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–Dutch summary–

Locatietracking in binnen- en buitenomgevingen is van groot belang geweest
in de afgelopen decennia en wordt nog steeds belangrijker. De alsmaar toe-
nemende hoeveelheid beschikbare locatiedata door de alomtegenwoordige
connectiviteit van mensen en het internet der dingen heeft geleid tot vele
location-based services (LBS), ook wel locatiegebaseerde diensten genoemd.
Deze verzameling van diensten maakt gebruik van geografische locatiedata
van mobiele toestellen en bevindt zich in meerdere domeinen, bijvoorbeeld
de gezondheidszorg, overheid of openbare diensten. Voorbeelden van deze
LBS-diensten zijn persoonlijke navigatie, het optimaliseren van de produc-
tiviteit in de industrie en het analyseren van verkeerspatronen. De we-
reldwijde LBS-markt wordt momenteel geschat op 30 miljard dollar en zal
naar alle waarschijnlijkheid de kaap van 133 miljard dollar bereiken tegen
2023. De grootste uitdagingen voor de verdere ontwikkeling en acceptatie
van LBS zijn problemen die verband houden met de privacy van locatie-
gegevens, beschikbaarheid van up-to-date kaarten en de betrouwbaarheid,
nauwkeurigheid en kosten van lokalisatiesystemen.

Lokalisatietechnieken kunnen op verschillende manieren van elkaar wor-
den onderscheiden. Deze systemen kunnen actief of passief zijn, naargelang
het object of de persoon die wordt getraceerd al dan niet is uitgerust met een
lokalisatiedevice. Veel positioneringssystemen zijn actief en in dit geval is
het object of de persoon die wordt getraceerd, voorzien van een actieve tag.
Bij passieve positioneringssystemen, ook wel device-free lokalisatie (DFL)
genoemd, neemt het object of persoon niet actief deel aan het positione-
ringsproces. De positie wordt geschat op basis van veranderingen in de
omgeving, die op hun beurt worden veroorzaakt door de aanwezigheid en
beweging van het object of de persoon die wordt gevolgd. Dit is interessant
voor niet-coöperatieve lokalisatie zoals inbraakdetectie, opvolgen van wilde
dieren of het beschermen van goederen. Een ander onderscheid kan worden
gemaakt op basis van de gebruikte communicatietechnologie als drager van
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het informatiesignaal, bijvoorbeeld WiFi, Bluetooth Low Energy (BLE),
GSM of GPS, en de gebruikte rangingtechniek om de locatie te bepalen via
triangulatie of multilateratie. Een bekend alternatief is fingerprinting op
basis van signaalsterkte. Deze techniek schat de locatie door te zoeken naar
de beste overeenkomst in een fingerprintkaart (een databank met signaalsig-
naturen per locatie). Het grootste voordeel van deze fingerprintingtechniek
is dat het voordeel haalt uit multipath, terwijl dit voor rangingtechnie-
ken altijd een nadeel is. Dit komt omdat multipath zorgt voor variatie in
de signaalsignaturen wat resulteert in unieke en goed onderscheidbare fin-
gerprints terwijl deze variatie wordt gezien als extra ruis op de metingen,
hetgeen nadelig is voor rangingtechnieken.

Het eerste deel van dit proefschrift (Hoofdstuk 2–4) gaat over lokalisatie
in binnenomgevingen met een focus op signaalsterkte gebaseerde systemen,
invloed van het menselijk lichaam en optimalisatie van modelgebaseerde fin-
gerprintkaarten. Het tweede deel van dit proefschrift (Hoofdstuk 5–6) richt
zich op het mappen van GPS-data op een wegennetwerk met ondersteuning
voor rijstrookdetectie en op lokalisatie in buitenomgevingen op basis van
mobiele gegevens.

Hoofdstuk 2 beschrijft een real-time locatietrackingsysteem voor bin-
nenomgevingen op basis van het Viterbi-principe en semantische gegevens.
Het Viterbi-algoritme is een dynamisch programmeeralgoritme dat wordt
gebruikt in de context van hidden Markov modellen (HMM) om de meest
waarschijnlijke sequentie van verborgen toestanden (het Viterbi pad) te be-
palen op basis van waarneembare observaties. Om deze techniek toe te
passen op lokalisatie, worden de toestanden gëınterpreteerd als echte lo-
caties op een grondplan en komt dit principe neer op het bepalen van de
meest waarschijnlijke sequentie van posities in plaats van enkel de meest
waarschijnlijke huidige positie. Bovendien wordt om het aantal mogelijke
overgangen tussen twee posities te beperken gebruik gemaakt van seman-
tische data, dit is de omgeving van het object dat wordt getraceerd en
een bewegingsmodel. Op deze manier wordt er een realistisch en fysiek
mogelijk pad gereconstrueerd dat geen muren kruist of onmogelijke bewe-
gingssnelheden impliceert. Simulaties bevestigden dat het vooropgestelde
locatietrackingsysteem robuust was tegen ruis, vooral voor netwerken met
een lage node densiteit. Een gesimuleerd ruisniveau van 10 dB resulteerde in
verbeteringen van 70.9%, 52.8%, 54.1%, en 42.1% in gemiddelde nauwkeu-
righeid ten opzichte van een fingerprinting techniek, Kalman filter, particle
filter en particle smoother. Een experimentele validatie uitgevoerd in een
echte kantooromgeving resulteerde in een verbetering van 26.1% in vergelij-
king met een standaard fingerprintingtechniek. In een gevoeligheidsanalyse
wordt verder aangetoond dat de densiteit van de access points, semantische
gegevens, padverliesmodel en rastergrootte een aanzienlijke invloed hebben
op de nauwkeurigheid, het vereiste rekenvermogen en het geheugengebruik.
Deze laatste zijn belangrijk om in real-time te kunnen werken op goedkope
mobiele toestellen.
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Veel positioneringssystemen proberen al om te gaan met de signaalvaria-
ties die worden veroorzaakt door multipath fading en diffractie. Een andere
belangrijke factor is de invloed die wordt veroorzaakt door de gebruiker
zelf, die wordt getraceerd, de zogenaamde human body shadowing (sig-
naalvariaties veroorzaakt door het menselijk lichaam). Deze factor wordt
vaak genegeerd door de prestatie van positioneringssystemen te verifiëren
door stapsgewijs een mobiele node op een statief te verplaatsen, waardoor
de invloed van het menselijk lichaam er expliciet wordt uitgehaald, terwijl
praktische lokalisatietechnieken altijd de aanwezigheid van een persoon im-
pliceren. De aanwezigheid van een persoon bëınvloedt de radiofrequente
signaalpaden tussen een mobiele tag op of nabij het lichaam en de ont-
vangende access points, en kunnen naargelang de oriëntatie en locatie van
de gebruiker de line-of-sight (gezichtslijn) blokkeren. Dit veroorzaakt extra
propagatieverliezen die typisch niet in rekening worden gebracht en leiden
tot een lagere nauwkeurigheid van op signaalsterkte gebaseerde positione-
ringssystemen. Hoofdstuk 3 beschrijft twee compensatiemethoden, die zijn
gëıntegreerd in het trackingalgoritme van Hoofdstuk 2, om het effect van
human body shadowing te verminderen. De eerste methode combineert de
gemeten signaalsterkte van meerdere mobiele tags, geplaatst op verschil-
lende delen van een menselijk lichaam; gecombineerd vertonen deze minder
variatie, wat de invloed beperkt van het lichaam van de persoon die wordt
getraceerd. De tweede methode houdt rekening met de oriëntatie van deze
persoon ten opzichte van de access points en de relatieve positie van de
persoonlijke tag, en gebruikt een model om de invloed van het menselijk
lichaam expliciet te compenseren. Beide methoden kunnen onafhankelijk
worden gecombineerd en verminderen de invloed die wordt veroorzaakt door
human body shadowing, wat de gemiddelde nauwkeurigheid van het positi-
oneringssysteem verbetert van 3.76 m naar 2.33 m, of een verbetering van
38.1% betekent.

Het grootste nadeel van op signaalsterkte gebaseerde fingerprinting voor
lokalisatie is het aanmaken en onderhouden van de fingerprintkaart. Een
kaart op basis van een theoretisch model kan veel sneller worden gegene-
reerd dan op metingen gebaseerde kaarten maar zijn over het algemeen
niet nauwkeurig genoeg. Hoofdstuk 4 beschrijft een unsupervised learning
techniek om modelgebaseerde fingerprintkaarten te optimaliseren voor loka-
lisatie, bijvoorbeeld om de kaart nauwkeuriger te maken of om automatisch
rekening te houden met wijzigingen in een kantoorindeling. De input voor
deze unsupervised learning techniek zijn willekeurige wandelingen waarvoor
de exacte locatie onbekend is, een initiële fingerprintkaart gebaseerd op een
theoretisch padverliesmodel, een zelfkalibratiemethode en een geavanceerde
routeringsfilter, namelijk het trackingalgoritme van Hoofdstuk 2. Deze aan-
pak vereist geen meetcampagne, kalibratie of terreinonderzoek, die arbeids-
intensief en tijdrovend zijn, of een inertieel navigatiesysteem, dat vaak niet
beschikbaar is en extra energie verbruikt. Het uitgangspunt van deze tech-
niek is dat de verschillen tussen echte metingen en referentiewaarden, af-
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geleid van een modelgebaseerde fingerprintkaart, meestal gecorreleerd zijn
per kamer en per access point. Metingen en simulaties tonen aan dat deze
verschillen tussen referentiewaarden en echte metingen kunnen worden ge-
leerd in verschillende scenario’s, gebaseerd op de willekeurige wandelingen
die een typische persoon aflegt. Dit resulteert in referentiewaarden die beter
overeenkomen met de echte metingen en die daarom leiden tot een betere
fingerprintkaart en nauwkeurigheden. Een experimentele validatie op een
testbed in een groot kantoorgebouw bevestigde deze simulaties met relatieve
verbeteringen tot 28.6% na unsupervised learning met slechts een kwartier
aan trainingsdata zonder label.

Hoofdstuk 5 beschrijft een snel, geheugenefficiënt en wereldwijd toepas-
baar map matching algoritme gebaseerd op geografische coördinaten en open
kaartinformatie. Het voorgestelde algoritme combineert een Markovketen en
een kortste pad algoritme, terwijl er rekening wordt gehouden met het type
en de richting van alle wegsegmenten, informatie over eenrichtingsverkeer,
maximaal toegestane snelheid per wegsegment en het rijgedrag. Daarnaast
is er een rijstrookdetectie-algoritme op basis van accelerometer metingen
en rijstrookinformatie uit de open kaartgegevens, dat zichzelf aanpast aan
het rijgedrag, toegevoegd aan het map matching algoritme. Een experi-
mentele validatie bestaande uit 12 trajecten te voet, per fiets en per auto,
toonde de efficiëntie en nauwkeurigheid aan van de voorgestelde algoritmen,
met een gemiddelde F1-score en mediaanfout van 99.5% en 2.09 m voor de
map matching en een gemiddelde F1-score van 86.7% voor de detectie van
rijstrookveranderingen, wat in 93.0% van de tijd resulteerde in de correct
geschatte rijstrook.

Veel technieken voor locatietracking via mobiele netwerken worden ge-
valideerd in optimale of gecontroleerde omgevingen op een kleine dataset
of louter via simulaties. Hoofdstuk 6 beschrijft een techniek om alle ge-
bruikers op een mobiel netwerk efficiënt te lokaliseren, die niet afhanke-
lijk is van voorgaande trainingsdata, ingrepen aan de mobiele kant vereist
of zelfs hardware- en softwareveranderingen aan de netwerkinfrastructuur
van de telecomoperator. Dit is nuttig voor toepassingen waar er typisch
geen samenwerking of overeenkomst is met de mobiele gebruiker, bijvoor-
beeld verkeersmonitoring, schatting van de bevolkingsstromen of detectie
van criminele activiteiten. Dit maakt het ook onmiddellijk toepasbaar voor
telecommunicatiebedrijven. De input voor deze lokalisatietechniek zijn de
topologie en metingen van het mobiele netwerk, open kaartinformatie, een
methode om het vervoersmiddel te detecteren en het routeringsfilter van
Hoofdstuk 5. De techniek werd geëvalueerd op een land omvattende da-
taset die werd verzameld en verwerkt in real-time, in samenwerking met
een telecommunicatiebedrijf in België. De experimentele validatie toonde
aan dat de voorgestelde techniek robuust is en dat het vervoersmiddel, het
smartphone gebruik en de omgeving een grote invloed hebben op de nauw-
keurigheid. De prestaties van een bestaande particle-filter met kaartinfor-
matie werden overtroffen met 31.0% in mediaan nauwkeurigheid.
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Ten slotte besluit Hoofdstuk 7 dit proefschrift met een samenvatting
van het voltooide werk en bespreekt een aantal mogelijke richtingen voor
toekomstig werk.





English summary

Location tracking in indoor and outdoor environments has been of great
importance in the last decades and is still gaining attraction. The growing
amount of available positioning data due to ubiquitous connectivity and
the Internet of Things (IoT) has led to many location-based services (LBS).
These are a collection of applications that use geographical location data
of mobile devices and are situated in many domains, e.g., health care, gov-
ernment, or public service. Examples of these location-aware applications
are personal navigation, optimizing productivity in manufacturing, and an-
alyzing traffic patterns. The worldwide LBS market is currently valued at
around USD 30 billion and is expected to reach USD 133 billion by 2023.
The largest challenges related to the further development and widespread
adoption of LBS are privacy concerns associated with location data, avail-
ability of up-to-date maps, and the reliability, accuracy, and cost of indoor
and outdoor positioning technologies.

Localization techniques, can be distinguished from each other in mul-
tiple ways. These systems can be either active or passive depending on
the participation or cooperation of the tracked object or person. A lot of
positioning systems are active and in this case, the object that is being
tracked, is equipped with an active tag. With passive positioning systems,
also known as device-free localization (DFL), the moving object is not ac-
tively participating in the positioning process. The position is estimated
based on changes in the environment, which are in turn caused by the pres-
ence and movement of the entity that is being tracked. This is interesting
for non-cooperative localization like intrusion detection, wildlife monitor-
ing, or protecting outdoor assets. Another distinction can be made based
on the used communication technology to carry the information signal, e.g.,
WiFi, Bluetooth Low Energy (BLE), GSM, or GPS, and the used ranging
technique to determine the location via triangulation or multilateration. A
well known alternative is signal strength based fingerprinting. This tech-
nique estimates the location by looking for the closest match in a pretrained
fingerprint database, also known as radio or coverage map. The largest ad-
vantage of this fingerprinting technique is that it exploits multipath whereas
ranging based techniques suffer from it, i.e., multipath ensures unique signal
signatures, which is beneficial for fingerprinting whereas it is seen as addi-
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tional noise on the measurements, which is disadvantageous for ranging.
The first part of this work (Chapter 2–4) is about indoor location track-

ing with a focus on signal strength based systems, influence of the human
body, and the optimization of model-based radio maps for indoor position-
ing. The second part (Chapter 5–6) focuses on GPS based map matching
with support for lane detection and outdoor positioning based on cellular
network data.

Chapter 2 presents a real-time indoor location tracking system based
on the Viterbi principle and semantic data. The Viterbi algorithm is a dy-
namic programming algorithm used in the context of hidden Markov models
(HMM) to determine the most likely sequence of hidden states, called the
Viterbi path, resulting in the sequence of observed events. To apply this
technique for positioning, the states are interpreted as real locations on a
floor plan and hence this principle comes down to determining the most
likely sequence of positions instead of only the most likely current position.
Furthermore, the number of allowed transitions between two grid points is
restricted by using semantic data, i.e., the environment of the object that
is being tracked and a motion model. This ensures that the reconstructed
paths are realistic and physically possible, i.e., no walls are crossed and no
unrealistically large distances are traveled within a given time frame. Sim-
ulations confirmed that the proposed location tracking system was more ro-
bust against measurement noise, especially for networks with smaller node
densities, e.g., a simulated noise level of 10 dB resulted in improvements
of 70.9%, 52.8%, 54.1%, and 42.1% in mean accuracy compared to a fin-
gerprinting technique, Kalman filter, particle filter, and particle smoother,
respectively. An experimental validation conducted in a real office environ-
ment resulted in an improvement of 26.1% compared to a basic fingerprint-
ing technique. In a sensitivity analysis it is shown that the access point
density, semantic data, path loss model, and grid size have a major impact
on the accuracy, required computational power, and memory usage, which
is important to work in real-time on low-cost portable devices.

Many positioning systems already try to cope with signal deterioration
caused by multipath fading and diffraction. However, another important
factor is the influence caused by the user being tracked itself, so-called
human body shadowing. This factor is often neglected by verifying the
performance of positioning systems by stepwise moving a node placed on
a tripod, hereby explicitly removing the human from the equation, while
practical human tracking applications always imply the presence of a user’s
body. The presence of such a user will influence the radio-frequency signal
paths between a body-worn tag and the receiving nodes, and can block the
line-of-sight depending on the user’s orientation and location. This causes
additional propagation losses that are currently not accounted for and will
generally decrease the accuracy of signal strength based positioning systems.
Chapter 3 presents two compensation methods, built on top of the tracking
algorithm of Chapter 2, to eliminate the effect of human body shadowing.



English summary xxxiii

The first method combines the measured signal strengths from multiple
mobile nodes, placed on different parts of a human body, which show less
variation caused by the user’s body and hence limits its influence. The
second method takes into account the user’s orientation towards the fixed
infrastructure and the body-worn tag’s relative position, and uses a human
body loss model to explicitly compensate for the user’s influence. Both
approaches can be independently combined and reduce the influence caused
by body shadowing, improving the mean accuracy from 3.76 m to 2.33 m,
corresponding to an improvement of 38.1%.

A major burden of signal strength-based fingerprinting for indoor po-
sitioning is the generation and maintenance of a radio map. Model-based
radio maps are generated much faster than measurement-based radio maps
but are generally not accurate enough. Chapter 4 presents an unsupervised
learning technique to construct and optimize model-based radio maps for
indoor positioning systems, e.g., to make the radio map more accurate or
to automatically cope with changes in an office layout. The input for this
unsupervised learning technique are random walks for which the ground
truth locations are unknown along with an initial radio map based on a
theoretical path loss model, a self-calibration method, and a route mapping
filter, i.e., the location tracking algorithm of Chapter 2. No measurement
campaign, device calibration, or site survey, which are labor-intensive and
time-consuming, or inertial sensor measurements, which are often not avail-
able and consume additional power, are needed for this approach. The
premise of this technique is that the differences between real measurements
and reference values, derived from a model-based radio map, tend to be
correlated per room and access point. It was shown by measurements and
simulations that the discrepancies between reference fingerprints and real
measurements could be learned in various scenarios, based on the random
walks that a typical person does. This results in reference fingerprints that
match the real measurements more closely and hence will lead to better ra-
dio maps and location accuracies. An experimental validation on a testbed
in a large office building confirmed the simulations with relative improve-
ments up to 28.6% after unsupervised learning with only 15 min of unlabeled
training data.

Chapter 5 presents a fast, memory-efficient, and worldwide map match-
ing algorithm based on raw geographic coordinates and enriched open map
data. The proposed algorithm combines the Markovian behavior and the
shortest path aspect while taking into account the type and direction of all
road segments, information about one-way traffic, maximum allowed speed
per road segment, and driving behavior. Furthermore, a lane detection al-
gorithm based on accelerometer readings and traffic lane information from
the open map data, that self-adapts to different driving behaviors, is added
on top of the map matching algorithm. An experimental validation consist-
ing of 12 trajectories on foot, by bike, and by car, showed the efficiency and
accuracy of the proposed algorithms, with an average F1-score and median
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error of 99.5 % and 2.09 m for the map matching algorithm and an average
F1-score of 86.7% for the lane detection algorithm, which resulted in the
correctly estimated lane 93.0% of the time.

Most outdoor tracking algorithms for cellular networks are validated in
optimal or controlled environments on a small dataset or are merely vali-
dated by simulations. Chapter 6 presents a technique to efficiently track
all mobile users residing on a cellular network. It does not depend on prior
training data and does not require any cooperation on the mobile side or
changes to the network side. The latter is useful for applications where
there is typically no cooperation at the mobile side, e.g., traffic monitoring,
population movement estimation, or criminal activity detection, and makes
it immediately applicable for mobile network operators. This location track-
ing algorithm exploits enriched open map data, a mode of transportation
estimator, and the route filtering of Chapter 5 on top of the cellular network
topology and measurements to track the movement and locations of mobile
devices. Furthermore, it was evaluated on a nationwide dataset collected
and processed in real-time, in cooperation with a major network operator
in Belgium. The experimental validation showed that the mode of trans-
portation, smartphone usage, and environment impact the accuracy and
that the proposed technique is more robust and outperforms an existing
particle filter with map information by 31.0% in median accuracy.

Finally, Chapter 7 concludes this book with a summary of the accom-
plished work and discusses some directions for future work.



Chapter 1

Introduction

1.1 Context

Location tracking in indoor and outdoor environments has been of great

importance in the last decades and is still gaining attraction. The growing

amount of available positioning data due to ubiquitous connectivity and

the Internet of Things (IoT) has led to many location-based services (LBS).

These are a collection of applications that use geographical location data

of mobile devices provided by, e.g., WiFi, Bluetooth Low Energy (BLE),

Global Positioning System (GPS), or cellular networks, and are situated in

many domains, e.g., health care, government, public service, industrial, mil-

itary, automotive, advertising, retail, or cultural sector. Examples of these

location-aware applications are personal navigation, museum guidance, in-

trusion detection, finding your car in a parking garage, wayfinding in a

large shopping mall or hospital, location-based gaming, personalized adver-

tising, security, blue force tracking, emergency 911 services, surveillance,

asset tracking, fleet and inventory management, optimizing productivity

in manufacturing or distribution, transportation planning, and analyzing

traffic patterns [1, 2].

According to studies [3, 4], the worldwide LBS market is valued at

around USD 30 billion in 2019 and is expected to reach USD 133 billion

by 2023, with a compound annual growth rate (CAGR) of 36.55% during

the forecast period. The largest challenges related to the further develop-

ment and widespread adoption of LBS are privacy concerns associated with

location data, availability of up-to-date maps, and the reliability, accuracy,

and cost of indoor and outdoor localization or positioning technologies [5].

This chapter provides an overview of the existing localization techniques

and technologies, and introduces the available filtering and post-processing
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methods, to situate the proposed techniques in this work. Finally, the aim

and contributions of this dissertation are presented.

1.2 Localization techniques

Location tracking systems, also known as localization techniques, can be

distinguished from each other in multiple ways [6]. These systems can be

either active or passive depending on the participation or cooperation of

the tracked object or person. A lot of location tracking systems are active

and in this case, the object that is being tracked, is equipped with an ac-

tive tag. This tag sends or receives packets that are received or sent by a

fixed infrastructure consisting of access points, also known as fixed nodes or

base stations, that form the wireless network [7–9]. The processing of the

measurements takes place centrally on a server if the tag is sending packets

and takes place locally if the tag is receiving packets from the fixed infras-

tructure. With passive location tracking systems, also known as device-free

localization (DFL), the moving object is not actively participating in the

localization process [10–12]. The position is estimated based on changes in

the environment, which are in turn caused by the presence and movement

of the entity that is being tracked. In contrast to active localization these

passive systems benefit from rich multipath channels because the pertur-

bations become the signal and not the noise [13]. This is interesting for

non-cooperative localization like intrusion detection, wildlife monitoring, or

protecting outdoor assets, such as pipelines, railroad tracks, and perime-

ters [14].

Another distinction can be made based on the used ranging technique.

The best known are: Angle of Arrival (AoA) [15, 16], Angle of Depar-

ture (AoD) [17], Time of Arrival (ToA) [18, 19], Time Difference of Arrival

(TDoA) [7, 20], Phase Difference of Arrival (PDoA) [21, 22], and Received

Signal Strength (RSS) [11, 23–25]. Section 1.3 discusses these technologies

in detail.

Besides differentiation on the used signal, another distinction of local-

ization systems can be made, based on the used communication technol-

ogy. A lot of localization methods use GPS [26], cellular networks [27], or

WiFi [28] as information carrying signal. Other location tracking systems

use special-purpose hardware and infrastructure like radio-frequency iden-

tification (RFID) [29], Bluetooth Low Energy (BLE) [7], or ultra-wideband

(UWB) [30, 31]. Section 1.5 discusses these technologies in detail.

Knowledge of the network topology to estimate the distances between a

mobile user and a set of base stations, reduces the localization to a triangu-

lation [32, 33] or multilateration [34] problem for all ranging techniques. An
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alternative to triangulation or multilateration is pattern matching with, e.g.,

RSS fingerprints [28]. This technique is also called fingerprinting and has

the advantage that most devices are already capable of measuring the RSS,

whereas AoA or TDoA systems require dedicated hardware, i.e., directional

antennas for AoA and clock synchronization between the receiving nodes

for TDoA [35]. The ranging and fingerprinting techniques are discussed in

Section 1.3 and Section 1.4.

Besides the signals from existing GPS, cellular networks, WiFi, RFID,

BLE, or UWB infrastructures, there are other signals that can be used

for positioning or location tracking. These so-called signals of opportunity

(SoOPs) are already present in the area of interest, e.g., magnetic field [36],

visible light [37], acoustic background noise [38], or FM radio signals [39].

Section 1.6 discusses the SoOPs in detail.

The improved performance of optical systems due to the recent advances

in computing power and CCD sensors chips (charge-coupled devices) has

triggered image or video based positioning systems to become an attractive

alternative for RF-based systems [40]. Typical applications of these vision-

based systems are visual navigation for autonomous vehicles and Augmented

Reality (AR) [41]. The two main approaches for vision-based positioning

are fixed and mobile camera systems [42]. The first one uses fixed cameras

in the area of interest to locate a target based on its position within the

captured images. In the second one uses a target equipped with a mobile

camera and landmarks at known location or extracted features to estimate

the camera pose, i.e., location and orientation from which the image is

taken [43]. The largest advantage of optical positioning systems is that they

are not susceptible to interference or multipath but they become unusable

in situations with limited visibility like smoke or fire.

1.3 Ranging

1.3.1 Time of arrival

Time of Arrival (ToA), also known as Time of Flight (ToF) techniques mea-

sure the time the radio signals travel between a single transmitter and mul-

tiple receivers [35, 44]. The transmitter and receiver are interchangeable

and can be a mobile object or user at an unknown position, fixed access

points, sensor nodes, or base stations at known locations. ToA measure-

ments are directly correlated to the distance between a transmitter and a

receiver because the radio propagation velocity, i.e., the speed of light 1, is

well known. A disadvantage is that the receivers must know the start time

1speed of light: 2.9979 · 108ms−1



4 Introduction

of source transmission, which requires cooperation and synchronization be-

tween the transmitter and receiver, an assumption that severely limits the

applicability of ToA-based location tracking systems. Moreover, after the

initial synchronization, the clocks can drift away from each other due to

the imperfections of clock oscillators. This clock drift causes errors in the

measured ToA and hence positioning inaccuracies. A possible solution is

Two-Way Ranging (TWR), in its simplest form the round-trip time (RTT)

is measured from the start of the transmission until the reception of the

replied signal and the ToA is calculated based on this RTT and the reply

time [45]. Disadvantages of TWR are that it introduces an additional delay

and processing cost, and doubles the amount of transmissions and hence

energy consumption.

1.3.2 Time difference of arrival

Another solution to the clock synchronization problem, and hence clock drift

between transmitter and receiver, is Time Difference of Arrival (TDoA). In

the TDoA technique, time differences between the ToA of multiple radio

signals are measured at the clock-synchronized sensor nodes. Note that

the subtraction of pairwise ToA measurements leads to correlated noise in

TDoA and strengthens the measurement noise by 3 dB [35]. The maximum-

likelihood (ML) approach is optimal for TDoA-based location tracking but

due to the non-linear and non-convex nature, the performance will strongly

depend on the initial estimate. Therefore, the most widely used approach to

process TDoA measurements is the two-step weighted least squares (WLS),

which is an accurate and computationally efficient technique to minimize

the spherical least squares error [46].

1.3.3 Angle of arrival

The Angle of Arrival (AoA) technique determines the propagation direc-

tion of a radio-frequency (RF) wave and requires a directional antenna or

antenna array at the side of the incoming wave [17]. The position of an

unknown mobile device is determined based on the intersection of multi-

ple AoA lines (triangulation) [32]. This technique performs especially well

in line-of-sight (LoS) conditions but in practice the location accuracy will

drastically deteriorate due to the finite number of antennas in the array,

noise, and multipath [47]. Another challenge is the difficulty to obtain ac-

curate results while keeping the system small to enough to be implemented

in pocket-size devices due to the typically large dimensions of directional

antennas [48].
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1.3.4 Phase difference of arrival

The basic Phase Difference of Arrival (PDoA) technique uses two signals

with different carrier frequencies that are sent between a tag and a receiver.

The phase delays are proportional to their respective carrier frequencies

and the phase difference observed at the two frequencies can be used to

estimate the distance between a tag and a receiver [22]. A disadvantage

of PDoA-based on dual-frequency signaling is the trade-off between the

maximum unambiguous range and the sensitivity of range estimation to

additive noise [21]. A large separation between the two frequencies reduces

this noise sensitivity but severely limits the unambiguous range. A possible

solution is to use more carrier frequencies and average the range estimates

over multiple frequency pairs.

1.3.5 Signal strength

A lot of location tracking systems in GPS-denied environments rely on signal

strength measurements from existing wireless network infrastructures due

to their simplicity and availability, e.g., WiFi, ZigBee, or BLE compatible

devices. These signal strength measurements can be translated to a location

by making use of the fingerprinting technique (discussed in Section 1.4) or

the well-known multilateration method after converting the RSS measure-

ment to a distance [49]. Note that a signal propagation or path loss (PL)

model is used for the RSS to distance conversion and that these models

depend on the considered environment [50].

1.4 Fingerprinting

An alternative for the amplitude-based technique, is estimating the location

by looking for the closest match in a pretrained fingerprint database, also

known as radio or coverage map. The largest advantage of this fingerprint-

ing technique is that it exploits multipath whereas ranging based techniques

suffer from it, i.e., multipath ensures unique signal signatures, which is ben-

eficial for fingerprinting whereas it is seen as additional noise on the mea-

surements, which is disadvantageous for ranging. The fingerprint database

is essentially a look-up table that maps possible positions with a vector of as-

sociated values, e.g., RSS, CSI, or cell-ID values [51–53]. The fingerprinting

technique generally uses reference values of a single type of measurements

but to increase the robustness a hybrid approach can be considered, e.g.,

ToF, AoA, and RSS [54] (Section 1.8). The reference values are collected

in an offline phase and can be measurement-based by drive-testing the area
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of interest [55–57], an indoor measurement campaign [28, 58], simulation-

based by using a propagation model [59], ray tracing [60], or a hybrid ap-

proach [61]. Drive-testing, also known as wardriving, is labor-intensive and

needs to be redone each time the wireless network or even the environ-

ment undergoes changes, e.g., new buildings, renovations, or office lay-out

modifications [62]. The simulation-based approach is much faster but will

generally lead to less accurate location estimations. Alternatively, a crowd-

sourced measurement campaign can be used instead of drive-testing [63].

1.5 Enabling technologies for localization

1.5.1 Indoor

1.5.1.1 RFID

Just as most location tracking systems, RFID comes in two classes: active

and passive [64]. Active RFID requires a power source that can be a con-

nection to a powered infrastructure but is usually an integrated battery.

In the latter case, the active RFID tag’s lifetime is limited by the stored

energy and balanced against the required number of read operations the

device must undergo. One of the first location systems that used this tech-

nology was Active Badge [65]. Each badge has a globally unique code that

is periodically broadcast through an infrared interface. A network of sensors

installed in the building picks up these infrared signals that are reflected on

furniture and walls. The location of the badge’s owners are estimated based

on which badges were seen by which sensors. This real-time sensing makes

it possible to automate office tasks and provide authentication for entering

a secure area.

Passive RFID is interesting for applications that require a small tag and

an indefinite operational time, e.g., in retail where the tags needs to be small

enough to fit into a practical adhesive label. Passive RFID tags consist of a

conductor chip attached to an antenna and some form of encapsulation [66].

Here, the tag reader is responsible for communication and powering through

either magnetic induction (near-field) or electromagnetic wave capture and

backscattering (far-field).

These passive RFID systems can be outfitted with additional sensors to

extend the range of applications, e.g., to monitor temperature in a cold food

chain [67], and are called semi-passive RFID.

Disadvantages of the RFID technology are the limited capabilities, scan-

ning range, and capacity (in terms of simultaneously supported tags). Fur-

thermore, the initial deployment cost is typically higher as it requires a

separate infrastructure and it is somewhat outdated. There are also some
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security issues with RFID, as unauthorized devices may be able to read and

even change data on tags without the knowledge of owner. In a side-channel

attack, RFID data can be picked up as it is passed from a tag to a reader,

which could give an attacker access to sensitive information or the ability

to copy a card [68].

1.5.1.2 WiFi

Most wireless local area networks (WLANs) are based on IEEE 802.11 stan-

dards and are marketed under the WiFi brand name. WLANs have become

popular for in-home usage, due to their ease of installation and operation.

They are widely deployed, which makes them suitable for localization with

negligible overhead and without expensive additional hardware costs [24].

One of the first systems to suggest that a large class of location-aware

services can be built over a WLAN network is RADAR [28]. This system

uses signal strength information from WiFi signals at multiple base sta-

tions, positioned to provide overlapping coverage in the area of interest,

to estimate the location of a user by multilateration (Section 1.3.5) or fin-

gerprinting (Section 1.4). Recent approaches try to improve the accuracy

of WLAN-based systems by using more advanced filtering (Section 1.9),

sensor fusion with an inertial measurement unit (IMU) and/or pedestrian

dead reckoning (PDR) technique (Section 1.8 and Section 1.7), or channel

state information (CSI) [69]. Some advanced WiFi network interface cards

(NIC) are able to obtain CSI measurements, which can be used as input

to improve the performance of indoor location tracking systems. For exam-

ple, the Intel WiFi Link 5300 NIC implements an OFDM system with 48

subcarriers and the device driver is able to read the amplitude and phase

response of 30 subcarriers, which can reveal completely different properties

than RSS. Recently, the Task Group mc (TGmc) added support for fine

timing measurements using RTT with the release of IEEE 802.11mc [70].

1.5.1.3 Bluetooth Low Energy

New opportunities are provided with the introduction of the BLE radio pro-

tocol [71]. This wireless personal area network (WPAN) technology is de-

signed by the Bluetooth Special Interest Group and is aimed at applications

in, e.g., the health care, security, and home entertainment sector. As its

name suggests, it is intended to provide a considerably reduced power con-

sumption and a low cost while maintaining a similar communication range

compared to Classic Bluetooth. These BLE systems estimate the location

of a user by multilateration (Section 1.3.5) or fingerprinting (Section 1.4).

