
De La Salle University De La Salle University

Animo Repository Animo Repository

Software Technology Dissertations Software Technology

9-1-2023

Synthetic image generation and the use of virtual environments Synthetic image generation and the use of virtual environments

for image enhancement tasks for image enhancement tasks

Neil Patrick Del Gallego
De La Salle University

Follow this and additional works at: https://animorepository.dlsu.edu.ph/etdd_softtech

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Del Gallego, N. (2023). Synthetic image generation and the use of virtual environments for image
enhancement tasks. Retrieved from https://animorepository.dlsu.edu.ph/etdd_softtech/2

This Dissertation is brought to you by the Software Technology at Animo Repository. It has been accepted for
inclusion in Software Technology Dissertations by its authorized administrator.

https://animorepository.dlsu.edu.ph/
https://animorepository.dlsu.edu.ph/etdd_softtech
https://animorepository.dlsu.edu.ph/dep_softtech
https://animorepository.dlsu.edu.ph/etdd_softtech?utm_source=animorepository.dlsu.edu.ph%2Fetdd_softtech%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=animorepository.dlsu.edu.ph%2Fetdd_softtech%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://animorepository.dlsu.edu.ph/etdd_softtech/2?utm_source=animorepository.dlsu.edu.ph%2Fetdd_softtech%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages

Libraries

 2401 Taft Avenue, 1004 Manila, Philippines I Tel: (632) 8524-8835 | Trunk Line: (632) 8524-4611 loc. 600
library@dlsu.edu.ph I www.dlsu.edu.ph

Copyright Statement

The electronic copy of this thesis or dissertation is protected by the
Intellectual Property Code of the Philippines (Republic Act 8293) and
the E- Commerce Law (Republic Act 8792). Any other use or
publication of the thesis or dissertation shall be made only with the
consent or permission of the author or the owner of the copyright.

Synthetic Image Generation and the Use of Virtual
Environments for Image Enhancement Tasks

A Dissertation
Submitted to

the Faculty of the College of Computer Studies
De La Salle University Manila

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

by

DEL GALLEGO, Neil Patrick

Prof. Joel Ilao
Adviser

September 1, 2023

Acknowledgements

My dissertation completion was made possible by the following key persons. First would be Prof.
Joel Ilao for greatly influencing me to be an independent researcher since my MS studies. I am glad
that he became my mentor. He has given me the trust and room to experiment with my research
interests and the necessary funding for my research. I also acknowledge Dr. Conrado Ruiz and Dr.
Macario Cordel II for their co-authoring support and guidance for most of the chapters presented
in this document. They ensured the quality of experiments and writing prowess matched those of
high-impact journals and conference venues.

I want to acknowledge the Department of Software Technology - College of Computer Studies,
with special mention to Dr. Briane Paul Samson and Dr. Rafael Cabredo, for giving me permission
to make a grand gesture - to temporarily leave my teaching and admin positions so I could complete
my doctorate. Finally, I’m now a doctor! It’s time to return to service soon.

Lastly, I dedicate this work to my parents and brother for giving me cheering and moral support
and for always asking me, “When will I finish?” The wait is over! :)

This work was funded by the following: De La Salle University Research Management Office, De
La Salle Science Foundation, Department of Science and Technology COARE Facility, and Google
Cloud Research Grant.

2

Abstract

Deep learning networks are often difficult to train if there are insufficient image samples. Gathering
real-world images tailored for a specific job takes a lot of work to perform. This dissertation ex-
plores techniques for synthetic image generation and virtual environments for various image enhance-
ment/correction/restoration tasks, specifically distortion correction, dehazing, shadow removal, and
intrinsic image decomposition.

First, given various image formation equations, such as those used in distortion correction and
dehazing, synthetic image samples can be produced, provided that the equation is well-posed. Sec-
ond, using virtual environments to train various image models is applicable for simulating real-world
effects that are otherwise difficult to gather or replicate, such as dehazing and shadow removal. Given
synthetic images, one cannot train a network directly on it as there is a possible gap between the
synthetic and real domains.

We have devised several techniques for generating synthetic images and formulated domain
adaptation methods where our trained deep-learning networks perform competitively in distortion
correction, dehazing, and shadow removal. Additional studies and directions are provided for the
intrinsic image decomposition problem and the exploration of procedural content generation, where
a virtual Philippine city was created as an initial prototype.

Keywords: image generation, image correction, image dehazing, shadow removal, intrinsic
image decomposition, computer graphics, rendering, machine learning, neural networks, domain
adaptation, procedural content generation.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Research Questions . 5

1.2.1 Hypothesis for Question 1 . 6

1.2.2 Hypothesis for Question 2 . 7

1.2.3 Hypothesis for Question 3 . 7

1.3 Research Contributions . 9

1.4 Organization . 10

2 Concepts in Computer Vision and Image Enhancement 11

2.1 Image Formation Equations . 11

2.1.1 Atmospheric Scattering Model . 11

2.1.2 Intrinsic Image Decomposition . 12

2.2 Geometric Distortion Correction . 14

2.2.1 Full 2D Affine Transform . 14

2.2.2 Partial Affine 2D Transform . 15

2.2.3 Homography Estimation . 16

2.3 Depth Inference . 17

2.3.1 Depth Map . 17

2.3.2 Deriving Depth Maps: Modeling Disparity . 19

ii

2.4 3D Scene Representation . 20

2.4.1 Structure from Motion . 20

2.4.2 Image to Point Cloud . 23

2.5 Techniques on Generative Models . 28

2.5.1 General Objective Function for GAN . 28

2.5.2 Reconstruction-Based GAN or Image-to-Image Translation 28

2.5.3 Unpaired Image-to-Image Translation . 29

2.5.4 Residual Blocks . 32

2.5.5 U-Net Architecture . 32

2.5.6 Channel and Pixel Attention Blocks . 34

2.6 Domain Adaptation Techniques . 34

2.6.1 General Approach . 34

2.6.2 Shared Latent Space . 35

2.6.3 Disentangling Content and Domain . 38

2.6.4 Incremental Learning . 38

3 Concepts in Computer Graphics 40

3.1 Synthetic Datasets . 40

3.2 Lighting . 42

3.2.1 Light Sources . 43

3.3 Physically Based Shading and Materials . 44

3.4 Global Illumination . 47

3.4.1 Rendering Equation . 50

3.4.2 Reflectance . 51

3.4.3 Visibility . 51

3.4.4 GI Algorithm 1: Monte Carlo Ray Tracing 51

3.4.5 GI Algorithm 2: Photon Mapping . 52

iii

4 Preliminary: Blind First-Order Perspective Distortion Correction using Parallel
Convolutional Neural Networks 53

4.1 Introduction . 53

4.2 Related Work . 55

4.2.1 Model-Based Techniques . 55

4.2.2 Methods Using Low-Level Features . 56

4.2.3 Learning-Based Methods . 56

4.3 Empirical Analysis on the Transformation Matrix . 57

4.4 Synthetic Distortion Dataset: dKITTI . 59

4.5 Proposed Network . 60

4.5.1 Parallel CNN Model . 61

4.5.2 Training Details . 61

4.6 Evaluation . 63

4.6.1 Experiment on Network Variants . 66

4.6.2 Closeness of Estimations to Ground-Truth . 67

4.6.3 Activation Visualization . 69

4.6.4 Model Generalization . 69

4.6.5 Limitations . 71

4.7 Conclusions . 73

4.8 Additional Results . 73

5 Dehazing using Synthetic Images 76

5.1 Introduction . 76

5.2 Dehazing Task Formulation . 78

5.3 The Virtual Environment and Dataset Generation 78

5.3.1 Motivation . 79

5.3.2 Environment Design . 80

iv

5.3.3 Virtual Cameras . 81

5.3.4 Gathering RGB Images and Depth Maps . 82

5.3.5 Gathering Unlit Image Priors . 83

5.3.6 DLSU-SYNSIDE: Synthetic Dehazing Dataset for a Supervised Learning Ap-
proach . 84

5.4 Network Design for Synthetic Image-Based Dehazing 84

5.4.1 Style Transfer Network . 85

5.4.2 Unlit Image Generator . 87

5.4.3 Transmission Map Generator . 87

5.4.4 Atmospheric Map Estimator . 88

5.4.5 Training Details . 89

5.5 Experiments and Results . 89

5.5.1 Overall Performance . 91

5.5.2 Performance on Real Hazy Images . 94

5.5.3 Effectiveness of Style Transfer and Unlit Image Priors 94

5.5.4 Impact of Synthetic Image Quality Used in Training 97

5.5.5 Comparison with GTA-MVS Dataset . 99

5.5.6 Atmospheric Light and Beta Terms for Generating Hazy Images 100

5.5.7 Style Transfer Network Architecture Choice 101

5.5.8 Loss Terms for Transmission Map Generator 102

5.6 Conclusion . 103

6 Shadow Removal Using Only 3D Primitives 106

6.1 Introduction . 106

6.2 Related Work . 109

6.2.1 Shadow Detection . 109

6.2.2 Shadow Removal . 110

v

6.2.3 Shadow Datasets and Generation . 111

6.3 Framework and Dataset Generation . 113

6.3.1 Motivation: Using only 3D primitives as occluders 113

6.3.2 Dataset Generation . 113

6.3.3 Synthetic Shadow Dataset . 116

6.4 Supervised Shadow Removal using Synthetic Images 118

6.4.1 Shadow Matte Conditioning . 118

6.4.2 Shadow Removal . 119

6.4.3 Training Details . 119

6.5 Results and Discussion . 120

6.5.1 Performance on ISTD Dataset . 120

6.5.2 Performance on SRD Dataset . 122

6.5.3 Ablation Studies . 122

6.5.4 Validation of Training Approach . 122

6.5.5 Effectiveness of DSP-FFANet as a Shadow Removal Network 124

6.5.6 Comparison of DSP-FFANet on Other SR Networks Trained on Synthetic
Shadows . 126

6.5.7 Identifying 3D Primitive Sets . 126

6.5.8 Effectiveness of 3D-Projected Primitive Occluders 129

6.5.9 Primitive Occluders Versus SynShadow Augmentation 131

6.5.10 Dataset Choice for Gm Training . 134

6.5.11 Dataset Choice for Gz Training . 139

6.5.12 Dataset Choice for Texture Mapping . 140

6.5.13 Performance on Places-365 Dataset . 141

6.5.14 Strengths and Limitations . 145

6.6 Supplementary Experiments . 147

6.6.1 Comprehensive Experiment on 3D Primitive Sets 147

vi

6.6.2 Observations on DSP-FFANet, BMNet, and SG-ShadowNet’s Training Behavior150

6.6.3 Additional Experiments: Dataset Choice for Texture Mapping 153

6.6.4 Comparing Performance of 1-Channel and 3-Channel Shadow Mattes 155

6.7 Conclusion . 156

7 Intrinsic Image Decomposition 157

7.1 Overview . 157

7.2 Related Work . 158

7.2.1 IID: Intrinsic Image Decomposition . 159

7.2.2 IID Datasets . 159

7.3 DLSU-IID: A Dataset for City Intrinsics . 162

7.4 Network Design for Intrinsic Image Decomposition using DLSU-IID 164

7.4.1 Albedo Generator . 164

7.4.2 Depth Generator . 165

7.4.3 Normal Generator . 165

7.5 Experiments . 166

7.5.1 Performance Analysis of the Albedo Generator 166

7.5.2 Performance Analysis of the Normal Generator 169

7.5.3 Performance Analysis of the Depth Generator 171

7.6 Conclusion and Future Work . 175

8 Conclusion 176

8.1 Revisiting the Research Questions . 176

8.1.1 What attributes are present in a 3D virtual environment that can be utilized
for synthetic image generation? . 176

8.1.2 How can synthetic images be used for solving various computer vision tasks? 180

8.1.3 How to address limitations of using synthetic images for a computer vision
task, such as using real-world images for validating the effectiveness of the
model? . 181

vii

8.2 A Proposed Unified Framework for Image Restoration 182

8.3 Task Difficulty and Realism Required . 185

8.4 Future Work . 187

Bibliography 188

A Image Datasets 209

A.1 dKITTI . 209

A.2 DLSU-SYNSIDE . 210

A.3 DLSUSynthPlaces-100K . 213

A.4 DLSU-IID . 214

B Generating a Virtual Philippine City from Road Network Data 222

B.1 Introduction . 222

B.2 Related Work . 223

B.2.1 Data-driven techniques . 224

B.2.2 Procedural or rule-based techniques . 224

B.3 System Overview . 224

B.3.1 Street Map Parsing . 225

B.3.2 Road Network Filtering . 225

B.3.3 Road Instantiation . 227

B.3.4 City Zoning . 228

B.3.5 Lot Subdivision . 230

B.3.6 Entity Instantiation . 233

B.3.7 Controllable Parameters . 237

B.4 Results and Discussion . 240

B.4.1 Time Complexity Analysis . 240

B.4.2 Comparing with Real-World Street View Data 241

viii

B.4.3 City Zoning Analysis . 244

B.4.4 Strengths and Limitations . 247

B.5 Additional results . 250

B.6 Conclusion . 255

C Research Ethics Forms 256

ix

List of Figures

1.1 We created novel techniques for solving computer vision tasks via deep learning,
primarily using synthetic images as training data. Across various computer vision
tasks, we proposed specific synthetic image generation methods, typically from a 3D
rendering system, and domain adaptation techniques for making the trained networks
work well on real-world data. 2

1.2 Continuation of the previous figure. Note that the current state of the intrinsic
image decomposition task is in progress. No domain adaptation strategies have been
formulated as of this writing. 3

1.3 Object bounding boxes and transform properties are available and modifiable in a
game engine, such as Unity Engine. The camera parameters are also modifiable. . . 6

1.4 One can utilize Physically-based shaders (left) and global illumination to create be-
lievable environments. 6

1.5 Given an arbitrary camera viewpoint, images can be captured from the 3D environ-
ment and used for training a network. In this example, a set of clean, hazy, and depth
images are captured from the camera. 7

1.6 Computer vision information, such as depth, optical flow, albedo, instance and se-
mantic labels extracted from commercial video games (Krähenbühl, 2018). 7

1.7 Some examples of style transfer. A: CycleGAN (J.-Y. Zhu, Park, Isola, & Efros,
2017). B: Instance adaptive self-training network (Mei, Zhu, Zou, & Zhang, 2020).
C: Real-time monocular depth estimation using synthetic data (Atapour-Abarghouei
& Breckon, 2018). 8

2.1 Sample images of coefficients in atmospheric scattering model. 12

2.2 An RGB image is decomposed into its reflectance and shading properties—images
taken from the CGIntrinsics dataset (Z. Li & Snavely, 2018a). 12

2.3 Intrinsic image decomposition applications: image/video recoloring (Meka, Shafiei,
Zollhöfer, Richardt, & Theobalt, 2021), re-texturing (Meka et al., 2021), interactive
image editing with fog and god rays (Shekhar et al., 2021). 13

x

2.4 Distortion examples (X. Li, Zhang, Sander, & Liao, 2019). Barrel distortion (β),
pincushion (Pi), rotation (R), shear (S), perspective (P) and wave distortion (W). . 14

2.5 Homography estimation attempts to find an optimal perspective transformation that
maps images on a planar surface (Capel & Zisserman, 2003). 17

2.6 Comparison of affine and perspective transformation applied to a sample image.
Affine transformation preserves straight and parallel lines. Perspective transforma-
tion does not preserve linearity. 18

2.7 Depth maps from provided image dataset of (Bo Li, Chunhua Shen, Yuchao Dai, van
den Hengel, & Mingyi He, 2015). Left images: Samples of the RGB image. Middle
images: The raw depth images. Right images: The class labels from the dataset. . . 18

2.8 A depth map represented as a grayscale image. Nearer is darker. 19

2.9 Depth information is essential for 3D reconstruction of objects from 2D images
(Soltani, Haibin, Wu, D. Kulkarni, & B. Tenenbaum, 2017). 19

2.10 How depth can be inferred based from disparty. O and Ò represent the viewpoint
from where X is captured. This creates an offset x and x̀ affected by the focal point
of the camera, f . 20

2.11 A: Grayscale image. B: Disparity map. Note that the disparity map is not the depth
map. To derive the depth map, a method called triangulation is performed (Hartley
& Zisserman, 2003). 21

2.12 General steps involved in identifying 3D structure using structure from motion. . . . 22

2.13 A point cloud can be rendered as a surface. 22

2.14 Effects of manipulating the intrinsic parameters and how the scene is projected to
screen on the lower right of each image thumbnail. 24

2.15 Effects of manipulating the extrinsic parameters and how the scene is projected to
screen on the lower right of each image thumbnail. 25

2.16 Relationship of screen coordinates and world coordinates. 26

2.17 Relationship of screen coordinates and world coordinates. 27

2.18 Sample tasks that can be performed by Pix2Pix network, an image-to-image trans-
lation model (Isola, Zhu, Zhou, & Efros, 2017b). 29

2.19 Illustration of cycle consistency term (J.-Y. Zhu et al., 2017). 30

2.20 Some applications of CycleGAN (J.-Y. Zhu et al., 2017). 31

2.21 A residual block (He, Zhang, Ren, & Sun, 2015). 32

xi

2.22 U-Net architecture (Ronneberger, Fischer, & Brox, 2015a). 33

2.23 Feature attention module proposed by Qin, Wang, Bai, Xie, and Jia (2020). The pixel
attention map is shown on the right. High pixel attention occurs on bright pixels. It
shows that the CA and PA module put more attention on pixel regions around the
edges, textures and haze. 34

2.24 Illustration of a common approach for domain adaptation. The source and target
domains produce a shared embedding from an encoding network. For a generative
task (such as generating new images using a new domain) or a discriminative task
(such as object recognition and semantic segmentation), samples from the shared
embedding space are used for training a network specific to a task. 35

2.25 Image to image translation examples for MNIST (LeCun, Bottou, Bengio, & Haffner,
1998) to SVHN digits (Netzer et al., 2011) dataset generated by the proposed method
of (Murez, Kolouri, Kriegman, Ramamoorthi, & Kim, 2018). 36

2.26 Schematic diagram of StarGAN (Choi et al., 2018). Results are shown on the right
together with the following methods: DIAT(M. Li, Zuo, & Zhang, 2016), CycleGAN
(J.-Y. Zhu et al., 2017), and IcGAN (Perarnau, Van De Weijer, Raducanu, & Álvarez,
2016). 37

2.27 Method overview of (Lee, Tseng, Huang, Singh, & Yang, 2018) using content and
domain adversarial losses, and cycle consistency loss. 38

2.28 Network architecture of IncrementalGAN (D. S. Tan, Lin, & Hua, 2021). 39

3.1 Urban synthetic datasets. A: GTA V (Martinez et al., 2017). B: Virtual KITTI
(Gaidon, Wang, Cabon, & Vig, 2016a). C: CARLA (Dosovitskiy, Ros, Codevilla,
Lopez, & Koltun, 2017). D: Sim4CV (M. Müller, Casser, Lahoud, Smith, & Ghanem,
2018). 41

3.2 Diagram showing lighting geometry Akenine-Möller, Haines, and Hoffman (2019). l
refers to the light vector, p is the planar surface, n is the surface normal, d is the
distance between light rays. 42

3.3 A: Illustration of light scattering at a surface. Light rays that bounce off the surface
are called reflections. Light rays that change direction are called refraction. B:
Some light rays are either reflected in different directions or absorbed by the object
Akenine-Möller et al. (2019). 43

3.4 Different light sources, captured from Unreal Engine. A: Directional light. B: Point
light. C: Spot light . 43

3.5 A virtual living room with physically-based shading applied. Image taken from Unreal
Engine documentation. 45

3.6 Left: PBS parameters in Unity. Right: PBS parameters in Unreal. 45

xii

3.7 A: Side of a cube with only Albedo using a rock texture. B: Albedo with Normap
Map assigned. C: Albedo, Normal Map, and Height Map assigned. 46

3.8 Examples of PBS materials. These can be applied to any 3D model. 47

3.9 Simple illustration of a global illumination (GI) technique. GI further illuminates a
scene by modeling indirect lighting as well (Křivánek et al., 2010). 48

3.10 A scene with global illumination enabled and some of the light maps created by light
baking. 49

3.11 A: The Albedo of the scene. B: Scene with only direct lighting. C: Scene with only
indirect lighting. D: The final rendered scene with A, B and C combined. 50

3.12 Rendering equation illustration. 50

3.13 A: The view of the light source. The shadows are areas where light rays can no
longer pass or can no longer be illuminated. B: Illustration of shadow behavior. C:
Illustration of soft shadows. The edges appear smooth and fuzzy, assuming a non-
binary visibility computation. This is the default method. D: Illustration of hard
shadows. The shadow edges appear jagged and sharp, assuming a binary visibility
computation. 52

3.14 A: Monte Carlo Ray Tracing. The orange dot represents the origin which sends rays in
random directions (blue arrows) and bounces them. Connections are formed (yellow
arrow), which eventually links them to the light source. B: Photon Mapping. A light
source emits photons that bounce in the scene. The locations where they settle are
shown in yellow circles. To compute indirect lighting (orange circle), the accumulated
photons within the area are gathered (blue arrows and circle). 52

4.1 Given a distorted input image, three convolutional neural networks are used for pro-
ducing M̂ transformation matrix that caused the distortion (M as ground-truth ma-
trix). The distorted image is transformed to its corrected image by applying M̂−1. . 54

4.2 Distortion types that can be corrected by our proposed network. (A): rotation. (B):
Scaling. (C):Affine. (D): Projective. These are planar transformations identified by
Hartley and Zisserman (Hartley & Zisserman, 2003). One or more distortion types
may be present in a distorted image. 55

4.3 Effects of each element in M to an input image shown frame by frame. The frames
for each element in M are generated by repeatedly increasing its element values.
For example, the frame animations for m1,1 are generated by as m1,1 increases from 0
to 1 while all other entries in M are made constant. The same procedure is performed
for creating the animations for the other elements. 58

4.4 Dataset generation process. The cropped image Ĭ is reconstructed based from its
estimated transformation matrix inverse. Yellow bounding box shows the region of Ĭ
in the distorted image. The corrected image, I, serves as the ground-truth. 59

xiii

4.5 Image projected in 3D space with respect to the camera source. Resizing a region
from the original image implies that the camera source moved forward along the Z axis. 60

4.6 Architectural design of our network. There are three network instances that estimates
an element in the transformation matrix M̂ . 61

4.7 Results using unseen data from KITTI. (A): Distorted input images. (B): Corrected
image using homography estimation (C): Corrected image using the technique of
(Chaudhury, DiVerdi, & Ioffe, 2014). (D): Corrected image using the technique of
(X. Li, Zhang, Sander, & Liao, 2019). (E): Corrected image using our method.
(F): Ground-truth. Visually comparing the images, our network learned how to
correct an image close to the ground-truth compared to other works. 64

4.8 More results using unseen data from KITTI. (A): Distorted input images. (B): Cor-
rected image using homography estimation (C): Corrected image using the technique
of (Chaudhury et al., 2014). (D): Corrected image using the technique of (X. Li,
Zhang, Sander, & Liao, 2019). (E): Corrected image using our method. (F): Ground-
truth. Our network can correct an extremely distorted image. 64

4.9 Our network is robust and can still produce a correct image even on extremely dis-
torted images such as when majority of pixels are out of bounds. (A): Distorted
input images. (B): Corrected image using homography estimation (C): Corrected
image using the technique of (Chaudhury et al., 2014). (D): Corrected image using
the technique of (X. Li, Zhang, Sander, & Liao, 2019). (E): Corrected image using
our method. (F): Ground-truth. 66

4.10 Scatter plot of norm predictions and ground-truth. X axis refers to a certain image
number. Y axis is the norm value. The norm of predicted matrices are very close to
the training and test set ground-truth matrices. 67

4.11 Corrected images with scaling distortion. (A): Distorted input images. (B): Cor-
rected image using homography estimation (C): Corrected image using the technique
of Chaudhury et al. (Chaudhury et al., 2014). (D): Corrected image using the tech-
nique of Li et al. (X. Li, Zhang, Sander, & Liao, 2019). (E): Corrected image using
our method. (F): Ground-truth. Our network can resize the image back to their
original scale. 68

4.12 Gradient-weight activation maps for each convolutional layer. Each row represents the
networksN({m3,1,m3,2}), N({m1,1,m2,2}) andN({m1,2,m2,1}) respectively. The net-
works tend to lean towards activation of edges and contours on the first four layers
while the remaining layers focus on specific regions. Thumbnails encircled have their
zoomed version shown to highlight the activations on earlier layers. 69

4.13 Results using unseen images from Places205 dataset (B. Zhou, Lapedriza, Xiao, Tor-
ralba, & Oliva, 2014). (A): Distorted input images. (B): Corrected image using
homography estimation (C): Corrected image using the technique of (Chaudhury et
al., 2014). (D): Corrected image using the technique of (X. Li, Zhang, Sander, &
Liao, 2019). (E): Corrected image using our method. (F): Ground-truth. 70

xiv

4.14 Limitations of our method on unseen images. (A): Distorted input images. (B):
Corrected image using homography estimation (C): Corrected image using the tech-
nique of Chaudhury et al. (Chaudhury et al., 2014). (D): Corrected image using the
technique of Li et al. (X. Li, Zhang, Sander, & Liao, 2019). (E): Corrected image
using our method. (F): Ground-truth. 72

4.15 Results of distortion correction using public panoramic images from the Internet.
(A): Panoramic images. (B): Corrected image using the technique of Chaudhury
et al. (Chaudhury et al., 2014). (C): Corrected image using the technique of Li
et al. (X. Li, Zhang, Sander, & Liao, 2019). (D): Corrected image using our method.
Panoramic images often have a combination of different types of distortions. Our
network still attempts to correct the images’ orientation and reduced stretching on
some areas. Rightmost image taken by David Iliff (2005). 73

4.16 Additional results using unseen data from KITTI. (A): Distorted input images. (B):
Corrected image using homography estimation (C): Corrected image using the tech-
nique of (Chaudhury et al., 2014). (D): Corrected image using the technique of (X. Li,
Zhang, Sander, & Liao, 2019). (E): Corrected image using our method. (F): Ground-
truth. 74

4.17 Additional results using unseen data from KITTI. (A): Distorted input images. (B):
Corrected image using homography estimation (C): Corrected image using the tech-
nique of (Chaudhury et al., 2014). (D): Corrected image using the technique of Li
et al. (X. Li, Zhang, Sander, & Liao, 2019). (E): Corrected image using our method.
(F): Ground-truth. 74

4.18 Preview of the dKITTI dataset. (A): Some examples of distorted images used for
training. (B): Some examples of discarded images. Generated distorted images are
discarded and regenerated if most of the content from the original image is lost. See
Section 4.4 for details. 75

5.1 Comparison of existing haze datasets related to ours, as well as virtual world datasets.
Existing dehazing datasets (A to D), virtual datasets (E - G). A: (Tarel et al., 2012).
B: (Y. Li, You, Brown, & Tan, 2017). C: (B. Li et al., 2019). D: (R. Li, Zhang,
You, & Li, 2020a). E: Virtual KITTI V1 (Gaidon et al., 2016a). F: Virtual KITTI
V2 (Cabon, Murray, & Humenberger, 2020). G: GTA V (Richter, Vineet, Roth, &
Koltun, 2016). H: Ours . 79

5.2 Illustration of image-to-image translation method to minimize domain gap between
synthetic and real images. We trained a CycleGAN network that performs a mapping
function between synthetic and Places-365 dataset (J.-Y. Zhu et al., 2017; B. Zhou,
Lapedriza, Khosla, Oliva, & Torralba, 2017). A: Synthetic images from virtual envi-
ronment. B: Style-transferred image that mimics Places-365 style. 80

5.3 Illustration of the different lightmapper parameters and values used in our virtual
environment. Post-processing parameters are also included. 81

xv

5.4 Preview of the virtual environment in Unity Engine. The left image is the scene
view. The right image is the game/camera view. We show the RGB image and depth
map overlaid, in the game view. Two virtual cameras share the same transform, one
rendering the shaded scene view while the other rendering the depth map. 82

5.5 Illustration of the perspective camera view frustrum (Dalao, 2020) and the respective
camera parameters used in the virtual environment. Ku and Km near and far clipping
planes are set to 0.3 and 1000.0 respectively, mainly to render all objects within the
viewing frustrum properly. For Kd, the far clipping plane is set to 100.0 in order to
mimic the behavior of real-world depth cameras. A sample set of images, that form
the synthetic dehazing dataset is also shown. 82

5.6 Preview of the virtual environment in Unity Engine with unlit shading shown. The
left image is the scene view. The right image is the game/camera view. We show the
RGB image and unlit image overlaid, in the game view. Similar to our setup with
the depth camera, the virtual cameras share the same transform. 84

5.7 The set of images that composes our training set. 85

5.8 Our proposed network architecture. Our network does not need to see any real-world
hazy image during training and only relies on synthetic samples gathered from the
virtual environment. 86

5.9 Visual comparisons on O-Haze dataset. Selected images are those that achieve > 0.88
SSIM using our proposed method. 92

5.10 Visual comparisons on I-Haze dataset. Selected images are those that achieve > 0.89
SSIM using our proposed method. 93

5.11 Visual comparisons on RESIDE OTS dataset. Selected images are those that achieve
> 0.97 SSIM using our proposed method. 93

5.12 Visual comparisons a hazy movie frame from R. Li et al. (2020a). The method of
R. Li et al. (2020a) has a refinement stage that improves the overall lighting. Our
physics-based approach can directly produce a clear image. 94

5.13 Visual comparisons on RESIDE Realistic Hazy Image Dataset. 94

5.14 Visual comparisons on the O-Haze, I-Haze, and RESIDE-OTS images, and the esti-
mated transmission and atmospheric maps of the different models. 96

5.15 Differences of images in the low-quality dataset with the original dataset. 97

5.16 Dehazed O-Haze, I-Haze, and RESIDE-OTS images where the proposed network is
trained, using LR-Synth dataset, and compared with the original dataset, DLSU-
SYNSIDE. 98

xvi

5.17 Synthetic images, style-transferred images, and depth maps, from DLSU-SYNSIDE
and GTA-MVS. We only show clear images for better illustration. Images in DLSU-
SYNSIDE were captured using a virtual camera with different viewpoints, while im-
ages on GTA-MVS were captured using a virtual camera, close to the ground. 99

5.18 Dehazed O-Haze, I-Haze, RESIDE-OTS, and RESIDE-Unannotated images, using
GTA-MVS and DLSU-SYNSIDE as training input for our proposed network. 101

5.19 Visual comparisons of network variants trained with different A and β terms. 103

5.20 Visual comparisons of different style transfer network architectures and configuration
of adversarial and likeness loss terms. 104

5.21 Visual comparisons of the dehazed images, with different β1 and β2 terms for Gt.
β1 = 10.0, β2 = 5.0 are default values used for training Gt. 105

6.1 Using a virtual 3D environment where shadows are simulated, we generate a synthetic
shadow training dataset. Given an RGB image and its corresponding shadow matte,
we train a network that recovers the shadow-free image. Note that we only train the
shadow removal network, Gz, purely on synthetic images. 107

6.2 Comparison of different shadow removal datasets. ISTD (J. Wang, Li, & Yang, 2018)
and STD (L. Qu, Tian, He, Tang, & Lau, 2017) are real-world datasets. GTA V
(Krähenbühl, 2018), SynShadow-10K (Inoue & Yamasaki, 2020), JNetShadow-120K
(R. Guo, Ayinde, & Sun, 2021), G2C-DeShadowNet dataset (Gao, Zheng, & Guo,
2022), and DLSUSynthPlaces-100K (Ours) are synthetic datasets. Shadows in our
dataset were generated using only 3D primitive occluders, such as triangular prisms. 111

6.3 Overview and illustration of our proposed method of using only 3D primitives as
occluders. We argue that sufficiently complex shadow regions can be composed by
mixing N primitives. Based on our extensive experiments, triangular prisms and
spheres as occluders is sufficient in approximating shadow regions. 112

6.4 Proposed shadow dataset generation process. Given a virtual environment with
pre-defined 3D blueprints, we randomize the camera, primitive occluder transforms,
blueprint transforms, directional light attributes, and shadow intensity. 2D images
are pooled from a database collection, then texture mapping is performed on the
blueprints. 114

6.5 Luminance distribution of ISTD and SRD datasets for all regions and shadow regions
(WS). The luminance values on the shadow regions indicate the amount of mini-
mum brightness inside those regions, when occluders are present. ISTD (WS) Mean:
0.5047, Std dev: 0.0222. SRD (WS) Mean: 0.5157, Std dev: 0.0461 115

6.6 Illustrating how directional light and camera positions are randomized. A sample set
of Iws and Ins images, captured from the camera is shown. 116

xvii

6.7 The proposed network architecture is divided into two stages: the shadow matte
conditioning stage and the shadow removal proper. 118

6.8 Visual results on the ISTD and SRD datasets. We compare recent supervised shadow
removal networks, trained on real and synthetic datasets with ours. 121

6.9 Visual results of network variants on ISTD dataset. Our proposed dataset generation
method does not need any style transfer or domain adaptation technique to work
properly on real-world data. 125

6.10 Visual results of network variants on SRD dataset. Our proposed dataset generation
method does not need any style transfer or domain adaptation technique to work
properly on real-world data. 125

6.11 Visual results on the ISTD and SRD datasets of specific network architectures trained
on DLSUSynthPlaces-100K. The proposed DSP-FFANet produces the least visual
artifacts while maintaining the original color composition. 127

6.12 Visual results demonstrating the removal strengths of our model trained with different
primitive sets and number of instances. Visual results indicate that datasets using
at least spheres, and mixing them with either t.prisms or cubes, are favorable for
generating good shadow-free images. 128

6.13 A: The occluder projection method by Inoue and Yamasaki (2020). B: Our proposed
occluder projection method. 129

6.14 ISTD and SRD results of our networks trained on different occluder and projection
configurations. Refer to Table 6.5 for details. 130

6.15 We propose a data augmentation strategy for SynShadow (Inoue & Yamasaki, 2020)
and compare it with our proposed approach of using 3D primitive occluders. A:
SynShadow occlusion step. B: We increase the number of mesh occluders from
AMASS/ShapeNet and scale them down to 25% of their original size. C: Random
patches from the AMASS/ShapeNet masks are selected as occluders. 131

6.16 Visual results demonstrating the performance of our model trained with different
types of occluders. 133

6.17 Synthetic samples of shadow and shadow-free image pairs from different datasets,
for training Gm. We compare our proposed projection and occluder method with
the synthetic shadow generation method proposed by Inoue and Yamasaki (2020),
considering Places-365, ISTD, SRD, and USR as background textures. 135

6.18 Visual results of different Ism reconstructions produced by Gm on the ISTD dataset.
We trained Gm using synthetic shadow datasets with different projection and occluder
styles, including the shadow generation method (SynShadow) presented by Inoue and
Yamasaki (2020). 137

6.19 Visual results of different Ism reconstructions produced by Gm on the SRD dataset. 138

xviii

6.20 Shadow removal results using different datasets for training Gz on the ISTD dataset. 139

6.21 Shadow removal results using different datasets for training Gz on the SRD dataset. 140

6.22 Visual results demonstrating the capability of DSP-FFANet in removing shadows in
Places-365 images. The network can be further refined by providing more shadow
examples and some ambient occlusion implemented in the virtual environment. . . . 144

6.23 Visual results showcasing the strengths of our proposed method on ISTD. Our method
can produce some shadow-free images where shadow regions are almost indistinguish-
able. 145

6.24 Visual results showcasing the strengths of our proposed method on SRD. 146

6.25 Limitations of our approach. Our network tends to hallucinate incorrect colors on
the shadow regions, on images that are overly bright/exposed. It also fails on images
with strong contrast between shadow and non-shadow regions. 146

6.26 Visual results of network variants on ISTD dataset, and their corresponding perfor-
mances across 10, 20, 30, and 60 epochs of training. Only DSP-FFANet and BMNet
are stable throughout the training duration. 151

6.27 Visual results of network variants on SRD dataset, and their corresponding perfor-
mances across 10, 20, 30, and 60 epochs of training. Only DSP-FFANet and BMNet
are stable throughout the training duration. 152

6.28 Visual ISTD and SRD results of the lowest and best-performing domains. DSP-
FFANet trained on Places-100k produces the least visual artifacts. 154

6.29 Visual ISTD results produced by Gm trained using 1-channel or 3-channel Ism. Gm

trained on 1-channel Ism easily converges and produces very accurate Ism images as
compared to its 3-channel counterpart. 155

7.1 Our proposed intrinsic image decomposition model. An RGB image is decomposed
into A · S. We propose decomposing S into two components for more fine-tuning:
Sno shadow and Sshadow. 158

7.2 Examples of IID datasets available. 159

7.3 The current dataset generation process of DLSU-IID. The city scene layout is ran-
domized, and directional lights are randomized. Several intrinsic maps are saved for
training an IID network. 162

7.4 Current network architecture using DLSU-IID as training set. 164

7.5 Visual results on the DLSU-IID dataset of different Ga variants trained with varying
number of training samples. Increasing the number of training images provide more
fine detail on the buildings and textures. 167

xix

7.6 Visual results on the DLSU-IID dataset of different Ga variants trained with varying
number of training samples. DLSU-IIDNet trained on 100K samples provide the
best visual results where fine details are recovered. 167

7.7 Visual results on the DLSU-IID dataset of different Ga variants trained with varying
number of training samples. DLSU-IIDNet trained on 100K samples provide the
best visual results where fine details are recovered. 168

7.8 Visual results on the GTA V and CGIntrinsics dataset. Fixed city layout: We train
DLSU-IIDNet on our modified synthetic dataset using only a fixed city layout. Ran-
domized city layout: We train DLSU-IIDNet on another synthetic dataset with city
randomization enabled per K frames. 169

7.9 Visual results on the GTA V and CGIntrinsics dataset. A: Post-processing disabled.
B: Post-processing enabled. 170

7.10 Visual results on the DLSU-IID dataset of different Gn variants trained with varying
number of training samples. 171

7.11 Visual results produced by Gn on the DLSU-IID dataset. Fixed city layout: We
train DLSU-IIDNet on our modified synthetic dataset using only a fixed city layout.
Randomized city layout: We train DLSU-IIDNet on another synthetic dataset with
city randomization enabled per K frames. 172

7.12 Visual results on the DLSU-IID dataset. A: Post-processing disabled. B: Post-
processing enabled. 172

7.13 Visual results on the DLSU-IID dataset of different Gd variants trained with varying
number of training samples. Increasing the number of training images provide more
accurate depth maps. 173

7.14 Visual results on the KITTI dataset of different Gd variants trained with varying num-
bers of training samples from the DLSU-IID dataset. There is a noticeable domain
gap between the synthetic DLSU-IID and the real-world example, KITTI. 174

8.1 Illustrating the attributes from a 3D virtual environment, identified and utilized in
this study. 178

8.2 Novel domain adaptation techniques proposed in our dehazing and shadow removal
study: style transfer, unlit image extraction, texture mapping. 182

8.3 Proposed method for pursuing an image restoration/enhancement task, using only
synthetic images for training. 183

8.4 Contextualizing the unified framework to the conducted study in dehazing. 183

8.5 Contextualizing the unified framework to the conducted study in shadow removal.
We also show how a shadow removal task could be potentially converted to reflection
removal. 184

xx

8.6 We classify and rank different image enhancement and computer vision tasks accord-
ing to their observed task difficulty and realism required for such a task to achieve
competitive or state-of-the-art results. 185

A.1 DLSU-SYNSIDE clean and styled images. 209

A.2 DLSU-SYNSIDE clean and styled images. 210

A.3 DLSU-SYNSIDE unlit images and atmospheric maps. 211

A.4 DLSU-SYNSIDE hazy and clean image pairs with style transfer enabled. 212

A.5 DLSUSynthPlaces-100K shadow and shadow-free images. 213

A.6 DLSU-IID Version 1 - RGB (with shadows) images and albedo. 215

A.7 DLSU-IID Version 1 - shadow and shadow-free images for deriving intrinsic image
decomposition shadow maps. 216

A.8 DLSU-IID Version 1 - depth and surface normals. 217

A.9 DLSU-IID Version 1 - specular and diffuse light maps. 218

A.10 DLSU-IID Version 2 - RGB (with shadows) images and albedo. 219

A.11 DLSU-IID Version 2 - depth and surface normals. 220

A.12 DLSU-IID Version 2 - specular and diffuse light maps. 221

B.1 Proposed city generator process. 225

B.2 Road networks retained in the city generator. Due to possibly incorrect or incomplete
StreetMap parsing, dead end roads are prevalent. We propose a filtering stage where
road networks that form a closed polygonal chain, which eventually will become lots
occupied by building entities, are retained in the virtual scene. 226

B.3 A: Illustration of the cycle detection method. Note that we only implement a vanilla
depth-first-search for detecting cycles. Nodes that form a cycle will be considered
lots, to be populated by building entities. B: Visualizing the road spline network
created from the street map location of San Rafael, Caloocan, Metro Manila, NCR,
Philippines, using our proposed filtering method. 227

B.4 A: How road meshes are created using StreetMap API. B: Our proposed road mesh
rendering using splines. Using splines produce more seamless curved roads. 227

xxi

B.5 Showing the city zoning process. The zone type is identified from an RGB perlin noise
map distribution, where the R and the G channel indicates the population density and
wealth respectively. The B channel is an industry factor, where Li is automatically
classified as an industrial zone if the rolled value is between [0.75, 1]. Using the lot’s
centroid, the zone is identified based on its pixel location in the perlin noise map. . . 229

B.6 Schematic illustration of the lot subdivision proposed by Parish and Müller (2001).
Given a lot polygon, the algorithm finds the longest edge, and then gets its perpendic-
ular line, where the subdivision will be performed. Any subdivided lots unaccessible
by street, are removed. 230

B.7 Calculation of the oriented bounding box, given a lot polygon. 230

B.8 Sample subdivided lots with assigned zone types. Zone types are determined based
on the city zoning procedure proposed in Section B.3.4. 231

B.9 Comparing our proposed subdivision approach with the method of Parish and Müller
(2001). Our method relies on using oriented-bounding boxes for the subdivision of
lots. This method further maximizes the occupiable space, and buildings may spawn
following the curvature of roads. 232

B.10 City-based entities instantiated in our proposed city generator system. 233

B.11 Reference city generator systems compared to ours. A: Bulbul (2023). B: Nishida,
Garcia-Dorado, and Aliaga (2016). C: Parish and Müller (2001). We also provide the
closest reference photos from the web, depicting PH city layouts and appearance we
wish to be modeled by our proposed city generator. 234

B.12 A: City of Karlsruhe, Germany sidewalk photo, from the KITTI dataset. European
cities, where most procedural city generators were inspired from, mainly have two-way
traversible sidewalks. B: City of Makati, Philippines sidewalk photo from the Google
Maps photos. Philippine cities have the characteristics of having numerous electric
poles, and inconsistent sidewalk sizes. Some roads have very little sidewalks. C: Our
generated cities, with sidewalks and electric poles present (left) and no sidewalks, but
with electric poles. 235

B.13 Illustration of lot props spawning process. We first randomly sample possible spawn
locations in Li ∈ Llots. We then sparsely sample on a circular area with increasing
radius, around a candidate spawn location and perform a ray tracing on all directions
if there’s a valid path towards any road, Rtrimmed. Sample generated lots with props,
such as trash cans, wood, and trees are shown on the right. 236

B.14 Sample cities generated with customized parameters such as different seed numbers,
building and prop densities. 238

B.15 User interface of the prototype, CityEnginePH. 239

xxii

B.16 Our testing methodology. We gather Google Street Maps RGB images and manually
label and generate its segmentation map. We fully synthesize a city using our pro-
posed PCG tool and produce its corresponding segmentation map. We then measure
the class label accuracy between real and synthetic segmentation maps. 242

B.17 Visualizing the top two generated results using our proposed PCG method and rank-
ing the synthetic images according to class label accuracy. 244

B.18 Illustration of our testing methodology for analyzing the effectiveness of our city
zoning method (Section B.3.4). The candidate city block for testing is Mandaluyong
City, Metro Manila, Philippines. 245

B.19 Synthetic city zone results with no fine-tuning involved (non-assisted). The street
layouts are from the real-world map view of a block in Mandaluyong City, Metro
Manila, Philippines. Zone accuracy are also displayed. Our proposed PCG can
reasonably support the creation of virtual cities with accurate zones. 246

B.20 Synthetic city zone results using assisted generation, representing the real-world map
view of a block in Mandaluyong City, Metro Manila, Philippines. Zone accuracy are
also displayed. We achieved slightly improved performance if zoning parameters are
fine-tuned. 247

B.21 Preview of the synthetic city generated, using the combined city blocks for Mandaluy-
ong City, Metro Manila, Philippines. We provide aerial and street view photos on the
right as references. Note that due to limited crowd-sourced data from the internet,
the real-world references do not exactly depict the street locations in the map. We
simply wish to convey the urban layout patterns to the reader. 248

B.22 Showcasing the best generated cities, referenced from street maps around Metro
Manila, Philippines. The ground-truth and synthetic segmentation maps are shown
side-by-side. Our PCG fully supports the generation of small towns, as well as high-
rise buildings. 249

B.23 Some limitations of our proposed PCG. Due to limited quantity of 3D assets for
low-rise to medium-rise buildings, generated street layouts may appear monotonous.
Lot prop assets are also limited which causes props to appear as if they were naively
placed inside the lot space. 249

B.24 Results 1: generated city views from a reference Google street maps image. 250

B.25 Results 2: generated city views from a reference Google street maps image. 251

B.26 Results 3: generated city views from a reference Google street maps image. 252

B.27 Results 4: generated city views from a reference Google street maps image. 253

B.28 Results 5: generated city views from a reference Google street maps image. 254

B.29 Generated city using Makati City, Metro Manila, Philippines, as reference street layout.255

xxiii

List of Tables

1.1 Datasets created in this study. All datasets are available to the public. 9

4.1 Range of transformation matrix values used for generating distorted images. The dataset
follows a uniform distribution. 59

4.2 Accuracy metrics. Best performance in bold. 65

4.3 Network variants experimented. 67

4.4 Accuracy metrics of network variants. Best performance in bold. 67

4.5 Accuracy metrics of the network’s scaling prediction using images with scaling dis-
tortion. Our network recovers the scale of images properly. Best performance in bold. 68

4.6 Accuracy metrics using Places205 dataset (B. Zhou et al., 2014). Best performance in
bold. Our network was not trained using images from Places205, but still outperforms
other methods. 70

5.1 Related works compared and their corresponding techniques and training data used. 90

5.2 Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset. The two best
methods are colored green and yellow. 91

5.3 Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset using different
models. Best methods are highlighted in green. 95

5.4 Table of comparison of synthetic datasets used for ablation study. 97

5.5 Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset, between DLSU-
SYNSIDE and GTA-MVS. Best results in bold. Our proposed dataset is more suitable
for a physics-based dehazing task, over GTA-MVS. 100

5.6 Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset. Best results
in bold. Values used for producing the dehazed images reported in this paper are
highlighted in yellow. 102

xxiv

5.7 Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset. Best results in
bold. Default β1 and β2 terms used in this paper, and their corresponding perfor-
mance, are highlighted in yellow. 104

6.1 Quantitative results on the ISTD and SRD datasets. Best results in bold. WS =
shadow regions, NS = non-shadow regions. 121

6.2 Quantitative results of different network variants on ISTD and SRD dataset. Best
results in bold. Our proposed network, DSP-FFANet, trained on DLSUSynthPlaces-
100K, achieves the best performance. 124

6.3 RMSE results of our proposed network when fully trained on ISTD and SRD train-
ing sets. We already observe an improvement of de-shadowing performance when
compared to other SR methods. 125

6.4 Quantitative results on ISTD and SRD datasets using different combinations of prim-
itives as occluders, ordered by highest PSNR. A more comprehensive breakdown of
results is shown in the appendix. 126

6.5 Quantitative results of DSP-FFANet comparing 3D meshes versus primitives as oc-
cluders, and 2D versus 3D based projections. Green and yellow highlights indicate
first and second-best performances. 129

6.6 RMSE results of our proposed network trained on different occluder configurations.
Green and yellow highlights indicate first and second-best performances. 132

6.7 Quantitative results of different Gm versions on ISTD and SRD dataset. Each Gm

was trained on a certain dataset, occluder, and projection configuration. Green and
yellow highlights indicate the 1st and 2nd best performing models. 136

6.8 Quantitative results of different Gz versions on ISTD and SRD dataset. Each Gz was
trained on a certain dataset, occluder, and projection configuration. Green and yellow
highlights indicate the 1st and 2nd best performing models. Our proposed synthetic
shadow generation approach produces the best results, and also complements the
method proposed in Inoue and Yamasaki (2020). 142

6.9 Quantitative results of Gz network trained on Places-365, ISTD, SRD, or USR texture
map domain. Using Places-365 provide the best results. 143

6.10 Quantitative results of Gz performance on the ISTD datasets. Each Gz was trained
on different datasets with a varying number of primitives and types. Green and yellow
highlights indicate the first and second-best performances. 148

6.11 Quantitative results of Gz performance on the SRD datasets. Each Gz was trained on
different datasets with a varying number of primitives and types. Green and yellow
highlights indicate the first and second-best performances. 149

xxv

6.12 Quantitative results on ISTD and SRD, across different epochs of DSP-FFANet,
BMNet, and SG-ShadowNet. Arrows indicate the upward/downward performance
change from the previous epoch. The mentioned networks uses DLSUSynthPlaces-
100K as training data. Green and yellow highlights indicate the first and second-
best performances. Results show that DSP-FFANet is the best network for training
DLSUSynthPlaces-100K, that also works well when real shadow images are used for
inference. 150

6.13 Quantitative results on ISTD and SRD datasets, using our model trained on different
texture domains and quantity of samples. Green and yellow highlights indicate the
first and second-best performances. 153

6.14 Quantitative results on ISTD, comparing 1-channel and 3-channel Ism predictions of
Gm. 155

7.1 Summary of datasets observed in the literature of deep learning IID approaches. All
datasets are available to the public. 160

7.2 Ga trained with different number of image samples and their quantitative results.
Green and yellow highlights indicate the first and second-best performances. 166

7.3 Ga trained with two DLSU-IID dataset versions. Fixed: The city layout is fixed.
Randomized: The city layout randomized every K frames. Green highlights indicate
the best performing model. 168

7.4 Ga trained with two DLSU-IID dataset versions, post-processing enabled/disabled. . 169

7.5 Gn trained with different number of image samples and their quantitative results.
Green and yellow highlights indicate the first and second-best performances. 170

7.6 Gn trained with different number of image samples and their quantitative results.
Green and yellow highlights indicate the first and second-best performances. 171

7.7 Gn trained with two DLSU-IID dataset versions, post-processing enabled/disabled. . 171

7.8 Gd trained with different number of image samples and their quantitative results.
Green and yellow highlights indicate the first and second-best performances. 173

8.1 Virtual environment attributes used in solving the following computer vision prob-
lems, contextualized to image enhancement: dehazing, shadow removal, and intrinsic
image decomposition. 177

B.1 Zone type mapping to population density and wealth. Lots will automatically be
classified as industry zones, if industry factor is between [0.75, 1] 228

B.2 Controllable parameters for CityEnginePH. 237

xxvi

B.3 Time complexity analysis of the proposed modules, compared with Parish and Müller
(2001). Refer to discussion for the variables used. 240

B.4 Segmentation map class labels . 241

B.5 Individual class label accuracies of assisted and non-assisted generated cities, com-
pared to Google street maps image. Green and yellow highlights indicate the 1st and
2nd top results. 243

B.6 Mean and standard deviations of class label accuracies for 25 street map images when
compared to assisted and non-assisted generated cities. 244

B.7 Zone accuracy of our proposed PCG, using Mandaluyong, Metro Manila, Philippines
as reference. 246

B.8 Zoning parameters used for assisted generation of the three city blocks for Mandaluy-
ong City, Metro Manila, Philippines. 247

xxvii

Chapter 1

Introduction

This dissertation explores synthetic image generation and the use of virtual environments for various
computer vision tasks. With the advances in computer graphics and photorealistic rendering, 3D
virtual environments can serve as digital twins of the real-world. Given a certain virtual environment,
synthetic images can be gathered for a computer vision task. The main challenge is to bridge the
synthetic domain and real-world domain gap, when training a deep learning network using synthetic
images. This work proposes various techniques for solving computer vision tasks, with synthetic
images, specifically on the following areas: distortion correction, dehazing, shadow removal,
and intrinsic image decomposition.

1.1 Background

With the advent of deep learning, training neural networks to solve a computer vision task frequently
require large amounts of training images. There is often a challenge of where to gather real-world
images and videos that can be used for training on a particular task. The advances in computer
graphics and GPU-accelerated computing have enabled the convenient use of physically-based ren-
dering systems, such as Blender, Unity Engine, and Unreal Engine. Realistic virtual environments
could be created through ray tracing and global illumination that could be used as a testbed for
real-world computer vision tasks. This research covers several computer vision tasks where synthetic
images were used for training various deep learning networks, specifically in distortion correction,
dehazing, shadow removal, and intrinsic image decomposition. Figure 1.1 and 1.2 summarize the
proposed synthetic image generation techniques used for solving various computer vision tasks and
domain adaptation strategies crafted.

1

Figure 1.1: We created novel techniques for solving computer vision tasks via deep learning, pri-
marily using synthetic images as training data. Across various computer vision tasks, we proposed
specific synthetic image generation methods, typically from a 3D rendering system, and domain
adaptation techniques for making the trained networks work well on real-world data.

2

Figure 1.2: Continuation of the previous figure. Note that the current state of the intrinsic image
decomposition task is in progress. No domain adaptation strategies have been formulated as of this
writing.

3

Our research spans different computer vision areas, specifically on image enhancement and
restoration-based tasks. First, we performed a preliminary study on how image formation models
be used for manipulating the properties of an image (Chapter 4). Provided that an image formation
equation is well-posed, one promising approach is to generate image samples using original ones,
following a particular equation, and then changing the weights or parameters of the given terms.
Specifically, we explored this on a perspective distortion correction problem where we attempted
to generate arbitrary amounts of synthetic KITTI images, by manipulating the 3 × 3 homography
matrices, M , for simulating perspective distortions. We then train a convolutional neural network
(CNN) that infers M−1 for recovering a distortion-free image. The only observed work was the
method of X. Li, Zhang, Sander, and Liao (2019), which to some extent, synthetically generated
different types of distorted images.

For our second study (Chapter 5), we explored synthetic image dehazing, with inspiration from
depth inference using synthetic images, explored by Atapour-Abarghouei and Breckon (2018). A
similar dehazing work utilized 3D left-right frames from movies to generate depth from disparities
and utilized a physics-based dehazing network. (R. Li, Zhang, You, & Li, 2020b). Our approach
utilizes a 3D urban virtual environment where RGB images and pixel-perfect depth maps are cap-
tured from a perspective camera. Using the paired RGB images and depth maps, we simulate
varying amounts of haze, following the atmospheric scattering model (Dong & Pan, 2020; R. Li et
al., 2020a). To address the possible gap between the synthetic domain and the real domain, we
proposed two key domain adaptation strategies. First, we utilize train an unpaired image-to-image
translation network using CycleGAN (J.-Y. Zhu et al., 2017) in order to convert the synthetic images
to look like real-world counterparts. Second, we train a novel unlit image extraction network that
recovers color and saturation-independent images to minimize appearance biases between synthetic
and real-world hazy images. These key strategies complement a physics-based dehazing network,
trained purely on synthetic images, to perform competitively against other state-of-the-art dehazing
methods.

For the third study (Chapter 6), we discovered that for a shadow removal problem, shadow
casters could be simulated using only 3D primitives. We propose a novel synthetic shadow generation
process wherein we only use a combination of triangular prisms, spheres, and cubes as shadow
casters. Using this approach, we could generate numerous samples of viable shadow and shadow-
free image pairs. Our ablation study shows that, at minimum, triangular prisms and spheres are
needed for generating shadows, where a shadow removal network trained on such synthetic data will
perform well on real-world images. Inspired by computer graphics and constructive solid geometry
where 3D models can be composed of triangle meshes, we argue that sufficiently complex shadow
regions found in real-world images can also be formed by mixing 3D primitives. To reduce the
domain gap between synthetic and real-world images, we performed texture mapping by selecting
from a pool of real-world datasets (e.g., Places-365, ISTD, SRD, or USR) and mapped them to
cube meshes in the virtual environment. We trained a two-stage FFA-Net architecture (Qin et al.,
2020) where a shadow-matte conditioning network is trained to capture common real-world shadow
shapes. Then, a shadow removal network is trained with only synthetic shadow images using 3D
primitives as occluders. We illustrate this general procedure in Figure 1.1. Through empirical
analysis, we show that our trained network achieves competitive results with other known shadow
removal works.

Our latest study explores the intrinsic image decomposition (IID) problem (Chapter 7). IID

4

is a technique for separating an image into reflectance/albedo, which refers to the base color and
texture of an object unaffected by light, and shading, which contains illumination effects, affected by
various light sources and inter-reflections (Garces, Rodriguez-Pardo, Casas, & Lopez-Moreno, 2022;
Baslamisli, Le, & Gevers, 2018). IID is worthwhile research to pursue, as it shares many elements
in photorealistic rendering in computer graphics. Synthetic scenes are mostly used for training
IID networks, where the primary challenge is to make such networks usable for real-world settings.
Unlike other datasets in the literature, our proposed urban synthetic IID dataset consists of more
intrinsic maps, such as shadow maps, surface normals, and diffuse and specular light maps. This
provides opportunities for more fine-grained decomposition and analysis of images, which can have
applications to image editing, such as modifying an object’s materials and textures or relighting.
We report the current state of our proposed dataset and the latest performance of our proposed IID
network trained to output multiple intrinsic maps.

Lastly, a spinoff component of this research explored the promise of using procedural content
generation (PCG) techniques in order to generate multiple city scenes (Appendix B). We propose
a customized PCG for generating Philippine Cities, using Unreal Engine for rendering and Open-
StreetMap for road network data. We are the first to present a procedural city generator for modeling
Philippine cities. Existing city generator system (Parish & Müller, 2001; P. Müller, Wonka, Hae-
gler, Ulmer, & Van Gool, 2006; Watson et al., 2008; Beneš, Kelly, Děchtěrenko, Křivánek, & Müller,
2017) reference American or European cities and the techniques presented are not necessarily com-
patible with the urban layouts observed in Philippine cities, specifically Metro Manila. We tested
our PCG by quantitatively comparing virtual street views with Google street map views through
image similarity. Our extensive analysis shows we can reasonably generate Philippine cities with
little to no fine-tuning.

1.2 Research Questions

We present the following research questions, as guiding principles for our series of image enhancement
tasks pursued. We aim to answer the following research questions:

1. What attributes are present in a 3D virtual environment that can be utilized for synthetic
image generation?

2. How can synthetic images be used for solving various computer vision tasks?

3. How to address limitations of using synthetic images for a computer vision task, such as using
real-world images for validating the effectiveness of the model?

Hypotheses for these research questions are presented in succeeding subsections. In our conclu-
sion, we revisit these research questions and summarize our key findings and recommendations.

