138 research outputs found

    Postural injury risk assessment for industrial processes using advanced sensory systems

    Full text link
    The major contributions of this research delivered both advancements and novel frameworks to enhance the current methods of postural assessments within industrial environments. This included the development of load vs repetition analysis, A novel BVH Model and a low cost ergonomic scoring tool relying on pixel labelling

    Deformable Objects for Virtual Environments

    Get PDF

    The Acquisition, Modelling and Estimation of Canine 3D Shape and Pose

    Get PDF

    Proximity and Visuotactile Point Cloud Fusion for Contact Patches in Extreme Deformation

    Full text link
    Equipping robots with the sense of touch is critical to emulating the capabilities of humans in real world manipulation tasks. Visuotactile sensors are a popular tactile sensing strategy due to data output compatible with computer vision algorithms and accurate, high resolution estimates of local object geometry. However, these sensors struggle to accommodate high deformations of the sensing surface during object interactions, hindering more informative contact with cm-scale objects frequently encountered in the real world. The soft interfaces of visuotactile sensors are often made of hyperelastic elastomers, which are difficult to simulate quickly and accurately when extremely deformed for tactile information. Additionally, many visuotactile sensors that rely on strict internal light conditions or pattern tracking will fail if the surface is highly deformed. In this work, we propose an algorithm that fuses proximity and visuotactile point clouds for contact patch segmentation that is entirely independent from membrane mechanics. This algorithm exploits the synchronous, high-res proximity and visuotactile modalities enabled by an extremely deformable, selectively transmissive soft membrane, which uses visible light for visuotactile sensing and infrared light for proximity depth. We present the hardware design, membrane fabrication, and evaluation of our contact patch algorithm in low (10%), medium (60%), and high (100%+) membrane strain states. We compare our algorithm against three baselines: proximity-only, tactile-only, and a membrane mechanics model. Our proposed algorithm outperforms all baselines with an average RMSE under 2.8mm of the contact patch geometry across all strain ranges. We demonstrate our contact patch algorithm in four applications: varied stiffness membranes, torque and shear-induced wrinkling, closed loop control for whole body manipulation, and pose estimation

    Automatic 3D human modeling: an initial stage towards 2-way inside interaction in mixed reality

    Get PDF
    3D human models play an important role in computer graphics applications from a wide range of domains, including education, entertainment, medical care simulation and military training. In many situations, we want the 3D model to have a visual appearance that matches that of a specific living person and to be able to be controlled by that person in a natural manner. Among other uses, this approach supports the notion of human surrogacy, where the virtual counterpart provides a remote presence for the human who controls the virtual character\u27s behavior. In this dissertation, a human modeling pipeline is proposed for the problem of creating a 3D digital model of a real person. Our solution involves reshaping a 3D human template with a 2D contour of the participant and then mapping the captured texture of that person to the generated mesh. Our method produces an initial contour of a participant by extracting the user image from a natural background. One particularly novel contribution in our approach is the manner in which we improve the initial vertex estimate. We do so through a variant of the ShortStraw corner-finding algorithm commonly used in sketch-based systems. Here, we develop improvements to ShortStraw, presenting an algorithm called IStraw, and then introduce adaptations of this improved version to create a corner-based contour segmentatiuon algorithm. This algorithm provides significant improvements on contour matching over previously developed systems, and does so with low computational complexity. The system presented here advances the state of the art in the following aspects. First, the human modeling process is triggered automatically by matching the participant\u27s pose with an initial pose through a tracking device and software. In our case, the pose capture and skeletal model are provided by the Microsoft Kinect and its associated SDK. Second, color image, depth data, and human tracking information from the Kinect and its SDK are used to automatically extract the contour of the participant and then generate a 3D human model with skeleton. Third, using the pose and the skeletal model, we segment the contour into eight parts and then match the contour points on each segment to a corresponding anchor set associated with a 3D human template. Finally, we map the color image of the person to the 3D model as its corresponding texture map. The whole modeling process only take several seconds and the resulting human model looks like the real person. The geometry of the 3D model matches the contour of the real person, and the model has a photorealistic texture. Furthermore, the mesh of the human model is attached to the skeleton provided in the template, so the model can support programmed animations or be controlled by real people. This human control is commonly done through a literal mapping (motion capture) or a gesture-based puppetry system. Our ultimate goal is to create a mixed reality (MR) system, in which the participants can manipulate virtual objects, and in which these virtual objects can affect the participant, e.g., by restricting their mobility. This MR system prototype design motivated the work of this dissertation, since a realistic 3D human model of the participant is an essential part of implementing this vision