A distinct advantage over WiFi is that the technology supports portable
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battery-powered beacons, which makes it possible to form a wireless sensor

network (WSN) of distributed beacons at a low cost. These WSNs can be

used for detecting spatial variations in environmental conditions, such as

temperature or pollution [72]. Recently, a long-range mode was added in

BLE version 5.0, which has the capability of extending the communication

range by using error correcting coding and higher transmitting power [73].

1.5.1.4 Ultra-Wideband

The UWB technology is inherently well suited for location tracking systems

in challenging environments due to the large available bandwidth, which

results in robust communication in dense multipath or GPS-denied sce-

narios, a simple implementation for multiple-access communications, and

a fine temporal resolution and hence accurate ranging [74]. Localization

with UWB systems generally relies on ToA-based (Section 1.3.1) or TDoA-

based ranging (Section 1.3.1). It has the ability to penetrate walls and to

resolve subnanosecond delays, which result in centimeter-level positioning

accuracy. However, the maximum range and location accuracy are in prac-

tice significantly degraded due to the non line-of-sight (NLoS) effect when

operating indoors, e.g., in office or apartment type spaces [75]. The NLoS

effect deteriorates the range measurements with larger dispersion, outliers,

and a reduced measurable range to less than 10 m, as a result [76], which

makes the UWB technology more suited for short- and mid-range applica-

tions. Furthermore, the initial deployment cost will generally much higher

compared to WLAN or BLE.

1.5.2 Light

Visible light from LEDs (light-emitting diodes) offers many advantages com-

pared to conventional light sources, e.g., energy efficiency, life expectancy,

and the ability for high speed modulation imperceptible for the human

eye [77, 78]. The latter makes it possible to combine illumination and

communication, and to assign different codes to LEDs with a known po-

sition, enabling receivers to estimate their locations with centimeter-level

accuracies based on the received signal strengths [79] (Section 1.3.5). Ad-

vantages of these optical positioning systems over the traditional RF-based

approaches are that it is free of interference from systems in other rooms

and multipath is less challenging because reflected components, if present,

will have much lower power than the LoS path [37]. Furthermore, most po-

sitions in a room have LoS because the lights are typically placed at regular

interval on the ceiling. Disadvantages are the limited range, confined illu-

mination angle, and becoming unusable in situations with limited visibility
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like smoke or fire.

1.5.3 Outdoor

1.5.3.1 GPS

The Global Positioning System (GPS) is a satellite-based navigation tech-

nique that is ubiquitous due to the worldwide coverage, widespread use,

decent accuracy, and adoption in all modern smartphones [80]. The GPS

technology is mostly used for outdoor location tracking because the accu-

racy degrades in indoor environments due to the inability to penetrate most

building materials, which makes GPS signals not suited for indoor location

tracking. However, even in outdoor environments GPS outages can occur

caused by the unavailability of GPS signals from sufficient satellites due to,

e.g., mountains, tall buildings, or multi-level overpasses. Possible solutions

are geometric intersection [81] or inertial navigation [82–84] (discussed in

Section 1.7).

1.5.3.2 Cellular networks

Cellular or network-based localization algorithms locate a mobile user based

on measured radio signals from base stations in its vicinity [85]. A well

known approach to locate a mobile device with telecommunication data

from a network infrastructure is cell-ID based [27]. The mobile user is

mapped to the location of its serving base station, i.e., the cell a mobile

device is currently connected to. It has a low cost, a short response time,

and is easy to implement and applicable in all places with cellular coverage

but has a low accuracy for high cell ranges.

The location tracking accuracy can be improved if signal strength mea-

surements or timing information from the surrounding base stations are

available [86]. To infer the mobile user’s location, the signal strength mea-

surements can be combined with multilateration and a path loss model [87],

or a fingerprinting technique [88] (discussed in Section 1.4).

Note that with every new generation of the cellular network technol-

ogy, the location precision improves due to the higher base station density,

adoption of recent advances, e.g., millimeter wave (mmWave) signals, and

more accurate timing information, e.g., 3G’s propagation delay estimations

have a time granularity of 780 ns (corresponding to 234 m) and those of

4G have a time granularity of 260 ns (corresponding to 78 m). In 5G, the

main breakthrough will be to the usage of millimeter wave (mmWave) sig-

nals [89]. The employment of mmWave has a two-fold advantage: a large

available bandwidth and a small signal wavelength. The larger bandwidth
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results in reduced latency due to shorter symbol times, increased robust-

ness to multipath, and a higher accuracy of time-based measurements due

to the better time resolution [90]. The smaller signal wavelength makes it

possible to pack a large number of antenna elements on a small surface,

e.g., in a smartphone. This enables massive multiple-input multiple-output

(MIMO), giving the possibility of realizing highly directional beamforming

capabilities [91].

1.5.3.3 LPWAN: LoRa, Sigfox, NB-IoT

Low-power wide-area networks (LPWANs) are designed to allow long range

communications at a low bit rate among connected things, e.g., battery-

powered sensors. LoRa (Long Range), Sigfox, and narrowband IoT (NB-

IoT) are wireless communication protocols that compete against other [92].

LoRa uses a spread spectrum modulation technique derived from chirp

spread spectrum (CSS) technology to enable communication on the license-

free sub-gigahertz radio frequency bands like 433 MHz, 868 MHz (Europe)

and 915 MHz (North America). Sigfox employs the differential binary phase-

shift keying (DBPSK) and the Gaussian frequency shift keying (GFSK)

to enable communication on 868 MHz (Europe) and 902 MHz (US). NB-

IoT uses a subset of the Long-Term Evolution (LTE) standard, but limits

the bandwidth to a single narrow-band of 200 kHz. The used modulation

techniques are orthogonal frequency-division multiplexing (OFDM) for the

downlink communications and single-carrier frequency-division multiple ac-

cess (SC-FDMA) for the uplink communications.

The low power consumption enables devices to operate for years without

replacing the battery [93]. The extremely long range connectivity, typically

up to 10 km depending on the environment, is achieved by trading off data

rate, i.e., below 50 kbps. Due to this low data rate and limited duty cycle,

these systems are only suitable for delay-tolerant applications [94].

1.6 Signals of opportunity

1.6.1 Magnetic

Localization systems that use the magnetic field as a SoOP, exploit the local

disturbances of the geomagnetic field that are typical for an indoor environ-

ment [36]. Besides the earth’s magnetic field, there are other sources that

have an influence on the magnetic measurements as well, e.g., electrical ma-

chines or magnetic speakers. The local anomalies are caused by metal in

the construction materials, e.g., structural steel in a building, and give rise

to unique magnetic fingerprints [95], which can be used in a similar way as
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RSS measurements in the traditional fingerprinting technique (Section 1.4).

Note that the magnetic field intensity data only consists of three compo-

nents whereas in RSS fingerprinting this depends on the number of visible

access points. A disadvantage of geomagnetic-based indoor location track-

ing systems is that outliers could be placed at any location in the fingerprint

map because there are no local references as is the case with the fixed access

points of WLAN. Therefore, magnetic fingerprints are often used to enhance

the performance of WLAN systems, the latter gives an initial estimation of

the correct region and the first refines the estimation based on local vari-

ations in the magnetic field [95]. Furthermore, moving objects containing

ferromagnetic materials and electronic devices may also affect the magnetic

field, which causes deviations from the fingerprint database and hence a

lower localization accuracy [96].

1.6.2 Acoustic

The field of architectural acoustics has proven that the geometry of a room

and the furniture strongly affect the room impulse response and hence the

acoustic background spectrum (ABS) [97]. The intuition behind ABS-based

positioning is that modern life is full of noises, e.g., buzzing lights, blow-

ing air conditioners, and whirring computers. The combination of these

persistent acoustic drivers and the room impulse responses result in unique

acoustic fingerprints. Even similar looking rooms that sound indistinguish-

able to a human listener are likely to have different persistent acoustic char-

acteristics [38], which can be used in a similar way as RSS measurements

in the traditional fingerprinting technique (Section 1.4). Disadvantages of

these systems are the performance deterioration due to acoustic noise that is

not captured in the fingerprints, e.g., speaking occupants or environmental

noise. Lately, acoustic ranging devices have been used in underwater target

positioning to automate challenging tasks, e.g., pipeline inspection, ocean

floor geodesy, or archaeological site examination [98, 99]. This is because

acoustic signals are able to travel further distances, whereas RF signals

rapidly attenuate and optical signals scatter, in underwater scenarios [100].

1.6.3 FM

Frequency modulation (FM) is the encoding of information in a carrier

wave by varying the instantaneous frequency of the wave. The benefits of

analogue FM audio signals for positioning purposes are the global avail-

ability (can be received both indoors and outdoors), readily available coor-

dinates and power of the transmission antennas, low-cost, and low-power

usage [39, 101]. Furthermore, FM signals are less susceptible to human pres-
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ence and are more robust to temporal variations, i.e., vary less over time,

due to the longer wavelength and hence lower frequency when compared to

WiFi or BLE signals [102]. Similar to the traditional fingerprinting with

RSS measurements from WiFi or BLE signals, the same technique can be

applied to FM broadcast radio signals. Note that the positioning errors due

to FM or WiFi signals are independent, which is interesting to obtain richer

fingerprints or for sensor fusion techniques (discussed in Section 1.8).

1.7 Pedestrian dead reckoning

A completely other approach to location tracking is pedestrian dead reck-

oning (PDR), this technique predicts the current location based on inertial

sensor measurements and the previous position [103]. Recent developments

of microelectromechanical systems (MEMS) allow embedding multiple in-

ertial sensors, e.g., accelerometers, magnetometers, compasses, and gyro-

scopes, in smartphones or in a compact IMU [104]. These inertial sensors

can be used to detect steps, estimate the stride length, and the direction of

motion.

The PDR technique works without a wireless signal and hence no in-

frastructure, connectivity, physical map information, pretrained databases,

or measurement campaign is needed [105, 106]. A disadvantage of these

systems is that they are typically prone to drift, i.e., the positioning error

accumulates over time due to noisy measurements from low-cost inertial

sensors and complicated human movements [107]. Furthermore, the start

position and orientation of the IMU must be known in advance and need to

be consistent with respect to the object that is being tracked. This can be

solved by merging PDR with an external measurement source, e.g., WLAN

or BLE measurements but then the advantages of not depending on any

infrastructure disappear.

1.8 Sensor fusion

Sensor fusion or hybrid techniques combine two or more of the above men-

tioned technologies or signal parameters to estimate the location of an ob-

ject or a user [108]. Smartphone-based location tracking systems often

combine the measurements from the embedded sensors, e.g., accelerome-

ter, gyroscope, and magnetometer, with the ability to scan WiFi access

points [109] or additional floor plan information [110]. A multi-model sys-

tem that fuses a wide range of sensor data from commonly available portable

devices is extensively discussed in [111]. In outdoor environments, GPS sig-

nals can be combined with inertial sensor measurements to save energy by
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lowering the duty cycle of the power-consuming GPS module [112]. Both

Kalman filters and particle filters are well-suited for sensor fusion of inertial

sensor measurements because of the link with the probabilistic transition

model [113, 114].

1.9 Filtering and post-processing methods

Indoor and outdoor environments are complex and give rise to multipath,

fading, and shadowing effects due to refraction, reflection and scattering

from buildings, walls, and obstacles [115]. This results in random perturba-

tions of the measured signals and hence location tracking systems that are

often not sufficiently accurate. State-of-the-art location tracking algorithms

try to improve the accuracy by using route constraints and advanced filters,

e.g., Kalman filtering [116], particle filtering [117], and Hidden Markov Mod-

els [118].

1.9.1 Hidden Markov model

The hidden Markov model (HMM) is a technique to model a Markov process

with unobservable states, i.e., the model contains an underlying stochastic

process that is not directly observable (hidden states), but can be observed

through another stochastic process (observations) [118]. In a location track-

ing system, these hidden states are the discrete locations in an area of

interest, e.g., the reference locations in a fingerprint database, and the ob-

servations are the sequence of measurements [119]. The goal is to find the

most likely explanation for the observation sequence and can be solved ef-

ficiently using the Viterbi algorithm [51], which is the topic of Chapter 2.

Note that the applications of an HMM are not limited to measurements of

an RF signal but can also be used to match user activities, measured with

built-in smartphone sensors, to an indoor trajectory [120] or to map noisy

GPS coordinates to an outdoor road network [121], which is the topic of

Chapter 5.

1.9.2 Kalman filter

Kalman filtering (KF), also known as linear quadratic estimation (LQE),

is an algorithm that recursively uses a set of mathematical equations to

efficiently estimate an unknown state based on a series of noisy measure-

ments observed over time [122]. In a location tracking system, this KF state

is usually the unknown position and velocity of an object or person [123].

The KF results in the optimal solution if the posterior density at every time

step is Gaussian but this highly restrictive assumption is hardly fulfilled in
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real-life use cases. Furthermore, the KF can be seen as analogous to the

HMM, with the key difference that the hidden state variables take values

in a continuous space as opposed to the discrete state space that is used

by the HMM. Two well-known generalizations of this filter for non-linear

systems are the extended Kalman filter (EKF) [116, 124] and the unscented

Kalman filter (UKF) [125, 126]. Disadvantages of the Kalman filter are the

difficulty of getting a good estimate of the noise covariance matrices (to

represent process and measurement noise), and that it is not possible to in-

tegrate distributed information like the walking distance, map information,

or route constraints [127].

1.9.3 Particle filter

Particle filtering (PF) is a Sequential Monte Carlo (SMC) method, which

can be applied to any state-space model and hence generalizes the tradi-

tional Kalman filtering method [127, 128]. The key idea behind PF is to

represent the posterior distribution by a set of random samples (particles)

with associated weights. In a location tracking system, these particles are

positions on a map and the filtering consists of four steps [129].

• An initialization based on an initial probability density function (PDF).

• A prediction step that uses a probabilistic transition model to move

each particle (predict new state)

• An update step that calculates the new weights based on the obser-

vations followed by a normalization of these weights

• A resampling step to generate an unweighted particle set to avoid

degeneracy, i.e., particles with low weight are deleted and particles

with high weight are duplicated [130].

Advantages of the PF are the ability to take into account map informa-

tion, the number of particles and way of resampling can be adapted based on

the processing possibilities, and motion models can be adapted based on the

type of user to be tracked. Disadvantages of the PF are that they are non-

deterministic (the same input can produce different output, which makes

them harder to debug), computationally expensive (due to the huge amount

of particles necessary for a consistently high performance), and there is no

measure of confidence in the produced output.
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1.10 Cooperative localization

In harsh environments where geographic positioning fails, communication

between wireless nodes can be used to improve the accuracy of location

information [74]. Usually a location tracking system locates all users or

nodes independently without taking into account the relative location of

each other. Cooperative localization is a paradigm in which wireless mobile

or fixed sensor nodes help each other in a peer-to-peer manner to make

measurements and then form a map of the network to determine their lo-

cations [131]. This approach has gained interest from the optimization,

robotics, and wireless communications communities due to the increased

performance in both accuracy and coverage when users or nodes in a wire-

less network cooperate [132–134].

1.11 User anonymity

A topic that currently attracts a lot of attention is user anonymity. Mobile

network operators ensure anonymity between their mobile users by provid-

ing a temporary identifier (TMSI) instead of constantly using the longterm

unique identifiers (IMSI). Lately, also anonymized location data has become

a subject of concern [135, 136]. Countermeasures to tackle these exposed

vulnerabilities are proposed in [137, 138]. In [139], simulations are used to

calculate the number of devices necessary to locate non-participant indi-

viduals in urban environments. They prove that it is possible to track the

movement of a significant portion of the population with a high-granularity

over long periods of time when a small part of the population is part of a

(malicious) sensor network. A dual privacy preserving scheme to protect

the trajectory and query privacy of a user in continuous LBS, is presented

in [140].

1.12 Main research contributions and outline

The main goal of this work is to improve the quality of indoor and outdoor

location tracking systems and to validate their performance and robustness

in realistic conditions. The first part of this work (Chapter 2–4) is about

indoor location tracking with a focus on signal strength based systems and

the second part (Chapter 5 and 6) is about GPS-based map matching with

support for lane detection and outdoor location tracking based on cellular

network data.

In Chapter 2, a real-time indoor location tracking system based on the

Viterbi principle and semantic data is presented ([JT1], [JT9]). This sys-
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tem serves as starting point for the compensation method of Chapter 3 to

eliminate the effect of human body shadowing, e.g., to reduce the influence

of a mobile tag’s position with respect to the user being tracked ([JT2],

[JT10], [JT11]). Chapter 4 presents an unsupervised learning technique

to construct and optimize model-based radio maps or fingerprint databases

for indoor location tracking systems, e.g., to make the radio map more ac-

curate or to automatically cope with changes in an office layout ([JT3],

[JT13]). Chapter 5 presents a fast, memory-efficient, and worldwide map

matching algorithm that can optionally detect the driving lane based on

accelerometer readings and open map data. A technique for outdoor loca-

tion tracking of all mobile users residing on a cellular network, that does

not depend on prior training data and does not require any cooperation

on the mobile side or changes to the network side, is presented in Chap-

ter 6. The technique was evaluated on a nationwide dataset collected and

processed in real-time, in cooperation with a major network operator in

Belgium ([JT4]). Finally, Chapter 7 concludes this book with a summary

of the accomplished work and discusses some directions for future work.

1.13 Publications

1.13.1 Publications in international journals (A1)

Peer-reviewed publications in journals listed in the ISI Web of Science.

1.13.1.1 As first author

[JT1] Jens Trogh, David Plets, Luc Martens, Wout Joseph. Advanced

Real-Time Indoor Tracking Based on the Viterbi Algorithm and Se-

mantic Data. International Journal of Distributed Sensor Networks

501 (2015): 271818.

[JT2] Jens Trogh, David Plets, Arno Thielens, Luc Martens, Wout Joseph.

Enhanced indoor location tracking through body shadowing compen-

sation. IEEE Sensors Journal, 16(7):2105-2114, April 2016.

[JT3] Jens Trogh, Wout Joseph, Luc Martens, David Plets. An Unsuper-

vised Learning Technique to Optimize Radio Maps for Indoor Local-

ization. Sensors 19.4 (2019): 752.

[JT4] Jens Trogh, David Plets, Erik Surewaard, Mathias Spiessens, Math-

ias Versichele, Luc Martens and Wout Joseph. Outdoor Location

Tracking of Mobile Devices in Cellular Networks. EURASIP Journal

on Wireless Communications and Networking, vol. 2019, p. 115, May

2019.
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1.13.1.2 As co-author

[JT5] Xu Gong, Jens Trogh, Quentin Braet, Emmeric Tanghe, Prashant

Singh, David Plets, Jeroen Hoebeke, Dirk Deschrijver, Tom Dhaene,

Luc Martens, Wout Joseph. Measurement-based wireless network

planning, monitoring, and reconfiguration solution for robust radio

communications in indoor factories. IET Science, Measurement &

Technology (2016).

[JT6] Said Benaissa, David Plets, Emmeric Tanghe, Jens Trogh, Luc Martens,

Leen Vandaele, Leen Verloock, Frank Tuyttens, Bart Sonck, Wout

Joseph. Internet of animals: Characterisation of LoRa sub-GHz off-

body wireless channel in dairy barns. Electronics Letters 53.18: 1281-

1283 (2017).

[JT7] Said Benaissa, Frank Tuyttens, David Plets, Toon de Pessemier, Jens

Trogh, Emmeric Tanghe, Luc Martens, Leen Vandaele, Annelies Van

Nuffel, Wout Joseph, Bart Sonck. On the use of on-cow accelerom-

eters for the classification of behaviours in dairy barns. Research in

veterinary science (2017).

[JT8] Nico Podevijn, Jens Trogh, Luc Martens, Pieter Suanet, Kim Hen-

drikse, David Plets, Wout Joseph. TDoA-Based Outdoor Positioning

with Tracking Algorithm in a Public LoRa Network. Special Issue

on Advanced Signal Processing for Wireless Localization Systems in

Wireless Communications and Mobile Computing (2018).

1.13.2 Publications in international conferences (P1)

Peer-reviewed publications presented at international conferences or work-

shops.

1.13.2.1 As first author

[JT9] Jens Trogh, David Plets, Luc Martens, Wout Joseph. Advanced

Indoor Localisation Based on the Viterbi Algorithm and Semantic

Data. 8th European Conference on Antennas and Propagation (Eu-

CAP 2014), April 2015, Lisbon, Portugal

[JT10] Jens Trogh, David Plets, Arno Thielens, Luc Martens, Wout Joseph.

Improved Tracking by Mitigating the Influence of the Human Body.

IEEE GLOBECOM 2015 Workshop on Localization for Indoors, Out-

doors, and Emerging Networks (LION), December 2015, San Diego,

United States



18 Introduction

[JT11] Jens Trogh, David Plets, Arno Thielens, Luc Martens, Wout Joseph.

A Comparison of Human Body Compensation Models for RSSI Based

Localization and Tracking. IEEE Second International Smart Cities

Conference (ISC2), September 2016, Trento, Italy

[JT12] Jens Trogh, David Plets, Luc Martens, Wout Joseph. Bluetooth

Low Energy Based Location Tracking for Livestock Monitoring. Eu-

ropean Conference on Precision Livestock Farming (EC-PLF 2017),

September 2017, Nantes, France

[JT13] Jens Trogh, Luc Martens, Wout Joseph, David Plets. Radio Map

Optimization Through Unsupervised Learning for Indoor Localiza-

tion. 2018 International Conference on Indoor Positioning and Indoor

Navigation (IPIN), September 2018, Nantes, France

1.13.2.2 As co-author

[JT14] Said Benaissa, Frank Tuyttens, David Plets, Toon De Pessemier, Jens

Trogh, Emmeric Tanghe, Luc Martens, Leen Vandaele, Annelies Van

Nuffel, Wout Joseph, Bart Sonck. Behaviours recognition using neck-

mounted accelerometers in dairy barns. European Conference on Pre-

cision Livestock Farming (EC-PLF 2017), September 2017, Nantes,

France

[JT15] Said Benaissa, Frank Tuyttens, David Plets, Toon De Pessemier, Jens

Trogh, Emmeric Tanghe, Luc Martens, Leen Vandaele, Annelies Van

Nuffel Van Nuffel, Wout Joseph and Bart Sonck. Behaviours classi-

fication using leg-mounted accelerometers in dairy barns. European

conference dedicated to the future use of ICT in the agri-food sector,

bioresource and biomass sector, with World Congress on Computers

in Agriculture (EFITA WCCA CONGRESS 2017), July 2017, Mont-

pellier, France

[JT16] David Plets, Alexander Sels, Jens Trogh, Kris Vanhecke, Luc Martens,

Wout Joseph. An assessment of different optimization strategies for

location tracking with an Android application on a smartphone. 11th

European Conference on Antennas and Propagation (EuCAP 2017),

March 2017, Paris, France

[JT17] Nico Podevijn, Jens Trogh, Abdulkadir Karaagac, Jetmir Haxhibeqiri,

Jeroen Hoebeke, Luc Martens, Pieter Suanet, Kim Hendrikse, David

Plets, Wout Joseph. TDoA-based Outdoor Positioning in a Public

LoRa Network. 12th European Conference on Antennas and Propa-

gation (EuCAP 2018), April 2018, London, UK
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[JT18] David Plets, Nico Podevijn, Jens Trogh, Luc Martens, Wout Joseph.

Experimental Performance Evaluation of Outdoor TDoA and RSS

Positioning in a Public LoRa Network. 2018 International Conference

on Indoor Positioning and Indoor Navigation (IPIN), September 2018,

Nantes, France

[JT19] Nico Podevijn, David Plets, Jens Trogh, Abdulkadir Karaagac, Jet-
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Joseph. Performance Comparison of RSS Algorithms for Indoor Lo-
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Wies law Ludwin, and Joan Garćıa-Haro. Angle-of-arrival localization

based on antenna arrays for wireless sensor networks. Computers &

Electrical Engineering, 36(6):1181–1186, 2010.
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[75] Antonio Ramón Jiménez Ruiz and Fernando Seco Granja. Comparing

ubisense, bespoon, and decawave uwb location systems: Indoor perfor-

mance analysis. IEEE Transactions on instrumentation and Measure-

ment, 66(8):2106–2117, 2017.
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Indoor localization





Chapter 2

Indoor location tracking
based on signal strength
data

2.1 Introduction

Indoor environments are complex and give rise to multipath and shadowing

effects due to refraction, reflection, and scattering from walls and obsta-

cles [1]. This chapter presents a real-time indoor location tracking system

based on the Viterbi principle and semantic data, to cope with these influ-

ences. The Viterbi principle is used in combination with semantic data to

limit possible transitions between positions and hence improve the location

tracking accuracy. The semantic data comprises the environment of the

object that is being tracked and a motion model. The focus of this work

is on accurately tracking a person through a building-wide environment in

real-time while using the existing wireless sensor network (WSN) or wireless

local area network (WLAN) infrastructure to avoid the need for dedicated

positioning hardware.

The remainder of this chapter is structured as follows, Section 2.2 de-

scribes related work and Section 2.3 presents the path loss models that

are used to construct a radio map for the fingerprinting technique. This

approach is sometimes called model-based or predicted fingerprinting since

the fingerprints in the radio map are not based on real measurements. This

avoids an expensive and time-consuming measurement campaign, which

makes the positioning system very fast to deploy. The proposed location

tracking algorithm and its optimizations are discussed in Section 2.4. The

simulations and experimental validation in a building-wide testbed are de-
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scribed in Sections 2.6 and 2.7. Furthermore, a sensitivity analysis was

conducted in Section 2.8 to estimate the influence of node density, grid

size, memory usage, and semantic data on the performance. Finally, in

Section 2.9, conclusions are provided.

2.2 Related work

A positioning method based on path planning that uses a weighted maximum-

likelihood estimation (MLE) for the location prediction while the path plan-

ning model constrains the movement trajectory of the mobile target, is pre-

sented in [2]. The paths on which a target can move are vastly restricted and

the approach is solely verified by simulations. The average positioning error

depends on the simulated transmission range and average connectivity of

the anchor nodes, and lies between 1.5 m and 3 m. In [3], a positioning algo-

rithm based on maximum a posteriori probability (MAP) and RSS ranging

is proposed. The goal is to locate the access points (sensor nodes), whereas

in this work the location of the fixed access points are known in advance and

the goal is to track a mobile user. A performance evaluation was carried out

based on simulations but no practical experiments were performed. In [4], a

real-time particle filter for 2D and 3D hybrid indoor positioning is presented.

Floor plan restrictions and a particle smoother are used to correct previous

positions. The obtained accuracy is 2 m with the particle filter and 1.4 m

with the smoother. The difference with this work is that besides WLAN-

based position measurements, it also depends on a hand-held inertial sensor

unit and a barometer. Also, the learning phase depends on training data for

the positioning with WLAN, which implies a time-consuming measurement

campaign. In [5], a positioning system is proposed, based on frequency

modulation (FM) broadcast as a signal of opportunity (SoOP). It combines

both deterministic and probabilistic techniques and the obtained accuracy

is 2.5 m when 150, manually recorded, reference points are used. In [6], a

grid based filter and Viterbi algorithm are used as the central processor for

data fusion to estimate the location. Motion dynamics information (MDI),

which are similar to inertial measurement unit (IMU) data, measured with

smartphone sensors, are used to calculate the state transition probabilities.

In [7], a WiFi positioning method to locate mobile terminals is presented.

A hybrid model based on the RADAR [8] model and Friis-based calibrated

model is suggested [9]. The RADAR model is improved by taking topolog-

ical elements into account, for which the neighborhood of each point needs

to be given in advance. Our approach does not rely on MDI or IMU data

but instead solely relies on a floor plan to automatically take into account

the environment, e.g., walls, doors, and obstacles. Furthermore, extensive
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experiments were conducted to validate the proposed approach instead of

solely relying on simulations.

2.3 RSS fingerprinting

The starting point of the proposed location tracking algorithm is an RSS

fingerprinting technique [10]. This technique differs from traditional ranging

and multilateration techniques because the location is not determined based

on estimated distances between transmitter and receiver. Instead, it consist

of two phases: an offline training phase and an online positioning phase.

During the offline training phase a radio map of the area of interest is

constructed. This radio map contains the signal strength values at every

possible grid point for all fixed APs or sensors nodes, e.g., ZigBee [11]. The

radio map and signal strength values are also known as fingerprint database

and reference fingerprints. The grid points on the floor plan represent the

positions where an object or person that is being tracked, can be located.

The density of these grid points is determined by the resolution or grid size,

this is the distance between two neighboring grid points. The reference fin-

gerprints can be calculated with a theoretical model, ray-tracer, or obtained

through a measurement campaign. During the online phase, the user’s lo-

cation is estimated by looking for the closest match in signal space, i.e.,

by comparing the measured signal strengths to the reference fingerprints.

This closest match is where a certain metric, e.g., Euclidean or Manhattan

distance, is the lowest.

An advanced indoor path loss model was used to construct the finger-

print database, avoiding an expensive and time-consuming measurement

campaign (WHIPP tool [12]). This approach results in a slightly reduced

accuracy but allows an immediate deployment. The only prerequisite to

generate the fingerprint database for a certain building is to draw its floor

plan with the right materials. Most common materials are already available

in the tool: brick, drywall, wood, glass, and metal, both in thin and thick

format, with material parameters from literature. Due to the changing na-

ture of furniture and other non-static objects, these are not included. The

tool uses an advanced heuristic path loss model that was constructed based

on path loss samples collected in an office building and was verified in three

other types of buildings: a retirement home, a congress center, and an arts

center. Without any additional data or tuning, validation measurements

showed an excellent correspondence with estimations. Three contributions

are taken into account to calculate the total path loss (from which the re-

ceived signal strength can be deducted): the sum of the distance loss along

the path, the total wall loss along the path, and the interaction loss along
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the path.

PLref = PL0 + 10γ log10

(
d

d0

)
︸ ︷︷ ︸

distance loss

+
∑
i

LWi︸ ︷︷ ︸
cumulated wall loss

+
∑
j

LBj︸ ︷︷ ︸
interaction loss

+Xσ [dB]

(2.1)

PLref [dB] is the total path loss calculated with the WHIPP tool,

PL0 [dB] is the path loss at a reference distance d0 [m], γ [-] is the path

loss exponent and d [m] is the distance along the path between transmit-

ter and receiver. The first two terms represent the path loss due to the

traveled distance (distance loss), the third term (cumulated wall loss) is the

sum of all wall losses LWi when a signal propagates through a wall Wi and

the fourth term (interaction loss) takes into account the cumulated losses

LBj
caused by all propagation direction changes Bj of the propagation path

from transmitter to receiver. Xσ [dB] is a log-normally distributed variable

with zero mean and standard deviation σ, corresponding to the large-scale

shadow fading.

2.4 Location tracking algorithm

2.4.1 Viterbi principle

The proposed location tracking system exploits the Viterbi principle, a

technique named after Andrew Viterbi, who proposed it in 1967 as a de-

coding algorithm for convolutional codes over noisy digital communication

links [13]. This dynamic programming algorithm is used in the context of

hidden Markov models (HMM) to determine the most likely sequence of

hidden states, called the Viterbi path, resulting in the sequence of observed

events. To apply this technique on a location tracking algorithm, the pro-

posed approach interprets the states as real locations on a floor plan. Then,

this principle comes down to determining the most likely sequence of po-

sitions instead of only the most likely current position. In the remainder

of this work the term path is used for a sequence of positions. During the

online phase, all possible paths are reconstructed and stored in memory

with an associated cost. This cost is defined as the sum of mean square

errors (MSE) between measurements and reference fingerprints. At each

time step, all costs are calculated and used as decision metric to determine

the most likely path.

MSEp,t =
1

NAP

NAP∑
i=1

(RSSi,tmeas −RSSi,p,tref )
2

(2.2)
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costp,T =

T∑
t=1

MSEp,t (2.3)

MSEp,t is the mean square error of path p at time step t, NAP is the

number of access points (AP) that measure the RSS from the user, RSSi,tmeas
is the RSS measurement from access point i at time step t and RSSi,p,tref is

the reference RSS value from access point i for the grid point along path p

at time step t, calculated with the WHIPP tool. costp,T is the associated

cost of the pth path stored in memory at time step T and T is the number

of time steps that went by since the beginning. The last position of the path

with the lowest associated cost is taken as most likely current location.

The proposed algorithm is not recursive in the strictest sense, i.e., the

function to determine the location is not applied within its own definition

but the algorithm is also not restarted every time a measurement is received.

The paths and their associated costs from a previous iteration serve as input

to the current iteration, along with the new measurements. After every lo-

cation update, i.e., after processing the latest signal strength measurements,

a fixed number of paths are kept in memory, e.g., 1000. Historical data, i.e.,

measurements from previous time steps, are represented by the paths that

are kept in memory. In other words, the current state is summarized in the

last position of each path in memory and future estimations do not depend

on positions preceding the current state (Markov property). Note that the

memory usage depends on this fixed number of paths and can be compared

to the number of particles in a particle filter. The required processing power

depends on the maximum speed, location update rate, grid size, and envi-

ronment as all physically possible paths are considered for the next location

update.

2.4.2 Map information and motion model

To apply the Viterbi principle in a useful manner and improve the location

tracking accuracy, the number of allowed transitions between two grid points

is restricted by using semantic data, i.e., the environment of the object that

is being tracked and a motion model. In Figure 2.1 an example is given to

illustrate this principle.

The environment is modeled by the floor plan that was used in Sec-

tion 2.3 to generate the fingerprint database. The grid is based on a Carte-

sian coordinate system and grid points are generated for all areas enclosed

by a set of walls and doors. These doors are used to indicate positions where

a user can leave a room, assuring that no walls are crossed. All grid points

between which a transition is possible, given the walls and doors of the
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too fast

wall crossed

(a) Without semantic data (b) With semantic data

Figure 2.1: Reconstructed trajectory with and without semantic data taken into
account.

environment, are calculated in advance and stored in a hash table. This al-

leviates the need for geometric intersection during the online phase, making

the proposed technique computationally much more efficient. Furthermore,

the motion model sets a maximum speed limit, ensuring that no unrealis-

tically large distances are traveled within a given time frame. Overall, this

leads to realistic and physically possible paths.

The pseudo-code of the location tracking system is shown in Algorithm 1.