5

1.2.1 Hypothesis for Question 1

A virtual environment, especially those developed using game engines have vast amounts of infor-
mation readily available (Figure 1.3). As one example, the transform properties, such as position,
rotation, and scale of all objects are available. All objects with 3D models attached have simple to
complex collision boxes. Camera parameters such as field of view, near and far clip planes can be
modified. Another possibility is to apply physically-based shading and global illumination wherever
possible. Physically-based shading is a technique that renders images in a way that models the
flow of light in the real world, where the primary goal is to achieve photorealism (Pharr, Jakob, &
Humphreys, 2016). This technique is typically coupled with global illumination which is a system
that models how light is bounced off on surfaces. The overall rendering result contains elements
of direct and indirect lighting (Dutré, Bekaert, & Bala, 2018). Physically-based shaders and global
illumination can be utilized to create believable environments, such as examples shown in Figure
1.4.

Figure 1.3: Object bounding boxes and transform properties are available and modifiable in a game
engine, such as Unity Engine. The camera parameters are also modifiable.

Figure 1.4: One can utilize Physically-based shaders (left) and global illumination to create believ-
able environments.

6

1.2.2 Hypothesis for Question 2

As seen in Figure 1.5, given an arbitrary camera viewpoint, images can be captured from the 3D en-
vironment and used for training a network. Furthermore, a DirectX plugin developed by Krähenbühl
(2018) allows extraction of computer vision information from video games, an example shown in
Figure 1.6 This can be an alternative approach for gathering images for a certain task. Furthermore,
the use of virtual worlds as proxy for computer vision tasks has started gaining popularity with the
release of virtual KITTI (Gaidon et al., 2016a).

Figure 1.5: Given an arbitrary camera viewpoint, images can be captured from the 3D environment
and used for training a network. In this example, a set of clean, hazy, and depth images are captured
from the camera.

Figure 1.6: Computer vision information, such as depth, optical flow, albedo, instance and semantic
labels extracted from commercial video games (Krähenbühl, 2018).

1.2.3 Hypothesis for Question 3

While physically-based shading and global illumination or ray-tracing techniques make a virtual
environment photorealistic, there will still be some possible domain shift when real-world images
are used for inference. Following the success of CycleGAN J.-Y. Zhu et al. (2017), a style transfer
network can be trained to transfer attributes of real-world images to synthetic images. An opposite
approach of style transfer where real-world images will look synthetic, such as to make the input
compatible with a network trained on synthetic images, will also be explored. This was the approach

7

performed by Atapour-Abarghouei and Breckon (2018) for their depth inference network trained on
synthetic images. Figure 1.7 illustrates some style transfer approaches.

Figure 1.7: Some examples of style transfer. A: CycleGAN (J.-Y. Zhu et al., 2017). B: Instance
adaptive self-training network (Mei et al., 2020). C: Real-time monocular depth estimation using
synthetic data (Atapour-Abarghouei & Breckon, 2018).

8

1.3 Research Contributions

Current related work shows that many researchers are still exploring the use of synthetic images for
various computer vision tasks. Our research spans different computer vision and image processing
domains. Unique to our study is the use of synthetic images for image enhancement, specifically
on distortion correction, dehazing, and shadow removal. Typical domain usages of synthetic images
are object recognition, semantic segmentation, autonomous driving, and pose detection (Kuutti et
al., 2018; Arnold et al., 2019; Tsirikoglou, Eilertsen, & Unger, 2020).

Our primary contribution is the various crafted methods for generating synthetic data and
domain adaptation strategies for trained networks to work well on real-world images. We leverage
existing image-to-image translation networks to perform style transfer, such as in dehazing. In the
shadow removal problem, we utilize real-world images as textures and inject them into our virtual
3D objects to create realistically plausible images without the need for a style transfer method, such
as what we have done in dehazing.

Table 1.1: Datasets created in this study. All datasets are available to the public.

Dataset Name Task Samples Description

dKITTI Distortion correction 95K+ Synthetically distorted KITTI im-
ages with homography matrices.

DLSU-SYNSIDE Dehazing 99K+ Single image dehazing dataset cap-
tured from a virtual urban city scene.
It contains RGB, pixel-perfect depth,
transmission maps, and unlit image
priors.

DLSUSynthPlaces-
100k

Shadow removal 100K Shadow removal dataset consisting of
100,000 paired shadow and shadow-
free images. It is generated using
only 3D primitives both foreground
objects and shadow occluders

DLSU-IID Intrinsic image decomposi-
tion

100K Virtual urban city dataset consisting
of 100,000 RGB images and intrinsic
maps.

Our secondary contribution is the public release of synthetic image datasets along with our pub-
lished papers. We provide a summary in Table 1.1. In distortion correction, we provided dKITTI
dataset containing 95,330 paired images and M homography matrices. In dehazing, we provided
DLSU-SYNSIDE (SYNthetic Single Image Dehazing) dataset containing 99,996 images extracted
from an urban virtual environment. The dataset includes ground-truth depth, transmission maps,
and unlit image priors. Future research, specifically synthetic image dehazing, could benefit from us-
ing DLSU-SYNSIDE as training and test data. In shadow removal, we provideDLSUSynthPlaces-
100K, which contains real-world textured images using only various 3D primitives as occluders. It
includes 100,000 paired shadow and shadow-free images. In intrinsic image decomposition, we pro-
vide DLSU-IID a dataset based on DLSU-SYNSIDE that contains intrinsic maps, such as albedo,
depth, surface normals, diffuse, and specular maps. Note that DLSU-IID is still in its early stages of
conceptualization. Other mentioned datasets are available publicly alongside the published works.

The combination of specific approaches for properly training a network with synthetic data and
the quantity and quality of datasets used allowed us to devise new models that perform competitively
in state-of-the-art distortion correction, dehazing, and shadow removal methods.

9

1.4 Organization

We first discuss the theoretical foundations for computer vision and computer graphics related
to this research. Then, we distinctly organize this document into the following key tasks in the
following order of chapters: distortion correction, dehazing, shadow removal, and intrinsic image
decomposition. The conclusion and future work are discussed in the last chapter.

10

Chapter 2

Concepts in Computer Vision and
Image Enhancement

This chapter discusses key concepts under the area of computer vision and image enhancement or
restortation, specifically techniques needed for this study such as image formation equations, and
techniques for image generation and domain adaptation.

2.1 Image Formation Equations

Image formation equations are typically used to model how images are represented based on a
certain task. For example, in super-resolution, the image formation process involves a combination
of downsampling, warping, blur, and noise terms. This section shows different image formation
equations explored for this study.

2.1.1 Atmospheric Scattering Model

The atmospheric scattering model is used for image dehazing tasks which is expressed as follows:

I(x) = J(x)t(x) +A(1− (t(x)) (2.1)

where I(x) is the hazy image, J(x) is the clear image, t(x) is the transmission map, and A is
the global atmospheric light on each x pixel. t(x) can be formulated as:

t(x) = e−βd(x) (2.2)

where d(x) is the depth of the scene point and β is defined as the scattering coefficient of the
atmosphere (Fattal, 2008). The atmospheric scattering model is illustrated in Figure 2.1.

11

Figure 2.1: Sample images of coefficients in atmospheric scattering model.

2.1.2 Intrinsic Image Decomposition

Intrinsic image decomposition (IID) is a technique for separating an image into reflectance (color
of the object) and shading (illumination effects), where reflectance remains constant regardless of
viewpoint and lighting conditions, while shading varies based on viewpoint, lighting, and object ge-
ometry, including shadows, and inter-reflections (Garces et al., 2022; Baslamisli et al., 2018).(Garces
et al., 2022). In computer graphics, reflectance is also referred to as albedo (Ritschel, Dachsbacher,
Grosch, & Kautz, 2012; Akenine-Möller et al., 2019). Figure 2.2 illustrates how an RGB image can
be decomposed into its reflectance and shading properties.

Figure 2.2: An RGB image is decomposed into its reflectance and shading properties—images taken
from the CGIntrinsics dataset (Z. Li & Snavely, 2018a).

The IID model can be expressed as:

I = A · S (2.3)

where I refers to the RGB image, A refers to the reflectance/albedo, S refers to the shading compo-
nent. Variations of Equation 2.3 exist to provide more fine-grain decomposition of images, such as
for those that require relighting using spherical harmonic coefficients (H. Zhou, Yu, & Jacobs, 2019;
Y. Yu & Smith, 2021; Y. Zhu, Zhang, Li, & Shi, 2021), and for simulating cast shadows (Griffiths,
Ritschel, & Philip, 2022).

12

Decomposing images into their albedo, and shading components, opens up opportunities for
image editing, such as relighting, re-texturing, and reflectance modification (Figure 2.3).

Figure 2.3: Intrinsic image decomposition applications: image/video recoloring (Meka et al., 2021),
re-texturing (Meka et al., 2021), interactive image editing with fog and god rays (Shekhar et al.,
2021).

13

Figure 2.4: Distortion examples (X. Li, Zhang, Sander, & Liao, 2019). Barrel distortion (β),
pincushion (Pi), rotation (R), shear (S), perspective (P) and wave distortion (W).

2.2 Geometric Distortion Correction

In geometric optics, distortion is a deviation from rectilinear projection, a projection in which
straight lines in a scene remains straight in the actual image (Swaminathan, Grossberg, & K. Nayar,
2003). In other words, an image affected by distortion has lines in the scene that do not remain
straight. It is a form of optical aberration. Figure 2.4 show examples of distortion (X. Li, Zhang,
Sander, & Liao, 2019). D. H. Brown (1966) proposed the first distortion correction model known
as decentering distortion. However, this is only applicable for radial distortions.

There are observed software applications, such as OPENCV, that can correct those distortions
by warping the image with a reverse distortion. This involves determining which distorted pixel
corresponds to each undistorted pixel, which is non-trivial due to the non-linearity of the distortion
equation. These applications can typically undistort an image, provided camera parameters are
known. This technique is sometimes called camera calibration.

2.2.1 Full 2D Affine Transform

The general 2D affine transform has six degrees of freedom (combination of translation, rotation,
scale, aspect-ratio, shear) of the form:

T =

[
a b c
d e f

]
(2.4)

Solving T requires at least 3 pairing points. Let the inputs be X and Y . The formula for
deriving T is TX = Y , where X and Y are:

14

X =

xy
1

Y =

x′y′
1

 (2.5)

Expanding TX = Y results into:

[
a b c
d e f

]xy
1

 =

x′y′
1

 (2.6)

Expanding the form to:

ax+ by + c = x′

dc+ ey + f = y′
(2.7)

Which can be rewritten to the form of Ax = b and expanded into:

x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
x3 y3 1 0 0 0
0 0 0 x3 y3 1

a
b
c
d
e
f

 =

x1
y1
x2
y2
x3
y3

 (2.8)

Solving for x = [a, b, c, d, e, f] can be performed using least-squares by doing:

Ax = b
ATAx = AT b

x = (ATA)−1AT b
(2.9)

2.2.2 Partial Affine 2D Transform

A partial affine 2D transform only involves 4 degrees of freedom, rotation, scaling and transforma-
tion. Partial 2D transform estimation requires at least two pairs of points. These can be represented
as R, S and t respectively in the form:

R =

[
cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

]
S =

[
s 0
0 s

]
t =

[
tx
ty

]
(2.10)

Thus, the partial transform equation is:

15

T =
[
RS|t

]
(2.11)

Expanding T from Equation 2.10, results into:

T =

[
cos(Θ)s − sin(Θ)s tx
sin(Θ)s cos(Θ)s ty

]
(2.12)

This can be rewritten as:

T =

[
a −b c
b a d

]
(2.13)

where a = cos(Θ)s, b = sin(Θ)s, c = tx, and d = ty. TX = Y can be expanded into:

[
a −b c
b a d

]xy
1

 =

x′y′
1

 (2.14)

This can be rewritten to the form of Ax = b, similar to Equation 2.8 as seen below:

x1 −y1 1 0
y1 x1 0 1
x2 −y2 1 0
y2 x2 0 1

a
b
c
d

 =

x1
y1
x2
y2

 (2.15)

2.2.3 Homography Estimation

Homography estimation refers to the process of identifying a perspective transformation H between
the source and the destination planes, as if mapping two images on the same planar surface. This
is visualized in Figure 2.5.

The homography transformation, is based on:

x′ =
ax+ by + c

gx+ hy + 1
(2.16)

y′ =
dx+ ey + f

gx+ hy + 1
(2.17)

where x′ and y′ denotes the coordinates from the second reference image, given x and y
coordintes from the first reference image. Homography estimation determines the 8 unknowns,
a, b, c, d, e, f, g, h. Thus, at least 4 pairing points are required and can be calculated with least-
squares approach. The 8 parameters are defined as:

16

Figure 2.5: Homography estimation attempts to find an optimal perspective transformation that
maps images on a planar surface (Capel & Zisserman, 2003).

� a - fixed scale factor in x′ direction with scale y′ unchanged.

� b - scale factor in x′ direction proportional to y′ distance from origin.

� c - origin translation in x′ direction.

� d - scale factor in y′ direction proportional to x′ distance from origin.

� e - fixed scale factor in y′ direction with scale x′ unchanged.

� f - origin translation in y′ direction.

� g - proportional scale factors x′ and y′ in function of x′.

� h - proportional scale factors x′ and y′ in function of y′.

To summarize the different alignment techniques, affine transformation preserves straight lines
and planes after a transformation matrix has been applied to images, while perspective transforma-
tion does not. This is visualized in Figure 2.6.

2.3 Depth Inference

This section discusses techniques on how to infer depth from a scene.

2.3.1 Depth Map

In computer graphics, a depth map is an image or image channel that contains information relating
to the distance of the surfaces of scene objects from a viewpoint (Foley, van Dam, Feiner, & Hughes,
1990). In the field of computer vision, the viewpoint is the actual camera source. Figure 2.7
illustrates depth maps from an indoor dataset gathered by Bo Li et al. (2015).

17

Figure 2.6: Comparison of affine and perspective transformation applied to a sample image. Affine
transformation preserves straight and parallel lines. Perspective transformation does not preserve
linearity.

Figure 2.7: Depth maps from provided image dataset of (Bo Li et al., 2015). Left images: Samples
of the RGB image. Middle images: The raw depth images. Right images: The class labels from the
dataset.

18

Figure 2.8: A depth map represented as a grayscale image. Nearer is darker.

Figure 2.9: Depth information is essential for 3D reconstruction of objects from 2D images (Soltani
et al., 2017).

Depth maps are visually represented like an image heat map (similar to Figure 2.7 or as a
grayscale image where pixels are darker if it’s nearer to the viewpoint (seen in Figure 2.8. Depth
maps in computer vision are typically used for reconstructing 3D objects or scenes based from depth
information (seen in Figure 2.9). Virtual object occlusion can also simulated if video frames contain
depth information for augmented-reality applications.

2.3.2 Deriving Depth Maps: Modeling Disparity

Provided there are stereo images available (left and right images typically captured from a dual lens
camera), depth maps can be derived based from disparity maps (Godard, Mac Aodha, & Brostow,
2017). Figure 2.10 shows how stereo images can be used to infer disparity. O and Ò represent the
viewpoint from where X is captured. This creates an offset x and x̀ affected by the focal point of
the camera, f .

The disparity equation can then be derived by the following formula:

δ = x− x̀ =
Bf

Z
(2.18)

19

Figure 2.10: How depth can be inferred based from disparty. O and Ò represent the viewpoint from
where X is captured. This creates an offset x and x̀ affected by the focal point of the camera, f .

where x and x̀ are the distance between points in image plane corresponding to the scene point
3D and their camera center. B is the distance between two cameras (which can be known as a
camera parameter) and f is the focal length of camera. So in short, the above equation says that
the depth of a point in a scene is inversely proportional to the difference in distance of corresponding
image points and their camera centers. So with this information, one can derive the depth of all
pixels in an image. Figure 2.11 illustrates a sample disparity map from a given grayscale image.

2.4 3D Scene Representation

2.4.1 Structure from Motion

Structure from motion (SFM) is a classical imaging technique for estimating three-dimensional
structures from a set of 2D images (Ullman & Brenner, 1979). To estimate a 3D structure of an
object, a set of 2D images captured from varying angles and positions is required. The more variety
of images are acquired, the better the 3D estimate will be. Figure 2.12 demonstrates the following
steps for estimating 3D structure using SFM:

1. Let S be the set of images captured at varying angles and locations, showing different per-
spectives of the object. If S is sufficiently large, then the estimated 3D structure will be more
accurate.

2. Identify feature points for all image {Ii, Ii+1, ..., Ik} ∈ S where k = |S| (such as SIFT, SURF,
ORB) and perform feature matching for {Ii ⇔ Ii+1}, {Ii+1 ⇔ Ii+2}, {Ii+2 ⇔ Ii+3}, ..., {Ik−1 ⇔
Ik}.

3. Refine feature matches by least-squares or RANSAC.

20

Figure 2.11: A: Grayscale image. B: Disparity map. Note that the disparity map is not the depth
map. To derive the depth map, a method called triangulation is performed (Hartley & Zisserman,
2003).

4. Using matched feature points as information, compute camera positions for all {Ii, Ii+1, ..., Ik} ∈
S. Compute 3D-point positions such that rays cast from corresponding camera views intersect.

The 3D structure is best represented as a point cloud, where each feature point is plotted in
3D space, as seen in the example of Figure 2.13. There are various techniques for converting a point
cloud to a 3D surface, such as Delaunay triangulation (Delaunay, 1934), marching cubes algorithm
(Lorensen & Cline, 1987), and alpha shapes (Edelsbrunner & Mücke, 1994).

21

Figure 2.12: General steps involved in identifying 3D structure using structure from motion.

Figure 2.13: A point cloud can be rendered as a surface.

22

2.4.2 Image to Point Cloud

Conversion of any 2D image to a point cloud representation requires depth information that acts
like a Z-value. If this is not available, multiple images can be used as an alternative and use
Structure-from-Motion for constructing the point cloud (see Section 2.4.1).

Constructing a point cloud using an RGB-D image is discussed in the next paragraph. Concepts
regarding camera representation were borrowed from the textbook of Hartley and Zisserman (2003).

In order to plot all pixels into correct
[
x y z

]
locations in the point cloud, the full camera

matrix, P must be modelled. P can be decomposed into intrinsic and extrinsic matrices, K and
[R|t] where K represents a sequence of shear, scaling, and translation transformations with respect
to axis skew, focal length, and principal point offset, while [R|t] represents the 3D rotation followed
by the 3D translation of the camera. The full decomposition of P is given as:

P =

Intrinsic Matrix︷︸︸︷
K ×

Extrinsic Matrix︷ ︸︸ ︷
[R | t] (2.19)

where the intrinsic and extrinsic matrices can be broken down as:

P =

Intrinsic Matrix︷ ︸︸ ︷ 1 0 u
0 1 v
0 0 1

︸ ︷︷ ︸
2D Translation

×

 fx 0 0
0 fy 0
0 0 1

︸ ︷︷ ︸

2D Scaling

×

 1 s/fx 0
0 1 0
0 0 1

︸ ︷︷ ︸

2D Shear

×

Extrinsic Matrix︷ ︸︸ ︷(
R 0

0 1

)
︸ ︷︷ ︸
3D Rotation

×
(
I t

)︸ ︷︷ ︸
3D Translation

(2.20)

where t represents the
[
x y z

]
translation coordinates, R is the 3× 3 rotation matrix.

[
fx fy

]
is

the focal length or field of view and s is the shearing parameter. In other words, the intrinsic matrix
describes the geometric property of the camera while the extrinsic matrix describes the camera’s
location in the world and direction it is pointing.

Figure 2.14 and 2.15 illustrates the effects of changing the values of the intrinsic and extrinsic
parameters respectively.

23

Figure 2.14: Effects of manipulating the intrinsic parameters and how the scene is projected to
screen on the lower right of each image thumbnail.

24

Figure 2.15: Effects of manipulating the extrinsic parameters and how the scene is projected to
screen on the lower right of each image thumbnail.

25

Based from Equation 2.20, the relationship of the screen to world coordinates is written as:

uv
1

 =
1

z
K︸︷︷︸
3×3

[R|t]︸︷︷︸
3×4

x
y
z
1

 (2.21)

where
[
u v

]
represents the image plane or the screen. Figure 2.16 is provided to better illustrate

the relationship between
[
u v

]
and

[
x y z

]

Figure 2.16: Relationship of screen coordinates and world coordinates.

Equation 2.21 is borrowed from the explanation about image transformations and camera cali-
bration discussed in the book of Davies (2012). Given the camera parameters, translating the image
pixels back to 3D coordinates in the point cloud requires the inversion of the camera matrix. How-
ever, K must be converted to a square matrix to make it invertible. To do this, 1/z is introduced
and Equation 2.21 is rewritten as a 4× 4 matrix equation which is shown as:

uv
1

 =
1

z

[
K 0
0 1

]
︸ ︷︷ ︸

4×4

[
R t
0 1

]
︸ ︷︷ ︸

4×4

x
y
z
1

 (2.22)

Assuming the camera origin and world origin are aligned, R and t can be neglected. Hence, to
convert

[
u v

]
back to

[
x y z

]
, the equation is simply:

x
y
z
1

 = z

1/fx 0 0 0
0 1/fy 0 0
0 0 1 0
0 0 0 1

u
v
1

1/z

 (2.23)

Figure 2.17 illustrates how pixels are mapped to a point cloud, provided depth information is
available.

26

Figure 2.17: Relationship of screen coordinates and world coordinates.

27

2.5 Techniques on Generative Models

Two generative models are typically used in literature, variational autoencoders (VAE), and gen-
erative adversarial networks (GAN). This study may use both types of generative models, but will
most likely rely on GANs.

2.5.1 General Objective Function for GAN

A GAN consists of a generator and a discriminator network. The goal of a generator/discriminator
is to minimize/maximize the following objective function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (2.24)

where x represents the data sampled from the distribution pdata(x), G and D represents the
generator and discriminator respectively, z is a prior input noise variable. D(x) is the differentiable
discriminator network that produces a scalar output, which represents the probability that x came
from pdata(x) rather than pz(z). G(z) is a differentiable network that can be represented as a
multilayer perceptron or a convolutional neural network, or other networks that can learn to generate
data sampled from z (Goodfellow et al., 2014). The standard training procedure is to alternate
between optimizing G and D for each iteration. Equation 2.24 is also known as the adversarial loss
term.

In practice, Equation 2.24 may not provide sufficient gradient for G during the first few iterations
in training because D will easily learn to reject samples with high accuracy because G is performing
poorly, producing samples that are different from pdata(x). In formal terms, log(1−D(G(z)) become
very small. An alternative is to train G to maximize logD(G(z)) rather than minimizing log(1 −
D(G(z)). Both methods result in the same outcome for both G and D, but maximizing logD(G(z))
provides stronger gradients early in the training (Goodfellow et al., 2014).

2.5.2 Reconstruction-Based GAN or Image-to-Image Translation

The classical GAN framework accepts a latent noise input variable z which is used to generate
data that fits within the distribution pdata(x). For computer vision tasks that perform supervised
learning, such as denoising, deblurring, and dehazing, the GAN is transformed into a conditional
GAN that learns mapping functions between two domains, X, and Y (Mirza & Osindero, 2014). In
other terms, this is also called as image-to-image translation (Isola et al., 2017b). The training data
can be paired or unpaired.

For paired data Isola et al. (2017b) proposed the following objective function for a conditional
GAN, given G and D, as:

min
G

max
D

Lc(G,D) = Ex,y[log(D(x, y))] + Ex,z[log(1−D(x,G(x, z)))] (2.25)

28

Figure 2.18: Sample tasks that can be performed by Pix2Pix network, an image-to-image translation
model (Isola et al., 2017b).

where given x ∈ X and y ∈ Y , z is added to the input for G(x, z) so G could avoid producing
deterministic outputs. In additional to Equation 2.25, an L1 error loss function is introduced to
minimize the L1 distance between y and G(x, z) which is given by:

LL1(G) = Ex,y,z[||y −G(x, z)||1] (2.26)

According to Isola et al. (2017b), the L1 distance encourages less blurring that L2. Combining
Equation 2.25 and 2.26, the final objective is:

G∗ = min
G

max
D

Lc(G,D) + λLL1(G) (2.27)

2.5.3 Unpaired Image-to-Image Translation

J.-Y. Zhu et al. (2017) recently introduced a method for unpaired image-to-image translation by
maintaining cycle consistency for two generative networks. For an unpaired image-to-image trans-
lation task, the goal is to learn a mapping function G : X → Y and F : Y → X where X and Y
represent two different domains, G and F are two generator networks. Adversarial discriminators
Dx and Dy are introduced to distinguish between x ∈ X and F (y), and y ∈ Y and G(x) respectively.

For G : X → Y and its discriminator Dy, this is expressed as the following objective:

min
G

max
D

L(G,Dy, X, Y) = Ey∼pdata(y)[log(Dy(y))] + Ex∼pdata(x)[log(1−Dy(G(x)))] (2.28)

Similarly, F : Y → X and its discriminator Dx is expressed as the following objective:

min
G

max
D

L(F,Dx, X, Y) = Ex∼pdata(x)[log(Dx(x))] + Ey∼pdata(y)[log(1−Dx(F (y)))] (2.29)

29

G tries to generate images that look similar to images from domain Y, that is G(x) ≈ y ∈ Y . F
tries to generate images that look similar to images from domain X, that is F (y) ≈ x ∈ X.

Equations 2.28 and 2.29 in theory, can learn mappings G and F . However G and F can generate
any random permutation of images. For example, G(x) can generate any similar looking y without
resemblance to x (e.g. Given a zebra image, G(x) generates a different horse image inconsistent
of the original zebra image). To prevent this unwanted issue, J.-Y. Zhu et al. (2017) introduced a
cycle-consistency term wherein x → G(x) → F (G(x)) ≈ x ∈ X. That is, for each image x ∈ X,
this should ensure that G(x) to F (G(x)) should be able to bring it back to the original image
x. Similarly, this is imposed as well for F wherein y → F (y) → G(F (y)) ≈ y ∈ Y This can be
formulated by:

Lcyc(G,F) = Ex∼pdata(x)[||F (G(x))− x||1] + Ey∼pdata(y)[||G(F (y))− y||1] (2.30)

Combining Equations 2.29 and 2.30, the full objective is:

min
G,F

max
Dx,Dy

L(G,F,Dx, Dy, X, Y) = L(G,Dy, X, Y) + L(F,Dx, X, Y) + λLcyc(G,F) (2.31)

Equation 2.31 is illustrated in Figure 2.19. The architecture proposed by J.-Y. Zhu et al. (2017)
is famously known as CycleGAN, and has been a staple architecture on several computer vision
tasks. Figure 2.20 shows some applications of CycleGAN.

Figure 2.19: Illustration of cycle consistency term (J.-Y. Zhu et al., 2017).

30

Figure 2.20: Some applications of CycleGAN (J.-Y. Zhu et al., 2017).

31

2.5.4 Residual Blocks

As more layers are added into a neural network, it becomes more difficult to train. Vanishing
gradients become more apparent as more layers are being added. There is also a phenomenon where
after adding a certain number of layers to increase the model’s accuracy, further adding layers will
increase training error (He et al., 2015). To address this problem, a residual learning block is used
as layers for deep neural networks which is illustrated in Figure 2.21.

Figure 2.21: A residual block (He et al., 2015).

2.5.5 U-Net Architecture

With the success of U-Net for medical image segmentation (Ronneberger et al., 2015a), the archi-
tecture of U-Net has been typically adopted to various convolutional neural network architectures
for other computer vision tasks. The architecture is shown in Figure 2.22. This consists of a series
of convolutional layers (the encoding blocks), followed by fractionally strided convolutional layers
(the decoding blocks). Each convolutional layer has a skip connection to a fractionally strided con-
volutional layer of similar kernel size. Similar to residual blocks proposed by He et al. (2015), skip
connections from encoding to decoding blocks allow faster convergence and minimizes the risk of
vanishing gradients during training.

32

Figure 2.22: U-Net architecture (Ronneberger et al., 2015a).

33

2.5.6 Channel and Pixel Attention Blocks

Hazy images tend to have uneven haze distribution across image pixels and across its channels. Qin
et al. (2020) proposed a channel attention (CA) and pixel attention (PA) module in their FFA-Net
network to treat channel-wise and pixel-wise features independently, which allows the network to
properly handle hazy images uneven haze distribution. Figure 2.23 shows the convolutional blocks
of the CA and PA module where the input is the n− th output layer of N residual blocks. Based on
the pixel attention map provided in Figure 2.23, it shows the effectivity of the CA and PA module,
where it puts attention on pixel regions around the edges, texture, and haze.

Figure 2.23: Feature attention module proposed by Qin et al. (2020). The pixel attention map is
shown on the right. High pixel attention occurs on bright pixels. It shows that the CA and PA
module put more attention on pixel regions around the edges, textures and haze.

2.6 Domain Adaptation Techniques

This section primarily focuses on domain adaptation adapted for image-to-image translation, or
image generation tasks. Domain adaptation is a class of techniques that aim to address the domain
shift problem, such as training a network using domain X, then using the network for inference
using domain Y . The goal is to find a mapping from the source data distribution to the target
distribution (Murez et al., 2018).

2.6.1 General Approach

Observed work in the literature typically uses CNNs for generating the shared latent space where the
source and target domains are aligned, typically maximizing domain confusions (Tzeng, Hoffman,
Zhang, Saenko, & Darrell, 2014; Tzeng, Hoffman, Darrell, & Saenko, 2015; Hoffman, Wang, Yu, &
Darrell, 2016; Sankaranarayanan, Balaji, Castillo, & Chellappa, 2018). Figure 2.24 illustrates the
common approach for domain adaptation in literature.

Source and target domains are first identified and treated as a paired dataset. The domains are

34

Figure 2.24: Illustration of a common approach for domain adaptation. The source and target
domains produce a shared embedding from an encoding network. For a generative task (such as
generating new images using a new domain) or a discriminative task (such as object recognition and
semantic segmentation), samples from the shared embedding space are used for training a network
specific to a task.

used as training samples for the encoding network where a shared embedding space (or latent space)
is produced. During inference time, data that can come from either the source or target domain
is fed to the encoding network and produces a sample from the embedding space, which is used as
input for a network trained for a specific task, such as generating a new image, or a classification
network. One limitation of this approach is that the source and target domains must be known
during the training phase, and adding new target domains will imply that the encoding network
must be retrained from scratch.

2.6.2 Shared Latent Space

CycleGAN (J.-Y. Zhu et al., 2017) demonstrate some level of domain adaptation for unpaired image-
to-image translation. The proposed architecture of Murez et al. (2018) improved on this further by
creating generative networks that learn the mappings of two domains in a shared latent space that
is domain agnostic. Two generative networks are defined as fx : X → Z, and fy : Y → Z where
inputs come from X and Y domain respectively, where Z is the latent space. The networks fx
and fy are trained to minimize the reconstruction from Z by cross-entropy error, cycle consistency,
target classification, and identity mapping.

35

Figure 2.25: Image to image translation examples for MNIST (LeCun et al., 1998) to SVHN digits
(Netzer et al., 2011) dataset generated by the proposed method of (Murez et al., 2018).

36

A more sophisticated architecture, StarGAN and StarGAN V2 (Choi et al., 2018; Choi, Uh,
Yoo, & Ha, 2020), was proposed where a shared latent space across multiple domains (around
5) are trained by multiple generative adversarial networks. This allows the network to support
multi-domain image-to-image translation of faces with varying expressions, hair color, age, or a
combination of these. The network architecture of StarGAN and image results are shown in Figure
2.26.

Figure 2.26: Schematic diagram of StarGAN (Choi et al., 2018). Results are shown on the right
together with the following methods: DIAT(M. Li et al., 2016), CycleGAN (J.-Y. Zhu et al., 2017),
and IcGAN (Perarnau et al., 2016).

Aside from other losses used in training CycleGAN, and since multiple domains are present
during training, both generator G and discriminator D are trained with a domain classification loss
which is written as:

Lr
cls = Ex,c′ [−logDcls(c

′|x)] (2.32)

where Dcls(c
′|x) represents a probability distribution over domain labels computed by D, given a

real image x and its ground-truth domain label c′ as paired data. By minimizing this objective,
D learns to classify x to its intended domain label c′. For classifying fake images, D is trained to
maximize:

Lf
cls = Ex,c[−logDcls(c|G(x, c))] (2.33)

where G is trained to minimize this objective to generate images that can be classified as the target
domain c. The full objective proposed by Choi et al. (2018) for G and D, contains Lr

cls, Lf
cls,

adversarial loss term (Equation 2.24), and cycle consistency loss term (Equation 2.30).

37

2.6.3 Disentangling Content and Domain

Lee et al. (2018) proposed a more sophisticated approach, by disentangling content and attribute
and used as separate inputs for the encoders and decoders. This allows the network to generate
new images with random attributes from the target domain, or specify an attribute that translates
a source image directly to a new target image. Their approach is illustrated in Figure 2.27 and
briefly described as follows: Given X and Y target and source domains, a content encoder, and
an attribute encoder are trained to minimize the reconstruction of images using their respective
embeddings. Discriminators are paired for each encoder which is trained to minimize the content
(Lcontent

adv) and domain (Ldomain
adv) adversarial loss, while the encoder is trained to maximize it. Similar

to CycleGAN (J.-Y. Zhu et al., 2017), L1 cycle consistency loss (Lcc
1) is also used.

Figure 2.27: Method overview of (Lee et al., 2018) using content and domain adversarial losses, and
cycle consistency loss.

2.6.4 Incremental Learning

One of the common problems in image-to-image domain adaptation techniques is that domains
must be known and available during training. The network must be retrained to accommodate new

38

domains. Furthermore, adding new domains continuously may cause the network to forget previously
learned domains. To address these issues, incremental learning is proposed in the literature. Lopez-
Paz and Ranzato (2017) proposed freezing network weights to prevent increasing the loss of labels
from previously learned domains. Similarly, Jung, Ju, Jung, and Kim (2016) proposed freezing the
weights of their final layer and encourage the new network being trained on a new domain, to extract
similar features as the previous network. Xiao, Zhang, Yang, Peng, and Zhang (2014) implemented a
tree structure where smaller models are added in the tree to accommodate new classes. ModularGAN
(B. Zhao, Chang, Jie, & Sigal, 2018) appears flexible on learning new domains, at the cost of an
increased number of parameters for each new domain.

Further improving on ModularGAN, D. S. Tan et al. (2021) proposed a GAN-based incremental
learning approach (IncrementalGAN) that considers distillation loss to prohibit the network from
forgetting previously learned domains. The initial training phase follows standard GAN training.
However, instead of using RGB images as input to the generator, a domain embedding vector
y is used as input to an encoding network that produces the feature map embedding Gemb(y).
Gemb(y) is concatenated with the input image that trains the generator to produce a new image
according to the desired domain as specified by y. For succeeding training phases, y, the domain
is concatenated with a new entry while adding a new set of training samples that belongs to the
new domain. To recall previously learned domains, Gemb(y) is used to produce pseudo-real data,
which achieves a discriminator score of > 0.8, and mixed with the new training samples for training
the existing classifiers with a distillation loss. Figure 2.28 illustrates the network architecture of
IncrementalGAN.

Figure 2.28: Network architecture of IncrementalGAN (D. S. Tan et al., 2021).

39

Chapter 3

Concepts in Computer Graphics

This chapter discusses key concepts in computer graphics, specifically techniques needed for this
study. Techniques related to creating believable and photorealistic environments will be discussed.
This chapter discusses concepts borrowed from the book of Akenine-Möller et al. (2019) and Dutré
et al. (2018). Some features from game engines, such as Unity (Thorn, 2016) and Unreal (Sanders,
2016), are also used as reference in the discussion.

3.1 Synthetic Datasets

Synthetic datasets are typically generated in two stages. The first is the modelling phase, then
followed by the rendering phase (Tsirikoglou et al., 2020). In the modelling phase, the elements that
make up a virtual scene is either manually assembled, or can be procedurally generated. For example,
a scene can be composited by first gathering 3D models and then placing them accordingly in an
indoor or outdoor environment , which is possibly created through the use of landscaping tools, such
as those present in Unity and Unreal Engine. Procedural modelling uses algorithms or mathematical
functions to produce a layout of a scene, how 3D models are placed, and possibly how those models
can also be coloured or textured (Ebert et al., 2003; Kramer & Akleman, 2020). Other modelling
approaches, such as data-driven modelling, physically-based and non-physically based modelling
were identified in the survey about image synthesis methods conducted by Tsirikoglou et al. (2020).

The rendering phase is the process of producing an image, coming from a virtual camera placed
in the scene. For computer games, an image of the scene is displayed on screen per refresh where the
frequency of how images are displayed on screen is commonly known as the frame rate. Principles
of physics, especially the interaction of light is typically computed, which affects the final rendered
image. This is typically implemented by applying physically-based shaders (Pharr et al., 2016) and
enabling global illumination or ray-tracing (Akenine-Möller et al., 2019).

Synthetic datasets composed of urban scenes were used in studies of autonomous driving. For
this study, urban scenes will be used. Figure 3.1 shows public synthetic datasets using urban scenes.
The Grand Theft Auto (GTA) V (Martinez et al., 2017) dataset are images that came from GTA
V, a critically acclaimed commercial video game developed by Rockstar Games. Computer vision

40

Figure 3.1: Urban synthetic datasets. A: GTA V (Martinez et al., 2017). B: Virtual KITTI (Gaidon
et al., 2016a). C: CARLA (Dosovitskiy et al., 2017). D: Sim4CV (M. Müller et al., 2018).

applications, such as semantic segmentation (Y. Zhang, Qiu, Yao, Liu, & Mei, 2018; Y.-H. Tsai et
al., 2018; Peng et al., 2018), used the GTA V as training data due to its photo-realistic nature.
Virtual KITTI is an extension of the KITTI dataset, where a proxy world is developed to further
enhance the performance of multi-object tracking applications which used the real-world KITTI
dataset for training (Gaidon et al., 2016a). In the paper of Gaidon et al. (2016a), evidence shows
that the gap between the real and virtual worlds were small and using additional images from the
virtual KITTI, offered an increase in object recognition performance. The dataset, CARLA (Car
Learning to Act), is similar to the virtual KITTI dataset, but generally has more photo-realistic
images. CARLA is an open simulator for urban driving and developed for training, prototyping
and validation of autonomous driving models (Dosovitskiy et al., 2017). CARLA is a system built
as an open-source layer over Unreal Engine. The environment is composed of buildings, vegetation,
traffic signs, and dynamic objects such as vehicles and pedestrians. Similar to the CARLA dataset,
Sim4CV (A Photo-Realistic Simulator for Computer Vision) was developed by M. Müller et al.
(2018) using Unreal Engine for rendering. Sim4CV is used for multiple computer vision tasks aside
from object tracking, such as pose estimation, action recognition, 3D reconstruction, crowd and
urban scene understanding, indoor scene understanding, and aerial surveying. The 3D models used
for the environment came from a set of purchased asset packs, available in Unreal Engine asset store.

41

3.2 Lighting

In computer graphics, light is modeled as geometric rays. A light ray is emitted from a light source
where objects, depending on their physical properties, can absorb or scatter it Akenine-Möller et
al. (2019). Figure 3.2 illustrates the lighting geometry. Light rays are modeled by a light vector, l,
which is opposite to the direction the light is traveling. By default, l = 1. l is modeled opposite to
the light’s direction primarily for optimization reasons. Since 3D scenes are viewed on-screen with
a virtual camera, simulation of light can be optimized by only considering light rays that reach the
camera view. To computer for the object’s illumination, surface irradiance is computed, which is
the total energy or quantity of light rays passing through the surface in one second. Refer to the left
image of Figure 3.2 for illustration. Given a surface p and surface normal n, the surface irradiance
is equal to the irradiance measured perpendicularly to l, multiplied by the cosine of the angle Θi,
between l and n.

Figure 3.2: Diagram showing lighting geometry Akenine-Möller et al. (2019). l refers to the light
vector, p is the planar surface, n is the surface normal, d is the distance between light rays.

The center image of Figure 3.2 illustrates light rays hitting the surface perpendicularly, while
the right image illustrates rays hitting the surface at a 45◦ angle, which affects the scene irradiance
computation because of the cosine factor.

Real-world light phenomena are emission, scattering, and absorption. Emission pertains to light
sources, while scattering and absorption describe light-matter interactions. Scattering happens
when light rays either get reflected or refracted when it hits an object (Figure 3.3). Light rays that
bounce off the surface are called reflection. Light rays that change direction, are called refraction.
As a real-world example, light is reflected on objects with very smooth and metallic surfaces, such
as mirrors. Light gets refracted if it hits a body of water. Absorption happens inside matter and
causes some of the light to be converted into another kind of energy and disappear. The overall
amount of light is reduced. As a real-world example, the light gets absorbed on rough surfaces,
such as rocks and grass. In computer graphics, these light phenomena are simulated and modeled
by material properties that follow physically-based shading which is discussed in Section 3.3. When
light hits an object with certain material properties, these phenomena will occur.

42

Figure 3.3: A: Illustration of light scattering at a surface. Light rays that bounce off the surface
are called reflections. Light rays that change direction are called refraction. B: Some light rays are
either reflected in different directions or absorbed by the object Akenine-Möller et al. (2019).

3.2.1 Light Sources

In the real world, light is emitted from a physical source, like a filament. A casing or shell will model
how the light will be cast on an environment. For example, a light bulb casts light omnidirectionally,
while a linear fluorescent lamp scatters light in a straight fashion. In computer graphics, the physical
source of light is not present. Instead, the light source comes from a singularity, while the object is
represented as a separate 3D model.

Figure 3.4: Different light sources, captured from Unreal Engine. A: Directional light. B: Point
light. C: Spot light

Figure 3.4 shows the different light sources in Unreal Engine. These light sources are standard for
any computer graphics application. Before discussing the different light sources in detail, common
light properties are first described below:

� Intensity - Total energy that the light emits. In other words, this determines how many light
rays are projected. The higher the value, the brighter the scene is.

� Light color - The RGB color that the light emits.

� Transform - Position and rotation of the light in the world.

A directional light is used for simulating outdoor light. The directional light is typically placed

43

from afar and affects the whole environment. For the transform property, only the rotation can be
modified, which changes the angle of how light rays hit the objects in the scene.

A point light simulates spherical light, such as light bulbs, torches, and lamps. Point lights emit
light in all directions. Aside from the common light properties, point lights have an attenuation
radius that bounds the light’s visible influence.

A spotlight emits light in a cone shape. The spotlight is typically used for simulating flashlights,
stage lights, portrait lights, and linear fluorescent lamps. Aside from the common light properties,
spotlights have a cone angle that determines the angle of light rays in a cone.

3.3 Physically Based Shading and Materials

In rendering, objects are typically presented as surfaces where their appearance is portrayed by
attaching materials. Each material is associated with a set of shader programs, textures, and other
properties. In other words, materials are like abstract data structures that can be configured. One
shader technique is called physically based shading.

Physically-based shading (PBS) is a technique that models real-world materials and simulates
the interaction of materials and light. PBS is typically applied for applications that need some
level of photorealism. A sample scene is shown in Figure 3.5. Game engines commonly implement
PBS with hard surfaces in mind, which implies that it is suitable for hard objects, such as stones,
glass, metals, and the like, while posing visual limitations to soft materials like skin, hair, and cloth.
(Thorn, 2016).

Standard PBS parameters for materials are provided by both Unity and Unreal (Figure 3.6).
In Unity, an inspector window is provided for manipulating these. In Unreal Engine, a material
editor graph is provided for more fine-tuning. Different PBS properties are discussed in succeeding
paragraphs. Limited illustrations and only the parameter definitions are provided to conserve space
for this section. More illustrations are available in both Unity and Unreal Engine.

44

Figure 3.5: A virtual living room with physically-based shading applied. Image taken from Unreal
Engine documentation.

Figure 3.6: Left: PBS parameters in Unity. Right: PBS parameters in Unreal.

45

Figure 3.7: A: Side of a cube with only Albedo using a rock texture. B: Albedo with Normap Map
assigned. C: Albedo, Normal Map, and Height Map assigned.

The PBS parameters are itemized below:

� Albedo - refers to the base color and texture of the surface unaffected by light.

� Metallic and Smoothness - The Metallic and Smoothness properties range from 0.0 to 1.0.
A Metallic value of 1.0 simulates highly metallic objects. A Smoothness value of 1.0 is used
for highly reflective materials, such as glass. Both Metallic and Smoothness properties are
used for generating reflection and refraction. For example, a portrait mirror has a Metallic
and Smoothness value of 1.0. Some graphics applications and game engines, such as Unreal,
replace Smoothness with Roughness, which is the opposite.

� Specularity - The specular property is quite similar to Roughness. Specular property creates a
glossy material (like clear plastic). Specularity can only work if the Metallic value is set close
to 0.0.

� Normal Map - sometimes called the Bump Map. A Normal Map is a special texture added
on top of the Albedo, which adds surface details such as bumps, grooves, and scratches to a
model. This is typically used to add some level of detail and make an object look more real.
Normal Map is essential for creating photorealistic environments as computation of light is
directly affected by the Normal Map property

� Height Map - also called Displacement Map or Parallax mapping. Height maps are used for
simulating openings and crevices in a surface, such as the crevices of floor tiles or adding some
gaps between rocks and stone. The interaction between Albedo, Normal Map, and Height
Map is illustrated in Figure 3.7.

� Occlusion - The Occlusion Map is a mask that identifies areas of the model that should receive
indirect lighting. As an example, the areas inside crevices on a rock or folds in clothing will
receive little to no amounts of light.

46

� Emission - When enabled, an object will emit light (e.g., a TV screen, a lava lamp, or a
glow-in-the-dark object). A texture mask can be applied that filters areas where the light will
be emitted. The emission of light is included in the overall computation of lighting, such as
casting shadows and performing global illumination.

Common PBS materials such as stone, rock, wood, and metal are already pre-defined in some
applications. Figure 3.8 shows several PBS materials available on Unity and Unreal Engine.

Figure 3.8: Examples of PBS materials. These can be applied to any 3D model.

3.4 Global Illumination

Global illumination (GI) is a class of techniques that are used to simulate realistic lighting and
reflections on 3D scenes. Typically, GI algorithms start by processing how objects are lit by a direct
light source, which is then followed by computation of light rays bounced or reflected by other
surfaces in the scene, which is referred to as indirect lighting (Ritschel et al., 2012). An example
is shown in Figure 3.9. GI has been an exciting research area in computer graphics for many years
and is extensively used in practical applications such as video games, film production, architecture,
and design (Křivánek et al., 2010).

Real-time GI is difficult to achieve, primarily because numerous direct and indirect light rays
need to be simulated per screen refresh. On most computer graphics applications, baked GI is
preferred. In baked GI, the overall scene lighting is computed during compilation (or the baking
phase), where one or more lightmaps are produced and overlaid to all objects in the scene. The
light map contains lighting and shadow information. In some applications, such as games, direct
lighting is still rendered during run-time for simulating real-time shadows. Only indirect lighting
gets included in the lightmap. An example of a globally illuminated scene and some lightmaps are
shown in Figure 3.10. Labels are added to better illustrate the different lighting elements that are
simulated using GI.

47

Figure 3.9: Simple illustration of a global illumination (GI) technique. GI further illuminates a
scene by modeling indirect lighting as well (Křivánek et al., 2010).

48

Figure 3.10: A scene with global illumination enabled and some of the light maps created by light
baking.

49

The final GI scene can be broken down into the following components: The Albedo of the scene,
direct lighting, and indirect lighting. This is illustrated in Figure 3.11. Mixing all these components
form the final rendered scene.

Figure 3.11: A: The Albedo of the scene. B: Scene with only direct lighting. C: Scene with only
indirect lighting. D: The final rendered scene with A, B and C combined.

Theories behind GI are further discussed in the succeeding subsections. The rendering equation,
reflectance, and visibility are organized as follows. Two common GI algorithms are briefly discussed,
Monte Carlo ray tracing and Photon Mapping.

3.4.1 Rendering Equation

The rendering equation shows how surface locations are lit (Kajiya, 1986). The rendering equation
is illustrated in Figure 3.12.

Figure 3.12: Rendering equation illustration.

A radiance is defined as the intensity of a single light ray. The outgoing radiance, L0 at a surface
location x in direction w, is represented by the sum of emitted radiance Le and reflected radiance
Lr:

L0(x, ω) = Le(x, ω) + Lr(x, ω) (3.1)

The reflected radiance is computed as:

Lr(x, ω) =

∫
Ω+

Li(x, ωi)fr(x, ωi → ω) ⟨N(x), ωi⟩+ dωi (3.2)

where Ω+ is the upper hemisphere oriented around the surface normal N(x) at x, fr is the bidi-
rectional reflectance distribution function (BRDF) and ⟨⟩ is a dot product that is clamped to zero.

50

The BRDF is a function used to describe a surface’s properties and how light interacts with the
surface (Bicheron & Leroy, 2000). A ray casting operator identifies the incident radiance Li, which
determines from which other surface location this radiance is emitted and reflected (Ritschel et al.,
2012). A GI algorithm computes for L0(x, ω) for a given scene, with objects and PBS materials, and
lighting Le. A scene can have multiple light sources wherein, in this case, Le is computed additively.

3.4.2 Reflectance

The BRDF is a four-dimensional (4D) function that describes a surface’s properties and how light
interacts with the surface (Bicheron & Leroy, 2000). For photorealistic scenes, a physically-based
shading technique (Section 3.3) must have a symmetric BRDF, that is fr(x, ωi → ω0) = fr(x, ω0 →
ωi) and energy conserving, that is

∫
Ω+ fr(ωi → ω0) ⟨N(x), ωi⟩+ dωi < 1.

Consider an example of a simple scene with two mirrors facing each other. Symmetric BRDF
implies that the reflection calculation on both mirror surfaces must be equal. The energy conserva-
tion term implies that light rays that bounce off surfaces have reduced radiance. The reflections in
the mirrors should not appear brighter than their light source.

3.4.3 Visibility

Equation 3.1 has a built-in visibility computation by using a ray casting operator to determine
the closest surface (Ritschel et al., 2012). Non-visible surfaces are described as being occluded.
The visibility between a surface point and an area light source is non-binary, resulting in soft
shadows by default for areas where light cannot pass. A binary visibility computation will result in
hard shadows, wherein there’s a clear distinction between illuminated and non-illuminated areas.
Shadows are illustrated in Figure 3.13.

3.4.4 GI Algorithm 1: Monte Carlo Ray Tracing

Equation 3.1 can be solved using Monte Carlo (MC) Ray tracing wherein a high number of directional
samples are produced at random locations in the scene (Figure 3.14.A). These samples shoot rays in
random directions, which performs a backward tracing approach back to the light source (Ritschel
et al., 2012). Indirect lighting is already computed during this simulation.

Many techniques already exist, such as importance sampling and using GPU approaches, to
improve scene convergence. In importance sampling, instead of blindly shooting rays in random
directions, rays are sent where the rendering function’s integrand (the illumination) has high values.
In other words, areas directly hit by the light source are the most probable areas where light
concentrates (Lawrence, Rusinkiewicz, & Ramamoorthi, 2004; Blasi, Le Saec, & Schlick, 1995;
Dutré et al., 2004). Modern GPUs are already capable of doing MC ray tracing, capable of shooting
100M rays per second (Ritschel et al., 2012).

51

Figure 3.13: A: The view of the light source. The shadows are areas where light rays can no longer
pass or can no longer be illuminated. B: Illustration of shadow behavior. C: Illustration of soft
shadows. The edges appear smooth and fuzzy, assuming a non-binary visibility computation. This
is the default method. D: Illustration of hard shadows. The shadow edges appear jagged and sharp,
assuming a binary visibility computation.

Figure 3.14: A: Monte Carlo Ray Tracing. The orange dot represents the origin which sends rays
in random directions (blue arrows) and bounces them. Connections are formed (yellow arrow),
which eventually links them to the light source. B: Photon Mapping. A light source emits photons
that bounce in the scene. The locations where they settle are shown in yellow circles. To compute
indirect lighting (orange circle), the accumulated photons within the area are gathered (blue arrows
and circle).

3.4.5 GI Algorithm 2: Photon Mapping

Photon mapping (PM) is a classical approach in interactive GI, where a modified implementation
in Unity and Unreal Engine for real-time global illumination is available (Majercik, Marrs, Spjut,
& McGuire, 2020). How photon mapping works is illustrated in Figure 3.14.B. PM involves two
passes. First, several photons are emitted from the light source and bounced inside the scene based
on ray tracing. The photon can stick to locations, which are stored in a photon map. Second,
the computation of light per surface pixel is computed based on photon density. Locations where
multiple photons gather are brighter. Indirect lighting is computed based on the proximity of photon
regions, where the farther an area is from a photon region, the less contribution of indirect light.
As a polishing step, a final gathering can be performed where the computation of light is calculated
from all visible surfaces (Jensen, 1996; Jensen & Christensen, 1998; Jensen, 2001).

52

Chapter 4

Preliminary: Blind First-Order
Perspective Distortion Correction
using Parallel Convolutional Neural
Networks

This chapter contains the published work regarding solving perspective distortion correction. Here,
it is shown that by randomizing entries uniformly in the 3 × 3 homography matrix, H, a large set
of image samples can be generated. Since H is known, getting H−1 can be used to fully recover the
original undistorted image. This became our inspiration that image formation models are viable
approaches for reconstructing images. We follow this principle on our dehazing, shadow removal,
and intrinsic image decomposition studies.

The publication is as follows:
Del Gallego, N. P., Ilao, J., and Cordel, M. (2020). Blind First-Order Perspective Distortion Cor-
rection Using Parallel Convolutional Neural Networks. Sensors, 20(17), 4898.

4.1 Introduction

Perspective distortion occurs if the objects in an image significantly differ in terms of scale and
position, from how the objects are perceived by an observer (H.-M. Sun, 2005). This can be classified
as first-order distortions modeled by multiplying an undistorted image with a transformation matrix
M of size 3× 3. First-order distortions can also be caused by an incorrect acquisition environment,
such as capturing from an incorrect angle or motions of objects or the photographer. Higher-order
distortions are typically caused by capturing a scene with an inappropriate focal length. For example,
a wide-angle lens provides a greater angle of view than a normal lens but leads to objects appearing
stretched and asymmetrical while the telephoto lens makes objects appear closer to one another
than what is perceived in the scene (Dobbert, 2012).

53

To some extent, perspective distortion is intentionally applied to images to create artistic effects
such as emphasizing a certain object in the scene by making it appear larger than others, and other
artistic manipulations and scene editing proposed in the literature (Carroll, Agarwala, & Agrawala,
2010; Chang, Liang, & Chuang, 2011). Distorted images affect the visual perception of objects in
the scene and thus, perspective distortion correction is required on some aspects of photography
and computer vision applications.

One area where perspective distortion correction is also needed is in traffic surveillance sys-
tems where distorted images affect the performance of vehicle recognition, license plate recogni-
tion (Yang et al., 2016), and other tasks such as speed estimation and distance measurements.
Scanned documents may appear warped or misaligned, which need to be corrected for document
analysis (C. L. Tan, Zhang, Zhang, & Xia, 2006).

Image registration algorithms typically use transformation matrices that map an image to a
different position or orientation in Euclidean space (Ray, 2005). In this study, we propose a frame-
work for correcting first-order distortions using multiple convolutional neural networks trained in
parallel, that compose the transformation matrix, M̂ of size 3 × 3, of a distorted image, where M
is the ground-truth that caused the distortion (Figure 4.1). Distortion types that can be corrected
by our proposed network are shown in Figure 4.2. The key idea to our approach is that we train a
certain network to produce a certain element pair in M̂ , which contributes to a certain effect in the
image, i.e., element pair inducing shear effect, or scale effect. M̂−1 is then applied to the distorted
image to produce the correct image. Since each network only produces a certain element pair in
M̂ , it provides a more straightforward approach by simply applying a transformation to correct the
image, unlike generating corrected images using GAN or encoder-decoder architectures, which are
more difficult to train and prone to instability such as mode collapse (Salimans et al., 2016; Srivas-
tava, Valkov, Russell, Gutmann, & Sutton, 2017). While our method requires multiple networks
to correct an image, this approach results in a smaller computational footprint because each CNN
has a fewer number of hidden layers compared to other architectures (Y. Zhao et al., 2019; X. Li,
Zhang, Sander, & Liao, 2019; X. Li, Zhang, Liao, & Sander, 2019) involving deep networks.

Figure 4.1: Given a distorted input image, three convolutional neural networks are used for produc-
ing M̂ transformation matrix that caused the distortion (M as ground-truth matrix). The distorted
image is transformed to its corrected image by applying M̂−1.

54

Figure 4.2: Distortion types that can be corrected by our proposed network. (A): rotation. (B):
Scaling. (C):Affine. (D): Projective. These are planar transformations identified by Hartley and
Zisserman (Hartley & Zisserman, 2003). One or more distortion types may be present in a distorted
image.

We present the following contributions of this study:

� Our network architecture corrects perspective distortion and produces visually better images
than other state-of-the-art methods. In terms of pixel-wise reconstruction error, our method
outperforms other works.

� Our method, to the best of our knowledge, is the first attempt to estimate the transformation
matrix for correcting an image rather than using a reconstruction-based approach. Our method
is straightforward and the network design is simpler compared to other works that mainly rely
on deep generative models such as GANs or encoder-decoder networks, which are notoriously
difficult to train and prone to instability.

� Our method also recovers the original scale and proportion of the image. This is not observed
in other works. Recovering the scale and proportion is beneficial for applications that perform
distance measurements.

4.2 Related Work

4.2.1 Model-Based Techniques

Some works have been proposed where images are corrected, assuming distortion parameters are
provided or available (Tardif, Sturm, Trudeau, & Roy, 2008; R. Tsai, 1987). However, there are
cases wherein information about the camera lens or acquisition system is unavailable, which in-
spired some studies on auto-calibration methods where distortion parameters are estimated (Vasu,
Rajagopalan, & Seetharaman, 2017; Lowe, 2004; A. Wang, Qiu, & Shao, 2009; Bukhari & Dailey,
2013). Fitzgibbon proposed a single-image automatic distortion correction using a division model to
approximate the radial distortion curve (Fitzgibbon, 2001). A lightweight auto-rectification method
was proposed by (Chaudhury et al., 2014) where perspective distortions are corrected by performing
a RANSAC-based vanishing point detector that restores parallelism of lines in the image. Similarly,
the framework proposed by Santana-Cedrés et al. (Santana-Cedrés et al., 2017) uses a voting
scheme for identifying vanishing points and performs perspective correction by simulating camera
motion. More recently, an automatic perspective distortion correction for wide-angle portrait im-
ages captured on mobile devices was proposed, where a novel face objective term was introduced to

55

properly correct face distortions and background distortions separately (Shih, Lai, & Liang, 2019).
Some works use multiple images with different orientations to properly estimate distortion param-
eters (Zhang, 2000; Ramalingam, Sturm, & Lodha, 2010; Hartley & Kang, 2007). To some extent,
methods that combine multiple images for enhancement require some perspective transformation
technique (Capel & Zisserman, 2003; H. Zhang & Carin, 2014; Del Gallego & Ilao, 2017; Rengarajan,
Rajagopalan, Aravind, & Seetharaman, 2017). The same technique is implemented for performing
image stitching (Szeliski et al., 2007; M. Brown & Lowe, 2007; F. Zhang & Liu, 2014; Zomet, Levin,
Peleg, & Weiss, 2006; He, Chang, & Sun, 2013).

