi retains up to the oldest version of k that could still
potentially be visible to a transaction.

5 Evaluation

5.1 Methodology and performance metrics
We evaluate Okapi by responding to these questions:

• How well does Okapi scale?

• What throughput can Okapi achieve?

• What latencies do Okapi operations achieve?

• How much does Okapi benefit from HLC?

• What is the penalty in update visibility latency in-
curred by Okapi to support higher availability?

• What is the communication overhead of UST?

We answer these questions by comparing Okapi with
Cure and GentleRain on a large scale public cloud in-
frastructure. We evaluate the performance of these sys-
tems with different workloads and deployment settings.
We report achievable throughput and average operation
latencies, with a focus on PUT and RO-TX operations,
since GET operations are not affected by clock skew.
We also report remote updates visibility latency, commu-
nication costs and dependency tracking meta-data over-
head. We conduct our evaluation using a benchmark that
allows us to accurately assess the sensitivity of Okapi
to key workload characteristics like the number of parti-
tions involved in a transaction and write intensity.

5.2 Experimental test-bed

We consider an Amazon AWS deployment with 3 data
centers and 32 partitions each. The data centers are in
Oregon, N.Virginia and Ireland. We use c4.large in-
stances (2 virtual CPUs and 3.75 GB of RAM). Data
is stored in-memory, without any fault tolerance mech-
anism. This allows us to evaluate Okapi without tak-
ing into account the dynamics and overhead of log-
ging/replication. Okapi can be extended to achieve fault
tolerance by means of standard techniques [26, 20, 32].

Each partition is composed of one million key-value
pairs. We consider small items, with keys and values
of 8 bytes, as representative of many production work-
loads [1, 3, 7, 25]. Keys are chosen within each parti-
tion according to a zipf distribution with parameter 0.99.
Clients are collocated with servers, establish their ses-
sions with the collocated server and perform operations
in closed loop. We run NTP [2] to synchronize physical
clocks. As in previous work [5], clocks are synchronized
before each experiment. We use the NTP server 0.ama-
zon.pool.ntp.org. All the stabilization protocols are run
every 5 milliseconds. Heartbeats are sent by a node if it
does not serve any put request for 1 millisecond.

Hybrid timestamps, similarly to physical ones, are en-
coded with 64 bits. If a node has to increase the logical
part of its HLC but HLC.l has already reached the maxi-
mum value, the node has to resort to waiting. We use the
48 most significant bits of a HLC as physical part and the
other 16 as logical part. As such, a hybrid timestamp can
track phyisical time up to microsecond granularity and
can encode up to 216 logical events [16]. With this set-
tings, we have never witnessed a node resort to waiting.

5.3 Experimental results

Scalability. We evaluate the scalability of Okapi by run-
ning a workload on an increasing number of partitions,
from 2 to 32. In this workload, each client performs a
RO-TX involving two partitions (so as to keep the num-

8

0.1

0.5

1

12 4 8 16 24 32

T
h
r.

 (
M

o
p
s
/s

e
c
,
lo

g
)

involved partitions

Cure
GentleRain

Okapi

(a) Throughput (log).

1

5

25

80

400

12 4 8 16 24 32

R
e
s
p
.
ti
m

e
 (

m
s
e
c
,
lo

g
)

involved partitions

(b) RO-TX avg. resp. time (log).

 0

 0.2

 0.4

 0.6

 0.8

 1

12 4 8 16 24 32

W
a
it
 P

ro
b
a
b
ili

ty

involved partitions

(c) RO-TX wait probability.

0

3
5

10

100
150
250

12 4 8 16 24 32

W
a
it
 T

im
e
 (

m
s
e
c
,
lo

g
)

involved partitions

(d) RO-TX avg. wait time (log).

Figure 4: Performance while varying the number of partitions involved in a transaction. Clients perform a RO-TX and
a PUT touching random partitions. Okapi achieves better or comparable peak throughput with respect to GentleRain
and Cure, but achieves considerably lower latencies. By means of HLC and UST, Okapi never blocks a transaction.
Instead, Cure stalls transactions because of clock skew among nodes in the local data center. GentleRain incurs the
highest waiting time and probability because it has to wait to receive all the items from all the remote data centers that
are included in the snapshot visible to a transaction.

ber of contacted partitions fixed regardless of the scale)
and a PUT. The partitions touched by the operations are
chosen uniformly at random. Figure 3 depicts the re-
sult of the experiment, reporting peak throughput in Fig-
ure 3a, average response time of the RO-TX operation in
Figure 3b and of the PUT operation in Figure 3c.