Note that the proposed system is also useful for sensor fusion, e.g., the

detected steps from an accelerometer, changes in orientation from a gyro-

scope, or additional magnetic fingerprints can be combined in a weighted

function to calculate the cost of each path. In summary, the proposed sys-

tem is based on an RSS fingerprinting technique that uses an advanced

indoor path loss model to construct the radio map and uses the Viterbi

principle and semantic data to reconstruct a realistic trajectory. To the

best of the author’s knowledge this is the first location tracking algorithm

that uses this combination of techniques and optimizations. It is easily de-

ployed, works in real-time and is accurate for positioning in a building-wide

environment.

2.4.3 Robust start position

Because the most likely sequence of positions is determined and the allowed

transitions between two positions are restricted, the proposed location track-

ing algorithm is sensitive to a wrong starting position. One could start off in

the wrong room, which implies a certain recovery time before predictions can

be accurate again, because walls cannot be crossed. To counteract this, ad-

ditional possible starting positions are added as soon as the tracking begins.

These additional starting positions are located on circles around the best

initial prediction and there are eight such positions per circle (Figure 2.2).

This method takes two arguments: levels and inter distance. Levels cor-
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Algorithm 1: Indoor location tracking system.

Data: RSS measurements collected by fixed APs
Result: most likely trajectory given all measurements

1 MP ← 1000 // maximum paths in memory

2 tprev ← first timestamp with measurements
// RSP: robust start position (Section 2.4.3)

3 pathsInMem← list initialized with grid points from RSP method
4 while measurements do
5 t← current timestamp
6 ∆t← t− tprev
7 pathsTemp← empty list
8 for path ∈ pathsInMem do
9 cost← cost of path

10 PGP ← endpoint of path (parent grid point)
11 RGP ← reachable grid points (given semantic data and ∆t)

// CP: candidate position

12 for CP ∈ RGP do
13 MSEp,t ← mean square error between measurements

and reference values of CP // Equation 2.2

14 pathnew ← path+ CP
15 costnew ← cost+MSEp,t
16 add (pathnew, costnew) to pathsTemp

17 pathsInMem← retain MP paths from pathsTemp based on
lowest cost

18 Viterbi-RT ← add endpoint of path with lowest cost
19 tprev ← t

20 Viterbi ← path with lowest cost in pathsInMem
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respond to the number of circles that are added and inter distance is the

distance between these circles. In all experiments levels was set to 5 and

inter distance to 1 m because increasing the number of circles or reducing

the distance between them did not further improve the results.

2m2m

best initial guess
level 1
level 2

Figure 2.2: Example of additional starting positions with 2 levels and an inter
distance of 2 m for visibility.

The technique allows the algorithm to easily correct itself by switching

to another path when new measurements suggest being located inside a dif-

ferent room. Note that as the user starts walking and more measurements

become available, the best paths will move towards the correct location and

coincide if they are on the same grid point at the same time instance. Con-

sequently, the proposed system is robust against a wrong starting position

and does not need information about this position in advance, like, e.g.,

pedestrian dead reckoning. This location tracking algorithm, also referred

to as route mapping filter, serves as basis for the proposed systems in the

next chapters, i.e., to compensate human body shadowing (Chapter 3), to

optimize radio maps based on unsupervised learning (Chapter 4), and map

matching based on raw GPS data (Chapter 5).

2.5 Experimental configuration

The measurements are conducted in a generic wireless testbed for sensor

experiments (w-iLab.t [14]), located on the third floor of a modern office

building in Ghent. It consists of several computer classes, offices, and meet-

ing rooms (Figure 2.3).

The core of the building is made of concrete walls (light gray), the inner

structure is movable and made of layered drywall (yellow), the doors are

made of wood (brown) and the outside of the building consists of windows

with metal blinds (dark gray) and measures 90 m by 17 m (Figure 2.4).

The fixed infrastructure is a testbed consisting of 57 sensor nodes and an
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(a) Mobile nodes (b) Hallway (c) Computer class

Figure 2.3: Mobile nodes and indoor environment.

equal amount of WiFi nodes (access points) that were installed at a height

of 2.5 m (blue dots in Figure 2.4).

90m

17m

metal layered drywall concrete wood AP

Figure 2.4: Floor plan with indication of the access points and the material of
all walls and doors.

Two mobile nodes were used: a TMote Sky node [15], that uses ZigBee,

and a WiFi node, both fed by an external battery of 19 Volt (Figure 2.3a).

Both mobile nodes have a transmission rate of 10 packets/s and are oper-

ating in the 2.4 GHz frequency band. They have a bandwidth of 2 MHz

and 20 MHz and both have an external antenna with a gain of 5 dBi. The

RSS values, measured by the fixed APs, are used to estimate the location

but the fingerprint database consists of path loss values, calculated with the

WHIPP tool (Section 2.3). A quick calibration is needed to determine the

shift between both, therefore a broadcast of 30 seconds was performed at

four different locations. The average difference was used as shift between

the RSS and the path loss values (assumed to be fixed). This was done once

for ZigBee and once for WiFi.

Nine test trajectories are used to evaluate the proposed location tracking

algorithm. The simulations and experimental validation use the same tra-

jectories to allow an easy comparison between both (Section 2.8.1). These

nine test trajectories had an average length of 87 m and were conducted in

different areas of the building, by a person who walked at constant speed.

The mobile nodes were hand-carried at a height of approximately 1.5 m and
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the average walking speed was 1.10 m/s (about 4 km/h), which is a normal

velocity for an indoor environment. Figure 2.5 shows three such trajectories

in dashed orange, dotted green, and solid red. The other six trajectories

are similar but pass through different rooms.

90m

17m

wall door trajectory 1 trajectory 2 trajectory 3

Figure 2.5: Floor plan with indication of the walls, doors, and three test trajec-
tories shown in dashed orange, dotted green, and solid red.

2.5.1 Algorithm settings

The settings of the proposed location tracking algorithm are summarized in

Table 2.1. The maximum allowed speed vmax is fixed at 2 m/s (7.2 km/h)

and the location update rate is set to 1 Hz. Remark that the transmission

rate of the mobile node was set to 10 Hz and the average RSS value (per

AP) of the packets received within a second is used as input to the location

tracking algorithm. The parameter MP in Table 2.1 represents the maxi-

mum number of paths that are retained in memory at each time step. For

example, when set to 1000, all paths currently in memory are updated (in

all possible directions depending on the measurements and semantic data)

and the 1000 best paths, i.e., with the lowest associated cost, are retained.

Initially, there are 41 paths, i.e., begin positions after the first location up-

date, because the number of levels in the method for a robust start position

is set to 5 (Figure 2.2). The impact of this parameter on the calculation

time is studied in Section 2.8.3. The grid size determines the resolution

of possible positions on the floor plan where a person can be located, i.e.,

candidate locations, this is set to 0.5 m unless stated otherwise. The in-

fluence of this parameter is investigated in Section 2.8.2. The node density

determines how many of the 57 fixed nodes are used in an experiment (blue

dots in Figure 2.4). As the current goal is achieving a high accuracy, this

parameter is set to the maximum value. In Section 2.8.1, the impact of

the node density is studied, this is important because in a realistic environ-

ment this node density will be much lower. On average, 25 out of 57 fixed

nodes received the packets from the mobile node. At each time step, the 10

strongest access point measurements (if available) are used to estimate the
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new location because increasing this number did not further improve the

performance but only adds to the calculation time.

Setting Value

vmax 2 m/s (7.2 km/h)
Sample rate 1 sample/s
MP 1000 paths
Grid size 0.5 m
Node density 57 nodes

Table 2.1: Settings of the proposed indoor location tracking algorithm. MP :
maximum number of paths retained in memory with every location update.)

2.5.2 Evaluation metrics

The proposed algorithm has two outputs: Viterbi-RT and Viterbi, as men-

tioned in Algorithm 1. The former works in real-time (RT) because it only

uses the available information at the present time (current and past mea-

surements) to estimate the current location. The latter allows estimated

locations from the past to be corrected by future measurements. In other

words, the Viterbi result is the most likely path, given all the measure-

ments. This is interesting for applications where a small delay is allowed or

real-time is not required, e.g., modeling or analyzing pedestrian and traffic

flows.

A basic positioning algorithm, Kalman filter [16], and particle filter with

smoother [4] are used as references to estimate the performance improve-

ment with the proposed location tracking technique. The basic algorithm

uses only the RSS fingerprinting technique from Section 2.2 and does not

make use of the Viterbi principle or semantic data from Section 2.4. The

Kalman filter and particle filter are included in the simulations to evalu-

ate the influence of an increasing noise level on the location accuracy (Sec-

tion 2.6.1). The measurement and process noise of the implemented Kalman

filter are based on the maximum allowed speed (vmax) and level of added

noise (Section 1.9.2). Furthermore, the particle filter uses a speed distri-

bution based on vmax, the number of particles is equal to the number of

paths (MP ), and map information is taken into account by resampling the

particles that went through a wall in the update phase (Section 1.9.3). The

particle filter has two outputs as well: PF and PFS, the first is the real-time

output of the particle filter, i.e., weighted average of the particles, and the

second is a smoothed trajectory based on the Forward Filtering-Backward

Smoothing (FFBS) method [17].
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To ensure a fair comparison, all positioning techniques make use of the

same fingerprint database (constructed with the advanced indoor path loss

model). In Section 2.8.4 the influence of this model is investigated by com-

paring the results when a free-space path loss model is used to construct

the fingerprint database.

The mean (µ), standard deviation (σ), median (50th), and 95th percentile

value of the error are chosen as evaluation metrics for the above algorithms.

The accuracy, i.e., location error, is defined as the Euclidean distance (in

meters) between the predicted and true position.

accuracy =
√

(xest − xact)2 + (yest − yact)2 [m] (2.4)

The estimated and actual position are located at coordinates (xest, yest)

and (xact, yact). To determine the exact location of these actual positions

a constant walking speed is assumed, i.e., the true positions are equally

spread along a trajectory.

2.6 Simulations

To simulate real measurements, Gaussian noise with zero mean and a config-

urable standard deviation is added to the reference fingerprints (RSSref in

Equation 2.2) and are used as input for the location tracking algorithms [18].

An example reconstruction of such a simulated trajectory with the proposed

and basic algorithm is shown in Figure 2.6.

wall door ground truth basic algorithm

(a) Basic algorithm

wall door ground truth proposed algorithm

(b) Proposed algorithm

Figure 2.6: Reconstruction of a test trajectory by the basic (a) and the proposed
location tracking algorithm (b).

The ground truth test trajectory is indicated in solid green and the re-

constructed trajectories are visualized as orange and blue dashed lines, for

the basic and proposed algorithm. The standard deviation of the added
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Gaussian noise was set to 5 dB (denoted as noise level) and both algo-

rithms have processed the same input. As expected, the reconstructed path

with the proposed algorithm is realistic and physically possible, whereas in

the basic algorithm some walls are crossed and impossibly large traveled

distances are present.

2.6.1 Influence of noise level

This section evaluates the influence of an increasing noise level on the loca-

tion accuracy. The impact on the performance of both algorithms is studied

for four types of node density: sparse, normal, dense, and very dense. These

four node densities use 5, 10, 20, and 57 fixed nodes, respectively, for a sur-

face of 90 m by 17 m or 1530 m2 (Figure 2.7). The average inter access point

distance (IAPD) for these four node densities are 22.2 m, 12.1 m, 6.4 m,

and 3.6 m, respectively.

(a) Sparse network (5 nodes) (b) Normal network (10 nodes)

(c) Dense network (20 nodes) (d) Very dense network (57 nodes)

Figure 2.7: Location of the fixed nodes for a sparse, normal, dense, and very
dense network.

Figure 2.8 shows a plot of the mean accuracy µ as a function of the

added noise level from 0 dB up to 20 dB in steps of 2 dB. Note that in

the simulations a transmission rate of 1 Hz is simulated, as such there is no

averaging over 10 packets as in the experimental validation (Section 2.5.1).

Each simulation was repeated 100 times and the accuracies are averaged

over the results of the nine test trajectories.

Figure 2.8 shows that the proposed location tracking technique (Viterbi)

always outperforms the basic algorithm, Kalman filter, and particle filter

in mean accuracy. Moreover, Viterbi-RT achieves a similar accuracy as the

best performing reference algorithm, i.e., the particle filter with smoother,

although the latter does not work in real-time. The absolute difference

in mean accuracy between the positioning techniques decreases as node

density increases, e.g., for a noise level of 10 dB the differences between

Viterbi and Basic are 6.60 m, 4.62 m, 2.72 m, and 1.08 m for the four
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(b) Normal network (10 nodes)
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(c) Dense network (20 nodes)
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(d) Very dense network (57 nodes)

Figure 2.8: Influence of noise for various node densities (simulation). RT: real-
time, KF: Kalman filter, PF: particle filter, and PFS: particle filter with smoother.
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node densities, respectively. Note that most buildings are not equipped

with a dense wireless network. The relative improvements in accuracy of

the proposed location tracking algorithm compared to the reference and

real-time positioning techniques for four node densities and a noise level of

10 dB are summarized in Table 2.2.

Node density Algorithm
Accuracy [m] Viterbi improvement [%]

µ σ 50th 95th µ σ 50th 95th

Sparse

Basic 9.32 8.69 6.80 26.96 70.9 77.6 67.7 74.9
Kalman filter 5.75 3.20 5.35 12.10 52.8 39.1 58.9 44.0
Particle filter 5.92 4.00 5.16 13.81 54.1 51.3 57.4 50.9
Particle smoother 4.69 3.10 4.00 10.94 42.1 37.2 45.1 38.1
ViterbiRT 4.47 3.19 3.72 10.95 39.2 38.9 40.9 38.1
Viterbi 2.72 1.95 2.20 6.78 / / / /

Normal

Basic 7.01 6.57 5.22 19.58 65.9 70.6 65.6 67.1
Kalman filter 4.20 2.50 3.81 9.02 43.0 22.9 52.9 28.5
Particle filter 4.40 3.05 3.78 10.68 45.7 36.8 52.4 39.7
Particle smoother 3.08 1.91 2.70 6.96 22.4 -1.0 33.5 7.4
ViterbiRT 3.48 2.46 3.00 8.32 31.2 21.5 40.1 22.5
Viterbi 2.39 1.93 1.80 6.45 / / / /

Dense

Basic 4.23 3.52 3.37 11.25 64.5 63.8 68.9 60.2
Kalman filter 3.00 1.64 2.81 6.03 50.0 22.3 62.7 25.8
Particle filter 3.01 2.14 2.56 7.46 50.2 40.2 59.1 40.0
Particle smoother 2.23 1.41 2.01 5.06 32.8 9.4 48.0 11.5
ViterbiRT 2.36 1.73 1.90 5.84 36.3 26.4 44.8 23.3
Viterbi 1.50 1.28 1.05 4.48 / / / /

Very dense

Basic 1.96 1.72 1.44 5.44 55.3 61.4 50.2 56.9
Kalman filter 1.72 1.04 1.58 3.59 49.1 36.2 54.6 34.7
Particle filter 1.90 1.42 1.55 4.78 53.8 53.2 53.8 51.0
Particle smoother 1.56 0.98 1.37 3.54 43.9 32.5 47.4 33.8
ViterbiRT 1.28 1.03 0.94 3.51 31.7 35.8 23.8 33.2
Viterbi 0.88 0.66 0.72 2.34 / / / /

Table 2.2: Improvement of the proposed location tracking algorithm (Viterbi)
compared to the reference and real-time (RT) positioning techniques for four node
densities and a noise level of 10 dB.

The proposed location tracking algorithm always improves the perfor-

mance in mean (µ), standard deviation (σ), median (50th), and 95th per-

centile value of the accuracy (except for the standard deviation of the par-

ticle smoother for the normal node density). The largest relative improve-

ments compared to the reference algorithms are achieved for the sparse

network with only 5 nodes. The mean accuracy improves by 70.9%, 52.8%,

54.1%, 42.1%, and 39.2% for the basic algorithm, Kalman filter, particle

filter, particle smoother, and Viterbi-RT, respectively. The standard de-

viation, median, and 95th percentile value show similar improvements in

accuracy. In the very dense network, the relative improvements are still sig-

nificant but drop to 55.3%, 49.1%, 53.8%, 43.9%, and 31.7% for the basic



52 Chapter 2

algorithm, Kalman filter, particle filter, particle smoother, and Viterbi-RT,

respectively.

Note that, the standard deviation of the measurement noise is assumed

to be equal for all measurements and every fixed access point receives all

packets sent by the mobile node, independently of the traveled distance,

in practice, these two assumptions will not hold. However, all considered

positioning techniques have to process the same input, so the comparison

remains valid.

2.7 Experimental validation

In this section, the performance evaluation is based on the results obtained

with the measurements conducted by a person who hand-carried the mobile

ZigBee or WiFi node.

2.7.1 ZigBee

The results with the ZigBee node are averaged over all nine test trajectories

and are summarized in Table 2.3.

Algorithm µ [m] σ [m] 50th [m] 95th [m]

Basic 3.06 4.04 2.30 7.34
Kalman filter 3.01 3.58 2.28 6.85
Particle filter 2.75 2.35 2.21 5.63
Particle smoother 2.64 1.96 2.20 5.47
Viterbi-RT 2.54 1.70 2.14 5.87
Viterbi 2.26 1.40 1.99 5.00

Table 2.3: Average performance with the ZigBee node. RT : real-time.

Table 2.3 shows that the median accuracy and standard deviation are

below 2 m with Viterbi. Overall, the proposed algorithms always outperform

the basic algorithm, Kalman filter, particle filter, and particle smoother,

especially the standard deviation and 95th percentile values are significantly

reduced. The relative improvement in mean accuracy of Viterbi is 26.1%,

24.9%, 17.8%, 14.4%, and 11.0% compared to the basic algorithm, Kalman

filter, particle filter, particle smoother, and Viterbi-RT, respectively.

2.7.2 WiFi

Besides the ZigBee node, three test trajectories were investigated with the

WiFi node. Because of the higher maximum transmit power, more fixed
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nodes received the packets from this mobile node (on average 40 out of 57

fixed nodes). This time, the 20 strongest access point measurements were

used to estimate the location, for the same reason as with the ZigBee node

(Section 2.5.1). The other settings were the same as in Table 2.1 and the

results are summarized in Table 2.4.

Algorithm µ [m] σ [m] 50th [m] 95th [m]

Basic 3.61 2.66 3.09 7.55
Kalman filter 3.46 2.56 2.93 6.92
Particle filter 3.17 1.81 2.83 6.38
Particle smoother 2.99 1.67 2.65 6.17
Viterbi-RT 3.02 1.93 2.65 6.21
Viterbi 2.86 1.61 2.59 6.05

Table 2.4: Average performance with the WiFi node. RT : real-time.

Again, the proposed Viterbi algorithms perform better than the ref-

erence algorithms but with slightly lower improvements than the ZigBee

results: 20.8%, 17.3%, 9.8%, 4.3%, and 5.3% compared to the basic al-

gorithm, Kalman filter, particle filter, particle smoother, and Viterbi-RT,

respectively. Less accurate results were obtained with the WiFi node be-

cause compared to the used ZigBee channel, there was more interference

on the used WiFi channel, which resulted in a larger variance in the RSS

measurements. The channels used were 26 for ZigBee (2480 MHz with a

bandwidth of 2 MHz), which is usually relatively unaffected by WiFi, and

channel 1 for WiFi (2412 MHz with a bandwidth of 20 MHz), which is also

used for regular wireless traffic.

2.8 Sensitivity analysis

In this section a sensitivity analysis is conducted, based on the measure-

ments from the experimental validation, to investigate the influence of node

density, grid size, path loss model, semantic data, maximum number of

paths updated and retained with each location update, and the amount of

previous positions taken into account. This is important to estimate the

influence of the algorithm’s parameters on the performance (location ac-

curacy, execution time, and memory usage). Unless stated otherwise, the

settings from Table 2.1 are used and the results are averaged over all nine

trajectories, conducted with the ZigBee node.
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2.8.1 Node density

The majority of testbeds used for validating a new positioning system have

a very high node or access point density but in a typical environment this

node density is much lower. The recommended node density for a wire-

less network infrastructure will depend on several factors, e.g., the number

of users, required bandwidth, type of building, etc., whereas the most im-

portant factor for a positioning system will be the required accuracy. Cisco

recommends a node density between 0.0015 nodes/m2 and 0.0043 nodes/m2

for their Cisco 1000 series lightweight access point [19]. The test environ-

ment has a surface area of 1530 m2, which results in 7 APs for a node den-

sity of 0.0043 APs/m2. The used testbed is equipped with 57 nodes, which

leaves us many possibilities to investigate the performance from sparse to

very dense networks. Four scenarios are considered: 5, 10, 20, and 57 fixed

nodes (as in Section 2.6.1). The mean accuracy (µ) and standard deviation

(σ) are summarized in Table 2.5.

Scenario #nodes nodes/m2 IAPD [m]
Basic Viterbi-RT Viterbi

µ [m] σ [m] µ [m] σ [m] µ [m] σ [m]

Sparse 5 0.0033 22.2 8.30 11.89 6.04 9.10 5.11 7.81
Normal 10 0.0065 12.1 6.58 11.41 3.76 2.58 3.26 2.24
Dense 20 0.013 6.4 4.78 8.34 3.20 2.10 2.70 1.72

Very dense 57 0.037 3.6 3.06 4.04 2.54 1.70 2.26 1.40

Table 2.5: Performance for different node densities. IAPD: inter access point
distance

It is clear that the proposed algorithm shows acceptable results in a net-

work with normal node density. More specifically, Viterbi-RT and Viterbi

perform 2.82 m and 3.32 m better compared to the basic algorithm in terms

of mean accuracy, corresponding to an improvement of 42.9% and 50.5%.

This is due to the many poor predictions of the basic algorithm, which

worsen the mean accuracy a lot. Comparing the 95th percentile values with

normal node density give similar insights: 15.00 m, 8.20 m, and 7.94 m

for the basic algorithm, Viterbi-RT, and Viterbi, respectively. Note that a

difference between the experimental validation and the simulations is that

the latter does not take into account the influence of the human body itself.

This so-called human body shadowing causes additional losses, which can

further worsen the location accuracy and is the topic of Chapter 3.

2.8.2 Grid size

The grid size determines the resolution of the possible positions on the floor

plan where a person can be located. A lower grid size has the benefit of
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a finer resolution at the cost of a higher execution time or needed com-

putational power because the search space is bigger. In this section, the

influence of this parameter on the performance of the proposed algorithm

is investigated for four different grid sizes (Table 2.6).

Grid size [cm]
Viterbi-RT Viterbi

µ [m] σ [m] 50th [m] 95th [m] µ [m] σ [m] 50th [m] 95th [m]

20 2.60 1.74 2.22 6.24 2.34 1.47 2.02 5.38
50 2.54 1.70 2.14 5.87 2.26 1.40 1.99 5.00
100 2.64 1.81 2.15 6.28 2.22 1.42 1.96 5.09
200 3.01 2.12 2.52 7.28 2.82 1.89 2.40 6.64

Table 2.6: Performance for different grid resolutions.

Grid sizes of 0.2 m, 0.5 m, and 1 m yield similar performance: a mean

accuracy around 2 m, a standard deviation of 1.5 m, a median accuracy

just below 2 m, and a 95th percentile value around 5 m. This is because as

soon as the grid size is small compared to the achieved median accuracy,

the performance will not further improve by reducing the grid size. Thus,

a grid size of 1 m is recommended when time or computational power is

limited because smaller grid sizes will increase the required memory and

the number of calculations of both the offline as online phase and hence the

execution time.

2.8.3 Execution time

The average time needed to calculate one location update determines the

latency and ability for real-time usage and depends on the available com-

putational power but also on parameters related to the proposed location

tracking system. Notably, the grid size and the number of paths stored in

memory will have an influence on the execution time. Figure 2.9 shows the

execution time as a function of the number of paths in memory, for four

different grid sizes (logarithmic scale). The solid lines are the execution

times with the proposed algorithm and the dotted lines with the basic al-

gorithm. An upper limit of 1000 paths was used because an increase in

number of stored paths did not result in further improvements in accuracy;

for larger grid sizes even less paths are needed. The experiments are run

on a desktop computer with an Intel Core i7 3.40 GHz processor, 8.00 GB

DDR3-SDRAM, and 64 bit operating system.

Figure 2.9 shows that the time needed to calculate one location update

increases exponentially with the number of paths that are stored and up-

dated at every time step (MP in Table 2.1 and Algorithm 1) and quadrat-

ically with a smaller grid size because halving the grid size results in four
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Figure 2.9: Average execution time to calculate one location update for different
grid sizes (solid line: proposed algorithm, dotted line: basic algorithm).

times as many grid points (on a two-dimensional floor plan). The basic

algorithm does not depend on the number of paths and hence has a nearly

constant execution time. For a low number of paths, the proposed system

executes faster than the basic algorithm because to determine the most

likely position, the latter examines every grid point on the floor plan and

the proposed algorithm only considers those centered around a previous po-

sition (due to the motion model). For a grid size of 2 m it can be seen that

the execution time remained equal for 500 to 1000 paths because along the

nine trajectories, the maximum possible paths retained in memory never

exceeded 500. Note that this is determined by the start position, location

of walls and doors, and the maximum speed along the reconstructed paths

in memory. The maximum delay is about 1 s when using 1000 paths and

a grid size of 20 cm. This is a possible bottleneck if the proposed system

is used in combination with a VLP or UWB approach because a grid size

below 20 cm would be required to take advantage of the accurate ranging

measurements. Note that a particle filter operates in a continuous space

and hence it’s performance is only dependent on the number of particles

and number of obstacles for the geometric intersection if floor plan infor-

mation is taken into account. For real-time location tracking applications

based on signal strength measurements it is better to use a grid size of

1 m and 100 paths, which results in a maximum delay of 1.5 ms to calcu-

late a location update with almost no loss in positioning accuracy. This

leaves margin to run the proposed location tracking algorithm in real-time

on devices with less computational power or memory.
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2.8.4 Path loss model

Until now the advanced indoor path loss model (WHIPP [12]) was used

to construct the fingerprint database (Section 2.3). In Table 2.7 the per-

formance with a free-space path loss model is compared to the one with

WHIPP. The free-space path loss is calculated as follows:

FSPL = 20 log10(d) + 20 log10(f)− 27.55 [dB] (2.5)

FSPL [dB] is the total path loss calculated with the free-space model,

d [m] is the distance between transmitter and receiver, and f [MHz] is the

signal frequency. To ensure a fair comparison with the WHIPP model, the

free-space model was calibrated with the same measurements to calculate

the fixed RSS shift (Section 2.5).

Algorithm Path loss model µ [m] σ [m] 50th [m] 95th [m]

Basic free-space 3.35 3.43 2.68 7.98
Basic WHIPP 3.06 4.04 2.30 7.34
Viterbi free-space 2.62 1.60 2.36 5.82
Viterbi WHIPP 2.26 1.40 1.99 5.00

Table 2.7: Influence of used path loss model.

Except for the standard deviation with the basic algorithm, the results

with the WHIPP model slightly outperform the ones with a free-space path

loss model but the main improvement originates from the Viterbi technique.

The mean, standard deviation, median, and 95th percentile accuracy im-

prove by 32.5%, 59.1%, 25.7%, and 37.3%, respectively, when using the pro-

posed algorithm and advanced indoor path loss model (Viterbi+WHIPP)

compared to Basic+free-space.

2.8.5 Semantic data

This section discusses the added value of the semantic data (environmental

data and motion model). The location tracking accuracy for four combina-

tions of semantic data used in the proposed algorithm are summarized in

Table 2.8.

When no semantic data is taken into account, the Viterbi principle has

no added value because any transition between two positions is possible,

which gives the same result as with the basic algorithm. Using the environ-

mental data, e.g., no wall crossing and leaving a room through the doors,

gives a small improvement and the motion model, i.e., a limitation on the

assumed maximum speed, results in the largest improvement. Using both,
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Semantic data µ [m] σ [m] 50th [m] 95th [m]

None (Basic) 3.06 4.04 2.30 7.34
Environmental data 2.71 2.59 2.17 6.62
Motion model 2.27 1.42 2.03 5.05
Both 2.26 1.40 1.99 5.00

Table 2.8: Influence of semantic data.

still yields the best results but the additional value is limited because there

are only a few room changes over the course of an entire trajectory. Most

of the time, a user is walking in a room or in a hall way. The values of

Table 2.8 are of course specific for the considered configuration.

2.8.6 Future measurement data

This section investigates the effect of future measurement data, i.e., location

updates, on the positioning accuracy. Note that the proposed algorithm

allows future measurements to correct previously estimated positions by

keeping all paths in memory and selecting the most likely trajectory when

the location tracking ends. The amount of future measurement data is rep-

resented by the elapsed time after the current location update. Figure 2.10

shows a plot of the four metrics as a function of this parameter for a normal

node density, i.e., 10 nodes or 0.0065 nodes/m2.
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Figure 2.10: Influence of the amount of future measurement data on the four
metrics (in a normal node density).

No further improvement in any of the four metrics is noticeable when
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nine or more seconds of future measurement data is taken into account.

This means that a delay of nine seconds suffices to obtain the highest possi-

ble accuracy with the nine test trajectories of this experimental validation.

Another advantage is that the required memory can be reduced if a person

is tracked for a long time, e.g., by periodically calculating the most likely

trajectory, storing the results and keeping only the paths and costs of the

last nine seconds for the next calculation. Intuitively, one would indeed

expect the bigger the time difference between two location updates, the

smaller the influence both will have on each other.

2.9 Conclusion

In this chapter, a real-time indoor location tracking system based on the

Viterbi principle and semantic data is presented. The system is evaluated

by both simulations and an extensive experimental validation in a real of-

fice environment. The simulations confirmed that the proposed location

tracking system was more robust against measurement noise, especially for

networks with smaller node densities, e.g., a simulated noise level of 10 dB

resulted in improvements of 70.9%, 52.8%, 54.1%, and 42.1% in mean accu-

racy compared to a fingerprinting technique, Kalman filter, particle filter,

and particle smoother, respectively. In the experimental validation, an av-

erage median accuracy below 2 m was obtained over nine test trajectories

with a total length of 783 m, in an office building that has 57 nodes and

measures 90 m by 17 m (covering over 1500 m2). It is shown that the node

density has a major impact on the accuracy, although acceptable results

were obtained for normal node densities, i.e., a mean accuracy of 3.26 m

with the proposed location tracking algorithm compared to 6.58 m with

the basic algorithm. Furthermore, it is shown that semantic data is nec-

essary to exploit the Viterbi principle, especially the motion model has a

major influence. Compared to a free-space path loss model, the usage of an

advanced indoor path loss model to construct the fingerprint database im-

proved the median accuracy of the proposed Viterbi algorithm by 15.68%.

The grid size has a huge impact on the execution time, required computa-

tional power, and memory usage, which is important to work in real-time

on low-cost portable devices. The amount of future measurement data used

to correct previously estimated locations was found to improve the posi-

tioning accuracy up to nine future location updates. This means that a

delay of nine seconds suffices to obtain the highest possible accuracy in the

experimental validation for the considered configuration. In Chapter 3, a

positioning system is proposed to cope with the signal deterioration caused

by the user being tracked itself, so-called human body shadowing.
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Chapter 3

Compensation of human
body shadowing

3.1 Introduction

Many location tracking systems already try to cope with performance deteri-

oration caused by multipath fading and diffraction as discussed in Chapter 2.

However, an important factor that has already been noted in literature but

is often still neglected is the influence caused by the user being tracked itself,

so-called human body shadowing [1]. The presence of such a user will influ-

ence the radio-frequency (RF) signal paths between a body-worn tag and

the receiving nodes, and can block the line-of-sight (LoS) depending on the

user’s orientation and location. This causes additional propagation losses

that are currently not accounted for and will generally decrease the accuracy

of signal strength based localization techniques. Furthermore, the perfor-

mance of positioning systems is often verified by stepwise moving a node

placed on a tripod, hereby explicitly removing the human from the equa-

tion, while practical human tracking applications always imply the presence

of a user’s body.

This chapter presents an RF-based location tracking system that im-

proves its performance by compensating for the shadowing caused by the

human body of the user being tracked. Two novel approaches to mitigate

the human body shadowing are investigated and combined in one loca-

tion tracking system. The first approach combines the measured signal

strengths from multiple mobile nodes, placed on different parts of a human

body. Combining their measured signal strengths allows reducing the vari-

ation caused by the user’s body and hence limits its influence. The second

approach takes into account the user’s orientation towards the fixed infras-
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tructure and the body-worn tag’s relative position. Next, a human body

loss model is used to explicitly compensate for the user’s influence. In this

method, the orientation of a user is determined without making use of the

classic compass or gyroscope approaches, but with a novel orientation esti-

mator built on top of the tracking algorithm of Chapter 2. Both approaches

can be independently combined and reduce the influence caused by body

shadowing, hereby improving the tracking accuracy.

The remainder of this chapter is structured as follows, Section 3.2 de-

scribes related work, Section 3.3 presents an experimental motivation for the

proposed approaches, and an overview of the system is given in Section 3.4.

Section 3.5 revisits the equations of the location tracking algorithm intro-

duced in Chapter 2 and Section 3.6 elaborates on these equations to embed

the human body compensation models and orientation estimator into the

algorithm. Section 3.7 discusses the configuration and results of the exper-

imental validation. Finally, in Section 3.8, conclusions are provided.

3.2 Related work

Many state-of-the-art approaches try to cope with the complexity of in-

door environments by making use of advanced processing techniques, e.g.,

Kalman filters [2, 3], particle filters [4–6], and machine learning techniques [7],

but most approaches neglect the influence of the human body itself. In [8], a

body shadowing mitigation method is used on top of an RSS-based Monte

Carlo positioning technique, achieving meter scale accuracies for a wrist-

worn personnel tracking tag. The shadowing caused by a user’s body is

mitigated by using LoS and non-line-of-sight (NLoS) channel models. A

disadvantage of this approach is that it depends on a manual differentiation

of the LoS conditions and separate measurements that need to be conducted

for each LoS condition. In [9], video cameras are used to detect the human

orientation and an empirical compensation model is used to compensate for

body electronic interference. In [10], multiple sensors are placed on a user

and measured power level values are used for estimating the position and

orientation of a user in a single room. They present a theoretical procedure

to evaluate the maximum attainable performance based on ray-tracing to

compute a fine grid of RSS values and a maximum-likelihood approach for

localization. In [11], a fingerprinting system based on neural networks is

used for indoor positioning with Bluetooth devices. They use a compass

module to provide information about the user’s orientation, which improves

the selection of the most adequate neural network to use. The achieved

results are highly accurate, but a lot of training data is needed, since for

every user orientation a neural network has to be trained. In [12, 13], the
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losses caused by a human body are used as an advantage, i.e., a user is asked

to rotate in place, simulating the behavior of a directional antenna. This

directional analysis technique is used to localize an outdoor access point

in [12] and to estimate the location of the user in [13].