4.2.2 Methods Using Low-Level Features

Using low-level features, such as edges, lines and vanishing points are explored for perspective distor-
tion correction (Fitzgibbon, 2001; Chaudhury et al., 2014; Santana-Cedrés et al., 2017; Shemiakina,
Konovalenko, Tropin, & Faradjev, 2020; Sean, Sangyup, & Park, 2019; Gallagher, 2005; An, Koo, &
Cho, 2017). Wang et al. (A. Wang et al., 2009) used an improved Hough Transform for distortion
correction while Bukhari and Dailey (Bukhari & Dailey, 2013) proposed a sampling method that
robustly chooses the circular arcs and determines distortion parameters that are insensitive to out-
liers. Aside from using low-level features as parameters for distortion correction, assumptions are
sometimes included in other studies. For example, images with man-made structures are assumed
to appear straight (Coughlan & Yuille, 2000). Lee et al. (Lee, Shechtman, Wang, & Lee, 2012) pro-
posed a set of criteria based on such assumption for upright adjustment of photographs using an
optimization-based calibration method. However, methods that rely on low-level features and as-
sumptions do not work well with a variety of images and only work on specialized scenarios. Results
from our experiments show that the proposed method of Chaudhury et al. (Chaudhury et al., 2014)
does not correctly rectify our distorted images.

4.2.3 Learning-Based Methods

Blind distortion correction is an ill-posed problem. Therefore, learning-based methods using only a
single distorted image are being pursued (H. Cai, Jiang, Liu, Deng, & Meng, 2019; X. Li, Zhang,
Sander, & Liao, 2019; X. Li, Zhang, Liao, & Sander, 2019; Zhai, Workman, & Jacobs, 2016; S. Das,
Mishra, Sudharshana, & Shilkrot, 2017; S. Das, Ma, Shu, Samaras, & Shilkrot, 2019; Y. Zhao et al.,
2019; Ma, Shu, Bai, Wang, & Samaras, 2018). Deep learning for correcting documents were pro-
posed recently (X. Li, Zhang, Liao, & Sander, 2019; S. Das et al., 2017, 2019; Ma et al., 2018) which
implements convolutional neural networks, encoder-decoders, and U-net-based architectures (Long,
Shelhamer, & Darrell, 2015). Work on correcting portrait images used an encoder-decoder architec-
ture (Y. Zhao et al., 2019). The encoder-decoder architecture proposed by Li et al. (X. Li, Zhang,
Sander, & Liao, 2019) aims to correct real-world images by predicting the distortion flow and fur-
ther refining the correction by iterative resampling, which is a predecessor of our work. Instead
of using a multi-model network for predicting the distortion flow, we used multiple convolutional
neural networks (CNN) that run in parallel to predict the transformation matrix. Our network is
trained purely for correcting perspective distortions, unlike the work of Li et al. (X. Li, Zhang,
Sander, & Liao, 2019) that correct a wide range of distortion types, such as barrel and pincush-
ion distortions. Furthermore, our results (Table 4.2 and Figure B.16) outperforms the method of

56

Li et al. (X. Li, Zhang, Sander, & Liao, 2019), which occasionally generates incorrect rectification
of images even on the dataset they have used for training (Places-365 dataset (B. Zhou et al.,
2014)). To some extent, our network properly generalizes to this dataset despite being trained on
KITTI (Geiger, Lenz, Stiller, & Urtasun, 2013) images.

4.3 Empirical Analysis on the Transformation Matrix

The motivation behind having networks train in parallel to predict a certain element in M is dis-
cussed here. An image may be distorted under perspective imaging. A transformation mapping M
is given by (Hartley & Zisserman, 2003):

T (x⃗) = Mx⃗ (4.1)

where M is an m× n transformation matrix, where x⃗ is a vector with n entries.

The goal of all the networks is to learn a transformation matrix , given an H × W distorted
image Ĭ. Ĭ is generated from H ×W original image I by creating a random 3 × 3 transformation
M , then applying the said transformation for each (x, y) pixel in I. Given M , (x̆, y̆) in Ĭ can be
represented as: x̆y̆

z̆

 =

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

xy
1

 (4.2)

SinceM is homogeneous, T (x⃗) must be normalized to obtain the inhomogeneous equation (Szeliski,
2010):

x̆ =
m1,1x+m1,2y +m1,3

m3,1x+m3,2y +m3,3
, y̆ =

m2,1x+m2,2y +m2,3

m3,1x+m3,2y +m3,3
(4.3)

Given a single-entry matrix M (m3,3 = 1), and an input image I, we performed a frame-by-frame
analysis on how mi,j ∈ M (1 ≤ i, j ≤ 3) transforms I. In other words, we wanted to visualize the
effect of each element in M and how these elements contribute to the overall distortion applied to
I. The frames for mi,j ∈ M are generated by repeatedly incrementing its element. For example,
the frames for m1,1 are generated by repeatedly adding ∆ to m1,1, where ∆ is chosen arbitrarily to
produce observable frame animations. The origin point for all the frame animations generated is on
the top left. Results are visualized in Figure 4.3.

Based on this experiment, we have identified the element pairs responsible for certain trans-
formation behaviors (e.g., rotating or shearing an image) that a certain network can be trained to
estimate. The elements are paired as follows:

� Small changes in m3,1 result in a sideways rotation along the Y axis. Small changes in m3,2

result in a shearing operation, where the image’s bottom left and bottom right anchor points
move sideways and upwards. Equation (4.3) shows that increasing m3,1 and m3,2 causes the
x̆ and y̆ to shrink. This is represented as an element pair, {m3,1,m3,2}.

57

� Based in Equation (4.3), m1,1, m2,2, m3,3 deal with the scale of the image. The matrix entries,
m1,1 and m2,2, deal with the width and height of the image respectively. Since m3,3 is part of
the denominator, it changes both the width and height of the image. We do not need to use
m3,3 as input when training our network because m1,1 and m2,2 can be inferred instead. This
is represented as an element pair, {m1,1,m2,2}.

� Since m1,2 is multiplied by y and m2,1 is multiplied by x in Equation (4.3), this creates a
shearing effect along x̆ and y̆ respectively. This is represented as an element pair, {m1,2,m2,1}.

� Since no other term is multiplied with m1,3 and m2,3 in Equation (4.3), increasing these entries
results in pixel-wise displacements along x and y respectively. These are not considered as
input for the network as they are typically not observed in distorted images.

Figure 4.3: Effects of each element in M to an input image shown frame by frame. The frames for
each element in M are generated by repeatedly increasing its element values. For example, the frame
animations for m1,1 are generated by as m1,1 increases from 0 to 1 while all other entries in M are
made constant. The same procedure is performed for creating the animations for the other elements.

Based on this experiment, m1,3, m2,3 and m3,3 can be excluded in training. Thus, Equation (4.2)
can be simplified into the following:x̆y̆

z̆

 =

m1,1 m1,2 0.0
m2,1 m2,2 0.0
m3,1 m3,2 1.0

xy
1

 (4.4)

The element pairs are used for training the network, which also form the elements in M (seen
in Equation (4.4)). Because M is invertible, we used M as ground-truth and M−1 for removing
distortion from image Ĭ.

58

4.4 Synthetic Distortion Dataset: dKITTI

Similar to our predecessor (X. Li, Zhang, Sander, & Liao, 2019) where a synthetic distortion dataset
is used, we used the KITTI dataset (Geiger et al., 2013) for populating a set of distorted images and
their corresponding M that serves as the ground-truth transformation matrix. A distorted image
in the dataset has a randomly generated M with respect to Equation (4.4). These images and M
pairings form the distortion dataset, dKITTI.

Figure 4.4 illustrates how we generated dKITTI for training. For each KITTI image, we gener-
ated a random M for distorting the image and automated the region selection to produce the final
distorted image. The range of transformation matrix values (Table 4.1) used for generating dKITTI
images are uniformly sampled. The region selection is performed by fitting a maximum bounding
box (Figure 4.4) which is performed as follows:

1. Declare a bounding boxB with a size of (Bw, Bh) in terms of width and height. (Bw, Bh) = (Ww,Wh)
where W refers to the distorted image generated.

2. Iteratively decrease (Bw, Bh) until the number of zero pixels, P , becomes 0. B becomes the
selected cropped image Ĭ.

3. Resize Ĭ by bilinear interpolation such that (Ĭw, Ĭh) = (Ow, Oh) where O is the original image.

Figure 4.4: Dataset generation process. The cropped image Ĭ is reconstructed based from its
estimated transformation matrix inverse. Yellow bounding box shows the region of Ĭ in the distorted
image. The corrected image, I, serves as the ground-truth.

Table 4.1: Range of transformation matrix values used for generating distorted images. The dataset
follows a uniform distribution.

Low High

m1,1 and m2,2 8.0× 10−1 12.0× 10−1

m1,2 and m2,1 −9.0× 10−3 9.0× 10−3

m3,1 and m3,2 −7.5× 10−4 7.5× 10−4

59

However, resizing the distorted image, Ĭ, implies that the 3D positioning of the image has
changed and therefore, M should be updated. Figure 4.5 illustrates this observation. m1,1 and m2,2

deal with the width and height of the image (seen in Figure 4.3). These elements are updated as
follows:

m1,1 =
Bw

Ww
, m2,2 =

Bh

Wh
(4.5)

To avoid producing synthetic distorted images that are too extreme or far-fetched from real-
world perspective distortions, we further refined our dataset generation by checking if the edge
distribution of the distorted and original images are about the same. More specifically, all distorted
and original images go through an edge similarity check algorithm (using Sobel operator (Nixon
& Aguado, 2012)), where the difference of the total number of edge pixels between the distorted
and original images should be less than 25%. This ensures that the loss of overall content from the
original image is minimized. Distorted images are regenerated if it does not satisfy this threshold.
Figure 4.18 shows some image samples used for training as well as those that were discarded.

Figure 4.5: Image projected in 3D space with respect to the camera source. Resizing a region from
the original image implies that the camera source moved forward along the Z axis.

4.5 Proposed Network

Our proposed network consists of three sub-networks which are trained to produce a certain ele-
ment pair in M̂ , which forms the transformation matrix that caused the distortion in the input
image. The corrected image is obtained by transforming the distorted input image using M̂−1.
More specifically, all three sub-networks require Ĭ, a cropped distorted image as input (Figure 4.4),
where the goal is to produce {m̂3,1, m̂3,2}, {m̂1,1, m̂2,2} and {m̂1,2, m̂2,1} and minimize the difference
to {m3,1,m3,2}, {m1,1,m2,2} and {m1,2,m2,1} during training. The basis of the element pairs for each
network are discussed in Section 4.3. We refer to these networks as N({m3,1,m3,2}), N({m1,1,m2,2})
and N({m1,2,m2,1}) respectively. This makes training faster and yields better results than having

only one network in producing M̂ . We justify this claim in Section 4.6.1.

60

4.5.1 Parallel CNN Model

The architectural design of our network is shown in Figure 4.6. There are three instances of this
that attempt to predict element pairs in M̂ , where each network is trained in parallel. Similarly,
the three networks are used in parallel for inference. The CNN accepts an input image of size
1442 × 575. The input undergoes the pre-trained DenseNet (Huang, Liu, Van Der Maaten, &
Weinberger, 2017) layers, followed by 9 convolutional layers. Each layer uses max-pooling operations
and ReLU activations. The last convolutional layer is connected to a fully connected layer which
outputs {m̂i,j , m̂k,l} ∈ M̂, i, j, k, l = 1, ..., 3.

Figure 4.6: Architectural design of our network. There are three network instances that estimates
an element in the transformation matrix M̂ .

4.5.2 Training Details

Each network N({m3,1,m3,2}), N({m1,1,m2,2}) and N({m1,2,m2,1}) is trained to minimize the

mean square error (MSE) function of its assigned element pair in M̂ with respect to element pairs
in ground-truth M . The total loss function L is of the form:

L = L1 + L2 + L3 (4.6)

where L1, L2, L3 are defined as follows:

L1 =
α

n

[
n∑

i=1

({m1,2,m2,1} − {m̂1,2, m̂2,1})2
]

(4.7)

61

L2 =
β

n

[
n∑

i=1

({m1,1,m2,2} − {m̂1,1, m̂2,2})2
]

(4.8)

L3 =
γ

n

[
n∑

i=1

{m3,1,m3,2} − {m̂3,1, m̂3,2})2
]

(4.9)

where n is the number of observed input. The penalty terms α, β, γ, are added to corresponding
element pairs based on observed sensitivity conducted from our experiment discussed in Section 4.3.
The following values were used for training: α = 10.0, β = 1.0, γ = 1.0× 106. The penalty term, γ,
is very large because minuscule differences between {m3,1,m3,2} and {m̂3,1, m̂3,2} (≥ 1.0 ×10−6 dif-

ference) have a noticeable misalignment between ground-truth image I and generated image Î.

We implemented the network and performed experiments using PyTorch. The three parallel
networks are optimized using ADAM (Kingma & Ba, 2014a) with learning rates set to 5.0 × 10−4

and batch size of 8.

We trained the networks using an NVIDIA RTX 2080Ti GPU and the networks converge at
around 20 epochs. We observed that during training, while some networks converge faster than the
others, there were no overfitting incidents. Hence, we let all networks train until all networks have
converged to an acceptable loss.

62

4.6 Evaluation

We evaluated our network architecture using the dKITTI dataset. The network is trained with
95,330 distorted images, while we performed an evaluation on the validation set containing 5018 im-
ages. The images are 1442× 575 pixels in size.

We measured the following in terms of transformation matrix error: absolute relative and square
relative error and root means squared error (RMSE). The same metrics are used for measuring the
pixel-wise error, while structural image similarity (SSIM) (Z. Wang, Simoncelli, & Bovik, 2003)
is used for checking image reconstruction quality. We also measured the failure rate which is the
percentage of images in the validation set that are not properly corrected, such as in the case of
homography estimation (Dubrofsky, 2009) where it fails to produce visually better images than the
input. Performance results are shown in Table 4.2 and the best results are shown in Figure 4.7.
Figure 4.8 shows the results of manually picked images that have observable distortion and only
depict a small region from the original image. Additional image results are shown in Figures 4.16
and 4.17 in the appendix.

We compared our method with the following: dataset transformation matrix mean, which is used
as a baseline, homography estimation method (Dubrofsky, 2009), the methods proposed by Li et al.
(X. Li, Zhang, Sander, & Liao, 2019), and Chaudhury et al. (Chaudhury et al., 2014). Homography
estimation is computed by estimating M̂−1 for a given distorted image Ĭ (Equation (4.2)) such
that the back-projection error to the corrected image I is minimized. Homography estimation,
however, is not a blind distortion correction technique but this is included for comparison. We used
ORB detector (Rublee, Rabaud, Konolige, & Bradski, 2011) for detecting feature points for Ĭ and
I then used RANSAC (Fischler & Bolles, 1981) for minimizing the error. We set a threshold for
considering matches only within a certain Euclidean distance, to minimize outliers. For the work of
Li et al. (X. Li, Zhang, Sander, & Liao, 2019), we used their pre-trained model, specifically their
multi-model distortion network with resampling for generating the corrected image. For the work
of Chaudhury et al. (Chaudhury et al., 2014), we used their independent auto-rectifier algorithm
with default parameters.

63

Figure 4.7: Results using unseen data from KITTI. (A): Distorted input images. (B): Corrected
image using homography estimation (C): Corrected image using the technique of (Chaudhury et
al., 2014). (D): Corrected image using the technique of (X. Li, Zhang, Sander, & Liao, 2019). (E):
Corrected image using our method. (F): Ground-truth. Visually comparing the images, our network
learned how to correct an image close to the ground-truth compared to other works.

Figure 4.8: More results using unseen data from KITTI. (A): Distorted input images. (B): Corrected
image using homography estimation (C): Corrected image using the technique of (Chaudhury et
al., 2014). (D): Corrected image using the technique of (X. Li, Zhang, Sander, & Liao, 2019). (E):
Corrected image using our method. (F): Ground-truth. Our network can correct an extremely
distorted image.

As shown in Table 4.2, our network architecture outperforms the other methods. To validate
the robustness of our network, we input images with extreme distortions, by sampling images with
minimum and maximum transformation matrix values in Table 4.1. Figure 4.9 show that our
network corrects images with extreme distortions and performs better than other methods.

64

Table 4.2: Accuracy metrics. Best performance in bold.

Method Transformation Matrix Error Pixel-Wise Error/Accuracy

Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ Sq.Rel ↓ RMSE ↓ SSIM ↑ Failure Rate ↓
Dataset mean 1.92× 10−1 1.52× 10−1 8.60× 10−4 0.2665 0.6895 0.5294 0.00%
Homography estimation 2.4457 1.33× 101 3.1937 0.1838 0.4930 0.6781 13.90%
Li et al. (X. Li, Zhang, Sander, & Liao, 2019) N/A N/A N/A 2.32× 104 0.9963 0.0253 0.00%
Chaudhury et al. (Chaudhury et al., 2014) N/A N/A N/A 4.77× 104 0.9975 0.0148 0.00%
Ours 7.00× 10−2 3.18× 10−3 5.64× 10−2 0.0361 0.2520 0.7981 0.00%

↓ Lower Is Better
↑ Higher is better

Since the nature of homography estimation involves detecting feature points in the images,
there are some occasions wherein there are very few feature points available (incorrect warping
observed in Figure 4.9). Hence, the transformation matrix cannot be inferred properly on some
images. In effect, Homography estimation cannot be performed on 13.90% of images in the validation
set (specified in Table 4.2). Our method guarantees that M̂ can be inferred on all images in the
validation set.

The distortion parameters produced by the methods of Li et al. (X. Li, Zhang, Sander, & Liao,
2019) and Chaudhury et al. (Chaudhury et al., 2014) have some limitations and can be further
improved as follows:

� Both methods do not consider the scaling of images as a possible factor in perspective distor-
tion, unlike our method, as discussed in Section 4.3.

� Images with low texture and those with shearing, as seen from examples in Figure 4.8 and 4.9
affect the correction. This is more observed in the method of Chaudhury et al. (Chaudhury
et al., 2014), which can only handle limited distortions on images. Our method is observed to
be robust from these limitations.

� Some images are misclassified as a different distortion type using the method of Li et al.
(X. Li, Zhang, Sander, & Liao, 2019). For example in Figure 4.8, the third image of row A is
misclassified as a barrel or pincushion distortion which resulted in a different corrected image.
Our method covers more cases of perspective distortions. As seen in our results, our method
consistently produces corrected images.

65

Figure 4.9: Our network is robust and can still produce a correct image even on extremely distorted
images such as when majority of pixels are out of bounds. (A): Distorted input images. (B): Cor-
rected image using homography estimation (C): Corrected image using the technique of (Chaudhury
et al., 2014). (D): Corrected image using the technique of (X. Li, Zhang, Sander, & Liao, 2019).
(E): Corrected image using our method. (F): Ground-truth.

4.6.1 Experiment on Network Variants

We conducted an experiment to validate the effectiveness of parallel CNNs for perspective distor-
tion correction. The following network variants are described in Table 4.3. Model A uses Denset-
Net as the pretrained layer proposed in Figure 4.6. Model B uses pre-trained ResNet-161 (He,
Zhang, Ren, & Sun, 2016) layers instead of DenseNet layers. Model C does not use any pre-trained
layer. Model D is similar to Model A except only one instance is trained. The fully connected layer
outputs {m̂1,1, m̂1,2, m̂2,1, m̂2,2, m̂3,1, m̂3,2}. The results are summarized in Table 4.4.

Model C appears to have the lowest transformation matrix error among other variants but the
lowest pixel-wise error and highest SSIM accuracy of the corrected images were produced by Model
A. The results also show that predicting grouped element pairs and training three network instances
in parallel are better than using a single network instance. Hence, Model A is the primary network
architecture used for correcting distorted images.

66

Table 4.3: Network variants experimented.

Pre-Trained Layer Instances Parallel?

Model A DenseNet

3 YesModel B ResNet-161

Model C None
Model D DenseNet 1 No

Table 4.4: Accuracy metrics of network variants. Best performance in bold.

Model Transformation Matrix Error Model Pixel-Wise Error/accuracy ↓ Lower Is Better

Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ Sq.Rel ↓ RMSE ↓ SSIM ↑
Model A 7.00× 10−2 3.18× 10−3 5.54× 10−2 Model A 0.0361 0.2520 0.7981 ↑ Higher is better
Model B 8.15× 10−2 4.34× 10−3 6.59× 10−2 Model B 0.0688 0.3580 0.7562
Model C 6.89× 10−2 3.13× 10−3 5.25× 10−1 Model C 0.0397 0.2707 0.7956
Model D 8.19× 10−2 4.56× 10−3 6.75× 10−2 Model D 0.0577 0.3270 0.7803

4.6.2 Closeness of Estimations to Ground-Truth

We randomly selected 500 images each from the training and validation sets, then validated the
predicted M̂ and compared it against the ground-truth M . The norm of M̂ and M are plotted
in Figure 4.10. Our network predicts shortly by a mean margin of 0.0239 in terms of norm value
from the ground-truth. This difference is very small and visually negligible as observed from the
image results. The scatter plot also shows that our prediction distribution is almost the same as
the ground-truth distribution of the training and test sets.

Figure 4.10: Scatter plot of norm predictions and ground-truth. X axis refers to a certain image
number. Y axis is the norm value. The norm of predicted matrices are very close to the training
and test set ground-truth matrices.

We validated if our network can correct images with different M1,1 and M2,2 values. As stated
in Section 4.3, these elements deal with scaling of images and should be considered in modelling

67

perspective distortion. We generated 276 distorted images from KITTI where onlyM1,1 andM2,2 are
uniformly randomized and then used our proposed network for predicting M̂ . Table 4.5 summarizes
the transformation matrix error and pixel-wise error metrics. The best image results are shown in
Figure 4.11. Based on the results, our network can recover the original scale of the image which
cannot be performed by other methods.

Table 4.5: Accuracy metrics of the network’s scaling prediction using images with scaling distortion.
Our network recovers the scale of images properly. Best performance in bold.

Method Transformation Matrix Error Pixel-Wise Error/Accuracy

Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ Sq.Rel ↓ RMSE ↓ SSIM ↓
Dataset mean 1.93× 10−1 2.54× 10−2 1.60× 10−1 0.1054 0.5978 0.4886 ↓ Lower is better
Homography estimation 1.2790 5.4121 2.3264 0.0968 0.4745 0.4978
Li et al. (X. Li, Zhang, Sander, & Liao, 2019) N/A N/A N/A 1.72× 104 0.9969 0.0131 ↑ Higher is better
Chaudhury et al. (Chaudhury et al., 2014) N/A N/A N/A 5.42× 104 0.9982 0.0051
Our method 2.59× 10−1 5.43× 10−2 2.33× 10−1 0.1122 0.6339 0.6574

Figure 4.11: Corrected images with scaling distortion. (A): Distorted input images. (B): Corrected
image using homography estimation (C): Corrected image using the technique of Chaudhury et al.
(Chaudhury et al., 2014). (D): Corrected image using the technique of Li et al. (X. Li, Zhang,
Sander, & Liao, 2019). (E): Corrected image using our method. (F): Ground-truth. Our network
can resize the image back to their original scale.

68

4.6.3 Activation Visualization

We analyzed how our network behaves by visualizing the gradient-weighted activation maps of the
convolutional layers, using the technique of Selvaraju et al. (Selvaraju et al., 2019). Figure 4.12
illustrates the feature maps. As observed in the visualizations, our network tends to extract edges,
outlines, then certain regions of the images. The first layer gravitates towards the edges, lines,
and contours. For each succeeding layer, the low-level features are being grouped where all edges,
lines, and contours appear to be grouped on the 4th layer. Succeeding layers tend to activate on
specific regions of the images where the last layer appears to focus on the overall orientation of
the image.

Figure 4.12: Gradient-weight activation maps for each convolutional layer. Each row represents the
networks N({m3,1,m3,2}), N({m1,1,m2,2}) and N({m1,2,m2,1}) respectively. The networks tend
to lean towards activation of edges and contours on the first four layers while the remaining layers
focus on specific regions. Thumbnails encircled have their zoomed version shown to highlight the
activations on earlier layers.

4.6.4 Model Generalization

We experimented with our network on unseen data by using test images from Places-205 (B. Zhou
et al., 2014) dataset. A total of 612 images from Places-205 were randomly selected and distorted,
where the majority of images have little to no presence of cars and roads. Thus, the images are
entirely on a different domain from the KITTI dataset. Table 4.6 shows the accuracy metrics.
Figure 4.13 illustrates the best results. Notice that our network can still recover the corrected
image properly as compared to other methods. While the distortion parameters are similar but

69

the scene context is different, our network can still infer the transformation matrix to correct the
image. We speculate that our network is invariant to scene compositions because the activation
maps (discussed in Section 4.6.3) focuses more on edges and lines in the image.

Table 4.6: Accuracy metrics using Places205 dataset (B. Zhou et al., 2014). Best performance in
bold. Our network was not trained using images from Places205, but still outperforms other meth-
ods.

Method Transformation Matrix Error Pixel-Wise Error/Accuracy

Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ Sq.Rel ↓ RMSE ↓ SSIM ↑
Dataset mean 2.16× 10−1 2.73× 10−2 1.65× 10−1 0.1433 0.5641 0.5805 ↓ Lower is better
Homography estimation 2.6514 1.44× 101 3.7950 0.1522 0.5899 0.6178
Li et al. (X. Li, Zhang, Sander, & Liao, 2019) N/A N/A N/A 2.19× 104 0.9956 0.0169 ↑Higher is better
Chaudhury et al. (Chaudhury et al., 2014) N/A N/A N/A 4.35× 104 0.9967 0.0096
Our method 3.00× 10−1 6.23× 10−2 2.50× 10−1 0.1355 0.5851 0.6137

Figure 4.13: Results using unseen images from Places205 dataset (B. Zhou et al., 2014). (A):
Distorted input images. (B): Corrected image using homography estimation (C): Corrected image
using the technique of (Chaudhury et al., 2014). (D): Corrected image using the technique of (X. Li,
Zhang, Sander, & Liao, 2019). (E): Corrected image using our method. (F): Ground-truth.

70

4.6.5 Limitations

We observed that our network could not properly correct outdoor images with repeating textures
as well as indoor scenes with texts or cluttered objects. These examples are shown in Figure 4.14.
Since our network does not recognize specific objects and semantic information in particular, then the
network cannot correct images with a dense amount of objects and repetitive textures such as
rocks. The network was not trained with any indoor scenes and thus, produces incorrect distortion
parameters. We believe that the straightforward solution to this is to retrain the network with more
variety of images or perform domain adaptation.

We also attempted to investigate the limits of our trained network, using panoramic images
from the Internet. For an image to be compatible with our network, we either resized the image to
1442× 575, assuming the original aspect ratio is preserved, or cropped an area of similar size in the
image, with the center as the origin. Results are shown in Figure 4.15. Panoramic images will most
often involve a combination of different distortions, some are higher-order distortions, such as barrel
or pincushion distortions. However, results visually show that our network has attempted to correct
the images’ orientation and reduced the stretching in some areas as compared to other methods.

71

Figure 4.14: Limitations of our method on unseen images. (A): Distorted input images. (B): Cor-
rected image using homography estimation (C): Corrected image using the technique of Chaudhury
et al. (Chaudhury et al., 2014). (D): Corrected image using the technique of Li et al. (X. Li, Zhang,
Sander, & Liao, 2019). (E): Corrected image using our method. (F): Ground-truth.

72

Figure 4.15: Results of distortion correction using public panoramic images from the Internet.
(A): Panoramic images. (B): Corrected image using the technique of Chaudhury et al. (Chaudhury
et al., 2014). (C): Corrected image using the technique of Li et al. (X. Li, Zhang, Sander, & Liao,
2019). (D): Corrected image using our method. Panoramic images often have a combination of
different types of distortions. Our network still attempts to correct the images’ orientation and
reduced stretching on some areas. Rightmost image taken by David Iliff (2005).

4.7 Conclusions

We proposed a blind first-order perspective distortion correction method by using three convolutional
neural networks in inferring the transformation matrix for correcting an image where these networks
are trained and used in parallel. We discovered that elements in the transformation matrix can be
grouped because they perform a specific transformation to the image such as scaling or skewing,
which is the rationale behind our approach and design of the network. Our proposed method shows
promising results, as shown by outperforming other state-of-the-art methods. Our network can
generalize properly on a different domain as well as recover the intended scale and proportion of the
image, which could be used for images that appear stretched, making objects in the image appear
close to their original scales.

Our network cannot correct images with repeating textures as well as indoor scenes with texts
or cluttered objects. We speculate that this could be solved by adding more training samples that
cover such cases. We plan to explore how images with higher-order distortions can be corrected,
without relying on generative or encoder-decoder architectures which to some extent, was already
performed by Li et al. (X. Li, Zhang, Sander, & Liao, 2019) for reconstructing the intermediate
flow representation of the distorted image. It would be interesting to use the same strategy (Section
4.3) that we proposed.

4.8 Additional Results

Additional results are shown in the next figures. The source code for this work is available at:
https://github.com/NeilDG/NeuralNets-ImageCorrection. The pre-trained model can be re-

73

https://github.com/NeilDG/NeuralNets-ImageCorrection

quested by emailing the authors.

Figure 4.16: Additional results using unseen data from KITTI. (A): Distorted input images.
(B): Corrected image using homography estimation (C): Corrected image using the technique of
(Chaudhury et al., 2014). (D): Corrected image using the technique of (X. Li, Zhang, Sander, &
Liao, 2019). (E): Corrected image using our method. (F): Ground-truth.

Figure 4.17: Additional results using unseen data from KITTI. (A): Distorted input images.
(B): Corrected image using homography estimation (C): Corrected image using the technique of
(Chaudhury et al., 2014). (D): Corrected image using the technique of Li et al. (X. Li, Zhang,
Sander, & Liao, 2019). (E): Corrected image using our method. (F): Ground-truth.

74

Figure 4.18: Preview of the dKITTI dataset. (A): Some examples of distorted images used for
training. (B): Some examples of discarded images. Generated distorted images are discarded and
regenerated if most of the content from the original image is lost. See Section 4.4 for details.

75

Chapter 5

Dehazing using Synthetic Images

Major portions of this chapter were published in the following article:

Del Gallego, N. P., Ilao, J., Cordel II, M., & Ruiz Jr, C. (2022). A new approach for training a
physics-based dehazing network using synthetic images. Signal Processing, 199, 108631.

We present a new approach for training a physics-based dehazing network using purely synthetic
images from a 3D urban scene. The key idea is to gather depth maps from the virtual renderer and
use them to simulate haze using the atmospheric scattering model.

5.1 Introduction

Haze is caused by atmospheric particles that scatter around the scene which degrade the visibility
of objects when captured using a camera. Haze removal is a necessary pre-processing step on
computer vision applications, such as surveillance systems, vehicle detection systems, pedestrian
detection, and others.

Single-image dehazing is an ill-posed problem that often needs depth information to recover a
clear image. Incorporating priors to solve the dehazing problem proved to be effective, such as the
proposed use of dark channel prior (He, Sun, & Tang, 2010b) and constant albedo images (Fattal,
2008). Several works soon followed that proposed different modified priors (He, Sun, & Tang, 2010a;
Kratz & Nishino, 2009; Xie, Guo, & Cai, 2010; Nishino, Kratz, & Lombardi, 2012; H. Yang & Wang,
2010). However, these methods tend to fail on images that do not fall under specified priors, which
typically involve dense haze and largely varied atmospheric light. Such methods introduce artifacts
such as noise and halo.

With the advent of deep learning, several deep-learning methods were applied for a single image
dehazing task (B. Cai, Xu, Jia, Qing, & Tao, 2016; B. Li, Peng, Wang, Xu, & Feng, 2017; X. Liu,
Ma, Shi, & Chen, 2019; Y. Qu, Chen, Huang, & Xie, 2019; X. Zhang, Wang, Wang, Tang, & Zhao,
2020; Qin et al., 2020; J. Liu, Wu, Xie, Qu, & Ma, 2020; T. Wang, Zhao, Huang, Zhang, & Xu,

76

2021). Recently, deep learning methods approach dehazing in an end-to-end fashion, where networks
are trained on clear RGB and hazy image pairs.

For supervised deep learning dehazing methods, hazy-clear image pairs coming from real-world
scenes are quite limited. For example, the I-Haze (C. Ancuti, Ancuti, Timofte, & De Vleeschouwer,
2018) and O-Haze datasets (C. O. Ancuti, Ancuti, Timofte, & De Vleeschouwer, 2018) contain
less than 50 images whereby networks trained using these datasets tend to overfit. Synthetic haze
datasets, such as RESIDE, provide vast amounts of training images as new sets of hazy-clear image
pairs can be generated based on estimated transmission and atmospheric maps from depth informa-
tion (B. Li et al., 2019). Other works rely on unpaired image-to-image translation methods, such as
those inspired by CycleGAN (J.-Y. Zhu et al., 2017; Engin, Genç, & Kemal Ekenel, 2018; Dudhane
& Murala, 2019; W. Liu, Hou, Duan, & Qiu, 2020; Z. Sun et al., 2021).

Physics-based dehazing methods, on the other hand, utilize the atmospheric scattering model,
which first estimates the transmission and atmospheric maps (Dong & Pan, 2020; R. Li et al.,
2020a) to generate a clear image. Such methods are typically trained on synthetic haze datasets like
RESIDE. The performance of any dehazing network trained on synthetic hazy-clear image pairs,
such as works that utilize the RESIDE training set (B. Li et al., 2019), is dependent on the overall
quality of depth maps. However, it is known that real-world image depth tends to be sparse, such
as those from Make3D (Saxena, Sun, & Ng, 2009) and KITTI (Geiger, Lenz, & Urtasun, 2012), and
one would need a depth completion method to reconstruct a dense depth map. Thus, inaccurate
or incomplete depth map information will affect the training process of a learning-based dehazing
task.

We propose a new dehazing strategy using a 3D urban virtual environment, to generate synthetic
outdoor hazy-clear image pairs, following the atmospheric scattering model (Israël & Kasten, 1959;
R. T. Tan, 2008). The motivation behind this is that 3D scenes utilize depth buffers for rendering,
which contain full depth information that can be extracted using a custom shader. This approach
is a favorable alternative to incomplete or inpainted depth maps captured from hardware devices.
Utilizing the depth maps, we generate various transmission and atmospheric maps, similar to the
method of B. Li et al. (2019), and then used the atmospheric scattering model for generating hazy-
clear image pairs.

We utilized a three-part physics-based dehazing network that uses style-transferred RGB images
and their corresponding transmission and atmospheric maps. While R. Li et al. (2020a) proposed
a GAN refinement network for improving their dehazing method, we observe that our method does
not need further refinement, which makes our network more straightforward to use.

The contributions of our study are as follows:

1. Our major contribution is a new approach for training a physics-based dehazing network,
by using generated images from a 3D urban virtual environment. While our network was
trained purely on synthetic images, our results demonstrate the competitive performance of
our network. To the best of our knowledge, our approach is not seen in other dehazing works.

2. We incorporate an image-to-image translation procedure to reduce the possible domain gap
between synthetic and real-world hazy images. First, to account for varying styles and com-
positions present in real-world hazy images, we use a style transfer network that converts

77

synthetic images gathered from the virtual environment to plausible real-world images. Next,
we trained a network that extracts unlit image priors to stabilize the training of our transmis-
sion and atmospheric map estimation networks.

3. We provide DLSU-SYNSIDE (SYNthetic Single Image Dehazing) dataset, a synthetic haze
dataset containing 99,996 training and test images, extracted from an urban virtual environ-
ment, that will help drive future research directions in image dehazing. The dataset also
includes the ground-truth depth, transmission maps, and unlit image priors.

5.2 Dehazing Task Formulation

To improve the readability of succeeding sections, we first define the dehazing task as a six-tuple,
given N training samples:

Z = ({H}Ni=1, {C}Ni=1, {U(C)}Ni=1, {D(C)}Ni=1, {T}Ni=1, {A}Ni=1) (5.1)

where H is a set of hazy synthetic images formulated as:

H = T ·C+A · (1−T) (5.2)

C is a set of clear style-transferred images that conform to the style of Places-365 dataset (B. Zhou
et al., 2017), U(C) is a set of unlit image priors of C, D(C) is a set of depth maps of C, T is a set of
transmission maps which is given as e−βD(C), A is a set of atmospheric light maps used to generate
H where A are matrix-filled values from a = {ar, ag, ab} which represent the intensity of light for
each channel in RGB space.

Note that during training, only synthetic images captured from an urban virtual environment
are used. We borrowed the same ranges for A and β described in the paper of B. Li et al. (2019)
when generating the RESIDE-OTS dataset. A and β are uniformly sampled between [0.7, 1.0], and
[0.6, 1.8] respectively. We experimented with different A and β ranges but manipulating these do
not greatly affect the dehazing results. We discuss this in detail in our supplementary, Section 5.5.6.
We discuss how D(C) and U(C) are gathered in Section 5.3.4 and 5.3.5 respectively.

5.3 The Virtual Environment and Dataset Generation

In this section, we discuss the virtual environment in detail and the methodology for generating
our synthetic haze dataset where images were captured from the virtual environment. This section
assumes that the reader is familiar with computer graphics concepts. More information about
computer graphics, specifically transformation matrices and cameras, can be found in (Marschner
& Shirley, 2018).

78

Figure 5.1: Comparison of existing haze datasets related to ours, as well as virtual world datasets.
Existing dehazing datasets (A to D), virtual datasets (E - G). A: (Tarel et al., 2012). B: (Y. Li et
al., 2017). C: (B. Li et al., 2019). D: (R. Li et al., 2020a). E: Virtual KITTI V1 (Gaidon et al.,
2016a). F: Virtual KITTI V2 (Cabon et al., 2020). G: GTA V (Richter et al., 2016). H: Ours

5.3.1 Motivation

Clear images and their corresponding depth maps are captured from a 3D urban virtual environment,
with simulated global illumination and physically-based shaded materials. We show and compare
sample images captured from our virtual environment against other available datasets in Figure
5.1. We preferred an urban setting as we observe that haze typically occurs in real-world outdoor
and urban images. To reduce the possible domain gap between synthetic images and real-world
images, we trained a CycleGAN (J.-Y. Zhu et al., 2017) network that performs an image-to-image
translation using the Places-365 dataset as reference (B. Zhou et al., 2017). The initial set of images
captured is passed to the network, where the output set of images, C, are used for the dehazing
task. Figure 5.2 shows the image-to-image translation process. We discuss the network design in
Section 5.4.1.

Unlike synthetic haze datasets, where depth maps are estimated, our approach for getting the
images from the virtual environment allows us to extract full depth maps, D(C). T and A are
then generated accordingly from D(C). Since 3D scenes are rendered with depth buffers, full image
depth can be extracted based on this information, by using a custom shader.

Except for dataset B presented by (Y. Li et al., 2017) in Figure 3.1, where they utilized ray
tracing for generating the haze effect, datasets A, C, and D were generated using estimated depth
maps for generating haze. On the other hand, (R. Li et al., 2020a) calculated depth maps from 3D
movie frames. Similar to the highly accurate I-Haze and O-Haze datasets (C. Ancuti et al., 2018;
C. O. Ancuti et al., 2018), datasets A to C are limited in terms of training samples and are only
recommended for benchmarking (R. Li et al., 2020a). Furthermore, they have limited resolution
which makes these datasets difficult to perform data augmentation, such as utilizing image patches.

Similar to our virtual environment, virtual proxy worlds are readily available, namely Virtual
KITTI V1, V2 (Gaidon et al., 2016a; Cabon et al., 2020) and GTA V (Richter et al., 2016). Virtual
KITTI datasets are annotated, which contain class and instance segmentation, depth maps, optical
and scene flows. Similarly, GTA V is an annotated dataset where images are captured from an open-
world video game, Grand Theft Auto 5. While we can readily use these datasets, we generated our
own dataset because we believe that formulating domain adaptation strategies, such as image-

79

Figure 5.2: Illustration of image-to-image translation method to minimize domain gap between
synthetic and real images. We trained a CycleGAN network that performs a mapping function
between synthetic and Places-365 dataset (J.-Y. Zhu et al., 2017; B. Zhou et al., 2017). A: Synthetic
images from virtual environment. B: Style-transferred image that mimics Places-365 style.

to-image translation, may prove difficult to perform due to large domain gaps between synthetic
and real-world hazy images. In terms of visuals and level of realism, Virtual KITTI V1 and V2
lack sufficient photorealistic quality compared to our dataset. While both the Virtual KITTI V2
and our dataset utilized global illumination and physically-based shading, we further improve the
photorealistic quality of our dataset by incorporating a style transfer strategy where the style of
Places-365 (B. Zhou et al., 2017) dataset is applied to our images. This approach is discussed in
detail in the succeeding sections. Second, while GTA V contains photorealistic environments, it is
not straightforward to extract computer vision information such as depth. Both GTA V and Virtual
KITTI lack the convenience of free camera movements limiting the coverage of possible viewpoints.
Instead, images are captured from a vehicle perspective. Hence, this limits the diversity of generated
training samples.

(Krähenbühl, 2018) proposed a DirectX API for extracting computer vision information from
video games; this is a potentially useful API for generating new synthetic datasets. However, we
found that the author discontinued active support of the API and does not fully provide documen-
tation for the use of such a tool. These reasons motivate the creation of our synthetic dataset.

5.3.2 Environment Design

We utilized Unity Engine (Unity, 2021) in designing our virtual environment. We imported a
procedural city generator which may be purchased via Unity Asset Store (MasterPixel3D, 2021) to

80

generate a realistic city layout. We applied Unity’s built-in global illumination system, physically-
based shading, shadows, and post-processing effects to our scene to improve the overall quality of
images.

For specifics on the global illumination (GI) system used, Unity Engine implements an unbiased
Monte Carlo path tracer, also known as their progressive lightmapper system (Unity, 2021; Akenine-
Mller, Haines, & Hoffman, 2018). Since our scene only contains static objects, we applied baked GI
only.

Lastly, to improve the overall tone, we applied a camera post-processing effect that increases
the post-exposure value, saturation, and contrast. We illustrate and provide the lightmapper and
post-processing parameters in Figure 5.3. Direct, indirect, and environmental samples are set to
1024 to increase the quality of lightmaps (surface brightness stored as texture) and reduce noise.
To correctly simulate specular and diffuse reflections, we set the number of bounces to 2. We also
enabled Optix denoiser to refine the quality of lightmaps, which is a denoising autoencoder for
lightmaps generated by Monte Carlo path tracer systems, as discussed in the paper of (Chaitanya
et al., 2017).

Lightmapper Parameters Post Processing

Direct Samples 1024 Post-Exposure Value 1.0
Indirect Samples 1024 Saturation 25.0
Environment Samples 1024 Contrast 25.0
Bounces 2

Figure 5.3: Illustration of the different lightmapper parameters and values used in our virtual
environment. Post-processing parameters are also included.

5.3.3 Virtual Cameras

We define three instances of virtual cameras as follows:

� Km is the main camera that renders images in the game view (what is projected on-screen
and the image to be captured/recorded).

� Kd is the depth camera that renders the depth map and allow us to produce D(C).

� Ku is the unlit camera that renders unlit image priors and allow us to produce U(C). We
discuss this in detail in Section 5.3.5.

The cameras Km, Kd, and Ku were configured using the same transformation matrices and
perspective projection. Thus, all cameras will always generate perfectly aligned hazy-clear image
pairs using the atmospheric scattering model, and depth maps. We capture images from varying
viewpoints by animating the cameras, sharing the same transformations, to move in the virtual
environment.

81

5.3.4 Gathering RGB Images and Depth Maps

Figure 5.4: Preview of the virtual environment in Unity Engine. The left image is the scene view.
The right image is the game/camera view. We show the RGB image and depth map overlaid, in the
game view. Two virtual cameras share the same transform, one rendering the shaded scene view
while the other rendering the depth map.

From the virtual environment, full depth maps are calculated using information from the camera
parameters and the vertex coordinates of all objects in the scene. We refer to Figure 5.4 for showing
how we gathered the RGB images and their corresponding depth maps. Figure 5.5 illustrates the
perspective view frustum as well as the values of clipping planes and frustum sizes used for the
virtual cameras. Like real-world depth cameras, the depth of objects in the virtual environment can
only be computed properly if the far clipping plane is sufficiently small. Therefore, we set Kd’s far
clipping plane to 100.0, while we set Ku and Km clipping planes to 1000.0. Near clipping planes for
all cameras are set to 0.3, mainly to allow virtual objects, near the camera, to be displayed.

Given Kd’s projection matrix, P, we refer to the near clipping plane as py, and the far plane as
pz which are terms needed for generating the depth maps.

Clipping Planes Frustrum

Near Far

Km 0.3 1000.0 60
Ku 0.3 1000.0 60
Kd 0.3 100.0 60

Figure 5.5: Illustration of the perspective camera view frustrum (Dalao, 2020) and the respective
camera parameters used in the virtual environment. Ku and Km near and far clipping planes are set
to 0.3 and 1000.0 respectively, mainly to render all objects within the viewing frustrum properly.
For Kd, the far clipping plane is set to 100.0 in order to mimic the behavior of real-world depth
cameras. A sample set of images, that form the synthetic dehazing dataset is also shown.

To infer the depth maps, we first declare ω as:

ω = −(MVo) (5.3)

82

where M is the 4× 4 model matrix, and V is the 4× 4 view matrix of Kd, and o = [vx, vy, vz, w]
T

is the vertex data of a 3D object. Depth data D(o), is rendered onto each vertex, which can be
performed using a programmable shader following the formula:

D(o) =
ωz

pz
(5.4)

To get the depth maps, D(C), we captured and saved the images seen by Kd, with the programmable
shader attached to it, following Equation 5.4.

5.3.5 Gathering Unlit Image Priors

We propose a unique strategy for dehazing, by incorporating unlit images, U(C) when training
the transmission and atmospheric map generators. In computer graphics, unlit images are closely
related to albedo maps, which describe the intrinsic surface properties of an object, following the
bidirectional reflectance distribution function (BRDF) model (Pharr et al., 2016). Surfaces are
equally bright in all directions (Bailey & Cunningham, 2009). Rendering software and game engines
represent albedo maps as textures assignable to an object’s material, without the surface normals and
highlights. In the field of computer vision, albedo maps are also being extracted in an intrinsic image
decomposition problem (Baslamisli, Liu, Karaoglu, & Gevers, 2021; Lai & Chan, 2011; Baslamisli,
Das, Le, Karaoglu, & Gevers, 2021; Z. Li & Snavely, 2018b; H. Zhou et al., 2019). More formally,
any RGB image I assumes to be an element-wise product of albedo A, (some papers refer to this
as reflectance) and shading S:

I = A · S (5.5)

A is the same property that we extract in our virtual environment through camera Ku, and
similar to Kd, we used a programmable shader attached to Ku. Specific to Unity Engine, the
built-in renderer of Unity already has an unlit shader which is what we attached to Ku.

(Fattal, 2008) proposed a related approach by extracting albedo images for estimating the trans-
mission map and for estimating the atmospheric light, to reduce the amount of indeterminateness of
their dehazing model. The main difference from our work is that (Fattal, 2008) applies this concept
directly into a single hazy RGB image, while we extract the albedo maps in a virtual scene through
our camera Ku and use these as part of network training. Figure 5.6 illustrates our approach.

We wish to refer to albedo maps as unlit images instead, due to the following observation and
purpose: Albedo maps essentially do not contain any incident light, surface normal, and reflection
caused by light hitting the object’s surface; we discovered that this helps the performance of our
network, making it handle real-world images well. Hence, when contextualized to our specific use
case, this characteristic, in effect, removes variations in style and color, which limits the distribution
space, thus stabilizing training and avoiding overfitting. Essentially, this can be viewed as a domain
adaptation strategy.

83

Figure 5.6: Preview of the virtual environment in Unity Engine with unlit shading shown. The left
image is the scene view. The right image is the game/camera view. We show the RGB image and
unlit image overlaid, in the game view. Similar to our setup with the depth camera, the virtual
cameras share the same transform.

5.3.6 DLSU-SYNSIDE: Synthetic Dehazing Dataset for a Supervised Learning
Approach

The set of images C and D(C) are used to generate the set of transmission maps and atmospheric
light terms, T and A, following the atmospheric scattering model. Finally, the availability of C,
U(C), D(C), T, and A and their relationships allow us to formulate a supervised learning approach,
which makes the network easier to train, unlike other unsupervised approaches or unpaired image-
to-image translation tasks. The pairing of these images during training is illustrated in Figure
5.7.

5.4 Network Design for Synthetic Image-Based Dehazing

Given N training samples, our pipeline consists of four networks that are described as follows:

� Gs(Isyn,i) is a CycleGAN-inspired network that generates a style-transferred images {Ci}Ni=1,
that conform to the style of Places-365 dataset (B. Zhou et al., 2017), where {Isyn,i}Ni=1 denote
the synthetic images that were captured from the virtual environment.

� Gu(Ci) is an unlit image generator network that generates unlit images like {Ui}Ni=1 from
{Ci}Ni=1.

� Gt(Ui) is a transmission map estimator network that accepts unlit image priors, like {Ui}Ni=1,
as input, which generates transmission map images, {Ti}Ni=1.

� Ea(Ci) is an atmospheric map estimator network that estimates the atmospheric light term
{Ai}Ni=1.

We illustrate our network architecture in Figure 5.8. Recall that the hazing process is formulated
as:

84

Figure 5.7: The set of images that composes our training set.

Hi = Ti ·Ci +Ai · (1−Ti) (5.6)

After training all generators, we apply the following formula for constructing the dehazed image:

Ĉi =
Hi − Âi · (1− T̂i)

T̂i

(5.7)

where Ĉi is the dehazed image, T̂i, Âi denote the reconstructed transmission maps and atmospheric
light terms from Gt and Ea respectively.

5.4.1 Style Transfer Network

One naive approach for our given dehazing task is to train an end-to-end encoder-decoder network
that accepts H and C as training samples, which can easily cause overfitting. The style and color of
real-world hazy images do not match the virtual environment’s scene composition. To address this
problem, we propose a style transfer network Gs, following CycleGAN’s implementation (J.-Y. Zhu
et al., 2017), that aims to mimic the style of real-world images, particularly the Places-365 dataset
(B. Zhou et al., 2017).

85

Figure 5.8: Our proposed network architecture. Our network does not need to see any real-world
hazy image during training and only relies on synthetic samples gathered from the virtual environ-
ment.

The objective of Gs is to learn mapping functions between the synthetic domain X, and domain
Y where {Ci}Ni=1 ∈ Y . Since the training is unpaired, another style transfer network Gx is used
where cycle consistency between the two domains is enforced. We chose Places-365 (B. Zhou et al.,
2017) for Y since it contains diverse samples from various real-world scenes. Two discriminators
Dx and Dy are used during training, where Dx aims to distinguish real synthetic images from fake
ones, while Dy aims to distinguish real Places-365 images, from fake ones. Only Gs is retained after
training.

The network architecture of CycleGAN follows the design proposed by (Johnson, Alahi, & Fei-
Fei, 2016) and utilizes adversarial and cycle-consistency loss terms during training. However, we
discovered through various experiments that the original CycleGAN architecture leads to mode
collapse using our synthetic images. This may be caused by the limited color, semantics, and style
distribution of the synthetic images. We discovered that using U-Net architecture (Ronneberger,
Fischer, & Brox, 2015b) for Gs produces clearer style-transferred images. We support this claim
with an ablation study presented in our supplementary, Section 5.5.7. Additionally, we append an
L1 loss term, Llikeness, during training which is expressed as:

Llikeness(Gs, Gx) = Ex∼pdata(x),y∼pdata(y)[||Gs(x)− y||1]
+Ex∼pdata(x),y∼pdata(y)[||Gx(y)− x||1] (5.8)

These configurations stabilize training and produce clearer images. Thus, the full objective is given
as:

86

L(Gs, Gy, Dx, Dy) = Ladv(Gs, Dy, Y) + Ladv(Gx, Dx, X)

+α1Lcyc(Gs, Gx) + α2Llikeness(Gs, Gx) (5.9)

where Ladv and Lcyc are the L1 adversarial and cycle-consistency loss terms respectively described
in the paper of (J.-Y. Zhu et al., 2017). We put more weight on the cycle-consistency term; α1 is
set to 10.0 and α2 is set to 1.0 in our training.

We trained both generators and discriminators using 32 × 32 image patches which technically
allows Gs to accept input images with different resolutions due to its convolutional nature. Note
that only our style transfer network was trained in an unsupervised manner. Gu, Gt, and Ea were
trained in a supervised manner.

5.4.2 Unlit Image Generator

The goal of the unlit image generator, Gu is to produce pseudo-real unlit images resembling
{U(C)}Ni=1. As described in Section 5.3.5, unlit images describe the scene’s intrinsic surface proper-
ties and follow a limited style and color attribute, which limits the distribution space that promotes
stability and avoids overfitting during training.

For Gu, we borrowed the architecture of FFA-Net (Qin et al., 2020) because the channel and
pixel attention mechanisms in the network preserve the edges, contours, and geometric structure of
the image. Before deciding to adapt FFA-Net, we utilized the same training approach and network
architecture in our style transfer network described in the previous section, except we treat Gu as a
supervised learning task. However, this approach did not produce favorable images when compared
to using FFA-Net. We leave it as a future research direction on why FFA-Net, which is intended to
be an end-to-end dehazing network, works well in generating plausible unlit images.

For Gu, an L1 norm is used as a loss function:

Llikeness(Gu) = Ec∼pdata(C),u∼pdata(U)[||Gu(c)− u||1] (5.10)

One limitation of FFA-Net is that it has numerous parameters because the number of basic block
structures, containing a set of channel and pixel attention layers, is set to 19. In the implementation
of Gu, we reduced this to 4 to compress the model size, while still generating acceptable images.
Additionally, we introduced a discriminator Du that helps improve the quality of images generated,
which is trained using the same adversarial loss term described in CycleGAN (J.-Y. Zhu et al.,
2017).

5.4.3 Transmission Map Generator

Gt, is an encoder-decoder network wherein the goal is to produce transmission maps from input
images, {U(Ci)}Ni=1. The network is trained in a supervised manner where the goal is to generate

87

images close to {Ti}Ni=1. During inference time, only a single hazy image Hz is used and therefore,
Hz will be passed into Gu and Gt to produce a transmission map Tz such that:

Tz = Gt(Gu(Hz)) (5.11)

To account for slight variations and small reconstruction errors from Gu, we generated pseudo-
real unlit image samples, {Ûi}Ni=1 from {Ci}Ni=1. To guarantee that Ûi look close to U(Ci), we
applied a similar approach from (D. S. Tan et al., 2021), wherein we utilized a realness score from
Dy when generating Ûi. All samples should output a realness score of > 0.8. Thus, the samples,
Usuper, were used for training which is described as:

Usuper = {U(Ci)}Ni=1 ∪ {Ûi}Ni=1 (5.12)

Similar to Gs, we utilized CycleGAN’s architecture with 10 residual blocks. The loss function
of Gt consists of the L1 loss term that penalizes the network for pixel differences, and a loss term
that promotes continuities and smooth transitions along edges and contours. Transmission maps
are observed to follow properties of soft matting (He et al., 2010b) in real-world examples. It also
shares some properties with depth maps where regions appear uniform. Based on these principles,
we formulate the loss function of Gt as:

Llikeness(Gt) = Eu∼pdata(Usuper),t∼pdata(T)

[||Gt(u)− t||1]
Ledge(Gt) = Eu∼pdata(Usuper),t∼pdata(T)

[||E(Gt(u))− E(t)||1]
L(Gt, Dt) = β1Llikeness(Gt) + β2Ledge(Gt)

+Ladv(Gt, Dt, T) (5.13)

where E is a Sobel operator and Dt is the discriminator trained using adversarial loss. We set
β1 = 10.0 and β2 = 5.0 to prioritize penalizing pixel-wise differences during training. The effects of
β1 and β2 are further discussed in our ablation study in Section 5.5.8. We trained Gt on 32 × 32
image patches since we noticed that Gt generates the best results when real-world images are used
as input.

5.4.4 Atmospheric Map Estimator

The atmospheric map estimator Ea accepts input images, {Ci}Ni=1 for estimating atmospheric light
terms, a = {ar, ag, ab} for each channel in RGB space. Similar works train a CNN to estimate a,
given hazy images as input (He et al., 2010b; R. Li et al., 2020a; Ren et al., 2016; B. Li et al., 2017).

88

However, these works estimate a using full images as input. In our case, to make Ea compatible
with Gt, we also trained Ea on 32× 32 image patches and estimate a across image patches instead.
Hence, both Gt and Ea can accept different image resolutions.

We utilized a U-Net (Ronneberger et al., 2015b) inspired architecture with 4 downsampling and
upsampling blocks. The kernel sizes of the convolutional blocks were reduced to 2×2 and the strides
to 2, to accommodate the small patch sizes. Furthermore, we removed the pooling layers. Since
Ea is an estimator/regressor type of network, we replaced the tanh block with two fully connected
layers. We then utilized an L1 loss function for training Ea which is given as:

Llikeness(Ea) =
1

N

[
N∑
i=1

||{âr, âg, âb} − {ar, ag, ab}||1

]
(5.14)

where â = {âr, âg, âb} is the output of Ea.

5.4.5 Training Details

Gs is trained for a fixed number of 200 epochs. A synthetic test set is introduced for training the
rest of the generators. The training for Gu has an early stopping mechanism wherein training stops
if the Structural Similarity Index (SSIM) reconstruction error of the unlit images on the synthetic
test set does not improve after three epochs.

For Gt and Ga, we formulated a similar early stopping method to reduce the generalization
error when applied to real-world hazy images. The training terminates when one of the following
conditions are met:

1. The SSIM reconstruction error of the dehazed images, following the atmospheric scattering
model formula, is not reduced after five epochs on the O-Haze dataset.

2. The SSIM reconstruction error of the transmission maps and atmospheric maps do not reduce
on a synthetic test set, after five epochs.

5.5 Experiments and Results

This section discusses various experiments conducted and the results using our proposed method.
We compare our work with the following works seen in Table 5.1. DCP (He et al., 2010b), AVC-DCP
(Yuan et al., 2020), and DeepPrior (Y. Liu, Pan, Ren, & Su, 2019) are model-based or optimization
approaches which do not require multiple training samples. While DeepPrior uses a CNN-inspired
model for its iteration unit, the iteration unit is trained to optimize on a single hazy image.

AOD-Net (B. Li et al., 2017), FFA-Net (Qin et al., 2020), GridDehazeNet (X. Liu et al., 2019),
EDPN (Y. Qu et al., 2019), PCFAN (X. Zhang, Wang, et al., 2020), PhysicsGAN (Pan et al.,

89

Table 5.1: Related works compared and their corresponding techniques and training data used.