Okapi achieves 50% higher throughput than Gen-
tleRain and a slightly higher throughput than Cure.
Okapi, however, achieves much lower latencies for both
RO-TX and PUT operations, up to two orders of magni-
tude lower than GentleRain and 100% lower than Cure.

Okapi achieves this result by never blocking oper-
ations. Cure and GentleRain need to activate many
more clients than Okapi to compensate for the idle wait-
ing times and saturate their resources. Okapi and Cure
use vector clocks, so their peak throughput is similar.
Okapi’s throughput is slightly higher because UST al-
lows for better resource efficiency. The use of scalar
clocks leads GentleRain to incur very long waiting times
to serve a transaction, as explained in Section 3.2. The
excessive number of client threads, needed to fill the long
waiting times, limits GentleRain’s overall scalability.

Sensitivity to RO-TX characteristics. We now evalu-
ate the performance of Okapi when serving transactions
that span different numbers of partitions. To this end, we
consider a workload in which clients issue a RO-TX to
read p keys and then write one key belonging to a random
partition. Each read key is stored on a different partition,
and partitions are chosen uniformly at random. We fix
the number of partitions per data center to 32 and we an-
alyze the performance of the three systems while varying
p from 1 to 32.

Figure 4a shows the throughput achieved by the con-
sidered systems. Figure 4b depicts the average transac-
tion response time corresponding to the throughput val-
ues of Figure 4a. Figure 4c and Figure 4d report, respec-
tively, the probability that a transaction is stalled before

being served and the duration of the stall. Figure 5 re-
ports, for different values of p, the average RO-TX re-
sponse time as a function of the throughput.

The plots show that Okapi achieves a slightly better
throughput than Cure, for any value of p. Okapi is up to
60% better than GentleRain for transactions that span up
to 8 partitions. Then GentleRain achieves a marginally
higher throughput than Okapi. Cure and GentleRain,
however, incur considerably higher latencies because of
their blocking behavior, for any value of throughput.
GentleRain achieves a higher throughput when the num-
ber of contacted partitions is high because it timestamps
transactions with a scalar and not with a vector, as in
Okapi and Cure. This results into a lower utilization of
the network, which enables more concurrency when a
transaction involves many partitions.

The plots also show the different blocking behaviors of
Cure and GentleRain. In Cure, the probability of waiting

1

10
25
50

100

500

0.05 0.1 0.25 0.5 0.7

R
e
s
p
.
ti
m

e
 (

m
s
e
c
,
lo

g
)

Throughput (Mops/sec, log)

Okapi p=2
p=16
p=32

GRain p=2
p=16
p=32

Cure p=2
p=16
p=32

Figure 5: RO-TX avg. resp. time (log) as a function
of the throughput and of the # partitions involved in a
transaction (p). Okapi achieves the lowest latency and
almost always the highest throughput. For p = 32 Okapi
attains a slightly lower throughput than GentleRain, but
achieves a 2 orders of magnitude lower latency.

9

 0.6

 0.7

 0.8

 0.9

 1

 1.1

32:1 16:1 8:1 4:1 2:1 1:1

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

e
c
)

GET:PUT ratio

GentleRain
Cure

Okapi

(a) Throughput.

 0

 0.05

 0.1

32:1 16:1 8:1 4:1 2:1 1:1

W
a

it
 p

ro
b

a
b

ili
ty

GET:PUT ratio

(b) PUT wait probability.

Figure 6: Performance of transaction-less workloads
with different GET:PUT ratios (32 partitions). Okapi
never blocks PUT operations and thus performs slightly
better than Cure. GentleRain achieves slightly higher
throughput in read-dominated scenarios because it only
uses scalar dependency timestamps instead of vectors.
Okapi trades this marginal penalty for much bigger gains
in RO-TX latencies and higher availability.

due to clock skew increases with the number of contacted
partitions. The waiting time is proportional to the clock
skew, and it is in the order of 5-10 milliseconds on av-
erage. GentleRain always waits to receive from all the
data centers all the items that are in the transaction snap-
shot. The waiting time is, hence, mainly proportional to
the communication latency with the furthest data center.

Sensitivity to write intensity. We now analyze the sen-
sitivity of the three systems to the workload write inten-
sity. To this end, we run different workloads consisting
of only GET and PUT operations, using 32 partitions.
Clients read g items on g distinct partitions chosen uni-
formly at random and then update one item on a random
partition. We vary g from 1 to 32. Figure 6a reports peak
throughput and Figure 6b reports the probability that a
PUT operation is stalled due to clock skew.

