123 research outputs found

    Observing human activity through sensing

    Get PDF

    Enabling environmental fingerprinting with an NFC-powered sensor board

    Get PDF
    Abstract. In recent times, people have become concerned about their environmental conditions, amid deteriorating global statistics on bad air quality, global warming and UV light exposure. Conventional technologies for reading environmental conditions are expensive, bulky and situated, yet, people are mobile and need portable tools to be aware of their immediate environmental conditions on demand. Smartphones are now widely used, endowed with sensors and wireless communication technologies such as Bluetooth, and Near Field Communication (NFC) for external sensor connectivity, making smartphones a viable tool for fingerprinting the environment. This thesis outlines the design, evaluation and implementation of a mobile-enabled system for environmental data collection using a portable NFC powered sensor board. The name of the system developed in this thesis is the S3 system. The S3 system is a two-tier system which consists of S3 Android application and an online dashboard with a data repository. The S3 Android application is used for collecting and visualising environmental data; temperature, humidity, UV, ambient light, with a smartphone and a credit card-size NFC powered sensor board. The sensor data is then periodically synced to the online data repository. Additional features of the S3 application include automated feedback sampling, introductory tutorial, and user preference settings. The thesis further details the design and implementation process with scenarios, use cases, paper sketches, expert review of sketches, interface mockups, evaluation of prototype with a user study, quantitative and qualitative analysis of user study data, and finally the implementation of the S3 application. The thesis also presents a test run to demonstrate the capabilities of the S3 system as a mobile-enabled solution for crowdsourced environmental fingerprint datasets. To the end user, the work in this thesis provides the S3 application and the NFC powered sensor card as a portable tool for personalised environmental fingerprinting. On the other hand, the intervention in this thesis will have an impact on research since the crowdsourced environmental fingerprint datasets can be valuable datasets for research. As a TEKES project, the solution also provides a proof of concept for further improvement and deployment into the commercial software market

    iBeacon localization

    Get PDF

    Laitteiden välisen yhteistyön soveltuvuus älypuhelimilla toteutettavaan sisätilapaikannukseen

    Get PDF
    A reliable indoor positioning service for smartphones is a service that is often requested. There are several competing technologies already available but a lot of basic research is still done on the subject. This thesis studies the applicability and technological possibilities of improving the performance of a positioning service using peer to peer collaboration. The Bluetooth low energy technology (BLE) offers a possibility to use peer to peer radio signal measurements with smartphones. This could be used to improve the performance of existing positioning algorithms if enough service users are in close proximity to each other. In this thesis a pedestrian simulation system was implemented to study the probability that two positioning service users are in close enough proximity to each other for BLE usage. The suitability of BLE as the collaboration technology was studied by implementing a particle filter based positioning system that uses BLE measurements to track a smartphone. Finally the collaborative BLE system was integrated on top of an existing geomagnetic tracking algorithm and the effect on the positioning performance was studied. It was concluded that the BLE as a technology is suitable for positioning use despite the large measurement uncertainty. BLE based collaboration is feasible in improving the positioning results provided that the basic positioning technology is reliable enough. The pedestrian simulations concluded that with realistic expected number of users in one building most sessions would not benefit from collaboration but it would still likely happen frequently.Luotettava sisätilapaikannuspalvelu on haluttu ominaisuus mobiilipalveluiden kehityksessä. Useita kilpailevia ratkaisuja on jo markkinoilla, mutta ongelman parissa tehdään vielä huomattavan paljon perustutkimusta. Tässä diplomityössä tutkitaan mahdollisuutta parantaa paikannusjärjestelmän toimintaa käyttäen vertaisyhteistyötä. Bluetooth low energy -teknologia (BLE) tarjoaa mahdollisuuden käyttää laitteiden välisiä radiosignaalimittauksia älypuhelimilla. Tätä voidaan mahdollisesti hyödyntää parantamaan olemassa olevien paikannusalgoritmien toimintaa, jos riittävästi käyttäjiä on riittävän lähellä toisiaan. Tässä diplomityössä toteutettiin ihmisjoukkojen liikettä sisätiloissa mallintava järjestelmä, jolla tutkittiin todennäköisyyttä, että kaksi paikannusjärjestelmän käyttäjää olisi riittävän lähellä toisiaan käyttääkseen BLE-radiomittauksia. BLE:n soveltuvuutta paikannusteknologiana tutkittiin toteuttamalla partikkelisuotimeen perustuva paikannusjärjestelmä, joka käyttää BLE-mittauksia älypuhelimen seuraamiseen. Lopuksi BLE mittausjärjestelmä integroitiin olemassa olevaan magneettikenttään perustuvaan paikannusalgoritmiin ja BLE-yhteistyön vaikutusta algoritmin toimintaan tutkittiin. Työ osoitti, että BLE on paikannuskäyttöön soveltuva teknologia suuresta mittausepävarmuudesta huolimatta. BLE-perusteinen yhteistyö paikannustuloksen parantamisessa on toimiva ratkaisu, mikäli varsinainen paikannusteknologia on riittävän luotettava. Realistisesti odotettavissa olevilla paikannuspalvelun käyttäjämäärillä BLE-yhteistyötä todennäköisesti tapahtuisi suhteellisen usein, vaikka suurin osa paikannussessioista ei pääsisikään hyötymään siitä