Approach Technique Training
Data

1 DCP Model-Based

-2 AVC-DCP or optimization approach
3 DeepPrior
4 AOD-Net Supervised/Paired NYU In-

door

5 PhysicsGAN Supervised/Paired NYU In-
door +
Make3D
Outdoor

6 Cycle-Dehaze
Unsupervised/Unpaired

I-HAZE
7 iCycleGAN I-HAZE +

O-HAZE

8 FFA-Net

Supervised/Paired

RESIDE
ITS

9 GridDehazeNet + RESIDE OTS
10 EDPN
11 PCFAN
12 SGID-PFF

13 DA-Dehaze Unsupervised/Unpaired RESIDE
(All)

14 YOLY-
Dehaze

Unsupervised, Single
Image

Input im-
age as ref-
erence

15 Physics-
Dehaze Supervised/Paired

3D Movies
+ RE-
SIDE OTS

16 Ours Urban
Virtual
Environ-
ment

2020), SGID-PFF (Bai, Pan, Xiang, & Tang, 2022) are supervised end-to-end dehazing networks.
Cycle-Dehaze (Engin et al., 2018), iCycleGAN (Z. Sun et al., 2021), DA-Dehaze are unsupervised
methods that mainly follow a CycleGAN architecture. YOLY-Dehaze is a single-image dehazing
method trained using only the input image (B. Li et al., 2021). We set the number of iterations to
800 for producing a dehazed image, which is the default parameters provided in their source code.
Physics-Dehaze (R. Li et al., 2020a) is related to our physics-based dehazing framework where they
used 3D Movies for training.

Note that we were not able to extract dehazed images for visual comparison, on related works
where the source code is not readily available. We simply included their metrics as reported in their
papers.

90

Table 5.2: Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset. The two best meth-
ods are colored green and yellow.

O-Haze Performance I-Haze Performance RESIDE-OTS Performance

PSNR SSIM PSNR SSIM PSNR SSIM

DCP 13.4848 0.8008 13.2520 0.8575 15.6901 0.9019
AVC-DCP 15.00 < X < 17.00 0.4 < X < 0.41 15.00 < X < 17.00 0.39 < X < 0.40 - -
DeepPrior - - - - 24.7100 0.8917
AOD-Net 14.4578 0.7900 14.7336 0.8607 20.6388 0.9423
Cycle-Dehaze 20.1306 0.7739 16.8034 0.8326 11.6880 0.8170
iCycleGAN 18.2179 0.8541 15.9218 0.7452 22.0658 0.9147
FFA-Net 13.9809 0.8091 13.0712 0.8323 20.3209 0.9392
GridDehazeNet 12.7593 0.7804 12.7537 0.8258 20.3213 0.9433
EPDN 16.4876 0.8187 15.1597 0.8660 20.1504 0.9192
PCFAN - - - - 24.0100 0.9350
DA-Dehaze 17.4847 0.8233 17.6251 0.8823 27.7600 0.9284
Physics-
Dehaze

- - - - 30.3300 0.9473

PhysicsGAN 17.2900 0.8286 16.4797 0.8798 23.0503 0.9417
YOLY-
Dehaze

15.9806 0.8131 15.4840 0.8556 19.4348 0.9284

SGID-PFF 15.6008 0.7978 16.3465 0.8878 29.2435 0.9610

Ours 16.0799 0.8399 16.1692 0.8889 20.4943 0.9557

Average (re-
lated work)

15.9886 0.8082 15.2391 0.8478 22.1010 0.9222

5.5.1 Overall Performance

We used I-Haze, O-Haze, and RESIDE OTS as primary datasets for objectively measuring the
performance of our proposed method using the following: Peak-Signal-to-Noise Ratio (PSNR), and
Structural Similarity Index (SSIM). Table 5.2 shows the quantitative results.

Visual comparisons on the O-Haze dataset are shown in Figure 5.9. Our method does not
introduce any artifacts and can dehaze the image comparatively well. Our method removes the
haze further than SGID-PFF. Our method retains the original tone of the input image, which
appears to be consistent with the ground truth, as supported by higher SSIM metrics than most
state-of-the-art methods. While Cycle-Dehaze achieved the highest PSNR metrics, the colors of the
dehazed image appear faded. While EDPN and DA-Dehaze generate visually better images, both
methods, and other deep learning methods, were trained on real-world datasets, specifically RESIDE
dataset. Our method did not see any real-world datasets during training and no fine-tuning was
made to consider the visual differences between O-Haze and our synthetic images. Despite this, our
method achieves comparable performance with other state-of-the-art methods.

Visual comparisons on the I-Haze dataset are shown in Figure 5.10. Note that our network
was only trained on urban synthetic images. However, the dehazed images produced by our net-
work demonstrate comparable performance with other state-of-the-art methods, some of which were
specifically trained on indoor images, namely Cycle-Dehaze, FFA-NET, GridDehazeNet, EDPN, and
SGID-PFF. This demonstrates the robustness of our method because it can still handle hazy indoor
images.

91

Figure 5.9: Visual comparisons on O-Haze dataset. Selected images are those that achieve > 0.88
SSIM using our proposed method.

Visual comparisons on the RESIDE OTS dataset are shown in Figure 5.11. Our method performs
best on RESIDE OTS dataset, particularly images that share the same setting (e.g. urban feel,
presence of vehicles, roads, buildings) as that of our virtual environment. The images shown have
an SSIM score of > 0.97 which were among the highest metrics we obtained across other test images.
While our network did not see any images in the RESIDE dataset, our overall method performs just
behind SGID-PFF, in terms of SSIM.

In the network design of (R. Li et al., 2020a), they have two stages, namely reconstruction using
a physics-based approach which is similar to ours that uses Equation 5.7, followed by a refinement
network. Their physics-based stage is sensitive to atmospheric light estimation and can lead to
visually dark images, where the refinement network alleviates this problem. As seen in Figure 5.12,
our physics-based dehazing can directly produce clear images and does not need further refinement.

The key observation in our approach is the effectiveness of our virtual environment, which we
explore further in Section 5.5.4. Gathering synthetic images from the virtual environment, having
ground-truth complete depth maps, and having a style-transfer strategy for mimicking real-world
images, manage to cover the different distributions and possible domain shifts across dehazing
dataset benchmarks. As can be seen in Table 5.2, most dehazing works tend to perform well on
one dehazing dataset only. Our method performs consistently across all datasets, achieving > 16.00
PSNR and 0.83 SSIM respectively.

92

Figure 5.10: Visual comparisons on I-Haze dataset. Selected images are those that achieve > 0.89
SSIM using our proposed method.

Figure 5.11: Visual comparisons on RESIDE OTS dataset. Selected images are those that achieve
> 0.97 SSIM using our proposed method.

93

Figure 5.12: Visual comparisons a hazy movie frame from R. Li et al. (2020a). The method of R. Li
et al. (2020a) has a refinement stage that improves the overall lighting. Our physics-based approach
can directly produce a clear image.

Figure 5.13: Visual comparisons on RESIDE Realistic Hazy Image Dataset.

5.5.2 Performance on Real Hazy Images

Figure 5.13 shows visual comparisons on the RESIDE Realistic Hazy Image Dataset. Consistent
with other datasets, our method has the least amount of visual artifacts when compared with other
methods. It is also visually evident that our method does not drastically change the color and tone
of the images. One interesting observation is that when there is dense fog present in the input
image, our network learned to ignore these instead of hallucinating the content. Other works tend
to produce visual artifacts in dense fog regions.

5.5.3 Effectiveness of Style Transfer and Unlit Image Priors

To test the effectiveness of Gs and Gu, we implemented the following models for comparison:

94

� FFA-Synth - an end-to-end dehazing network using the FFA-Net architecture (Qin et al.,
2020).

� Ours - No Gs - our network architecture shown in Figure 5.8, without Gs.

� Ours - No Gu - our network architecture shown in Figure 5.8, without Gu.

� Ours - No Gs, No Gu - our network architecture shown in Figure 5.8, without Gs and Gu.

Figure 5.14 shows the visual comparisons of images from the O-Haze, I-Haze, and RESIDE-
OTS datasets. Discoloration and inaccurate atmospheric maps are produced if Gs and/or Gu are
removed. Having both of these networks produce the best dehazed results, consistent with the
ground truth, in terms of clarity and color.

All networks are retrained following the process mentioned in Section 5.4.5. For FFA-Synth,
the inputs are synthetic RGB hazy and clear images during training. Unity Engine supports the
simulation of haze in its rendering pipeline. Therefore, we can directly extract synthetic hazy images
without the need for depth maps and perform an end-to-end approach. Since FFA-Synth is trained
in an end-to-end manner and no ground-truth transmission and atmospheric maps exist, the training
for FFA-Synth terminates when the SSIM reconstruction error is not reduced on the O-Haze dataset
after 5 epochs.

For Ours - No Gs, the dehazing pipeline begins with Gu, where synthetic RGB images with
their default color and tone are used when training, while Ours - No Gu used H images for Gt and
Ea when training. For Ours - No Gs, No Gu, synthetic hazy images are used for training Gt and
Ea.

Table 5.3: Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset using different models.
Best methods are highlighted in green.

O-Haze Performance I-Haze Performance RESIDE-OTS Performance

PSNR SSIM PSNR SSIM PSNR SSIM
FFA-Synth 14.0235 0.8144 15.2750 0.8683 17.9154 0.9412
Ours - No Gs 14.0519 0.8320 15.1597 0.8643 18.5275 0.9440
Ours - No Gu 13.8746 0.8294 15.5906 0.8675 17.9657 0.9426
Ours - No Gs, No Gu 12.7697 0.8022 14.2435 0.8441 17.1986 0.9244
Ours - LR Synth 12.7448 0.7957 14.0308 0.8294 15.8642 0.9102
Ours - Default 16.0799 0.8399 16.1692 0.8889 20.4943 0.9557
Average (related work) 15.9886 0.8082 15.2391 0.8478 22.1010 0.9222

Table 5.3 shows the quantitative results on O-Haze, I-Haze, and RESIDE-OTS datasets using
different models described. Estimated transmission and atmospheric maps are also shown. The
visual results on the O-Haze dataset demonstrate the effectiveness of having Gs and Gu generate
the pre-processed images before estimating the transmission and atmospheric maps, through Gt

and Ea. Without Gs or Gu, discoloration occurs on the dehazed images. It is interesting to see
that removing one of these networks generates more refined transmission maps, but this does not
necessarily mean that the dehazed images will look better. This observation appears consistent
with the resulting PSNR and SSIM metrics. Lastly, while we can readily render synthetic hazy and

95

Figure 5.14: Visual comparisons on the O-Haze, I-Haze, and RESIDE-OTS images, and the esti-
mated transmission and atmospheric maps of the different models.

clear image pairs directly through Unity Engine, FFA-Synth performed poorly. Using an end-to-end
dehazing network is not ideal when synthetic images are involved.

Interestingly, for the RESIDE-OTS dataset, removing either Gs or Gu has little impact on the
overall performance, in terms of PSNR and SSIM. The visual comparison shows that there is little
difference with the dehazed image produced by the original network. However, removing both Gs

and Gu inaccurately generates transmission and atmospheric maps which causes the dehazed image
to shift in color.

96

5.5.4 Impact of Synthetic Image Quality Used in Training

Based on the different models discussed in the previous section, all model variants achieve an
above-average performance against state-of-the-art methods. We suspect that the overall synthetic
image quality captured from the virtual environment greatly affects the overall performance of our
physics-based dehazing network. To prove this, we created a “low-quality” dataset version, named as
LR-Synth, described in Table 5.4. LR-Synth is then used as training data for our network, following
the same training procedure described in Section 5.4.5, and reported the results in Table 5.3 (refer
to Ours - LR Synth).

Table 5.4: Table of comparison of synthetic datasets used for ablation study.

DLSU-
SYNSIDE
(default)

LR-Synth

Texture Size 1024× 1024 64× 64
Lightmap Size 512× 512 32× 32
Global Illumination (GI) Enabled ✓ ✓
Post Processing Enabled ✓

Specifically, we reduced the texture size from 1024× 1024 to 64× 64 for LR-Synth, as it affects
the final image quality the most. The GI is still enabled for LR-Synth, except the lightmap size is
reduced to 32× 32, from 512× 512. We disabled the post-processing to further reduce the quality
of the images captured. Visual comparisons of LR-Synth and the original images from the synthetic
dataset are shown in Figure 5.15. It is interesting to note that despite the low-resolution (LR)
quality of the synthetic images, our networks Gs and Gu still manage to properly transfer style, and
extract the unlit images from their LR counterparts.

Figure 5.15: Differences of images in the low-quality dataset with the original dataset.

Based on quantitative metrics shown in Table 5.3, we conclude that there is a noticeable impact
on network performance when synthetic images are not high quality in the first place while utilizing
Gs and Gu further improves our network’s performance. Using a low-quality version, our proposed
network reported below-average performance against other state-of-the-art methods.

We show the resulting dehazed images in Figure 5.16. Observe that the dehazed images have
overly bright areas and different hue and saturation from the ground truth, caused by inaccurate
transmission and atmospheric maps.

97

Figure 5.16: Dehazed O-Haze, I-Haze, and RESIDE-OTS images where the proposed network is
trained, using LR-Synth dataset, and compared with the original dataset, DLSU-SYNSIDE.

98

5.5.5 Comparison with GTA-MVS Dataset

We analyzed the effectiveness of our proposed dataset, DLSU-SYNSIDE, against another alternative
dataset, GTA-MVS. GTA-MVS contains photorealistic synthetic images for learning multi-view
stereo algorithms, where complete depth maps are also available (P.-H. Huang, Matzen, Kopf,
Ahuja, & Huang, 2018). The urban scenes were captured in a video game, Grand Theft Auto V.
Thus, GTA-MVS shares similarities with DLSU-SYNSIDE, where complete depth maps are readily
available, as well as having global illumination and post-processing enabled, creating a photorealistic
look.

We first retrained Gs, using GTA-MVS as training input, so that Gs is trained to produce style-
transferred images from GTA-MVS. We then retrained Gu, so that the network can properly extract
unlit image priors from the said dataset. We then retrain Gt and Ea for the physics-based dehazing
task. All networks were trained following the same training procedures described in Section 5.4.5.
A comparison of synthetic images from DLSU-SYNSIDE, and GTA-MVS, as well as their respective
style-transferred images and depth maps, are shown in Figure 5.17. The quantitative results are
shown in Table 5.5. We also show the results when GTA-MVS images are used directly as input for
training Gt and Ea, without performing style transfer and extraction of unlit image priors.

Figure 5.17: Synthetic images, style-transferred images, and depth maps, from DLSU-SYNSIDE
and GTA-MVS. We only show clear images for better illustration. Images in DLSU-SYNSIDE were
captured using a virtual camera with different viewpoints, while images on GTA-MVS were captured
using a virtual camera, close to the ground.

Figure 5.18 shows the visual comparisons of I-Haze, O-Haze, and RESIDE-OTS images. Based
on the results, our proposed dataset is more tailored for a physics-based dehazing task. We provide
two plausible reasons. First, DLSU-SYNSIDE has more training samples (99,000 images), than
GTA-MVS (12,000 images). Second, DLSU-SYNSIDE has images that were captured from multiple

99

Table 5.5: Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset, between DLSU-
SYNSIDE and GTA-MVS. Best results in bold. Our proposed dataset is more suitable for a physics-
based dehazing task, over GTA-MVS.

Dataset O-Haze Performance

DLSU-SYNSIDE (Ours) 16.0799 0.8399
GTA-MVS (With Gs, Gu) 13.2196 0.7810
GTA-MVS (Without Gs, Gu) 13.4557 0.7921

Dataset I-Haze Performance

DLSU-SYNSIDE (Ours) 16.1692 0.8889
GTA-MVS (With Gs, Gu) 13.6648 0.8065
GTA-MVS (Without Gs, Gu) 13.8594 0.8151

Dataset RESIDE-OTS Performance

DLSU-SYNSIDE (Ours) 20.4943 0.9557
GTA-MVS (With Gs, Gu) 17.3829 0.8987
GTA-MVS (Without Gs, Gu) 17.7843 0.9065

viewpoints. GTA-MVS have very limited viewpoints, where the camera view is close to the ground
(See Figure 5.17). When populating DLSU-SYNSIDE, we animate our virtual cameras to move
around the 3D environment freely, thus capturing images from different angles. This becomes
beneficial for our proposed network, as relationships between the haze and clear regions in the far
horizons of the scene are potentially captured. In the outdoor images shown in Figure 5.18, training
the network using DLSU-SYNSIDE, enabled the network to create more accurate transmission maps,
which lead to preserving structural details. Using the network trained on GTA-MVS, these details
were lost in the dehazed images.

Based on our findings on network performance when using DLSU-SYNSIDE, GTA-MVS dataset,
and LR-Synth dataset (Section 5.5.4), it is interesting to pursue further study, where a variety of
synthetic virtual environments be generated and tested on how it affects a network’s performance
in detail.

5.5.6 Atmospheric Light and Beta Terms for Generating Hazy Images

Following the atmospheric scattering model, we explored different A and β terms used for generating
synthetic hazy images and analyzed their impact on the performance of our proposed network on
O-Haze, I-Haze, and RESIDE-OTS datasets. (B. Li et al., 2019) proposed A = [0.7, 1.0] and
β = [0.6, 1.8] when generating hazy images using the RESIDE-OTS dataset. We used the said
values as anchors for exploring different A and β. We report results for four different terms, where
the ranges of A and β are increased, then the remaining experiments have these ranges reduced to
half.

Table 5.6 shows the quantitative results. Visual comparisons are shown in Figure 5.19.

Based on our tests, adjusting A and β only affects the network performance marginally. Setting

100

Figure 5.18: Dehazed O-Haze, I-Haze, RESIDE-OTS, and RESIDE-Unannotated images, using
GTA-MVS and DLSU-SYNSIDE as training input for our proposed network.

A = [0.35, 0.5] and β = [0.05, 0.9] achieves favorable quantitative results. However, using these terms
reduces the overall dehazing “strength”, compared to other A and β configurations. This is more
obvious in images with dense haze, such as images in the I-Haze and O-Haze datasets. An observable
amount of haze is still present in the dehazed images. Thus, we decided to use A = [0.7, 1.0] and
β = [0.6, 1.8] as our default configuration, which is similar to the work of (B. Li et al., 2019).

5.5.7 Style Transfer Network Architecture Choice

We experimented on two network architectures, U-Net (Ronneberger et al., 2015b) and the default
CycleGAN architecture (Johnson et al., 2016), for the style transfer task. We train these networks
on 200 epochs, following the full objective described in Equation 5.9, where Ladv is replaced with
either binary-cross-entropy (BCE) loss or L1 loss, while α2 for Llikeness is set to either 1.0 or 0.0
(enabled/disabled). Figure 5.20 shows the image generated under different network configurations
and loss terms.

101

Table 5.6: Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset. Best results in bold.
Values used for producing the dehazed images reported in this paper are highlighted in yellow.

Range O-Haze Performance

A B PSNR SSIM
[0.7, 1.0] [0.6, 1.8] 16.0799 0.8399
[0.1, 1.0] [0.1, 1.8] 14.1842 0.8232
[0.35, 0.5] [0.3, 0.9] 14.5950 0.8348
[0.35, 0.5] [0.05, 0.9] 14.9164 0.8398

Range I-Haze Performance

A B PSNR SSIM
[0.7, 1.0] [0.6, 1.8] 16.1692 0.8889
[0.1, 1.0] [0.1, 1.8] 14.7985 0.8440
[0.35, 0.5] [0.3, 0.9] 15.8528 0.8775
[0.35, 0.5] [0.05, 0.9] 16.4075 0.8851

Range RESIDE-OTS Performance

A B PSNR SSIM
[0.7, 1.0] [0.6, 1.8] 20.4943 0.9557
[0.1, 1.0] [0.1, 1.8] 19.3911 0.9375
[0.35, 0.5] [0.3, 0.9] 20.0871 0.9504
[0.35, 0.5] [0.05, 0.9] 20.7103 0.9557

The U-Net architecture generates images where most of the geometric structures, textures, and
edges are retained. The CycleGAN architecture does not generate any convincing image. Thus, we
speculate that skip connections between convolutional and fractionally-strided convolutional layers
in U-Net are more effective over residual blocks, used in CycleGAN architecture.

Noticeable differences across generated images are seen when L1 for Ladv loss is used over
BCE, whether or not the network utilizes Llikeness loss term. Using L1 allows the discriminator to
distinguish real and fake image patches on a pixel level, which promotes the generator to produce
images with less noise and finer details. Additionally, the colors are mapped better and more
consistent with the original color from the synthetic image counterpart, such as the color of the
grass and car being preserved. Using the BCE loss term, the colors appear completely shifted,
where red and green hues are missing.

The effect of incorporating Llikeness loss term is also profound. On both U-Net and CycleGAN,
without Llikeness enabled, both generators fail to produce compelling results. Geometric structures,
color, and other essential visual cues in the images are lost. Thus, having Llikeness helps the generator
produce clearer images and stabilize training.

5.5.8 Loss Terms for Transmission Map Generator

The proposed loss function for Gt, as shown in Equation 5.13, was determined through an ablation
study, where we explored different weights for β1 and β2. Table 5.7 shows the quantitative results.
Visual comparisons are shown in Figure 5.21.

102

Figure 5.19: Visual comparisons of network variants trained with different A and β terms.

Based on the numerical results, setting L1 penalty term, β1 with greater weight, and comple-
menting it with a lower, edge smoothness penalty term, β2, produces dehazed images where the
overall saturation is consistent with the ground-truth. Setting β1 > β2 generates more accurate
transmission maps, as shown by high PSNR and SSIM metrics. Setting β1 ≤ β2 reduces the per-
formance of Gt. When β2 = 0.0, the said network collapses and cannot produce transmission maps
correctly, hence, the very dark images, where pixel values are close to zero.

5.6 Conclusion

In this study, we propose using a synthetic dehazing dataset, captured from a 3D urban virtual
environment. The key idea here is to utilize the depth maps obtained from rendering the 3D scene.
The extracted depth maps are complete and accurate, which has an advantage over depth maps
generated from a depth estimation network. We then trained a physics-based dehazing network,
incorporating style transfer and unlit image priors, for achieving competitive performance when
tested on real hazy images. Our network did not see any real hazy images during training and
only utilized synthetic hazy images from the virtual environment. We prove the effectiveness of
our style transfer and unlit image priors through an ablation study while discovering that having
high-quality synthetic images in the first place, also contributes to our network’s performance. We
readily provide the synthetic dataset we used for this study for driving future research on dehazing.

103

Figure 5.20: Visual comparisons of different style transfer network architectures and configuration
of adversarial and likeness loss terms.

Table 5.7: Quantitative results on O-Haze, I-Haze, and RESIDE-OTS dataset. Best results in bold.
Default β1 and β2 terms used in this paper, and their corresponding performance, are highlighted
in yellow.

Range O-Haze Performance

β1 β2 PSNR SSIM

10.00 5.00 16.0799 0.8399
5.00 10.00 13.8056 0.8089

10.00 10.00 14.8455 0.8386
10.00 0.00 14.8876 0.8389
0.00 10.00 8.1739 0.4765

Range I-Haze Performance

β1 β2 PSNR SSIM

10.00 5.00 16.1692 0.8889
5.00 10.00 15.7786 0.8728

10.00 10.00 14.2546 0.8232
10.00 0.00 16.4118 0.8851
0.00 10.00 8.3448 0.5890

Range RESIDE-OTS Performance

β1 β2 PSNR SSIM

10.00 5.00 20.4943 0.9557
5.00 10.00 20.1207 0.9451

10.00 10.00 20.5064 0.9550
10.00 0.00 20.7243 0.9551
0.00 10.00 10.7632 0.6460

104

Figure 5.21: Visual comparisons of the dehazed images, with different β1 and β2 terms for Gt.
β1 = 10.0, β2 = 5.0 are default values used for training Gt.

105

Chapter 6

Shadow Removal Using Only 3D
Primitives

We discover that for a shadow removal task, shadow shapes or occluders can be approximated
using only 3D primitives. We propose a novel synthetic shadow generation process where abstract
occluders can be formed using only triangular prisms, spheres, and cubes. We argue that complex
shadow regions can be simulated by mixing the mentioned primitives, analogous to how 3D models
in computer graphics can be represented as triangle meshes. A modified shadow removal network
based on FFA-Net is proposed for training a proposed synthetic shadow dataset. Our results show
that our trained network achieves competitive results with state-of-the-art shadow removal networks.
We also show that training our network using a synthetic shadow dataset of only triangular prisms
and spheres as occluders produces the best results. Thus, this implies that our synthetic shadow
removal dataset can be a viable alternative for future deep-learning shadow removal methods.

This work has been submitted for publication at the Visual Computer journal. It is currently
undergoing review.

6.1 Introduction

Shadow removal is often a pre-processing task that improves image quality for necessary computer vi-
sion tasks, such as object recognition and tracking. Shadow regions on images are often misclassified
as part of an object, causing errors in detecting its appropriate bounding box, tracking, recognition,
etc. (Al-Najdawi, Bez, Singhai, & Edirisinghe, 2012; Shahtahmassebi, Yang, Wang, Moore, & Shen,
2013; Mostafa, 2017). Shadow removal research has been pursued as one of the fundamental image
processing tasks for the improvement of computer vision techniques (Sanin, Sanderson, & Lovell,
2010; Ye, Gao, & Zhang, 2012; R. Chang et al., 2016; Vijayan & Ramasundaram, 2019).

Supervised deep learning approaches for shadow removal were pursued recently, such that given
an input image and its shadow regions, a convolutional neural network (CNN) / conditional ad-
versarial network (cGAN) (Isola, Zhu, Zhou, & Efros, 2017a; J. Lin, Xia, Qin, Chen, & Liu, 2018)

106

Figure 6.1: Using a virtual 3D environment where shadows are simulated, we generate a synthetic
shadow training dataset. Given an RGB image and its corresponding shadow matte, we train a
network that recovers the shadow-free image. Note that we only train the shadow removal network,
Gz, purely on synthetic images.

is trained to recover the shadow-free image (Le & Samaras, 2019, 2020; Cun, Pun, & Shi, 2020;
Y. Zhu et al., 2022). Some works (Hu, Jiang, Fu, & Heng, 2019; Jin, Sharma, & Tan, 2021; Vasluianu,
Romero, Van Gool, & Timofte, 2021; Z. Li, Hu, & Sun, 2022) explored removal of shadows using
unpaired data, mostly inspired by unpaired image-to-image translation methods (J.-Y. Zhu et al.,
2017; Yi, Zhang, Tan, & Gong, 2017; Hoffman et al., 2018; Park, Efros, Zhang, & Zhu, 2020).

For unsupervised deep learning methods, gathering shadow and shadow-free images in an un-

107

paired manner is more convenient. However, unsupervised approaches are challenging to train, and
the models are more complex in terms of parameter size and network architecture. Furthermore,
to ensure that training converges quickly, shadow and shadow-free images must ideally have similar
statistical distribution (Fu et al., 2021).

A paired dataset is needed for supervised deep learning methods, typically composed of shadow,
shadow-free images, and supplementary shadow masks. ISTD (J. Wang et al., 2018), and SRD
(L. Qu et al., 2017) datasets are commonly used in literature despite both datasets containing few
paired images (< 3, 000). To overcome the limited amounts of samples, several shadow detection
and removal methods utilize data augmentation strategies, such as synthesizing shadow regions (Le
& Samaras, 2019, 2020; Z. Chen, Long, Zhang, & Xiao, 2021; Z. Liu et al., 2021; Gao, Zheng, &
Guo, 2022).

We present a straightforward method of synthetically generating shadows from a 3D virtual
environment to overcome the difficulties of gathering shadow and shadow-free image pairs. We
hypothesize that it is sufficient to use virtual 3D primitives, namely triangular prisms, cubes, and
spheres, as occluders for synthetically generating shadows. We determined that, at minimum,
triangular prisms and spheres are needed for generating shadows where a shadow removal network
trained on such synthetic data will perform well on real-world images. Inspired by computer graphics
and constructive solid geometry where 3D models can be composed of triangle meshes, we argue
that sufficiently complex shadow regions in real-world images can be approximated by mixing 3D
primitives.

To reduce the domain gap between synthetic and real-world images, we performed texture
mapping by selecting from a pool of real-world datasets (e.g., Places-365, ISTD, SRD, or USR) and
mapped them to cube meshes in the virtual environment. We also devise an alternative training
method when synthetic shadow images are used. We trained a two-stage FFA-Net architecture
(Qin et al., 2020). The first stage is a shadow matte conditioning network, Gm, trained to capture
common real-world shadow shapes. The second stage is a shadow removal network, Gz, trained with
only synthetic shadow images using 3D primitives as occluders. We show in our ablation studies
that Gm and Gz are mutually beneficial. During inference, Gm regularizes Gz such that information
about real-world fine and coarse shadow regions guides the de-shadowing process. The Gz network
is trained purely on randomly oriented 3D primitive occluders, thus providing the network with
diverse examples of shadow and non-shadow patches. Our training approach is unique such that
there is no need for image-to-image translation, domain adaptation, or style transfer networks
(proposed in (R. Guo et al., 2021)) or further fine-tuning on real-world shadow datasets (proposed
in (Inoue & Yamasaki, 2020)). We illustrate this general procedure in Figure 6.1. Our proposed
network achieves competitive results with other known shadow removal works. Our summary of
contribution is as follows:

� We present a novel synthetic training methodology where only virtual 3D primitives are uti-
lized for generating synthetic shadow images. In our experiments, we determined that using
triangular prisms and spheres as occluders for synthesizing shadows is a reliable dataset for
training a shadow removal (SR) network.

� We propose a data augmentation strategy in a 3D virtual environment that aids in generating
shadow images close to the real-world – We used Places-365 images as textures for the fore-
ground objects. Thus, training purely on synthetic images is simplified. We did not design a

108

domain adaptation module, image-to-image translation or style transfer techniques like other
works (Inoue & Yamasaki, 2020; R. Guo et al., 2021) for reducing the gap between synthetic
shadow and real-world shadow images.

� In place of domain adaptation, we propose a two-stage training scheme when training on
synthetic shadow images that contain only 3D primitive occluders. Using a feature fusion
attention network (FFA-Net), named DSP-FFANet, we first train a conditioning network
(Gm) that identifies fine shadow regions using training examples from the ISTD and SRD
datasets. Then, we train a shadow removal network (Gz) using the same architecture with
fully synthetic shadow images. Using our proposed network effectively removes shadows, as
reported in our results, using Peak-Signal-to-Noise Ratio (PSNR) and Root Mean Squared
Error (RMSE) metrics (Qin et al., 2020).

� Using our proposed shadow generation process, to our knowledge, we are the first to show
how an SR network can be trained on a non-shadow-specific dataset, Places-365 (B. Zhou et
al., 2017). Due to the diverse images present in Places-365, our proposed SR network learned
different shadow and non-shadow relationships from this dataset, achieving competitive results.

� We provide our dataset, named DLSUSynthPlaces-100K, as additional training data for re-
searchers formulating shadow removal methods.

We organize our paper as follows: We discuss related work on shadow detection, removal, and
currently available datasets for these tasks. We then discuss our framework, dataset generation
task, network architecture, training details, results and ablation studies.

6.2 Related Work

Related works usually propose shadow detection and removal jointly. For conciseness, we only
discuss deep learning approaches for shadow detection and removal. We then discuss existing shadow
datasets, synthesis, and generation.

6.2.1 Shadow Detection

In shadow detection methods, shadow regions/masks are identified (Shen, Wee Chua, & Leman,
2015; Zheng, Qiao, Cao, & Lau, 2019; Le & Samaras, 2020). For shadow detection, classifiers,
regression, or segmentation networks, using U-Net-based architectures (Ronneberger et al., 2015b)
or GAN-based architectures (Isola et al., 2017a) are standard techniques (Zheng et al., 2019; Z. Chen
et al., 2020; Z. Chen, Lu, Zhang, & Xiao, 2022; T. Wang, Hu, Heng, & Fu, 2022). Hu, Zhu,
Fu, Qin, and Heng (2018) proposed a direction-aware shadow detection network by integrating
spatial context modules in a hierarchical CNN. Zheng et al. (2019) proposed a distraction-aware
shadow detection network that is capable of identifying shadow regions even on surfaces where
the color distribution between shadow and non-shadow regions are similar. T. Wang et al. (2022)
elevated their shadow detection method, where given object instance labels, shadow regions, and
object associations are also identified. Z. Chen et al. (2022) explored shadow detection for videos

109

using a spatiotemporally aligned network (STA-Net). Due to the limited availability of labeled
shadow datasets for videos, they implemented a semi-supervised approach where a pool of shadow,
shadow-free, and shadow region triplets guides STA-Net in producing plausible shadow regions.
W. Wu, Chen, Yang, and Yong (2023) proposed a robust shadow detector network that can handle
annotation noises through sample selection and label correction using graph convolutional networks.
W. Wu, Yang, Ma, and Chen (2023) proposed a weakly supervised shadow detector using shadow
masks generated from user scribbles, mixing them with existing datasets to improve performance.

Shadow regions can be a binary mask (shadow or non-shadow pixel) or an intensity map rep-
resenting umbra regions as 1.0, while the penumbra regions are continuous values between 0.0 to
< 1.0. This representation is coined as “shadow matte” in related work (Q. Liu, Cao, Deng, &
Guo, 2011). Several works include shadow matte as guidance maps for training shadow removal
networks (Le & Samaras, 2019; L. Zhang, Long, Zhang, & Xiao, 2020; Cun et al., 2020; Inoue &
Yamasaki, 2020; Le & Samaras, 2021). Using shadow mattes, we implemented a shadow matte
conditioning network (Gm) that generates a shadow matte from a single RGB image. The goal of
Gm is to identify fine shadow regions that guide our primary shadow removal network, Gz. The
input synthetic RGB image and its shadow matte regions are concatenated and used as training
input for Gz.

6.2.2 Shadow Removal

Numerous shadow removal methods now utilize either CNNs (L. Qu et al., 2017; W. Wu, Wu, &
Wan, 2022), regression networks (Le & Samaras, 2019), or conditional adversarial networks (J. Wang
et al., 2018; L. Zhang et al., 2020; Y. Zhu et al., 2022; Le & Samaras, 2021). Several researchers
explored supervised and unsupervised approaches. L. Qu et al. (2017) proposed De-ShadowNet
to remove shadows, using appearance and semantic cues in the image. Le and Samaras (2019)
proposed a decomposition framework, SP+M, for removing shadows using shadow matte regions
and relit images. Cun et al. (2020) proposed a dual hierarchical aggregation network (DHAN) and
shadow matting network for shadow removal. Inoue and Yamasaki (2020) used SP+M and DHAN
as its network architecture for learning synthetic shadow removal. W. Wu et al. (2021) proposed
a cooperative generator network where penumbra and umbra regions are de-shadowed separately.
Inspired by cycle consistency (J.-Y. Zhu et al., 2017), Y. Zhu et al. (2022) proposed a forward and
backward mapping network for jointly training a shadow removal and addition network as a regu-
larization scheme. Wan et al. (2022) proposed a style-guided shadow removal network, leveraging a
style transfer method from non-shadow regions as a normalization strategy for generating visually
consistent shadow-free images from the original input.

A CycleGAN-based architecture, Mask-ShadowGAN, was proposed by Hu et al. (2019) for
training unpaired shadow and shadow-free images. Jin et al. (2021) proposed an unsupervised
domain-classifier guided shadow removal network, DC-ShadowNet trained using physics-inspired
shadow behavior loss functions.

Attention mechanisms for CNNs were explored in computer vision and showed great success in
many visual tasks (M.-H. Guo et al., 2022). FFA-Net is a feature fusion attention network proposed
by Qin et al. (2020) for a dehazing task. We discovered that designing our shadow removal network
based on FFA-Net achieves comparable results with other proposed shadow removal architectures.

110

6.2.3 Shadow Datasets and Generation

Figure 6.2: Comparison of different shadow removal datasets. ISTD (J. Wang et al., 2018) and
STD (L. Qu et al., 2017) are real-world datasets. GTA V (Krähenbühl, 2018), SynShadow-10K
(Inoue & Yamasaki, 2020), JNetShadow-120K (R. Guo et al., 2021), G2C-DeShadowNet dataset
(Gao, Zheng, & Guo, 2022), and DLSUSynthPlaces-100K (Ours) are synthetic datasets. Shadows in
our dataset were generated using only 3D primitive occluders, such as triangular prisms.

ISTD (J. Wang et al., 2018), and SRD (L. Qu et al., 2017) are the popular benchmark datasets
for shadow detection and removal. The ISTD dataset contains 1, 330 shadow, shadow-free, shadow
mask triplets for training, while the SRD contains 2, 680 shadow, shadow-free pairs. Vicente, Hou,
Yu, Hoai, and Samaras (2016) provided a large-scale shadow detector dataset, called SBU. The SBU
dataset contains 4, 085 shadow images and shadow masks. Hu et al. (2019) created an unpaired
shadow removal dataset (USR) as training data for their unpaired cycle consistency network. It
contains 2,445 shadow images and 1,770 shadow-free images. The datasets mentioned earlier use
real-world scenes.

ISTD, STD, SBU, and USR datasets contain few samples for training robust shadow detec-
tion/removal networks. As such, several data augmentations and shadow generation techniques
were proposed. Gryka, Terry, and Brostow (2015) developed a prototype that accepts user brush
strokes for generating shadow regions. Proposed shadow regions can also be moved or scaled ac-
cordingly in the image. Le and Samaras (2019) and Inoue and Yamasaki (2020) perform shadow
augmentation using a shadow illumination model using shadow matte, shadow-free, and relit images
as input.

Hu et al. (2021) proposed a new dataset for shadow detection for complex real-world scenes.
X.-T. Wu, Wang, Wan, and Wu (2022) developed a tool that generates shadow masks from user-
prescribed scribbles. They show that training on images with customized shadow masks improves
the performance of existing shadow detectors.

W. Wu, Zhang, et al. (2022) proposed a learning-based technique for detecting soft shadows.
They mentioned that 98% of images in existing datasets contain hard shadows, and shadow detection
or removal networks fail to detect soft shadows during training. To address this observation, they

111

provided a soft shadow dataset using existing SBU images.

Based on our literature review, we notice three significant approaches on synthetic shadow gen-
eration. Inoue and Yamasaki (2020) generated synthetic shadows from Blender, by projecting public
3D model occluders to a virtual plane, using USR dataset as background texture. To regularize the
synthetic generation of shadows, such that shadows are plausible and diverse, they constrained the
shadow intensity to be close to that of the ISTD or SRD dataset. R. Guo et al. (2021) proposed a
similar approach for generating synthetic shadows, except they perform an image-to-image trans-
lation as a domain adaptation strategy for bridging the domain gap between the synthetic images
with real ones. Gao, Zheng, and Guo (2022) synthesized shadows using Places2 dataset (B. Zhou
et al., 2017) and SRD shadow masks, then trained a grayscale network and a colorization network
for removing shadows.

Our proposed synthetic shadow dataset generation allows new occluder shapes to be formed,
which aids the training of our proposed shadow removal network. Shadow regions and their respec-
tive intensities are uniformly randomized, whereas occluders may use only a one of the following
3D primitives: triangular prisms, spheres, and cubes. Our extensive analysis reported shows that
a shadow removal network can be trained from a dataset composed of purely triangular prisms as
occluders and produce reasonable shadow removal results. We do not need to use public 3D models
as occluders, like the approach of Inoue and Yamasaki (2020). Reference images from Places-365
are used as textures, applied to the virtual cube meshes to mimic how shadows are cast to various
surfaces. We show in our ablation studies that using Places-365 as the source domain provides the
best results over using ISTD and SRD datasets. Thus, this approach allows us to train a network
directly using synthetic images, without the need for an image-to-image or style transfer strategy,
like the technique proposed by R. Guo et al. (2021). We compare our proposed synthetic shadow
dataset, which we label as DLSUSynthPlaces-100K, in Figure 6.2.

Figure 6.3: Overview and illustration of our proposed method of using only 3D primitives as occlud-
ers. We argue that sufficiently complex shadow regions can be composed by mixing N primitives.
Based on our extensive experiments, triangular prisms and spheres as occluders is sufficient in ap-
proximating shadow regions.

112

6.3 Framework and Dataset Generation

We treat the shadow removal task as a supervised learning approach. Given Ins, Iws, Ism triplets,
we train a conditional generative adversarial network (cGAN) that aims to generate a shadow-free
image In̂s. Ins ∈ RH×W×3, Iws ∈ RH×W×3, Ism ∈ RH×W indicate the shadow-free image, input
image, and shadow matte respectively.

6.3.1 Motivation: Using only 3D primitives as occluders

In this paper, we define 3D primitives as triangular prisms, spheres, and cube meshes. In a renderer
system, a primitive’s mesh can be hidden, leaving only shadows rendered, assuming that a directional
real-time light source is available. We provide a schematic illustration of this in Figure 6.3.

Inspired by computer graphics and constructive solid geometry where 3D models can be com-
posed of multiple triangle meshes, we argue that sufficiently complex shadow regions found in
real-world images can be composed by mixing N primitives. For example, consider the shadow
region caused by an umbrella occluder in one of the ISTD images shown in Figure 6.3. This region
can be approximated by combining overlapping triangular prisms.

In most renderer systems, 3D primitives comprise triangular prisms (shortened to t.prisms in
succeeding sections), spheres, cubes, cylinders, and capsules. We selected the following primitive
shapes for our analysis as they are the most basic shapes: t.prisms, spheres, and cubes. T.prisms
and cubes, under different perspective projections, will create convex-shaped occluders. Spheres
create curves on model surfaces that resemble those observed in real-world shadow regions (e.g.,
head and torso shadows in ISTD images). Cylinders and capsule meshes, while rendering systems
classify them as primitives, are no longer included in our study because their appearance borrows
from a combination of t.prisms, cubes, and spheres. We report an experiment in our ablation studies
(Section 6.5.7) such that using t.prisms and spheres as occluders provides the best results.

Related works involving synthetic shadow generation use public 3D models as occluders (Inoue
& Yamasaki, 2020; R. Guo et al., 2021). Using only 3D primitives and randomizing their transforms
provide more diverse examples of shadows because multiple primitives can form new abstract oc-
cluder shapes, unlike 3D models with fixed geometry structures. A shadow removal network could
also learn new color relationships between shadow and shadow-free images due to 3D primitives
scattered across various texture foregrounds. Our empirical analysis shows that using our proposed
synthetic shadow removal dataset to train our FFA-Net-based network is remarkably effective and
competitive with other shadow removal methods.

6.3.2 Dataset Generation

We illustrate the dataset generation process in Figure 6.4. We first define the following terms for
clarity:

� Camera - the virtual camera used for viewing 3D objects in screen space. The virtual camera

113

Figure 6.4: Proposed shadow dataset generation process. Given a virtual environment with pre-
defined 3D blueprints, we randomize the camera, primitive occluder transforms, blueprint trans-
forms, directional light attributes, and shadow intensity. 2D images are pooled from a database
collection, then texture mapping is performed on the blueprints.

has a perspective camera frustum, with 75◦ field-of-view.

� Primitive - Refers to any primitive mesh illustrated in Figure 6.3 that acts as an occluder. The
mesh is not rendered on screen space, leaving only the shadow region projected on surfaces.

� Blueprint - Refers to cube meshes where source images from a database collection can be
mapped as a texture.

Our dataset generation starts with a pre-defined planar scene layout with Nb blueprints in a
rendering environment. The rendering environment was Unity Engine (Unity, 2021). We assume
that a single directional light source renders the shadows. The capture step proceeds by randomly
selecting images from a database collection of images and then mapping these to the blueprints
by texture mapping (Marschner & Shirley, 2018). The default configurations of the rendering
environment assume physically-based shading properties and are affected by environment reflections
and ambient lighting, affecting the final color composition of the images generated. We want to
retain the original color of the imported images as much as possible, so we set the blueprint’s
texture properties to diffuse and non-specular. We refer the reader to the book of Akenine-Mller et
al. ((2018)) for diffuse, ambient lighting, and specular definitions in rendering (Akenine-Mller et al.,
2018).

We perform the occluding step as follows: Given Np primitives, we randomize its position,
rotation, and scale transforms, bounded by the camera’s viewport. Based on our experiments
(Section 6.5.7), t. prisms and spheres are the most ideal. We set Np = 75 prism instances and
sphere instances.

To render synthetic yet plausible shadows, we manipulate the direct lighting, ambient lighting,
and shadow intensity properties of our environment illumination. We employ a single directional

114

light to illuminate the scene and cast shadows using the mentioned primitive occluders. To identify
the ideal lighting range for our virtual scene, we conducted a luminance analysis on the ISTD and
SRD datasets to serve as a basis. The relative luminance, Y , of an RGB image is given by:

Y = R ∗ 0.2126 +G ∗ 0.7152 +B ∗ 0.0722 (6.1)

where R, G, B represent the linearized channels of an RGB image. To derive the linearized RGB
image, we apply a power curve of 2.2 to the channels as suggested in (Poynton, 2003). The luminance
range is between [0.0, 1.0] where 1.0 indicates maximum illumination/bright pixels. We derive the
luminance of the whole image and its shadow regions (WS). Figure 6.5 visualizes the luminance
distribution for ISTD and SRD datasets. From this observation, we set our directional lighting
intensity between [0.1, 1.2] - derived from the lowest and highest mean luminance across all pixel
regions in the ISTD and SRD dataset, with added upper range to simulate bright images such as
those that are overexposed. Based on the mean luminance distribution of the shadow regions, we
see a minimum of ≊ 0.2. We leverage this information about the needed ambient light intensity for
our virtual scene, which we also set to the same value. With ambient light set to this value, areas
not hit by the directional light will remain somewhat visible so that completely black regions will
not appear in the generated images. Lastly, we randomize the shadow intensity between [0.4, 0.95]
to simulate soft shadow regions.

Figure 6.5: Luminance distribution of ISTD and SRD datasets for all regions and shadow regions
(WS). The luminance values on the shadow regions indicate the amount of minimum brightness
inside those regions, when occluders are present. ISTD (WS) Mean: 0.5047, Std dev: 0.0222. SRD
(WS) Mean: 0.5157, Std dev: 0.0461

To consider color variations in directional lighting, the color is randomly selected from a pre-
defined list of recognized light palettes, discussed in (Hastings-Trew, 2021). Hastings-Trew ((2021))
provided real-world light examples and their respective palettes (Hastings-Trew, 2021). We follow
the proposed black body illuminant color palettes for simulating the light source. The selected direc-
tional lighting color is also applied to the ambient light to simulate shadow colors such as non-white
tints which is an observed behavior on outdoor images (X. Huang, Hua, Tumblin, & Williams, 2011; Inoue & Yamasaki, 2020).
The directional light angle is randomized and bounded between [15◦, 170◦] in celestial meridian space.

The camera’s position and rotation transforms are randomized within the 3D scene to diversify
the screen views, using the same angle range as the directional light. Refer to Figure 6.6 for an
illustration.

To simulate soft shadow regions, we randomize the shadow intensity and bias between [0.4, 0.95]
and [0.4, 2.5], respectively.

115

Figure 6.6: Illustrating how directional light and camera positions are randomized. A sample set of
Iws and Ins images, captured from the camera is shown.

The x rotation and (x, y) scale transforms of Nb blueprints are randomized. We refer to these
transforms as rx, sx, and sy, respectively. rx is randomized at right-angle intervals. sx, sy are
randomized in [1.0, 20.0]. This further diversifies the synthetic samples and resembles random
horizontal and vertical flips in 2D images.

All randomization operations follow a uniform distribution. We summarize the synthetic shadow
generation process in Algorithm 1.

6.3.3 Synthetic Shadow Dataset

We generate the synthetic shadow dataset, following the dataset generation process discussed in
Section 6.3.2. We refer to this as dataset DLSUSynthPlaces-100K, consisting of 100K samples,
where the textures used for the blueprints came from Places-365 dataset (B. Zhou et al., 2017).
Since we directly imported images in the Places-365 dataset, as textures to the virtual scene, we do
not need to perform a domain adaptation strategy, like in other synthetic shadow removal methods
(Inoue & Yamasaki, 2020; R. Guo et al., 2021). We generate shadows by mixing different primitive
occluders attached to the virtual camera.

DLSUSynthPlaces-100K is composed of shadow, shadow-free, and shadow-matte triplets. We
refer to them as 0.0 ≤ Iws, Ins, Ism ≤ 1.0 respectively. Shadow-matte images, Ism, contain continu-
ous values which can fully represent soft and hard shadow intensities of the umbra and penumbra
regions. Le and Samaras ((2019)) proposed generating Ism, using Iws, Ins and relit images based on
γ, β relationships between Iws and Ins of ISTD dataset (Le & Samaras, 2019). Inoue and Yamasaki

116

input : Zimages = a database collection of real-world images. Ex: Places-365, ISTD, SRD or USR
Nb = set of blueprints
Np = set of primitive occluders
Nimage = required image samples
K = perspective camera
L = directional light
Sintensity ,Sbias = shadow intensity and shadow bias
Lpalette = light color palette taken from (Hastings-Trew, 2021)

output : Iws, Ins = set of shadow, and shadow-free images of size Nimage

1 for i← 0 to Nimage do
2 for j ← 0 to |Nb| do
3 rx, sx, sy = x rotation, (x, y) scale of blueprint instance Nj,b;
4 Select a random image from Zimages then apply as texture to Nj,b;
5 Randomize rx at right-angle intervals;
6 Randomize sx, sy with range [1.0, 20.0];

7 end
8 for j ← 0 to |Np| do
9 t, r, s = translation, rotation, scale of primitive instance Nj,p in (x, y, z) coordinates;

10 Randomize r with range [0◦, 360◦];
11 Randomize s with range [1.0, 10.0];
12 Randomize t ;
13 while Nj,p is not seen in view of K do
14 Randomize t;
15 end

16 end
17 if Np occludes > 50% of K screen view then
18 Repeat line 8 to 16;
19 end

20 Randomize L angle with range [15◦, 170◦];
21 Randomize L intensity with range [0.1, 1.2];
22 Randomize Sintensity with range [0.4, 0.95];
23 Randomize Sbias with range [0.4, 2.5];
24 Randomly pick color of L from Lpalette;
25 Append K screen view to Iws;
26 Disable all shadows rendered in K;
27 Append K screen view to Ins;
28 Enable all shadows rendered in K;
29 end
30 return Iws, Ins

Algorithm 1: Synthetic shadow generation process

((2020)) performed a similar approach after generating Ism using public 3D models from AMASS
(Mahmood, Ghorbani, Troje, Pons-Moll, & Black, 2019) and ShapeNet (Chang et al., 2015) as
occluders (Inoue & Yamasaki, 2020).

Unlike their methods, we do not need to use 3D models as occluders, instead using 3D primitives.
We determined the recommended quantity of 3D primitives through our experiments, and we report
this finding in the appendix. We also do not need relit images because directional light, color, and
shadow intensities are already uniformly randomized in the virtual scene as described in Section
6.3.2. Based on the shadow decomposition model proposed in (Le & Samaras, 2019), we simplify
the derivation of Ism and omit the need for relit images. Thus, we use:

Ism = Ins − Iws (6.2)

The initial output is a 3-channel map and then converted to grayscale to derive the final shadow

117

Figure 6.7: The proposed network architecture is divided into two stages: the shadow matte condi-
tioning stage and the shadow removal proper.

matte.

6.4 Supervised Shadow Removal using Synthetic Images

Using DLSUSynthPlaces-100K for training, we devise a supervised shadow removal network, which
we name DSP-FFANet. We divide the training pipeline into two stages, the shadow matte condi-
tioning (Gm as cGAN), followed by the shadow removal stage (Gz as cGAN). This is illustrated in
Figure 6.7.

The full training objective of our proposed shadow removal network is given as:

L(Gm, Dm, Gz, Dz) = Lsm
adv(Gm, Dm) + Lsm

pixel(Gm)+

Lz
adv(Gz, Dz) + Lz

pixel(Gz) (6.3)

where Gm refers to the generator for producing the shadow matte from single RGB images, Gz

refers to the generator for recovering the shadow-free image from RGB image and shadow matte
as input. Dm and Dz are DCGAN discriminators (Radford, Metz, & Chintala, 2015) used during
adversarial training for Gm and Gz respectively.

6.4.1 Shadow Matte Conditioning

Using synthetic shadows as training data alone will introduce unnatural shadows as a consequence
of uniformly randomizing occluders and foreground objects. Using Figure 6.3 as an example, the

118

primitive collection illustrated cannot fully simulate a real-world umbrella shape. It is also chal-
lenging to generate shadows with complex shapes and curves using only 3D primitives. Thus, to
ensure that the shadow removal process is still grounded by real-world examples, we propose a
unique training step where fine shadow regions from real-world images must first be identified by a
shadow matte conditioning network, Gm, that guides our primary shadow removal network, Gz, for
removing shadows.

The training objective is as follows: Using Iws as training input, we train Gm to minimize the L1

difference between Gm(Iws) and Ism which is referred as Lsm
pixel(Gm) in Equation 6.3. Lsm

adv(Gm, Dm)
is the generative adversarial loss adopted from Patch-GAN discriminator (Isola et al., 2017a).

Based on our experiments (Section 6.5.5), using the existing shadow and shadow-free training
image pairs from ISTD or SRD dataset and then deriving the Ism set using Equation 8.2 provides the
best results. Gm must be trained using real-world shadow mattes such as those from ISTD or SRD to
guide the shadow removal process of Gz in determining the de-shadowing strength. The significantly
different variations of image features, light intensities, abstract shadow occluder shapes, colors, and
camera viewpoints in DLSUSynthPlaces-100K provide better shadow removal results when training
Gz. Alternatively saying, Gm compensates for the possible loss of shadow shape information and
serves as a regularizer when Gz is trained purely on synthetic shadow primitives.

Inspired by attention mechanisms (M.-H. Guo et al., 2022), our network architecture for Gm is
a revised FFA-Net (Qin et al., 2020), which is an attention-based dehazing network for the shadow
matte conditioning task. First, we removed the channel-wise addition at the last layer and converted
the last pixel attention layer to output a 1-channel map. We set the number of residual blocks (He
et al., 2016) to three. Dm uses the original discriminator design in DCGAN (Radford et al., 2015).

6.4.2 Shadow Removal

Using Iws and Ism from DLSUSynthPlaces-100Kas training samples, we train Gz to minimize the
L1 difference between Gz(Iws, Ism) and Ins which is refered as Lz

pixel(Gz) in Equation 6.3.

We designed Gz as a modified FFA-Net architecture that accepts the concatenated inputs Iws

and Ism. Similar to Gm, we removed the channel-wise addition at the last layer and we set the
number of residual blocks to three. Dz uses the original discriminator design in DCGAN (Radford
et al., 2015).

6.4.3 Training Details

We train Gm, Dm and Gz, Dz separately under 20 epochs, which was discovered through bench-
marking of our proposed network, and other recent shadow removal networks. This is discussed in
detail in Section 6.6.2.

We train Gm and Gz using the ADAM optimizer (Kingma & Ba, 2014b) with learning rates
of 0.0002, also applied to their respective discriminators. For Gm and Gz, to increase robustness
and reduce overfitting, we added dropout layers with a probability of 40%, after each residual block

119

and added a weight decay of 0.001. We also utilize AugMix (Hendrycks et al., 2019) as image
augmentation during training to improve the robustness of our network during inference time.

We train all generators and discriminators using image patch sizes of 256 × 256. We train our
networks for approximately 24 to 36 hours on an RTX 3090 GPU.

6.5 Results and Discussion

We conducted experiments to validate the performance of our proposed synthetic shadow removal
dataset, DLSUSynthPlaces-100K, and our proposed network design, DSP-FFANet. We bench-
marked our method on ISTD (J. Wang et al., 2018) and SRD (L. Qu et al., 2017) datasets and com-
pare them against recent shadow removal networks. The following utilizes existing training sets pro-
vided in ISTD or SRD, with shadow augmentation techniques to increase training samples: SP+M
(Le & Samaras, 2019), DC-ShadowNet (Jin et al., 2021), BMNet (Y. Zhu et al., 2022), DHAN (Cun
et al., 2020), DHAN+ (Cun et al., 2020), and SG-ShadowNet (Wan et al., 2022). We also compare
against observed methods that utilized synthetic shadow images: SynShadow-SP+M, SynShadow-
DHAN (Inoue & Yamasaki, 2020), JNet-Syn (R. Guo et al., 2021), and G2C-DeShadowNet (Gao,
Zheng, & Guo, 2022). Note that we cannot accurately evaluate the performance of JNet-Syn and
G2C-DeShadowNet because their trained models and image results are not available to us. We can
only report the RMSE metrics they have provided in their published papers.

For quantitative comparison, we used the following metrics: Peak-Signal-to-Noise Ratio (PSNR)
on RGB images and Root Mean Squared Error (RMSE) in LAB color space. Similar to other works,
we report the results for shadow regions (WS), non-shadow regions (NS), and both regions (All).
We utilized the ground-truth shadow masks to determine the shadow regions for ISTD. SRD dataset
does not have available ground-truth shadow masks. As a replacement, we directly use the inferred
shadow masks provided by DHAN (Cun et al., 2020), similar to how Y. Zhu et al., ((2022)) (Y. Zhu
et al., 2022) reported their results.

6.5.1 Performance on ISTD Dataset

The ISTD results are reported in Table 6.1. The visual results are displayed in Figure 6.8. Our
proposed method outperforms several state-of-the-art shadow removal methods despite our network
being trained mostly on synthetic shadow images. We achieved slightly better performance from
BMNet (Y. Zhu et al., 2022) and SG-ShadowNet (Wan et al., 2022) on all aspects in ISTD regions.
Our method considerably has lower RMSE on both shadow and non-shadow regions in ISTD.

SynShadow-SP+M and SynShadow-DHAN were trained first on synthetic shadow images, then
fine-tuning both networks to achieve favorable results on ISTD. We do not need to fine-tune our
DSP-FFANet as it already performs well on recovering shadow-free images on ISTD.

120

Table 6.1: Quantitative results on the ISTD and SRD datasets. Best results in bold. WS = shadow
regions, NS = non-shadow regions.