The plots show that Okapi achieves a higher through-
put than Cure. The difference between the two increases
as the probability of stalling a PUT due to the clock
skew increase with the write intensity of the workload.
Okapi is, instead, comparable or competitive with Gen-
tleRain. In the most read-intensive workloads Okapi in-
curs a slight throughput penalty (< 10%) because of the
use of vector clocks instead of a single scalar. We be-
lieve this small cost is well worth the huge improvement
that Okapi attains in the RO-TX implementation and the
higher level of availability that Okapi achieves.

Implications of UST. We now evaluate the effects of the
stabilization protocols of the three systems. Figure 7a
reports the CDF corresponding to the visibility latencies
of remote updates in the 32:1 GET:PUT workload on 2
partitions. Figure 7b depicts the amount of data repli-
cated per update. Figure 7c reports the amount of data
exchanged to execute the stabilization protocols and Fig-
ure 7d reports the total amount of data exchanged among

nodes (for the stabilization protocol and updates replica-
tion) while varying the write intensity of the GET-PUT
workload on 32 partitions.

Okapi achieves the highest remote update visibility la-
tency, for the sake of higher availability, followed by
Cure and GentleRain. In Cure, the visibility latency in
data center DCR of an item d originated in DCL depends
on the delay between DCL and DCR [5]. In GentleRain,
instead, the visibility latency depends on the delay be-
tween DCR and its furthest data center [12]. The CDF of
Okapi and Cure is bi-modal (one mode per remote data
center) because the visibility latency of d depends (also)
on the communication latency between DCL and DCR.
GentleRain’s CDF, conversely, is unimodal because the
remote update visibility latency depends on the commu-
nication delay between DCR and its furthest data center.

Deferring the visibility of updates allows Okapi to
match the resource efficiency of GentleRain when repli-
cating updates. Okapi and GentleRain need only 12
bytes of meta-data, corresponding to the source replica (4
bytes) and update time (8 bytes). Cure needs additional 8
bytes for each remote entry of the dependency vector. In
our setting, then, Cure requires 28 bytes of meta-data per
update, which is more than two times the overhead in-
curred by Okapi and GentleRain. In our experiments, an
update contains additional 16 bytes to encode the key and
the value. Even if the payload amortizes the meta-data
overhead, the amount of data sent by Cure to replicate
an update is still almost 60% higher than in Okapi and
GenleRain. In Okapi and GenleRain dependency meta-
data for replicated updates is insensitive to the scale of
the system. In Cure, instead, it grows linearly with the
number of data centers in the system.

UST requires an additional round of inter-data center
communication to achieve higher availability. For this
reason, the stabilization protocol of Okapi is more ex-
pensive than Cure’s and GentleRain’s. Such overhead,
however, is compensated for by the reduced meta-data
overhead achieved by Okapi. If we consider, in fact, the
total amount of data exchanged, i.e., stabilization proto-
col overhead and replication cost, Okapi incurs a com-
munication overhead similar to Cure in read dominated
workloads, and lower than Cure as the write intensity in-
creases. GentleRain’s stabilization protocol is the most
network efficient regardless of the write intensity of the
workload. Its gains against UST, however, decrease as
the write intensity increases and the dominant communi-
cation cost becomes the updates replication.

Okapi could significantly reduce the UST overhead by
piggybacking the computation of the USV to the one of
the GSV. We have not experimented with this design yet.

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 25 50 75 100 125 150 175

C
D

F

Latency (ms)

GentleRain
Cure

Okapi

(a) Remote updates visibility latency.

 20

 40

 60

 80

Meta-data Meta-data
 + payload

A
m

o
u
n
t
o
f
d
a
ta

 (
B

y
te

s
)

GRain
Cure

Okapi

(b) Bytes/replicated update.

0.01

0.1

1

A
m

o
u
n
t
o
f
d
a
ta

 (
G

B
,
lo

g
)

(c) Data exchanged
for the stabilization
protocol (log).

0.1

1

10

32:1 8:1 2:1A
m

o
u
n
t
o
f
d
a
ta

 (
G

B
,
lo

g
)

GET:PUT

(d) Data exchanged for the
stabilization protocol and
updates replication (log).