In this work, the user’s direction is obtained with an orientation estima-

tor based on previous and current location predictions. Next, the estimated

orientation is used to automatically mitigate the shadowing caused by the

human body. This approach requires no manual differentiation [8], video

cameras [9], or orientation tracking sensors like accelerometers, gyroscopes,

and compasses [11]. The compensation model is based on three-dimensional

electromagnetic simulations with a human phantom and hence no need for

extensive measurements [8, 11]. Note that the simulations need to be per-

formed only once per position of the mobile tag. Furthermore, all possible

orientations are taken into account, which results in a continuous three-

dimensional model to compensate for body shadowing. The performance

evaluation is done at 2.4 GHz using ZigBee nodes [14], on a building-wide

testbed, not limited to a single room or theoretical framework [10].

3.3 Characterization of human body influence

In this section, the influence of human body shadowing on the exchanged

signals between a body-worn mobile device and a fixed node, is investigated

and characterized. This is relevant for all signal strength based positioning

and location tracking algorithms, which purpose is to track humans. In

this work, the proposed body shadowing compensation methods are veri-

fied with an RSS fingerprinting based tracking algorithm [15]. Other signal

strength based positioning methods can also benefit from this approach,

e.g., the aforementioned RSS-based algorithms that use a Kalman filter [2]

or particle filters [4, 6]. The proposed methods in this work are aimed at

signal strength based systems but human body shadowing can also influ-

ence the performance of ToA-based positioning methods. The presence of

a human body can, e.g., block the line of sight path or cause the creation

of additional paths with multipath, biases in the estimated delays, and per-

formance degradation as a result. Different compensation techniques are

needed to cope with the shadowing in ToA-based systems but this is be-

yond the scope of this work. In general, eliminating the influence of human

shadowing results in better and more robust (ranging) measurements, which

lead to better positioning accuracies.

As mentioned before, human body shadowing occurs when the RF sig-

nal path between a body-worn tag and a receiving node is completely or

partially blocked by a person. The exchanged RF signals are altered due
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to dielectric losses in the human body, which manifests itself as a drop in

signal strength. Additional propagation losses of around 10 to 30 dB are

reported in literature [12]. To verify this effect, an experiment is conducted:

a (male) user is asked to turn 360◦ clockwise around his axis, while wearing

a mobile tag on his chest and back (Figures 3.4a and 3.4b). The user turns

45◦ every 15 seconds, taking 2 minutes for a full rotation. Forty fixed nodes

received the packets sent by the mobile tags and measured the RSS values.

Note that the testbed consists of 48 fixed nodes in total, meaning that 8

nodes did not receive packets due to signal attenuation (more details on this

testbed are provided in Section 3.7.1 and Figure 3.2). Figure 3.1 shows the

measured RSS values, averaged over a window of 15 s, as a function of the

user’s orientation for a nearby (12 m) and far away (66 m) node, indicated

in green and red. The location of the user is indicated with a yellow star in

Figure 3.2. The experiment starts with the user facing the left side of the

building, i.e., towards the nearby and far away node (orientation 0◦).
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Figure 3.1: The effect of a full rotation and human body shadowing in an indoor
environment.

90m

17m

wall door node nearby node far away node rotating user

Figure 3.2: Floor plan of testbed with indication of walls, doors, access points,
near access point, far access point, and location of the rotating user.

From Figure 3.1, it is clear that the orientation of a user has a significant
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influence on the measured RSS values (on top of the variance caused by

multipath). A high RSS value measured by the chest tag corresponds always

to a low RSS value measured by the back tag (and the other way around).

This is because the human body is located between both body-worn tags

and can block or attenuate the strongest path between the nodes and mobile

tags. The shape of the RSS plots are not 180◦shifted copies of each other

because of differences in the individual tags and the human anatomy front

and back side. The maximum observed differences between the chest and

back tag, measured by the forty fixed nodes, range from 1.8 dB to 25.2 dB

with an average value of 14.8 dB. The highest differences are observed in LoS

situations, whereas the lowest differences are observed in situations where

the RF signal suffers from severe multipath. As a result, the average RSS

value of both tags shows less variation: the standard deviation, averaged

over all forty nodes, is 4.9 dB, 4.3 dB, and 2.5 dB for the chest, back, and

combination of both tags, respectively. In other words, the orientation of

a user will have less influence on the measured signal strengths and hence

location tracking accuracy when multiple mobile tags are combined. The

next section introduces the proposed location tracking system that mitigates

the human body shadowing effect with a compensation and combination

model, which can work independently.

3.4 System overview

A complete overview of the location tracking system with compensation for

human body shadowing is shown as a flow graph in Figure 3.3.

compensation model

combination
multiple tags

location tracking algorithm
with fingerprint database

floor planorientation estimator

body-worn tags fixed infrastructure
broadcast

position of tags on body RSS measurements

location of APs

location of
APs, walls,
and doors

current and
previous user

locations

α, β

Figure 3.3: Flow graph of the location tracking system with human body compen-
sation.
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The starting point is the location tracking algorithm of Chapter 2, lo-

cated on the bottom of the flow graph. This algorithm uses the prepro-

cessed RSS measurements together with a fingerprint database and a floor

plan with the location of all walls, doors, and APs, as input to calculate

the user’s location (Section 3.5). Next, the outputted locations are used to

estimate the user’s orientation (Section 3.6.2.1), which serves as an input

for the compensation model (Section 3.6.2.2). To determine the influence

caused by the user’s body, this compensation model also uses the position

of the mobile tags, the RSS measurements, and the location of the access

points as input. Note that the RSS measurements originate from the fixed

infrastructure as the body-worn mobile tags broadcast packets that are re-

ceived by the fixed APs. Finally, the compensated RSS measurements of

all tags are combined (Section 3.6.1) and passed on as input to the location

tracking algorithm, and the process restarts.

3.5 Location tracking algorithm

This section reformulates the equations of the location tracking algorithm

of Chapter 2, which serves as starting point for this work [15]. The al-

gorithm is based on the Viterbi principle and uses the well-known RSS

fingerprinting technique [16], a motion model, and off-the-shelf devices. In

the standard RSS fingerprinting technique, without the Viterbi principle or

semantic data, the current location is estimated by looking for the closest

match in signal space, i.e., by comparing the measured signal strengths to

the reference values in a fingerprint database. The closest match is based on

the mean squared error (MSE), which results in the following cost function

and least squares solution:

costfp,j =
1

NAP

NAP∑
i=1

(
RSSimeas −RSSi,jref

)2
(3.1)

costfp,j is the cost function for a grid point j in the fingerprint database,

NAP is the number of access points that received packets broadcasted by the

body-worn tag(s), RSSimeas is the measured RSS value from access point i,

and RSSi,jref is the reference RSS value for access point i and a grid point j

in the fingerprint database. This results in following equation for the least

square solution:

locest = argmin
j∈GP

costfp,j (3.2)

locest is the most likely current location, which is the grid point j that
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has the lowest associated cost (costfp,j) over all grid points GP in the

fingerprint database.

The more advanced location tracking algorithm uses the environment of

the user that is being tracked and a motion model as constraints to deter-

mine the most likely sequence of positions instead of only the most likely

current position. These two constraints ensure that no walls are crossed

and that no unrealistically large distances are traveled within a given time

frame. The following cost function is used to determine the most likely path

(after applying both constraints):

costltap,T =

T∑
t=1

NAP∑
i=1

(
RSSi,tmeas −RSSi,p,tref

)2
(3.3)

costltap,T is the associated cost of the location tracking algorithm (lta)

for path p after T time steps. NAP is the number of access points that

received packets broadcasted by the body-worn tag(s). RSSi,tmeas is the

RSS measurement at time step t from access point i and RSSi,p,tref is the

reference RSS value from access point i for the position along path p at

time step t. Note that the reference RSS values for a certain position are

static, the subscript t is only used to indicate the position along path p.

The last position of the path with the lowest associated cost is taken as

most likely current location. The calculations of paths and costs are not

restarted every time a new measurement is received but the paths and costs

from a previous iteration serve as input for the current iteration along with

the new measurements (Algorithm 1).

The reference RSS values are stored in a fingerprint database and are

derived from the heuristic path loss model introduced in Section 2.3. These

fingerprints are generated for a grid size of 50 cm, which determines the

density of possible positions. In Section 2.8.2 it was proven that a higher

density did not further improve the results and that a grid size of 50 cm is

suited to work in real time. The advantage of a theoretical model is that it

avoids an expensive and time-consuming measurement campaign but allows

for an immediate deployment at the expense of a slightly reduced accuracy.

3.6 Compensation techniques

3.6.1 Combining multiple tags

As indicated in Section 3.3, the combination of measurements from multiple

mobile tags, worn on different parts of the human body, reduces the influ-

ence of body shadowing. This results in a closer match between the prepro-

cessed measurements and the reference RSS values from the fingerprinting
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database, which suggests a possible improvement in tracking accuracy. De-

termining the optimal number and positions for the mobile tags depends on

the required accuracy and wearing comfort in particular. Three positions

are considered to improve the performance while maintaining practical tag

positions and are shown in Figure 3.4: the central area of the chest and back

(to have diversity in the forward and backward direction) and the right wrist

(can be worn like a watch or integrated in one). Note that a user’s wrists are

slightly moving due to natural walking behavior and attenuation changes

over time but the packets that are received within a second are averaged

before they are passed as input to the tracking algorithm and compensation

models. Interference between the different signals can be limited by the used

modulation technique, e.g., direct-sequence spread spectrum (DSSS) [17].

(a) Chest (b) Back (c) Wrist

Figure 3.4: Body-worn tags.

These body-worn tags broadcast packets and the measured RSS values

are combined in following cost function (based on Equation 3.4):

costcmtp,T =

T∑
t=1

B∑
b=1

NAP∑
i=1

(
RSSi,b,tmeas −RSSi,p,tref

)2
(3.4)

costcmtp,T is the associated cost of the location tracking algorithm that

combines multiple tags (cmt), for path p after T time steps. B is the

amount of body-worn tags that are in use and b is a number referring to

the body-worn tag’s position, i.e., 1 = chest, 2 = back, and 3 = wrist. NAP
is the number of access points that received packets broadcasted by these

body-worn tags. RSSi,b,tmeas is the RSS measurement from access point i of

a packet broadcasted by the body-worn tag b at time step t. RSSi,p,tref is

defined in Equation (3.3).
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3.6.2 Compensating user orientation

The second approach compensates explicitly for the influence caused by a

user with a certain position and tag orientation towards the infrastructure

APs. It consists of two parts: an orientation estimator and a compensation

model.

3.6.2.1 Orientation estimator

People tend to walk in the same direction for at least a few seconds due to

the nature of most building structures and typical human behavior, which

can be exploited to estimate a user’s orientation. More specifically, the angle

between previous and current location predictions is used as an estimation

for the next orientation. Such an estimator is built on top of an existing

tracking system that provides the current and previous positions as input.

The next orientation is estimated as:

Oestt+1 =
180

π
arctan

(
Pt,y − P amt,y
Pt,x − P amt,x

)
[◦] (3.5)

P amt =
1

K

K∑
k=1

Pt−k (3.6)

Oestt+1 [◦] is the estimated orientation for the next time step (t+1), P amt is

the arithmetic mean of K previous predicted positions Pt at time step t and

the x and y subscript indicate the x and y coordinates. The two-argument

arctangent function (atan2 ) is used to obtain the appropriate quadrant of

the computed angle. The performance of this orientation estimator depends

on the accuracy of the tracking system itself and on the movement of a user,

i.e., frequency of turns taken and standing still moments. The goal is to

investigate whether human body shadowing can be mitigated with this ap-

proach, instead of using the more precise measurements of an accelerometer,

compass, or gyroscope, which require additional hardware and increase the

cost of the location tracking system. For now, it is assumed that the user is

walking forward. Including more previous location predictions (parameter

K) improves the robustness and performance of the orientation estimator

when few turns are present. However, this decreases rapidly when a tra-

jectory with more abrupt changes is followed because a higher K implies

a lower responsiveness. The reason for the initial improvement is that the

predicted locations are not completely accurate, e.g., variations around an

actually followed straight line, and taking into account multiple positions

reduces the effect of prediction inaccuracies (averages out the error). This

improvement stops when the user takes a turn during the last K positions
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and the orientation error starts to deteriorate when even more previous po-

sitions are taken into account. Two trajectories are outlined on a floor plan

to evaluate the orientation estimator with a simulation. The first trajectory

has a length of 100 m and contains twenty-three 90◦ turns and two 180◦

turns, which results in an average of one turn every 4 m (blue trajectory

in Figure 3.5). The second trajectory has fewer turns, longer straight seg-

ments, a total length of 56 m, and contains eight 90◦ turns, which results

in an average of one turn every 7 m (red trajectory in Figure 3.5).

wall door red trajectory blue trajectory

Figure 3.5: Red and blue trajectory for testing the orientation estimator (simu-
lation).

The RSS values corresponding to the positions along these trajectories

are selected from the fingerprint database (Section 3.5) and are used as

input for the tracking algorithm (the walking speed is set to 1 m/s). Gaus-

sian noise with a standard deviation of 1 dB, 3 dB, and 6 dB is added to

these RSS values to simulate realistic conditions. Finally, the positions pre-

dicted by the tracking algorithm are used to estimate the orientation with

Equations (3.5) and (3.6). The user’s orientation ranges from 0◦ to 360◦,

meaning that an orientation error of 180◦ is the worst possible result. The

orientation error is defined as:

εor =

{
|Oest −Oexact| |Oest −Oexact| ≤ 180◦

360◦ − |Oest −Oexact| |Oest −Oexact| > 180◦
[◦]

(3.7)

εor is the orientation error, Oest is the estimated orientation (Equa-

tion 3.5), and Oexact is the exact orientation, derived from the trajectories

that are known in advance and visualized in Figure 3.5. Figure 3.6 shows a

plot of the median orientation error as a function of the number of previous

locations taken into account (parameter K from Equation 3.6). Note that

the location update rate in the simulations is set at 1 Hz. The simulations

are repeated five times for averaging purposes.



Compensation of human body shadowing 73

1 2 3 4 5 6 7 8 9 10
previous locations taken into account [-]

0

10

20

30

40

50

60

o
ri

e
n

ta
ti
o

n
e

rr
o

r
[°

]

1dB

3dB

6dB

(a) Blue trajectory
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(b) Red trajectory

Figure 3.6: Performance of orientation estimator for the two trajectories and
three noise levels. Solid line: median error, dashed line: standard deviation.

As expected, the orientation error initially decreases when more previ-

ous positions are taken into account (averages out inaccuracies) and then

increases again for higher K values (due to turns taken during the last K

positions). For the trajectory with many turns (blue), the optimal K value

is 3 with median orientation errors (and standard deviations) of 12◦ (24◦),

21◦ (32◦), and 32◦ (47◦), depending on the amount of added noise: 1 dB,

3 dB, and 6 dB, respectively. For the trajectory with longer straight seg-

ments (red), the optimal value for K is 5 with median orientation errors

(and standard deviations) of 11◦ (24◦), 15◦ (33◦), and 23◦ (45◦), depending

on the amount of added noise: 1 dB, 3 dB, and 6 dB, respectively. Note

that, the individual orientation errors are typically largest just after a turn

because of the transition period K (Equation 3.6).

In the remainder of this work, the default K value is set to 4, which can

deal with more abrupt trajectory changes and is still sufficiently accurate

to compensate for the user’s orientation (Section 3.7.4). Alternatively, this

K value could be made adaptive based on the estimated trajectory up to

the current location update, e.g., the value can be increased if the algo-

rithm detects that a user is walking straight in the hallway or decreased if

the user enters a room or approaches the end of a straight segment. The

largest advantage of this approach is the ease of use and cost-effectiveness

as there is no need for additional hardware to obtain the user’s orientation.

Disadvantages are the inability to detect a user rotating in place and the

rather harsh orientation estimations but in Section 3.7.4 it is shown that

this approach suffices to reduce the impact of human body shadowing.

Once the orientation of a user is known, the azimuth angle α and the

elevation angle β between the body-worn tag(s) and the fixed infrastructure
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nodes is calculated (Figure 3.7). It is assumed that the tag’s position on

the body and a floor plan with the locations of the fixed access points are

known in advance and that the user is walking forward.

(a) Top view (b) Side view

Figure 3.7: Angles between body-worn tag and AP.

3.6.2.2 Compensation models

Next, a compensation model is needed to estimate the influence due to the

presence of a user. The mobile tags are calibrated based on the same mea-

surements from Section 3.3: the average value between the measurements

and the RSS fingerprinting database during the full rotation is taken as

offset. This offset is inherent to a mobile tag and their transmit power, and

is calculated once. This means that the measured RSS values will be an

overestimation when tag and receiving node face each other directly and be

an underestimation when the human body is completely blocking the signal.

Two compensation models are used: a basic over / underestimation model

and a simulation-based three-dimensional model:

• The first model labels the measurements as an over- or underestima-

tion based on the azimuth angle α between tag and receiving node:

Co/u(α) =

{
+ compensation

2 − π
2 < α ≤ π

2

− compensation2
π
2 < α ≤ 3π

2

[dB] (3.8)

Figure 3.8a shows a plot of the Co/u (over/underestimation) compen-

sation model. The default value of the compensation parameter from

Equation 3.8 is set to 6 dB, which is found to be a good compromise

between compensating for worst-case body shadowing and compensat-

ing for when almost no shadowing is present. Note that the maximum

observed differences between the chest and back tag, measured by the

forty fixed nodes, varied from 1.8 dB to 25.2 dB in the experiment of

Section 3.3.
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(a) over/underestimation
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(b) S4L: chest
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(c) S4L: back
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(d) S4L: wrist

Figure 3.8: Graphical representation of the two compensation models.
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• The second model is based on simulations carried out in Sim4Life

(S4L), a three-dimensional full wave simulation environment based

on the finite-difference time-domain (FDTD) method [18]. The sim-

ulations are executed at 2.45 GHz using the Virtual Family Male

(VFM) [19]. The VFM is a heterogeneous phantom with a BMI of

22.3 kg/m2. An accurate model of the integrated onboard antenna of

the mobile tag is built in the simulation platform [20] (Figure 3.9a).

This Planar Inverted-F antenna (PIFA) is made out of metal and

mounted on a 1 mm thick, dielectric substrate with a relative per-

mittivity of 4 and measures 65 mm by 31 mm [14]. The antenna is

optimized to resonate at 2.45 GHz (a plot of the reflection coefficient

S11 [dB] is shown in Figure 3.9b).

The mobile tag is placed on three practical positions of the VFM:

chest, back, and right wrist. The simulated directivity pattern reflects

the influence of the human body (Figure 3.9c). The values of the

directivity pattern are shifted in such a way that the average value

is zero and the range is normalized to the same compensation value

of Equation 3.8 to be compatible with the mobile tag calibration. In

this way a three-dimensional compensation model, that reflects the

influence caused by the human body, is obtained. The second model

is expressed as CS4L,b(α, β), α and β are the azimuth and elevation

angle between tag and receiving node, and b indicates the body-worn

tag’s position.

Including the compensation for a user’s orientation, results in following

cost function for the tracking algorithm (based on Equation 3.4):

costcmt+cp,T =

T∑
t=1

B∑
b=1

NAP∑
i=1

((
RSSi,b,tmeas − Cj,b(α, β)

)
−RSSi,p,tref

)2
(3.9)

costcmt+cp,T is the associated cost of the location tracking algorithm that

combines multiple tags and explicitly compensates (cmt + c) for the ad-

ditional losses caused by human body shadowing, for path p after T time

steps. NAP is the number of access points and B is the amount of body-

worn tags that are in use. RSSi,b,tmeas and RSSi,p,tref are already defined in

Equations 3.3 and 3.4. Cj,b(α, β) is the jth compensation model, for mobile

tag b and uses the angles α and β as input arguments. The subscript j is

either o/u (over / underestimation) or S4L.

Note that the o/u compensation model makes no use of the elevation

angle β and uses the same model for all mobile tags b. Figure 3.8 shows a
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Figure 3.9: Simulations in S4L.
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graphical representation of the two compensation models. To obtain a two-

dimensional plot, an elevation angle β of 20◦ is chosen for the visualization

of the S4L compensation model.

It is clear from Figure 3.8 that the S4L compensation models do depend

on the tag position but there are many similarities, especially between the

tags placed on the central area of the chest and back. This is as expected

because of the symmetry between both tag positions and hence RF signals

will propagate through the same areas of the VFM. The wrist-worn tag

compensation model deviates from the others, due to the human posture

where there is some open space between arm and body.

3.7 Experimental validation

3.7.1 Configuration

The experiments are conducted in a wireless testbed, located on the third

floor of an office building in Ghent, measuring 17 m by 90 m, and covering

over 1500 m2 (Figure 3.2). It consists of several computer labs, offices, and

meeting rooms. The core of the building is made of concrete walls, the

movable inner structure is made of layered drywall and the doors are made

of wood. The wireless network consists of 48 fixed access points that are

installed at a height of 2.5 m (blue dots in Figure 3.2). TelosB motes from

Crossbow are used as the body-worn tags [14]. These are equipped with an

embedded PIFA antenna and Chipcon CC2420 radio operating at 2.4 GHz

(IEEE 802.15.4/ZigBee compliant [21]). There are 31 transmission power

levels between -25 dBm and 0 dBm (set to 0 dBm in all experiments). The

mobile tags broadcast 10 packets per second that are received by the fixed

infrastructure nodes. Every second a location update is generated and the

average RSS value of the packets received within this second per access point

are used as input for the tracking algorithm. The test trajectory (indicated

in red in Figure 3.10) has a total length of 140 m, passes through three

meeting rooms, a computer lab, and the hallway (note that there are no

access points installed in the second meeting room).

The ground truth, i.e., the correct locations for comparison, are provided

by fragmenting the test trajectory based on the number of location updates.

During the experiments the user walked as continuously as possible with an

average speed of 1.2 m/s (4.32 km/h).

3.7.2 Results

This section investigates the impact of using multiple mobile tags and body

shadowing compensation on the tracking accuracy. The presented results
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90m

17m

wall door test trajectory start

Figure 3.10: Floor plan of testbed with indication of test trajectory and start
point (red dot).

are obtained from experiments performed on the testbed described in Sec-

tion 3.7.1. The mean (µ), standard deviation (σ), median (50th), and 95th

percentile value of the tracking accuracy are used as evaluation metrics.

This accuracy is defined as the Euclidean distance between the estimated

and actual location (Equation 2.4):

3.7.3 Impact of multiple mobile tags

To evaluate the performance when using multiple tags, the test trajectory

is repeated 5 times by a human wearing three tags. The tags are placed on

the central area of the chest, back, and right wrist (Figure 3.4). The two

positioning algorithms from Section 3.5 are used for testing. The standard

RSS fingerprinting technique is referred to as basic and the location track-

ing algorithm from Section 3.5 is referred to as advanced. The measured

RSS values from the mobile tags are combined with Equation 3.4 (cost func-

tion from Section 3.6.1). Figure 3.11 shows the mean tracking accuracy as

a function of the number of used mobile tags for the basic and advanced

positioning algorithm. These accuracies are averaged over all possible com-

binations of the mobile tags, i.e., the results with one tag are the average

of the three tags separately, the results with two tags are the average of

the three possible combinations of two tags (chest+back, chest+wrist, and

back+wrist), and for the results with three tags there is only one combina-

tion possible (chest+back+wrist). The standard deviation in mean accuracy

of the individual tags compared to each other is 19 cm and for the three

combinations of two tags this is 8 cm.

From Figure 3.11 it is clear that the mean tracking accuracy improves

as more mobile tags are used, for both positioning algorithms. The relative

improvement in mean accuracy is 19.1% (from 3.76 m to 3.04 m) when using

two instead of one mobile tag, 14.8% (from 3.04 m to 2.59 m) when using

three instead of two mobile tags, and 31.1% (from 3.76 m to 2.59 m) when

using three instead of one mobile tag (calculated for the advanced location
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Figure 3.11: Mean accuracy as a function of the number of used mobile tags for
the basic and advanced positioning algorithm.

tracking algorithm). Table 3.1 summarizes all evaluation metrics of the

positioning accuracy and the improvement when using multiple tags, i.e.,

two vs. one, three vs. two, and three vs. one tag, as well as the improvement

between the basic and advanced algorithm when one, two, and three mobile

tags are used.

Basic [m] Advanced [m] Improvement [%]
# tags µ σ 50th 95th µ σ 50th 95th µ σ 50th 95th

1 4.66 3.21 4.17 10.68 3.76 2.28 3.48 8.50 19.3 29.1 16.6 20.5
2 3.66 2.41 3.28 7.89 3.04 1.86 2.77 6.71 17.0 22.8 15.4 15.0
3 2.92 2.03 2.63 6.41 2.59 1.63 2.30 5.66 11.3 19.7 12.5 11.7

2 vs. 1 [%] 21.5 24.9 21.3 26.1 19.1 18.4 20.4 21.1
3 vs. 2 [%] 20.2 15.8 19.8 18.8 14.8 12.4 17.0 15.6
3 vs. 1 [%] 37.3 36.8 36.9 40.0 31.1 28.5 33.9 33.4

Table 3.1: Positioning accuracy as a function of the used mobile tags for the
basic and advanced algorithm, and the improvement when using multiple tags (on
the bottom) as well as the improvement between both algorithms (on the right).

Taking into account multiple mobile tags improves the standard de-

viation, median, and 95th percentile value in a similar way as the mean

accuracy. Furthermore, the advanced algorithm always outperforms the ba-

sic one, as was already shown in Chapter 2. More specifically, the mean

accuracy improves by 19.3%, 17.0%, and 11.3% when using one, two, and

three mobile tags, respectively. The improvements in standard deviation are

slightly higher: 29.1%, 22.8%, and 19.7% when using one, two, and three

mobile tags, respectively. The median and 95th percentile value show sim-
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ilar improvements as the mean positioning accuracy. Note that, although

the results with the basic algorithm are less accurate, the improvement is

higher when using multiple tags (values on the bottom of Table 3.1).

3.7.4 Impact of body shadowing compensation

The orientation estimator and three-dimensional compensation model (S4L)

are verified with the same measurement data from Section 3.7.3. The ad-

vanced location tracking algorithm is used to provide the previous positions

that are needed to estimate the user’s orientation (Section 3.6.2.1). Two

scenarios are considered: no compensation and compensation with the es-

timated orientation. The first scenario is the same as the best result from

Section 3.7.3 (advanced in Figure 3.11). The second scenario compensates

for the influence of a user’s body with the three-dimensional S4L compen-

sation model from Section 3.6.2.2 and uses the orientation estimator to de-

termine the user’s orientation. Table 3.1 summarizes all evaluation metrics

of the positioning accuracy for the advanced algorithm with and without

compensation and the improvement between both when one, two, and three

mobile tags are used.

No compensation [m] Compensation [m] Improvement [%]
# tags µ σ 50th 95th µ σ 50th 95th µ σ 50th 95th

1 3.76 2.28 3.48 8.50 3.29 2.10 2.99 7.56 12.5 7.9 14.1 11.1
2 3.04 1.86 2.77 6.71 2.66 1.80 2.28 6.52 12.5 3.2 17.7 2.8
3 2.59 1.63 2.30 5.66 2.33 1.54 1.91 5.23 10.0 5.5 17.0 7.6

Table 3.2: Positioning accuracy as a function of the used mobile tags with and
without compensation, and the improvement between both.

Including the user’s orientation to compensate for human body shad-

owing always improves the tracking accuracy (on top of the improvement

thanks to using multiple mobile tags). Usage of the orientation estima-

tor and compensation model result in additional improvements of 12.5%

(from 3.76 m to 3.29 m), 12.5% (from 3.04 m to 2.66 m), and 10.0% (from

2.59 m to 2.33 m) in mean accuracy when using one, two, and three mobile

tags, respectively. The total improvement in mean accuracy when using

three mobile tags and compensating for body shadowing, compared to only

one mobile tag and no compensation, is 38.0% (from 3.76 m to 2.33 m).

The median accuracy is now below 2 m when using all three tags and the

body shadowing compensation. The improvements in median accuracy are

slightly better compared to the ones in mean accuracy: 14.1% (from 3.48 m

to 2.99 m), 17.7% (from 2.77 m to 2.28 m), and 17.0% (from 2.30 m to

1.91 m) when using one, two, and three mobile tags, respectively. The
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improvements in standard deviation and 95th percentile value are slightly

lower compared to the improvements in mean and median accuracy.

The median orientation error for this trajectory, averaged over the 5

runs, is 39◦, 35◦, and 28◦, for one, two, and three tags, respectively. These

results are comparable to the simulations of Section 3.6.2.1. To estimate the

effect of this orientation error on the positioning accuracy a third scenario is

considered. In this scenario the exact orientation is passed to the positioning

algorithm as an additional input. This is possible because the followed

trajectory is known in advance and it is assumed a user walks forward,

hence the exact orientation can be determined. Figure 3.12 shows the mean

accuracy for the three scenarios with one, two, and three mobile tags.
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Figure 3.12: Impact of body shadowing compensation on the tracking accuracy.

As was already clear from Table 3.1 the location tracking accuracy al-

ways benefits from the compensation for human body shadowing. Further-

more, using the exact orientation has no added value compared to using the

developed orientation estimator. Normally, this exact orientation is pro-

vided by a compass or gyroscope, but here this is accounted for by giving

the exact orientation as an additional input. Therefore, using a compass or

gyroscope has no significant added value for body shadowing compensation.

In other positioning schemes they can be used as an additional feature to

estimate the position itself, for example in dead reckoning their usage will

be beneficial [22].

3.7.5 Comparison of compensation models

The compensation with exact orientation from Section 3.7.4 is used to eval-

uate the compensation models. In this way it is assured that the orientation
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estimator (and indirectly the tracking algorithm itself) has no impact on the

comparison.
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Figure 3.13: Comparison of different compensation models on the tracking ac-
curacy.

Figure 3.13 shows the comparison between the over/underestimation

and S4L compensation models from Section 3.6.2.2. The three-dimensional

model (S4L) still has the most accurate results for all tag combinations,

but the benefit is limited. Only for three tags it performs clearly better: an

improvement of 10.8% in mean accuracy (and 5.9% in standard deviation).

Although the simulations to determine the directivity pattern have to be

performed only once (per position and mobile tag), they are rather time-

consuming. It will depend on the application if it is worth performing these

to obtain more detailed models.

3.8 Conclusion

In this chapter, novel techniques to reduce the effects of human body shad-

owing on a tracking algorithm’s performance, are presented. Two meth-

ods are found to be effective: the first one combines multiple mobile tags,

placed on different parts of the human body, and the second one compen-

sates explicitly for the body shadowing caused by the user that is being

tracked. Both methods can be independently combined, resulting in the

most accurate performance. The first approach exploits the measured signal

strengths from multiple mobile nodes, placed on different parts of a human

body. Combining their measured signal strengths allows reducing the vari-

ation caused by the user’s body and hence limits its influence. The second
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method uses a compensation model based on three-dimensional electromag-

netic simulations with a human phantom and relies on the orientation of a

user’s tag towards the infrastructure nodes. The user’s direction is provided

by an orientation estimator developed on top of a location tracking algo-

rithm. This orientation estimator does not rely on dedicated hardware like

a compass or gyroscope but uses previously estimated positions as input

and achieves similar performance. Using three instead of one body-worn

tag results in a mean accuracy of 2.59 m (versus an original accuracy of

3.76 m, corresponding to an improvement of 31.1%), in an office building

that has 48 nodes and measures 90 m by 17 m (covering over 1500 m2).

Compensating for the user’s orientation, further improves this result to a

mean accuracy of 2.33 m (a total and additional improvement of 38.0%

and 10.0%). In Chapter 4, an unsupervised learning technique is proposed

to construct, maintain, and optimize model-based radio maps for indoor

positioning systems.
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Chapter 4

Radio map optimization
through unsupervised
learning

4.1 Introduction

Signal strength-based fingerprinting techniques estimate the position of an

unknown user or object by finding the closest match in a radio map (online

phase) [1, 2]. The radio map, which is also known as a fingerprint database,

is a signal space that links RSS values to positions in a building. A major

burden of signal strength-based fingerprinting for indoor positioning is the

generation and maintenance of these radio maps.

Generally, the fingerprint database is constructed in an offline phase

by making use of a radio channel simulator or an elaborate measurement

campaign, also known as drive-testing or wardriving [3]. The first approach

is simulation-based and hence much faster but will generally lead to less

accurate location estimations. The second approach consists of manually

performing RSS measurements at known locations and needs to be redone

each time the wireless network or even the office layout undergoes changes.

This chapter presents a method to automatically construct, maintain,

and optimize radio maps, without the need for inertial sensor units, cali-

bration, or extensive measurements. The method is based on unsupervised

learning, i.e., random walks for which the ground truth locations are un-

known serve as input for the optimization, along with a floor plan, path

loss model, and a location tracking algorithm. The objective is to learn

the differences between reference values and real measurements on a per

room basis to improve the quality of a radio map and hence enhance the
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accuracy of an application that depends on this fingerprint database, such

as a location or tracking system. No measurement campaign, site survey or

calibration, which are labor-intensive and time-consuming, or inertial sensor

measurements, which are often not available and consume additional power,

are needed for this approach. Since a path loss model and location tracking

algorithm are used as starting point for the learning phase and therefore do-

main knowledge is used, this approach is sometimes called semi-supervised

learning. The remainder of this chapter uses the term unsupervised learn-

ing.

The remainder of this chapter is structured as follows, Section 4.2 de-

scribes related work and Section 4.3 presents an overview of the proposed

system followed by a description of the experimental configuration, the

initial radio-maps, and the self-calibration technique. Section 4.4 gives a

motivation for the proposed approach, and discusses the radio map update

method and the integration in the location tracking algorithm of Chapter 2.

The simulation and experimental validation in a building-wide testbed are

described in Sections 4.5 and 4.6. Finally, in Section 4.7, conclusions are

provided.

4.2 Related work

Given the widespread use of WiFi access points or BLE beacons for in-

door positioning purposes, it is paramount to find methods to obtain re-

liable fingerprinting maps with a minimal effort. In the past, other tech-

niques for indoor positioning without the need for pre-deployment efforts,

such as site surveys, measurement campaigns, or device calibrations, were

proposed [4–8]. A related topic is simultaneous localization and mapping

(SLAM), which constructs or updates a map of an unknown environment

while keeping track of the agent’s location within it [9]. This map refers

to the actual physical environment, whereas the proposed technique in this

work focuses on optimizing the radio map or signal space of a building.