ISTD (All) ISTD (WS) ISTD (NS)

PSNR (RGB) RMSE (LAB) PSNR (RGB) RMSE (LAB) PSNR (RGB) RMSE (LAB)

Input (WS) 19.5442 6.9129 21.4456 5.7809 24.2759 3.7426
SP+M (Le & Samaras, 2019) 22.1442 4.8963 28.4003 2.4181 23.3536 4.2389
DC-ShadowNet (Jin et al., 2021) 24.7899 3.9348 29.7337 2.2434 26.5050 3.2175
BMNet (Y. Zhu et al., 2022) 27.2802 3.0379 32.8528 1.6266 28.7384 2.5573
DHAN (Cun et al., 2020) 26.2958 3.4005 32.7804 1.6554 27.4562 2.9572
DHAN+ (Cun et al., 2020) 26.9206 3.1227 33.2081 1.5357 28.2023 2.7018
SG-ShadowNet (Wan et al., 2022) 29.2716 4.6071 29.3303 2.1750 23.7364 4.0429

Synthetic

SynShadow-SP+M (Inoue & Yamasaki, 2020) 22.7522 4.5941 14.2584 2.3421 23.8881 3.9342
SynShadow-DHAN (Inoue & Yamasaki, 2020) 22.5620 4.6887 29.4309 2.1829 23.5966 4.1337
JNet-Syn (R. Guo et al., 2021) N/A N/A N/A 5.3000 N/A 6.8100
G2C-DeShadowNet (Gao, Zheng, & Guo, 2022) N/A 3.5000 N/A 6.4000 N/A 2.9000
DSP-FFANet(Ours) 29.9422 2.9093 33.1707 2.1132 33.0911 1.9627

SRD (All) SRD (WS) SRD (NS)

PSNR (RGB) RMSE (LAB) PSNR (RGB) RMSE (LAB) PSNR (RGB) RMSE (LAB)

Input (WS) 16.3999 9.9756 16.9519 3.1072 27.3420 2.8217
DC-ShadowNet (Le & Samaras, 2019) 29.4796 2.6585 33.0511 1.7329 32.6652 1.9006
BMNet (Y. Zhu et al., 2022) 30.1104 2.3601 33.4212 1.5708 33.3216 1.6958
DHAN (Cun et al., 2020) 29.2235 2.6118 32.9552 1.6852 32.2509 1.8833
DHAN+ (Cun et al., 2020) 29.5620 2.5204 33.6213 1.5612 32.2970 1.8764

Synthetic

SynShadow-SP+M (Inoue & Yamasaki, 2020) N/A N/A N/A N/A N/A N/A
SynShadow-DHAN (Inoue & Yamasaki, 2020) N/A N/A N/A N/A N/A N/A
G2C-DeShadowNet (Gao, Zheng, & Guo, 2022) N/A 5.5000 N/A 8.4000 N/A 4.6000
DSP-FFANet(Ours) 30.3984 2.8697 34.7679 2.1096 32.8036 1.8472

Figure 6.8: Visual results on the ISTD and SRD datasets. We compare recent supervised shadow
removal networks, trained on real and synthetic datasets with ours.

121

6.5.2 Performance on SRD Dataset

We first derive the Ism from the training set of SRD, following Equation 8.2, and then retrain Gm in
DSP-FFANet using the SRD Iws, Ins and Ism triplets. No fine-tuning was done on Gz, which was
purely trained on DLSUSynthPlaces-100K samples. The SRD results are reported in Table 6.1.
The visual results are displayed in Figure 6.8. Note that SynShadow-SP+M and SynShadow-DHAN
have incomplete SRD results. Thus, we cannot accurately measure their performance and simply
report the available visual results on SRD images. JNet-Syn does not have results for the SRD
dataset.

DSP-FFANet performs competitively against other state-of-the-art shadow removal methods.
In terms of PSNR, we achieved the highest results. Our resulting model produced shadow-free
images with few artifacts, as compared to models that were also trained on synthetic training images
(SynShadow) and even models trained using real-world images (SP+M, BMNet, SG-ShadowNet).

6.5.3 Ablation Studies

We organize our ablation studies as follows: We first validate our training approach effectiveness by
comparing it with other typical training methods. Then, we examine the viability of DSP-FFANet
as a shadow removal network. Then, we benchmark our proposed synthetic shadow dataset against
other synthetic and real shadow datasets. Then, we present our findings on the ideal primitive sets
for generating the occluders. Lastly, we report results regarding the dataset choice for our texture
mapping method.

Unless otherwise specified, we trained DSP-FFANet variants following the training details
in Section 6.4.3. Given a shadow RGB image Iws, we reconstruct its shadow-free image using
Gz(Iws, Gm(Iws)).

6.5.4 Validation of Training Approach

The training approach for DSP-FFANet was formulated based on several experiments. We only
considered established network architectures for training; namely, U-Net (Ronneberger et al., 2015b),
ResNet (Johnson et al., 2016), or attention-based networks (Qin et al., 2020; Woo, Park, Lee, &
Kweon, 2018), where we can easily modify the number of input/output channels, and the number
of convolutional layers and residual blocks. We explored different hyperparameter settings, such
as the inclusion or absence of LPIPs loss (R. Zhang, Isola, Efros, Shechtman, & Wang, 2018), and
introducing shadow removal forward-backward losses as proposed in BMNet (Y. Zhu et al., 2022).
However, we observe that such loss terms do not improve the final performance of our proposed
network. The default loss terms Ladv and Lpixel are sufficient in constructing good shadow-free
images.

We report results for the following training design choices:

� Proposed: We train Gm on ISTD/SRD shadow matte training sets and then train Gz on

122

DLSUSynthPlaces-100K - discussed in-depth in Section 6.4.

� End-to-end: We devise an end-to-end approach derived from DSP-FFANet, where we revise
the input channels to accept Iws images, and reconstruct images close to Ins. We used our
proposed synthetic shadow dataset, DLSUSynthPlaces-100K , for training.

� Style-transferred: Inspired by R. Guo et al. ((2021)) (R. Guo et al., 2021) where they trained
a shadow detection and removal network on synthetic images with domain adaptation, we in-
troduce a style-transfer network, that first translates the synthetic Iws, Ins DLSUSynthPlaces-
100K images into Iws,styled, Ins,styled, such that the color and style are similar to ISTD or
SRD datasets. The network was trained in an unpaired manner, using cycle-consistent losses
and following the training details in the CycleGAN work of J.-Y. Zhu et al. ((2017)) (J.-Y. Zhu
et al., 2017). We then use Iws,styled, Ins,styled for training Gm and Gz.

� Synth (100%) - Recall that we trained Gm with either the ISTD or SRD shadow matte (Ism)
images. In this variant, we trained Gm purely on DLSUSynthPlaces-100K Ism images to
evaluate if we could train our two-stage network only with synthetic shadow images. Note
that Gz retains its property where DLSUSynthPlaces-100K were only used during training.

� Synth (50%) + Real (50%) - Similar to the previous training setup, but we mix ISTD or SRD
Ism images (50%), with DLSUSynthPlaces-100K Ism images (50%) when training Gm.

� U-Net (Synth 100%) - We train a classical U-Net architecture for both Gm and Gz, using
DLSUSynthPlaces-100Kas training data.

� BMNet (Synth 100%) - We train BMNet architecture, recently proposed by Y. Zhu et al.
((2022)) (Y. Zhu et al., 2022). This network is specifically suited for a shadow removal task.
BMNet’s forward and backward mapping framework and shadow-invariant color guidance
module are key supervising procedures during training that help reconstruct shadow-free im-
ages with high PSNR results. We aim to explore how BMNet performs if it was trained purely
on synthetic data, such as DLSUSynthPlaces-100K. We first train their shadow-invariant color
guidance module, followed by the main network. We train BM-Net using the hyperparameter
settings described in their paper (Y. Zhu et al., 2022).

� SG-ShadowNet (Synth 100%) - We also train SG-ShadowNet architecture (Wan et al., 2022),
following the same training details described in their paper, except SG-ShadowNet was trained
using DLSUSynthPlaces-100K . By default, SG-ShadowNet requires binary shadow masks
when training their coarse deshadow network, and the style-guided re-deshadow network. This
results in a mode collapse after a few iterations when trained on DLSUSynthPlaces-100K .
To fix this, we replaced the shadow masks with our proposed shadow mattes (Ism), from
DLSUSynthPlaces-100K , in order for the network to produce shadow-free images. Similar
to BMNet, we report the results of SG-ShadowNet using their prescribed hyperparameter
settings.

When training the variant networks and except for BMNet and SG-ShadowNet, we strictly
follow the training details discussed in Section 6.4.3.

Table 6.2 shows the quantitative results of the network variants on the ISTD and SRD datasets.
Figures 6.9 and 6.10 show that none of the network variants remove shadows effectively. The end-
to-end network is a “hit-or-miss” where only select areas in the shadow regions are de-shadowed.

123

Table 6.2: Quantitative results of different network variants on ISTD and SRD dataset. Best results
in bold. Our proposed network, DSP-FFANet, trained on DLSUSynthPlaces-100K, achieves the
best performance.

ISTD

Model Type PSNR (RGB) RMSE (LAB)

1 DSP-
FFANet(Proposed)

29.4354 2.9439

2 End-to-end 21.0557 5.9127
3 Style trans-

ferred
22.1695 5.2207

4 Synth (100%) 19.6899 6.7864
5 Synth (50%)

+ Real (50%)
21.0410 5.6340

6 U-Net (Synth
100%)

24.1144 4.6670

7 BMNet
(Synth 100%)

20.5091 7.2084

8 SG-
ShadowNet
(Synth 100%)

7.4581 23.9002

SRD

Model Type PSNR (RGB) RMSE (LAB)

1 DSP-
FFANet(Proposed)

30.3984 2.8697

2 End-to-end 19.0975 7.3977
3 Style trans-

ferred
17.4092 8.5448

4 Synth (100%) 18.8128 7.6407
5 Synth (50%)

+ Real (50%)
19.1203 7.2558

6 U-Net (Synth
100%)

20.1104 6.7629

7 BMNet
(Synth 100%)

23.1106 5.1151

8 SG-
ShadowNet
(Synth 100%)

13.8395 12.7882

The style transfer network merely brightens and saturates the overall image. Our experiments show
that training Gm with ISTD or SRD Ism images and then training Gz with DLSUSynthPlaces-100K
provide the best results.

Gm acts as a model that preserves real-world shadow shape information, while the wide color
distribution of the synthetic dataset allows Gz to produce shadow-free images with almost indistin-
guishable penumbra regions, unlike other works where shadow traces along the penumbra are still
present (Figure 6.8).

6.5.5 Effectiveness of DSP-FFANet as a Shadow Removal Network

The FFA-Net architecture was initially designed for a dehazing task (Qin et al., 2020), which we
converted to fit for a shadow removal task (details in Section 6.4). Therefore, since the training
approach and network architecture of DSP-FFANet is unique, we first experimented if it is viable

124

Figure 6.9: Visual results of network variants on ISTD dataset. Our proposed dataset generation
method does not need any style transfer or domain adaptation technique to work properly on real-
world data.

Figure 6.10: Visual results of network variants on SRD dataset. Our proposed dataset generation
method does not need any style transfer or domain adaptation technique to work properly on real-
world data.

for a shadow removal task without any synthetic data. We train DSP-FFANet on the ISTD and
SRD training sets and then compare the performance to the following SR methods: BM-Net, SG-
ShadowNet, and DHAN+. Table 6.3 shows the quantitative results of the networks on the ISTD
and SRD test sets.

Table 6.3: RMSE results of our proposed network when fully trained on ISTD and SRD training
sets. We already observe an improvement of de-shadowing performance when compared to other
SR methods.

RMSE (LAB)

ISTD SRD

DSP-FFANet(No
synthetic data)

2.1996 2.5377

BMNet 3.0379 2.3601
SG-ShadowNet 4.6071 N/A
DHAN+ 3.1227 2.5204

The results indicate that our proposed network and training scheme is already competitive with
other SR methods. When initially trained on ISTD, it already outperforms the other SR methods.
Note that since the training and test sets of the ISTD and SRD have the same image distribution,
it is expected that some overfitting may have occurred. This experiment and the results are only

125

meant to convey the compatibility of DSP-FFANet as a shadow removal network. We train our
proposed network with synthetic shadows, particularly Gz, to make it more robust.

6.5.6 Comparison of DSP-FFANet on Other SR Networks Trained on Synthetic
Shadows

We compared the proposed network, DSP-FFANet, to other network architectures, such as U-Net,
BMNet, and SG-ShadowNet, trained on our proposed synthetic dataset, DLSUSynthPlaces-100K.
Visual results are shown in Figure 6.11. Images produced by DSP-FFANet have the least visual
artifacts in the shadow regions. While BMNet seems to be a viable network architecture specif-
ically designed for a shadow removal task, we speculate that the shadow-invariant color guidance
module is insufficient when using synthetic training data. A domain adaptation module may be
needed for BMNet to perform better. SG-ShadowNet fails to produce visually plausible shadow-free
images when trained purely on synthetic shadow data, as evidenced by inaccurate color results and
overexposed images in the ISTD and SRD images.

DSP-FFANet shows that it will fail to produce shadow-free images when purely synthetic
shadow datasets are used (see Synth - 100%), which is the same behavior exhibited by BMNet
and SG-ShadowNet. Thus, the shadow-matte conditioning of Gm is crucial as it guides the Gz on
producing color-accurate shadow-free images when very complex shadow regions are present. We
provide additional insights on the behavior of DSP-FFANet, BMNet, and SG-ShadowNet in Section
6.6.2 when synthetic data is used for training.

6.5.7 Identifying 3D Primitive Sets

Table 6.4: Quantitative results on ISTD and SRD datasets using different combinations of primitives
as occluders, ordered by highest PSNR. A more comprehensive breakdown of results is shown in the
appendix.

ISTD

Total
Set
Count

Primitive Set PSNR
(RGB)

RMSE
(LAB)

150 {Prism, Sphere} 34.1962 2.5226
150 {Cube, Sphere} 33.8981 2.6864
150 {Sphere} 33.6896 2.6931
600 {Cube, Sphere} 33.6037 2.6556
600 {Prism, Sphere} 33.5623 2.5092

SRD

Total
Set
Count

Primitive Set PSNR
(RGB)

RMSE
(LAB)

300 {Prism} 33.5454 2.8808
300 {Prism, Sphere} 33.4245 2.9190
150 {Sphere} 33.4172 2.8686
75 {Sphere} 33.3674 2.8502
75 {Cube, Sphere} 33.3565 2.8583

126

Figure 6.11: Visual results on the ISTD and SRD datasets of specific network architectures trained
on DLSUSynthPlaces-100K. The proposed DSP-FFANet produces the least visual artifacts while
maintaining the original color composition.

As mentioned in Section 6.3.1, we argue that shadow regions can be composed by mixing N
primitives. Here we test different datasets with various compositions of 3D primitives for generating
synthetic shadows. In computer graphics, the basic 3D shapes are triangular prisms, cubes, and
spheres. We experimented by starting with the individual primitives and then pairing them. We
intentionally omit the triplet of t.prisms, cubes, and spheres to reduce the search space because the
shadows generated are remarkably similar to t.prism/cube and sphere pairs. The top five results,

127

Figure 6.12: Visual results demonstrating the removal strengths of our model trained with different
primitive sets and number of instances. Visual results indicate that datasets using at least spheres,
and mixing them with either t.prisms or cubes, are favorable for generating good shadow-free images.

ordered by PSNR, are presented in Table 6.4. More comprehensive results and discussion are
discussed in the appendix (Section 6.6.1).

Here we report that, by minimum, using a set of spheres as occluders provide favorable results.
Mixing spheres and triangular prisms as occluders is the best combination. We show in Figure 6.12
prime examples of how the choice and quantity of primitives directly affect our proposed model’s
overall shadow removal strength. Baseline results of using either t.prisms, cubes, or spheres alone,
with a minimum of ten instances, show that shadows are already removed but still left some visual
blue tint artifacts. Further increasing the instances to 150− 300 has improved the results.

128

6.5.8 Effectiveness of 3D-Projected Primitive Occluders

Figure 6.13: A: The occluder projection method by Inoue and Yamasaki (2020). B: Our proposed
occluder projection method.

Our proposed synthetic shadow generation process is done in a fully 3D manner (Figure 6.4).
One might argue that a similar operation can be done by obtaining 2D shadow primitive masks
and randomly pasting them on image mosaics. To verify this, we conducted an experiment wherein
we considered a fixed top-down camera perspective when generating shadows akin to SynShadow’s
(Inoue & Yamasaki, 2020) proposal. We also countercheck this with their 3D mesh occluders from
AMASS and ShapeNet. See Figure 6.13 for illustration. Table 6.5 shows that using our proposed
projection method (3D) for generating shadow images and having 3D primitive occluders helped our
proposed network perform better over SynShadow. Figure 6.14 visualizes the shadow-free images
our network trained on such datasets produced.

Table 6.5: Quantitative results of DSP-FFANet comparing 3D meshes versus primitives as occlud-
ers, and 2D versus 3D based projections. Green and yellow highlights indicate first and second-best
performances.

RMSE
(LAB)

Version Occluders Projection ISTD SRD

v1 {AMASS,
ShapeNet}

Ours 2.9902 2.9717

v2 {AMASS,
ShapeNet}

Inoue and
Yamasaki
((2020))
(Inoue &
Yamasaki,
2020)

3.3183 2.9341

v3 {t.prism,
sphere}

Ours 2.7220 2.7073

v4 {t.prism,
sphere}

Inoue and
Yamasaki
((2020))
(Inoue &
Yamasaki,
2020)

3.3177 3.0159

129

Figure 6.14: ISTD and SRD results of our networks trained on different occluder and projection
configurations. Refer to Table 6.5 for details.

Leveraging the 3D features of a rendering system is also more practical because physically-
based lighting and shadow casting are simulated effectively. While Inoue and Yamasaki (2020)
rendered images from a 3D renderer, they still performed a 2D image manipulation for their shadow
attenuation. We do not need to refine the shadow images we captured from our renderer and can
use them as is. Lastly, using primitives removes the need to import large-scale 3D models, reducing
the file size when synthetically generating new shadows.

130

6.5.9 Primitive Occluders Versus SynShadow Augmentation

To strengthen our claim that primitives are suitable shadow casters, we considered another possible
alternative for diversifying occluders - augmenting SynShadow meshes. Inoue and Yamasaki (2020)
created the SynShadow dataset with only 1 - 2 random mesh occluders per image. We increase
the density of shadows per image by including multiple mesh occluders as a proposed alternative to
primitives.

Since the 3D models from AMASS and ShapeNet are typically composed of multiple vertices,
multiple overlapping instances will most likely cover a whole image which will be inconsistent with
test samples from ISTD, SRD, or USR datasets where only parts of an image have a shadow. To
avoid this issue, we propose two data augmentation strategies for SynShadow. First, we scale down
all mesh occluders to 25% of their original size. Then we fit 10 random mesh occluders per image.
We formulated another alternative where we created 64 × 64 non-empty patches from SynShadow
and used them as our occluders. Our data augmentation strategies are illustrated in Figure 6.15.

Figure 6.15: We propose a data augmentation strategy for SynShadow (Inoue & Yamasaki, 2020) and
compare it with our proposed approach of using 3D primitive occluders. A: SynShadow occlusion
step. B: We increase the number of mesh occluders from AMASS/ShapeNet and scale them down
to 25% of their original size. C: Random patches from the AMASS/ShapeNet masks are selected
as occluders.

We label the following datasets created for this experiment.

� SynShadow - The synthetic shadow dataset from Inoue and Yamasaki (2020).

� SynShadow-Scaled - Using SynShadow, we select 10 random mesh occluders and scale them
down to 25% of their original size.

� SynShadow-Spliced - Using our proposed data augmentation strategy for SynShadow, we
create different shadow shapes for each image by randomly selecting 10 mesh patches and
splicing them together.

� 3D primitives - This is our original dataset, DLSUSynthPlaces-100K using perspective camera
and 3D primitive occluders. This configuration is similar to v3 in Section 6.5.8.

131

� 2D primitives - To provide a side-by-side comparison with SynShadow, where only the choice
of the occluder is different, we also created a modified dataset where we follow SynShadow’s
top-down camera configuration and a single 2D image as foreground. Then, we replace our
3D primitives with their 2D counterparts: triangles and circles.

Table 6.6 shows the RMSE results on the ISTD and SRD datasets. We illustrate some images
in Figure 6.16. Our proposed technique of using primitives is better than SynShadow and even after
augmenting it to create varied shadow shapes. We observe that the aggregation of primitives in
creating proxy shadow casters appears more natural than the spliced version of SynShadow meshes
which may have helped train a better model. We also speculate that the aggregate form and
geometry of complex 3D models become tightly coupled with color relationships between shadow
and shadow-free images. An SR network may ignore unseen shadow regions or predict false colors,
as seen in SynShadow-Scaled and SynShadow-Spliced network variants.

Table 6.6: RMSE results of our proposed network trained on different occluder configurations. Green
and yellow highlights indicate first and second-best performances.

RMSE (LAB)

Gz(Iws, Gm(Iws))

Dataset ISTD SRD

SynShadow 3.3183 2.9341
SynShadow-Scaled 4.2195 3.4338
SynShadow-Spliced 3.6581 4.5361
3D primitives 2.7220 2.7073
2D primitives 3.3177 3.0159

132

Figure 6.16: Visual results demonstrating the performance of our model trained with different types
of occluders.

133

6.5.10 Dataset Choice for Gm Training

We conducted a small-sampled experiment to quickly identify the domain choice for training Gm.
We set the number of training samples to 10,000. Gm is trained to reconstruct the shadow matte
Ism, from a given RGB image. Ism contains information about the shadow intensities in the image.
To help identify the best training domain for Gm, we refer to the work of (Inoue & Yamasaki,
2020) and tried different variations on occluder choices, occluder projection methods, and image
domain choice. Inoue and Yamasaki ((2020)) provided the shadow masks generated by using public
3D models as occluders, specifically AMASS (Mahmood et al., 2019) and ShapeNet (Chang et al.,
2015). We used their synthetic shadow mask dataset for our ablation experiment for Gm.

Inoue and Yamasaki ((2020)) provided a detailed linear regression analysis for accurately sim-
ulating shadow intensities, based on the intensities of ISTD and SRD shadow regions. R. Guo et
al. ((2021)) (R. Guo et al., 2021) did not provide an analysis for supporting their synthetic shadow
generation process, possibly because they already have a style transfer strategy to reduce the do-
main gap between synthetic and real images. We are the first to provide an empirical approach
where we identified the best image domain for projecting the occluders. We also compared using
our proposed method of using primitives as occluders versus the use of AMASS and ShapeNet as
occluders. Lastly, we compared our proposed projection method for generating shadows versus the
projection method proposed by Inoue and Yamasaki ((2020)) (see Figure 6.13).

We itemize the different dataset configurations used for training Gm as follows:

� Dataset Ref - Recall blueprints in Section 6.3.2. This label refers to the dataset domain used
for performing the texture mapping. We report comprehensive results using Places-365, ISTD,
SRD, or USR datasets as background textures.

� Occluders - Refers to the occluder composition. (Inoue & Yamasaki, 2020) used AMASS and
ShapeNet as occluders for casting shadows. Our proposed method involved only using 3D
primitives. We also include ISTD and SRD Ism training sets for comparison.

� Occluder Projection - To generate a shadow image, we propose that the directional light
and camera position be randomized across the celestial meridian space of a given virtual
environment. (Inoue & Yamasaki, 2020) proposes a flat plane and a random single occluder,
for casting shadows. Refer to Figure 6.13 for illustration.

We show image samples from different datasets created in Figure 6.17.

We measured the perfomance of Gm trained on different datasets, using RMSE. We notice that
Gm’s performance is highly sensitive to the domain choice. Based on the results reported in Table
6.7, Gm generates better shadow-matte images when trained on datasets that were generated using
our proposed projection method and occluders, than datasets that were generated using the method
of (Inoue & Yamasaki, 2020). Simply using ISTD and SRD training sets, without any supplement of
synthetic data, as the primary domains for training Gm provide the best results. We speculate that
the model learned to identify complex shadow shapes from the ISTD or SRD training sets, which
may not be present on our proposed synthetic dataset due to using only 3D primitives. However, Gm

134

Figure 6.17: Synthetic samples of shadow and shadow-free image pairs from different datasets, for
training Gm. We compare our proposed projection and occluder method with the synthetic shadow
generation method proposed by Inoue and Yamasaki (2020), considering Places-365, ISTD, SRD,
and USR as background textures.

complements the performance of Gz which was trained purely on our proposed synthetic dataset.
This is further discussed in Section 6.5.11.

Figures 6.18 and 6.19 visualizes the ISTD and SRD results.

135

Table 6.7: Quantitative results of different Gm versions on ISTD and SRD dataset. Each Gm was
trained on a certain dataset, occluder, and projection configuration. Green and yellow highlights
indicate the 1st and 2nd best performing models.

RMSE (Grayscale)

Version Dataset Ref Occluders Projection ISTD (All) ISTD (WS)

SynShadow v1 Places {AMASS,
ShapeNet}

Ours 13.0578 7.0433

SynShadow v2.istd ISTD {AMASS,
ShapeNet}

Ours 8.0727 6.0592

SynShadow v3 Places {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

9.9338 8.4707

SynShadow v4.istd ISTD {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

8.2984 5.5603

SynShadow v5.usr USR {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

9.4148 6.7648

SynShadow v6.usr USR {AMASS,
ShapeNet}

Ours 12.6498 7.1754

Ours istd.sm ISTD {ISTD Ism} N/A 6.9902 4.3496
Ours synth.v1 Places {t.prism,

sphere}
Ours 9.0631 6.1805

Ours synth.v2 Places {t.prism,
sphere}

(Inoue & Ya-
masaki, 2020)

10.9327 4.2749

Ours synth.v3 USR {t.prism,
sphere}

(Inoue & Ya-
masaki, 2020)

9.6240 7.2670

Ours synth.v4 USR {t.prism,
sphere}

Ours 11.6672 7.3681

RMSE (Grayscale)

Version Dataset Ref Occluders Occluder
Projection

SRD (All) SRD (WS)

SynShadow v1 Places {AMASS,
ShapeNet}

Ours 15.1539 11.0621

SynShadow v2.srd SRD {AMASS,
ShapeNet}

Ours 14.1753 8.9102

SynShadow v3 Places {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

16.1792 12.6945

SynShadow v4.srd SRD {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

13.4625 8.7337

SynShadow v5.usr USR {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

11.8128 7.5791

SynShadow v6.usr USR {AMASS,
ShapeNet}

Ours 13.6756 8.5771

Ours srd.sm SRD {SRD Ism} N/A 11.8015 7.3257
Ours synth.v1 Places {t.prism,

sphere}
Ours 13.8530 9.9741

Ours synth.v2 Places {t.prism,
sphere}

(Inoue & Ya-
masaki, 2020)

11.9406 7.2081

Ours synth.v3 USR {t.prism,
sphere}

(Inoue & Ya-
masaki, 2020)

12.9890 8.7529

Ours synth.v4 USR {t.prism,
sphere}

Ours 14.8653 9.5946

136

Figure 6.18: Visual results of different Ism reconstructions produced by Gm on the ISTD dataset. We
trained Gm using synthetic shadow datasets with different projection and occluder styles, including
the shadow generation method (SynShadow) presented by Inoue and Yamasaki (2020).

137

Figure 6.19: Visual results of different Ism reconstructions produced by Gm on the SRD dataset.

138

6.5.11 Dataset Choice for Gz Training

Figure 6.20: Shadow removal results using different datasets for training Gz on the ISTD dataset.

Similar to our Gm ablation study, we analyzed the performance of different Gz variants trained
on different dataset configurations. Recall that our pipeline reconstructs the shadow-free image
by Gz(Iws, Gm(Iws)). Aside from analyzing the robustness of Gz from imperfect predictions of
shadow mattes from Gm(Iws), we want to analyze the individual performance of Gz by removing
the dependency from Gm during training, using Gz(Iws, Ism) as input. We report the results for
both Gz(Iws, Gm(Iws)) and Gz(Iws, Ism). The quantitative results are shown in Table 6.8.

It may be intriguing to the reader that directly using the ISTD Ism (Ours istd.sm) training sets
as occluders provide the best results. However, we argue that the performance of Gz overfits the
ISTD domain as directly shown for Gz(Ism, Iws) in Table 6.8. On the other hand, using the SRD
Ism (Ours srd.sm) does not provide the best results even on its domain.

In practice, results reported in Gz(Iws, Gm(Iws)) show that using Places-365 as textures, or USR
as an alternative, and using 3D primitives (Ours synth.v1), provide the best results that can work
for both ISTD and SRD datasets. Our texture mapping method complements the method proposed
by Inoue and Yamasaki (2020), due to mostly favorable performances, especially SynShadow v3 and
Ours synth.v2.

We show the generated shadow-free images in Figure 6.20 and 6.21, for the ISTD and SRD
test datasets respectively. Our proposed synthetic dataset generated using the steps mentioned

139

Figure 6.21: Shadow removal results using different datasets for training Gz on the SRD dataset.

in Section 6.3.2, effectively removes shadows, even on abstract/polygonal-shaped/curved shadow
regions.

6.5.12 Dataset Choice for Texture Mapping

In Section 6.3.2, we mentioned that a real-world image collection is used for performing texture
mapping to 3D blueprints. We recommend using Places-365 (B. Zhou et al., 2017) for the texture
mapping task, mainly due to the diverse samples. This is already evident based on the experiment
and results discussed in Section 6.5.11. To further support this claim, we performed an experiment
wherein shadow-free ISTD, SRD, or USR images were used as alternative background textures for
the blueprints. We train DSP-FFANet using {1k, 10k, 50k, 100k, 200k} image samples using the
dataset generation process described in Section 6.3.2 with either Places-365, ISTD, SRD, or USR
images. We report the 100k results for both Gz(Iws, Gm(Iws)) and Gz(Iws, Ism) in Table 6.9. The
remaining results are reported in Section 6.6.3.

Results show that using Places-365 provides the best performance while using ISTD or SRD ex-
pectedly tends to be biased towards their respective test domains. USR can be a suitable alternative
for background textures, as it also has high PSNR scores of > 30.0. Using Places-365 as the source
for texture mapping allows us to have a unified model where Gz can perform well on both ISTD
and SRD datasets, which is contrary to other shadow removal works where two separate models are
trained, one for ISTD and one for SRD (Jin et al., 2021; Cun et al., 2020).

140

6.5.13 Performance on Places-365 Dataset

During our training phase, we inject images from Places-365 as texture for our blueprints (Section
6.3.2) and then cast the shadows using primitive occluders. Due to this training methodology, DSP-
FFANet gained an interesting capability where shadows and ambient occlusions are also recognized
and removed on select Places-365 images. Thus, DSP-FFANet has the potential to perform shadow
removal on a more diverse set of images. To the best of our knowledge, we are also the first to present
shadow removal results for Places-365 when other SR methods we benchmarked only present ISTD
or SRD test sets in their papers. We illustrate notable shadow removal results in Figure 6.22 and
compare it with BMNet.

BMNet requires shadow masks when performing inference, while our proposed network only
requires a single RGB image - the Gm will reconstruct a shadow matte in guiding the shadow
removal by Gz. We discovered that using the non-zero binary masks of the input image for BMNet
can produce moderate shadow removal results. Our proposed model can generate substantially
better results, especially for outdoor scenes.

Our proposed network works best where shadow regions are caused by occluders directly behind
the camera and when there is only one directional light source (e.g., outdoor and sunny images).
Some of the de-shadowed images in Places-365 may be further improved by generating shadows on
different positions in the virtual environment and simulating some ambient occlusion and indirect
lighting.

141

Table 6.8: Quantitative results of different Gz versions on ISTD and SRD dataset. Each Gz was
trained on a certain dataset, occluder, and projection configuration. Green and yellow highlights
indicate the 1st and 2nd best performing models. Our proposed synthetic shadow generation ap-
proach produces the best results, and also complements the method proposed in Inoue and Yamasaki
(2020).

RMSE (LAB)

Gz(Iws, Gm(Iws)) Gz(Iws, Ism)

Version Dataset
Ref

Occluders Projection ISTD (All) ISTD (WS) ISTD (All) ISTD (WS)

SynShadow
v1

Places {AMASS,
ShapeNet}

Ours 2.9902 1.1541 2.6265 1.3942

SynShadow
v2.istd

ISTD {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

2.8794 1.0995 2.5260 1.3324

SynShadow
v3

Places {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

3.3183 1.2839 2.7201 1.4387

SynShadow
v4.istd

ISTD {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

2.9293 1.1098 2.3191 1.1901

SynShadow
v5.usr

USR {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

3.4432 1.2938 3.2496 1.2408

SynShadow
v6.usr

USR {AMASS,
ShapeNet}

Ours 3.5513 1.3820 3.3419 1.3262

Ours
istd.sm

ISTD {ISTD Ism} N/A 2.9028 1.0391 1.9604 0.8189

Ours
srd.sm

SRD {SRD Ism} N/A 3.0581 1.0860 2.1635 0.9231

Ours
synth.v1

Places {t.prism,
sphere}

Ours 2.7220 1.0108 2.0179 0.9193

Ours
synth.v2

Places {t.prism,
sphere}

(Inoue & Ya-
masaki, 2020)

3.3177 1.2853 2.7591 1.4646

Ours
synth.v3

USR {t.prism,
sphere}

(Inoue & Ya-
masaki, 2020)

2.8945 1.0133 2.6541 0.9515

Ours
synth.v4

USR {t.prism,
sphere}

Ours 3.2827 1.2326 3.0982 1.1831

RMSE (LAB)

Gz(Iws, Gm(Iws)) Gz(Iws, Ism)

Version Dataset
Ref

Occluders Occluder
Projection

SRD (All) SRD (WS) SRD (All) SRD (WS)

SynShadow
v1

Places {AMASS,
ShapeNet}

Ours 2.9717 1.3186 2.5016 1.2494

SynShadow
v2.srd

SRD {AMASS,
ShapeNet}

Ours 2.8845 1.2530 2.4186 1.0931

SynShadow
v3

Places {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

2.9341 1.3154 2.5739 1.2826

SynShadow
v4.srd

SRD {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

2.8579 1.2922 2.4899 1.2449

SynShadow
v5.usr

USR {AMASS,
ShapeNet}

(Inoue & Ya-
masaki, 2020)

3.2523 1.2905 3.0266 1.1691

SynShadow
v6.usr

USR {AMASS,
ShapeNet}

Ours 3.5116 1.4372 3.2971 1.3259

Ours
istd.sm

ISTD {ISTD Ism} N/A 3.9111 1.5837 3.4021 1.5504

Ours
srd.sm

SRD {SRD Ism} N/A 3.6903 1.4798 3.1801 1.4762

Ours
synth.v1

Places {t.prism,
sphere}

Ours 2.7073 1.2360 2.3230 1.1624

Ours
synth.v2

Places {t.prism,
sphere}

(Inoue & Ya-
masaki, 2020)

3.0159 1.3532 2.6584 1.3337

Ours
synth.v3

USR {t.prism,
sphere}

(Inoue & Ya-
masaki, 2020)

3.2981 1.3584 3.0797 1.2433

Ours
synth.v4

USR {t.prism,
sphere}

Ours 3.2833 1.3559 3.0596 1.2380

142

Table 6.9: Quantitative results of Gz network trained on Places-365, ISTD, SRD, or USR texture
map domain. Using Places-365 provide the best results.

ISTD (All)
Gz(Iws, Gm(Iws))

Texture Map Domain PSNR (RGB) RMSE (Lab)

Places-365 30.1313 2.8920
ISTD 28.6025 3.9222
SRD 18.8318 15.1839
USR 28.5524 4.1033

Gz(Iws, Ism)

Texture Map Domain PSNR (RGB) RMSE (Lab)

Places-365 34.3601 2.5146
ISTD 31.7329 3.5623
SRD 24.1281 15.1190
USR 31.5702 3.6984

SRD (All)
Gz(Iws, Gm(Iws))

Texture Map Domain PSNR (RGB) RMSE (Lab)

Places-365 31.1536 2.9739
ISTD 31.1094 2.9563
SRD 21.0004 11.4452
USR 30.7307 3.1702

Gz(Iws, Ism)

Texture Map Domain PSNR (RGB) RMSE (Lab)

Places-365 33.7698 2.7724
ISTD 33.7410 2.7471
SRD 21.0502 11.5672
USR 33.3160 2.9663

143

Figure 6.22: Visual results demonstrating the capability of DSP-FFANet in removing shadows in
Places-365 images. The network can be further refined by providing more shadow examples and
some ambient occlusion implemented in the virtual environment.

144

6.5.14 Strengths and Limitations

The core strength of our work is the effectiveness of using DLSUSynthPlaces-100K as training data
for the shadow removal network DSP-FFANet despite using only 3D primitives as occluders. Our
approach can produce high-quality shadow-free images where shadow regions are almost indistin-
guishable, especially on inputs with moderate exposure/brightness. We showcase examples of our
method working exceptionally well on some images in the ISTD (Figure 6.23) and SRD (Figure
6.24). We provide side-by-side comparisons between our proposed method, BMNet, which utilized
real training data, and SynShadow SP+M, and SynShadow DHAN, which utilized synthetic training
data.

Our proposed dataset and network have the potential to generalize well on unseen images, as
demonstrated in Section 6.5.13.

Figure 6.23: Visual results showcasing the strengths of our proposed method on ISTD. Our method
can produce some shadow-free images where shadow regions are almost indistinguishable.

Our method’s major limitation is its limited de-shadowing capability, on images that have high
brightness/exposure. We show some examples of this in Figure 6.25. Notice that these images have
a strong contrast between the shadow and non-shadow regions. Our network tends to hallucinate
incorrect colors on the said regions. A promising remedy is to include a simulation of camera
exposure in the rendering environment when synthesizing shadows.

145

Figure 6.24: Visual results showcasing the strengths of our proposed method on SRD.

Figure 6.25: Limitations of our approach. Our network tends to hallucinate incorrect colors on
the shadow regions, on images that are overly bright/exposed. It also fails on images with strong
contrast between shadow and non-shadow regions.

146

6.6 Supplementary Experiments

Additional experiments conducted for this study are placed here.

6.6.1 Comprehensive Experiment on 3D Primitive Sets

We explored different configurations for generating synthetic shadows from 3D primitive sets. We
focused on the following 3D primitive combinations as they are the most basic 3D shapes in computer
graphics: triangular prisms (t.prisms), spheres, and cubes. We experimented by starting with the
individual primitives and then pairing them with one another. We intentionally omit the triplet of
prisms, cubes, and spheres to reduce the search space because the shadows generated are remarkably
similar to prism/cube and sphere pairs. We iteratively explored how many instances are needed
for a given primitive set by starting with 10 to 20 instances. We further explored increasing the
number of instances until we noticed significant deviations from PSNR (±2.0) and RMSE (±0.2)
were observed at approximately 75 instances. We doubled the number of instances until we saw the
PSNR and RMSE metrics no longer improve, which is at 600 instances.

Table 6.10 and 6.11 shows the ISTD and SRD performances of Gz trained on several datasets
with different combinations of 3D primitive occluder sets used for synthetically generating shadows.
Quantitative results show marginal differences across different combinations for ISTD (std dev -
0.3090 LAB RMSE) and SRD (std dev - 0.1031 LAB RMSE) datasets, and then best performances
are consistently achieved on both datasets when spheres are present in the primitive sets. For the
ISTD dataset, the number of primitives matters as the high performance was achieved when there
are 150 total primitive instances - 75 prisms + 75 spheres. For the SRD dataset, a somewhat similar
outcome is happening where 300 primitive instances provide the best PSNR results.

Discussed in Section 6.3.2, Sintensity is the shadow intensity, and its uniformly randomized
between [0.4, 0.95] to simulate soft shadows.

147

Table 6.10: Quantitative results of Gz performance on the ISTD datasets. Each Gz was trained
on different datasets with a varying number of primitives and types. Green and yellow highlights
indicate the first and second-best performances.

ISTD (All)

Dataset Ref Total Set Count Primitive Set PSNR (RGB) RMSE (LAB)

Places 10 {Sphere} 32.6673 2.7274
10 {Prism} 33.0120 2.6614

Sintensity 10 {Prism, Sphere} 32.6972 2.8216
[0.4, 0.95] 10 {Cube} 32.1533 3.0265

10 {Cube, Sphere} 33.1460 2.5981
10 {Cube, Prism} 32.5502 2.8293
20 {Sphere} 32.9113 2.6351
20 {Prism} 31.9357 3.0045
20 {Prism, Sphere} 32.0852 2.9878
20 {Cube} 32.1336 3.0354
20 {Cube, Sphere} 32.5061 2.7694
20 {Cube, Prism} 32.3046 2.9027
75 {Sphere} 31.3476 3.5871
75 {Prism} 32.0751 2.9673
75 {Prism, Sphere} 32.9071 3.0296
75 {Cube} 31.0102 3.7171
75 {Cube, Sphere} 31.1400 3.5612
75 {Cube, Prism} 31.8898 3.1877

150 {Sphere} 33.6896 2.6931
150 {Prism} 33.4815 2.7653
150 {Prism, Sphere} 34.1962 2.5226
150 {Cube} 33.2046 2.8319
150 {Cube, Sphere} 33.8981 2.6864
150 {Cube, Prism} 33.4562 2.7181
300 {Sphere} 32.1270 3.1013
300 {Prism} 33.3320 2.8228
300 {Prism, Sphere} 33.5515 2.7687
300 {Cube} 32.2676 3.1376
300 {Cube, Sphere} 30.8408 3.6560
300 {Cube, Prism} 33.2749 2.7404
600 {Sphere} 32.9709 2.8189
600 {Prism} 33.0102 2.9270
600 {Prism, Sphere} 33.5623 2.5092
600 {Cube} 32.6886 2.6520
600 {Cube, Sphere} 33.6037 2.6556
600 {Cube, Prism} 32.3313 2.8407

Mean 32.6655 2.9138
Std dev 0.8227 0.3067

148

Table 6.11: Quantitative results of Gz performance on the SRD datasets. Each Gz was trained
on different datasets with a varying number of primitives and types. Green and yellow highlights
indicate the first and second-best performances.

SRD (All)

Dataset Ref Total Set Count Primitive Set PSNR (RGB) RMSE (LAB)

Places 10 {Sphere} 29.9498 3.1001
10 {Prism} 30.2555 2.9203

Sintensity 10 {Prism, Sphere} 30.1161 2.9907
[0.4, 0.95] 10 {Cube} 30.0325 3.0589

10 {Cube, Sphere} 30.1078 3.0230
10 {Cube, Prism} 29.9417 3.1125
20 {Sphere} 30.4707 2.7687
20 {Prism} 29.9802 3.0758
20 {Prism, Sphere} 29.9266 3.0993
20 {Cube} 29.9909 3.0835
20 {Cube, Sphere} 30.0311 3.0312
20 {Cube, Prism} 29.9737 3.0597
75 {Sphere} 33.3674 2.8502
75 {Prism} 30.7953 2.9406
75 {Prism, Sphere} 32.9133 3.0039
75 {Cube} 32.6308 3.1805
75 {Cube, Sphere} 33.3565 2.8583
75 {Cube, Prism} 33.1791 2.9127

150 {Sphere} 33.4172 2.8686
150 {Prism} 32.9884 3.0305
150 {Prism, Sphere} 33.0214 3.0220
150 {Cube} 32.6806 3.1413
150 {Cube, Sphere} 32.9095 3.1424
150 {Cube, Prism} 33.1851 2.9821
300 {Sphere} 32.7396 3.0882
300 {Prism} 33.5454 2.8808
300 {Prism, Sphere} 33.4245 2.9190
300 {Cube} 33.0658 2.9458
300 {Cube, Sphere} 32.8908 3.0914
300 {Cube, Prism} 33.3051 2.9345
600 {Sphere} 32.6599 3.1253
600 {Prism} 33.0590 2.9205
600 {Prism, Sphere} 33.1779 2.9500
600 {Cube} 33.0595 3.0155
600 {Cube, Sphere} 32.3690 3.2180
600 {Cube, Prism} 33.0685 3.0118

Mean 31.9885 3.0099
Std dev 1.4508 0.1031

149

6.6.2 Observations on DSP-FFANet, BMNet, and SG-ShadowNet’s Training
Behavior

Table 6.12: Quantitative results on ISTD and SRD, across different epochs of DSP-FFANet, BMNet,
and SG-ShadowNet. Arrows indicate the upward/downward performance change from the previous
epoch. The mentioned networks uses DLSUSynthPlaces-100K as training data. Green and yellow
highlights indicate the first and second-best performances. Results show that DSP-FFANet is the
best network for training DLSUSynthPlaces-100K, that also works well when real shadow images
are used for inference.

ISTD (All) SRD (All)
PSNR (RGB) RMSE (LAB) PSNR (RGB) RMSE (LAB)

Model Size Model Type 10th epoch 10th epoch

431.5K BMNet 20.5091 7.2084 22.3002 5.4386
6.17M SG-ShadowNet 7.4581 23.9002 13.8395 12.7882
1.67M DSP-FFANet (Ours) 29.1700 4.5227 27.4223 4.3764

20th epoch 20th epoch

BMNet ↑ 20.6277 ↓ 7.1381 ↑ 22.9536 ↓ 5.0645
SG-ShadowNet ↓ 7.4096 ↑ 24.0072 ↑ 13.8653 ↓ 12.7009
DSP-FFANet (Ours) ↑ 29.9640 ↓ 3.9613 ↑ 29.9671 ↓ 3.3786

30th epoch 30th epoch

BMNet ↓ 20.5007 ↑ 7.4328 ↑ 23.1482 ↑ 5.1183
SG-ShadowNet ↑ 10.1299 ↓ 19.1157 ↑ 14.8517 ↓ 11.7526
DSP-FFANet (Ours) ↓ 29.0842 ↑ 4.3780 ↓ 29.8300 ↑ 3.4946

60th epoch 60th epoch

BMNet ↓ 20.2930 ↑ 7.6208 ↑ 23.4649 ↓ 5.0186
SG-ShadowNet ↓ 7.6477 ↑ 23.394 ↓ 14.1638 ↑ 12.3025
DSP-FFANet (Ours) ↑ 29.9908 ↓ 3.8901 ↑ 30.0570 ↓ 3.3622

We experimented on the ideal number of epochs required for DSP-FFANet to produce ac-
ceptable results and compared the performance per K = {10, 20, 30, 60} epochs on BMNet and
SG-ShadowNet, trained on DLSUSynthPlaces-100K. We trained on a subset of DLSUSynthPlaces-
100K with 10, 000 samples for this experiment Quantitative results for ISTD and SRD are shown
in Table 6.12. Visual results for select ISTD and SRD images are shown in Figure 6.26 and 6.27.

DSP-FFANet seems to be the best network for training DLSUSynthPlaces-100K, which also
works well when real-world shadow images are used for inference. The results further support our
recommendation to use DSP-FFANetwhen training on our proposed synthetic data, or an FFA-
Net-based model, over other shadow removal networks. BMNet could be a secondary choice as it
manages to remove shadows but also changes the overall color composition of the image. In SG-
ShadowNet, it fails to remove shadows while leaving color artifacts. Substantial modifications in the
network architecture of SG-ShadowNet must be performed to be compatible with training synthetic
data.

Training DSP-FFANet for 60 epochs achieves the best results for a small sample of 10, 000.
However, this is no longer practical when the entire training set of DLSUSynthPlaces-100K is used.

150

Figure 6.26: Visual results of network variants on ISTD dataset, and their corresponding perfor-
mances across 10, 20, 30, and 60 epochs of training. Only DSP-FFANet and BMNet are stable
throughout the training duration.

The performance is already acceptable around the 20th epoch, which provides the second-best
performance. We show image results in Figure 6.26 and 6.27, where DSP-FFANet already produces
the most negligible visual artifacts around the 10th to the 20th epoch. Further training already results

151

Figure 6.27: Visual results of network variants on SRD dataset, and their corresponding perfor-
mances across 10, 20, 30, and 60 epochs of training. Only DSP-FFANet and BMNet are stable
throughout the training duration.

in some overfitting, as evidenced by the blue tint artifacts generated in the shadow-free images.

152

6.6.3 Additional Experiments: Dataset Choice for Texture Mapping

As mentioned in Section 6.3.2, we sampled textures from a real-world image collection and performed
texture mapping to 3D blueprints. This section provides additional experiments that helped us
determine the ideal domain choice for our textures. Inoue and Yamasaki (2020) used USR as
textures for generating synthetic shadows. In our study, we explored the following choices: Places-
365, ISTD, SRD, and USR. The images are randomly loaded as textures onto blueprints for every
frame pass. Thus, the variation of textures is directly proportional to the total number of frames
captured from the virtual environment. We trained DSP-FFANet using {1k, 10k, 50k, 100k, 200k}
image samples directly captured from the virtual environment with either Places-365, ISTD, SRD,
or USR images. We report the results in Table 6.13.

Table 6.13: Quantitative results on ISTD and SRD datasets, using our model trained on different
texture domains and quantity of samples. Green and yellow highlights indicate the first and second-
best performances.

ISTD (All) SRD (All)

Dataset Ref Samples PSNR (RGB) RMSE (LAB) PSNR (RGB) RMSE (LAB)

Places 1,000 31.7459 3.4363 32.0031 3.1171
10,000 30.3653 3.6903 29.9268 3.7644
50,000 28.4333 3.5269 29.8493 3.4057

100,000 34.3601 2.5146 33.7698 2.7724
200,000 32.2304 3.3673 33.4385 2.8440

Mean 31.4270 3.3071 31.7975 3.1807
Std dev 1.9718 0.4107 1.6685 0.3675

ISTD 1,000 30.8076 3.6226 30.5157 3.5545
10,000 31.4516 3.6363 33.4301 2.7702
50,000 31.6432 3.6069 33.7591 2.7317

100,000 31.7329 2.9529 33.7410 2.7471
200,000 31.7357 3.5627 33.2854 2.8698

Mean 31.4742 3.4763 32.9463 2.9347
Std dev 0.3489 0.2629 1.2287 0.3136

SRD 1,000 21.6018 11.7482 23.7572 8.8305
10,000 19.4040 14.4605 21.4553 11.1523
50,000 29.5851 18.4999 19.1696 20.0689

100,000 24.1281 15.1190 21.0502 11.5672
200,000 32.4604 3.2142 33.3514 2.9042

Mean 25.4359 12.6084 23.7567 10.9046
Std dev 4.8858 5.1659 5.0144 5.5280

USR 1,000 29.9552 4.0957 30.1349 3.7363
10,000 32.8199 3.0539 32.7853 3.1049
50,000 32.4292 3.2464 32.9667 3.0699

100,000 31.5702 3.6984 33.3160 2.9663
200,000 31.4322 3.6806 33.0676 3.0131

Mean 31.6413 3.5550 32.4541 3.1781
Std dev 0.9901 0.3674 1.1722 0.2831

As shown in Table 6.13, Places-365 is the best domain choice for texture mapping. It is also
the only dataset that does not have explicit shadow-free images. 100k samples appear to be the
best quantity for training DSP-FFANet. It is practical to keep the number of samples up to 100k,

153

as additional samples no longer increase performance. Interestingly, using SRD as a domain choice
led to poor results due to highly tinted colors generated by DSP-FFANet. We suspected the SRD
dataset consists of overlapping scenes with limited light and color distribution. The USR and ISTD
datasets can be alternative texture choices because more diverse scenes exist. We visualize the lowest
and best-performing domains in Figure 6.28. It is visually evident that DSP-FFANet trained using
Places-100k produces the least visual artifacts while maintaining the image’s overall color.

When new domains for shadow removal are needed, our proposed synthetic shadow generation
process can be used to generate an arbitrary number of new images as needed. Future researchers
could refer to Table 6.13 as a reference for the number of samples needed for training a shadow
removal network.

Figure 6.28: Visual ISTD and SRD results of the lowest and best-performing domains. DSP-FFANet
trained on Places-100k produces the least visual artifacts.

154

6.6.4 Comparing Performance of 1-Channel and 3-Channel Shadow Mattes

Equation 8.2 derives Ism shadow mattes as a subtractive term, given any paired shadow and shadow-
free images. Using a 3-channel shadow matte may be a straightforward solution as we can simply
invert Equation 8.2 to derive the shadow-free image if Ism is already available as is. We conducted
a training experiment to investigate if this approach is viable. We train Gm, with either its ISTD
Ism 1-channel (istd.sm) or 3-channel counterpart (istd.sm-3), as well as our proposed synthetic
dataset’s 1-channel (synth.v1) and 3-channel shadow mattes (synth.v1-3), using t.prisms and spheres
as occluders. We train the networks with fixed 5k samples and 40 epochs and report the best-
performing epoch. We report the ISTD performance on Table 6.14.

Table 6.14 shows that networks trained using the 3-channel shadow-mattes cannot reconstruct
them properly, possibly due to additional pixel information that needs to be inferred, which may
be beyond the network capability of DSP-FFANet. It is ideal for our training pipeline to first
identify shadow regions effectively through Gm reconstructing 1-channel Ism, and then feeding this
information to Gz, which allows Gz to de-shadow images effectively. We show some examples in
Figure 6.29 on ISTD images.

Table 6.14: Quantitative results on ISTD, comparing 1-channel and 3-channel Ism predictions of
Gm.

RMSE

Version Dataset
Ref

Channels Projection ISTD
(All)

ISTD
(WS)

istd.sm ISTD 1 {ISTD
Ism}

2.5982 0.9234

istd.sm-3 3 4.2069 2.3063
synth.v1 Places 1 {t.prism,

sphere}
11.1886 8.1372

synth.v1-3 3 32.2892 9.1870

Figure 6.29: Visual ISTD results produced by Gm trained using 1-channel or 3-channel Ism. Gm

trained on 1-channel Ism easily converges and produces very accurate Ism images as compared to
its 3-channel counterpart.

155

6.7 Conclusion

This study presents a straightforward method of creating synthetic shadows in a 3D virtual envi-
ronment using only 3D primitives. Our experiments show that multiple t.prisms as occluders are
sufficient for synthesizing shadows. Our results show that despite the simplicity of our dataset gen-
eration process, we have trained a shadow removal network, based on FFA-Net (Qin et al., 2020),
that performs competitively against other state-of-the-art methods, including methods trained on
real-world training images. Lastly, we have made available the synthetic shadow removal dataset,
DLSUSynthPlaces-100K, for encouraging future shadow removal works using synthetic images.

156

Chapter 7

Intrinsic Image Decomposition

We propose an intrinsic image decomposition approach: synthetic images come from a 3D-rendered
scene. A physically-based rendered scene would have intrinsics like reflectance (albedo maps), shad-
ing, surface normals, and depth maps that could be used to assemble a dataset for decomposing
images into their intrinsic counterparts. This chapter aims to create a framework for decomposing
a real-world RGB image into its reflectance/albedo and shading properties, which is given as A · S
in literature. We explore decomposing S into direct and indirect lighting maps by shadow removal.

7.1 Overview

Intrinsic image decomposition (IID) is a technique for separating an image into reflectance (color
of the object) and shading (illumination effects), where reflectance remains constant regardless of
viewpoint and lighting conditions. In contrast, shading varies based on viewpoint and object geom-
etry, including shadows, shading, and inter-reflections (Garces et al., 2022; Baslamisli et al., 2018).
IID has many applications in the field of computer vision. For example, shading components can aid
in reconstructing 3D models from input images because shading components contain geometry cues,
primarily how light, shadow, and inter-reflections are represented (Oliensis & Dupuis, 1993; Kimmel
& Sethian, 2001; Henderson & Ferrari, 2020; Niemeyer & Geiger, 2021; Gao, Shen, et al., 2022).
Several works also complement shading components with surface normals. Albedo maps/reflectance
images can benefit semantic segmentation and object recognition algorithms (Nadimi & Bhanu,
2004; Gupta, Arbeláez, Girshick, & Malik, 2015; Pinto et al., 2020; Yin, Zhou, & Krahenbuhl,
2021) as these images do not have light and illumination effects as potential noise. Intrinsic images
also have a wide range of computational photography applications, such as image editing, texture
remapping, material recoloring, and image stylization.

In this chapter, we are proposing a revised IID model wherein shadow maps are further separated
from the shading components. This proposed approach allows additional image control, such as
shadow map editing and removal. Figure 7.1 illustrates our proposed framework for a revised IID
model that considers separating shadows from the shading components.

Recent IID methods mostly use supervised deep learning techniques, such as convolutional neural

157

Figure 7.1: Our proposed intrinsic image decomposition model. An RGB image is decomposed into
A ·S. We propose decomposing S into two components for more fine-tuning: Sno shadow and Sshadow.

networks, autoencoders, and conditional adversarial networks. Z. Wang and Lu (2019) proposed
a discriminative feature encoding for enhancing the separation of albedo and shading components
from an input image. Y. Zhu, Tang, Li, and Shi (2021) proposed DeRenderNet, a deep CNN
trained in a self-supervised manner, using RGB images and albedo maps extracted from video game
scenes. P. Das, Karaoglu, and Gevers (2022) proposed using physics-based cues via cross colour
ratios (Gevers & Smeulders, 1999) for enhancing reflectance reconstructions.

Y. Liu, Li, You, and Lu (2020) appears to pioneer unsupervised deep learning for IID. Without
any labeled data, they mix different datasets where each domain consists of strong and reliant prior
information: natural image priors, reflectance priors, and shading priors. To further enhance the
performance of IID networks trained with unpaired data, Sato et al. (2023) proposed using LIDAR
intensities as additional input for guiding the reflectance and shading predictions. Y. Liu and Lu
(2020) devised another unsupervised image-to-image translation for IID, using assumptions about
shared data distribution for image domains A and S.

Our proposed framework is inspired by recent image relighting methods that employ neural
radiance fields (Mildenhall et al., 2021; C.-H. Lin, Ma, Torralba, & Lucey, 2021; Yan, Li, & Lee,
2023; S. Yang et al., 2023), ray-marching (Griffiths et al., 2022; J. Zhu et al., 2023), or global
illumination (Meka et al., 2021; Z. Li, Shi, et al., 2022). Most of the methods have additional
priors for training an inverse rendering network, such as using surface normals (Z. Li, Shi, et al.,
2022; J. Zhu et al., 2023; Y. Zhu, Zhang, et al., 2021; S. Yang et al., 2023), image depth (Y. Zhu,
Zhang, et al., 2021; Z. Li, Shi, et al., 2022; Griffiths et al., 2022), and spherical harmonic lighting
information (Y. Zhu, Zhang, et al., 2021; Tang et al., 2022). By decomposing an RGB image into
more fine-grained characteristics, more image manipulation is possible, such as material editing,
image relighting, and shadow removal.

This chapter presents the initial results of our proposed network architecture that decomposes
RGB images into albedo, normals, and depth. Some discussions and future tasks are described on
how this study will continue.

7.2 Related Work

Intrinsic image decomposition methods are first discussed, followed by datasets used for training
and testing IID networks.

158

7.2.1 IID: Intrinsic Image Decomposition

Classical IID produces reflectance/albedo and shading maps from RGB images. Bonneel, Kovacs,
Paris, and Bala (2017) is observed to be the first method to decompose a single RGB image. Other
earlier approaches consider multiple input images from different viewpoints (Hauagge, Wehrwein,
Upchurch, Bala, & Snavely, 2014), varying illumination (J. Yu, 2016; Lettry, Vanhoey, & Van Gool,
2018), or depth maps (Q. Chen & Koltun, 2013). More recent methods move away from single image
IID and reconsider more priors when training IID networks to improve further the results, such as
using normal maps (Ripas & Fernandes, 2023), illumination/lighting cues (Z. Guo, Zheng, Jiang,
Gu, & Zheng, 2021; Y. Zhu, Zhang, et al., 2021; Tang et al., 2022), and geometry cues (J. Zhu et
al., 2023). Most methods assume that any image has been captured from a Lambertian scene to
simplify significantly the prediction of reflectance maps (Narihira, Maire, & Yu, 2015). Lambertian
scenes assume that surface colors are constant in all directions (diffuse), and the observed light does
not depend on the viewpoint (Garces et al., 2022). For example, images captured from a mobile
camera with a flashlight are not Lambertian scenes. Thus, an RGB image can be decomposed into
A · S, where A is the base color and texture of the objects in the scene, while S contains all the
shading variations w.r.t light (Garces et al., 2022).