    Optimization of Algorithms in Relation to iBeacon

    Get PDF
    The boom of portable electronics and high-speed wireless networks has brought changes throughout society, including development in positioning systems. Indoor localization is more and more important. With modern technology, we are able to track people in shopping complexes and offer them discounts for surrounding goods. The following text deals with the design and description of methods to determine user’s position based on fingerprint technology. The text focuses on the description of algorithms in relation to the iBeacon. Three main algorithms were described in the text. The following text describes the implementation of Knn algorithm. The main goal of this paper is to clearly describe the basic positioning algorithms for the readers, introduce implementation of the Knn algorithm and its usage in real environment

    Femtocell deployment; next generation in cellular systems

    Get PDF
    The final Bachelor’s Thesis that is shown below has such a final purpose of giving an overview of the inclusion of the so-called Femtocells (or Home Node B) in the current cellular systems. The main objective is to give a clear but simple idea about the concepts of Femtocells, as well as to explain the benefits and disadvantages of the mass uses of these services both for consumers and associated companies with this phenomenon. In this text it is also possible to find a brief review of wireless technologies throughout the history of telecommunications, as well as an introduction to the more current wireless technologies, with a special interest in the concept of cellular systems. In the last chapter a simple mathematical explanation of the key issue of interference between Femtocells and macrocellular networks is presented, with a brief argument about possible solutions

    Location tracking in indoor and outdoor environments based on the viterbi principle

    Get PDF

    Sensor Modalities and Fusion for Robust Indoor Localisation

    Get PDF

    Interaction of antenna systems with human body

    Get PDF
    The research investigates the influence on the human body on a communication system. To understand this, the effect of hands free kit (HFK) on energy absorption in the body was investigated when operating a smart phone at 2G. Findings on the research are given in the thesis report. Also, the influence of the way in which a phone is held on a phone s received power was investigated. The result was compared to that obtained using a hand phantom acquired from SPEAG. This was to check if the hand phantom best represents the human hand when using it in experiments. The setup for the experiment was in an anechoic chamber at Loughborough University. The mobile phone transmitted in the 2G system. In further experiments carried out on the body, two antennas were attached to the body in six different orientations to receive power from a source creating a Single Input Multiple Output (SIMO) system. The antennas used were monopoles mounted on a circular ground plane. These antennas were designed and constructed with the influence of the body taken into consideration. The use of diversity techniques to improve transmission to an on-body system is investigated with the antennas on the body. For each alignment, the transmission to the on-body was compared with the transmission to the corresponding off-body (free space). Experiments for this work were carried out in three environments
    corecore