The EZ algorithm is a configuration-free indoor positioning scheme that

uses a genetic algorithm and occasionally available GPS locks, e.g., at the

entrance or near a window, to localize mobile devices [4]. Another tech-

nique that bypasses wardriving is UnLoc [5], which uses dead-reckoning,

urban sensing, and WiFi-based partitioning. A dead-reckoning scheme is

used to track a user’s smartphone between so-called internal landmarks of

a building, such as a distinct pattern on a smartphone’s accelerometer or

an unusual magnetic fluctuation in a specific spot.

In [6], WiFi and inertial sensor information are combined with con-

straints imposed by a map of the indoor space of interest and augmented
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particle filtering is used to estimate the position concurrently with other

variables such as the stride length. A robust crowdsourcing-based indoor lo-

calization system to automatically construct a radio map is presented in [10].

The trajectories of the crowdsourced data are reconstructed based on activ-

ity detection, pedestrian dead-reckoning, and a semantic graph of the floor

plan. A geomagnetism-aided indoor radio-map construction method based

on crowdsourcing is presented in [11]. This method utilizes magnetism se-

quence similarity and a clustering algorithm to form the pathway graph of a

floor plan, without needing an exact floor layout, but with the assumption

of straight corridors. A factor graph optimization method is combined with

the inertial-based readings of a smartphone for pedestrian dead-reckoning to

generate a WiFi radio map in [12]. The factor graph optimization method

is used to re-estimate the trajectory by adding constraints originated from

collected WiFi fingerprints and landmark positions. A joint indoor posi-

tioning and radio map construction scheme is presented in [7]. This scheme

transfers a source data set to a limited number of calibration fingerprints

using manifold alignment. A crowdsourcing-based scheme to construct a

probabilistic radio map based on parametric fitting is presented in [8]. This

technique describes location signatures by transforming RSS into signal en-

velopes but relies on an additional positioning mechanism and a very large

amount of RSS samples. A location tracking system that iteratively updates

the channel parameters to generate the fingerprints is presented in [13, 14].

The possible trajectories for a user are based on a Voronoi diagram and

particle filtering.

The approach in this work does not rely on any manual calibrations, pre-

defined trajectories, known initial positions [14], measurement campaigns [3],

GPS fixes [4], landmark positions [12], or inertial sensor units [6], such as

accelerometers, gyroscopes, or magnetic compasses [11], to perform pedes-

trian dead-reckoning [5, 10, 15]. Only unlabeled training data, i.e., random

walks in a building, and a floor plan are needed to construct, maintain,

and optimize radio maps for indoor localization, e.g., to make model-based

databases more accurate or to automatically cope with changes in the en-

vironment, office layout, or network infrastructure.

4.3 Methodology

Our approach consists of an initial radio map based on a theoretical path

loss model (Section 4.3.2)and a self-calibration technique to match a user’s

device with this radio map (Section 4.3.3). The unsupervised learning tech-

nique to optimize the radio map uses a location tracking algorithm to re-

construct the most likely trajectory of unlabeled training data by including
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Figure 4.1: Flow graph of the proposed radio map construction and optimization
technique. NIT is the current training iteration.

floor plan information and the current radio map (Section 4.4.2). Next, the

estimated positions from the reconstructed trajectories are used to update

the reference fingerprints from the radio map (Section 4.4.3). The optimiza-

tion ends when the maximum number of training iterations is reached or

when the learned values remain the same between two training iterations.

Figure 4.1 shows a flow graph of the proposed technique to construct and

optimize a radio map.

The proposed unsupervised learning technique could run at a central lo-

cation if the network infrastructure collects all RSS measurements or locally

at a user’s device if the latter collects all RSS measurements by scanning

the access points in the area. The next sections describe each part in more

detail, including a motivation for the chosen approach based on experiments

conducted in an office building. Furthermore, three path loss models and

three access point configurations are considered in the simulations and ex-

perimental validation for the proposed technique.
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4.3.1 Experimental configuration

The experiments are conducted in a wireless testbed, located on the ninth

floor of an office building in Ghent, Belgium, covering over 1100 m2 (41 m

by 27 m) and is visualized in Figure 4.2. The inner structure of the building

is made of thick concrete walls (light gray) and the meeting rooms, offices,

and kitchen have plaster walls (yellow), wooden doors (brown), and some

glass walls (light blue).

41m

27m

concrete

plaster

metal

wood

glass

AP

Figure 4.2: Floor plan of the office building with indication of walls, doors, and
access points.

The wireless network consists of 35 fixed access points (sensor nodes)

that are installed at a height of 3 m and are indicated with a blue dot.

These sensor nodes are based on the Zolertia RE-mote platform, which is

based on the Texas Instruments CC2538 ARM Cortex-M3 system on chip,

with an on-board 2.4 GHz IEEE 802.15.4 RF interface. This interface runs

at up to 32 MHz with 512 KB of programmable flash and 32 KB of RAM,

bundled with a Texas Instruments CC1200 868/915 MHz RF transceiver to

allow dual band operation [16]. The battery-powered mobile node is based

on the same platform and is mounted on a tripod with a height of 1.5 m to

collect static validation data (Figure 4.3).
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Figure 4.3: Tripod with battery-powered mobile node and ceiling-mounted fixed
access points in corridor.

4.3.2 Radio map

The initial fingerprint database is a simulated radio map, that can be based

on any propagation model. Note that to simulate path losses, the access

point locations need to be known in advance. This is independent of the

proposed unsupervised learning technique because the latter solely needs

an initial radio map as starting point, which can be both measurement or

simulation-based. Three different path loss models are considered as initial

radio map to be optimized by the self-learning technique: free-space [17],

IEEE 802.11 TGn [18], and WHIPP model [19]. Note that the first and

third model have already been introduced in Chapter 2 (Section 2.3 and

Section 2.8.4), but are repeated for completeness.

• Free-space model: the free-space path loss (FSPL) is the attenuation

of radio energy between a sender and receiver antenna in idealized

conditions, i.e., the antenna polarizations are perfectly matched, the

environment is unobstructed free-space and the antennas are in each

others far field. The FSPL is calculated as follows:

FSPL = 20 log10(d) + 20 log10(f)− 27.55 [dB] (4.1)

FSPL [dB] denotes the free-space path loss, d [m] is the distance

between the sender and receiver antenna and f [MHz] is the operating

frequency, if this is set to 2400 MHz, then the model reduces to:
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FSPL = 40.05 + 20 log10(d) [dB] (4.2)

• IEEE 802.11 TGn: the IEEE 802.11 TGn model is a two-slope path

loss model, which is suitable for path-loss predictions in office envi-

ronments. The TGn is calculated as follows:

TGNL =

{
PL0 + 10n1 log10(d) d ≤ dbr
PL0 + 10n2 log10(d)− 32 d > dbr

[dB] (4.3)

TGNL [dB] denotes the path loss predicted by the TGn model, PL0

[dB] is the reference path loss and is equal to 40.05 dB, n1 and n2
are the path loss exponents for the first and second part of the two-

slope model and are equal to 2 and 5.2, and dbr [m] is the breakpoint

distance and is equal to 10 m. For d ≤ dbr, the TGn model and

free-space model result in the same path loss.

• WHIPP model: the WHIPP model is a theoretical model for indoor

environments that includes wall and interaction losses. This model

does not use a ray tracing algorithm, but is based on a heuristic algo-

rithm where the dominant path is searched, i.e., the path along which

the path loss is the lowest (as discussed in Chapter 2, Section 2.3).

Here, the path loss values are modeled as:

WL = PL0 + 10γ log10

(
d

d0

)
︸ ︷︷ ︸

distance loss

+
∑
i

LWi︸ ︷︷ ︸
cumulated wall loss

+
∑
j

LBj︸ ︷︷ ︸
interaction loss

+Xσ [dB]

(4.4)

WL [dB] denotes the path loss predicted by the WHIPP path loss

model, PL0 [dB] is the path loss at a reference distance d0 [m], γ [-] is

the path loss exponent, d [m] is the distance along the path between

transmitter and receiver. These two terms represent the path loss due

to the traveled distance. The cumulated wall loss represents the sum

of all wall losses LWi
when a signal propagates through a wall Wi.

The interaction loss represents the cumulated losses LBj
caused by

all propagation direction changes Bj along the path between sender

and receiver, and Xσ [dB] is a log-normally distributed variable with

zero mean and standard deviation σ, corresponding to the large-scale

shadow fading.
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4.3.3 Self-calibration

Off-the-shelf devices are usually not capable of measuring a path loss or

true received RF power but instead report a received signal strength (RSS)

value, which gives an indication of the received power. To be compatible

with one of the theoretical path loss values, the RSS values are converted

to a path loss value (or vice versa):

pathloss = −RSS +RSSbias [dB] (4.5)

The RSS value is preceded by a minus sign because a higher path loss

corresponds to a lower RSS value and the other way around. The RSSbias
is a fixed offset that is calculated once and depends on the access points

and the user’s device, e.g., transmitting power and antenna configuration,

both of which are often unknown. Therefore, a self-calibration method [20]

is used to obtain a good mapping between the measured RSS values and

the reference path loss values from the radio map, also called fingerprints.

This method relates the histogram of the reference radio map to the RSS

histogram of a user’s device, which requires no user intervention or ground

truth location data, and results in the following bias:

RSSbias = Md
(
F−1ref (y)− F−1meas(y)

)
, y ∈ {0.1, 0.2, . . . , 0.9} (4.6)

RSSbias is the estimated bias between the measurements of the user de-

vice and the fingerprint database, and is equal for all grid points and access

points. The latter is only valid if all access points have the same configura-

tion, e.g., transmit power, otherwise the self-calibration could be done for

each access point individually. Md(.) indicates the median value, Fref is the

cumulative distribution function (CDF) of the model-based reference finger-

prints and Fmeas is the empirical CDF of the RSS measurements from the

user’s device, multiplied by −1 to be compatible with the path loss values

(Equation 4.5). The assumption behind this approach is that the empirical

CDF of raw measurement values, collected during a random walk, resem-

bles the respective empirical CDF of the mean measurement values collected

with the same device at several uniformly distributed known positions. For

the unlabeled training data, the value of RSSbias stabilized after 14 s of

measurement data (the sending rate was fixed at 5 Hz). Note that after

the self-calibration the free-space and TGn path loss model can be seen as

an intercept-fitted one-slope and two-slope path loss model with fixed path

loss exponents. If always the same access points and mobile devices would

be used, this automatic self-calibration would only have to be done once.
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4.4 Unsupervised learning

This section starts with a motivation for the proposed learning technique.

Next, the location tracking algorithm and update step for the reference

fingerprints in the radio map are discussed (purple blocks in the flow graph

of Figure 4.1).

4.4.1 Motivation

An experiment in an indoor environment showed that measurements of

neighboring locations are similar and errors, i.e., measured deviations, from

the initial model-based radio map tend to be correlated per room and access

point. A mobile node, placed at 200 different locations, precisely measured

with a laser meter, broadcasts packets at 5 Hz for 1 min while 35 fixed

access points were listening. The 200 locations, ordered in a grid with a

spacing of 2 m, are indicated in Figure 4.4 and referred to as grid points in

the remainder of this section.

41m

27m

wall door AP static location

Figure 4.4: Floor plan of the office building with indication of walls, doors, access
points, and static validation locations where a mobile node broadcasted packets at
5 Hz.

Next, the median self-calibrated values of the received measurements are

compared to the corresponding reference values in the model-based radio

map and are grouped per room and access point. These differences are
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visualized for one access point in Figure 4.5, for each of the propagation

models from Section 4.3.2.
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(a) Free-space model: initial
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(b) Free-space model: optimized
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(c) TGn model: initial
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(d) TGn model: optimized
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(e) WHIPP model: initial
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(f) WHIPP model: optimized

Figure 4.5: Average difference between model-based radio map and measure-
ments, grouped per room, for one access point (green dot), before (a–c) and after
the unsupervised learning (d–f). Unvisited rooms are indicated in yellow.

The access point is indicated with a green dot and the color in each

room indicates the average difference from the path loss model (after the

conversion from RSS to path loss). Rooms that are not visited are indicated

in yellow. A blue color means that the theoretical model predicts a lower

path loss value than what was actually measured, i.e., the received signal is

weaker than what the theoretical path loss model predicts. This is clearly

visible for the free-space and TGn model in the rooms on the bottom left

(Figures 4.5a and 4.5e). The access point is located at the top middle and

the inner structure of the building is made of thick concrete walls, which

weaken the radio signals significantly but the free-space and TGn model
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do not explicitly take into account the presence of these walls. A red color

means that the theoretical model predicts a higher path loss value than

what was actually measured, i.e., the received signal is stronger than what

the theoretical path loss model estimates. This is the case for the WHIPP

model, the same rooms on the bottom left have a reddish color because

the model predicts a slightly higher path loss value than what was actually

measured (Figure 4.5d).

Note that because of the self-calibration from Section 4.3.3, measure-

ments can be stronger (lower path loss) than what the theoretical models

predict because the calibration shifts all reference values with one fixed

value to minimize the average differences between the measurements and

the theoretical predicted values. Without this calibration phase, all devia-

tions from the free-space path loss model would have a bluish color because

the free-space model is more or less a lower limit for the measured path loss.

The other access points show similar behavior but will have different values

because this depends on the building’s layout and the relative location be-

tween room and access point. Comparison with the optimized radio map is

discussed in Section 4.6 (Figures 4.5c, 4.5b, and 4.5f).

Additional sources of deviation from the theoretical predicted path loss

values are temporal fading and human body shadowing [21]. Temporal fad-

ing is the variability of received power over time at a static location in the

propagation environment. The influence of temporal fading is diminished

by taking the median value over 300 values (1 min broadcast at 5 Hz) but

will have an influence if only one sample is available, e.g., when a user is

tracked while walking through a building. Human body shadowing is caused

by the presence of a user, who can block the line-of-sight (LoS) between a

body-worn tag and a receiving node, and causes additional propagation

losses [22]. The amount of additional path loss depends on both the orien-

tation of a person and the relative placement of the mobile tag on the body

(Chapter 3). Methods to compensate for this loss include techniques that

generate orientation-independent fingerprints by measuring RSS values for

multiple orientations [23] or by modeling the signal attenuation caused by

the human body [24]. Alternatively, the accuracy of a tracking algorithm

can be improved by eliminating the shadowing caused by the human body

as discussed in Chapter 3.

In this work, the influence of human body shadowing is eliminated by

using a tripod instead of body-worn or hand-held device. This ensures

that the performance of the proposed unsupervised learning technique is

evaluated independently of human body shadowing. Note that this is only

possible to collect the static validation data, the dynamic training data will

be collected by a user with a hand-held device (Section 4.6). The deviations
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between reference fingerprints and real measurements are classified in three

categories:

• overall deviation: the overall deviation represents the variation for

the whole building and is used as an indication of radio map quality.

A value of zero would mean that the measured path losses are exactly

equal to the theoretically predicted values at all locations, for all access

points.

RSSi,jdiff = RSSi,jmeas,sc −RSSi,jref,pl (4.7)

µidiff =
1

NGP

NGP∑
j

RSSi,jdiff (4.8)

devoverall =

√√√√ 1

NAP ·NGP

NAP∑
i

NGP∑
j

(
RSSi,jdiff − µidiff

)2
(4.9)

RSSi,jdiff is the difference between the self-calibrated (sc) measurement

RSSi,jmeas,sc and the reference value RSSi,jref,pl for access point i, grid

point j, and path loss model pl. The average difference for access point

i is denoted by µidiff , the total number of grid points by NGP , the

overall deviation by devoverall, and the total number of access points

by NAP .

• room deviation: the room deviation models the difference between

the radio map and the measurements, averaged over a whole room.

DIFF i,kroom =
1

Nk
GP

Nk
GP∑
j

RSSi,jdiff (4.10)

µiroom =
1

Nrooms

Nrooms∑
k

DIFF i,kroom (4.11)

devroom =

√√√√ 1

NAP ·Nrooms

NAP∑
i

Nrooms∑
k

(
DIFF i,kroom − µiroom

)2
(4.12)

DIFF i,kroom is the average difference for access point i and room k,

these values are visualized for one access point in Figure 4.5. Nk
GP are
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the grid points within room k, RSSi,jdiff is defined in Equation (4.7),

µiroom is the average room difference for access point i, Nrooms are the

number of rooms in the building, devroom is the room deviation, and

NAP the number of access points.

• local deviation: the local deviation represents the variation within

a room on top of the room deviation, i.e., the differences between

measured path loss values and the theoretical path loss values from

the radio map are similar within a room but not exactly the same for

all locations in this room.

DIFF i,jlocal = RSSi,jmeas,sc −RSSi,jref,pl −DIFF i,kjroom (4.13)

µilocal =
1

NGP

NGP∑
j

DIFF i,jlocal (4.14)

devlocal =

√√√√ 1

NAP ·NGP

NAP∑
i

NGP∑
j

(
DIFF i,jlocal − µilocal

)2
(4.15)

DIFF i,jlocal represents the local difference for access point i and grid

point j, DIFF
i,kj
room is the room difference for access point i and room

kj , i.e., the room of grid point j (Equation 4.10), µilocal is the average

local difference for access point i, NGP is the number of grid points,

devlocal is the local deviation, and NAP is the number of access points.

Table 4.1 summarizes the statistics for the differences between the mea-

surements and theoretical path loss models after self-calibration. Note that

the measurements from all access points during the 1 minute broadcast on

200 different static locations are used.

Path loss model
RSSdiff [dB] Deviation [dB]

min max avg devoverall devroom devlocal

Free-space −30.3 19.7 −0.4 10.9 9.7 3.5
IEEE 802.11 TGn −37.5 19.1 −0.7 9.6 8.8 3.5
WHIPP −22.0 24.0 0.8 7.6 5.7 3.7

Table 4.1: Experimentally measured differences and deviations compared to the
theoretical path loss models after self-calibration.



102 Chapter 4

The differences compared to the theoretical path loss values vary from

−30.3 dB to +19.7 dB for the free-space model, from −37.5 dB to +19.1 dB

for the IEEE 802.11 TGn model and from −22.0 dB to +24.0 dB for the

WHIPP path loss model. The average differences are around 0 due to the

self-calibration phase (−0.4 dB, −0.7 dB and 0.8 dB, respectively). The

minimum and maximum difference could solely be caused by outliers, a

better indication of the radio map quality is the overall deviation devoverall
(Equation 4.9). This value is 10.9 dB for the free-space path loss model,

9.6 dB for the IEEE 802.11 TGn model, and 7.6 dB for the WHIPP path

loss model, which is to be expected given the increased complexity. The

room deviations devroom (Equation 4.12) are 9.7 dB, 8.8 dB, and 5.7 dB,

for the three path loss models, respectively. The local deviations devlocal
(Equation 4.15) are similar for all three path loss models (3.5 dB, 3.5 dB and

3.7 dB, respectively). The devlocal is significantly lower than devroom and

devoverall. This indicates that the RSSdiff from Equation 4.7 are correlated

per room and hence knowledge of DIFF i,kroom can improve the radio map

quality (visualized in Figure 4.5).

Under the assumption that a user’s trajectory can be roughly recon-

structed, i.e., with room-level accuracy, theDIFF i,kroom values (Equation 4.10)

can be learned, resulting in a radio map or fingerprint database that matches

the actual measurements more closely. Consequently, this optimized finger-

print database can increase the positioning accuracy of the trajectories or

static locations of other users or objects. Note that a lower devoverall indi-

cates that the theoretically predicted values are a closer match to the real

measurements, which makes it easier to learn the DIFF i,kroom values because

mapping unlabeled training data to the correct room will be more likely.

4.4.2 Location tracking algorithm

In this work, the trajectories of unlabeled training data are first recon-

structed with location tracking algorithm of Chapter 2 and subsequently

passed to the learning algorithm to optimize the radio map. By processing

all available data at once, previously estimated locations can be corrected by

future measurements (similar to backward belief propagation). This loca-

tion tracking algorithm makes it possible to optimize the radio map because

the estimated positions, along the reconstructed trajectories, are generally

assigned to the correct room. Consequently, the discrepancies between ref-

erence fingerprints and real measurements can be learned, which improves

the radio map quality and positioning accuracy. This is less likely with

stateless positioning techniques, where consecutive estimated positions can

fluctuate between different rooms because of measurement noise and out-

liers. Alternatively, a Kalman filter [25] or Particle filter [26] could be used
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to reconstruct the trajectories but the location tracking algorithm resulted

in a better accuracy as discussed in Section 2.6.1 (Chapter 2).

4.4.3 Radio map update step

After all training data is processed by the location tracking algorithm, the

measurements are linked to a grid point and a room based on the estimated

positions. The differences between self-calibrated RSS measurements and

the corresponding reference fingerprints are grouped and averaged per esti-

mated room and access point. Next, the reference fingerprints in the radio

map are updated and the training iteration number Nit is increased by one

(feedback loop in the flow graph of Figure 4.1). Note that reference finger-

prints of unvisited rooms (or rooms where no training data is mapped) are

unaffected by this update step. Furthermore, if training data is mapped to

the wrong room, the radio map gets a partial erroneous update.

RSSi,jref,pl = RSSi,jref,pl +DIFF i,kjroom (4.16)

RSSi,jref,pl is the reference value of access point i, grid point j, and path

loss model pl, that is updated in this training iteration. DIFF
i,kj
room repre-

sents the average difference between a set of self-calibrated measurements

from access point i and room kj , i.e., the room of grid point j. This is

similar to Equation (4.10) but the input locations are now based on the

training data and location tracking algorithm instead of the 200 static val-

idation points. It is recommended to update the RSSi,jref,pl values after all

training data has been processed at once. This gives the location tracking

algorithm a chance to correct previously estimated positions by taking into

account future measurements and to reduce the effect of outliers.

The update process is applied iteratively on the same unlabeled data

until the learned values stagnate or when the maximum number of training

iterations is reached. The reason for this is that the estimated trajectories

from the unlabeled data tend to become more accurate in the next training

iteration because it uses the current optimized radio map, which in turn

results in a better update of the reference fingerprints. Also, if new unla-

beled data becomes available, the optimization can start again to update

the current radio map.

4.5 Simulations

A simulation with three different access point configurations is carried out

to test the proposed unsupervised learning technique.
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4.5.1 Settings

The simulation environment is the same as in Section 4.3.1, i.e., an office

building in Ghent, Belgium, covering over 1100 m2. The access point con-

figurations are subsets of the access points from Figure 4.4: a dense scenario

with 35 access points (Figure 4.6a), a normal scenario with 15 access points

(Figure 4.6b), and a sparse scenario with 9 access points (Figure 4.6c). The

WHIPP path loss model serves as basis to simulate real measurements be-

cause this model resembles a real-world scenario more closely [19], as shown

in Section 4.4.1.

The first simulation takes into account the room differences DIFF i,kroom
(Equation 4.10) and the local differences DIFF i,jlocal (Equation 4.13). Both

are modeled by Gaussian noise with zero mean and are added to the ref-

erence fingerprints, i.e., the theoretical path loss values from the WHIPP

model. The standard deviation is varied from 0 dB to 16 dB in steps of

2 dB, which gives a total of 81 combinations to be simulated. The test

environment consists of 40 rooms and 35 access points, resulting in 1400

DIFF i,kroom values for the dense scenario. The DIFF i,jlocal values are gener-

ated for each grid and access point. A grid size of 50 cm results in 4386 grid

points and 153510 DIFF i,jlocal values for the dense scenario.

The second simulation considers two potential sources of additional noise

on the measurements: temporal fading and human body shadowing. Both

will have a major influence on the performance of the proposed unsuper-

vised learning technique because it affects the accuracy of the reconstructed

training data with the location tracking algorithm, as well as the learned

values in the radio map update step. Both can be added together and are

simulated by a single Gaussian noise with zero mean and the standard devi-

ation is varied from 0 dB to 20 dB in steps of 2 dB. Note that the maximum

observed influence of the human body varied from 1.8 dB to 25.2 dB with

an average value of 14.8 dB in the experiment of Chapter 3 (Section 3.3).

These noise values are generated each time the users passes at a location,

whereas the DIFF i,jlocal and DIFF i,kroom are fixed for each location and room

in the building.

The objective is to learn the DIFF i,kroom values based on unlabeled train-

ing data to improve the quality of a radio map and hence enhance the ac-

curacy of an application that relies on this fingerprint database, such as a

location or tracking system. All other values act as additional noise on the

measurements that make it harder to learn the DIFF i,kroom values (which

will also be the case for a real-world scenario). Also, not all DIFF i,kroom
values are equally important, e.g., a correctly learned value for a large con-

ference room will have a greater impact on the accuracy than a wrongly

learned value of a small storage room. Since more random training data
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will pass through a larger room, it is also more likely that these values will

be learned correctly.

One could argue that it is better to learn the difference for each grid point

and access point individually instead of a global value per room and access

point. However, simulations showed that this is unfeasible because a few

learned values in a room can attract all future measurements of training data

in that room, which will worsen the radio map and positioning accuracy.

For example, suppose training data passes at a few grid points in a room and

the reference fingerprints of these grid points are updated while all other

fingerprints in that room remain unchanged. Next, if new training data

becomes available in that room, these will be mapped to the few updated

grid points if these are closer in signal space than the actual locations, i.e.,

when the difference with respect to their reference fingerprints is smaller

than for the actual locations. This causes the optimization technique to

assign all updates to only a few grid points per room.

The training data consists of a random walk simulating a user that walks

freely in the building during 1 h with a random and variable walking speed

between 4 km/h and 8 km/h. Every second, measurements are simulated

by adding the generated noise values for that location and access point to

the reference fingerprints. Depending on the sparse, normal, or dense sce-

nario this number of reference fingerprints will vary between 9, 15, and 35,

respectively. The quality of the radio map can be evaluated by comparing

the learned values to the initially generated DIFF i,kroom values. Another

indication of radio map quality is the accuracy with a static location al-

gorithm, e.g., by taking the closest match in the optimized radio map as

location estimation. This closest match is based on weighted least squares,

i.e., strong signals have a greater weight than the weaker signals.

locest = argmin
j∈GP

√√√√NAP∑
i

RSSi,jmeas,sc ·
(
RSSi,jmeas,sc −RSSi,jref,pl

)2
(4.17)

locest is the estimated location, i.e., the grid point with the closest match

in signal space, GP is the set of all grid points in the building, NAP is the

set of all access points i that have measurements for this location update,

RSSi,jmeas,sc is the self-calibrated measurement and RSSi,jref,pl is the refer-

ence value for access point i, grid point j, and path loss model pl. Note that

Equation 4.17 assumes positive RSS values, if the range of RSS measure-

ments is negative, e.g., -90dB up to -40dB, the weighted effect is obtained

by dividing by the absolute value of these negative RSS measurements. The

maximum number of training iterations during the unsupervised learning is

set to 10, i.e., the same unlabeled training data is used 10 times to learn the
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Figure 4.6: Location of the access points for the simulated scenarios with 35, 15,
and 9 fixed access points: dense (a), normal (b), and sparse (c) configuration.
The relative improvement in median accuracy after unsupervised learning with 1 h
of unlabeled training data, evaluated on 1000 uniformly spread locations for the
three scenario’s (d–f). The median accuracy before (g–i) and after learning (j–l)
for the three scenario’s. The room deviation (x-axis) and local deviation (y-axis)
vary from 0 dB to 16 dB in steps of 2 dB.
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DIFF i,kroom values and update the radio map. The default value is set to 10

because the quality of the radio map and hence location accuracy always

stopped improving before the seventh training iteration in the simulations

(Section 4.5.2) and experimental validation (Section 4.6). Furthermore, the

optimization is stopped early to speed up the process when the learned val-

ues remain the same between two training iterations (additional training

block in the flow graph of Figure 4.1). Afterwards, the positioning accuracy

is calculated based on 1000 uniformly spread locations with the original and

optimized radio map to quantify the improvement.

4.5.2 Results

4.5.2.1 Influence of room and local deviation

The relative improvement in median accuracy as well as the median accu-

racy before and after the last training iteration are visualized per access

point configuration in Figure 4.6. The x -axis and y-axis represent the room

and local deviations, and the color indicates the relative improvement and

median accuracy for the 81 scenarios. Each scenario, i.e., a colored square in

Figure 4.6, is trained with 1 h of unlabeled training data, for a maximum of

10 training iterations, and is validated on 1000 uniformly spread locations.

The relative improvements are similar for all three access point scenarios

and the absolute accuracies are better for the dense access point scenario,

as is expected.

The highest improvement is 89.7%, the median accuracy goes from 3.3 m

to 0.3 m in the sparse access point scenario with a room and local deviation

of 8 dB and 0 dB. In this scenario, the absolute values of the DIFF i,kroom to

be learned are on average 6.1 dB. The average absolute difference between

the true and learned values, after each training iteration, are: 1.5 dB, 1 dB,

0.7 dB, 0.6 dB, and stay at 0.5 dB from the fifth training iteration onwards.

A local deviation of 0 dB means that all DIFF i,jlocal values are zero, which

makes it easier to learn the correct DIFF i,kroom values but is not a realistic

scenario as shown in Section 4.4.1. The proposed unsupervised learning

technique always improves the location accuracy, except for low values of

the room deviation in combination with high values of the local deviation.

This is to be expected as the DIFF i,jlocal values are high, meaning there

is very little correlation between the locations within a room, which act

as an additional source of noise, but the DIFF i,kroom values are near zero,

meaning the path loss model is already a good fit, which is also not a realistic

scenario. In other words, the unsupervised learning technique works if the

errors are correlated per room, which is the case according to the experiment

of Section 4.4.1 (Figure 4.5). The nearest values to the experimentally



108 Chapter 4

derived room and local deviation from Section 4.4.1 for the WHIPP path

loss model would lead to an improvement of 40.7%, 40.1%, and 40.3% in

median accuracy, for the three access point scenario’s, respectively. Note

that these simulations do not take into account the influence of additional

noise, e.g., temporal fading and human body shadowing.

4.5.2.2 Influence of additional noise

A more realistic scenario is to include the additional noise caused by, e.g.,

temporal fading or human body shadowing. Figure 4.7a shows the relative

improvement in mean, 50th, standard deviation, and 75th percentile of the

accuracy for increasing noise levels. Figure 4.7b shows the absolute 50th

and 75th percentile values of the accuracy before and after training. The

unsupervised learning phase is the same as in the previous section: each

noise level is trained with 1 h of unlabeled training data, for a maximum of

10 training iterations, and is validated on 1000 uniformly spread locations.

The access point configuration is set to normal (15 access points) and the

room and local deviation are set to 5.7 dB and 3.7 dB, which are the ex-

perimentally derived and hence realistic values from Section 4.4.1 for the

WHIPP path loss model. The improvement in mean, median, standard de-

viation, and 75th percentile value of the accuracy show a very similar trend.

The median location accuracy improvement starts at 43.8% (from 1.85 m

to 1.04 m) without additional noise (0 dB) and decreases roughly linearly.

The accuracy of the reconstructed training data needs to be at least accu-

rate on room level, otherwise the radio map’s reference values are affected

by measurements from a neighboring room, which will worsen the accuracy

in the next iteration. The proposed unsupervised learning technique can

improve the radio map and positioning accuracy up to an additional noise

of 16 dB, from then onwards the improvements are negative because the

location tracking algorithm is no longer able to assign the measurements to

the correct room, which results in a deterioration of the radio map.

4.6 Experimental validation

The test data for the experimental validation are the 200 static locations,

uniformly spread over a whole floor in an office building (Section 4.4.1,

Figure 4.4). The goal is to improve the quality of a model-based radio map

and the location accuracy. The training data consists of a random walk of

15 min (or 900 location estimates) along the corridor, kitchen, offices, and

meeting rooms, and is indicated with blue lines in Figure 4.8.

Note that this is a rough indication of the trajectory and that during
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Figure 4.8: Floor plan with rough indication of the training data trajectory.
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the random walk the mobile node is hand-held instead of mounted on a

tripod, which causes additional deviation, as was previously mentioned.

The exact positions are unknown and not needed for the learning phase,

hence unsupervised, but are indicated to give an idea of the covered area.

Obviously, only the rooms where the random walks pass by, can be learned.

Therefore, most areas were covered except for the server room, elevators,

bathrooms, stairwells, and storage rooms in the center. Every second a

location update is generated, the average RSS values of the packets received

within this second are used as input for the location tracking algorithm.

Next, the estimated positions serve as input to the radio map update step.

Figure 4.5 shows the DIFF i,kroom values before and after the radio map

optimization for one access point in the dense scenario. The colors after

optimization (right hand side figures) are more grayish compared to the ini-

tial situation, which indicates that DIFF i,kroom values are closer to zero and

thus, that the proposed technique learns the correct values and improves

the radio map. For this scenario, the average absolute difference between

the experimentally derived and learned DIFF i,kroom values decreases from

7.4 dB to 4.0 dB for the free-space model, from 5.7 dB to 3.7 dB for the

TGN model, and from 4.7 dB to 2.9 dB for the WHIPP model. Note that

in rooms where no training data passes, no values can be learned, i.e., their

color remains the same. The accuracies and relative improvement, before

and after training, are summarized for all access point configurations and

path loss models in Table 4.2. Figure 4.9 shows the cumulative distribution

function (CDF) of the positioning accuracy before and after training, for the

three access point configurations and the WHIPP path loss model. These

accuracies are based on the 200 static locations estimated with the initial

and optimized radio map, and the weighted least squares algorithm (Equa-

tion 4.17). The location tracking algorithm is only used to reconstruct the

unlabeled training data.

The initial accuracies before training are similar for the three path loss

models, the largest difference in mean accuracy is 0.69 m (5.04 m and 4.35 m

between the free-space and TGn model for the sparse access point scenario).