7.2.2 IID Datasets

Figure 7.2: Examples of IID datasets available.

Figure 7.2 shows the different IID datasets typically used for training IID, image relighting, and
image editing networks. Some IID datasets comprise individual 3D-scanned or 3D-rendered objects
captured under varying light sources, such as the MIT Intrinsic dataset(Grosse, Johnson, Adelson,

159

& Freeman, 2009) and ShapeNet (J. Shi, Dong, Su, & Yu, 2017). Other datasets are synthetic
scenes created inside rendering systems where complete albedo maps, surface normals, and depth
are produced from GPU frame buffers. We provide a summarized list of public datasets in Table
7.1 for discussion.

Table 7.1: Summary of datasets observed in the literature of deep learning IID approaches. All
datasets are available to the public.

Dataset Samples Setting Synthetic/Real Illumination Labeling

MIT Intrinsics (Grosse et
al., 2009)

220 Object Real Single light Sparse

ShapeNet (J. Shi et al.,
2017)

2M+ Object Real Single light Sparse

IIW (Bell, Bala, & Snavely,
2014)

5230 Indoor Scene Real Spatially
varying

Sparse

SAW (Kovacs, Bell,
Snavely, & Bala, 2017)

6677 Indoor Scene Real Spatially
varying

Sparse

BigTime (Z. Li & Snavely,
2018b)

6.5K Indoor/Outdoor Scene Real Spatially
varying

Full

MPI Sintel (Butler, Wulff,
Stanley, & Black, 2012)

890 Animated Film Synthetic Spatially
varying

Sparse

CGIntrincs (Z. Li &
Snavely, 2018a)

20K Indoor Scene Synthetic Spatially
varying

Full

SOLID-Img (Y. Zhu,
Zhang, et al., 2021)

38K Outdoor Scene Synthetic Spatially
varying

Full

HyperSim (Roberts et al.,
2021)

77K+ Indoor Scene Synthetic Spatially
varying

Full

GTA-IID (Krähenbühl,
2018)

220K Outdoor Scene Synthetic Spatially
varying

Full

VIDIT (El Helou, Zhou,
Barthas, & Süsstrunk,
2020)

15K+ Outdoor Scene Synthetic Single light Sparse

Virtual KITTI (Gaidon,
Wang, Cabon, & Vig,
2016b)

21K+ Outdoor Scene Synthetic Spatially
varying

Sparse

DLSU-IID (Proposed) 100K Outdoor Scene Synthetic Spatially
varying

Full

The MIT Intrinsic dataset is among the first datasets used for IID techniques. It contains
real images of 20 3D objects scanned under varying lighting conditions. It has the ground truth
albedo and shading maps. There are a total of 220 samples. The ShapeNet is quite similar to
the MIT Intrinsic dataset, containing more 3D objects, although they are synthetic ones. It has
4000 samples of different object classes and was rendered in a physically-based rendering engine,
Mitsuba Renderer (Jakob, 2010). As Garces et al. (2022) has pointed out, several researchers have
rendered many virtual scenes using the ShapeNet dataset, potentially having around 2M+ samples.
However, several authors did not publish the rendered scenes, so the potential of using ShapeNet as
a dataset for IID training is limited. Only MIT Intrinsics and ShapeNet datasets were observed to
only contain single objects per image.

Robust intrinsic image decomposition methods should be able to identify the intrinsic images
on different types of scenes (Garces et al., 2022). Indoor images are generally easier to gather
and validate the intrinsic maps because the appearance of textures and materials on objects do
not change dramatically. There is typically only one light source (e.g., overhead light, window, or
lamp) illuminating the scene. On the other hand, outdoor images are difficult to collect because
they are subject to varying lighting and weather conditions which can dramatically change the
appearance of the object’s materials. A common approach for gathering real-world outdoor images

160

is to record these from surveillance cameras. The average of all images is the reflectance of the
overall scene (Z. Li & Snavely, 2018b; A. Liu, Ginosar, Zhou, Efros, & Snavely, 2020). Most
complex datasets are synthetically rendered in a virtual environment, allowing fine-grained control
of materials, objects, and lighting conditions. The main challenge of such synthetic datasets is to
make them as photorealistic as possible or perform domain adaptation strategies so that a trained
IID network could also perform well in real-world scenes.

The MPI Sintel (Butler et al., 2012) is an animated film initially designed for optical flow
evaluation. Fortunately, the MPI Sintel dataset contains albedo samples, making it also helpful in
benchmarking intrinsic decomposition techniques. It includes 890 images from 18 scenes. Modern
IID works no longer use MPI Sintel as training data and instead use it for evaluating their methods.

The IIW (Bell et al., 2014) and SAW (Kovacs et al., 2017) datasets are large-scale real-
world images where reflectance maps were created based on human judgments and labeling via
crowdsourcing. It is mainly composed of indoor scenes of 5000 images. The creators of these datasets
provided a new evaluation metric for IID methods, namely the Weighted Human Disagreement
(WHDR). Although both datasets have sparse labeling due to varying numbers of annotations per
image, this dataset is commonly used for benchmarking.

The CGIntrinsics (Z. Li & Snavely, 2018a) is a popular dataset for IID because of its highly
photorealistic renders using physically-based global illumination. It is an indoor scene, using 3D
models and textures from the SUNCG dataset (Song et al., 2017). The authors train an IID network
mixed with IIW and SAW datasets and report competitive performance on real-world scenes. The
CGIntrinsics dataset contains 20K RGB and albedo images. Due to the vast number of samples,
many IID methods (Sengupta et al., 2019; H. Zhou et al., 2019; Z. Li, Shafiei, Ramamoorthi,
Sunkavalli, & Chandraker, 2020; Y. Liu et al., 2020; Z. Wang, Philion, Fidler, & Kautz, 2021) train
on CGIntrinsics dataset. A test split has also been provided.

The BigTime (Z. Li & Snavely, 2018b) dataset contains image sequences of both indoor and
outdoor scenes. The timelapse sequences cause varying illumination to be captured. Moving objects
were masked out so only the sky and other lighting conditions were recorded. It contains a total of
6500 images.

The SOLID-Img dataset is a synthetic urban city dataset for spatially-varying outdoor lighting
estimation (Y. Zhu, Zhang, et al., 2021). A 3D city scene is procedurally generated in Blender, using
physically-based surface materials with diffuse and roughness properties. HDR environment maps
from HDRI Haven (Haven, 2021) were utilized to create realistic ambient lighting. The SOLID-Img
dataset contains 38000 images. Unfortunately, the authors did not publicly disclose this dataset,
limiting its reusability.

The HyperSim (Roberts et al., 2021) dataset is an indoor scene dataset of highly photorealistic
quality, similar to CGIntrinsics. In HyperSim, additional intrinsic maps, such as diffuse and specular
light maps, were included. It contains 77,400 images of 461 indoor scenes. The indoor scenes were
randomly assembled from public 3D models. Semantic object labels were created using an interactive
mesh annotation tool that the authors have created.

TheVIDIT (El Helou et al., 2020), Virtual Image Dataset for Illumination Transfer, is a dataset
used for the annual ECCV relighting challenge that started in 2020. Participants use this dataset for

161

training and testing, on a one-to-one or any-to-any illumination transfer, or for lighting estimation.
Recent image relighting methods use VIDIT as training data, although it has limited acceptable
performance on real-world data (Z. Guo et al., 2021; H.-H. Yang, Chen, Luo, & Kuo, 2021; Y. Wang,
Lu, Zhang, & Wu, 2021).

The GTA-IID is a dataset used by DeRenderNet (Y. Zhu, Tang, et al., 2021), emphasizing
shape-independent shading for further improving the decomposition results. The dataset contains
albedo and depth maps gathered by extracting the deferred rendering buffers using DirectX API
via shader injection (Krähenbühl, 2018). It has approximately 200,000 paired images of RGB,
albedo, and depth. While this is vast, the camera is fixed on the first person, limiting the variety of
perspectives.

Our proposed dataset, DLSU-IID, is an urban city scene with 100,000 images. The main
advantage of our dataset is the inclusion of multiple intrinsic maps for opportunities for fine-grained
image relighting and inverse rendering. Inspired byHyperSim, we captured the specular and diffuse
lighting information. Shadow maps are produced by subtracting between the RGB images with cast
shadows enabled and the RGB images without the shadows. Unlike GTA-IID, we randomize our
city layout and camera positions to diversify the lighting conditions and views.

7.3 DLSU-IID: A Dataset for City Intrinsics

Figure 7.3: The current dataset generation process of DLSU-IID. The city scene layout is random-
ized, and directional lights are randomized. Several intrinsic maps are saved for training an IID
network.

Figure 7.3 shows the dataset generation process. We first spawn an initial city scene, Dcity, using

162

a procedural city generation API (MasterPixel3D, 2021). The city layout of Dcity is randomized
every M frames to provide a new set of city views. We employ a single directional light and
perspective camera, which we randomize its position along the celestial meridian space every frame.
Similar to our light randomization discussed in our shadow removal chapter (Chapter 6), we use
black body illuminant color palettes provided by Hastings-Trew (2021) for sampling the color of our
single directional light. The city is procedurally generated using grammar rules and API provided
by Fantastic City Generator (MasterPixel3D, 2021). The scene is rendered using Unity Engine with
High Dynamic Render Pipeline (HDRP) enabled. We provide a pseudocode for our proposed dataset
generation method in Algorithm 2. Randomization of variables follows a uniform distribution.

input : Nimage = required image samples
Dcity = procedurally-generated city
M = M frames needed for generating a new Dcity

K = perspective camera
L = directional light
Lpalette = light color palette taken from (Hastings-Trew, 2021)

output : Irgb ws, Irgb ns, Ia, Idepth, Inormal, Idiffuse, Ispecular = set of intrinsic images of size Nimage

1 for i← 0 to Nimage do
2 if i mod M = 0 then
3 Re-generate Dcity with the following parameters: small layout, no vehicles, high-rise building spawn

frequency between [50%, 100%];

4 end

5 Randomize L angle with range [15◦, 170◦];
6 Randomize L intensity with range [0.1, 1.2];
7 Randomly pick color of L from Lpalette;
8 Randomize K angle with range [15◦, 170◦];

9 Append K screen view and output buffer views: albedo, depth, and normals, to Irgb ws, Ia, Idepth, Inormal;
10 Disable all shadows rendered in K;
11 Append K screen view and output buffer views: diffuse and specular, to Irgb ns, Idiffuse, Ispecular;
12 Enable all shadows rendered in K;
13 end
14 return Irgb ws, Irgb ns, Ia, Idepth, Inormal, Idiffuse, Ispecular

Algorithm 2: DLSU-IID generation and gathering

The Unity HDRP features allow the saving of arbitrary output variables (AOV) from any virtual
camera. It contains the graphics buffer views, such as albedo, depth, smoothness, and surface
normals (Unity, 2023). We capture the following as part of the dataset: albedo, depth, normal,
diffuse, and specular lighting maps. For us to generate shadow maps later on, we save the RGB
images containing cast shadows (Irgb ws) and RGB images without them (Irgb ns).

163

7.4 Network Design for Intrinsic Image Decomposition using DLSU-
IID

We devise a supervised image-to-image (I2I) translation network for constructing the intrinsic maps
- named DLSU-IIDNet. We designed individual I2I networks for the inference of albedo maps,
depth maps, and surface normals, namely Ga, Gd, and Gn, respectively. Each generator has a
corresponding discriminator, Da, Dd, Dn, trained in an adversarial manner. During training phase,
N training samples of {Irgb, Ialbedo, Idepth, Inormal} are used as input to Ga, Gd and Gn and their
assigned discriminators. We illustrate our network architecture in Figure 7.4.

Figure 7.4: Current network architecture using DLSU-IID as training set.

The full training objective for DLSU-IIDNet is given as:

L(Ga, Da, Gd, Dd, Gn, Dn) = Lalbedo
adv (Ga, Da) + Ldepth

adv (Gd, Dd) + Lnormal
adv (Gn, Dn)+

Lalbedo
pixel (Ga) + Ldepth

pixel (Gd) + Lnormal
pixel (Gn) (7.1)

where given Irgb as a batch of input images, we train all the generators with Ladv adversarial and
Lpixel pixel space losses. We used the adversarial loss term proposed in CycleGAN (J.-Y. Zhu et
al., 2017) for defining Ladv.

Our generators follow the network architecture proposed in CycleGAN (J.-Y. Zhu et al., 2017)
and in the work of Johnson et al. (2016). We employ 6 to 10 residual blocks for our generators,
where the optimal number of blocks per generator was determined through a series of small-sampled
experiments.

7.4.1 Albedo Generator

Ga is an albedo generator aiming to produce albedo maps from an input image, Irgb. The Lalbedo
pixel (Ga)

is the pixel-space loss for guiding Ga in creating highly accurate albedo maps close to its ground
truth. More formally, we train to minimize Lalbedo

pixel (Ga) given as:

164

Lalbedo
pixel (Ga) = [||Ga(Irgb)− Ialbedo||1] (7.2)

In our initial experiments, we found that an L1 minimization scheme for Lalbedo
pixel (Ga) and an

adversarial loss Lalbedo
adv (Ga, Da) already makes Ga create clean albedo maps from RGB images.

7.4.2 Depth Generator

Gd is a monocular depth generator where depth maps are derived from Irgb. Aside from training Gd

to minimize its adversarial loss term Ldepth
adv (Gd, Dd), it is trained to minimize Ldepth

pixel (Gd) as follows:

Ldepth
pixel (Gd) = [||Gd(Irgb)− Idepth||1] + Lsmoothness (7.3)

We integrate a depth smoothness term, Lsmoothness, which is given as:

Lsmoothness = |∂xD∗| · e−|∂xIrgb| + |∂yD∗| · e−|∂yIrgb| (7.4)

where Lsmoothness is an edge-aware smoothness term introduced by (Godard et al., 2017; Godard,
Mac Aodha, Firman, & Brostow, 2019) to model depth discontinuities that typically occur at image
gradients (Heise, Klose, Jensen, & Knoll, 2013). ∂x, ∂y refer to the image gradients along the x
and y axes. We derive two distinct mage gradients - from the depth map predictions created via
Gd(Irgb) and the RGB input image Irgb. D∗ refer to the generated depth maps from Gd(Irgb) that
were mean-normalized and inversed. More formally written as:

D∗ = Gd(Irgb)
√
Gd(Irgb) (7.5)

7.4.3 Normal Generator

Gn is a normal generator that produces normal maps close to their ground truths Inormal from an
input RGB image Irgb. Similar to Ga, we only train Gn to minimize the L1, Lnormal

pixel (Gn), and

adversarial loss, Lnormal
adv (Gn, Dn). More formally, Lnormal

pixel (Gn) is written as:

Lnormal
pixel (Gn) = [||Gn(Irgb)− Inormal||1] (7.6)

Estimating surface normals and depth are sometimes performed jointly (Mertan, Duff, & Unal,
2022; Qi, Liao, Liu, Urtasun, & Jia, 2018; Zhang et al., 2019; Lei et al., 2022). In our initial
implementation, we predict the depth and surface normals separately, so there may be no possible
cyclic dependencies between the two intrinsics. Based on our network design’s current state, it
would be practical to separate them and analyze their performance first with other baselines from
monocular depth estimation and surface normal estimation methods separately.

165

7.5 Experiments

We discuss conducted experiments in this section. The current state and performance of our pro-
posed dataset and network training scheme for IID are still in their early stages.

7.5.1 Performance Analysis of the Albedo Generator

The albedo generator, Ga, is trained to produce albedo maps from RGB images as input. We bench-
mark the performance on the training dataset (DLSU-IID), the GTA V dataset, and CGInstrinsics.
The GTA V dataset serves as a reference to whether or not our proposed IID dataset is a suitable
synthetic alternative that can be used for training. Then benchmarking with CGIntrinsics provides
information about Ga’s performance in practice and when real-world images are used.

We first experimented to determine the ideal number of training samples. We generated a dataset
consisting of 100K maximum images. We then train different Ga networks with the following number
of samples: {5K, 25K, 50K, 100K}. Table 7.2 shows the quantitative metrics. Figure 7.5 shows the
visual results for the DLSU-IID.

Table 7.2: Ga trained with different number of image samples and their quantitative results. Green
and yellow highlights indicate the first and second-best performances.

DLSU-IID (Train) GTA-IID CGIntrinsics

Samples MAE RMSE SSIM MAE RMSE SSIM MAE RMSE SSIM

5K 0.0477 0.0836 0.8717 0.2006 0.2441 0.7269 0.2584 0.3365 0.7206
25K 0.1021 0.1585 0.7794 0.2011 0.2425 0.7030 0.2513 0.3100 0.7167
50K 0.0542 0.0949 0.8527 0.2528 0.3243 0.7202 0.2528 0.3243 0.7202
100K 0.0378 0.0767 0.9180 0.1822 0.2330 0.7228 0.2545 0.3358 0.7005

Based on the results, we interpret that increasing the number of images generated from our
virtual scene provides a notable increase across all the performance metrics but only when tested on
synthetic data (DLSU-IID and GTA V). While the performance of Ga trained with 100K samples is
favorable on DLSU-IID and GTA V, it did not perform well on CGIntrinsics. This may indicate that
the quality of synthetic images in DLSU-IID must be examined in detail before further increasing
the number of training images to generate.

On a positive note, visual results of our IID network in GTA V (Figure 7.6) and in CGIntrinsics
(Figure 7.7) have fine details on textures that were unseen from the DLSU-IID are recovered properly
when our proposed network is trained on 100K images, over other network variants trained on fewer
samples.

Effects of city randomization when training. We conducted an ablation analysis of whether
or not city randomization per K frames (discussed in Section 7.3) is essential when generating new
images. We trained two networks, one using a dataset with city randomization enabled and another
without. Both datasets contain 100K samples. Quantitative results are shown in Table 7.3. Visual
results for the GTA V and CGIntrinsics are shown in Figure 7.8. Note that the networks were
trained on different datasets; we only provide the visual results for the GTA V and CGIntrinsics
that serve as a standard test set.

166

Figure 7.5: Visual results on the DLSU-IID dataset of different Ga variants trained with varying
number of training samples. Increasing the number of training images provide more fine detail on
the buildings and textures.

Figure 7.6: Visual results on the DLSU-IID dataset of different Ga variants trained with varying
number of training samples. DLSU-IIDNet trained on 100K samples provide the best visual results
where fine details are recovered.

An across-the-board performance increase is observed when city layout randomization is enabled
during image generation. The variations in the city layout and the continuous introduction of
different combinations of textures in the scene have provided more diverse samples for the network.
Visual results also show that specific texture colors and patterns are recovered better when city

167

Figure 7.7: Visual results on the DLSU-IID dataset of different Ga variants trained with varying
number of training samples. DLSU-IIDNet trained on 100K samples provide the best visual results
where fine details are recovered.

Table 7.3: Ga trained with two DLSU-IID dataset versions. Fixed: The city layout is fixed. Ran-
domized: The city layout randomized every K frames. Green highlights indicate the best performing
model.

DLSU-IID
(Train)

GTA-IID CGIntrinsics

City layout MAE RMSE SSIM MAE RMSE SSIM MAE RMSE SSIM

Fixed 0.1092 0.1675 0.7892 0.2065 0.2604 0.6957 0.3125 0.3932 0.6848
Randomized 0.0378 0.0767 0.9180 0.1822 0.2330 0.7228 0.2545 0.3358 0.7005

layout randomization is enabled.

Post-processing effects provide better network performance for Ga. Post-processing
effects appear to have a great impact on the performance of an IID network. We show the results from
our experiment that having post-processing effects provided that they enhance the color distribution
and realism of images generated, have a positive effect on a network’s performance. Table 7.4 shows
the quantitative results. Figure 7.9 shows the visual results for the GTA V and CGIntrinsics test
images.

168

Figure 7.8: Visual results on the GTA V and CGIntrinsics dataset. Fixed city layout: We train
DLSU-IIDNet on our modified synthetic dataset using only a fixed city layout. Randomized city
layout: We train DLSU-IIDNet on another synthetic dataset with city randomization enabled per
K frames.

Table 7.4: Ga trained with two DLSU-IID dataset versions, post-processing enabled/disabled.

DLSU-
IID
(Train)

GTA-IID CGIntrinsics

Post-processing MAE RMSE SSIM MAE RMSE SSIM MAE RMSE SSIM

No 0.0378 0.0767 0.9180 0.1822 0.2330 0.7228 0.2545 0.3358 0.7005
Yes 0.0306 0.0579 0.9277 0.1739 0.2316 0.7544 0.2869 0.3637 0.7214

7.5.2 Performance Analysis of the Normal Generator

Gn is the normal generator trained to produce normal maps from input RGB images. Most datasets
about surface normals are typically derived from depth datasets, such as from NYU Depth () and
PCPNet (). Currently, our rendering system outputs object space surface normals different from
tangent space normal maps, commonly used to represent the surface normals in the real world and
for various computer vision applications. The main advantage of object space surface normals is
that it provides more accurate lighting and global illumination of scenes since it contains complete
information about the orientation of surfaces. However, the drawback of this is we cannot benchmark
this to other real-world datasets. We are currently exploring ways to convert our generated normals
to tangent space normals without loss of information so we can benchmark this to real-world datasets
in the future. Based on these limitations, we only analyze Gn on our training set, DLSU-IID.

Live results. The reported performance in our analysis of Gn reflects the current state of the
models being analyzed. The performance of the models may change over time, and the interpretation
of the results will be updated on succeeding revisions. We aim to train all network variants of Gn

under 200 epochs. Live results are reported in Table 7.5. We also provide the latest epoch where we

169

Figure 7.9: Visual results on the GTA V and CGIntrinsics dataset. A: Post-processing disabled. B:
Post-processing enabled.

benchmarked the model’s performance. Figure 7.10 visualizes the results on the DLSU-IID dataset.

Table 7.5: Gn trained with different number of image samples and their quantitative results. Green
and yellow highlights indicate the first and second-best performances.

DLSU-IID (Train)

Samples Last Epoch MAE RMSE SSIM

5K 29 0.0904 0.2039 0.8410
25K 14 0.0837 0.1908 0.8433
50K 1 0.0949 0.2075 0.8258
100K 58 0.0823 0.1900 0.8506

Similar to our Ga ablation, we first explored the ideal amount of training samples for Gn. The
finding is consistent with Ga - training Gn with > 100K samples provides the best performance.
While the networks haven’t converged yet, we can already observe that the Gn being trained with
100K samples have leading results that will continue to improve over more epochs.

City randomization is important for Gn. We also checked if city randomization is important
when generating new images and their respective normals. Table 7.6 shows the quantitative results.
Figure 7.11 illustrates some images from the DLSU-IID dataset. It is also apparent that enabling
city randomization provides better image examples to Gn, similar to Ga. While the results favor
that of a fixed layout, the variant network has already completed its training. We already see a
close performance on the variant network when randomization is enabled, at just < 60 epochs which
should outperform the network trained with fixed city layouts.

Post-processing effects provide better network performance for Gn. The same obser-
vation is true for Gn, where post-processing effects provide more diverse color distribution and make
the network more robust to unseen images. It can also tolerate some level of noise. Table 7.7 shows
the quantitative results. We provide examples in Figure 7.12.

170

Figure 7.10: Visual results on the DLSU-IID dataset of different Gn variants trained with varying
number of training samples.

Table 7.6: Gn trained with different number of image samples and their quantitative results. Green
and yellow highlights indicate the first and second-best performances.

DLSU-IID (Train)

City layout Last Epoch MAE RMSE SSIM

Fixed 199 0.0621 0.1593 0.8632
Randomized 58 0.0823 0.1900 0.8506

If post-processing is disabled, we can see in the visual results that the skylight and clouds are
misclassified as surfaces. If post-processing is enabled, the network can properly pick up the sky
colors and ambient lighting, filtering them out when generating the surface normals. Furthermore,
despite fewer training epochs, our Gn - post-processing-enabled version outperforms the one without.

Table 7.7: Gn trained with two DLSU-IID dataset versions, post-processing enabled/disabled.

DLSU-IID (Train)

Post-processing Last Epoch MAE RMSE SSIM

No 58 0.0823 0.1900 0.8506
Yes 47 0.0759 0.1807 0.8557

7.5.3 Performance Analysis of the Depth Generator

Gd is the depth generator trained to produce depth maps from input RGB images. We benchmark
Gd with the DLSU-IID and KITTI datasets for the initial implementation. The latest ablation

171

Figure 7.11: Visual results produced by Gn on the DLSU-IID dataset. Fixed city layout: We train
DLSU-IIDNet on our modified synthetic dataset using only a fixed city layout. Randomized city
layout: We train DLSU-IIDNet on another synthetic dataset with city randomization enabled per
K frames.

Figure 7.12: Visual results on the DLSU-IID dataset. A: Post-processing disabled. B: Post-
processing enabled.

study conducted is to study how many training samples are ideal for training Gd. We aim to train
all versions of Gd to at least 150 epochs. We report the last stable checkpoints for analysis. For
depth accuracy, PSNR, RMSE, and RMSE log metrics are standard quantitative measures. We
report the metrics in Table 7.8. We showcase some images from DLSU-IID in Figure 7.13.

Live results. Similar to our results from Gn, the reported performance in our analysis of Gd

reflects the current state of the models being analyzed. Metrics and interpretation of the results

172

may change on succeeding revisions.

Table 7.8: Gd trained with different number of image samples and their quantitative results. Green
and yellow highlights indicate the first and second-best performances.

DLSU-IID (Train) KITTI

Samples Last epoch PSNR RMSE RMSE log PSNR RMSE RMSE log

5K 149 41.2563 0.0087 0.0092 2.3890 0.4724 0.6604
25K 149 45.7877 0.0052 0.0055 2.1928 0.4832 0.6714
50K 69 44.6564 0.0059 0.0063 2.2532 0.4798 0.6679

Figure 7.13: Visual results on the DLSU-IID dataset of different Gd variants trained with varying
number of training samples. Increasing the number of training images provide more accurate depth
maps.

173

While Gd performs accurately on inferring depth maps, there is a clear domain gap between
the DLSU-IID and KITTI datasets where the performance plummets on Gd. See Figure 7.14 for
some examples. Atapour-Abarghouei and Breckon (2018) has fixed the domain gap issue through
style transfer between synthetic depth images and real KITTI images. A similar technique could be
utilized in the future.

Figure 7.14: Visual results on the KITTI dataset of different Gd variants trained with varying
numbers of training samples from the DLSU-IID dataset. There is a noticeable domain gap between
the synthetic DLSU-IID and the real-world example, KITTI.

174

7.6 Conclusion and Future Work

We see that in our initial experiments, having a large quantity of images is beneficial for training.
The major advantage of synthetic image generation is that we can generate large amounts of training
images with ease. Since all our intrinsic maps come from the rendering API, we have formulated
a straightforward supervised learning approach using image-to-image translation networks. The
obvious direction for improving our network’s performance on real-world data, such as KITTI, is to
formulate a domain adaptation strategy as well as introducing a more diverse set of physically-based
shaded materials. Real-world objects such as vehicles, architectural patterns from buildings, road
and sidewalk textures, are primary references for material creation.

175

Chapter 8

Conclusion

8.1 Revisiting the Research Questions

The following research questions were mentioned in the introduction of this document. We revisit
the following research questions:

1. What attributes are present in a 3D virtual environment that can be utilized for synthetic
image generation?

2. How can synthetic images be used for solving various computer vision tasks?

3. How to address limitations of using synthetic images for a computer vision task, such as using
real-world images for validating the effectiveness of the model?

We provide concluding statements for these research questions based on our findings.

8.1.1 What attributes are present in a 3D virtual environment that can be
utilized for synthetic image generation?

Our hypothesis claims that we could randomize the camera parameters, such as field of view, and
near and far clip planes, to generate varying image views. Another feature we could utilize would
be the physically-based rendering (PBR) support, such as having ray-tracing or global illumination
(GI) enabled. These initial attributes are important in creating a highly believable environment with
similar visual properties in the real world. Our findings reinforce this, evidenced by how we trained
a physics-based dehazing network with PBR and GI enabled. In the context of shadow removal,
however, this wasn’t evident, as we discovered that the textures of the virtual objects matter more.
Table 8.1 summarizes the attributes from 3D virtual environments that were utilized in creating deep
learning networks trained on synthetic images, specifically dehazing, shadow removal, and intrinsic
image decomposition (IID). Figure 8.1 illustrates the attributes. We provide additional insights on
the attributes enumerated.

176

Table 8.1: Virtual environment attributes used in solving the following computer vision problems,
contextualized to image enhancement: dehazing, shadow removal, and intrinsic image decomposi-
tion.

Attribute Classification Description Importance
for training

Randomization
difficulty

City scene Layout The procedural city generator of MasterPixel3D
(2021) was used twice: dehazing and intrinsic im-
age decomposition. This attribute refers to the ar-
bitrary city layouts and combinations of buildings,
streets, and lot props that are generated.

*** *****

Blueprints Layout Blueprints refer to a collection texture-enabled 3D
cubes, mentioned in the shadow removal problem.

*** *

Direct light
sources

Lighting Refers to the intensity and color of any of the fol-
lowing light sources: directional light (e.g., sun-
light), point light, spot light.

***** *

Indirect light
sources

Lighting Indirect or ambient light is caused by bounces of
light computed through global illumination (path-
tracing). It contains specular and inter-reflections.

**** *

RGB images View Refers to the final composition of images, after ren-
dering passes.

***** *

Albedo maps View Albedo refers to the base texture and color of ob-
jects unaffected by light.

***** *****

Materials and tex-
tures

View The physically-based material properties, such as
texture, metallic or non-metallic, smoothness or
roughness of objects

***** *****

Depth maps View The pixel-perfect depth maps retrieved from the Z-
buffers.

*** *****

Camera View Refers to the perspective camera in the scene. The
camera can be randomized in the celestial meridian
space.

***** *

Post-processing
effects

View Assuming a perspective camera, post-processing
are visual effects that directly affect the final ap-
pearance of scenes in an image.

** *

We classify the attributes according to layout, lighting, and view. Layout refers to the general
positioning of individual objects in a scene. Objects could be blindly randomized in world space or
follow a specific template or layout. Lighting refers to the light sources present in the scene. Light
sources directly affect the overall brightness and contrast of the final image. View refers to the
appearance of the scene when rendered from a camera view. All our studies assume a perspective
camera view with a field of view between 60◦ - 75◦.

The first attribute we extensively utilized is the procedural city generator by (MasterPixel3D,
2021). Their API allowed us to efficiently generate template cities for our synthetic environment,
particularly for dehazing and intrinsic image decomposition. Prakash et al. (2019) proposed struc-
tured domain randomization (SDR) wherein various objects in a scene are constantly randomized
based on known information about the real-world domain. Using SDR promotes diversity in the
objects that appear on-screen, assuming that the camera view is fixed. Contradictory from their
approach, our urban city layout for generating DLSU-SYNSIDE is fixed but still compatible with
training data for our proposed physics-based dehazing network. In DLSU-IID, we revisit the merits
of SDR, and we randomize the city layout for every M frame. We speculate that for an intrinsic image
decomposition problem, variation in objects’ geometry, materials, and texture appearances matter,
where such randomization could have a more significant contributing factor to an IID network’s
performance. Based on the current state of our research, the general look of the city layout, namely
its size and how buildings and roads appear in the 3D scene, is only essential for urban domains.

177

Figure 8.1: Illustrating the attributes from a 3D virtual environment, identified and utilized in this
study.

In dehazing, our method works best for outdoor urban settings, as evidenced by the performance of
our trained network in RESIDE test sets. For IID, our network fails to decompose indoor images,
even synthetic ones, like those from CGIntrinsics. For future researchers, we suggest prioritizing
randomizing other attributes. Even with a procedural city generator readily implemented, it would
be challenging to manually identify the hyperparameters needed to generate an ideal city scene that
may only work for very limited domains - any city-based images with particular lighting conditions.

Blueprints were formalized in our shadow removal task, which we refer to as a collection of
texture-enabled 3D cubes that serve as foreground objects for the primitive occluders. Using a
real-world image collection, such as Places-365 (B. Zhou et al., 2017), we use the images as tex-
tures and map them to the cubes, creating a mix of images with different contexts. Our results
show that this method is viable for generating a synthetic shadow removal dataset, which we name
DLSUSynthPlaces-100K. However, this approach only works for a shadow removal problem so far.
In the context of dehazing and depth inference, while the randomization of textures is promising,
we cannot randomize depth. Depth maps must be based on strong geometric cues, properly con-

178

textualized to real-world (Godard et al., 2019; Rajpal, Cheema, Illgner-Fehns, Slusallek, & Jaiswal,
2023). For example, furniture must have a collision-free ordering in an indoor scene and should
not appear randomly in a given world space. This observation was formally identified by Y. Zhao,
Kong, Shin, and Fowlkes (2020) as a possible cause of degraded performance for depth networks
where it performs poorly on cluttered scenes. Thus, using blueprints and randomizing them is only
promising for a shadow removal problem and may have limited uses. However, it is straightforward
to randomize and generate many image samples as only the transform properties of the blueprints
are manipulated.

Light sources directly affect the overall brightness and contrast of the generated images, thus we
feel that it is one of the priorities to randomize. In dehazing, we set the directional light to a constant
value of (255, 255, 255) and let GI do its job in calculating the indirect lighting. We speculate that
diversifying the light palette may improve the results, which we observe works remarkably well in
shadow removal. Using the black body illuminant color palettes suggested by Hastings-Trew (2021),
we randomize the light color and intensity, allowing our proposed shadow removal network to learn
shadow appearances under different lighting conditions. However, note that we did not enable GI
in shadow removal as we do not need to make our scenes as photorealistic as possible. We were
already performing texture mapping from real-world images. In IID, direct light and indirect light
information are both important because they resemble how light behaves in the real-world, which
we constantly pay attention in making sure that these attributes are stored as part of our proposed
dataset, DLSU-IID. Randomizing them is also striaghtforward. One needs to only randomize the
light intensity, range and colors, which has a great impact to the overall quality of the dataset
generated.

Materials and textures are the most difficult to diversify, but they are the utmost important
attribute when generating training samples. It is widely accepted that convolutional neural networks
behave in such a way that they pay attention to textures and patterns during training. In our
dehazing study, while we only worked with limited PBS materials for our urban city scene, we
diversified and bridged the domain gap by style transfer using Places-365 as the source. Then
in shadow removal, we exploit textures by directly using real-world images and integrating them
into our virtual environment. For IID, this is currently challenging. Like depth maps, we cannot
blindly randomize PBS materials as they are directly tied to real-world geometric cues. An example
would be rock textures that should not appear in indoor scenes. The SOLID-IMG synthetic dataset
created by Y. Zhu, Zhang, et al. (2021) for global lighting estimation has limited materials. Tang
et al. (2022) improved this dataset by manually mapping new materials hand-crafted by them to
diversify image samples. The current state of DLSU-IID is based on the DLSU-SYNSIDE, and the
top priority, as future work, is to diversify the PBS materials being used. Structured randomization
of materials and textures is a promising task to pursue.

We can easily retrieve depth maps from the Z-buffers of rendering engines. We exploited this fea-
ture for our dehazing task for us to simulate haze using the atmospheric scattering model accurately.
For IID, depth may sometimes be needed if surface normals aren’t readily available (Y. Zhu, Tang,
et al., 2021). However, depth maps cannot be blindly randomized. As mentioned earlier, it must
directly observe real-world physics - objects cannot randomly appear somewhere in the scene. Thus,
the placement of objects and how they must be structurally randomized are more important. The
HyperSim dataset (Roberts et al., 2021) complied with this restriction, where objects are spawned
in a collision-free manner and have physics enabled in the scene. Depth maps provide essential

179

information about the 3D scene. Thus, it is beneficial for computer vision tasks that involve 3D
scene understanding, such as dehazing, object localization, IID, and lighting estimation.

Intrinsic maps, such as surface normals, diffuse and specular maps, are only used for our IID
study. Its potential uses are limited to intrinsic image decomposition, material/texture editing, or
image relighting. Getting them is straightforward as long as deferred rendering is enabled. Deferred
rendering systems have buffer views for retrieving the intrinsic maps, namely the albedo, normals,
depth maps, etc.

The camera view can be straightforwardly randomized, which is one of the attributes always
included for our randomization in all aspects of our study. In our distortion correction study,
we randomize the homography matrices instead of directly randomizing the camera transforms.
For dehazing, shadow removal, and IID, we randomize the camera transforms along the celestial
meridian space. In dehazing, we prove that varying views in a dataset are important by comparing
DLSU-SYNSIDE, and a competitor synthetic dataset, GTA-MVS. Results show that using our
dataset for training a dehazing network is substantially better because images are captured from
varying viewpoints, unlike GTA-MVS, where the camera is fixed with a first-person street view. This
finding is reinforced in our shadow removal study. Comparing with the synthetic shadow generation
process of Inoue and Yamasaki (2020), our proposed shadow generation allows us to train our shadow
removal network with better performance, with camera randomization enabled. We continue with
this observation and randomize our camera positioning extensively for generating DLSU-IID. We
consistently utilize a perspective camera setup as they resemble most physical camera properties.

Post-processing effects are camera space operations and filters that improve/enhance/modify the
appearance of scenes on their final render (Pharr et al., 2016). Since rendered images are typically
high-range, especially for rendering environments with PBS and GI enabled, tone mapping is the
only essential post-processing operation that needs to be enabled to generate images compatible with
the color distribution of most screen displays. Tone mapping is enabled for both DLSU-SYNSIDE
and DLSUSynthPlaces-100K. We render DLSU-SYNSIDE images with bloom, auto-exposure, and
brightness-contrast-saturation enabled. However, our style transfer step nullifies their color appear-
ances and drastically changes the tone of the images to match the Places-365 distribution. In shadow
removal, except for tone mapping, we chose not to enable these properties as we want to preserve the
original color distribution of the imported images when converted to textures. The current version
of DLSU-IID doesn’t have post-processing operations because, as we mentioned earlier, the priority
is to first diversify the materials and textures. Consistent with the SOLID-Img dataset (Y. Zhu,
Zhang, et al., 2021), both SOLID-IMG and DLSU-IID do not have post-processing enabled. While
it is also easy to randomize, it is not an important attribute for diversifying training data.

8.1.2 How can synthetic images be used for solving various computer vision
tasks?

We hypothesize that given an arbitrary camera viewpoint, we can capture various information from
the 3D environment and use them for training a network. Either we design a virtual environment
ourselves or use DirectX to extract buffer views (Krähenbühl, 2018).

Several extracted information, such as depth, optical flow, albedo, semantic labels, etc., could

180

be used for training - the more, the better. However, our findings show that designing a network
based on an image formation model is more straightforward. Given an image formation model, we
train different networks that reconstruct specific terms to assemble a final RGB image. In dehazing,
we follow the atmospheric scattering model equation:

H = T ·C+A · (1−T) (8.1)

where H is a set of hazy synthetic images, C is a set of clear style-transferred images that conform to
the style of Places-365 dataset (B. Zhou et al., 2017), U(C) is a set of unlit image priors of C, D(C)
is a set of depth maps of C, T is a set of transmission maps which is given as e−βD(C), A is a set of
atmospheric light maps used to generate H where A are matrix-filled values from a = {ar, ag, ab}
which represent the intensity of light for each channel in RGB space. To generate H, we first gather
C images and D depth maps from our virtual environment and use Equation 5.2 to identify the
other terms.

In shadow removal, we simplify the proposed shadow image decomposition model of Le and
Samaras (2019) and use the following equation:

Ism = Ins − Iws (8.2)

where 0.0 ≤ Iws, Ins, Ism ≤ 1.0 refer to shadow, shadow-free, and shadow-matte triplets. To generate
Iws, we record images from a virtual camera, with blueprints as foreground and 3D primitives as
occluders. We disable the shadow casters when generating Ins. We train two separate networks,
Gm and Gz that infers Ism and Ins images respectively.

An image formation model-based network has the following benefits. First, using existing model
architectures, such as CycleGAN and U-Net, is easy, and devising a supervised learning approach, as
input images and their corresponding ground truths are typically available. Second, it is also more
intuitive to understand, dissect, and debug to identify poor reconstructions, compared to inferring
a final RGB image in an end-to-end manner which is always a black box. Also, our dehazing and
shadow removal ablation studies show that training end-to-end networks always fail to reconstruct
good images.

8.1.3 How to address limitations of using synthetic images for a computer vision
task, such as using real-world images for validating the effectiveness of the
model?

Domain adaptation is a widely accepted practice for working with synthetic data. The outcome of
our studies has presented three novel domain adaptation strategies employed for networks to work
well on real-world data: style transfer, unlit image extraction, and texture mapping. Figure 8.2
presents our novel domain adaptation strategies: the style transfer method, unlit image extraction,
and texture mapping.

Style transfer has been repeatedly used for bridging synthetic and real domains across different
fields (Atapour-Abarghouei & Breckon, 2018; Peng et al., 2018; Murez et al., 2018; Hoffman et al.,

181

Figure 8.2: Novel domain adaptation techniques proposed in our dehazing and shadow removal
study: style transfer, unlit image extraction, texture mapping.

2018; Mei et al., 2020; Shao, Li, Ren, Gao, & Sang, 2020; R. Guo et al., 2021). In our dehazing
study, unlike the presented technique of Atapour-Abarghouei and Breckon (2018), our style transfer
directly transfers the colors of Places-365 to our synthetic images. The styled synthetic images are
then used for training. It is followed by an unlit image extraction network that mutes the colors for
the network to focus on color-independent information. Our ablation studies show that both must
be enabled to generate state-of-the-art dehazed images.

In shadow removal, our shadow generation pipeline does not consider any domain adaptation
technique as an offline pre-processing step. Instead, we propose a texture mapping technique where
we use these images as textures given a collection of real-world images. To retain the original color
of the imported images when converting them to textures, we set the texture properties to diffuse
and non-specular and set our ambient lighting to a 0.25 constant white value. With this approach,
we have conveniently trained a two-stage shadow removal network without any style transfer or
domain adaptation step. This approach makes it more efficient than other shadow removal methods
with domain adaptation (R. Guo et al., 2021).

For intrinsic image decomposition, we aim to revisit the viability of unlit images for inferring
intrinsic maps that don’t need color information from the RGB input, such as for albedo, depth,
and surface normals.

8.2 A Proposed Unified Framework for Image Restoration

Our research explored three distinct domains: distortion correction, dehazing, and shadow removal.
We reserve the intrinsic image decomposition problem as future work. In the completed domains,
these tasks are classified under image restoration/enhancement that requires generative adversarial
networks and encoder-decoder architectures for generating new images from the input. We found a
niche field wherein synthetic images on generative tasks, such as image restoration, are promising.
Across the three tasks we’ve pursued, we propose the following unified framework in Figure 8.3,
where restoration-related tasks can be further explored using synthetic images.

182

Figure 8.3: Proposed method for pursuing an image restoration/enhancement task, using only
synthetic images for training.

The most important aspect of pursuing a restoration-related task using synthetic images is
identifying the image formation equation. Across all our studies, we refer to well-established image
formation models (distortion correction) and also considered modifying (dehazing and shadow re-
moval) primarily to make generating images less challenging and optimize network training. It is
already well-known in computer vision, where a formation or degradation model is proposed, where
to enhance an image, it must first be decomposed into what’s causing it to be noisy or degraded.

We contextualize our unified framework presented earlier in Figure 8.3 in the dehazing task,
where we proposed a multi-stage training scheme with style transfer and unlit image priors as our
primary domain adaptation strategy. We illustrate this in Figure 8.4.

Figure 8.4: Contextualizing the unified framework to the conducted study in dehazing.

Reiterating from Section 8.1.2, breaking down an image into intrinsic maps, such as in the context
of dehazing, provides more fine-grained control during image generation and training, and it also
provides a method for easier debugging of network models. Our dehazing approach decomposes a
hazy input image to several image maps where we propose a new intrinsic map - the unlit image
prior. This is also the key factor in our domain adaptation strategy, where we restrict the color
distribution by unlit image prior extraction.

We show in Figure 8.5 how our proposed shadow removal using synthetic 3D primitives as
occluders could be refitted to a reflection removal task. Reflection removal can be modeled as an

183

Figure 8.5: Contextualizing the unified framework to the conducted study in shadow removal. We
also show how a shadow removal task could be potentially converted to reflection removal.

additive equation where the reflection R and the base image B are combined to form the final image
I (Y. Chang & Jung, 2018; J. Li, Li, & Fan, 2020; Amanlou, Suratgar, Tavoosi, Mohammadzadeh, &
Mosavi, 2022). Our shadow matte generation and conditioning could be converted into a “reflection
matte” that attempts to reconstruct R. Possible reflections could be any synthetic 3D model. We
doubt if 3D primitives could work in this example because, unlike shadows, reflections are colored,
and such colors are also tied to the geometry and structure of an object. An example would be a
reflected coffee table with an orange fruit that cannot be randomly colored. It is also worthwhile to
consider rendering ray-traced and physically-based 3D scenes as interreflections are captured well
in capable renderer systems, such as Unreal, Blender Cycles, and the Mitsuba Renderer.

184

8.3 Task Difficulty and Realism Required

Figure 8.6: We classify and rank different image enhancement and computer vision tasks according
to their observed task difficulty and realism required for such a task to achieve competitive or state-
of-the-art results.

We provide a plot for different image enhancement tasks in Figure 8.6 classified according to
their task difficulty and required realism. These insights are based on our experience in devising
solutions for some of these tasks. Specifically, we explored in detail how to create solutions for
distortion correction, shadow removal, dehazing, and intrinsic image decomposition (IID) using
synthetic images. We associated the remaining tasks that we did not pursue but plotted in the said
figure with our experiences from the pursued tasks. Moreover, some tasks are related - depth and
dehazing, lighting estimation, and IID.

We rank each task based on its difficulty and realism from a scale of 1 to 10. The task difficulty
refers to the complexity of devising a deep learning solution that can work well on real-world data
when training with synthetic data. Alternatively, this can be gauged based on how many man
hours a researcher with some background on a particular task may typically take in creating a
working solution and how many experiments, including hyperparameter tuning, were conducted.
Realism is measured based on the required photorealism on synthetic images. A rank of one means
that low-fidelity and proxy models, materials, textures, and lighting are needed to assemble a 3D
scene where synthetic training images could be captured. A rank of ten indicates high-fidelity 3D
assets, including extensive use of global illumination, ray tracing, accurate shadow casting, ambient
occlusions, reflections, and similar. Determining the realism ranking also includes determining the
priority of whether or not the use of high-resolution texture and physically-based materials for a

185

computer vision task.

Distortion correction was the most straightforward task pursued, as there is no need to generate
a 3D scene. Then devising a solution was relatively easy. Using only KITTI images, we inten-
tionally corrupted them with perspective distortions and trained a network to recover the inverse
homography matrix M−1 in recovering the distortion-free image. We treat the recovery of M−1 as
a regression problem using parallel convolutional neural networks (CNN). The proposed network is
easy to train and converges in less than 20 epochs with 100K training samples.

In shadow removal, we proposed a novel method of using only 3D primitives as occluders. A
single directional light source is randomized in the celestial meridian space of a 3D environment
to simulate shadows. We used real-world images from the Places0365 dataset as textures to 3D
cubes/blueprints that serve as foreground objects. Thus, we only aimed to achieve a low level of
realism. We did not use any complex 3D model like what was proposed in SynShadow (Inoue &
Yamasaki, 2020) and instead used the basic 3D primitives available in rendering systems, specifically
triangular prisms, spheres, and cubes. Since real-world images are injected as textures into our 3D
scene, there is no need to perform an image-to-image translation or style transfer strategy for
synthetic images, making the design of our proposed shadow removal network straightforward. We
use an FFA-Net-based architecture due to its pixel and channel attention mechanisms that can
quickly reconstruct shadow-free images after a few iterations during training.

Dehazing can be classified as a task of moderate difficulty, with an intermediate level of realism
also required. Our key implementation towards synthetic hazy image generation is using pixel-
perfect depth maps extracted from the buffer views when rendering a 3D scene. First, we designed
an outdoor urban city scene and randomized the camera locations when capturing images. Our
urban city scene has global illumination and physically-based shaded materials. Our proposed
dehazing dataset, DLSU-SYNSIDE, when compared to other virtual proxy worlds, such as GTA V
and KITTI, is highly specialized for a dehazing task. GTA V and Virtual KITTI don’t have free
camera movements, and views are limited to street views or vehicle perspectives, thus limiting the
diversity of viewpoints. To further increase realism, we incorporated a style transfer strategy where
the style of Places-365 (B. Zhou et al., 2017) dataset is applied to our synthetic images. This novel
approach is discussed in our dehazing chapter (Chapter 5).

For our network design, four specific networks work together to dehaze a real-world input image.
Using multiple networks, specifically GANs, and identifying the hyperparameter configurations for
each, supports our claim that dehazing is one level more difficult to solve when compared to shadow
removal. We have a style transfer network inspired by CycleGAN, which we pre-train and use to
perform an image-to-image translation operation to our synthetic images to make them look more
realistic. Our unlit image generator aims to generate uniformly-colored images to stabilize the train-
ing of our physics-based dehazing network. Lastly, our physics-based dehazing network comprises
the transmission map and atmospheric map estimator networks. Our training approach for dehazing
is not end-to-end. Several hyperparameter configurations were considered when coming up with the
four proposed networks. Fortunately, we discovered that using existing network architectures in
dehazing and image-to-image translation, specifically FFA-Net and CycleGAN, omitted the need to
perform network-specific ablations such as determining the number of convolutional layers, kernel
sizes, and activation units.

Intrinsic image decomposition (IID) appears to be the most difficult task as extensive prepa-

186

rations and experiments must be performed, both on the realness of the virtual scene, and on the
choices to use for a supervised learning approach. We already frame our IID problem as a super-
vised learning approach since paired data is most often available when a synthetic image generation
pipeline is followed. There are works in IID that involve manual assembly of physically-based shaded
(PBS) materials (Y. Zhu, Zhang, et al., 2021; Tang et al., 2022), use of HDR maps (Gkitsas, Zioulis,
Alvarez, Zarpalas, & Daras, 2020; G. Wang, Yang, Loy, & Liu, 2022; Dastjerdi, Hold-Geoffroy,
Eisenmann, & Lalonde, 2023), reliance on real-world timelapse videos (A. Liu et al., 2020; Z. Wang
et al., 2023) in order to efficiently solve IID-related problems when large-scale datasets are required
during training. The state of our latest dataset, DLSU-IID, already has 100K samples but due to
the limited diversity of PBS materials and textures, results show that it is not yet on par with other
known datasets. Creating a diverse set of PBS materials is very challenging. Procedural generation
and inference of materials (G. Liu, Ceylan, Yumer, Yang, & Lien, 2017; L. Shi et al., 2020; K. Zhang,
Luan, Wang, Bala, & Snavely, 2021; Yeh et al., 2022; Rodriguez-Pardo, Domı́nguez-Elvira, Pascual-
Hernández, & Garces, 2023) from image examples are promising integrations to creating a more
diverse IID scene that can be explored in the future. Regarding network designs for IID, estab-
lished GAN architectures could be explored first to serve as baselines as the dataset distribution is
a far more important task that needs to be addressed first before exploring other viable network
architectures.

8.4 Future Work

The immediate future work of this study is to continue formulating and experimenting with viable
strategies for training an intrinsic image decomposition network using synthetic data. Materials
and texture randomization must be the top priority regardless of the computer vision field where
synthetic images will be used as training data. However, it is challenging since PBS materials are
always assembled with multiple image maps, such as its albedo, normal or bump maps, and metallic,
smoothness/roughness properties. To our knowledge, no procedural method can currently generate
many PBS materials. The domain adaptation strategies, such as style transfer, unlit image extrac-
tion, and texture mapping, are promising new methods devised in this study that may find other
potential uses in different fields of computer vision and image restoration. In exploring procedural
content generation, we propose a prototype procedural city engine for generating Philippine cities in
Appendix B. We aim to continue developing the virtual city with an emphasis on creating photore-
alistic assets. It is a worthwhile project to pursue with 3D artists and game developers, as creating
believable assets may need to be manually crafted. The virtual city can serve as a digital twin of
a specific PH city. The use of synthetic data will be more relevant in the coming years as it is a
viable means of gathering training samples efficiently, with little risk of privacy and ethical issues
on the images collected, as long as they do not convey fake, inconsistent, unrealistic information
about their real-world counterparts.

187

Bibliography

Akenine-Mller, T., Haines, E., & Hoffman, N. (2018). Real-time rendering, fourth edition (4th ed.).
USA: A. K. Peters, Ltd.

Akenine-Möller, T., Haines, E., & Hoffman, N. (2019). Real-time rendering. Crc Press.
Aliaga, D. G., Demir, İ., Benes, B., & Wand, M. (2016). Inverse procedural modeling of 3d models

for virtual worlds. In Acm siggraph 2016 courses (pp. 1–316).
Al-Najdawi, N., Bez, H. E., Singhai, J., & Edirisinghe, E. A. (2012). A survey of cast shadow

detection algorithms. Pattern Recognition Letters, 33 (6), 752–764.
Amanlou, A., Suratgar, A. A., Tavoosi, J., Mohammadzadeh, A., & Mosavi, A. (2022). Single-image

reflection removal using deep learning: a systematic review. IEEE Access, 10 , 29937–29953.
Amirebrahimi, S., Rajabifard, A., Mendis, P., & Ngo, T. (2016). A framework for a microscale flood

damage assessment and visualization for a building using bim–gis integration. International
Journal of Digital Earth, 9 (4), 363–386.

An, J., Koo, H. I., & Cho, N. I. (2017). Rectification of planar targets using line segments. Machine
Vision and Applications, 28 (1-2), 91–100.

Ancuti, C., Ancuti, C. O., Timofte, R., & De Vleeschouwer, C. (2018). I-haze: a dehazing benchmark
with real hazy and haze-free indoor images. In International conference on advanced concepts
for intelligent vision systems (pp. 620–631).

Ancuti, C. O., Ancuti, C., Timofte, R., & De Vleeschouwer, C. (2018). O-haze: a dehazing
benchmark with real hazy and haze-free outdoor images. In Proceedings of the ieee conference
on computer vision and pattern recognition workshops (pp. 754–762).

Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby, D., & Mouzakitis, A. (2019). A survey
on 3d object detection methods for autonomous driving applications. IEEE Transactions on
Intelligent Transportation Systems, 20 (10), 3782–3795.

Asadi, A., Arefi, H., & Fathipoor, H. (2020). Simulation of green roofs and their potential mitigating
effects on the urban heat island using an artificial neural network: A case study in austin,
texas. Advances in Space Research, 66 (8), 1846–1862.

Atapour-Abarghouei, A., & Breckon, T. P. (2018, June). Real-time monocular depth estimation
using synthetic data with domain adaptation via image style transfer. In The ieee conference
on computer vision and pattern recognition (cvpr).

Badwi, I. M., Ellaithy, H. M., & Youssef, H. E. (2022). 3d-gis parametric modelling for virtual
urban simulation using cityengine. Annals of GIS , 28 (3), 325–341.

Bai, H., Pan, J., Xiang, X., & Tang, J. (2022). Self-guided image dehazing using progressive feature
fusion. IEEE Transactions on Image Processing .

Bailey, M., & Cunningham, S. (2009). Graphics shaders: theory and practice. AK Peters/CRC
Press.

188

Baslamisli, A. S., Das, P., Le, H.-A., Karaoglu, S., & Gevers, T. (2021). Shadingnet: image intrinsics
by fine-grained shading decomposition. International Journal of Computer Vision, 1–29.

Baslamisli, A. S., Le, H.-A., & Gevers, T. (2018). Cnn based learning using reflection and retinex
models for intrinsic image decomposition. In Proceedings of the ieee conference on computer
vision and pattern recognition (pp. 6674–6683).

Baslamisli, A. S., Liu, Y., Karaoglu, S., & Gevers, T. (2021). Physics-based shading reconstruction
for intrinsic image decomposition. Computer Vision and Image Understanding , 205 , 103183.

Bell, S., Bala, K., & Snavely, N. (2014). Intrinsic images in the wild. ACM Transactions on Graphics
(TOG), 33 (4), 1–12.

Benes, B., Zhou, X., Chang, P., & Cani, M.-P. R. (2021a). Urban brush: Intuitive and controllable
urban layout editing. In The 34th annual acm symposium on user interface software and tech-
nology (p. 796–814). New York, NY, USA: Association for Computing Machinery. Retrieved
from https://doi.org/10.1145/3472749.3474787 doi: 10.1145/3472749.3474787

Benes, B., Zhou, X., Chang, P., & Cani, M.-P. R. (2021b). Urban brush: Intuitive and controllable
urban layout editing. In The 34th annual acm symposium on user interface software and
technology (pp. 796–814).

Beneš, J., Kelly, T., Děchtěrenko, F., Křivánek, J., & Müller, P. (2017). On realism of architectural
procedural models. In Computer graphics forum (Vol. 36, pp. 225–234).

Bicheron, P., & Leroy, M. (2000). Bidirectional reflectance distribution function signatures of
major biomes observed from space. Journal of Geophysical Research: Atmospheres, 105 (D21),
26669–26681.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3d city
models: State of the art review. ISPRS International Journal of Geo-Information, 4 (4),
2842–2889.

Blasi, P., Le Saec, B., & Schlick, C. (1995). An importance driven monte-carlo solution to the global
illumination problem. In Photorealistic rendering techniques (pp. 177–187). Springer.

Bo Li, Chunhua Shen, Yuchao Dai, van den Hengel, A., & Mingyi He. (2015, June). Depth
and surface normal estimation from monocular images using regression on deep features and
hierarchical crfs. In 2015 ieee conference on computer vision and pattern recognition (cvpr)
(p. 1119-1127). doi: 10.1109/CVPR.2015.7298715

Bonneel, N., Kovacs, B., Paris, S., & Bala, K. (2017). Intrinsic decompositions for image editing.
In Computer graphics forum (Vol. 36, pp. 593–609).

Brown, D. H. (1966). Decentering distortion of lenses..
Brown, M., & Lowe, D. G. (2007). Automatic panoramic image stitching using invariant features.

International journal of computer vision, 74 (1), 59–73.
Bukhari, F., & Dailey, M. N. (2013, Jan 01). Automatic radial distortion estimation from a

single image. Journal of Mathematical Imaging and Vision, 45 (1), 31–45. Retrieved from
https://doi.org/10.1007/s10851-012-0342-2 doi: 10.1007/s10851-012-0342-2

Bulbul, A. (2023). Procedural generation of semantically plausible small-scale towns. Graphical
Models, 101170.

Butler, D. J., Wulff, J., Stanley, G. B., & Black, M. J. (2012). A naturalistic open source movie for
optical flow evaluation. In Computer vision–eccv 2012: 12th european conference on computer
vision, florence, italy, october 7-13, 2012, proceedings, part vi 12 (pp. 611–625).

Cabon, Y., Murray, N., & Humenberger, M. (2020). Virtual kitti 2.
Cai, B., Xu, X., Jia, K., Qing, C., & Tao, D. (2016). Dehazenet: An end-to-end system for single

image haze removal. IEEE Transactions on Image Processing , 25 (11), 5187–5198.