    Synthetic image generation and the use of virtual environments for image enhancement tasks

    Get PDF
    Deep learning networks are often difficult to train if there are insufficient image samples. Gathering real-world images tailored for a specific job takes a lot of work to perform. This dissertation explores techniques for synthetic image generation and virtual environments for various image enhancement/ correction/restoration tasks, specifically distortion correction, dehazing, shadow removal, and intrinsic image decomposition. First, given various image formation equations, such as those used in distortion correction and dehazing, synthetic image samples can be produced, provided that the equation is well-posed. Second, using virtual environments to train various image models is applicable for simulating real-world effects that are otherwise difficult to gather or replicate, such as dehazing and shadow removal. Given synthetic images, one cannot train a network directly on it as there is a possible gap between the synthetic and real domains. We have devised several techniques for generating synthetic images and formulated domain adaptation methods where our trained deep-learning networks perform competitively in distortion correction, dehazing, and shadow removal. Additional studies and directions are provided for the intrinsic image decomposition problem and the exploration of procedural content generation, where a virtual Philippine city was created as an initial prototype. Keywords: image generation, image correction, image dehazing, shadow removal, intrinsic image decomposition, computer graphics, rendering, machine learning, neural networks, domain adaptation, procedural content generation

    An Open Source, Autonomous, Vision-Based Algorithm for Hazard Detection and Avoidance for Celestial Body Landing

    Get PDF
    Planetary exploration is one of the main goals that humankind has established as a must for space exploration in order to be prepared for colonizing new places and provide scientific data for a better understanding of the formation of our solar system. In order to provide a safe approach, several safety measures must be undertaken to guarantee not only the success of the mission but also the safety of the crew. One of these safety measures is the Autonomous Hazard, Detection, and Avoidance (HDA) sub-system for celestial body landers that will enable different spacecraft to complete solar system exploration. The main objective of the HDA sub-system is to assemble a map of the local terrain during the descent of the spacecraft so that a safe landing site can be marked down. This thesis will be focused on a passive method using a monocular camera as its primary detection sensor due to its form factor and weight, which enables its implementation alongside the proposed HDA algorithm in the Intuitive Machines lunar lander NOVA-C as part of the Commercial Lunar Payload Services technological demonstration in 2021 for the NASA Artemis program to take humans back to the moon. This algorithm is implemented by including two different sources for making decisions, a two-dimensional (2D) vision-based HDA map and a three-dimensional (3D) HDA map obtained through a Structure from Motion process in combination with a plane fitting sequence. These two maps will provide different metrics in order to provide the lander a better probability of performing a safe touchdown. These metrics are processed to optimize a cost function

    The State of the Art of Spatial Interfaces for 3D Visualization

    Get PDF
    International audienceWe survey the state of the art of spatial interfaces for 3D visualization. Interaction techniques are crucial to data visualization processes and the visualization research community has been calling for more research on interaction for years. Yet, research papers focusing on interaction techniques, in particular for 3D visualization purposes, are not always published in visualization venues, sometimes making it challenging to synthesize the latest interaction and visualization results. We therefore introduce a taxonomy of interaction technique for 3D visualization. The taxonomy is organized along two axes: the primary source of input on the one hand and the visualization task they support on the other hand. Surveying the state of the art allows us to highlight specific challenges and missed opportunities for research in 3D visualization. In particular, we call for additional research in: (1) controlling 3D visualization widgets to help scientists better understand their data, (2) 3D interaction techniques for dissemination, which are under-explored yet show great promise for helping museum and science centers in their mission to share recent knowledge, and (3) developing new measures that move beyond traditional time and errors metrics for evaluating visualizations that include spatial interaction
    • …
    corecore