The standard deviation of the accuracy is always best with the WHIPP

model because the free-space and TGn model show larger positioning out-

liers on locations were there is a lot of additional path loss. The latter is

caused by the concrete walls, which are better modeled in the radio map

of the WHIPP model. The scenario with the dense access point configura-

tion and WHIPP path loss model has the highest improvement; the median

accuracy improves from 2.90 m to 2.07 m (28.6%). For this scenario, the me-

dian accuracy starts at 2.90 m and is consecutively: 2.40 m, 2.33 m, 2.22 m,

2.15 m, and finally 2.07 m after the fifth training iteration. The learned
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#APs PL Model
Accuracy [m]

µ σ 50th 75th

9
Free-space 5.04 → 5.11 (−1.3%) 3.93 → 3.98 (−1.3%) 4.12 → 3.93 (4.8%) 6.50 → 6.35 (2.2%)
TGn 4.35 → 4.23 (2.9%) 3.73 → 3.72 (0.3%) 3.14 → 3.07 (2.1%) 5.72 → 5.13 (10.4%)
WHIPP 4.66 → 3.77 (19.0%) 3.24 → 2.49 (23.3%) 3.94 → 3.03 (23.3%) 5.97 → 4.83 (19.1%)

15
Free-space 4.28 → 3.97 (7.4%) 3.43 → 2.88 (16.1%) 3.49 → 3.40 (2.4%) 5.03 → 4.99 (0.8%)
TGn 4.22 → 3.96 (6.0%) 3.48 → 3.18 (8.7%) 3.42 → 3.31 (3.2%) 5.42 → 4.71 (13.0%)
WHIPP 4.33 → 3.50 (19.1%) 2.98 → 2.38 (20.0%) 3.50 → 3.02 (13.7%) 6.03 → 4.44 (26.4%)

35
Free-space 3.13 → 3.22 (−2.9%) 3.09 → 2.62 (15.5%) 2.40 → 2.30 (4.1%) 3.61 → 3.98 (−10.4%)
TGn 3.65 → 2.92 (20.1%) 3.18 → 2.10 (33.9%) 2.75 → 2.43 (11.7%) 4.51 → 3.65 (19.1%)
WHIPP 3.23 → 2.66 (17.6%) 2.14 → 1.74 (18.7%) 2.90 → 2.07 (28.6%) 4.31 → 3.52 (18.4%)

Table 4.2: Accuracy of experimental validation test set per access point config-
uration (sparse, normal, and dense) and path loss model. The first and second
value are the accuracy before and after training and the third value is the relative
improvement.
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Figure 4.9: Cumulative distribution function of the positioning accuracy before
(dashed line) and after training (solid line), for the three access point configura-
tions and the WHIPP path loss model.
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DIFF i,kroom values and hence the median location accuracy, remained the

same in the sixth training iteration, which ended the optimization process.

The largest relative improvement always occurs in the first training itera-

tion and the learned values (and hence the location accuracy) stagnate after

a maximum of six iterations, for all scenarios. There is only one substantial

negative improvement, the 75th percentile accuracy for the free-space model

in the dense access point configuration, decreases from 3.61 m to 3.98 m or

a degradation of 10.4%. This occurs when the training data’s estimated

trajectory deviates too much from the ground truth locations, which causes

the fingerprint database to learn RSS values measured in another room.

The highest accuracy, for all metrics and access point configurations, is

achieved by the optimized WHIPP model, despite that in some scenarios the

initial accuracy with the free-space or TGn model was better before training.

The initial accuracy for those models are adequate due to the large number

of line-of-sight connections with the dense access point configuration, re-

sulting in stronger signals, which have a higher weight in the static location

algorithm (Section 4.5). Furthermore, the improvement in their learning

phase is limited because larger outliers occur with the free-space model and

TGn model, e.g., if training measurements get assigned to a wrong room

then this room attracts similar measurements in the next training iteration.

Averaged over all access point configurations, the WHIPP model shows an

improvement in mean, standard deviation, median, and 75th percentile ac-

curacy of 18.6%, 20.7%, 21.9%, and 21.3%, respectively. This is similar

to the simulation with the experimentally derived room and local devia-

tion, and an additional noise level of 8 dB (Figure 4.7). The IEEE 802.11

TGn model is only slightly worse than the WHIPP model, which makes it

a valuable alternative if the access point locations are known but further

information about the building’s layout is limited. The free-space model

can result in adequate results as long as the access point configuration is

not sparse but since the implementation effort is the same as with the TGn

model, the latter is preferred.

4.7 Conclusions

This chapter presented an unsupervised learning technique to construct and

optimize model-based radio maps or fingerprint databases for indoor posi-

tioning systems, e.g., to make the radio map more accurate or to automat-

ically cope with changes in an office layout. The proposed technique does

not rely on time-consuming measurement campaigns, device calibrations, or

additional inertial measurement units, that are power consuming. Instead,

it uses an initial radio map based on a theoretical path loss model, unlabeled
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training data, a self-calibration method, and a location tracking algorithm.

The premise of this approach is that the differences between real measure-

ments and reference values, derived from a model-based radio map, tend to

be correlated per room and access point. Three theoretical path loss models

are considered: the free-space model, the IEEE 802.11 TGn model, and a

model that takes into account wall and interactions losses (WHIPP). It was

shown by measurements and simulations that the discrepancies between

reference fingerprints and real measurements could be learned in various

scenarios, based on the random walks by a typical person. This results in

reference fingerprints that match the real measurements more closely and

hence will lead to better radio maps and location accuracies. An experimen-

tal validation on a testbed in a large office building, measuring 41 m by 27 m

(covering over 1100 m2) and that has 35 nodes, confirmed the simulations.

The highest relative improvement is 28.6%, the median accuracy with the

WHIPP path loss model improved from 2.90 m to 2.07 m after unsuper-

vised learning with only 15 min of unlabeled training data. Furthermore, it

is shown that the IEEE 802.11 TGn model is a valuable alternative if the

information about the building’s layout is limited. The next part of this

dissertation is about map matching with support for lane detection based

on GPS and accelerometer data (Chapter 5) and outdoor location tracking

based on cellular network data (Chapter 6).
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Outdoor localization





Chapter 5

Map matching and lane
detection

5.1 Introduction

Map matching is the problem of how to link recorded geographic coordi-

nates to a road network of the real word, which is usually represented by a

geographic information system (GIS). A typical example of map matching

is to determine the trajectory of a moving object based on GPS data due

to the nearly ubiquitous availability of the GPS signal [1]. The moving ob-

ject can be a vehicle, cyclist, or runner, and the input GPS signals can be

augmented with the data of an inertial measurement unit (IMU) to improve

the accuracy or to lower the GPS update frequency and hence reduce the

power consumption [2]. Other applications of map matching are, e.g., satel-

lite navigation, freight tracking, activity recognition, road usage patterns,

intelligent transportation systems (ITS), or urban traffic modeling. An ex-

ample of the latter is to build statistical models of traffic delays that can be

used to give suggestions to avoid traffic jams by finding the time-optimal

driving route.

Map matching algorithms can be divided in real-time (online) and non-

time critical (offline) algorithms. Real-time systems map the location to a

road network during the recording process, whereas offline techniques are

used to map geographic coordinates to a road network after all data has

been recorded, which generally results in a better accuracy at the cost of a

delay.

The most basic approach is to map each geographic input coordinate

to the nearest point on the road network, but due to measurement noise

this can easily result to a wrong reconstruction [3]. This basic approach
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is also known as point-to-point map matching. The noise in GPS data is

usually caused by the urban canyon effect, tunnels, or terrestrial features

that affect the GPS signal, e.g., hills, forests, or valleys. Figure 5.1 shows an

example of the typical problem with a basic nearest neighbor algorithm that

maps the GPS point to the closest grid point on a road network, resulting

in an unrealistic and physically impossible trajectory. Note that due to

the urban canyon effect, the error between the raw GPS points and ground

truth trajectory is up to 53 m in this real-world example.

0 50 100 150 m

GPS data
Snapped to road
Ground truth
Road network

Figure 5.1: Map matching problem: nearest grid point

Another problem is shown in Figure 5.2, the reconstruction is physically

possible but the ground truth trajectory is more likely from a typical driver’s

point of view. However, the reconstructed trajectory can be the most likely

in a map matching algorithm, e.g., if the objective is to minimize the Eu-

clidean distance between the geographic input coordinates and the mapped

trajectory. Merely minimizing a distance-based metric can result in unnec-

essary loops, U-turns, and overall weird driving behavior.

The map matched geographic coordinates can be enriched with driving

lane information if additional data is available, e.g., monocular or stereo vi-

sion [4, 5], LIDAR (light detection and ranging) [6], or data from an IMU [7].

This is useful for accurate road surface monitoring or to obtain lane-specific

statistical models about driving behavior. Note that the IMU data also
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0 50 100 150 m

GPS data
Reconstruction
Ground truth
Road network

Figure 5.2: Map matching problem: minimizing a distance-based metric

allows to estimate human drivers’ behavior, e.g., speeding, swerving, hard

braking, or maneuvers, which is useful for, e.g., insurance companies, mo-

bility operators, or to prevent potential car accidents [8, 9].

The remainder of this chapter is structured as follows, Section 5.2 de-

scribes related work of map matching and lane detection techniques. Sec-

tion 5.3 discusses the grid, road segments, and proposed map matching al-

gorithm and Section 5.4 introduces the proposed lane detection technique.

Section 5.5 describes the evaluation trajectories and performance metrics,

and discusses the results of the simulations and experimental validation.

Finally, in Section 5.6, conclusions are provided.

5.2 Related work

5.2.1 Map matching

Curve-to-curve map matching is a geographic approach that uses a sequence

of input coordinates to form a smoothed curve that is matched to a road

segment with a similar geometry [10, 11]. Disadvantages are their sensitivity

to measurement noise and the sampling rate, e.g., if only once every minute

a GPS sample is available to limit the power consumption in devices with
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limited battery capacity, then the curve based on the input coordinates can

highly deviate from the real trajectory unless a user is driving on a straight

road segment.

A possible solution are map matching algorithms based on the Hidden

Markov Model (HMM) [1, 12, 13]. These systems can model the road in-

frastructure and take into account measurement noise and many different

path hypotheses simultaneously. A prerequisite for HMMs is to model the

observation and transition probabilities, i.e., to select candidate roads for

the GPS observations. An HMM-based map matching solution that uses

a route choice model estimated from real-world drive data to evaluate the

paths generated by the HMM is presented in [13]. The route choice model

is based on the concept of drivers’ route and is used to avoid unreasonable

paths generated by HMMs for highly noisy geographic data. The path-

related parameters for this model are estimated based on a 1000 drives.

A conditional random field (CRF) is a type of undirected graphical

model that is used to encode known relationships between observations,

e.g., to segment and label sequential data [14]. In [15], a CRF is used to

map match GPS trajectories at a low sample rate based on floating car data

(FCD) with GPS trajectories of 70 taxis from one day. The dataset is split

in training and test data (ratio 7:3) to select features, fine-tune hyper pa-

rameters, and evaluate the approach. A disadvantage of these data-driven

techniques is that they depend on the quantity and quality of available his-

torical data to improve the map mapping accuracy and hence will fail if

parts of the input trajectory are not present in the dataset. A multi-track

technique that simultaneously matches a collection of trajectories to a map

is presented in [16]. This multi-track map matching is based on the ob-

servation that human drivers show a high degree of temporal and spatial

regularity [17]. They exploit the regular structure in a large set of GPS

traces by enforcing a set of partially overlapping trajectories to coincide

their mapped paths in the intersection regions.

The basic assumption underlying HMM-based map matching algorithms

is that the true mobility is Markovian [18]. However, in [19], it is argued that

mobility is non-Markovian based on the Chapman-Kolmogorov equation [20]

and a dataset with thousands of real taxicab rides spanning several weeks.

The results show that there is a strong connection between the shortest path

and the real trajectory traversed by the moving objects. Their proposed

technique relies exclusively on shortest path computations and could achieve

an improvement of 20% in accuracy over HMM-based approaches but this is

largely due to the nature of the dataset, i.e., the moving objects (taxicabs)

have intent to reach a specific destination in a timely manner, which is

inherently suited for shortest path algorithms.
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Furthermore, most map matching algorithms are evaluated by calculat-

ing the overlap between the ground truth path and the estimated path. This

means that even if both paths completely overlap, the exact time at which

a vehicle is at each road segment can be unknown or differ due to traffic

delays, different road speed limits, unpredictabilities, or randomness in the

driver behavior. This is disadvantageous for applications that need the exact

location on the road network at each time instance, e.g., autonomous driv-

ing, precise registration of telematics data [21], pothole identification [22],

or lane detection [7].

5.2.2 Lane detection

The problem of lane detection is usually tackled with vision-based tech-

niques. These vision-based lane detection algorithms are categorized into

feature-based and model-based. A feature-based algorithm uses low-level

features, e.g., the solid or dashed painted lines on public roads, and image

segmentation [23], deep learning [23, 24], or sensor fusion [25] to detect the

lanes. A model-based approach uses a few parameters to represent the lanes,

e.g., straight lines or parabolic curves, these parameters can be estimated

by a Hough transformation [26, 27] or a likelihood function [28, 29]. A lane-

detection method that extracts the lane marks based on color information

in traffic scenes with moving vehicles is presented in [30]. Typical difficulties

of vision-based lane detection algorithms are the large diversity in color and

width of lane markings, image clarity, e.g., due to nearby vehicles, head-

light glare, low sun angles, strong reflections, or faded lane markings, and

the illumination problem at night or in bad weather, e.g., due to haze, fog,

or rain [31, 32].

A possible solution is to use inertial sensor data to facilitate lane detec-

tion in all conditions. A probabilistic lane estimation algorithm that uses an

unsupervised crowdsourcing approach to learn the position and lane-span

distribution of the different lane-level anchors based on accelerometer, gyro-

scope, and magnetometer, is presented in [33]. The lane anchors are based

on empirical assumptions, e.g., vehicle stops occur on the right most lane,

U-turns occur on the left lane, and potholes typically span only one lane. A

GNSS/INS integration system, i.e., global navigation satellite system / in-

ertial navigation system, that utilizes ray tracing and a 3D building map to

rectify ranging errors caused by multipath or non line-of-sight (NLoS) sce-

narios is presented in [34]. Experiments in an urban canyon demonstrated

half-lane width errors 60% of the time. A lane-level positioning system

based on crowdsourced location estimates of roadway landmarks and ve-

hicular sensors is presented in [35]. The position estimates of other cars

at these landmarks are combined with odometry and bearing information
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from the vehicular sensors in a sequential Monte Carlo (SMC) method.

In this chapter, a method is proposed that combines the Markovian be-

havior and the shortest path aspect while taking into account the road speed

limits and driving behavior. The proposed technique is a fast, memory-

efficient, and worldwide map matching algorithm based on geographic coor-

dinates and open map data, with support for lane detection that self-adapts

to different driving behaviors. Usually map matching is aimed solely at car

rides [15] but this algorithm is compatible with walks, bikes, and car rides,

and is evaluated on real GPS data for a varying levels of measurement

noise and temporal sparsity, based on precision, recall, and location accu-

racy on a per point basis instead of merely the overlap between the ground

truth and estimated path. The total validation dataset is 9.4 hours, cov-

ers 301 km, consists of 33k GPS points, and 402k accelerometer samples.

Furthermore, neither the map matching technique nor the lane detection

algorithm depend on large training sets [15, 16] or crowdsourced measure-

ment campaigns [33, 35]. The proposed techniques are offline algorithms,

i.e., the geographic coordinates are mapped to a road network and the driv-

ing lanes are assigned after all data has been recorded. In Chapter 6 the

map matching algorithm will be extended with an online version to process

cellular network data in real-time.

5.3 Map matching

The goal of the proposed map matching algorithm is to output a continuous

trajectory, i.e., connected road segments, based on timestamped geographic

data as input.

5.3.1 Grid and road segments

The road segments are based on publicly available OpenStreetMap data,

consisting of straight line segments enriched with metadata about the type

of road, e.g., sidewalk, bike path, or highway, information about one-way

traffic, relative layering, street name, number of driving lanes, and maxi-

mum allowed speed. Note that a default value is used when the maximum

speed for a line segment is unknown or invalid, e.g., 120 km/h for highways,

90 km/h for primary roads, 70 km/h for secondary roads, and 50 km/h for

all other road types. To take into account cars that are speeding and to

avoid that location estimations are lagging behind, the allowed speed limit

(for the reconstructed trajectory) can be increased by, e.g., 20% for each

road segment. The straight line segments are further divided into equal

pieces, i.e., road segments, based on the grid size. Note that line segments
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smaller than the grid size also occur, e.g., at roundabouts, and are automat-

ically included without further separation. The begin and end points of all

road segments constitute the grid. For Belgium, this results in 13.4 million

road segments and 12.2 million grid points for a grid size of 10 m. Figure 5.3

shows a sample of these road segments and grid points.

0 50 100 150 m

Figure 5.3: Grid and road segments based on OpenStreetMap data and a grid
size of 10 m.

Note that, the outputted map matched locations are not limited to the

grid points but can lie anywhere on the road segments because of the in-

terpolation phase (discussed in Section 5.3.2). The grid and road segments

are organized in square area blocks of 10 km2 and calculated once based

on the Winkel tripel projection [36], which is also the standard projection

for world maps made by the National Geographic Society [37, 38]. The

OpenStreetMap data for the whole world is 40.6 GB (June, 2019) [39]. The

map matching starts with a scan of the geographic input data to load only

the necessary area blocks and reduce the required memory. Furthermore,

the proposed map matching algorithm is online available through a web

service [40].
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Figure 5.4: Flow graph of the map matching algorithm. The dashed lines are
only executed at the end if all timestamped geographic data is processed. SGC:
selected geographic coordinates, PIM: paths in memory, RS: road segments, DC:
direction changes, and CC: code changes.

5.3.2 Algorithm

5.3.2.1 General

The proposed map matching algorithm is based on the Viterbi path, a

technique related to hidden Markov models [41, 42]. The principle is roughly

the same as in Chapter 2 but there are differences, e.g., the algorithm’s

input are raw locations, e.g., unmatched GPS data, instead of RSS values,

the time between two location updates is usually much larger (up to a

couple of minutes instead of every second), the semantic data is the road

network instead of a floor plan, and the maximum speed depends on the

mode of transportation and is variable per road segment. By processing

all available data at once, previous estimated locations can be corrected by

future measurements (similar to backward belief propagation). Naturally,

this is only possible if the intended application tolerates a certain delay.

Figure 5.4 shows a flow graph of the map matching algorithm, which ensures

realistic and physically possible paths.
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5.3.2.2 Geographic data selection

The proposed map matching algorithm starts with a selection of the geo-

graphic input coordinates (initialization in Figure 5.4) based on a minimum

update distance and standing still detection, to avoid the map matching

problem of Figure 5.2 by having a shortest path effect between the selected

points combined with a direction and code change penalty.

The minimum update distance is the required traveled distance, based

on the raw input data, before the next geographic coordinates are added to

the selection. This is to establish a smoothing effect in the map matching,

e.g., in the extreme case of only the begin and end point of a trajectory, the

output is the shortest path between these two points.

The direction change penalty is the absolute sum of direction changes

along the visited road segments between the estimations of two selected ge-

ographic coordinates, multiplied by a weight (β). The code change penalty

is the total amount of road code changes along these visited road segments,

multiplied by a weight (γ). Note that the road code indicates the type of

road, e.g., highway, primary, secondary, or tertiary roads, residential area,

sidewalks, or bicycle path. This direction and code change penalty are

introduced to encourage the reconstructed trajectory to go straight on its

current road segment and to diminish the weird route effect caused by noisy

geographic data. For example, the unnecessary detour in Figure 5.2 caused

by solely minimizing a distance-based metric can be avoided by adding a

direction and code change penalty.

The default minimum update distance is 50 m, and the default weights

for the distance-based penalty (α), direction change penalty (β), and code

change penalty (γ) are 1 per meter, 10 per turn of 90◦, and 10 per code

change, respectively, which results in a unitless cost. The explanation be-

hind these default values and the effect of these four parameters on the map

matching accuracy are discussed in Section 5.5.3.3. Note that, the default

minimum update distance has no effect if the sample rate of the geographic

coordinates is low and the tracked object is on the move, e.g., a car driving

at a rate of 120 km/h and a sample interval of 5 s already results in 167 m,

and hence all geographic coordinates will be selected, i.e., are used as input

in the map matching algorithm (SGC in Figure 5.4).

The interpolation between two selected geographic coordinates results in

significant location errors if the tracked person or object is barely moving for

a certain period between these two coordinates. Therefore, a standing still

technique detects the start and end of intervals where there is no movement,

e.g., a car waiting at a red traffic light. The begin and end of these intervals

are included in the selection to ensure a correct interpolation.
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5.3.2.3 Mapping and interpolation

The pseudo-code of the map matching method is shown in Algorithm 2 and

the variables and steps are discussed in the text below.

After a selection of geographic coordinates is made based on the mini-

mum update distance and standing still detection, the mode of transporta-

tion (MoT ) is estimated based on the 95th percentile value of the maximum

speed along the trajectory (to avoid picking an outlier). It is labeled as walk-

ing if it is below 10 km/h, as cycling if it is between 10 km/h and 40 km/h,

and otherwise as driving a motorized vehicle. Note that if it is labeled as on

foot or by bike, the highway road segments are discarded from the grid and

if it is labeled as by car the sidewalks and bicycle road segments are dis-

carded from the grid. Note also that a runner with a 95th percentile value

of 12 km/h would be labeled as a biker but this has no influence on the

performance; on the contrary, if he or she would be labeled as walking, the

reconstructed path would lag behind the real trajectory. The map matching

algorithm is initialized with the first geographic coordinate (GC) as current

position (GC0), e.g., a GPS data point. Then, a predefined number of other

locations (MP ) are selected around this position and their cost is initial-

ized to zero, e.g., the 1000 closest grid points to the current position. This

ensures that the map matching algorithm can recover from initially noisy

GPS data, e.g., 1000 grid points and a grid size of 10 m resulted in covered

surfaces between 18 and 75 hectares in the experimental validation of Sec-

tion 5.5 (the exact area depends on the density of the road network). The

initialization forms the starting point of all possible paths that are kept in

the memory of the location tracking algorithm (pathsInMem).

Next, for the subsequent geographic coordinate (GC), all reachable po-

sitions (RGP ) starting from the path’s current last grid point (PGP : par-

ent grid point) are determined for all paths in memory by making use of

the surrounding road network, the time elapsed since last location update

(∆t), the mode of transportation (MoT ), and OpenStreetMap metadata,

i.e., maximum speed, type of road, and one-way information. These reach-

able positions, which are also grid points, are the candidate positions for

the next location update. This is similar to the reachable grid points of

Chapter 2 (Algorithm 1) but transitions between grid points are now lim-

ited by an outdoor road infrastructure instead of the walls and doors of an

indoor environment. Each candidate position (CP ) retains a link to the

parent grid point (PGP ), a list with visited road segments RS, and a cost

that represents this new branch along the road network. This new path

(branch) and updated cost are added to the temporary list (pathsTemp)

as a tuple ((pathnew, costnew)). The updated cost is a weighted sum of a

distance (ED), direction change (DC), and code change (CC) penalty. The
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Algorithm 2: Map matching technique.

Data: timestamped geographic data (TGD)
Result: map matched trajectory (MMT)

1 SGC ← selected geographic coordinates based on update distance
and standing still detection

2 MoT ← (estimated) mode of transportation
3 GC0 ← first geographic coordinates
4 tprev ← first timestamp
5 MP ← 1000 // maximum paths in memory

6 pathsInMem← list with MP grid points closest to GC0 initialized
with cost 0
// iterate over all geographic coordinates in SGC

7 for GC ∈ SGC do
8 t← current timestamp
9 ∆t← t− tprev

10 pathsTemp← empty list
11 for path ∈ pathsInMem do
12 cost← current cost of path
13 PGP ← current endpoint of path (parent grid point)
14 RGP ← reachable grid points along roads with MoT within

time span ∆t starting from PGP
// calculate new path cost for each candidate

position (CP) based on distance, direction, and

code change penalty

15 for CP ∈ RGP do
16 RS ← road segments between PGP and CP
17 ED ← eucl dist(CP,GC) // Euclidean distance

18 DC ← penalty due to direction changes along RS
19 CC ← penalty due to code changes along RS
20 pathnew ← path+RS + CP
21 costnew ← cost+ α · ED + β ·DC + γ · CC
22 add (pathnew, costnew) to pathsTemp

23 pathsInMem← retain MP paths from pathsTemp based on
lowest cost

24 tprev ← t

25 MMT ← reconstruct trajectory along path with lowest cost in
pathsInMem for all timestamps t in TGD based on interpolation



130 Chapter 5

distance penalty is the Euclidean distance between CP and GC, and the

DC and CC penalty is calculated based on the directions and codes of the

visited road segments RS, i.e., a physically possible path between CP and

PGP .

Lastly, the MP paths with lowest cost are retained to serve as input for

the next iteration. After all timestamped geographic data is processed, the

entire trajectory of the path with lowest cost in memory is reconstructed for

all timestamps in the geographic input data. The interpolation between the

selected geographic coordinates is based on the visited road segments and

a fixed or variable speed depending on the mode of transportation, i.e., for

walks and bike rides this is fixed and for car rides this is the maximum road

speed. The latter increases the accuracy if the road speed limit changes

between two selected geographic coordinates, e.g., if once every minute a

GPS sample is available and the car drives 30 s on a 90 km/h road and

30 s on a 30 km/h road, using regular interpolation would map too many

locations to the first road. Note that this does not affect the precision,

recall, or F1 score (Section 5.5.2) but solely the prediction accuracy in meter

(Section 5.5.3.1).

5.4 Lane detection

The mapped GPS coordinates can be enriched with information about the

current driving lane, which is useful to map potholes to their exact location

or to derive driving behavior statistics per lane on a highway. The number

of driving lanes per road segment are included in the open map data and

are added as metadata to the road segment (Section 5.3.1). Figure 5.5

shows a detail of the number of available lanes per road segment for an area

surrounding a driveway exit.

5.4.1 Lane changes

The lane change detection algorithm is based on pattern recognition with

accelerometer data. Note that, the sensor coordinate system of the ac-

celerometer must be transformed to the car coordinate system if they are

not aligned, e.g., based on inertial measurements or knowledge of the sensor

placement. In the experimental validation (Section 5.5), the sensor place-

ment was known and the coordinate systems of the accelerometer and car

are equal (Figure 5.6), i.e., the x-axis is aligned with the driving direction

(longitudinal axis), the y-axis is aimed towards the left lane (lateral axis),

and the z-axis is aligned along the direction of gravity (vertical axis).

The accelerometer values are low-pass filtered to reduce the influence
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Figure 5.5: Available driving lanes per road segment based on open map data.
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Figure 5.6: Alignment of sensor and car coordinate systems.



132 Chapter 5

of random noise with a one second time window, which was found to be a

good compromise between suppressing noise and distinguishable patterns.

acc
lp,{x,y,z}
t =

1

W

W
2∑

i=−W
2

acc
{x,y,z}
t+i (5.1)

acc
{x,y,z}
t and acc

lp,{x,y,z}
t are the raw and low-pass filtered accelerometer

values for the x-, y-, and z-axis at time t, and W is the window size, e.g., for

a sample rate of 100 Hz and a one second time window W is equal to 100.

Figure 5.7 shows a sample of the raw and low-pass filtered sensor values

for the lateral axis with indication of left and right lane changes for two

trajectories with a different car and driver (Section 5.5.1).

It is clear from this real example that left and right lane changes show

unique and similar patterns on the lateral acceleration and that the low-

pass filtering is necessary to distinguish these patterns. A lane change to

the left starts with a positive peak followed by a slightly lower negative peak

along the lateral axis, for a right lane change this is the other way around.

Figure 5.7a shows a sample of 100 s on the highway with five lane changes

to the left and three to the right. The three peaks around the 210 s time

mark in Figure 5.7b are due to driving on a roundabout and taking the first

exit. The small negative and positive peaks before the 210 s time mark in

Figure 5.7b are caused by speed ramps and road bumps on a tertiary road

with one lane. The peaks are detected with following formulas:

tpeakpos =

{
t

∣∣∣∣ acclp,yt > acclp,yt+i , |acclp,yt | > δacc, |i| ≤
N

2
, i 6= 0

}
(5.2)

tpeakneg
=

{
t

∣∣∣∣ acclp,yt < acclp,yt+i , |acclp,yt | > δacc, |i| ≤
N

2
, i 6= 0

}
(5.3)

tpeakpos and tpeakneg
are the timestamps of all positive and negative

peaks, acclp,yt is the low-pass filtered lateral accelerometer value at time t

(Equation 5.1), δacc is the noise floor for peak detection and is set at 0.02 g,

and N is the total number of considered accelerometer samples and is set

at a value that matches an interval of 2 s, e.g., 200 if the sample rate is

100 Hz. In the remainder of this section, tpeakpos and tpeakneg
are referred

to as (positive and negative) peaks.

Figure 5.8 shows a sample of the driving lane at each road segment for

both trajectories (the parts on the highway are traveled in both ways).
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Figure 5.7: Sample of raw and low-pass filtered sensor values for the lateral
axis of the accelerometer with indication of left and right lane changes for both
trajectories.
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Figure 5.8: Sample of the driving lane at each road segment for both trajectories.
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Table 5.1 summarizes the mean, standard deviation, 75th percentile

value, minimum, and maximum values of the positive peaks (peakpos), neg-

ative peaks (peakneg), peak-to-peak values, and time between two peaks

associated with a lane change (∆t), for both trajectories.

Trajectory LC Type µ σ 75th Min Max

1 86

peakpos [g] 0.10 0.03 0.12 0.03 0.20
peakneg [g] 0.10 0.03 0.12 0.02 0.15
peak-to-peak [g] 0.20 0.04 0.21 0.11 0.35
∆t [s] 2.14 0.43 2.37 1.27 3.30

2 67

peakpos 0.06 0.02 0.07 0.02 0.10
peakneg 0.07 0.02 0.08 0.03 0.12
peak-to-peak 0.12 0.03 0.15 0.08 0.22
∆t [s] 2.93 0.87 3.21 1.48 4.87

Table 5.1: Lane change peak statistics based on lateral accelerometer data. LC:
amount of lane change.

Note that the absolute values of the negative peaks are used to simplify

the comparison. Obviously, the driving style has an influence on the lat-

eral acceleration patterns. Higher peak-to-peak values indicate fiercer lane

changes, which can also be deducted from the shorter lane change times

∆t for the first trajectory. The lane changes in the second trajectory are

milder and slower, i.e., an average peak-to-peak and ∆t value of 0.12 g and

2.93 s vs. 0.20 g and 2.14 s for the first trajectory, making them harder

to detect because the patterns are less distinct (Section 5.5.4.1). To cope

with different driving styles, a lane change detection algorithm based on a

variable and bounded threshold, is proposed.

First, the peaks are filtered based on the map matched data, i.e., all

peaks that are detected while only one lane is available are discarded, as

these peaks cannot be caused by a lane change but are due to, e.g., bad

road conditions or driving maneuvers. These peaks are filtered again based

on a lower (peakmin) and upper bound (peakmax) threshold, i.e., all peaks

outside these boundaries are discarded as well. The remaining peaks are

visited chronologically and two peaks (a positive and a negative peak for

a left lane change and vice versa for a right lane change), are paired and

marked as a left or right lane change if two conditions are met: their peak-

to-peak value is above a threshold (p2pmin) and the time between both

peaks (∆t) is below tmax.

The tmax value is fixed at 5 s, which is larger than the maximum duration

of any lane change in the experimental validation over a total of 153 lane

changes (LC in Table 5.1). The other threshold values (peakmin, peakmax,
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and p2pmin) are estimated per trajectory based on the low-pass filtered

lateral accelerometer values on the road segments with at least two lanes.

Only straight road segments where the car was driving at least 50 km/h

are taken into account to remove the influence of left or right turns and

traffic jams. Note that, these selected road segments are used to estimate

the threshold values but afterwards all lateral accelerometer values on road

segments with at least two lanes, are processed. The negative peaks that

have at a neighboring positive peak within tmax are taken into account (and

vice versa for the positive peaks). The minimum and maximum absolute

value of these selected peaks are used as peakmin and peakmax, and the

minimum peak-to-peak value of these negative and positive peaks is taken

as p2pmin.

5.4.2 Driving lane allocation

After the detection of lane changes based on the lateral accelerometer data,

the driving lane can easily be updated by adding one to the current driving

lane if it is a lane change to the left and subtracting one if it is to the

right. Lane one is used for the slow lane and the far left lane, i.e., fast

lane, depends on the number of available lanes and could be anywhere from

2 to 8. Note that in left-driving countries the fast lane is the far right

lane. Therefore, in the remainder of this section a right-driving country

is assumed to avoid confusion. Only the initial driving lane is unknown

and although it seems plausible to start at lane one, this is not always the

case because, e.g., after a highway ramp a driver can go immediately to

the second or third lane without being noticed by the lane change detection

algorithm. Another source of errors are the addition of lanes on the right,

e.g., when two highways merge, the current driving lane changes while the

car was going straight.

The first problem is solved by accounting for a penalty for each possible

starting lane when a driver goes from a road segment with one lane to a

road segment with multiple lanes, e.g., when passing a highway ramp or

when going from a small local road to a secondary road with two lanes.

The penalties are calculated based on all future lane changes until the next

road segment with only one lane. Each time an impossible lane change

occurs, i.e., a left lane change when driving on the outside lane or a right

lane change when driving on the first lane, this penalty is increased by one.

The starting lane with the lowest penalty is taken as most likely initial lane.

The second problem is solved by monitoring the number of available

lanes when the road segment changes, e.g., if this number increases and a

road is merged from the right side, the current driving lane is increased by

one otherwise it is unaffected. Note that, for left-driving countries this is
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the other way around.

5.5 Experimental validation

5.5.1 Trajectories

The experimental validation encompasses twelve trajectories on foot, by

bike, and by car. Table 5.2 summarizes the total distance, duration, average

speed, and number of GPS data points for all trajectories per mode of

transportation.

MoT #routes Distance [km] Duration [min] Speed [km/h] #GPS points

Walk 3 25 268 6 15700
Bike 3 25 73 20 4255
Car 6 251 222 68 13165

Total 12 301 563 32 33120

Table 5.2: GPS dataset details per mode of transportation (MoT).

The trajectories are recorded at a sample rate of 1 Hz with a GPS logging

application on a smartphone. The smartphone was put in the dashboard

holder for the car rides, which were done by four different drivers, and

carried in the pocket for the trajectories on foot and by bike. The total

dataset is 9.4 hours, covers 301 km, consists of 33120 geographic coordinates

(GPS points). The trajectories pass through rural and urban areas, on

primary and secondary roads, sidewalks, bicycle paths, and highways. Note

that the environment has a strong influence on the performance of a map

matching algorithm, e.g., in rural areas the road network is usually sparser,

which reduces the chance to select a wrong road segment and there are less

tall buildings that can cause additional noise on the GPS signals.

Accelerometer data is available for two car rides on the highway with a

lot of forced lane changes to have a sufficient amount of data to validate the

lane detection, i.e., around four and two lane changes per minute (Analog

Devices ADXL345 [43]). Note that these are the two trajectories from Sec-

tion 5.4.1 (Figures 5.7 and 5.8). The driving lane ground truth is manually

annotated based on video recordings from a dashcam. A script was written

to facilitate this process, i.e., a video can be watched at an adjustable speed

and is annotated by pushing the left or right button when the car makes

a left or right lane change. The driving lane details, i.e., the number of

lane changes, the average lane changes per minute (where lane changes are

possible), total duration, time spent in each driving lane, and accelerometer

samples, are summarized in Table 5.3 for the two car rides.
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Trajectory LC LCPM Duration [min]
Time per lane [min]

#samples
1-av 1 2 3 4

1 86 4.0 24.6 3.3 5.9 8.1 6.7 0.6 143229
2 67 2.1 43.4 11.3 18.5 10.3 3.0 0.2 258606

Table 5.3: Driving lane details per trajectory based on dashcam video recordings.
LC: amount of lane changes, LCPM: average number of lane changes per minute,
1-av: only one lane available, and number of accelerometer samples.