Figure 7: Effects of UST. UST incurs a slightly higher visibility latency than Cure and GentleRain to support higher
availability (a). As a by-product, UST matches the remote updates dependency tracking overhead of GentleRain,
which only uses scalar clocks (b). Okapi’s stabilization protocol exchange more data than Cure’s and GentleRain’s to
achieve higher availability (c). This overhead is amortized by the reduction in meta-data for replicated updates (d).

6 Related Work

Our work is primarily related to the literature on causally
consistent systems. The first breed of such systems
includes Bayou [27], lazy replication [18], ISIS [10],
causal memory [4], and PRACTI [9]. They implement
causal consistency but assume single-machine replicas
and do not consider partitioned data-sets. COPS [22]
represents the first in a new class of systems, which im-
plement causal consistency for both replicated and par-
titioned data stores. This second set of systems includes
Eiger [23], Bolt-on causal consistency [8], ChainReac-
tion [6], Orbe [12], GentleRain [14], SwiftCloud [34]
and Cure [5]. Okapi differs from these systems on two
levels: event timestamping and dependency tracking.

Event timestamping. COPS, Eiger, ChainReaction,
Bolt-on and Orbe use logical clocks to timestamp items.
These systems exchange explicit dependency check mes-
sages among partitions to verify that a remote update can
be made locally visible. GentleRain and Cure, instead,
use loosely synchronized physical clocks and implement
a stabilization protocol to determine the visibility of re-
mote updates. GentleRain and Cure achieve higher per-
formance than previous systems but incur additional syn-
chronization delays to cope with clock skew. By employ-
ing HLC [16], Okapi implements a cheap stabilization
protocol and is insensitive to clock skew. Concurrently
to our work, the use of HLC to achieve causal consis-
tency has also been investigated in GentleRain+ [28].
GentleRain+ simply augments GentleRain with HLC to
make PUT operations robust against clock skew. The
stabilization protocol and the implementation of trans-
actions are the same as in GentleRain, so GentleRain+
inherits the limitations of GentleRain that we have de-
scribed in the paper. Conversely, Okapi uses a novel
combination of HLC and dependency vectors to imple-

ment efficient transactions. As we have shown, this com-
bination is paramount to achieve scalability and low-
latency for production-like workloads, which rely on ef-
ficient snapshot reads. Moreover, Okapi achieves higher
availability than GentleRain+ thanks to UST.

Dependency tracking. The systems based on logical
clocks keep detailed dependency information, encoded
as a dependency list [22, 23, 6, 8] or matrix [12]. The
techniques proposed to reduce the resulting overhead
have downsides like per-update acknowledgement mes-
sages among replicas [12], call-backs to the client [12],
or delay the visibility of updates also in the local data
center [13, 34]. GentleRain and Cure track dependen-
cies at a coarser granularity. GentleRain uses a single
timestamp to achieve minimal overhead but incurs high
waiting times to serve read-only transactions. Cure uses
dependency vectors to avoid this issue but incurs a de-
pendency tracking overhead linear in the number of data
centers. Okapi uses dependency vectors too but reduces
the meta-data for remote updates at the cost of slightly
delaying their visibility at remote sites.

Okapi’s design is also related to the use of physical and
hybrid clocks in systems that target different consistency
guarantees, e.g., Spanner [11], Clock-SI [12], PhysiCS-
NMSI [31] and CockRoachDB [17].

7 Conclusion

We have presented Okapi, a novel geo-replicated key-
value store that achieves causal consistency. Okapi uses
hybrid logical/physical clocks and a novel stabilization
protocol to achieve better performance, resource utiliza-
tion and availability than existing approaches.

11

References
[1] How much text versus metadata is in a tweet?

http://goo.gl/EBFIFs.

[2] NTP: The network time protocol. http://www.ntp.org.

[3] Storing hundreds of millions of simple key-value pairs in redis.
http://goo.gl/ieeU17.

[4] AHAMAD, M., NEIGER, G., BURNS, J. E., KOHLI, P., AND
HUTTO, P. W. Causal memory: Definitions, implementation,
and programming. Distributed Computing 9, 1 (1995), 37–49.

[5] AKKOORATH, D. D., TOMSIC, A., BRAVO, M., LI, Z., CRAIN,
T., BIENIUSA, A., PREGUIÇA, N., AND SHAPIRO, M. Cure:
Strong semantics meets high availability and low latency. In Proc.
of ICDCS (2016).

[6] ALMEIDA, S., LEITÃO, J. A., AND RODRIGUES, L. Chainreac-
tion: A causal+ consistent datastore based on chain replication.
In Proc. of EuroSys (2013).