189

https://doi.org/10.1145/3472749.3474787
https://doi.org/10.1007/s10851-012-0342-2

Cai, H., Jiang, L., Liu, B., Deng, Y., & Meng, Q. (2019). Assembling convolution neural networks
for automatic viewing transformation. IEEE Transactions on Industrial Informatics.

Capel, D., & Zisserman, A. (2003). Computer vision applied to super resolution. Signal Processing
Magazine, IEEE , 20 (3), 75-86.

Cappelle, C., El Najjar, M. E., Charpillet, F., & Pomorski, D. (2012). Virtual 3d city model for
navigation in urban areas. Journal of Intelligent & Robotic Systems, 66 , 377–399.

Carroll, R., Agarwala, A., & Agrawala, M. (2010). Image warps for artistic perspective manipulation.
In Acm siggraph 2010 papers (pp. 1–9).

Chaitanya, C. R. A., Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai, D.,
& Aila, T. (2017, July). Interactive reconstruction of monte carlo image sequences using a
recurrent denoising autoencoder. ACM Transactions on Graphics, 36 (4).

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., . . . others (2015).
Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 .

Chang, C., Liang, C., & Chuang, Y. (2011). Content-aware display adaptation and interactive
editing for stereoscopic images. IEEE Transactions on Multimedia, 13 (4), 589-601.

Chang, R., Wang, Y., Hou, J., Qiu, S., Nian, R., He, B., & Lendasse, A. (2016). Underwater object
detection with efficient shadow-removal for side scan sonar images. In Oceans 2016-shanghai
(pp. 1–5).

Chang, Y., & Jung, C. (2018). Single image reflection removal using convolutional neural networks.
IEEE Transactions on Image Processing , 28 (4), 1954–1966.

Chaudhury, K., DiVerdi, S., & Ioffe, S. (2014). Auto-rectification of user photos. 2014 IEEE
International Conference on Image Processing (ICIP), 3479-3483.

Chen, Q., & Koltun, V. (2013). A simple model for intrinsic image decomposition with depth cues.
In Proceedings of the ieee international conference on computer vision (pp. 241–248).

Chen, Y., & Feng, M. (2022). Urban form simulation in 3d based on cellular automata and building
objects generation. Building and Environment , 226 , 109727.

Chen, Z., Long, C., Zhang, L., & Xiao, C. (2021). Canet: A context-aware network for shadow
removal. In Proceedings of the ieee/cvf international conference on computer vision (pp. 4743–
4752).

Chen, Z., Lu, X., Zhang, L., & Xiao, C. (2022). Semi-supervised video shadow detection via image-
assisted pseudo-label generation. In Proceedings of the 30th acm international conference on
multimedia (pp. 2700–2708).

Chen, Z., Zhu, L., Wan, L., Wang, S., Feng, W., & Heng, P.-A. (2020). A multi-task mean teacher
for semi-supervised shadow detection. In Proceedings of the ieee/cvf conference on computer
vision and pattern recognition (pp. 5611–5620).

Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., & Choo, J. (2018). Stargan: Unified generative
adversarial networks for multi-domain image-to-image translation. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp. 8789–8797).

Choi, Y., Uh, Y., Yoo, J., & Ha, J.-W. (2020). Stargan v2: Diverse image synthesis for multiple
domains. In Proceedings of the ieee conference on computer vision and pattern recognition.

Christodoulou, S. E., Vamvatsikos, D., & Georgiou, C. (2010). A bim-based framework for fore-
casting and visualizing seismic damage, cost and time to repair. eWork and eBusiness in
Architecture, Engineering and Construction, 33–38.

Chu, H., Li, D., Acuna, D., Kar, A., Shugrina, M., Wei, X., . . . Fidler, S. (2019). Neural turtle
graphics for modeling city road layouts. In Proceedings of the ieee/cvf international conference
on computer vision (pp. 4522–4530).

190

Coughlan, J. M., & Yuille, A. L. (2000). The manhattan world assumption: Regularities in scene
statistics which enable bayesian inference. In Proceedings of the 13th international conference
on neural information processing systems (pp. 809–815). Cambridge, MA, USA: MIT Press.
Retrieved from http://dl.acm.org/citation.cfm?id=3008751.3008869

Cun, X., Pun, C.-M., & Shi, C. (2020). Towards ghost-free shadow removal via dual hierarchical ag-
gregation network and shadow matting gan. In Proceedings of the aaai conference on artificial
intelligence (Vol. 34, pp. 10680–10687).

Dalao. (2020). Matrices in computer graphics - projection matrix. https://vitaminac.github.io/
Matrices-in-Computer-Graphics/Projection-Matrix.

Das, P., Karaoglu, S., & Gevers, T. (2022). Intrinsic image decomposition using physics-based cues
and cnns. Computer Vision and Image Understanding , 223 , 103538.

Das, S., Ma, K., Shu, Z., Samaras, D., & Shilkrot, R. (2019, October). Dewarpnet: Single-image
document unwarping with stacked 3d and 2d regression networks. In The ieee international
conference on computer vision (iccv).

Das, S., Mishra, G., Sudharshana, A., & Shilkrot, R. (2017). The common fold: utilizing the
four-fold to dewarp printed documents from a single image. In Proceedings of the 2017 acm
symposium on document engineering (pp. 125–128).

Dastjerdi, M. R. K., Hold-Geoffroy, Y., Eisenmann, J., & Lalonde, J.-F. (2023). Everlight: Indoor-
outdoor editable hdr lighting estimation. arXiv preprint arXiv:2304.13207 .

Davies, E. (2012). Chapter 18 - image transformations and camera calibration. In E. Davies (Ed.),
Computer and machine vision (fourth edition) (Fourth Edition ed., p. 478-504). Boston:
Academic Press.

Delaunay, B. (1934). Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk , 7 , 793–800.

Del Gallego, N. P., & Ilao, J. (2017). Multiple-image super-resolution on mobile devices: an image
warping approach. EURASIP Journal on Image and Video Processing , 2017 (1), 8.

Demir, I., Aliaga, D. G., & Benes, B. (2017). Proceduralization of urban models. In 2017 25th
signal processing and communications applications conference (siu) (pp. 1–4).

Dobbert, T. (2012). Matchmoving: The invisible art of camera tracking. Wiley. Retrieved from
https://books.google.com.ph/books?id=Ejv1FTPJ6twC

Dong, J., & Pan, J. (2020). Physics-based feature dehazing networks. In A. Vedaldi, H. Bischof,
T. Brox, & J.-M. Frahm (Eds.), European conference on computer vision (pp. 188–204). Cham:
Springer International Publishing.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). Carla: An open urban
driving simulator. In Conference on robot learning (pp. 1–16).

Dubrofsky, E. (2009). Homography estimation. Diplomová práce. Vancouver: Univerzita Britské
Kolumbie 5 .

Dudhane, A., & Murala, S. (2019). Cdnet: Single image de-hazing using unpaired adversarial
training. In 2019 ieee winter conference on applications of computer vision (wacv) (pp. 1147–
1155).

Dutré, P., Bekaert, P., & Bala, K. (2018). Advanced global illumination. CRC Press.
Dutré, P., Jensen, H. W., Arvo, J., Bala, K., Bekaert, P., Marschner, S., & Pharr, M. (2004). State

of the art in monte carlo global illumination. In Acm siggraph 2004 course notes (pp. 5–es).
Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., Hart, J. C., & Worley, S. (2003). Texturing

& modeling: a procedural approach. Morgan Kaufmann.
Edelsbrunner, H., & Mücke, E. P. (1994, January). Three-dimensional alpha shapes. ACM Trans.

Graph., 13 (1), 43–72. Retrieved from http://doi.acm.org/10.1145/174462.156635 doi:

191

http://dl.acm.org/citation.cfm?id=3008751.3008869
https://vitaminac.github.io/Matrices-in-Computer-Graphics/Projection-Matrix
https://vitaminac.github.io/Matrices-in-Computer-Graphics/Projection-Matrix
https://books.google.com.ph/books?id=Ejv1FTPJ6twC
http://doi.acm.org/10.1145/174462.156635

10.1145/174462.156635
El Helou, M., Zhou, R., Barthas, J., & Süsstrunk, S. (2020). VIDIT: Virtual image dataset for

illumination transfer. arXiv preprint arXiv:2005.05460 .
Engin, D., Genç, A., & Kemal Ekenel, H. (2018). Cycle-dehaze: Enhanced cyclegan for single image

dehazing. In Proceedings of the ieee conference on computer vision and pattern recognition
workshops (pp. 825–833).

Epic Games. (n.d.). Unreal engine. Retrieved from https://www.unrealengine.com

Fattal, R. (2008). Single image dehazing. ACM transactions on graphics (TOG), 27 (3), 1–9.
Fischler, M. A., & Bolles, R. C. (1981, June). Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Commun. ACM ,
24 (6), 381–395. Retrieved from http://doi.acm.org/10.1145/358669.358692 doi: 10
.1145/358669.358692

Fitzgibbon, A. W. (2001, Dec). Simultaneous linear estimation of multiple view geometry and lens
distortion. In Proceedings of the 2001 ieee computer society conference on computer vision
and pattern recognition. cvpr 2001 (Vol. 1, p. I-I). doi: 10.1109/CVPR.2001.990465

Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F. (1990). Computer graphics: Principles
and practice (2nd ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Fu, L., Zhou, C., Guo, Q., Juefei-Xu, F., Yu, H., Feng, W., . . . Wang, S. (2021). Auto-exposure
fusion for single-image shadow removal. In Proceedings of the ieee/cvf conference on computer
vision and pattern recognition (pp. 10571–10580).

Gaidon, A., Wang, Q., Cabon, Y., & Vig, E. (2016a). Virtual worlds as proxy for multi-object track-
ing analysis. In Proceedings of the ieee conference on computer vision and pattern recognition
(pp. 4340–4349).

Gaidon, A., Wang, Q., Cabon, Y., & Vig, E. (2016b). Virtual worlds as proxy for multi-object track-
ing analysis. In Proceedings of the ieee conference on computer vision and pattern recognition
(pp. 4340–4349).

Gallagher, A. C. (2005, May). Using vanishing points to correct camera rotation in images. In The
2nd canadian conference on computer and robot vision (crv’05) (p. 460-467). doi: 10.1109/
CRV.2005.84

Gao, J., Shen, T., Wang, Z., Chen, W., Yin, K., Li, D., . . . Fidler, S. (2022). Get3d: A generative
model of high quality 3d textured shapes learned from images. Advances In Neural Information
Processing Systems, 35 , 31841–31854.

Gao, J., Zheng, Q., & Guo, Y. (2022). Towards real-world shadow removal with a shadow simulation
method and a two-stage framework. In 2022 ieee/cvf conference on computer vision and pattern
recognition workshops (cvprw) (p. 598-607).

Garces, E., Rodriguez-Pardo, C., Casas, D., & Lopez-Moreno, J. (2022). A survey on intrinsic
images: Delving deep into lambert and beyond. International Journal of Computer Vision,
130 (3), 836–868.

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The kitti dataset.
International Journal of Robotics Research (IJRR).

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? the kitti vision
benchmark suite. In Conference on computer vision and pattern recognition (cvpr).

Gevers, T., & Smeulders, A. W. (1999). Color-based object recognition. Pattern recognition, 32 (3),
453–464.

Gkitsas, V., Zioulis, N., Alvarez, F., Zarpalas, D., & Daras, P. (2020, June). Deep lighting environ-
ment map estimation from spherical panoramas. In Proceedings of the ieee/cvf conference on
computer vision and pattern recognition (cvpr) workshops.

192

https://www.unrealengine.com
http://doi.acm.org/10.1145/358669.358692

Godard, C., Mac Aodha, O., & Brostow, G. J. (2017). Unsupervised monocular depth estimation
with left-right consistency. In Cvpr.

Godard, C., Mac Aodha, O., Firman, M., & Brostow, G. J. (2019). Digging into self-supervised
monocular depth estimation. In Proceedings of the ieee/cvf international conference on com-
puter vision (pp. 3828–3838).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Ben-
gio, Y. (2014). Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing sys-
tems 27 (pp. 2672–2680). Curran Associates, Inc. Retrieved from http://papers.nips.cc/

paper/5423-generative-adversarial-nets.pdf

Griffiths, D., Ritschel, T., & Philip, J. (2022). Outcast: Outdoor single-image relighting with cast
shadows. In Computer graphics forum (Vol. 41, pp. 179–193).

Grosse, R., Johnson, M. K., Adelson, E. H., & Freeman, W. T. (2009). Ground truth dataset and
baseline evaluations for intrinsic image algorithms. In 2009 ieee 12th international conference
on computer vision (pp. 2335–2342).

Gryka, M., Terry, M., & Brostow, G. J. (2015, nov). Learning to remove soft shadows. ACM Trans.
Graph., 34 (5). Retrieved from https://doi.org/10.1145/2732407 doi: 10.1145/2732407

Guo, J., Jiang, H., Benes, B., Deussen, O., Zhang, X., Lischinski, D., & Huang, H. (2020). Inverse
procedural modeling of branching structures by inferring l-systems. ACM Transactions on
Graphics (TOG), 39 (5), 1–13.

Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., . . . Hu, S.-M. (2022).
Attention mechanisms in computer vision: A survey. Computational Visual Media, 1–38.

Guo, R., Ayinde, B., & Sun, H. (2021). Efficient shadow detection and removal using synthetic data
with domain adaptation. In 2020 25th international conference on pattern recognition (icpr)
(pp. 5867–5874).

Guo, Z., Zheng, H., Jiang, Y., Gu, Z., & Zheng, B. (2021). Intrinsic image harmonization. In
Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 16367–
16376).

Gupta, S., Arbeláez, P., Girshick, R., & Malik, J. (2015). Indoor scene understanding with rgb-d
images: Bottom-up segmentation, object detection and semantic segmentation. International
Journal of Computer Vision, 112 , 133–149.

Hartley, R., & Kang, S. B. (2007). Parameter-free radial distortion correction with center of
distortion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29 (8), 1309–1321.

Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision (2nd ed.). New
York, NY, USA: Cambridge University Press.

Hastings-Trew, J. (2021). Reproducing real world light. http://planetpixelemporium.com/

tutorialpages/light.html. (Accessed: 2022-11-18)
Hauagge, D. C., Wehrwein, S., Upchurch, P., Bala, K., & Snavely, N. (2014). Reasoning about

photo collections using models of outdoor illumination. In Bmvc.
Haven, P. (2021). Poly haven. The public 3d asset library , 9 .
He, K., Chang, H., & Sun, J. (2013, July). Rectangling panoramic images via warping. ACM

Trans. Graph., 32 (4). Retrieved from https://doi.org/10.1145/2461912.2462004 doi:
10.1145/2461912.2462004

He, K., Sun, J., & Tang, X. (2010a). Guided image filtering. In European conference on computer
vision (pp. 1–14).

193

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1145/2732407
http://planetpixelemporium.com/tutorialpages/light.html
http://planetpixelemporium.com/tutorialpages/light.html
https://doi.org/10.1145/2461912.2462004

He, K., Sun, J., & Tang, X. (2010b). Single image haze removal using dark channel prior. IEEE
transactions on pattern analysis and machine intelligence, 33 (12), 2341–2353.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016

ieee conference on computer vision and pattern recognition (cvpr) (p. 770-778).
Heise, P., Klose, S., Jensen, B., & Knoll, A. (2013, December). Pm-huber: Patchmatch with

huber regularization for stereo matching. In Proceedings of the ieee international conference
on computer vision (iccv).

Henderson, P., & Ferrari, V. (2020). Learning single-image 3d reconstruction by generative modelling
of shape, pose and shading. International Journal of Computer Vision, 128 (4), 835–854.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., & Lakshminarayanan, B. (2019).
Augmix: A simple data processing method to improve robustness and uncertainty. arXiv
preprint arXiv:1912.02781 .

Herbert, G., & Chen, X. (2015). A comparison of usefulness of 2d and 3d representations of urban
planning. Cartography and Geographic Information Science, 42 (1), 22–32.

Hildebrandt, D., & Timm, R. (2014). An assisting, constrained 3d navigation technique for multi-
scale virtual 3d city models. GeoInformatica, 18 , 537–567.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., . . . Darrell, T. (2018). Cycada:
Cycle-consistent adversarial domain adaptation. In International conference on machine learn-
ing (pp. 1989–1998).

Hoffman, J., Wang, D., Yu, F., & Darrell, T. (2016). Fcns in the wild: Pixel-level adversarial and
constraint-based adaptation. arXiv preprint arXiv:1612.02649 .

HosseiniHaghighi, S., Izadi, F., Padsala, R., & Eicker, U. (2020). Using climate-sensitive 3d city
modeling to analyze outdoor thermal comfort in urban areas. ISPRS International Journal of
Geo-Information, 9 (11), 688.

Hu, X., Jiang, Y., Fu, C.-W., & Heng, P.-A. (2019). Mask-shadowgan: Learning to remove shadows
from unpaired data. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition (pp. 2472–2481).

Hu, X., Wang, T., Fu, C.-W., Jiang, Y., Wang, Q., & Heng, P.-A. (2021). Revisiting shadow detec-
tion: A new benchmark dataset for complex world. IEEE Transactions on Image Processing ,
30 , 1925–1934.

Hu, X., Zhu, L., Fu, C.-W., Qin, J., & Heng, P.-A. (2018). Direction-aware spatial context features
for shadow detection. In Proceedings of the ieee conference on computer vision and pattern
recognition (pp. 7454–7462).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convo-
lutional networks. In 2017 ieee conference on computer vision and pattern recognition (cvpr)
(p. 2261-2269).

Huang, P.-H., Matzen, K., Kopf, J., Ahuja, N., & Huang, J.-B. (2018). Deepmvs: Learning multi-
view stereopsis. In Ieee conference on computer vision and pattern recognition (cvpr).

Huang, X., Hua, G., Tumblin, J., & Williams, L. (2011). What characterizes a shadow boundary
under the sun and sky? In 2011 international conference on computer vision (pp. 898–905).

Inoue, N., & Yamasaki, T. (2020). Learning from synthetic shadows for shadow detection and
removal. IEEE Transactions on Circuits and Systems for Video Technology , 31 (11), 4187–
4197.

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017a). Image-to-image translation with conditional
adversarial networks. In Proceedings of the ieee conference on computer vision and pattern
recognition (pp. 1125–1134).

194

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017b, Jul). Image-to-image translation with
conditional adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Retrieved from http://dx.doi.org/10.1109/CVPR.2017.632 doi:
10.1109/cvpr.2017.632

Israël, H., & Kasten, F. (1959). Koschmieders theorie der horizontalen sichtweite. In Die sichtweite
im nebel und die möglichkeiten ihrer künstlichen beeinflussung (pp. 7–10). Springer.

Jackson, T. L., Feddema, J. J., Oleson, K. W., Bonan, G. B., & Bauer, J. T. (2013). Parameterization
of urban characteristics for global climate modeling. In Geography of climate change (pp. 141–
158). Routledge.

Jakob, W. (2010). Mitsuba renderer.
Jensen, H. W. (1996). Global illumination using photon maps. In Eurographics workshop on

rendering techniques (pp. 21–30).
Jensen, H. W. (2001). Realistic image synthesis using photon mapping (Vol. 364). Ak Peters Natick.
Jensen, H. W., & Christensen, P. H. (1998). Efficient simulation of light transport in scenes with

participating media using photon maps. In Proceedings of the 25th annual conference on
computer graphics and interactive techniques (pp. 311–320).

Jin, Y., Sharma, A., & Tan, R. T. (2021). Dc-shadownet: Single-image hard and soft shadow
removal using unsupervised domain-classifier guided network. In Proceedings of the ieee/cvf
conference on computer vision and pattern recognition (pp. 5027–5036).

Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and
super-resolution. In Proceedings of the european conference on computer vision (eccv) (pp.
694–711).

Jung, H., Ju, J., Jung, M., & Kim, J. (2016). Less-forgetting learning in deep neural networks.
arXiv preprint arXiv:1607.00122 .

Kajiya, J. T. (1986). The rendering equation. In Proceedings of the 13th annual conference on
computer graphics and interactive techniques (pp. 143–150).

Kelly, G., & McCabe, H. (2007). Citygen: An interactive system for procedural city generation. In
Fifth international conference on game design and technology (pp. 8–16).

Kelly, T. (2021). Cityengine: an introduction to rule-based modeling. Urban informatics, 637–662.
Khoury, M., Gibson, M. J., Savic, D., Chen, A. S., Vamvakeridou-Lyroudia, L., Langford, H., &

Wigley, S. (2018). A serious game designed to explore and understand the complexities of
flood mitigation options in urban–rural catchments. Water , 10 (12), 1885.

Kim, S., Kim, D., & Choi, S. (2020). Citycraft: 3d virtual city creation from a single image. The
Visual Computer , 36 , 911–924.

Kimmel, R., & Sethian, J. A. (2001). Optimal algorithm for shape from shading and path planning.
Journal of Mathematical Imaging and Vision, 14 , 237–244.

Kingma, D. P., & Ba, J. (2014a). Adam: A method for stochastic optimization.
Kingma, D. P., & Ba, J. (2014b). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 .
Kovacs, B., Bell, S., Snavely, N., & Bala, K. (2017). Shading annotations in the wild. In Proceedings

of the ieee conference on computer vision and pattern recognition (pp. 6998–7007).
Krähenbühl, P. (2018). Free supervision from video games. In Proceedings of the ieee conference on

computer vision and pattern recognition (pp. 2955–2964).
Kramer, M., & Akleman, E. (2020). A procedural approach to creating american second empire

houses. Journal on Computing and Cultural Heritage (JOCCH), 13 (1), 1–19.
Kratz, L., & Nishino, K. (2009). Factorizing scene albedo and depth from a single foggy image. In

2009 ieee 12th international conference on computer vision (pp. 1701–1708).

195

http://dx.doi.org/10.1109/CVPR.2017.632

Křivánek, J., Fajardo, M., Christensen, P. H., Tabellion, E., Bunnell, M., Larsson, D., & Kaplanyan,
A. (2010). Global illumination across industries. ACM Siggraph 2010 Courses.

Kuutti, S., Fallah, S., Katsaros, K., Dianati, M., Mccullough, F., & Mouzakitis, A. (2018). A sur-
vey of the state-of-the-art localization techniques and their potentials for autonomous vehicle
applications. IEEE Internet of Things Journal , 5 (2), 829–846.

Lai, R., & Chan, T. F. (2011). A framework for intrinsic image processing on surfaces. Com-
puter Vision and Image Understanding , 115 (12), 1647-1661. Retrieved from https://

www.sciencedirect.com/science/article/pii/S1077314211001603 (Special issue on Op-
timization for Vision, Graphics and Medical Imaging: Theory and Applications) doi:
https://doi.org/10.1016/j.cviu.2011.05.011

Lawrence, J., Rusinkiewicz, S., & Ramamoorthi, R. (2004). Efficient brdf importance sampling
using a factored representation. ACM Transactions on Graphics (ToG), 23 (3), 496–505.

Le, H., & Samaras, D. (2019). Shadow removal via shadow image decomposition. In Proceedings of
the ieee/cvf conference on computer vision and pattern recognition (pp. 8578–8587).

Le, H., & Samaras, D. (2020). From shadow segmentation to shadow removal. In Proceedings of
the european conference on computer vision (eccv) (pp. 264–281).

Le, H., & Samaras, D. (2021). Physics-based shadow image decomposition for shadow removal.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE , 86 (11), 2278–2324.

Lee, H., Shechtman, E., Wang, J., & Lee, S. (2012, June). Automatic upright adjustment of
photographs. In 2012 ieee conference on computer vision and pattern recognition (p. 877-884).
doi: 10.1109/CVPR.2012.6247761

Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., & Yang, M.-H. (2018). Diverse image-to-image
translation via disentangled representations. In Proceedings of the european conference on
computer vision (eccv) (pp. 35–51).

Lei, C., Qi, C., Xie, J., Fan, N., Koltun, V., & Chen, Q. (2022). Shape from polarization for complex
scenes in the wild. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition (pp. 12632–12641).

Lettry, L., Vanhoey, K., & Van Gool, L. (2018). Unsupervised deep single-image intrinsic decompo-
sition using illumination-varying image sequences. In Computer graphics forum (Vol. 37, pp.
409–419).

Li, B., Gou, Y., Gu, S., Liu, J. Z., Zhou, J. T., & Peng, X. (2021). You only look yourself:
Unsupervised and untrained single image dehazing neural network. International Journal of
Computer Vision, 129 (5), 1754–1767.

Li, B., Peng, X., Wang, Z., Xu, J., & Feng, D. (2017). Aod-net: All-in-one dehazing network. In
Proceedings of the ieee international conference on computer vision (pp. 4770–4778).

Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., & Wang, Z. (2019). Benchmarking single-image
dehazing and beyond. IEEE Transactions on Image Processing , 28 (1), 492–505.

Li, J., Li, G., & Fan, H. (2020). Image reflection removal using end-to-end convolutional neural
network. IET Image Processing , 14 (6), 1047–1058.

Li, M., Zuo, W., & Zhang, D. (2016). Deep identity-aware transfer of facial attributes. arXiv
preprint arXiv:1610.05586 .

Li, R., Zhang, X., You, S., & Li, Y. (2020a). Learning to dehaze from realistic scene with a fast
physics-based dehazing network. arXiv preprint arXiv:2004.08554 .

Li, R., Zhang, X., You, S., & Li, Y. (2020b). Learning to dehaze from realistic scene with a fast
physics-based dehazing network.

196

https://www.sciencedirect.com/science/article/pii/S1077314211001603
https://www.sciencedirect.com/science/article/pii/S1077314211001603

Li, X., Zhang, B., Liao, J., & Sander, P. V. (2019, November). Document rectification and illu-
mination correction using a patch-based cnn. ACM Trans. Graph., 38 (6). Retrieved from
https://doi.org/10.1145/3355089.3356563 doi: 10.1145/3355089.3356563

Li, X., Zhang, B., Sander, P. V., & Liao, J. (2019, June). Blind geometric distortion correction
on images through deep learning. In The ieee conference on computer vision and pattern
recognition (cvpr).

Li, Y., You, S., Brown, M. S., & Tan, R. T. (2017). Haze visibility enhancement: A survey and
quantitative benchmarking. Computer Vision and Image Understanding , 165 , 1–16.

Li, Z., Hu, H., & Sun, Y. (2022). V-shadowgan: generative adversarial networks for removing and
generating shadows associated with vehicles based on unpaired data. Journal of Electronic
Imaging , 31 (2), 023028.

Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., & Chandraker, M. (2020). Inverse rendering
for complex indoor scenes: Shape, spatially-varying lighting and svbrdf from a single image. In
Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 2475–
2484).

Li, Z., Shi, J., Bi, S., Zhu, R., Sunkavalli, K., Hašan, M., . . . Chandraker, M. (2022). Physically-
based editing of indoor scene lighting from a single image. In Computer vision–eccv 2022: 17th
european conference, tel aviv, israel, october 23–27, 2022, proceedings, part vi (pp. 555–572).

Li, Z., & Snavely, N. (2018a). Cgintrinsics: Better intrinsic image decomposition through physically-
based rendering. In Proceedings of the european conference on computer vision (eccv) (pp.
371–387).

Li, Z., & Snavely, N. (2018b). Learning intrinsic image decomposition from watching the world. In
Proceedings of the ieee conference on computer vision and pattern recognition (pp. 9039–9048).

Lin, C.-H., Ma, W.-C., Torralba, A., & Lucey, S. (2021, October). Barf: Bundle-adjusting neural
radiance fields. In Proceedings of the ieee/cvf international conference on computer vision
(iccv) (p. 5741-5751).

Lin, J., Xia, Y., Qin, T., Chen, Z., & Liu, T.-Y. (2018). Conditional image-to-image translation. In
Proceedings of the ieee conference on computer vision and pattern recognition (pp. 5524–5532).

Liu, A., Ginosar, S., Zhou, T., Efros, A. A., & Snavely, N. (2020). Learning to factorize and relight
a city. In Computer vision–eccv 2020: 16th european conference, glasgow, uk, august 23–28,
2020, proceedings, part iv 16 (pp. 544–561).

Liu, G., Ceylan, D., Yumer, E., Yang, J., & Lien, J.-M. (2017, Oct). Material editing using a
physically based rendering network. In Proceedings of the ieee international conference on
computer vision (iccv).

Liu, J., Wu, H., Xie, Y., Qu, Y., & Ma, L. (2020). Trident dehazing network. In Proceedings of the
ieee/cvf conference on computer vision and pattern recognition workshops (pp. 430–431).

Liu, Q., Cao, X., Deng, C., & Guo, X. (2011). Identifying image composites through shadow matte
consistency. IEEE Transactions on Information Forensics and Security , 6 (3), 1111–1122.

Liu, W., Hou, X., Duan, J., & Qiu, G. (2020). End-to-end single image fog removal using enhanced
cycle consistent adversarial networks. IEEE Transactions on Image Processing , 29 , 7819–
7833.

Liu, X., Ma, Y., Shi, Z., & Chen, J. (2019). Griddehazenet: Attention-based multi-scale network
for image dehazing. In Proceedings of the ieee/cvf international conference on computer vision
(pp. 7314–7323).

Liu, Y., Li, Y., You, S., & Lu, F. (2020, June). Unsupervised learning for intrinsic image decompo-
sition from a single image. In Proceedings of the ieee/cvf conference on computer vision and
pattern recognition (cvpr).

197

https://doi.org/10.1145/3355089.3356563

Liu, Y., & Lu, F. (2020). Separate in latent space: Unsupervised single image layer separation. In
Proceedings of the aaai conference on artificial intelligence (Vol. 34, pp. 11661–11668).

Liu, Y., Pan, J., Ren, J., & Su, Z. (2019, October). Learning deep priors for image dehazing. In
Proceedings of the ieee/cvf international conference on computer vision (iccv).

Liu, Z., Yin, H., Wu, X., Wu, Z., Mi, Y., & Wang, S. (2021). From shadow generation to shadow
removal. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition
(pp. 4927–4936).

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmen-
tation. In Proceedings of the ieee conference on computer vision and pattern recognition (pp.
3431–3440).

Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for continual learning. In
Proceedings of the 31st international conference on neural information processing systems (pp.
6470–6479).

Lorensen, W. E., & Cline, H. E. (1987, August). Marching cubes: A high resolution 3d sur-
face construction algorithm. SIGGRAPH Comput. Graph., 21 (4), 163–169. Retrieved from
http://doi.acm.org/10.1145/37402.37422 doi: 10.1145/37402.37422

Lowe, D. G. (2004, Nov 01). Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60 (2), 91–110. Retrieved from https://doi.org/10.1023/B:

VISI.0000029664.99615.94 doi: 10.1023/B:VISI.0000029664.99615.94
Lu, Y., Behar, E., Donnelly, S., Lien, J.-M., Camelli, F., & Wong, D. (2011). Fast and robust

generation of city-scale seamless 3d urban models. Computer-Aided Design, 43 (11), 1380–
1390.

Lyu, X., Han, Q., & de Vries, B. (2017). Procedural modeling of urban layout: population, land
use, and road network. Transportation research procedia, 25 , 3333–3342.

Ma, K., Shu, Z., Bai, X., Wang, J., & Samaras, D. (2018). Docunet: document image unwarping
via a stacked u-net. In Proceedings of the ieee conference on computer vision and pattern
recognition (pp. 4700–4709).

Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., & Black, M. J. (2019). Amass: Archive
of motion capture as surface shapes. In Proceedings of the ieee/cvf international conference
on computer vision (pp. 5442–5451).

Majercik, Z., Marrs, A., Spjut, J., & McGuire, M. (2020). Scaling probe-based real-time dynamic
global illumination for production.

Marschner, S., & Shirley, P. (2018). Fundamentals of computer graphics. CRC Press.
Martinez, M., Sitawarin, C., Finch, K., Meincke, L., Yablonski, A., & Kornhauser, A. (2017).

Beyond grand theft auto v for training, testing and enhancing deep learning in self driving
cars.

MasterPixel3D. (2021). Fantastic city generator: Unity asset store. https://assetstore.unity

.com/packages/3d/environments/urban/fantastic-city-generator-157625. (Accessed:
2021-07-18)

Mathias, M., Martinovic, A., Weissenberg, J., & Van Gool, L. (2011). Procedural 3d building
reconstruction using shape grammars and detectors. In 2011 international conference on 3d
imaging, modeling, processing, visualization and transmission (pp. 304–311).

Měch, R., & Prusinkiewicz, P. (1996). Visual models of plants interacting with their environment.
In Proceedings of the 23rd annual conference on computer graphics and interactive techniques
(pp. 397–410).

Mei, K., Zhu, C., Zou, J., & Zhang, S. (2020). Instance adaptive self-training for unsupervised
domain adaptation. arXiv preprint arXiv:2008.12197 .

198

http://doi.acm.org/10.1145/37402.37422
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://assetstore.unity.com/packages/3d/environments/urban/fantastic-city-generator-157625
https://assetstore.unity.com/packages/3d/environments/urban/fantastic-city-generator-157625

Meka, A., Shafiei, M., Zollhöfer, M., Richardt, C., & Theobalt, C. (2021). Real-time global illumi-
nation decomposition of videos. ACM Transactions on Graphics (TOG), 40 (3), 1–16.

Mertan, A., Duff, D. J., & Unal, G. (2022). Single image depth estimation: An overview. Digital
Signal Processing , 103441.

Mike Fricker. (n.d.). Street map plugin for unreal engine. Retrieved from https://github.com/

ue4plugins/StreetMap

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2021).
Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the
ACM , 65 (1), 99–106.

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets.
Mostafa, Y. (2017). A review on various shadow detection and compensation techniques in remote

sensing images. Canadian journal of remote sensing , 43 (6), 545–562.
Muktadir, G. M., Jawad, A., Paranjape, I., Whitehead, J., & Shepelev, A. (2022). Procedural gen-

eration of high-definition road networks for autonomous vehicle testing and traffic simulations.
SAE International Journal of Connected and Automated Vehicles, 6 (12-06-01-0007).

Müller, M., Casser, V., Lahoud, J., Smith, N., & Ghanem, B. (2018). Sim4cv: A photo-realistic
simulator for computer vision applications. International Journal of Computer Vision, 126 (9),
902–919.

Müller, P., Wonka, P., Haegler, S., Ulmer, A., & Van Gool, L. (2006). Procedural modeling of
buildings. In Acm siggraph 2006 papers (pp. 614–623).

Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., & Kim, K. (2018). Image to image
translation for domain adaptation. In Proceedings of the ieee conference on computer vision
and pattern recognition (pp. 4500–4509).

Nadimi, S., & Bhanu, B. (2004). Physical models for moving shadow and object detection in video.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (8), 1079-1087. doi:
10.1109/TPAMI.2004.51

NAMRIA: Department of Environment and Natural Resources. (n.d.). Philippine topographic and
road maps. Retrieved from https://www.namria.gov.ph/download.php

Narihira, T., Maire, M., & Yu, S. X. (2015). Direct intrinsics:learning albedo-shading decomposition
by convolutional regression. In Proceedings of the ieee international conference on computer
vision (pp. 2992–2992).

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in
natural images with unsupervised feature learning. In Nips workshop on deep learning and
unsupervised feature learning 2011.

Niemeyer, M., & Geiger, A. (2021). Giraffe: Representing scenes as compositional generative
neural feature fields. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition (pp. 11453–11464).

Niese, T., Pirk, S., Albrecht, M., Benes, B., & Deussen, O. (2022). Procedural urban forestry. ACM
Transactions on Graphics (TOG), 41 (2), 1–18.

Nishida, G., Garcia-Dorado, I., & Aliaga, D. G. (2016). Example-driven procedural urban roads.
In Computer graphics forum (Vol. 35, pp. 5–17).

Nishino, K., Kratz, L., & Lombardi, S. (2012). Bayesian defogging. International journal of
computer vision, 98 (3), 263–278.

Nixon, M. S., & Aguado, A. S. (2012). Chapter 4 - low-level feature extraction. In M. S. Nixon
& A. S. Aguado (Eds.), Feature extraction and image processing for computer vision (third
edition) (Third Edition ed., p. 137 - 216). Oxford: Academic Press.

199

https://github.com/ue4plugins/StreetMap
https://github.com/ue4plugins/StreetMap
https://www.namria.gov.ph/download.php

Oliensis, J., & Dupuis, P. (1993). A global algorithm for shape from shading. In 1993 (4th)
international conference on computer vision (p. 692-701). doi: 10.1109/ICCV.1993.378145

Pan, J., Dong, J., Liu, Y., Zhang, J., Ren, J., Tang, J., . . . Yang, M.-H. (2020). Physics-based
generative adversarial models for image restoration and beyond. IEEE transactions on pattern
analysis and machine intelligence, 43 (7), 2449–2462.

Paradox Interactive. (n.d.). Cities skylines. Retrieved from StreetMapPluginforUnrealEngine

Paranjape, I., Jawad, A., Xu, Y., Song, A., & Whitehead, J. (2020). A modular architecture for
procedural generation of towns, intersections and scenarios for testing autonomous vehicles.
In 2020 ieee intelligent vehicles symposium (iv) (pp. 162–168).

Parish, Y. I., & Müller, P. (2001). Procedural modeling of cities. In Proceedings of the 28th annual
conference on computer graphics and interactive techniques (pp. 301–308).

Park, T., Efros, A. A., Zhang, R., & Zhu, J.-Y. (2020). Contrastive learning for unpaired image-to-
image translation. In Proceedings of the european conference on computer vision (eccv) (pp.
319–345).

Peng, X., Usman, B., Kaushik, N., Wang, D., Hoffman, J., & Saenko, K. (2018). Visda: A synthetic-
to-real benchmark for visual domain adaptation. In Proceedings of the ieee conference on
computer vision and pattern recognition workshops (pp. 2021–2026).

Perarnau, G., Van De Weijer, J., Raducanu, B., & Álvarez, J. M. (2016). Invertible conditional
gans for image editing. arXiv preprint arXiv:1611.06355 .

Pharr, M., Jakob, W., & Humphreys, G. (2016). Physically based rendering: From theory to
implementation. Morgan Kaufmann.

Pinto, A., Goldenstein, S., Ferreira, A., Carvalho, T., Pedrini, H., & Rocha, A. (2020). Leveraging
shape, reflectance and albedo from shading for face presentation attack detection. IEEE
Transactions on Information Forensics and Security , 15 , 3347–3358.

Poynton, C. (2003). Digital video and hdtv algorithms and interfaces (1st ed.). San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

Prakash, A., Boochoon, S., Brophy, M., Acuna, D., Cameracci, E., State, G., . . . Birchfield, S.
(2019). Structured domain randomization: Bridging the reality gap by context-aware synthetic
data. In 2019 international conference on robotics and automation (icra) (pp. 7249–7255).

Qi, X., Liao, R., Liu, Z., Urtasun, R., & Jia, J. (2018, June). Geonet: Geometric neural network for
joint depth and surface normal estimation. In Proceedings of the ieee conference on computer
vision and pattern recognition (cvpr).

Qin, X., Wang, Z., Bai, Y., Xie, X., & Jia, H. (2020). Ffa-net: Feature fusion attention network for
single image dehazing. In Proceedings of the aaai conference on artificial intelligence (Vol. 34,
pp. 11908–11915).

Qu, L., Tian, J., He, S., Tang, Y., & Lau, R. W. (2017). Deshadownet: A multi-context embedding
deep network for shadow removal. In Proceedings of the ieee conference on computer vision
and pattern recognition (pp. 4067–4075).

Qu, Y., Chen, Y., Huang, J., & Xie, Y. (2019). Enhanced pix2pix dehazing network. In Proceedings
of the ieee/cvf conference on computer vision and pattern recognition (pp. 8160–8168).

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 .

Rajpal, A., Cheema, N., Illgner-Fehns, K., Slusallek, P., & Jaiswal, S. (2023, June). High-resolution
synthetic rgb-d datasets for monocular depth estimation. In Proceedings of the ieee/cvf con-
ference on computer vision and pattern recognition (cvpr) workshops (p. 1188-1198).

Ramalingam, S., Sturm, P., & Lodha, S. K. (2010). Generic self-calibration of central cameras.
Computer Vision and Image Understanding , 114 (2), 210–219.

200

StreetMapPluginforUnrealEngine

Ray, L. (2005, 01). 2-d and 3-d image registration for medical, remote sensing, and industrial
applications. Journal of Electronic Imaging , 14 , 9901-. doi: 10.1117/1.2041647

Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., & Yang, M.-H. (2016). Single image dehazing via
multi-scale convolutional neural networks. In European conference on computer vision.

Rengarajan, V., Rajagopalan, A. N., Aravind, R., & Seetharaman, G. (2017). Image registration and
change detection under rolling shutter motion blur. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39 (10), 1959-1972.

Richter, S. R., Vineet, V., Roth, S., & Koltun, V. (2016). Playing for data: Ground truth from
computer games. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), European conference
on computer vision (eccv) (Vol. 9906, pp. 102–118). Springer International Publishing.

Ripas, R., & Fernandes, L. A. (2023). Improving the planarity and sharpness of monocularly
estimated depth images using the phong reflection model. Computer Vision and Image Un-
derstanding , 103726.

Risi, S., & Togelius, J. (2020). Increasing generality in machine learning through procedural content
generation. Nature Machine Intelligence, 2 (8), 428–436.

Ritschel, T., Dachsbacher, C., Grosch, T., & Kautz, J. (2012). The state of the art in interactive
global illumination. Computer Graphics Forum, 31 (1), 160-188. Retrieved from https://

onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.02093.x

Roberts, M., Ramapuram, J., Ranjan, A., Kumar, A., Bautista, M. A., Paczan, N., . . . Susskind,
J. M. (2021). Hypersim: A photorealistic synthetic dataset for holistic indoor scene un-
derstanding. In Proceedings of the ieee/cvf international conference on computer vision (pp.
10912–10922).

Rodriguez-Pardo, C., Domı́nguez-Elvira, H., Pascual-Hernández, D., & Garces, E. (2023, June).
Umat: Uncertainty-aware single image high resolution material capture. In Proceedings of the
ieee/cvf conference on computer vision and pattern recognition (cvpr) (p. 5764-5774).

Ronneberger, O., Fischer, P., & Brox, T. (2015a). U-net: Convolutional networks for biomedical
image segmentation.

Ronneberger, O., Fischer, P., & Brox, T. (2015b). U-net: Convolutional networks for biomedical
image segmentation. In International conference on medical image computing and computer-
assisted intervention (pp. 234–241).

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). Orb: An efficient alternative to sift or
surf. In Proceedings of the 2011 international conference on computer vision (p. 2564-2571).
Washington, DC, USA: IEEE Computer Society.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved
techniques for training gans. In Proceedings of the 30th international conference on neural
information processing systems (p. 2234–2242). Red Hook, NY, USA: Curran Associates Inc.

Sanders, A. (2016). An introduction to unreal engine 4. CRC Press.
Sanin, A., Sanderson, C., & Lovell, B. C. (2010). Improved shadow removal for robust person

tracking in surveillance scenarios. In 2010 20th international conference on pattern recognition
(pp. 141–144).

Sankaranarayanan, S., Balaji, Y., Castillo, C. D., & Chellappa, R. (2018). Generate to adapt:
Aligning domains using generative adversarial networks. In Proceedings of the ieee conference
on computer vision and pattern recognition (pp. 8503–8512).

Santana-Cedrés, D., Gomez, L., Alemán-Flores, M., Salgado, A., Esclaŕın, J., Mazorra, L., & Al-
varez, L. (2017). Automatic correction of perspective and optical distortions. Computer
Vision and Image Understanding , 161 , 1 - 10. Retrieved from http://www.sciencedirect

.com/science/article/pii/S107731421730111X doi: https://doi.org/10.1016/j.cviu.2017

201

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.02093.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.02093.x
http://www.sciencedirect.com/science/article/pii/S107731421730111X
http://www.sciencedirect.com/science/article/pii/S107731421730111X

.05.016
Sato, S., Yao, Y., Yoshida, T., Kaneko, T., Ando, S., & Shimamura, J. (2023, June). Unsupervised

intrinsic image decomposition with lidar intensity. In Proceedings of the ieee/cvf conference
on computer vision and pattern recognition (cvpr) (p. 13466-13475).

Saxena, A., Sun, M., & Ng, A. Y. (2009, May). Make3d: Learning 3d scene structure from a
single still image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (5),
824-840.

Sean, P., Sangyup, L., & Park, M. (2019, July 16). Automatic perspective control using vanishing
points. Google Patents. (US Patent 10,354,364)

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2019, Oct). Grad-
cam: Visual explanations from deep networks via gradient-based localization. International
Journal of Computer Vision, 128 (2), 336–359. Retrieved from http://dx.doi.org/10.1007/

s11263-019-01228-7 doi: 10.1007/s11263-019-01228-7
Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D. W., & Kautz, J. (2019). Neural inverse rendering

of an indoor scene from a single image. In Proceedings of the ieee/cvf international conference
on computer vision (pp. 8598–8607).

Shahat, E., Hyun, C. T., & Yeom, C. (2021). City digital twin potentials: A review and research
agenda. Sustainability , 13 (6), 3386.

Shahtahmassebi, A., Yang, N., Wang, K., Moore, N., & Shen, Z. (2013). Review of shadow detection
and de-shadowing methods in remote sensing. Chinese geographical science, 23 (4), 403–420.

Shao, Y., Li, L., Ren, W., Gao, C., & Sang, N. (2020). Domain adaptation for image dehazing. In
Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 2808–
2817).

Shekhar, S., Reimann, M., Mayer, M., Semmo, A., Pasewaldt, S., Döllner, J., & Trapp, M. (2021).
Interactive photo editing on smartphones via intrinsic decomposition. In Computer graphics
forum (Vol. 40, pp. 497–510).

Shemiakina, J., Konovalenko, I., Tropin, D., & Faradjev, I. (2020). Fast projective image rectification
for planar objects with Manhattan structure. In W. Osten & D. P. Nikolaev (Eds.), Twelfth
international conference on machine vision (icmv 2019) (Vol. 11433, pp. 450 – 458). SPIE.
Retrieved from https://doi.org/10.1117/12.2559630 doi: 10.1117/12.2559630

Shen, L., Wee Chua, T., & Leman, K. (2015). Shadow optimization from structured deep edge
detection. In Proceedings of the ieee conference on computer vision and pattern recognition
(pp. 2067–2074).

Shi, J., Dong, Y., Su, H., & Yu, S. X. (2017). Learning non-lambertian object intrinsics across
shapenet categories. In Proceedings of the ieee conference on computer vision and pattern
recognition (pp. 1685–1694).

Shi, L., Li, B., Hašan, M., Sunkavalli, K., Boubekeur, T., Mech, R., & Matusik, W. (2020, nov).
Match: Differentiable material graphs for procedural material capture. ACM Trans. Graph.,
39 (6). Retrieved from https://doi.org/10.1145/3414685.3417781 doi: 10.1145/3414685
.3417781

Shih, Y., Lai, W.-S., & Liang, C.-K. (2019). Distortion-free wide-angle portraits on camera phones.
ACM Transactions on Graphics (TOG), 38 (4), 1–12.

Soltani, A., Haibin, H., Wu, J., D. Kulkarni, T., & B. Tenenbaum, J. (2017, 07). Synthesizing 3d
shapes via modeling multi-view depth maps and silhouettes with deep generative networks..
doi: 10.1109/CVPR.2017.269

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., & Funkhouser, T. (2017). Semantic scene
completion from a single depth image. In Proceedings of the ieee conference on computer vision

202

http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1117/12.2559630
https://doi.org/10.1145/3414685.3417781

and pattern recognition (pp. 1746–1754).
Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U., & Sutton, C. (2017). Veegan: Re-

ducing mode collapse in gans using implicit variational learning. In I. Guyon et al. (Eds.),
Advances in neural information processing systems 30 (pp. 3308–3318). Curran Asso-
ciates, Inc. Retrieved from http://papers.nips.cc/paper/6923-veegan-reducing-mode

-collapse-in-gans-using-implicit-variational-learning.pdf

Sun, H.-M. (2005, September 20). Method of correcting an image with perspective distortion and pro-
ducing an artificial image with perspective distortion. Google Patents. (US Patent 6,947,610)

Sun, Z., Zhang, Y., Bao, F., Shao, K., Liu, X., & Zhang, C. (2021). Icyclegan: Single image dehazing
based on iterative dehazing model and cyclegan. Computer Vision and Image Understand-
ing , 203 , 103133. Retrieved from https://www.sciencedirect.com/science/article/pii/

S1077314220301521 doi: https://doi.org/10.1016/j.cviu.2020.103133
Swaminathan, R., Grossberg, M., & K. Nayar, S. (2003, 07). A perspective on distortions. In

(Vol. 2, p. 594-601).
Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science & Business

Media.
Szeliski, R., et al. (2007). Image alignment and stitching: A tutorial. Foundations and Trends® in

Computer Graphics and Vision, 2 (1), 1–104.
Talton, J. O., Lou, Y., Lesser, S., Duke, J., Mech, R., & Koltun, V. (2011). Metropolis procedural

modeling. ACM Trans. Graph., 30 (2), 11–1.
Tan, C. L., Zhang, L., Zhang, Z., & Xia, T. (2006, February). Restoring warped document images

through 3d shape modeling. IEEE Trans. Pattern Anal. Mach. Intell., 28 (2), 195–208. Re-
trieved from http://dx.doi.org/10.1109/TPAMI.2006.40 doi: 10.1109/TPAMI.2006.40

Tan, D. S., Lin, Y.-X., & Hua, K.-L. (2021). Incremental learning of multi-domain image-to-
image translations. IEEE Transactions on Circuits and Systems for Video Technology , 31 (4),
1526-1539.

Tan, R. T. (2008). Visibility in bad weather from a single image. In 2008 ieee conference on
computer vision and pattern recognition (pp. 1–8).

Tang, J., Zhu, Y., Wang, H., Chan, J. H., Li, S., & Shi, B. (2022). Estimating spatially-varying
lighting in urban scenes with disentangled representation. In Computer vision–eccv 2022: 17th
european conference, tel aviv, israel, october 23–27, 2022, proceedings, part vi (pp. 454–469).

Tardif, J.-P., Sturm, P., Trudeau, M., & Roy, S. (2008). Calibration of cameras with radially sym-
metric distortion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (9),
1552–1566.

Tarel, J.-P., Hautiere, N., Caraffa, L., Cord, A., Halmaoui, H., & Gruyer, D. (2012). Vision
enhancement in homogeneous and heterogeneous fog. IEEE Intelligent Transportation Systems
Magazine, 4 (2), 6–20.

Thorn, A. (2016). Unity 5. x by example. Packt Publishing Ltd.
Tsai, R. (1987). A versatile camera calibration technique for high-accuracy 3d machine vision

metrology using off-the-shelf tv cameras and lenses. IEEE Journal on Robotics and Automa-
tion, 3 (4), 323–344.

Tsai, Y.-H., Hung, W.-C., Schulter, S., Sohn, K., Yang, M.-H., & Chandraker, M. (2018). Learn-
ing to adapt structured output space for semantic segmentation. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp. 7472–7481).

Tsirikoglou, A., Eilertsen, G., & Unger, J. (2020). A survey of image synthesis methods for visual
machine learning. In Computer graphics forum (Vol. 39, pp. 426–451).

203

http://papers.nips.cc/paper/6923-veegan-reducing-mode-collapse-in-gans-using-implicit-variational-learning.pdf
http://papers.nips.cc/paper/6923-veegan-reducing-mode-collapse-in-gans-using-implicit-variational-learning.pdf
https://www.sciencedirect.com/science/article/pii/S1077314220301521
https://www.sciencedirect.com/science/article/pii/S1077314220301521
http://dx.doi.org/10.1109/TPAMI.2006.40

Tzeng, E., Hoffman, J., Darrell, T., & Saenko, K. (2015). Simultaneous deep transfer across
domains and tasks. In Proceedings of the ieee international conference on computer vision
(pp. 4068–4076).

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., & Darrell, T. (2014). Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 .

Ullman, S., & Brenner, S. (1979). The interpretation of structure from motion. Proceedings of the
Royal Society of London. Series B. Biological Sciences, 203 (1153), 405-426. Retrieved from
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1979.0006 doi: 10.1098/
rspb.1979.0006

Unity. (2021). Unity engine. https://unity.com/. (Accessed: 2021-07-18)
Unity. (2023). Unity engine hdrp: Arbitrary output variables. https://docs.unity3d.com/

Packages/com.unity.render-pipelines.high-definition@10.0/manual/AOVs.html.
(Accessed: 2023-06-08)

Vanegas, C. A., Aliaga, D. G., & Benes, B. (2010). Building reconstruction using manhattan-
world grammars. In 2010 ieee computer society conference on computer vision and pattern
recognition (pp. 358–365).

Vanegas, C. A., Kelly, T., Weber, B., Halatsch, J., Aliaga, D. G., & Müller, P. (2012). Procedural
generation of parcels in urban modeling. In Computer graphics forum (Vol. 31, pp. 681–690).

Vasluianu, F.-A., Romero, A., Van Gool, L., & Timofte, R. (2021). Shadow removal with paired and
unpaired learning. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition (pp. 826–835).

Vasu, S., Rajagopalan, A. N., & Seetharaman, G. (2017). Camera shutter-independent registration
and rectification. IEEE Transactions on Image Processing , 27 (4), 1901–1913.

Vicente, T. F. Y., Hou, L., Yu, C.-P., Hoai, M., & Samaras, D. (2016). Large-scale training of
shadow detectors with noisily-annotated shadow examples. In B. Leibe, J. Matas, N. Sebe,
& M. Welling (Eds.), Proceedings of the european conference on computer vision (eccv) (pp.
816–832). Cham: Springer International Publishing.

Vijayan, M., & Ramasundaram, M. (2019). A fast dgpso-motion saliency map based moving object
detection. Multimedia Tools and Applications, 78 (6), 7055–7075.

Wan, J., Yin, H., Wu, Z., Wu, X., Liu, Y., & Wang, S. (2022). Style-guided shadow removal. In
Proceedings of the european conference on computer vision (eccv) (pp. 361–378).

Wang, A., Qiu, T., & Shao, L. (2009, Nov 01). A simple method of radial distortion correction
with centre of distortion estimation. Journal of Mathematical Imaging and Vision, 35 (3),
165–172. Retrieved from https://doi.org/10.1007/s10851-009-0162-1 doi: 10.1007/
s10851-009-0162-1

Wang, G., Yang, Y., Loy, C. C., & Liu, Z. (2022). Stylelight: Hdr panorama generation for lighting
estimation and editing. In European conference on computer vision (pp. 477–492).

Wang, J., Li, X., & Yang, J. (2018). Stacked conditional generative adversarial networks for
jointly learning shadow detection and shadow removal. In Proceedings of the ieee conference
on computer vision and pattern recognition (pp. 1788–1797).

Wang, T., Hu, X., Heng, P.-A., & Fu, C.-W. (2022). Instance shadow detection with a single-stage
detector. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Wang, T., Zhao, L., Huang, P., Zhang, X., & Xu, J. (2021). Haze concentration adaptive network
for image dehazing. Neurocomputing , 439 , 75–85.

Wang, Y., Lu, T., Zhang, Y., & Wu, Y. (2021). Multi-scale self-calibrated network for image
light source transfer. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition (pp. 252–259).

204

https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1979.0006
https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.0/manual/AOVs.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.0/manual/AOVs.html
https://doi.org/10.1007/s10851-009-0162-1

Wang, Z., & Lu, F. (2019). Single image intrinsic decomposition with discriminative feature en-
coding. In Proceedings of the ieee/cvf international conference on computer vision workshops
(pp. 0–0).

Wang, Z., Philion, J., Fidler, S., & Kautz, J. (2021). Learning indoor inverse rendering with 3d
spatially-varying lighting. In Proceedings of the ieee/cvf international conference on computer
vision (pp. 12538–12547).

Wang, Z., Shen, T., Gao, J., Huang, S., Munkberg, J., Hasselgren, J., . . . Fidler, S. (2023, June).
Neural fields meet explicit geometric representations for inverse rendering of urban scenes.
In Proceedings of the ieee/cvf conference on computer vision and pattern recognition (cvpr)
(p. 8370-8380).

Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multiscale structural similarity for image quality
assessment. In The thrity-seventh asilomar conference on signals, systems & computers, 2003
(Vol. 2, pp. 1398–1402).

Watson, B., Müller, P., Veryovka, O., Fuller, A., Wonka, P., & Sexton, C. (2008). Procedural urban
modeling in practice. IEEE computer graphics and applications, 28 (3), 18–26.

White, A. G., Guikema, S. D., & Logan, T. M. (2021). Urban population characteristics and their
correlation with historic discriminatory housing practices. Applied Geography , 132 , 102445.
doi: https://doi.org/10.1016/j.apgeog.2021.102445

Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module.
In Proceedings of the european conference on computer vision (eccv) (pp. 3–19).

Wu, W., Chen, X.-D., Yang, W., & Yong, J.-H. (2023). Exploring better target for shadow detection.
Knowledge-Based Systems, 273 , 110614.

Wu, W., Wu, X., & Wan, Y. (2022). Single-image shadow removal using detail extraction and
illumination estimation. The Visual Computer , 38 (5), 1677–1687.

Wu, W., Yang, W., Ma, W., & Chen, X.-D. (2023). How many annotations do we need for
generalizing new-coming shadow images? IEEE Transactions on Circuits and Systems for
Video Technology , 1-1. doi: 10.1109/TCSVT.2023.3263903

Wu, W., Zhang, S., Tian, M., Tan, D., Wu, X., & Wan, Y. (2022). Learning to detect soft shadow
from limited data. The Visual Computer , 38 (5), 1665–1675.

Wu, W., Zhang, S., Zhou, K., Yang, J., Wu, X., & Wan, Y. (2021). Shadow removal via dual
module network and low error shadow dataset. Computers & Graphics, 95 , 156–163.

Wu, X.-T., Wang, Y., Wan, Y., & Wu, W. (2022). Annotation is easy: Learning to generate a
shadow mask. Computers & Graphics, 104 , 152–161.

Xiao, T., Zhang, J., Yang, K., Peng, Y., & Zhang, Z. (2014). Error-driven incremental learning in
deep convolutional neural network for large-scale image classification. In Proceedings of the
22nd acm international conference on multimedia (pp. 177–186).

Xie, B., Guo, F., & Cai, Z. (2010). Improved single image dehazing using dark channel prior
and multi-scale retinex. In 2010 international conference on intelligent system design and
engineering application (Vol. 1, pp. 848–851).

Yan, Z., Li, C., & Lee, G. H. (2023, June). Nerf-ds: Neural radiance fields for dynamic specular
objects. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition
(cvpr) (p. 8285-8295).

Yang, B., Jin, J. S., Li, F., Han, X., Tong, W., & Wang, M. (2016, Dec). A perspective correc-
tion method based on the bounding rectangle and least square fitting. In 2016 13th inter-
national computer conference on wavelet active media technology and information processing
(iccwamtip) (p. 260-264). doi: 10.1109/ICCWAMTIP.2016.8079851

Yang, H., & Wang, J. (2010). Color image contrast enhancement by co-occurrence histogram

205

equalization and dark channel prior. In 2010 3rd international congress on image and signal
processing (Vol. 2, pp. 659–663).