5.5.2 Performance metrics

The quality of the map matching and lane detection algorithm are each

validated with two performance metrics. The map matching algorithm is

evaluated with the F1 score (also F-score or F-measure) and the average

error (Euclidean distance) between the ground truth and estimated location.

The F1 score is the harmonic average of the precision and recall, where an

F1 score reaches its best value at 1 (perfect precision and recall) and worst

at 0. Broadly speaking, the precision, also called positive predictive value,

is the fraction of relevant instances among the retrieved instances and the

recall, also known as sensitivity, is the fraction of relevant instances that

have been retrieved over the total amount of relevant instances. Precision

can be seen as a measure of exactness or quality, whereas recall is a measure

of completeness or quantity.

precision =
tp

tp+ fp
(5.4)

recall =
tp

tp+ fn
(5.5)

tp are the true positives or hits, fp are the false positives or false alarm

(Type I error: asserting something that is absent), fn are the false negatives

or misses (Type II error: failing to assert what is present), and tn are the

true negatives or correct rejections but these are abundant to calculate the

precision or recall.

In the context of map matching, this results in following formulas:

Fmm1 = 2 · precisionmm · recallmm

precisionmm + recallmm
(5.6)

precisionmm =
Lcorr
Lmm

(5.7)

recallmm =
Lcorr
Lgt

(5.8)
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The mm in Fmm1 , precisionmm, and recallmm refers to map matching so

that it can be distinguished from the recall and precision definition for the

lane detection. Lgt is the length of the ground truth trajectory, Lmm is

the length of the map matched trajectory, and Lcorr is the length of the

(correct) overlapping segments between the map matched and ground truth

trajectory. Most map matching algorithms use this metric to evaluate the

approach because it suffices for a broad range of applications, e.g., road

usage patterns or urban traffic modeling.

The ground truth trajectories, i.e., continuous sequence of road segments

and individual locations on these segments, are constructed based on the

shortest path between manually indicated points where the route must pass

at certain timestamps. Note that the trajectories were known beforehand

and indication points are added as long as the constructed paths were not

completely correct. Figure 5.9 shows the raw GPS input data with a sample

rate of 1 Hz and the constructed ground truth segments and locations.

0 25 50 75 m

GPS data
GPS error
Ground truth
Road network

Figure 5.9: Raw GPS input data with ground truth construction.

The individual timestamped locations are used to calculate the average

error of the map matched trajectories. This metric is generally ignored but

is important for applications that map events or other sensor measurements

to an exact location.

The performance of the lane detection is evaluated with the F1 score
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based on the precision and recall in the classification context.

F ld1 = 2 · precisionld · recallld
precisionld + recallld

(5.9)

precisionld =
tpld

tpld + fpld
(5.10)

recallld =
tpld

tpld + fnld
(5.11)

The ld subscript refers to lane detection so that it can be distinguished

from the F1 score, recall and precision definition for the map matching. tpld
are the true positives, i.e., a left or right lane change is correctly identified.

fpld are the false positives, e.g., a driver stays in his lane but the algo-

rithm detects a lane change due to a bump or maneuver. fnld are the false

negatives, i.e., failing to identify a left or right lane change.

The second performance metric for the lane detection is the amount

of time the correct lane is estimated based on the detected lane changes.

Incorrectly predicted driving lanes are further divided into 1-off and 2-off

when the predicted lane is one or two lanes off, i.e., the absolute difference

between the ground truth and detected lane (three lanes off did not occur

in our experimental validation).

5.5.3 Map matching accuracy

The accuracy of the map matching is evaluated as a function of the sam-

ple interval, GPS noise, and three algorithm parameters: update distance,

direction change, and code change penalty.

5.5.3.1 GPS sample interval

Lowering the GPS sample rate saves battery power and reduces the com-

munication cost by limiting the bandwidth usage but increases the compu-

tational cost per location update as a larger area needs to be considered.

Note that, since GPS devices need a lock on the available satellites it is not

possible to turn the device completely off between samples because the time

to first fix (TTFF) with a cold or warm start is too high [44]. However, a

rapid acquisition of satellite signals is enabled in standby (hot) mode be-

cause the receiver already has valid time, position, almanac (approximate

information on all the other satellites), and ephemeris data (detailed or-

bital information). The influence of the GPS sample interval is simulated

by downsampling the input data, i.e., discarding GPS samples to acquire

the intended sample rate, and each simulation was repeated ten times for
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averaging. Figure 5.10 shows the Fmm1 score and the median error between

the estimated and ground truth locations, averaged over all simulations and

trajectories per mode of transportation, as a function of the sample interval.
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Figure 5.10: Fmm
1 score and median error as a function of the sample interval

per mode of transportation.

As expected, decreasing the sample rate results in lower Fmm1 scores and

a larger median error but the performance remains accurate, e.g., if only

once every 5 min a GPS sample is available the Fmm1 scores and median

errors are still 86.7 % and 2.54 m, 82.1 % and 4.5 m, and 93.8 % and 3.24 m,

for the walks, bike rides, and car routes, respectively. Increasing the sample

rate to once every minute, which can still be considered as a power saving

mode, improves the average Fmm1 score to 97.5%, 90.1%, and 99.7%, for the

trajectories on foot, by bike, and by car, respectively. Although the median

errors are similar for the three considered modes of transportation, the

Fmm1 score is higher for the car rides because these have more restrictions

on the road segments than a walk and bike ride, e.g., the reconstruction of

a person on foot has access to all type of roads (except highways) in both

ways because one-way streets are usually not applicable to pedestrians and

a separate sidewalk is not always included in the open street map data. A

typical error for the walks and bike rides is to select a parallel road that

is very close to the correct road, which has a small impact on the location

error but decreases the Fmm1 score because the trajectories do not overlap.

Note that the median error is based on the (downsampled) geographic input

coordinates, e.g., once every 5 minute, which does not reveal much about

the exact location accuracy of the points along the reconstructed trajectory

(based on the timestamps). Figure 5.11 shows the same plot but with

interpolation, e.g., for a sample interval of 5 min and interpolation at 1 Hz,

the algorithm outputs all road segments and 300 estimated locations with
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every update, i.e., once every second instead of only one estimated location

and the road segments to get there.
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Figure 5.11: Fmm
1 score and median error as a function of the sample interval

per mode of transportation with interpolation at 1 Hz.

Naturally, the Fmm1 score is exactly equal and the median error is larger,

e.g., with a sample interval of 1 min, the median errors of all estimated

locations during this minute are 3.33 m, 10.59 m, and 18.01 m, for the

trajectories on foot, by bike, and by car, respectively. Note that a car

driving at 120 km/h travels a distance of 2 km during a one minute interval.

The location error along the interpolated points starts to increase rather fast

for the bike and car rides if the sample rate is further decreased because

the traveling speed can be variable due to traffic lights, road speed limits,

or oncoming traffic. This is detrimental for the interpolation, e.g., with a

sample interval of 5 min there is no way of knowing if a car is standing still

for a minute or just driving slow. The reason for the lower location error of

the trajectories on foot is because a walking speed is more constant than a

biking or driving speed due to accelerations and slowing down.

5.5.3.2 GPS noise

The noise in GPS measurements can be modeled as zero-mean Gaussian [45].

To assess the influence of noise on the proposed map matching algorithm,

geographic input data is simulated by taking the ground truth locations

from Section 5.5.1 and adding Gaussian noise with a varying standard devi-

ation. In the remainder of this section, the standard deviation of the added

Gaussian noise is referred to as noise level. Figure 5.12 shows the Fmm1 score

and the median error between the estimated and ground truth locations, as

a function of the added noise, for two sample intervals T (1 s and 1 min).

Obviously, increasing the noise level results in lower Fmm1 scores and
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Figure 5.12: Fmm
1 score and median error as a function of the GPS noise per

mode of transportation for a sample interval T of 1 s (a–b) and 1 min (c–d).
Overall Fmm

1 score and median error as a function of the GPS noise per sample
interval T (e–f)
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a larger median error. The Fmm1 scores and median errors, for a sample

interval of 1 s and noise levels of 2 m and 20 m, start at 99.3% and 2.26 m,

98.2% and 2.22 m, and 100.0% and 2.33 m, and drop to 94.6% and 10.0 m,

91.0% and 11.57 m, and 99.0% and 10.34 m, for the walks, bike rides, and

car routes, respectively.

Increasing the sample interval from once every second to once every

minute degrades the performance but has a limited effect on the median

error for low noise levels (Figure 5.12f). The Fmm1 score is shifted by an

average value of 3.5% for all noise levels. The average Fmm1 scores and

median errors for a noise level of 10 m start at 95.9% and 10.56 m for a

sample interval of 1 s, and drop to 93.5% and 15.34 m for a sample interval

of 1 min, although the amount of available data is reduced by a factor of

60.

5.5.3.3 Sensitivity analysis

This section discusses the influence of four parameters of the proposed map

matching technique (Algorithm 2): update distance, weight of the distance

metric (α), weight of the direction change penalty (β), and weight of the

code change penalty (γ). The update distance is used to establish a smooth-

ing effect in the map matching by making a selection of geographic input

coordinates (Section 5.3.2). The α parameter is used to assign more weight

to the geographic input coordinates and the β and γ parameters are used

to discourage deviations from the current road or driving direction. Fig-

ure 5.13 shows the Fmm1 score and the median error between the estimated

and ground truth locations, as a function of these four parameters.

An update distance of 0 m, i.e., every geographic coordinate is used as

input, results in an average Fmm1 score and the median error of 95.1% and

3.41 m. Increasing the update distance to 50 m results in an average Fmm1

score and the median error of 99.5% and 2.07 m. A distance weight of 0

gives poor results because the geographic data is not taken into account.

Best performance is obtained with a distance weight of 1 and increasing

this weight slowly deteriorates the Fmm1 score (Figure 5.13c). Including the

direction change penalty slightly improves the accuracy for weights up to 20

per 90◦, i.e., the Fmm1 score improves from 96.9% to 98.7% (Figure 5.13e).

Including the code change penalty slightly improves the accuracy as well

for weights up to 20, i.e., the Fmm1 score improves from 96.9% to 99.3%

(Figure 5.13g). The best global accuracy, averaged over all 12 trajectories

on foot, by bike, or by car, is obtained with an update distance of 50 m, α

of 1 per meter, β of 10 per 90◦, and γ of 10 per code change. Note that,

γ is set to zero to evaluate the influence of the direction change penalty

and β is set to zero to evaluate the influence of the code change penalty.
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Figure 5.13: Fmm
1 score and median error as a function of the update distance

(a–b), distance weight α (c–d), direction change weight β (e–f), and code change
weight γ (g–h).
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Furthermore, the considered parameter values were on a logarithmic scale

to avoid overfitting on the dataset of this experimental validation.

5.5.4 Lane detection accuracy

The lane detection is evaluated by the accuracy of the lane change detection

algorithm, the driving lane estimation, and the influence of the sample rate

of the accelerometer.

5.5.4.1 Lane changes

The precision, recall, and F ld1 score of the lane change detection algorithm

is summarized in Table 5.4 for both trajectories.

Trajectory Precision [%] Recall [%] F ld1 score [%] tp [-] fp [-] fn [-]

1 100.0 96.5 98.2 83 0 3
2 85.0 67.2 75.1 45 8 22

Table 5.4: Precision, recall, and F ld
1 score for the lane change detection. tp: true

positives, fp: false positives, fn: false negatives.

For the first trajectory, the proposed algorithm correctly labels 83 lane

changes, detects no false positives (precision 100.0%) and fails to detect only

three lane changes (recall 96.5%). This results in an F ld1 score of 98.2%.

For the second trajectory, the proposed algorithm correctly labels 45 lane

changes, detects 8 false positives (precision 85.0%) and fails to detect 22 lane

changes (recall 67.2%). This results in an F ld1 score of 75.1%. The difference

in performance is due to different driving styles and making the detection

harder by shifting lanes while turning, carrying out small maneuvers, or

changing lanes in a slow manner.

5.5.4.2 Driving lane

The amount of time the lane detection algorithm estimates the correct

and wrong lane are summarized in Table 5.5 for both trajectories. These

amounts of time are expressed as a percentage with respect to the total

duration of a trajectory.

The driving lane is estimated correctly 99.2% and 86.8% of the time for

the first and second trajectory, which is a logical consequence of the lane

change detection performance. Note that there was only one lane available

during 14.8% and 21.6% of the time, which automatically results in the

correct lane because the lane change detection and driving lane allocation

are disabled when the map matching algorithm estimates a road segment
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Trajectory
Correct lane [%] Wrong lane [%]

1-av match total 1-off 2-off total

1 14.8 84.4 99.2 0.7 0.1 0.8
2 21.6 65.2 86.8 12.3 0.9 13.2

Table 5.5: Accuracy of the lane detection algorithm as a percentage of the com-
plete trajectory. 1-av indicates that there is only one lane available, and 1-off or
2-off that the estimated lane is one or two lanes next to the correct lane.

with only one lane. Furthermore, a wrongly estimated lane is nearly always

only one lane off, two lanes off occurs only in 0.1% and 0.9% of the time,

and three lanes off does not occur. This is better than the IMU-based lane

detection technique that is proposed in [33], where an average accuracy of

80% is achieved.

5.5.4.3 Accelerometer sample rate

The sample rate of the accelerometer is simulated by discarding samples in

the input data. Similarly to the GPS sample interval (Section 5.5.3.1), low-

ering the sample rate of the accelerometer saves battery power and reduces

the communication cost by limiting the bandwidth usage, e.g., if the data

is collected or processed centrally. Unlike with the GPS data, the computa-

tional cost decreases because less samples need to be examined during the

peak detection. However, this can affect the accuracy of the lane change

detection algorithm and hence driving lane estimation. Figure 5.14 shows

the precision, recall, and F ld1 score as a function of the accelerometer sample

rate averaged over both trajectories.

Lowering the sample rate results in a negligible performance loss up to

5 Hz, i.e., a reduction by a factor of 20. Increasing the sample interval to 5 s

results in a recall near zero because all lane changes happen within 5 s. The

lane changes that are still detected are because the lateral accelerometer

values at the selected time instances are still above or below the thresholds

values from Section 5.4.1.

5.6 Conclusion

In this chapter, a fast, memory-efficient, and worldwide map matching algo-

rithm with support for trajectories on foot, by bike, and motorized vehicles,

is presented. The input for the map matching algorithm are raw geographic

coordinates and enriched open map data. The proposed algorithm com-

bines the Markovian behavior and the shortest path aspect while taking
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Figure 5.14: Precision, recall, and F ld
1 score as a function of the accelerometer

sample rate over both trajectories.

into account the type and direction of all road segments, information about

one-way traffic, maximum allowed speed per road segment, and driving be-

havior. Furthermore, a lane detection algorithm based on accelerometer

readings and traffic lane information from the open map data, that self-

adapts to different driving behaviors, is added on top of the map matching

algorithm. An experimental validation consisting of 12 trajectories on foot,

by bike, and by car, showed the efficiency and accuracy of the proposed

algorithms. The total dataset is 9.4 hours, covers 301 km, consists of 33k

GPS points, and 402k accelerometer samples. The average F1-scores and

median errors of the map matching algorithm, if all GPS samples are used,

were 99.1 % and 2.24 m, 99.5 % and 1.88 m, and 100.0% and 2.16 m, for

the walks, bike rides, and car routes, respectively. The performance re-

mained adequate if the input data was downsampled to only one sample

every 5 min, i.e., the average F1-scores were 86.7 %, 82.1 %, and 93.8 %,

for the walks, bike rides, and car routes, respectively. Two trajectories with

accelerometer data were used to evaluate the lane detection algorithm with

F1-scores of 98.2% and 75.1% for the lane change detection, which resulted

in the correctly estimated lane 99.2% and 86.8% of the time. In Chapter 6,

an outdoor location tracking algorithm based on cellular network data that

uses a modified version of the map matching algorithm with support for

real-time positioning, is proposed.
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Chapter 6

Outdoor location tracking
based on cellular data

6.1 Introduction

In this chapter a technique and large-scale experimental validation for anony-

mous outdoor location tracking of all mobile users residing on a cellular net-

work, is presented. Network-based positioning algorithms locate a mobile

user based on measured radio signals from base stations in its vicinity. The

growing amount of available cellular data has led to many location-based

services (LBS) for outdoor environments. These LBS represent an addi-

tional stream of revenue for mobile network operators through targeted ad-

vertising or improving the customers experience [1]. However, the available

cellular data is also useful for governments, e.g., to analyze traffic patterns

or to estimate population movements during disasters or outbreaks. The

latter requires timely and accurate location data that large-scale surveys

cannot provide, whereas mobile network operators manage data that can

potentially be used to provide location data in real-time [2].

The proposed positioning algorithm: AMT (antenna, map, and timing

information based tracking) is able to accurately locate all mobile users in

a cellular network without any required modifications at the mobile side

(client) or network side (server). The latter is useful for applications where

there is typically no cooperation at the mobile side, e.g., traffic monitor-

ing, population movement estimation, or criminal activity detection and

makes it immediately applicable for mobile network operators. This lo-

cation tracking algorithm exploits enriched open map data [3], a mode of

transportation estimator, and advanced route filtering based on the map

matching algorithm of Chapter 5, on top of the cellular network topology
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and measurements to track the movement and locations of mobile devices.

Furthermore, it does not depend on additional or custom software, forced

messages, dedicated infrastructures, direct communication between mobile

users, or prior training data via, e.g., offline fingerprinting, drive-testing, or

crowd-sourced measurement campaigns.

Most tracking algorithms for cellular networks are validated in optimal

or controlled environments on a small dataset or are merely validated by

simulations. In this work, nationwide validation data consisting of millions

of parallel location estimations from over a million users are collected and

processed in real-time, in cooperation with a major network operator in Bel-

gium. The experimental validation includes trajectories on foot, by bike,

and by car, in urban and rural environments while a person was actively

using his or her smartphone, but also in standby mode. In this mode, all

applications that use the mobile network are blocked, e.g., email and mes-

saging services, and as such, standby mode represents a worst-case scenario

in terms of number of location updates. The latter shows measurement gaps

of up to 6 min while a user was on the move, i.e., time periods where no

measurement data is available, which mainly occur in rural areas. Current

existing location tracking algorithms for cellular networks are not able to

cope with large measurement gaps but instead are deployed in optimal or

controlled environments with a high base station density, regularly avail-

able measurement updates, large training sets, or are merely validated by

simulations with a fixed location update rate.

The remainder of this chapter is structured as follows, Section 6.2 de-

scribes related work and Section 6.3 outlines the mobile network and grid

configuration, type of measurements, and trajectories for the experimental

validation. Section 6.5 discusses the proposed location tracking algorithm

in detail and Section 6.6 presents the results. Finally, in Section 6.7, con-

clusions are provided.

6.2 Related work

Network-based location tracking poses several problems due to multipath

and non line-of-sight (NLoS) conditions, small-scale and large-scale fading,

low signal-to-noise ratios, and interference by other mobile users [4]. These

affect the radio signal parameters used as input data to location tracking al-

gorithms. To process the noisy signal parameters and improve the accuracy,

location tracking algorithms use additional intelligence and information.

NLoS mitigation techniques use more robust estimators or simply discard

the NLoS component [5]. Map-based algorithms use information about the

environment to limit possible locations and transitions between two location
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updates, this can be done in combination with Kalman filters [6], particle

filters [7], hidden Markov models (HMM) [8, 9], data fusion [10], or a least

squares estimator [11].

In [9], a Received Signal Strength Indication (RSSI) fingerprinting tech-

nique with GSM signals and route constraints is used to locate a moving

vehicle. The approach uses road segments as the states for an HMM, that is

trained based on the statistics of the average driver’s behavior on the road

and the probabilistic distribution of the RSSI vectors observed in each road

segment, consequently it is not applicable for all mobile users in the mobile

network. Besides that it is aimed at outdoor localization, the difference

with this work is that measurement data is needed to train an HMM. Fur-

thermore, possible locations for the mobile user are limited to places where

a car can pass, meaning no indoor, pedestrian, or off-road locations can be

estimated. A database correlation technique over RSSI data that is based

on advanced map- and mobility-based filtering is presented in [12]. The

algorithm is validated in a field environment with trips by car, a location

update rate forced to 2 Hz, and an electromagnetic field simulator.

A cooperative positioning technique for cellular systems using RF pat-

tern matching is presented in [13]. It is shown in simulations that lever-

aging the Device-to-Device (D2D) communications protocol can improve

positioning performance if insufficient base stations are visible to a user en-

tity. A crowd-sourced measurement campaign to develop radio-frequency

(RF) coverage maps and a similarity based location algorithm is presented

in [14]. A proprietary application, installed on the smartphone of a sample

set of users in the network, periodically reports the RF channel measure-

ment along with the GPS tag to a central server, which are then processed

into the RF coverage map. This resulted in accuracies up to 50 m and 300 m,

depending on the cell’s coverage range. A semi- and unsupervised learning

technique that minimizes the effort to label signal strength measurements

for the network-side cellular positioning problem is presented in [15]. This

technique uses Gaussian mixture models to model the signal strength vec-

tors and an expectation maximization approach to learn the distributions.

Accuracies up to 30 m are reported as long as enough training data is avail-

able and the base station density is high. A machine learning technique

for indoor-outdoor classification and particle filter with HMM for cellular

positioning is presented in [7]. The trajectory of a moving user was synthe-

sized and reconstructed based on a data training set of around 129000 drive

test data points and a fixed location update interval of 10 s, which led to

accuracies up to 20 m in urban environments. Note that the latter accura-

cies are only achieved with large (crowd-sourced) training sets, synthesized

data, and high location update rates, which the approach in this work does



158 Chapter 6

not require. Furthermore, the proposed location tracking algorithm in this

work is confirmed to execute in real-time for more than a million users in

parallel and outperforms state-of-the-art particle filters [7].

6.3 Methodology

6.3.1 Cellular network

The cellular network or mobile network, that is used in the experimental val-

idation, consists of more than 2500 NodeBs (September 2017), distributed

over Belgium’s territory (30528 km2). In a 3G network, the base stations

are referred to as NodeBs. Figure 6.1 shows the NodeB locations in a rep-

resentative urban and rural environment on the same scale (i.e., Ghent and

Melsele). It is clear that the environment will have a major influence on

the positioning accuracy, because of the difference in NodeB density on the

one hand and in urban planning on the other: a sparser road network can

limit plausible locations, and the type and height of buildings can affect

the signal parameters used as input to location tracking algorithms (e.g.,

apartments vs. stand alone houses vs. office buildings). There are more

than 50 NodeBs in an area of approximately 45 km2 for the experiments in

an urban environment whereas for the rural environment there are roughly

10 NodeBs in an area of the same size. The comparison and influence on

the performance are discussed in Section 6.6.

A NodeB has multiple antennas with unique cell-IDs, oriented towards

different directions (Figure 6.2). Antenna configurations with one up to

six distinct orientations occur in the mobile network, that is used in the

experimental validation, the most common ones are with three (92%), one

(4%) and two (3%) different antenna directions. Usually, a mobile user

will connect to the NodeB antenna that is directed towards him. Likewise,

a user for which measurements are available from antennas with different

orientations but from the same NodeB, has a large chance to be located

between both zones. The aforementioned observations provide information

that is exploited in the proposed location tracking algorithm (Section 6.5).

6.3.2 Grid

The grid represents a collection of points in the area of interest where a

mobile user can be located. In a regular Cartesian grid, all elements are

unit squares. It is a simplistic approach where all areas are equally im-

portant and take the same resources in both database size and processing

time. Alternatively, a map-based grid can be used to limit possible points

along the major (motorway, freeway, primary, secondary and tertiary) and
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0 750 1500 2250 m

(a) Urban environment

0 750 1500 2250 m

(b) Rural environment

Figure 6.1: NodeB density in urban and rural environments (NodeBs are indi-
cated by blue triangles).
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Figure 6.2: Antenna directions and configuration.

minor (local and residential) roads from the area of interest. The grid

size determines the number and density of these points. Our grid is based

on OpenStreetMap data, consisting of straight line segments enriched with

metadata about the type of road, information about one-way traffic, relative

layering, street name, and maximum allowed speed. Every start point and

endpoint of a straight road segment is automatically included in the grid

and road segments are further divided into pieces equal to the grid size. The

dots in Figure 6.3 represent such a grid with grid size 50 m. For Belgium,

this results in 3.2 million grid points for the map-based technique instead

of 12.2 million for a Cartesian grid.

0 250 500 750 m

Figure 6.3: Grid based on OpenStreetMap data with grid size 50 m.
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6.3.3 Experimental data

Experimental data is collected in cooperation with a major network operator

in Belgium. The experiments are conducted in and around the city center of

Ghent and in a smaller town near Antwerp (Melsele), to represent urban and

rural environments, and on the highway between both cities. The mobile

network collects 3G data for more than a million mobile subscribers but to

quantify the location errors (accuracy), the real position or ground truth

needs to be known, for which permission and cooperation of a mobile user

is needed. The experimental validation encompasses trajectories on foot,

by bike, and by car. A smartphone with a GPS logging application is

carried in all scenarios by a mobile user. It was put in the dashboard

holder for the car rides and carried in the pocket for the trajectories on foot

and by bike. The smartphone was forced on 3G to make the experiments

independent of having 4G coverage and to ensure a fair comparison between

urban and rural environments. This is because in the cooperation with the

network operator only access to the 3G measurements was granted and a

user would disappear from the collected data if he or she switched to 4G.

Figures 6.4 and 6.5 show the GPS trajectories as black lines, the sample

rate of the GPS logging application was set to 1 location per second. The

NodeB locations are indicated with gray triangles. The GPS trajectories are

post-processed with the map matching algorithm of Chapter 5 to increase

the accuracy, this is especially useful in urban areas near tall buildings

(urban canyoning). Section 6.5 describes the location tracking algorithm

and Section 6.6 discusses the performance and accuracy for all trajectories

in detail. The total distance, duration, and average speed for all trajectories

are summarized in Table 6.1.

Scenario Distance [km] Duration [min] Average Speed [km/h]

Walk (urban) 8 84 6
Bicycle tour (urban) 8 25 19
Car ride (urban) 39 25 47
Walk (rural) 8 101 5
Bicycle tour (rural) 8 22 22
Car ride (rural) 19 28 41
Car ride (highway) 48 36 80

Table 6.1: Trajectory details.

6.3.4 Measurement format

3G measurements are made by the mobile network, i.e., by the radio network

controller that controls the NodeBs. The input data for the proposed loca-
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0 250 500 750 m

(a) Trajectory on foot (urban + standby)

0 250 500 750 m

(b) Trajectory on foot (urban + streaming)

Figure 6.4: GPS trajectories on foot in the city center of Ghent (black lines),
estimated positions (blue dots), error between estimation and ground truth (blue
lines), and NodeBs (gray triangles).
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0 250 500 750 m

(a) Trajectory by bike (urban + standby)

0 250 500 750 m

(b) Trajectory by bike (urban + streaming)

Figure 6.5: GPS trajectories by bike in the city center of Ghent (black lines),
estimated positions (blue dots), error between estimation and ground truth (blue
lines), and NodeBs (gray triangles).
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0 1 2 3 km

(a) Trajectory by car (urban + standby)

0 1 2 3 km

(b) Trajectory by car (urban + streaming)

Figure 6.6: GPS trajectories by car around the city center of Ghent (black lines),
estimated positions (blue dots), error between estimation and ground truth (blue
lines), and NodeBs (gray triangles).
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0 250 500 750 m

(a) Trajectory on foot (rural + standby)

0 250 500 750 m

(b) Trajectory by bike (rural + standby)

Figure 6.7: GPS trajectories on foot and by bike in a rural area (black lines),
estimated positions (blue dots), error between estimation and ground truth (blue
lines), and NodeBs (gray triangles).
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0 750 1500 2250 m

(a) Trajectory by car (rural + standby)

0 2.5 5 7.5 km

(b) Trajectory by car (highway + standby)

Figure 6.8: GPS trajectories by car in a rural area (black lines), estimated po-
sitions (blue dots), error between estimation and ground truth (blue lines), and
NodeBs (gray triangles).
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tion tracking algorithm are timing information and received signal strength

values from a set of NodeBs. Both are reported on regular time periods

but independently from each other. The timing information comes in the

form of a propagation delay and is reported only by the serving base sta-

tion, i.e., the NodeB the mobile device is currently connected to. The signal

strength values originate from the measurement reports and are reported for

all NodeBs that a mobile device currently sees (i.e., from which it receives

a broadcast message). Timing information to these other NodeBs would

require network changes and increases the load in the mobile network and

is consequently not used in the approach in this work.

6.3.5 Propagation delay

The propagation delay parameter can be used to estimate the distance be-

tween a mobile device and its serving cell. This delay is used by the ra-

dio network controller to make communication possible. It checks and ad-

justs this delay to allow transmission and reception synchronization. The

propagation delay has a time granularity of 780 ns, which corresponds to

234 m [16]. A value of 1 means the mobile user is located in the interval be-

tween 234 m and 468 m from the NodeB. Figure 6.9 shows a plot of the real

distance (between mobile user and NodeBs) as a function of the observed

propagation delay parameter, during a walk of 8 km in the city center of

Ghent, Belgium (Figure 6.4b). The theoretical distances for the propaga-

tion delays are indicated as a green band. For this test, a radio application

was installed on the mobile device and was permanently streaming audio

to ensure regular network updates and measurement data. The walk took

84 min during which 234 propagation delay measurements with 49 different

cell-IDs from 15 NodeBs were recorded (one physical NodeB can have multi-

ple cell-IDs depending on the number of supported frequencies and different

orientations of its antennas). The maximum measured propagation delay

during this walk in the city center of Ghent was 6, which corresponds to

1521 m. In rural areas propagation delays up to 22 (≈5 km) were recorded

with the same mobile device, which is to be expected due to the sparser base

station density. The measured propagation delays fall in the correct interval

in 69% of the observations. They are one, two and three units apart in 27%,

3%, and 0.4% of the cases, respectively. The mean and standard deviation

of the absolute differences between the real and calculated distance are 94 m

and 82 m. These values are to be expected with a distance granularity of

234 m (i.e., the calculated distances, based on the 3G propagation delays,

are in steps of 234 m). Note that the proposed technique can also be applied

to 4G and 5G measurements, which have a higher base station density and

more accurate timing information, and therefore, will yield a better location
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precision, e.g., 4G has a time granularity of 260 ns, corresponding to 78 m

or three times as accurate as 3G.
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Figure 6.9: Propagation delay granularity and accuracy.

6.3.6 Measurement report

Measurement reports contain information about channel quality and are re-

ported by a user entity (mobile device) to a NodeB. They assist the network

in making handover and power control decisions. The received signal code

power (RSCP) denotes the power measured by a mobile user on a particular

physical communication channel, also known as common pilot channel. It

continuously broadcasts the scrambling code from the NodeBs and carries

no other information. These broadcast messages are transmitted with a

constant transmit power and gain but can differ per NodeB (information

available in network topology). The measurement reports contain measured

signal strength values from all NodeBs the mobile user currently sees. As

such, the RSCP values can be converted to a path loss value:

PL = PTX +GTX −RSCP (6.1)

PL [dB] denotes the total path loss, PTX [dB] and GTX [dB] are the

transmit power and gain of a NodeB, and RSCP is the received signal

strength code power measured by a mobile device.

Figure 6.10 shows these path loss values on the y-axis and associated

distances between mobile user and NodeBs on the x-axis (the measurement

reports are collected in the same experiment as the propagation delays from
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Figure 6.10: Measured path loss as a function of distance between mobile user
and NodeBs (blue dots). A fitted path loss model is plotted as a red line.

Section 6.3.5). During the experiment, 578 measurement reports were col-

lected with 4106 RSCP values to 136 different cell-IDs from 32 NodeBs.

The fitted one-slope path loss model (red line) has following form:

PL = PL0 + 10γ log10

(
d

d0

)
+Xσ (6.2)

PL [dB] denotes the total path loss, PL0 [dB] is the path loss at a

reference distance d0 [m], γ [-] is the path loss exponent, d [m] is the distance

along the path between transmitter and receiver and Xσ [dB] is a log-

normally distributed variable with zero mean and standard deviation σ,

corresponding to the large-scale shadow fading. The measurement data

from this experiment yields a PL0 of 112.8 dB at a reference distance of

10 m with a γ of 1.68, resulting in an R-squared of 23% and a standard

deviation of 9.8 dB. Low R-squared values indicate that the data is not

close to the fitted line, which results in bad estimations. Also, deviations

in measured path loss will result in larger errors at greater distances to the

NodeBs, e.g., for a deviation of 5 dB: a value of 140 dB (420 m) instead of

135 dB (211 m) results in a distance error of 209 m and a value of 150 dB

(1655 m) instead of 145 dB (834 m) results in a distance error of 881 m.

These larger errors occur rather often, 26% of the measurements have a

user-to-NodeB distance that is greater than 1 km. As such, the mean and

median absolute distance errors for all 4106 measured values are 1143 m

and 473 m, respectively. These distance errors are much larger compared

to those derived from the propagation delay, suggesting that many received

path loss measurements contain no additional information and can worsen
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the accuracy when used together with the timing information as input to

a location tracking algorithm. Note that these path loss measurements

can be useful in combination with fingerprint maps based on test-driving

or crowd-sourced measurement campaigns but these are labor intensive or

require modifications on the client side [7, 17, 18]. Also, these crowd-sourced

measurement campaigns will be heavily influenced by, e.g., passing cars, new

buildings, or other infrastructure changes.

6.4 Data availability

The problem with cellular network data is the limited amount of available

data, which determines the number of possible updates. Mobile devices can

support a range of different wireless technologies, e.g., infrared, Bluetooth,

WiFi, GPS, Universal Mobile Telecommunications System (UMTS) in 3G

networks and Long-Term Evolution (LTE) in 4G systems but not all data

are available to the network operator and this also depends on the usage of

a mobile user.
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Figure 6.11: Average number of measurement reports (solid orange line) and
propagation delays (dotted blue line) per user, per hour for more than a million
distinct active users during one week in Belgium.

Figure 6.11 shows the average number of measurement reports and prop-

agation delays, per user, per hour, during one week, measured on a 3G

mobile network in Belgium for more than a million distinct active users.