[7] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value
store. In Proc. of SIGMETRICS (2012).

[8] BAILIS, P., GHODSI, A., HELLERSTEIN, J. M., AND STOICA,
I. Bolt-on causal consistency. In Proc. of SIGMOD (2013).

[9] BELARAMANI, N., DAHLIN, M., GAO, L., NAYATE, A.,
VENKATARAMANI, A., YALAGANDULA, P., AND ZHENG, J.
Practi replication. In Proc. of NSDI (2006).

[10] BIRMAN, K. P., AND JOSEPH, T. A. Reliable communication
in the presence of failures. ACM Trans. Comput. Syst. 5, 1 (Jan.
1987), 47–76.

[11] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E.,
LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK,
M., TAYLOR, C., WANG, R., AND WOODFORD, D. Span-
ner: Google’s globally distributed database. ACM Trans. Comput.
Syst. 31, 3 (Aug. 2013), 8:1–8:22.

[12] DU, J., ELNIKETY, S., ROY, A., AND ZWAENEPOEL, W. Orbe:
Scalable causal consistency using dependency matrices and phys-
ical clocks. In Proc. of SoCC (2013).

[13] DU, J., IORGULESCU, C., ROY, A., AND ZWAENEPOEL, W.
Closing the performance gap between causal consistency and
eventual consistency. In Proc. of PaPeC (2014).

[14] DU, J., IORGULESCU, C., ROY, A., AND ZWAENEPOEL, W.
Gentlerain: Cheap and scalable causal consistency with physical
clocks. In Proc. of SoCC (2014).

[15] HERLIHY, M. P., AND WING, J. M. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12, 3 (July 1990), 463–492.

[16] KULKARNI, S. S., DEMIRBAS, M., MADAPPA, D., AVVA, B.,
AND LEONE, M. Logical physical clocks. In Proc. of OPODIS
(2014).

[17] LABS, C. Cockroachdb. an open source, surviv-
able, strongly consistent, scale-out sql database.
https://www.cockroachlabs.com.

[18] LADIN, R., LISKOV, B., SHRIRA, L., AND GHEMAWAT, S. Pro-
viding high availability using lazy replication. ACM Trans. Com-
put. Syst. 10, 4 (Nov. 1992), 360–391.

[19] LAMPORT, L. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM 21, 7 (July 1978), 558–565.

[20] LAMPORT, L. The part-time parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133–169.

[21] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
Mica: A holistic approach to fast in-memory key-value storage.
In Proc. of NSDI (2014).

[22] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with cops. In Proc. of SOSP (2011).

[23] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Stronger semantics for low-latency geo-replicated
storage. In Proc. of NSDI (2013).

[24] LU, H., HODSDON, C., NGO, K., MU, S., AND LLOYD, W.
The snow theorem and latency-optimal read-only transactions. In
In Proc. of OSDI (2016).

[25] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling memcache at facebook. In Proc. of NSDI (2013).

[26] OKI, B. M., AND LISKOV, B. H. Viewstamped replication: A
new primary copy method to support highly-available distributed
systems. In Proc. of PODC (1988).

[27] PETERSEN, K., SPREITZER, M. J., TERRY, D. B., THEIMER,
M. M., AND DEMERS, A. J. Flexible update propagation for
weakly consistent replication. In Proc. of SOSP (1997).

[28] ROOHITAVAF, M., AND KULKARNI, S. S. Gentlerain+: Mak-
ing gentlerain robust on clock anomalies. CoRR abs/1612.05205
(2016).

[29] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND ZAWIRSKI,
M. Conflict-free replicated data types. In Proc. of SSS (2011).

[30] THOMAS, R. H. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Syst.
4, 2 (June 1979), 180–209.

[31] TOMSIC, A. Z., CRAIN, T., AND SHAPIRO, M. Physics-nmsi:
Efficient consistent snapshots for scalable snapshot isolation. In
Proc. of PaPoC (2016).

[32] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain replication
for supporting high throughput and availability. In Proc. of OSDI
(2004).

[33] VOGELS, W. Eventually consistent. Commun. ACM 52, 1 (Jan.
2009), 40–44.

[34] ZAWIRSKI, M., PREGUIÇA, N., DUARTE, S., BIENIUSA, A.,
BALEGAS, V., AND SHAPIRO, M. Write fast, read in the past:
Causal consistency for client-side applications. In Proc. of Mid-
dleware (2015).

12