Yang, H.-H., Chen, W.-T., Luo, H.-L., & Kuo, S.-Y. (2021). Multi-modal bifurcated network for
depth guided image relighting. In Proceedings of the ieee/cvf conference on computer vision
and pattern recognition (pp. 260–267).

Yang, S., Cui, X., Zhu, Y., Tang, J., Li, S., Yu, Z., & Shi, B. (2023, June). Complementary intrinsics
from neural radiance fields and cnns for outdoor scene relighting. In Proceedings of the ieee/cvf
conference on computer vision and pattern recognition (cvpr) (p. 16600-16609).

Ye, J., Gao, T., & Zhang, J. (2012). Moving object detection with background subtraction and
shadow removal. In 2012 9th international conference on fuzzy systems and knowledge discov-
ery (pp. 1859–1863).

Yeh, Y.-Y., Li, Z., Hold-Geoffroy, Y., Zhu, R., Xu, Z., Hašan, M., . . . Chandraker, M. (2022, June).
Photoscene: Photorealistic material and lighting transfer for indoor scenes. In Proceedings of
the ieee/cvf conference on computer vision and pattern recognition (cvpr) (p. 18562-18571).

Yi, Z., Zhang, H., Tan, P., & Gong, M. (2017). Dualgan: Unsupervised dual learning for image-to-
image translation. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition (pp. 2849–2857).

Yin, T., Zhou, X., & Krahenbuhl, P. (2021). Center-based 3d object detection and tracking. In
Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 11784–
11793).

Yu, J. (2016). Rank-constrained pca for intrinsic images decomposition. In 2016 ieee international
conference on image processing (icip) (pp. 3578–3582).

Yu, Y., & Smith, W. A. (2021). Outdoor inverse rendering from a single image using multiview
self-supervision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 (7),
3659–3675.

Yuan, F., Zhou, Y., Xia, X., Shi, J., Fang, Y., & Qian, X. (2020). Image dehazing based on
a transmission fusion strategy by automatic image matting. Computer Vision and Image
Understanding , 194 , 102933. Retrieved from https://www.sciencedirect.com/science/

article/pii/S1077314220300217 doi: https://doi.org/10.1016/j.cviu.2020.102933
Zhai, M., Workman, S., & Jacobs, N. (2016, June). Detecting vanishing points using global image

context in a non-manhattanworld. In 2016 ieee conference on computer vision and pattern
recognition (cvpr) (p. 5657-5665). doi: 10.1109/CVPR.2016.610

Zhang, F., & Liu, F. (2014). Parallax-tolerant image stitching. In Proceedings of the ieee conference
on computer vision and pattern recognition (pp. 3262–3269).

Zhang, H., & Carin, L. (2014). Multi-shot imaging: joint alignment, deblurring and resolution-
enhancement. In Proceedings of the ieee conference on computer vision and pattern recognition
(pp. 2925–2932).

Zhang, K., Luan, F., Wang, Q., Bala, K., & Snavely, N. (2021, June). Physg: Inverse rendering
with spherical gaussians for physics-based material editing and relighting. In Proceedings of
the ieee/cvf conference on computer vision and pattern recognition (cvpr) (p. 5453-5462).

Zhang, L., Long, C., Zhang, X., & Xiao, C. (2020). Ris-gan: Explore residual and illumination with
generative adversarial networks for shadow removal. In Proceedings of the aaai conference on
artificial intelligence (Vol. 34, pp. 12829–12836).

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings of the ieee conference on computer vision
and pattern recognition (pp. 586–595).

Zhang, X., Shehata, A., Benes, B., & Aliaga, D. (2020, oct). Automatic deep inference of procedural

206

https://www.sciencedirect.com/science/article/pii/S1077314220300217
https://www.sciencedirect.com/science/article/pii/S1077314220300217

cities from global-scale spatial data. ACM Trans. Spatial Algorithms Syst., 7 (2). Retrieved
from https://doi.org/10.1145/3423422 doi: 10.1145/3423422

Zhang, X., Wang, T., Wang, J., Tang, G., & Zhao, L. (2020). Pyramid channel-based feature
attention network for image dehazing. Computer Vision and Image Understanding , 197 ,
103003.

Zhang, Y., Qiu, Z., Yao, T., Liu, D., & Mei, T. (2018). Fully convolutional adaptation networks for
semantic segmentation. In Proceedings of the ieee conference on computer vision and pattern
recognition (pp. 6810–6818).

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22 (11), 1330-1334.

Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., & Yang, J. (2019, June). Pattern-affinitive propaga-
tion across depth, surface normal and semantic segmentation. In Proceedings of the ieee/cvf
conference on computer vision and pattern recognition (cvpr).

Zhao, B., Chang, B., Jie, Z., & Sigal, L. (2018). Modular generative adversarial networks. In
Proceedings of the european conference on computer vision (eccv) (pp. 150–165).

Zhao, Y., Huang, Z., Li, T., Chen, W., Legendre, C., Ren, X., . . . Li, H. (2019, Oct). Learning
perspective undistortion of portraits. 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). Retrieved from http://dx.doi.org/10.1109/ICCV.2019.00794 doi: 10
.1109/iccv.2019.00794

Zhao, Y., Kong, S., Shin, D., & Fowlkes, C. (2020). Domain decluttering: Simplifying images
to mitigate synthetic-real domain shift and improve depth estimation. In Proceedings of the
ieee/cvf conference on computer vision and pattern recognition (pp. 3330–3340).

Zheng, Q., Qiao, X., Cao, Y., & Lau, R. W. (2019). Distraction-aware shadow detection. In
Proceedings of the ieee/cvf conference on computer vision and pattern recognition (pp. 5167–
5176).

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A 10 million
image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40 (6), 1452–1464.

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014). Learning deep features for scene
recognition using places database. In Advances in neural information processing systems (pp.
487–495).

Zhou, H., Yu, X., & Jacobs, D. W. (2019). Glosh: Global-local spherical harmonics for intrinsic
image decomposition. In Proceedings of the ieee/cvf international conference on computer
vision (pp. 7820–7829).

Zhu, J., Huo, Y., Ye, Q., Luan, F., Li, J., Xi, D., . . . others (2023). I2-sdf: Intrinsic indoor
scene reconstruction and editing via raytracing in neural sdfs. In Proceedings of the ieee/cvf
conference on computer vision and pattern recognition (pp. 12489–12498).

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017, Oct). Unpaired image-to-image translation
using cycle-consistent adversarial networks. 2017 IEEE International Conference on Computer
Vision (ICCV).

Zhu, Y., Huang, J., Fu, X., Zhao, F., Sun, Q., & Zha, Z.-J. (2022). Bijective mapping network
for shadow removal. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition (pp. 5627–5636).

Zhu, Y., Tang, J., Li, S., & Shi, B. (2021). Derendernet: intrinsic image decomposition of urban
scenes with shape-(in) dependent shading rendering. In 2021 ieee international conference on
computational photography (iccp) (pp. 1–11).

Zhu, Y., Zhang, Y., Li, S., & Shi, B. (2021). Spatially-varying outdoor lighting estimation from

207

https://doi.org/10.1145/3423422
http://dx.doi.org/10.1109/ICCV.2019.00794

intrinsics. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition
(pp. 12834–12842).

Zomet, A., Levin, A., Peleg, S., & Weiss, Y. (2006). Seamless image stitching by minimizing false
edges. IEEE transactions on image processing , 15 (4), 969–977.

208

Appendix A

Image Datasets

We provide snapshots of image datasets created in this study.

A.1 dKITTI

Figure B.27 shows synthetic KITTI images with varying levels of perspective distortion.

Figure A.1: DLSU-SYNSIDE clean and styled images.

209

A.2 DLSU-SYNSIDE

Figure B.24 shows the clean and styled images. Figure B.25 shows the unlit images and atmospheric
maps. Figure B.26 shows the styled hazy and clean image pairs.

Figure A.2: DLSU-SYNSIDE clean and styled images.

210

Figure A.3: DLSU-SYNSIDE unlit images and atmospheric maps.

211

Figure A.4: DLSU-SYNSIDE hazy and clean image pairs with style transfer enabled.

212

A.3 DLSUSynthPlaces-100K

Figure B.28 shows the shadow and shadow-free images. 3D primitive occluders are composed of a
300 instances of triangular prisms or spheres.

Figure A.5: DLSUSynthPlaces-100K shadow and shadow-free images.

213

A.4 DLSU-IID

DLSU-IID currently has two versions. Version 1 post-processing effects are disabled, namely ex-
posure and physically-based sky and cast shadows. Version 2 has these post-processing effects
enabled.

Version 1 images are as follows: Figure A.6 illustrates the RGB and albedo images. Figure A.7
shows the shadow and shadow-free images for deriving the shadow maps. Figure A.8 illustrates the
depth and surface normals. Figure A.9 shows the specular and diffuse light maps.

214

Figure A.6: DLSU-IID Version 1 - RGB (with shadows) images and albedo.

215

Figure A.7: DLSU-IID Version 1 - shadow and shadow-free images for deriving intrinsic image
decomposition shadow maps.

216

Figure A.8: DLSU-IID Version 1 - depth and surface normals.

217

Figure A.9: DLSU-IID Version 1 - specular and diffuse light maps.

218

Version 2 images are as follows: Figure A.10 illustrates the RGB and albedo images. Figure
A.11 shows the depth and surface normals. Figure A.12 illustrates the specular and diffuse light
maps.

Figure A.10: DLSU-IID Version 2 - RGB (with shadows) images and albedo.

219

Figure A.11: DLSU-IID Version 2 - depth and surface normals.

220

Figure A.12: DLSU-IID Version 2 - specular and diffuse light maps.

221

Appendix B

Generating a Virtual Philippine City
from Road Network Data

This is a spinoff component of this research where a procedural city generation method is proposed
for generating a 3D urban Philippine city. A virtual city can serve as a testbed environment, for
gathering more synthetic images, suited for a specific scene. Through quantitative image comparison
between generated images, and real-world images from Google Maps street views, we show that our
initially generated city is similar to its real-world counterpart.

This work has been developed with undergraduate students in the BS Interactive Entertainment
program. Sections of this chapter will also appear in the Philippine Computing Journal. The paper
has been accepted for publication and is currently in press. The work is titled as:

Del Gallego, N. P., Manzano, J., Miranda, B., San Juan, J., & Santiago, J. (2022). Procedurally
generating virtual Philippine cities from road network data. Philippine Computing Journal, Aug
2022.

Declaration of author contributions: The software has been developed by J.M., B.M.,
J.C.S.J and J.J.S. The test data used for QA testing of software was done by J.M., B.M., J.C.S.J and
J.J.S. The research aspects, such as formal analysis, methodology, student supervision, visualization
and validation of results and writing of original and revised manuscripts was done by N.P.D.G. All
authors have agreed to publish the paper at Philippine Computing Journal.

B.1 Introduction

Procedural content generation refers to the practice of generating content algorithmically, following
certain patterns, or deriving from a library of content templates (Risi & Togelius, 2020). Virtual
city creations were explored by researchers using procedural content generation techniques. 3D
city models have been predominantly used for visualization (Biljecki, Stoter, Ledoux, Zlatanova, &
Çöltekin, 2015). Recent works have focused on developing virtual cities as digital twins to reflect and
simulate various real-world scenarios (Shahat, Hyun, & Yeom, 2021). Virtual cities were utilized for

222

urban planning (Herbert & Chen, 2015; Asadi, Arefi, & Fathipoor, 2020), navigation and routing
visualization (Cappelle, El Najjar, Charpillet, & Pomorski, 2012; Hildebrandt & Timm, 2014),
forecasting (Christodoulou, Vamvatsikos, & Georgiou, 2010), and crisis management (Amirebrahimi,
Rajabifard, Mendis, & Ngo, 2016; Khoury et al., 2018). Commercial city generator engines (Parish
& Müller, 2001; Watson et al., 2008; T. Kelly, 2021; MasterPixel3D, 2021), mostly designed as rule-
based systems, were developed to speed up the creation of virtual cities (HosseiniHaghighi, Izadi,
Padsala, & Eicker, 2020; Badwi, Ellaithy, & Youssef, 2022; Y. Chen & Feng, 2022).

This work presents the first procedural city generator for modeling Philippine cities. Existing
city generator system (Parish & Müller, 2001; P. Müller et al., 2006; Watson et al., 2008; Beneš et
al., 2017) reference American or European cities, and the techniques presented are not necessarily
compatible with the urban layouts observed in Philippine cities, specifically Metro Manila. Mainly,
Philippine cities have varying road sizes, sidewalks, and lot layouts. Also, the quantities of buildings
per lot strongly vary. Generic procedural city generator (PCG) systems assume that road and
sidewalks are integrated (Parish & Müller, 2001; Paranjape, Jawad, Xu, Song, & Whitehead, 2020;
Muktadir, Jawad, Paranjape, Whitehead, & Shepelev, 2022), and buildings take up most of the lot
areas (G. Kelly & McCabe, 2007; X. Zhang, Shehata, Benes, & Aliaga, 2020). We designed our
proposed PCG, titled CityEnginePH, such that the generation of road and sidewalks are disjointed,
and road and lot props (e.g., fences, electric poles, trees) are supported and added in the generation
of entities, aside from buildings.

Our contributions are as follows:

1. We provide techniques tailored for procedurally generating plausible Philippine cities, specifi-
cally in Metro Manila. We conducted quantitative experiments to demonstrate the strengths
of our CityEnginePH in how well it can adequately simulate the look of Philippine cities.

2. Inspired by the method proposed by Vanegas et al. (2012), we devised an OBB-based subdivi-
sion method that maximizes building entities and allows props/ornaments to spawn, enriching
visual details at a street view level.

3. We provide the demo software of CityEnginePH with controllable parameters for generating
different cities, simulating population density, wealth, and industry levels.

We organize this paper as follows: related work, system design, results, and conclusion.

B.2 Related Work

We go through related procedural city generator (PCG) systems and divide them into data-driven
techniques, such as machine learning and procedural modeling or rule-based methods. Among the
numerous PCG systems proposed over the recent years, the techniques presented are not necessarily
applicable to generating Philippine cities. We dive deeper into this claim in Section B.3, discussing
our system design and motivation for a new PCG system.

223

B.2.1 Data-driven techniques

Several PCG systems borrow implementation cues from the seminal paper of Parish and Müller
(2001). Recent trends in deep learning have allowed several researchers to implement neural net-
works for city generation. Kim, Kim, and Choi (2020) proposed CityCraft that generates a 3D
virtual city from a single street-view image using generative adversarial networks (GAN). Chu et
al. (2019) proposed Neural Turtle Graphics for generating large spatial graphs for road layouts via
encoder-decoder network. X. Zhang, Shehata, et al. (2020) proposed a hybrid approach where they
combined procedural modeling techniques with satellite images and then trained a convolutional
neural network (CNN) for inferring lot sizes and quantities of buildings to spawn. Our proposed
PCG method does not use deep learning techniques. However, similar to X. Zhang, Shehata, et al.
(2020), we reference street map data to aid the creation of our road networks.

B.2.2 Procedural or rule-based techniques

Parish and Müller (2001) was the first to propose procedural modeling of systems using L-systems.
P. Müller et al. (2006) further extended their work, exploring the procedural generation of archi-
tectural patterns in buildings (P. Müller et al., 2006). A similar procedural method for modeling
buildings at the city-scale level was proposed by Lu et al. (2011). Grammar-based procedural gener-
ation approaches became a common technique due to their ability to generate tree-type data, which
are observed to be a natural pattern occurring in cities (Vanegas, Aliaga, & Benes, 2010; Talton
et al., 2011; Mathias, Martinovic, Weissenberg, & Van Gool, 2011). Inverse procedural modeling
where also explored, where a structured grammar or set of rules were formulated using image data
or city-based attributes, such as building patterns, road layouts, population density, and elevation
maps (Aliaga, Demir, Benes, & Wand, 2016; Demir, Aliaga, & Benes, 2017). J. Guo et al. (2020)
proposed an inverse inferring of L-systems of pixel images, although they were tested on the domain
of plants. However, we see the potential for researchers to extend this to PCG because some works
use L-systems as the backbone for city generation. Recently, Niese, Pirk, Albrecht, Benes, and
Deussen (2022) proposed a method for assembling urban forestry. Benes, Zhou, Chang, and Cani
(2021a) design a real-time editing of urban layouts using an intuitive brush tool for adding/removing
buildings and roads. Procedural L-systems inspire our proposed PCG design (Parish & Müller, 2001;
P. Müller et al., 2006). We further fine-tuned the generation of roads, such that sidewalks and fences
are separately generated, and lot areas spawn buildings, and other props, such as trees, to enrich
the visual detail further.

B.3 System Overview

This section discusses various design choices and motivations for creating the procedural city gen-
erator tailored for modelling Philippine cities, CityEnginePH. CityEnginePH generates customized
cities from a given OpenStreetMap (OSM) file and configuration settings controlled via system UI.
Figure B.1 illustrates the proposed city generation process. We divide the city generation into two
stages. The first stage primarily involves parsing the OSM file and converting it into a traversable
road network in the virtual scene. The second stage identifies plottable areas where city-based

224

entities, such as roads, buildings, and urban props, can spawn, depending on the assigned zone
(residential, commercial, and industrial). CityEnginePH is implemented using Unreal Engine V4.27
(Epic Games, n.d.).

Figure B.1: Proposed city generator process.

B.3.1 Street Map Parsing

Given an OpenStreetMap (OSM) file, the street map parsing module reads the OSM file and then
plots the roads, formulating an initial road network. Getting the road map or OSM file of any
area in the world is possible. However, our study mainly focuses on areas in the Philippines. Our
proposed system is designed only to consider densely populated roads and streets, no highways,
overpasses, or bridges. We represent roads as splines in the scene, which we shall label as road
splines in succeeding sections.

We utilized the StreetMap API (Mike Fricker, n.d.), a plugin available to Unreal Engine. The
StreetMap API reads a given OSM file and automatically instantiates road mesh assets in the
virtual scene. However, using the StreetMap API causes unconnected roads and numerous dead
ends that appear due to incorrect or incomplete parsing. While dead ends exist in real cities, these
are rare, especially when contextualized to Philippine cities. We propose a straightforward method
for removing dead ends and polishing road network data, discussed in the following subsection (road
network filtering).

B.3.2 Road Network Filtering

We seek to eliminate dead ends and incomplete road networks caused by missing information from
the OSM file. Figure B.2 illustrates the road networks retained. We first define the following:

1. Road node - A 3D point in the virtual scene and read from an OSM file. Two nodes can be
connected to form a two-way road. We refer to R as the list of road nodes.

2. Two-way road - Given two road nodes and a connection between the two, a two-way road can
be derived. Two-way roads and their respective connections are derived from OSM, where
“way” elements are parsed. In OSM terms, a way is a linear feature on the ground, such as
a wall, road, or river. We refer to any two-way road as (Ra, Rb), given road nodes ra and rb,

225

Figure B.2: Road networks retained in the city generator. Due to possibly incorrect or incomplete
StreetMap parsing, dead end roads are prevalent. We propose a filtering stage where road networks
that form a closed polygonal chain, which eventually will become lots occupied by building entities,
are retained in the virtual scene.

and (ra, rb) ∈ Sall streets that contains all listed streets, and essentially represents a graph with
road nodes R, and edges as Sall streets.

The road network filtering module visits each node ri ∈ R, 0 < i < |R| for detecting cycles. A
cycle indicates a closed loop where the nodes surrounding an inner area are considered empty lots,
where our PCG can spawn building entities. The implementation is straightforward: depth-first
search (DPS) is an innate cycle detector for any graph with forward and backward edges. A cycle
is detected when any node has a back edge towards a node ancestor. We implement DFS where we
start on any random node ri ∈ R and then visit unexplored nodes until it reaches a terminal node
or encounters ri again. If ri is visited the second time, the previously visited nodes are stored and
formed as a list, which is then stored in an array, Llots. Llots is an array of road nodes that formed
cycles containing information about where buildings can be spawned (Llots ⊆ R). The algorithm
repeats by selecting a random unvisited node. We illustrate the cycle detection approach in Figure
B.3 and a sample road network generated.

We arbitrarily set a limit for non-cyclic roads in our city generator because we observed that
dead ends appearing on the street map are no longer being generated without this limit. Notably,
we set this limit to five consecutive nodes. The initial road node list R is trimmed to form Rtrimmed,
removing dead-end nodes.

226

Figure B.3: A: Illustration of the cycle detection method. Note that we only implement a vanilla
depth-first-search for detecting cycles. Nodes that form a cycle will be considered lots, to be pop-
ulated by building entities. B: Visualizing the road spline network created from the street map
location of San Rafael, Caloocan, Metro Manila, NCR, Philippines, using our proposed filtering
method.

B.3.3 Road Instantiation

Given Rtrimmed as the list of filtered road nodes (discussed in previous Section B.3.2), road splines are
instantiated in the virtual scene. While StreetMap API (Mike Fricker, n.d.) allows us to spawn road
meshes directly, we notice that the road meshes contain visual artifacts where each road segment
appears disjointed. We speculate that it is because StreetMap API works best for generating highly
urbanized and modern cities where the road meshes utilized look appropriate, but not for Philippines
cities. We hypothesize that some Philippine roads appear smaller than their American or European
counterparts. Thus, we propose a revised method of using splines to render the road meshes,
allowing seamless curved roads to be supported (Figure B.4). We directly utilize Unreal Engine’s
spline component for this approach (Epic Games, n.d.).

Figure B.4: A: How road meshes are created using StreetMap API. B: Our proposed road mesh
rendering using splines. Using splines produce more seamless curved roads.

227

B.3.4 City Zoning

Recall that Llots is an array of cyclic road nodes we can use to find closed spaces as empty lots. The
next step is identifying zone types for lots and determining what specific buildings will be spawned
on a designated lot space. Inspired by Cities Skylines (Paradox Interactive, n.d.), we classify any
given lot space into residential, commercial, and industrial zones.

To make our procedural city generator as accurate as possible regarding real-world representa-
tion, we initially considered using socio-statistical data, such as population density, for determining
the zone types. However, to the best of our knowledge, we find this data unavailable/incomplete
for digital use (NAMRIA: Department of Environment and Natural Resources, n.d.). We raise this
as a possible future work where sociostastical data maps, once digitally available, can be used as
information for identifying zone types. As an alternative, we propose a Perlin noise-inspired method
of identifying zone types for lot spaces.

Table B.1: Zone type mapping to population density and wealth. Lots will automatically be classified
as industry zones, if industry factor is between [0.75, 1]

Zone Color
Code

Population
Density

Wealth Industry
Factor

Low-rise
Commer-
cial

Light
green

[0, 0.5) [0, 0.5) [0, 0.75)

High-rise
Commer-
cial

Dark
green

[0, 0.5) [0.5,
1.0]

[0, 0.75)

Low-rise
Residential

Light
blue

[0.5, 1.0] [0, 0.5) [0, 0.75)

High-rise
Residential

Dark
blue

[0.5, 1.0] [0.5,
1.0]

[0, 0.75)

Industrial Yellow [0, 1] [0, 1] [0.75, 1]

For each lot, Li ∈ Llots, we compute for its area and identify its centroid, Li,centroid. Note that
each lot’s centroid is normalized relative to the boundaries of the entire city space. Given a 128×128
texture map, we randomized an RGB texture using Perlin noise. Each channel corresponds to a
socio-statistical attribute: R = population density and G = wealth. The B channel is an industry
factor, where Li is automatically classified as an industrial zone if the rolled value is between [0.75, 1].
Mapping the pixel point from Li,centroid to the texture map gives us the corresponding zone type to
be assigned to Li, following the zone classification table in Table B.1. Figure B.5 visualizes the city
zoning procedure.

Following this approach, additional Perlin noise texture maps can be utilized when other at-
tributes need to be modeled for the city generator. For our proposed city generator system, we
first consider the population density and wealth socio-statistical attributes as they are generally the
common attributes used for urban population studies (Jackson, Feddema, Oleson, Bonan, & Bauer,
2013; White, Guikema, & Logan, 2021).

228

Figure B.5: Showing the city zoning process. The zone type is identified from an RGB perlin
noise map distribution, where the R and the G channel indicates the population density and wealth
respectively. The B channel is an industry factor, where Li is automatically classified as an industrial
zone if the rolled value is between [0.75, 1]. Using the lot’s centroid, the zone is identified based on
its pixel location in the perlin noise map.

229

B.3.5 Lot Subdivision

Lot subdivision is an operation performed after identifying the zone types for each lot, Li ∈ Llots.
The goal is to identify specific building placements in Li to maximize the occupied area. Parish and
Müller (2001) proposed a solution for recursively subdividing convex areas into two or more sub-
regions based on a specified depth number (Parish & Müller, 2001). In their implementation (Figure
B.6), they proposed a procedure by recursively finding the longest edges, getting their perpendicular
lines where the lot division will be performed. The algorithm stops based on a specified user depth.

Figure B.6: Schematic illustration of the lot subdivision proposed by Parish and Müller (2001).
Given a lot polygon, the algorithm finds the longest edge, and then gets its perpendicular line,
where the subdivision will be performed. Any subdivided lots unaccessible by street, are removed.

We propose a new method for subdividing lots by utilizing oriented bounding boxes (OBB). Our
approach is inspired by the same principle of Parish and Müller (2001) and Vanegas et al. (2012).
Using Li area and polygon shape, we first identify its oriented bounding box, Li,obb and use Li,obb for
finding its longest edge and its corresponding perpendicular line for determining where to subdivide
Li. This process recursively repeats with a depth of four. We observe that using an OBB, instead
of Li polygon, allows subdivisions to “bend” and follow the curvature of roads. Additionally, the
lot area appears to be maximized, than using the method proposed by Parish and Müller (2001).

Figure B.7: Calculation of the oriented bounding box, given a lot polygon.

The OBB can be computed in Θ(n) time as follows: Find the longest line segment, E. Rotate
Li so the angle between (Li, E) is zero. Compute for the area size of Li,obb, using Li center as the
pivot. Rotate back Li and copy the rotation to Li,obb. We illustrate finding the OBB in Figure B.7.

Figure B.8 illustrates a sample set of lots with their assigned zone types, where our proposed
OBB subdivision method is applied.

In Figure B.9, we briefly compare by illustration, the subdvision algorithm of Parish and Müller
(2001) with ours. Their method follows the polygon shape of the lot area, so the area of the possible

230

Figure B.8: Sample subdivided lots with assigned zone types. Zone types are determined based on
the city zoning procedure proposed in Section B.3.4.

lot spaces may vary. Our OBB-based subdivision approach promotes a more even partition of lot
space, making building entities appear symmetric and further maximizing a given space. It also
allows buildings to spawn following the curvature of roads. We also compare our OBB method with
an axis-aligned bounding box (AABB). While AABB is slightly more computationally efficient,
the bounding volume accuracy is diminished, which causes fewer instances of subdivided lots to
appear. Also, the spaces between the lots appear unreasonable, and wide-building entities have no
opportunity to spawn in these areas.

231

Figure B.9: Comparing our proposed subdivision approach with the method of Parish and Müller
(2001). Our method relies on using oriented-bounding boxes for the subdivision of lots. This method
further maximizes the occupiable space, and buildings may spawn following the curvature of roads.

232

B.3.6 Entity Instantiation

After road splines are already instantiated from Rtrimmed and when all lots Llots already have their
respective zone types assigned, the generation algorithm proceeds with instantiating city-based
entities. Specifically, we designed the algorithm to instantiate the following sets in sequence (Figure
B.10): pedestrian crossings, traffic lights, sidewalks, buildings, electric poles, then lot props (e.g.,
fences, trees, trash cans, outdoor benches).

Figure B.10: City-based entities instantiated in our proposed city generator system.

Typical city generator systems assume that pedestrian crossings, traffic lights, and sidewalks
are part of road networks by default or road networks are merely rendered as asphalt road meshes
(Parish & Müller, 2001; Nishida et al., 2016; Lyu, Han, & de Vries, 2017; Chu et al., 2019; Kim et
al., 2020; Benes, Zhou, Chang, & Cani, 2021b). Furthermore, the mentioned works do not focus
on fine-grain detail instantiation of ground-level entities. They only present illustrative examples
of their synthesized urban imagery from an aerial point of view. In our case, we allow the user to
view the generated city at ground level. Thus, we need to consider the reasonable accuracy of city
details when compared to real-world examples. In Figure B.11, we show some examples of related
city generator systems and ours. Our proposed city generator engine is capable of generating dense
urban layouts, with support for props that will occupy possible empty locations within Llots, which
is visually observable in PH cities. Other approaches seem to emphasize less on props and have
fixed layouts and patterns alongside roads.

233

Figure B.11: Reference city generator systems compared to ours. A: Bulbul (2023). B: Nishida et
al. (2016). C: Parish and Müller (2001). We also provide the closest reference photos from the web,
depicting PH city layouts and appearance we wish to be modeled by our proposed city generator.

Pedestrian crossings and traffic lights

We designed our PCG to generate pedestrian lanes and traffic lights in two conditions: First, if
there are more than three intersecting roads, and second, if the road nodes are major road types
in the OSM file. Therefore, pedestrian lanes and traffic lights spawn on major roads and ignore
low-volume roads, such as streets and other driveways.

Road-side props: sidewalks and electric poles

Parish and Müller (2001) developed an L-systems approach where roads will always contain side-
walks, and pedestrian crossings are available at all intersections. In the context of Philippine cities,
we observed that this is not always the case. We refer to Figure B.12 for references.

234

Figure B.12: A: City of Karlsruhe, Germany sidewalk photo, from the KITTI dataset. European
cities, where most procedural city generators were inspired from, mainly have two-way traversible
sidewalks. B: City of Makati, Philippines sidewalk photo from the Google Maps photos. Philippine
cities have the characteristics of having numerous electric poles, and inconsistent sidewalk sizes.
Some roads have very little sidewalks. C: Our generated cities, with sidewalks and electric poles
present (left) and no sidewalks, but with electric poles.

Philippine cities have the characteristics of having numerous electric poles and inconsistent
sidewalk sizes. Some roads have tiny sidewalks; thus, our system design separates the generation
of road meshes from the sidewalks, and other roadside props, such as electric poles. In the UI,
we provide users with a toggle that includes/excludes sidewalks and electric poles. The algorithm
generates sidewalks as splines, similar to how we represent our roads. The outlines of road splines
are traced, occupying some portion of Llots allotted space. For the electric poles, we set an arbitrary
distance interval between them along the sidewalk splines. Cable components are added to each
end of the electric poles. We also update Llots area sizes if sidewalks are enabled to avoid geometry
overlap between sidewalks, electric poles, and buildings.

235

Lot props

Lot props are randomly generated in every Li ∈ Llots, with consideration of its accessibility from
the nearest road. In other words, we aim to design a spawning logic for lot props such that a virtual
agent can access them via pathfinding. Figure B.13 illustrates our approach.

Figure B.13: Illustration of lot props spawning process. We first randomly sample possible spawn
locations in Li ∈ Llots. We then sparsely sample on a circular area with increasing radius, around a
candidate spawn location and perform a ray tracing on all directions if there’s a valid path towards
any road, Rtrimmed. Sample generated lots with props, such as trash cans, wood, and trees are
shown on the right.

In a given lot Li, we first randomly sample Z possible spawn locations and perform a greedy
algorithm for pathfinding. We check for each zi ∈ Z if it’s a valid spawn location such that the prop
is accessible via navigational mesh pathfinding from any road in Rtrimmed. Our greedy algorithm
sparsely samples on a circular area C around zi and performs ray tracing in all directions. If a
ray-traced line reaches around the diameter of C, we found an initial valid path, (zi, pj), where
pj refers to point around C’s diameter. As long as there’s a valid path, we repeat this process
where the radius of C is increased by a constant scaling factor Cscale, and then ray-traced to find
a new valid point pj+1 to form a path from (pj , pj+1). A prop will spawn if there’s a valid path
(zi, pj , pj+1, ..., pn)|zi ∈ Z, 0 ≤ i, j ≤ n, where n is the total number of circles to use for pathfinding.

236

B.3.7 Controllable Parameters

This section provides a list of controllable parameters for CityEnginePH. Table B.2 contains the
controllable parameters for our proposed city generator. We support randomization and adjustment
of the seed, zone-specific parameters like population density, wealth, industry chance, building
density, and props density (Figure B.14).

Table B.2: Controllable parameters for CityEnginePH.

Parameters Range/Scale Default

Random Seed int32 0

Population Density [0.0, 1.0] [0.0, 1.0]
Wealth [0.0, 1.0] [0.0, 1.0]
Industry Chance [0.0, 1.0] [0.0, 1.0]

Building Density [2, 8] 8
Props Density [0.0, 1.0] 1.00

Zone-specific parameters directly affect the appearance of city zones that will appear on Llots,
as discussed in Section B.3.4. The user can change its ranges to induce biases to city zoning
(e.g., generating more residential and commercial buildings over industry buildings, mostly high-
rise buildings over single-story buildings.). Building and prop density affect the number of buildings
and prop entities that will spawn.

We also provide additional fine-grain customization support, such as toggling of electric poles,
fences, sidewalks, and specific buildings to be considered for spawning (Figure B.15).

237

Figure B.14: Sample cities generated with customized parameters such as different seed numbers,
building and prop densities.

238

Figure B.15: User interface of the prototype, CityEnginePH.

239

B.4 Results and Discussion

In this section, we discuss experiments we conducted to evaluate the overall performance of our
proposed city generator (PCG) for Philippine cities, named CityEnginePH.

B.4.1 Time Complexity Analysis

Recall that our proposed procedural city generator algorithm is divided into the following steps:
street map parsing, road network filtering, lot identification, city zoning, lot subdivision, and en-
tity instantiation. We provide an approximate Θ time complexity for each step in Table B.3.
CityEnginePH is directly inspired by CityEngine (Parish & Müller, 2001) which we make a com-
parison on its performance.

Table B.3: Time complexity analysis of the proposed modules, compared with Parish and Müller
(2001). Refer to discussion for the variables used.

CityEnginePH module Time complexity

Street map parsing Θ(n)
Road network filtering Θ(R)
Lot identification Θ(R+ E)
City zoning Θ(Llots)
Lot subdivision Θ(Llots ∗ d)
Entity instantiation Θ(Llots∗(B+Rprops+Lprops))

CityEngine
module (Parish
& Müller, 2001)

Time complexity

Road creation Θ(R+ L− system)
Lot identification N/A
Division into lots Θ(Llots ∗ d)
Building assets in-
stantiation

Θ(Llots ∗ (B +G+ T))

We refer to their methods discussed in their technical paper for inferring the approximate time
complexity. CityEngine involves the use of user-defined L-systems (Měch & Prusinkiewicz, 1996)
for generating roads R and lots Llots. For their road creation, there are 9 production rules in
their grammar. In our case, R is generated from street map data where a road filtering step is
performed (from R to Rtrimmed). Assuming that I/O operations are constant, the performance time
of generating roads is Θ(n+R), where n is the estimated row length of the OSM file.

CityEngine does not have a method for filtering generated roads as well as identifying lots.
Lots are directly identified and subdivided in a single fashion with time complexity of Θ(Llots ∗ d)
where d is a user-specified depth. Our proposed subdivision step is roughly similar, except we are
using an OBB data structure. However, we deduce that the time complexity is the same as that of
CityEngine.

Our PCG spawns road props (Rprops), such as pedestrian crossings, traffic lights, side walks,
buildings, electric poles, and lot-specific props (Lprops), such as trash can, benches, wood, trees and
fences. We speculate that spawning of these entities, including buildings, take 40% to 60% longer

240

than CityEngine. For spawning of Lprops, we perform multiple linear passes in Rtrimmed, where first
pass generates pedestrian crossings and traffic lights, second pass generates side walks, then third
pass generates electric poles. CityEngine only do a single pass when generating road assets. The
advantage of our method is we provide more controllable road prop features for the user.

Recall that for spawning of Lprops, we perform a repeated circular ray-tracing for determining
its valid spawn locations. This already takes Θ(πnZ) time, where n refers to number of circle
boundaries, and Z refers to sampled spawn locations in Li ∈ Llots (Section B.3.6). Spawning of lot
props is not supported by CityEngine. Instead, they provide a fully automatic randomization of
building geometry (G) and textures (T).

Overall, CityEnginePH will take longer to generate cities, but compensates for more controllable
parameters and more opportunities for fine-tuning of the generated city, including the generation of
ground-level assets like road and lot props, which we typically do not observe in other procedural
city generator systems.

B.4.2 Comparing with Real-World Street View Data

The primary purpose of CityEnginePH is to have a simulated environment for visualizing Philip-
pine cities. Previously mentioned in earlier sections, we simply cannot use existing PCG systems as
they’re not primarily designed to mimic characteristics of Philippine cities. To validate its effective-
ness in simulating Philippine cities, we analyzed the cities generated at an image or pixel-by-pixel
level. The key idea of our testing methodology is to retrieve Google Maps street view images on
various locations around Metro Manila, Philippines, and then visually compare these images, to
procedurally generated ones, mimicking the camera viewpoint as much as possible.

To perform this, we rely on segmentation maps to determine the building and zone accuracy
to eliminate color and texture-specific variations in real-world and synthetic images. Segmentation
map class labels are as shown in Table B.4. We manually annotated the street-view images to
produce the segmentation maps while we developed a fully automatic annotation feature for our
proposed PCG.

Table B.4: Segmentation map class labels

Segmentation Map Legend

Color Class

Low-rise buildings
High-rise buildings
Lot props
Roads
Sidewalks
Electric poles

We illustrate our testing methodology in Figure B.16. We first carefully selected and gathered
N = 25 Google Street Maps images across different locations in Metro Manila, Philippines. Next,
using our proposed PCG, we retrieve the corresponding OSM file from which we have gotten the
street map view and aligned the virtual camera in the 3D environment such that its viewpoint

241

Figure B.16: Our testing methodology. We gather Google Street Maps RGB images and manually
label and generate its segmentation map. We fully synthesize a city using our proposed PCG tool
and produce its corresponding segmentation map. We then measure the class label accuracy between
real and synthetic segmentation maps.

is roughly similar to that of the real-world counterpart. Based on cross-validation testing, we
procedurally generated 250 (10-fold of N) instances, randomizing the zone type parameters from
Table B.1, and report the mean class accuracy of their segmentation maps compared to their real
counterpart. Before doing so, we further minimized pixel discrepancies by performing a perspective
alignment between the synthetic and real segmentation maps.

Once we already have the synthetic and real segmentation maps, for each segmentation map,
we measure the class label accuracy:

242

Caccuracy =
correct pixels

total pixels
∗ 100.00 (B.1)

From the 250 synthetic images, we get the mean accuracy and report the individual results for each
RGB reference image, as seen in Table B.5. For the summarized results, refer to Table B.6. We
further divide our analysis into assisted and non-assisted generations. Assisted generation involves
manual parameter tuning where we repeatedly fine-tune the parameters discussed in Section B.3.7
to achieve the best results while we set the default parameters for the non-assisted generation.
Simulation results for both assisted and non-assisted generation show that our proposed PCG can
effectively generate plausible virtual worlds, seen similarly to their real-world street view counter-
parts. The generated city’s visual appearance is greatly influenced by OSM road network data and
an OBB lot subdivision method (Section B.3.5), allowing our PCG to maximize the lot space.

Table B.5: Individual class label accuracies of assisted and non-assisted generated cities, compared
to Google street maps image. Green and yellow highlights indicate the 1st and 2nd top results.

Class Label Accuracy (%)

Google street
maps image

Assisted Non-assisted

1 91.62 92.62
2 91.72 91.37
3 89.68 88.64
4 90.43 91.28
5 93.33 93.87
6 83.84 90.66
7 96.84 90.73
8 90.32 89.98
9 94.95 95.17
10 95.65 95.20
11 93.86 93.38
12 97.68 98.06
13 98.23 97.52
14 91.33 91.09
15 93.88 93.88
16 88.81 91.54
17 93.41 93.13
18 93.32 95.82
19 92.17 91.84
20 93.97 95.18
21 92.11 93.51
22 96.61 95.12
23 94.58 96.58
24 95.61 93.53
25 91.75 93.39

We show the top two image results generated by CityEnginePH in Figure B.17. We report the
remaining image results in the appendix. Visual results show the similarities between the real and
synthetic segmentation maps, as well as the overall street and building layout. The placement of
road and lot props, specifically the trees and electric poles, are consistent to street map images,

243

Table B.6: Mean and standard deviations of class label accuracies for 25 street map images when
compared to assisted and non-assisted generated cities.

Class Label Accuracy (%)
Assisted Non-assisted

Mean 93.028 93.324
Std dev 3.133 2.389

where they are typically placed alongside the roads.

Figure B.17: Visualizing the top two generated results using our proposed PCG method and ranking
the synthetic images according to class label accuracy.

B.4.3 City Zoning Analysis

We experimented with analyzing the effectiveness of our city zoning method (Section B.3.4), a core
framework of our PCG. The goal is to come up with a city cluster where its zones are reasonably
accurate when compared to a real-world map view. Similar to our previous experiment (Section
B.4.2), we measured the city zone accuracies, following the same color legend presented in Table

244

B.1. Figure B.18 illustrates our testing methodology for city zoning.

Figure B.18: Illustration of our testing methodology for analyzing the effectiveness of our city zoning
method (Section B.3.4). The candidate city block for testing is Mandaluyong City, Metro Manila,
Philippines.

We first selected a candidate city block that we modeled in our PCG. We chose an urban block
from Mandaluyong City, Metro Manila, Philippines, and used its OSM file due to its dense urban
layout and almost even residential, commercial, and industrial composition. To effectively manage
the computational requirements for generating multiple city instances, we divide the chosen block
into three sections and then combine the generated cities to measure the zoning accuracy. The
zoning accuracy metric is similar to Equation B.1 except that we use the zoning labels from Table
B.1. Similar to our previous test, we generate 250 possible city instances and report the mean
accuracy. We also rank them in the order of highest accuracy when presenting the visual results.

The zone accuracy is reported in Table B.7. Based on the zone accuracy, our proposed PCG
can reasonably support the creation of virtual cities with accurate zones even when no human
intervention or parameter tuning (non-assisted) was performed.

245

Table B.7: Zone accuracy of our proposed PCG, using Mandaluyong, Metro Manila, Philippines as
reference.

Zoning Accuracy (%)

Map view (Man-
daluyong, PH)

Assisted Non-assisted

Section 1 94.74 91.85
Section 2 92.14 90.99
Section 3 94.35 92.35
Overall 93.74 91.73

We present the top three visual results for the city blocks, with no fine-tuning (non-assisted), in
Figure B.19. Our proposed PCG method can effectively label zones on most of the lots identified,
with little to no empty spaces. There is occasional misidentification of lots, especially on small and
polygonal lots with > 5 edges. In reality, very small lots tend to be unoccupied, but our current
implementation does not yet account for these scenarios.

Figure B.19: Synthetic city zone results with no fine-tuning involved (non-assisted). The street
layouts are from the real-world map view of a block in Mandaluyong City, Metro Manila, Philippines.
Zone accuracy are also displayed. Our proposed PCG can reasonably support the creation of virtual
cities with accurate zones.

We present the visual results of the city blocks assistedly generated, in Figure B.20. To come
up with these results, we performed fine-tuning of the zoning parameters. We came up with the
following zoning parameters in Table B.8 for generating the aforementioned city blocks. Our assisted
generation technique provided slightly better results.

We provide the best 3D city view assistedly generated using our proposed PCG in Figure B.21.

246

Figure B.20: Synthetic city zone results using assisted generation, representing the real-world map
view of a block in Mandaluyong City, Metro Manila, Philippines. Zone accuracy are also displayed.
We achieved slightly improved performance if zoning parameters are fine-tuned.

Table B.8: Zoning parameters used for assisted generation of the three city blocks for Mandaluyong
City, Metro Manila, Philippines.

Map view (Man-
daluyong, PH)

Population
Density

Wealth Industry
Factor

Section 1 1.00 1.00 [0.7, 1]
Section 2 0.90 0.01 0.25
Section 3 0.90 0.75 0.25

We see that the generated city blocks follow a uniform layout where houses are clustered in a
straightforward fashion. This is due to the OBB method we proposed in Section B.3.5 which
prioritizes maximization of building entities to spawn, in a given lot space.

B.4.4 Strengths and Limitations

In Figure B.22, we show the strengths of CityEnginePH. To our knowledge, we are the first PCG
supporting the parametric generation of small towns and high-rise buildings. We also provide
features for the generation of road and lot props, which complement the overall look and feel of our
generated cities.

We illustrate the limitations of our proposed PCG in Figure B.23. For street layouts composed of
low and medium-density zones, generated cities may appear monotonous due to the limited quantity
of assets integrated into our PCG. Additionally, lot props for low-rise buildings are limited, making

247

Figure B.21: Preview of the synthetic city generated, using the combined city blocks for Mandaluy-
ong City, Metro Manila, Philippines. We provide aerial and street view photos on the right as
references. Note that due to limited crowd-sourced data from the internet, the real-world references
do not exactly depict the street locations in the map. We simply wish to convey the urban layout
patterns to the reader.

it appear that they were naively placed. Users can often remedy this by fine-tuning the lot prop
density according to user needs. Lastly, our PCG assumes that reference cities follow a flat layout.
We still do not have the feature to support elevated terrains and the use of height maps.

In summary, our PCG can effectively generate accurate cities in terms of city layout, and the lot
spaces are also maximized, while future researchers and developers can make direct improvements to
the visuals by adding more diverse buildings and prop assets. As future work, we plan to formulate
a conditional generation scheme for lot props, where the PCG will follow additional rules about
prop placement (e.g., Creation of inner fences, clustering of common lot props, and human-inspired
prop layout).

248

Figure B.22: Showcasing the best generated cities, referenced from street maps around Metro
Manila, Philippines. The ground-truth and synthetic segmentation maps are shown side-by-side.
Our PCG fully supports the generation of small towns, as well as high-rise buildings.

Figure B.23: Some limitations of our proposed PCG. Due to limited quantity of 3D assets for low-
rise to medium-rise buildings, generated street layouts may appear monotonous. Lot prop assets
are also limited which causes props to appear as if they were naively placed inside the lot space.

249

B.5 Additional results

We showcase different cities generated using our proposed approach.

Figure B.24: Results 1: generated city views from a reference Google street maps image.

250

Figure B.25: Results 2: generated city views from a reference Google street maps image.

251

Figure B.26: Results 3: generated city views from a reference Google street maps image.

252

Figure B.27: Results 4: generated city views from a reference Google street maps image.

253

Figure B.28: Results 5: generated city views from a reference Google street maps image.

254

B.6 Conclusion

Figure B.29: Generated city using Makati City, Metro Manila, Philippines, as reference street layout.

In this work, we present CityEnginePH, the first procedural city generator tailored for generating
Philippine cities. Our analysis and experiments show the potential of our PCG. Our proposed
PCG can effectively convert and simulate the road layouts from OSM data. Based on numerous
generations of cities, using reference images from Google Street Maps, our PCG can produce virtual
cities with little to no human intervention. A user can follow our recommended zoning parameters in
Table B.1 to generate a virtual city that may represent a real-world Philippine city layout accurately
(Figure B.29), in terms of layout and building placements.

255

Appendix C

Research Ethics Forms

This page contains the necessary research ethics forms in support of this research.

256

De La Salle University

Research Ethics Review Committee
Research Ethics Office, 3F Henry Sy Sr. Hall

De La Salle University Manila
2401 Taft Avenue, Manila 1004, Philippines
REO@dlsu.edu.ph (632) 524-4611 loc. 513

SOP No.: 2

Form No.: 2(D)

Version No.: 1

Version Date:
July 2016

Guidelines on the Ethical Conduct of Computing Research (v. 2016-09)

DE LA SALLE UNIVERSITY

General Research Ethics Checklist

This checklist is to ensure that the research conducted by the faculty members and students of De La
Salle University is carried out according to the guiding principles outlined in the Code of Research
Ethics of the University. The investigator is advised to refer to the De La Salle University Code of
Research Ethics and Guide to Responsible Conduct of Research before completing this checklist.
Statements pertinent to ethical issues in research should be addressed below. The checklist will help
the researcher/s and advisers/readers/evaluators determine whether procedures should be undertaken
during the course of the research to maintain ethical standards. The University’s Guide to the
Responsible Conduct of Research provides details on these appropriate procedures.

Researcher Details

Student Neil Patrick Del Gallego

Thesis Adviser Dr. Joel Ilao

Department/College
Department of Software Technology / College of Computer

Studies

Proposed Title of the Research

Synthetic Image Generation and the Use of Virtual Environments
for Computer Vision Tasks

Term(s) and academic year in which

research project is to be undertaken

Term 2 of AY 20 - 21 to Term 3 of AY 22 - 23

This checklist must be completed AFTER the De La Salle University Code of Ethics has been read
and BEFORE gathering data.

Questions

Yes

No

1. Does your research involve human participants (this includes new data gathered or

using pre-existing data)? If your answer is yes, please answer Checklist A (Human

Participants).

Please specify if the kind of research you will be conducting falls under any of the

following Human Participants sub-categories:

✔

1.A. Will you be conducting Action Research in an existing business, company, or

school? If your answer is yes, please answer Checklist F (Action Research).

 ✔

De La Salle University

Research Ethics Review Committee
Research Ethics Office, 3F Henry Sy Sr. Hall

De La Salle University Manila
2401 Taft Avenue, Manila 1004, Philippines
REO@dlsu.edu.ph (632) 524-4611 loc. 513

SOP No.: 2

Form No.: 2(D)

Version No.: 1

Version Date:
July 2016

Guidelines on the Ethical Conduct of Computing Research (v. 2016-09)

1.B. Does your research involve online communities (this includes culling data from

social media platforms, online forums and blogs)? If your answer is yes, please

answer Checklist G (Internet Research).

✔

1.C. Does your research involve human participants who are situated in a community

and may necessitate permission to acquire access to them? If your answer is yes,

please answer Checklist H (Community Research).

 ✔

2. Will your research make use of documents which are not in the public domain and,

thus, require permission for use from the custodian of such documents?

If YES, please provide certification that permission from the custodian of the data

was sought and granted.

✔

3. Will your research make use of secondary data (e.g., surveys, inventories, plans,

official documents, etc.) from an institution, organization, or agency, which are not

in the public domain and, thus, require permission for use from the custodian of such

documents?

If YES, please provide certification that permission to use the data was sought from

the institution, organization, or agency and approval was granted.

 ✔

4. Does your research involve animals (non-human subjects)? If your answer is yes,

please answer Checklist B (Animal Subjects).

 ✔

5. Does your research involve Wildlife?

If your answer is yes, please answer Checklist C (Wildlife).

 ✔

6. Does your research involve microorganisms that are infectious, disease causing or

harmful to health?

If your answer is yes, please answer Checklist D (Infectious Agents).

✔

7. Does your research involve toxic/chemicals/ substances/materials?

If your answer is yes, please answer Checklist E (Toxic Agents).

✔

Research with Ethical Issues to address:

If you have a YES answer to any of the above categories, you will be required to complete a detailed

checklist for that particular category. A YES answer does not mean the disapproval of your research

proposal. By providing you with a more detailed checklist, we ensure that the ethical concerns are

identified so these can be addressed in adherence to the University Code of Ethics.

De La Salle University

Research Ethics Review Committee
Research Ethics Office, 3F Henry Sy Sr. Hall

De La Salle University Manila
2401 Taft Avenue, Manila 1004, Philippines
REO@dlsu.edu.ph (632) 524-4611 loc. 513

SOP No.: 2

Form No.: 2(D)

Version No.: 1

Version Date:
July 2016

Guidelines on the Ethical Conduct of Computing Research (v. 2016-09)

Declaration of Conflict of Interest

[✔] 1. I do not have a conflict of interest in any form (personal, financial, proprietary, or professional)

with the sponsor/grant-giving organization, the study, the co-investigators/personnel, or the site.

[] 2. I do have a conflict of interest, specifically:

[] A. I have a personal/family or professional interest in the results of the study (family members who

are co-proponents or personnel in the study, membership in relevant professional

associations/organizations).

Please describe the personal/family or professional interest:

[] B. I have proprietary interest vested in this proposal (with the intent to apply for a patent, trademark,

copyright, or license)

Please describe proprietary interest:

[] C. I have significant financial interest vested in this proposal (remuneration that exceeds P250,000.00

each year or equity interest in the form of stock, stock options or other ownership interests).

Please describe financial interest:

RESEARCH ETHICS CLEARANCE FORM
For Final Dissertation1

Names of student
researcher/s :

Neil Patrick Del Gallego

College: College of Computer Studies

Department: Software Technology Department

Research Title:

Synthetic Image Generation and the Use of Virtual
Environments for Computer Vision Tasks

Course: Doctor of Philosophy in Computer Science

Expected duration of project: from: AY20-21 Term 2 to: AY22-23 Term 3

Ethical considerations

N/A

To the best of our knowledge, the ethical issues listed above have been addressed in the
research.

 PROF. JOEL ILAO

 Name and signature of adviser/mentor

 Date:

 PROF. ARNULFO AZCARRAGA DR. MACARIO CORDEL II

 Name and signature of panelist Name and signature of panelist

Date: Date:

DR. CONRADO RUIZ JR. PROF. KAI-LUNG HUA

Name and signature of panelist Name and signature of panelist

Date: Date:

28 August 2023

30 August 2023 31 August 2023

	Synthetic image generation and the use of virtual environments for image enhancement tasks
	Recommended Citation

	Introduction
	Background
	Research Questions
	Hypothesis for Question 1
	Hypothesis for Question 2
	Hypothesis for Question 3

	Research Contributions
	Organization

	Concepts in Computer Vision and Image Enhancement
	Image Formation Equations
	Atmospheric Scattering Model
	Intrinsic Image Decomposition

	Geometric Distortion Correction
	Full 2D Affine Transform
	Partial Affine 2D Transform
	Homography Estimation

	Depth Inference
	Depth Map
	Deriving Depth Maps: Modeling Disparity

	3D Scene Representation
	Structure from Motion
	Image to Point Cloud

	Techniques on Generative Models
	General Objective Function for GAN
	Reconstruction-Based GAN or Image-to-Image Translation
	Unpaired Image-to-Image Translation
	Residual Blocks
	U-Net Architecture
	Channel and Pixel Attention Blocks

	Domain Adaptation Techniques
	General Approach
	Shared Latent Space
	Disentangling Content and Domain
	Incremental Learning

	Concepts in Computer Graphics
	Synthetic Datasets
	Lighting
	Light Sources

	Physically Based Shading and Materials
	Global Illumination
	Rendering Equation
	Reflectance
	Visibility
	GI Algorithm 1: Monte Carlo Ray Tracing
	GI Algorithm 2: Photon Mapping

	Preliminary: Blind First-Order Perspective Distortion Correction using Parallel Convolutional Neural Networks
	Introduction
	Related Work
	Model-Based Techniques
	Methods Using Low-Level Features
	Learning-Based Methods

	Empirical Analysis on the Transformation Matrix
	Synthetic Distortion Dataset: dKITTI
	Proposed Network
	Parallel CNN Model
	Training Details

	Evaluation
	Experiment on Network Variants
	Closeness of Estimations to Ground-Truth
	Activation Visualization
	Model Generalization
	Limitations

	Conclusions
	Additional Results

	Dehazing using Synthetic Images
	Introduction
	Dehazing Task Formulation
	The Virtual Environment and Dataset Generation
	Motivation
	Environment Design
	Virtual Cameras
	Gathering RGB Images and Depth Maps
	Gathering Unlit Image Priors
	DLSU-SYNSIDE: Synthetic Dehazing Dataset for a Supervised Learning Approach

	Network Design for Synthetic Image-Based Dehazing
	Style Transfer Network
	Unlit Image Generator
	Transmission Map Generator
	Atmospheric Map Estimator
	Training Details

	Experiments and Results
	Overall Performance
	Performance on Real Hazy Images
	Effectiveness of Style Transfer and Unlit Image Priors
	Impact of Synthetic Image Quality Used in Training
	Comparison with GTA-MVS Dataset
	Atmospheric Light and Beta Terms for Generating Hazy Images
	Style Transfer Network Architecture Choice
	Loss Terms for Transmission Map Generator

	Conclusion

	Shadow Removal Using Only 3D Primitives
	Introduction
	Related Work
	Shadow Detection
	Shadow Removal
	Shadow Datasets and Generation

	Framework and Dataset Generation
	Motivation: Using only 3D primitives as occluders
	Dataset Generation
	Synthetic Shadow Dataset

	Supervised Shadow Removal using Synthetic Images
	Shadow Matte Conditioning
	Shadow Removal
	Training Details

	Results and Discussion
	Performance on ISTD Dataset
	Performance on SRD Dataset
	Ablation Studies
	Validation of Training Approach
	Effectiveness of DSP-FFANet as a Shadow Removal Network
	Comparison of DSP-FFANet on Other SR Networks Trained on Synthetic Shadows
	Identifying 3D Primitive Sets
	Effectiveness of 3D-Projected Primitive Occluders
	Primitive Occluders Versus SynShadow Augmentation
	Dataset Choice for Gm Training
	Dataset Choice for Gz Training
	Dataset Choice for Texture Mapping
	Performance on Places-365 Dataset
	Strengths and Limitations

	Supplementary Experiments
	Comprehensive Experiment on 3D Primitive Sets
	Observations on DSP-FFANet, BMNet, and SG-ShadowNet's Training Behavior
	Additional Experiments: Dataset Choice for Texture Mapping
	Comparing Performance of 1-Channel and 3-Channel Shadow Mattes

	Conclusion

	Intrinsic Image Decomposition
	Overview
	Related Work
	IID: Intrinsic Image Decomposition
	IID Datasets

	DLSU-IID: A Dataset for City Intrinsics
	Network Design for Intrinsic Image Decomposition using DLSU-IID
	Albedo Generator
	Depth Generator
	Normal Generator

	Experiments
	Performance Analysis of the Albedo Generator
	Performance Analysis of the Normal Generator
	Performance Analysis of the Depth Generator

	Conclusion and Future Work

	Conclusion
	Revisiting the Research Questions
	What attributes are present in a 3D virtual environment that can be utilized for synthetic image generation?
	How can synthetic images be used for solving various computer vision tasks?
	How to address limitations of using synthetic images for a computer vision task, such as using real-world images for validating the effectiveness of the model?

	A Proposed Unified Framework for Image Restoration
	Task Difficulty and Realism Required
	Future Work

	Bibliography
	Image Datasets
	dKITTI
	DLSU-SYNSIDE
	DLSUSynthPlaces-100K
	DLSU-IID

	Generating a Virtual Philippine City from Road Network Data
	Introduction
	Related Work
	Data-driven techniques
	Procedural or rule-based techniques

	System Overview
	Street Map Parsing
	Road Network Filtering
	Road Instantiation
	City Zoning
	Lot Subdivision
	Entity Instantiation
	Controllable Parameters

	Results and Discussion
	Time Complexity Analysis
	Comparing with Real-World Street View Data
	City Zoning Analysis
	Strengths and Limitations

	Additional results
	Conclusion

	Research Ethics Forms