It is immediately clear that every day exhibits a similar pattern for both

the measurement reports and propagation delays with the difference that

there are about twice as many measurement reports. The least and most

active hours are 3 a.m. and 6 p.m. respectively (x-axis ticks are set every
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12 hours and the labels are set at 12 p.m.). Saturdays and Sundays show

a flatter and lower curve than weekdays because more people are staying

at home, which translates into fewer measurements per user on the mobile

network during the day. On Friday and Saturday between 11 p.m. and

5 a.m., there is an average increase of 20% in number of measurements for

a similar amount of people compared to weekdays, indicating that there

is more movement or usage of mobile devices (whether or not outdoors).

There are more than a million distinct active users during the whole week

but the maximum number of active users in one hour is only 700k. This is

because not all users send updates to their mobile network when he or she

is not moving, has WiFi coverage, or is on a different mobile network (2G

or 4G). Current time-series or map-based tracking algorithms assume regu-

lar measurement updates to filter outliers and improve the accuracy [6, 12].

This assumption does not hold for many mobile users, making the aforemen-

tioned algorithms not generally applicable. The proposed location tracking

algorithm can cope with this and consists of multiple phases, depending on

the amount of available measurements. Also, it is successfully validated, in

cooperation with a major network operator in Belgium, to work in real-time

on more than a million subscribers with an Apache Spark implementation

to support fast cluster-computing. The used cluster consists of 9 nodes with

a total memory of 1.58 TB and 408 physical cores.

6.5 Tracking algorithms

The performance of the proposed location tracking algorithm will be com-

pared with two reference algorithms: cell-ID (Section 6.5.1) and centroid-

based (Section 6.5.2). The new tracking algorithm is presented in Sec-

tion 6.5.3.

6.5.1 Cell-ID

The first reference algorithm is the most simplistic, where a mobile user is

mapped to the NodeB it is currently connected to (also known as serving

NodeB or serving cell-ID). This approach is easy to implement, has a low

cost and short response time but usually has the lowest accuracy [19].

6.5.2 Centroid

The second reference algorithm takes all different NodeBs from the measure-

ment reports into account and calculates the centroid. In case there is only

one NodeB with measurements, this approach results in the same location

as the cell-ID technique. Alternatively, a weighted centroid algorithm can
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radio network controller network topology

temporary estimation

propagation delay measurement report

NodeB configuration

assign score to each grid point

route mapping filter

OpenStreetMap data
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final estimation

reconstruct most likely trajectory

Phase I
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Figure 6.12: Flow graph of the proposed location tracking algorithm: phase I and
phase II.

be used, where NodeBs get a weight assigned based on their measurement

frequency or received signal strength information [20].

6.5.3 AMT: antenna, map, and timing information based
tracking

Figure 6.12 shows a flow graph of the proposed location tracking algorithm,

which uses the orientation of NodeB antennas, map, and timing information

as input (AMT).

Phase I processes the data measured by the radio network controllers and

calculates the temporary estimations (TEs). Phase II further refines these

estimated locations with a route mapping filter that uses OpenStreetMap

(meta)data, previously estimated positions (user history), and an estimated

mode of transportation as input.

6.5.3.1 Phase I: temporary estimation

The pseudo-code to calculate the temporary estimation of a mobile user,

residing on the cellular network, is shown in Algorithm 3 and the variables
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and steps are discussed with an example in the text below.

Algorithm 3: Calculating the temporary estimation.

Data: measurements reported by radio network controller
Result: temporary estimation (TE)

1 cellsc ← cell-id of the serving cell
2 locsc ← location of cellsc
3 αsc ← antenna orientation of cellsc
4 βsc ← opening angle of cellsc
5 pd← reported propagation delay
6 CAsc ← area bounded by circular arcs based on locsc, αsc, βsc, and

pd
7 circleSectors← empty list
8 JoinedMeasReport← measurement reports where α en β are

joined if same cell location // explained in text

9 for MR ∈ JoinedMeasReport do
10 cellnb ← cell-id of NodeB that reported MR
11 locnb ← location of cellnb
12 αnb ← antenna orientation of cellnb
13 βnb ← opening angle of cellnb
14 CSnb ← circle sector based on locnb, αnb, and βnb
15 add grid points within CSnb to circleSectors

16 GPMO ← grid points within CAsc with maximum occurrences in
circleSectors

17 TE ← median location of GPMO

Consider the example in Figure 6.13: a mobile user is located in the cen-

ter (yellow square), its serving NodeB (cellsc) is indicated with a green star

(locsc) and there are three other NodeBs (cellnb) for which there are signal

strength measurements (locnb indicated with red triangles). The antenna

orientations (αsc and αnb) of cell-IDs with measurements are indicated with

a red line. The other NodeBs in this area (without measurements in this

real example) are shown as gray triangles and the grid points are shown

as regular dots on top of the road network. The radio network controller

reports a propagation delay of 4 from the serving NodeB, which triggers a

new location update. This propagation delay corresponds to 1053 m, which

limits the possible locations to an area (CAsc) bounded by two circular

arcs with an opening angle (βsc) of 120◦ and radii of 936 m and 1170 m

(indicated in transparent green). The distance between both arcs is based

on the time granularity of 3G (780 ns corresponds to 234 m). The mea-

surement reports are linked to a propagation delay based on a window of

5 s since they are not reported at the exact same time instances, i.e., all
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Figure (b)

(a) Overview

(b) Detail

Figure 6.13: Working principle of proposed location tracking algorithm: phase I.
Mobile user (yellow square), NodeBs (gray triangles), serving NodeB (green star),
NodeBs with measurements (red triangles), antenna orientation (red lines), black
cross sign × (centroid estimation), black plus sign + (AMT estimation), CAsc

(green arc), and CSnb (blue circle sectors).
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measurements within the interval 2.5 s before and after the timestamp of

the propagation delay are taken into account. A window of 5 s resulted in

an average of 3.3 measurements that were linked to a propagation delay in

the experimental validation of Section 6.6.

Because the calculated distances based on the reported signal strengths

from the measurement reports are not reliable (Section 6.3.6), only the ori-

entation (αnb) and opening angle (βnb) of the antennas corresponding to

these measurements are used. These are retrieved by looking up the re-

ported cell-ID in the network topology, resulting in three additional circle

sectors (CSnb), indicated in transparent blue. The opening angle of the

sectors depends on the number of antennas and different orientations the

NodeBs have, and is equally divided between all orientations. The most

common case of three distinct and equally spread antenna orientations cor-

responds to an opening angle of 120◦ (similar to the different gray zones in

Figure 6.2a). If there are multiple measurements to one NodeB and the re-

ported cell-IDs correspond to antennas with different orientation, then both

measurements are merged (JoinedMeasReport) and a new circle sector is

used instead, i.e., the smallest area between both orientations. For exam-

ple, if there are measurements received on the antennas with directions 0◦

and 90◦ then the new circle sector would be the first quadrant (0◦ to 90◦)

instead of the area from -45◦ to 135◦ (Figure 6.2b). Because users that are

located just outside a circle sector could be picked up by the antenna, as is

visible in Figure 6.13 for the antenna on the bottom center, i.e., the yellow

square is not contained in the circle sector although the user is visible for

this antenna. A margin of 10◦ is added to the left and right side of a sec-

tor to solve this issue (Figure 6.13 shows the original sectors without the

additional margins).

The coloring of the grid points corresponds to the number of NodeBs

(cell-IDs) that are visible from this grid point (it is visible if a grid point

falls within the sector areas defined above). In this case, there are only 6

locations that satisfy all measurements, i.e., inside the propagation delay

area and in all three circle sectors (green and blue areas). The median

location of this set (GPMO) is the temporary estimation, indicated with a

black plus sign (+) in Figure 6.13.

If there is no overlap between the propagation delay area and the circle

sectors (green and blue areas) then the median location of the propagation

delay area is used as temporary estimation. The latter occurs in only 2%

of all location updates during the experimental validation (Section 6.6).

Using this approach results, for the depicted example, in an error of 132 m,

whereas the cell-ID approach would map the mobile user to the serving

NodeB (indicated with a green star), resulting in an error of 1103 m, and
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the centroid approach results in an error of 490 m (indicated with a black

cross ×).

6.5.3.2 Phase II: route mapping filter

These temporary estimations can be improved with a route mapping filter

if there are location updates available from a recent past (user history). For

example, a user on foot will travel far less than a user by bike or by car,

given a certain time interval. Furthermore, the most likely trajectory over a

certain time period can be reconstructed by making use of OpenStreetMap

(meta)data: road infrastructure (ways), maximum speed limits, one-way

street information, type of road, e.g., sidewalk, bike path, or highway, and

the user’s history. To take into account cars that are speeding and to avoid

that location estimations are lagging behind, the allowed speed limit (for

the reconstructed trajectory) can be increased by, e.g., 10% for each road

segment. This route mapping filter is based on the map matching algorithm

of Chapter 5 and is used to process the temporary estimation, which can be

seen as sparse GPS data points with more noise. The pseudo-code of the

adapted route mapping filter is shown in Algorithm 4 (the modifications

compared to Algorithm 2 are indicated in blue).

There are five main differences with Algorithm 2:

• The input are still geographic coordinates but are now temporary

estimations instead of raw GPS data.

• A location update is triggered every time the mobile network reports

measurements instead of based on a selection of geographic input co-

ordinates (Section 5.3.2).

• The mode of transportation (MoT) is not assumed to be fixed per

trajectory but can change in real-time, i.e., every time the serving cell

changes the MoT is re-estimated (Section 6.5.4).

• There is a differentiation between real-time (RT) and non-time-critical

(NTC) in the route mapping filter’s output (similar to Section 2.5.2).

For time-critical applications, the path that currently has the lowest

cost, is used as real-time location estimation at each time instance

(AMT-RT ). In this case, previous estimated locations will not be

corrected by future measurements, only the user’s current history is

taken into account. The non-time-critical location estimations (AMT-

NTC ), i.e., for applications that tolerate a certain delay, are calculated

when all measurements are processed or after a fixed delay, allow-

ing future measurement to correct previous estimated locations (Sec-

tion 6.6.3).
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Algorithm 4: Route mapping filter.

Data: temporary estimations (TE)
Result: most likely trajectory mapped on roads: AMT-RT

(real-time) and AMT-NTC (non-time-critical)
1 TE0 ← first temporary estimation
2 tprev ← first timestamp with measurements
3 MP ← 1000 // maximum paths in memory

4 pathsInMem← list with MP grid points closest to TE0 initialized
with cost 0

5 while new measurements do
6 t← current timestamp
7 ∆t← t− tprev
8 TE ← current temporary estimation
9 MoT ← (re-)estimated mode of transportation

10 pathsTemp← empty list
11 for path ∈ pathsInMem do
12 cost← current cost of path
13 PGP ← current endpoint of path (parent grid point)
14 RGP ← reachable grid points along roads with MoT within

time span ∆t starting from PGP
// calculate new path cost for each candidate

position (CP) based on distance, direction, and

code change penalty

15 for CP ∈ RGP do
16 RS ← road segments between PGP and CP
17 ED ← eucl dist(CP,GC) // Euclidean distance

18 DC ← penalty due to direction changes along RS
19 CC ← penalty due to code changes along RS
20 pathnew ← path+RS + CP
21 costnew ← cost+ α · ED + β ·DC + γ · CC
22 add (pathnew, costnew) to pathsTemp

23 pathsInMem← retain MP paths from pathsTemp based on
lowest cost
// current most likely position at time t

24 AMT-RTt ← endpoint of path with lowest cost
25 tprev ← t

26 AMT-NTC ← reconstruct trajectory along path with lowest cost in
pathsInMem
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• The grid size is set to 50 m instead of 10 m because the location error of

cellular network positioning is typically a couple orders of magnitude

larger than GPS-based tracking [21]. Furthermore, this increases the

processing speed and enlarges the covered area in the initialization

phase to recover from faulty first estimations, i.e., 1000 grid points

and a grid size of 50 m resulted in covered surfaces between 0.5 km2

and 2.4 km2 in the experimental validation of Section 6.6 (the exact

area depends on the density of the road network).

Figure 6.14 shows a detail of the locations before and after the route

mapping filter for the trajectory on foot in Ghent (Figure 6.4b). The tem-

porary estimations are indicated with green crosses and the final estimated

trajectory with blue dots. In Figures 6.4–6.8 only the final estimated tra-

jectory (blue dots) and ground truth (black line) are shown for clarity.

road network ground truth TE AMT-NTC

Figure 6.14: Detail of the estimated locations before and after the route mapping
filter: temporary estimations (green crosses) and final estimated trajectory (blue
dots). The road network and GPS trajectory are indicated in gray and black lines.

6.5.4 Mode of transportation estimator

The maximum allowed speed used by the route mapping filter can be re-

fined if the mode of transportation is correctly estimated, e.g., pedestrians

or cyclists will usually not move faster than 6 km/h or 30 km/h. In Chap-

ter 5, the mode of transportation could easily be derived from the GPS
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input data, which is accurate enough to give an indication of the maxi-

mum speed, but this is not the case for cellular network positioning. In this

chapter, the mode of transportation is estimated based on the rate and dis-

tance between serving cell handover zones, i.e., when a new NodeB becomes

the serving cell. When a handover takes place, the middle between both

NodeBs (estimated handover location) is saved together with the timestamp

the handover took place. The average speed between all estimated handover

locations that took place during a certain moving window, is used to label

the mode of transportation. A moving window of 10 min (5 min before and

after the location update) could be used for the non-time-critical route map-

ping filter but this is not possible for real-time applications (as no future

measurements are available). For this reason only the last 5 min (counting

backwards from the location update that is being calculated) are considered

to estimate the average speed. It is labeled as walking if it is below 10 km/h,

as cycling if it is between 10 km/h and 25 km/h, and otherwise as driving a

motorized vehicle. In the latter case, the route mapping filter will continue

to use the maximum allowed road speed for each segment. Although the

location updates (TEs) are more frequent and accurate than the estimated

handover locations, they show more fluctuations, which results in an overes-

timation of the average speed (Figure 6.14). For example, during the walk

in the city center of Ghent (Figure 6.4b), there are 232 location updates

whereas there are only 48 handovers, which result in an average estimated

speed of 25 km/h based on the location updates and 7 km/h based on the

estimated handover locations with a moving window of 5 min.

6.5.5 Particle Filter

An existing location tracking algorithm [7] based on a particle filter and

map information was implemented to validate the proposed route mapping

filter (Section 1.9.3). They used regression on drive test data to estimate

the probability distribution of an observation. Since drive test data is gen-

erally not available for a nationwide mobile network, the likelihood function

for the particles is modified to work with the temporary estimations as

input (similar to the proposed route mapping filter, ensuring a fair compar-

ison). This particle filter is configured with 2000 particles and the mean µ

and variance σ2 of the initial speed distribution are based on the mode of

transportation and the maximum allowed speed of the road segments under

consideration. Likewise, at each time step with measurements, the proposed

route mapping filter retains the 1000 paths with the lowest associated costs

in memory (MP in Algorithm 4).
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6.6 Experimental validation

The experimental validation is done in urban and rural environments, near

Ghent and Antwerp, with trajectories on foot, by bike, and by car, while a

user’s smartphone was used in standby and streaming mode, in the months

May and September 2017.

6.6.1 General

Figures 6.4 and 6.5 show the estimated positions with the proposed location

tracking algorithm as blue dots. The errors between the GPS ground truth

and estimated positions are indicated with a blue line. The ground truth

is defined as the GPS position, which is closest in time to the timestamp

from when the network received measurements that initiated the location

update. The GPS logging application takes 1 sample per second and is

mapped to the road network (which includes footpaths, paths for cycling,

and service roads), ensuring a sufficient time synchronization and accuracy

between the estimated positions and their ground truth.

Table 6.2 summarizes the mean, standard deviation, median, and 95th

percentile value of the accuracy for all scenarios (walking, cycling, and driv-

ing in urban and rural environments with a user’s smartphone in standby

and streaming mode).

The two basic algorithms are referred to as Cell-ID (Section 6.5.1) and

Centroid (Section 6.5.2). The first phase of the proposed location tracking

algorithm (without the route mapping filter) is referred to as TE (tem-

porary estimation). The location tracking algorithm with route mapping

filter, road speed limits, and mode of transportation estimation is referred

to as AMT, named after the used inputs: antenna orientation, map, and

timing information (phase II). To differentiate between the estimated loca-

tions that are available in real-time and those that are corrected by future

measurements, AMT-RT (real-time) and AMT-NTC (non-time-critical) are

used. The results based on the particle filter are included in Table 6.2 and

referred to as PF. The latitude and longitude coordinates from all NodeBs

in the mobile network, data from the GPS logging application, and Open-

StreetMap data are projected to the Belgian Lambert 72 coordinate system.

Consequently, the grid points and estimated locations are in the same plane

coordinate reference system. This enables the use of the Euclidean distance

between the estimated and actual position to define the accuracy. The total

number of location updates and the average time and distance between two

consecutive location updates are also included in Table 6.2. Figure 6.15

shows the median accuracy per scenario with the TE, PF, AMT-RT, and

AMT-NTC technique. The Cell-ID and Centroid approach are omitted to
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Description Algorithm µ [m] σ [m] 50th [m] 95th [m] #updates [-] Update time [s] Update distance [m]

Scenario 1 Cell-ID 410 287 342 1006

96 51 76

Environment urban Centroid 333 226 276 767
MoT foot TE 270 338 150 744
Length 8 km AMT-RT 150 95 125 351
Speed 5 km/h AMT-NTC 126 76 119 262
Smartphone standby PF 165 112 139 391
Scenario 2 Cell-ID 453 324 390 1042

234 21 32

Environment urban Centroid 349 240 292 791
MoT foot TE 205 208 151 517
Length 8 km AMT-RT 141 82 130 325
Speed 5 km/h AMT-NTC 128 82 115 303
Smartphone streaming PF 158 110 137 367
Scenario 3 Cell-ID 586 346 540 1127

48 32 150

Environment urban Centroid 426 270 407 923
MoT bike TE 246 223 172 611
Length 8 km AMT-RT 189 139 158 452
Speed 18 km/h AMT-NTC 132 83 119 296
Smartphone standby PF 193 122 160 486
Scenario 4 Cell-ID 380 238 305 880

55 26 127

Environment urban Centroid 277 169 226 644
MoT bike TE 187 254 150 384
Length 8 km AMT-RT 136 78 131 317
Speed 18 km/h AMT-NTC 122 80 112 301
Smartphone streaming PF 147 103 131 331
Scenario 5 Cell-ID 982 587 1030 2013

58 46 600

Environment urban Centroid 808 629 661 2013
MoT car TE 441 486 290 1589
Length 39 km AMT-RT 370 485 243 1311
Speed 47 km/h AMT-NTC 306 291 220 1012
Smartphone standby PF 471 425 372 1322
Scenario 6 Cell-ID 955 630 901 1989

91 33 411

Environment urban Centroid 780 549 645 1966
MoT car TE 382 398 257 1093
Length 39 km AMT-RT 336 431 241 844
Speed 47 km/h AMT-NTC 217 141 200 467
Smartphone streaming PF 427 439 273 1181
Scenario 7 Cell-ID 1937 1388 1764 4096

92 66 81

Environment rural Centroid 1269 983 1056 3389
MoT foot TE 559 577 433 1469
Length 8 km AMT-RT 336 268 276 955
Speed 5 km/h AMT-NTC 294 222 275 821
Smartphone standby PF 385 313 344 1176
Scenario 8 Cell-ID 2393 1310 2578 4096

37 36 196

Environment rural Centroid 1175 659 1100 2443
MoT bike TE 522 326 430 1309
Length 8 km AMT-RT 305 166 311 709
Speed 22 km/h AMT-NTC 268 127 243 491
Smartphone standby PF 391 208 389 778
Scenario 9 Cell-ID 1297 1131 972 3630

43 39 380

Environment rural Centroid 746 490 670 1803
MoT car TE 488 594 308 1385
Length 19 km AMT-RT 280 224 188 733
Speed 41 km/h AMT-NTC 188 186 129 589
Smartphone standby PF 401 357 280 904
Scenario 10 Cell-ID 1059 702 1021 3096

59 35 775

Environment highway Centroid 833 537 790 1851
MoT car TE 352 454 231 1224
Length 48 km AMT-RT 235 232 167 826
Speed 80 km/h AMT-NTC 138 92 122 277
Smartphone standby PF 395 341 283 1253

Average over all scenarios

Cell-ID 1045 694 984 2298

81 38 283
Centroid 700 475 612 1659

TE 365 386 257 1032
AMT-RT 248 220 197 682

AMT-NTC 192 138 165 482
PF 313 253 251 819

Table 6.2: Accuracy, number of positioning updates, and average time and dis-
tance between two consecutive location updates, per scenario and algorithm. TE:
temporary estimation (phase I), AMT-RT: real-time route mapping filter (phase
II), AMT-NTC: non-time-critical route mapping filter (phase II), PF: particle
filter.
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Figure 6.15: Median accuracy per scenario with the TE, PF, AMT-RT, and
AMT-NTC technique.

6.6.2 Comparison with other algorithms

It is immediately clear that the proposed location tracking algorithms out-

perform the classic Cell-ID and Centroid approach in all ten scenarios. The

particle filter [7] performs slightly worse than the proposed route mapping

filter (real-time and non-time-critical version) in scenarios 1–4 (trajectories

in urban areas on foot and by bike) and is significantly outperformed in sce-

narios 5–10. The main reason for this is that the time between two location

updates is variable and can be rather large (it ranges from 5 s to 6 min). In

the update step of the particle filter, a new state is sampled for all particles,

based on the previous state, current time, and a new random sample, and

are then mapped on the road network. This can cause large deviations if

the user’s real speed or direction changes in this time period, which can

happen multiple times during a sizeable measurement gap. The trajectories

done by car and the ones in rural areas are most affected by this, which can

even cause the particle filter to perform worse than TE (scenarios 5, 6, and

10).

In phase II of the AMT approach, i.e., route mapping filter (Section 6.5.3.2),

all possible locations that can be reached along the road network in this time

period are considered as candidate positions for the next location update

(given the paths in memory, estimated mode of transportation, maximum

speed limits, type of roads, and one-way street information). The median
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TE accuracy varies between 150 m and 433 m, and has an average improve-

ment, over all scenarios, of 68% and 55% compared to the Cell-ID and

Centroid approach, respectively. The median PF accuracy varies between

131 m and 389 m, and has an average improvement, over all scenarios, of

69%, 56%, and 2% compared to the Cell-ID, Centroid, and TE approach

respectively. The median AMT-RT accuracy varies between 125 m and

311 m, and has an average improvement, over all scenarios, of 74%, 64%,

20%, and 18% compared to the Cell-ID, Centroid, TE, and PF approach,

respectively. The median AMT-NTC accuracy varies between 112 m and

275 m, and has an average improvement, over all scenarios, of 78%, 69%,

33%, 31%, and 16% compared to the Cell-ID, Centroid, TE, PF, and AMT-

RT approach, respectively. The mean accuracies, standard deviations, and

95th percentile values show similar improvements.

The largest relative improvements compared to the reference algorithms

are achieved with the trajectory on the highway (scenario 10). The median

accuracy improves by 88% (from 1021 m to 122 m) compared to the Cell-

ID approach, by 85% (from 790 m to 122 m) compared to the Centroid

approach, and by 57% (from 283 m to 122 m) compared to the PF approach.

The most accurate results reported in the state-of-the-art processing

techniques from Section 6.2 are better than the results in this work (accu-

racies up to 20 m [7], 30 m [15], and 50 m [14]) but these are achieved with

simulated data, large training sets, which are not feasible for nationwide de-

ployments, optimal environments, crowd-sourced measurement campaigns,

and forced location update rates. However, applying the processing tech-

nique from [7] (particle filter with map information) on the validation data

of Section 6.6 resulted in worse accuracies but gives a realistic idea of the

achievable performance without crowd-sourcing or modifications to the net-

work or mobile side (PF in Table 6.2).

6.6.3 Non-time-critical vs. real-time

The non-time-critical version of the route mapping filter (AMT-NTC ), that

takes into account all measurements at once, can also work with a smaller

delay (instead of at the end of a trajectory). Previously predicted locations

can be corrected by multiple future measurements but the impact tends to

decrease as more time has passed between the previous update and those

future measurements. For the experimental validation this time period is

8 min; taking into account additional future measurements does not further

improve the overall accuracy. Even with only 2 min of future measurement

data, the mean and median overall accuracy are already 200 m and 174 m

(compared to 192 m and 165 m if all future measurements are taken into

account). This means that if a time delay of 2 min is allowed for the
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intended application, the overall mean accuracy can already be improved

by 19% compared to the real-time algorithm (AMT-RT ).

6.6.4 Impact of environment

The highest accuracies are achieved for the scenarios in an urban environ-

ment with trajectories on foot or by bike (scenarios 1–4). For example, the

trajectory by bike in the city center of Ghent with a smartphone in stream-

ing mode (scenario 4) has a mean, standard deviation, median, and 95th

percentile value of to 122 m, 80 m, 112 m, and 301 m, respectively. These

better accuracies are mainly due to the higher base station density, which is

typical in urban environments. This ensures that the serving base stations

have smaller separations and hence this limits the possible grid points be-

cause of the lower propagation delays, i.e., the green sector in Figure 6.13

will cover a smaller area. When driving a car, the absolute accuracy in

urban environments is worse than in rural scenarios. For example, the im-

provements between two trajectories by car in an urban (scenario 5) and

rural environment (scenario 9), are 63% (306 m to 188 m), 56% (291 m

to 186 m), 71% (220 m to 129 m), and 72% (1012 m to 589 m), for the

mean, standard deviation, median, and 95th percentile value, respectively.

This is due to the sparser road network in rural areas, which increase the

chance that the route mapping filter selects the correct road segments as

most likely. The trajectory on the highway (scenario 10) is accurately re-

constructed because the roads surrounding the highway have lower speed

limits causing these (incorrect) candidate paths to lag behind and eventu-

ally be discarded in the route mapping algorithm. Note that this is only

true if there is no traffic congestion.

6.6.5 Impact of smartphone usage

The shortest location update time or highest update rate occurs when a

user is walking in an urban environment while actively using his or her

smartphone, i.e., through an application that sends or receives data over

the mobile network on a regular basis (scenario 2). In this case, there are

234 updates during the entire trajectory, which corresponds to a location

update every 21 s or every 32 m on average. Note that the update rate

for this best case scenario is not as high as most positioning algorithms for

cellular networks are validated on. Location update rates of 0.5 s [12] and

10 s [7] are reported in related work, by using forced messages or synthesized

validation data. These can thus be considered as not being realistic. Three

trajectories are traveled for both smartphone usage modes (scenarios 1–6).

The trajectories in an urban environment on foot and by bike are identical
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and yield similar performances for the streaming and standby mode (sce-

narios 1–4). The higher location update rate has a negligible impact due to

the limited speed for these modes of transportation. The trajectory by car

shows a significant improvement for higher location update rates (standby

vs. streaming). The accuracy improves by 41% (306 m to 217 m), 106%

(291 m to 141 m), 10% (220 m to 200 m), and 117% (1012 m to 467 m), for

the mean, standard deviation, median, and 95th percentile value, respec-

tively.

6.6.6 Impact of mode of transportation

The trajectories done on foot and by bike yield similar accuracies as long as

the environment is the same. The trajectories done by car perform worse

in urban environments but better in rural environments as discussed in

Section 6.6.4. It is to be noted that the proposed MoT estimator achieved

an accuracy of 78% when a moving window of the last 5 min was used.

Although this accuracy could be improved on the validation data by using

a longer window, this will not always be the case, e.g., if the MoT changes

during a scenario from walking to biking, a shorter window is recommended

to detect the changes more quickly. Furthermore, the overall mean and

median accuracy remained similar (192 m and 165 m vs. 183 m and 164 m)

if the route mapping filter was provided with the correct MoT at each

location update. This is because a wrong MoT estimation for a location

update does not automatically result in a worse accuracy, e.g., when it is

erroneously labeled as cycling while the user was actually driving at a slow

speed due to traffic congestion.

6.7 Conclusion

In this chapter, a technique for outdoor location tracking of all mobile users

residing on a cellular network, is presented. The proposed approach does

not depend on GPS or prior training data and does not require any cooper-

ation on the mobile side or changes to the network side. The topology and

available measurements of a cellular network are used as input for the pro-

posed AMT algorithm (named after antenna, map, and timing information).

An additional route mapping filter is applied to ensure realistic, physically

possible, trajectories. The inputs for this route mapping filter are the user’s

location history, enriched open map data (road infrastructure, maximum

speed limits, type of road, and one-way street information), and a mode

of transportation estimator to improve the assumed corresponding maxi-

mum speed. The novel AMT location tracking algorithm is implemented
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in Apache Spark to support fast cluster-computing, runs completely on the

network side, is confirmed to execute in real-time for more than a million

users in parallel, and outperforms state-of-the-art particle filters. The ex-

perimental validation is done in urban and rural environments, near Ghent

and Antwerp, with trajectories on foot, by bike, and by car, while a user’s

smartphone was used in standby and streaming mode. Best performances

were obtained in urban environments with median accuracies up to 112 m.

It is shown that the mode of transportation, smartphone usage, and envi-

ronment impact the accuracy and that the proposed AMT location tracking

algorithm is more robust and outperforms existing techniques with relative

improvements up to 88%, 85%, and 57% compared to a cell-ID, a centroid,

and a particle filter with map information based location tracking technique,

respectively.
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Chapter 7

Conclusions and future
work

This final chapter presents the overall conclusions based on the accom-

plished work in this dissertation, and proposes some opportunities for future

research.

7.1 Conclusions

The focus of this dissertation was on indoor and outdoor location tracking

systems with an emphasis on signal strength based systems, human body

shadowing, radio map optimization, outdoor map matching, lane detection,

and cellular networks.

Chapter 2 presented a real-time indoor location tracking system based

on the Viterbi principle and semantic data. The system was evaluated

by both simulations and an extensive experimental validation in a real of-

fice environment. The simulations confirmed that the proposed location

tracking system was more robust against measurement noise, especially for

networks with smaller node densities, e.g., a simulated noise level of 10 dB

resulted in improvements of 70.9%, 52.8%, 54.1%, and 42.1% in mean accu-

racy compared to a fingerprinting technique, Kalman filter, particle filter,

and particle smoother, respectively. In the experimental validation, an av-

erage median accuracy below 2 m was obtained over nine test trajectories

with a total length of 783 m, in an office building that has 57 nodes and

measures 90 m by 17 m (covering over 1500 m2). Furthermore, it was shown

that the grid size has a huge impact on the execution time, required compu-

tational power, and memory usage, which is important to work in real-time

on low cost portable devices.
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Chapter 3 presented novel techniques to reduce the effects of human

body shadowing on a tracking algorithm’s performance. Two methods are

found to be effective: the first one combines multiple mobile tags and the

second one compensates explicitly for the human body shadowing caused

by the user that is being tracked. Both methods can be independently com-

bined, resulting in the most accurate performance. The first approach ex-

ploits the measured signal strengths from multiple mobile nodes, placed on

different parts of a human body. Combining their measured signal strengths

allows reducing the variation caused by the user’s body and hence limits its

influence. The second method used a compensation model based on three-

dimensional electromagnetic simulations with a human phantom and relies

on the orientation of a user’s tag towards the infrastructure nodes. Using

three instead of one body-worn tag resulted in a mean accuracy improve-

ment of 31.1%, in an office building that has 48 nodes and measures 90 m

by 17 m (covering over 1500 m2). Compensating for the user’s orientation,

further improved this result with 10.0%.

Chapter 4 presented an unsupervised learning technique to construct

and optimize model-based radio maps or fingerprint databases for indoor

positioning systems, e.g., to make the radio map more accurate or to au-

tomatically cope with changes in an office layout. The proposed technique

does not rely on time-consuming measurement campaigns, device calibra-

tions, or additional inertial measurement units, that are power consuming.

Instead, it used an initial radio map based on a theoretical path loss model,

unlabeled training data, a self-calibration method, and a route mapping

filter. The premise of this approach was that the differences between real

measurements and reference values, derived from a model-based radio map,

tend to be correlated per room and access point. It was shown by measure-

ments and simulations that the discrepancies between reference fingerprints

and real measurements could be learned in various scenarios, based on the

random walks by a typical person. An experimental validation on a testbed

in a large office building, measuring 41 m by 27 m (covering over 1100 m2)

and that has 35 nodes, confirmed the simulations. The highest relative

improvement was 28.6% after unsupervised learning with only 15 min of

unlabeled training data.

Chapter 5 presented a fast, memory-efficient, and worldwide map match-

ing algorithm based on raw geographic coordinates and enriched open map

data. The proposed algorithm combined the Markovian behavior and the

shortest path aspect while taking into account the type and direction of all

road segments, information about one-way traffic, maximum allowed speed

per road segment, and driving behavior. Furthermore, a lane detection algo-

rithm based on accelerometer readings and traffic lane information from the
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open map data, that self-adapts to different driving behaviors, was added

on top of the map matching algorithm. An experimental validation consist-

ing of 12 trajectories on foot, by bike, and by car, showed the efficiency and

accuracy of the proposed algorithms. The average F1-scores and median

errors of the map matching algorithm were 99.1 % and 2.24 m, 99.5 % and

1.88 m, and 100.0% and 2.16 m, for the walks, bike rides, and car routes,

respectively. Two trajectories with accelerometer data were used to evalu-

ate the lane detection algorithm with F1-scores of 98.2% and 75.1% for the

lane change detection, which resulted in the correctly estimated lane 99.2%

and 86.8% of the time.

Chapter 6 presented a technique for outdoor location tracking of all mo-

bile users residing on a cellular network. The proposed approach does not

depend on prior training data and does not require any cooperation on the

mobile side or changes to the network side. The topology and available mea-

surements of a cellular network were used as input for the proposed AMT

algorithm (named after antenna, map, and timing information). The map

matching filter of Chapter 5 is applied to ensure realistic, physically pos-

sible, trajectories. The experimental validation is done in urban and rural

environments, near Ghent and Antwerp, with trajectories on foot, by bike,

and by car, while a user’s smartphone was used in standby and streaming

mode. It was shown that the mode of transportation, smartphone usage,

and environment impact the accuracy and that the proposed AMT location

tracking algorithm was more robust and outperformed existing techniques

with relative improvements up to 88%, 85%, and 57% compared to a cell-

ID, a centroid, and a particle filter with map information based location

tracking technique, respectively.

7.2 Future work

Directions for future work are to study the effect of different indoor en-

vironments, e.g., offices with a narrow layout, industrial rooms, or open

indoor hall spaces, on the performance of the proposed location tracking

algorithms. Moreover, the impact of test and training data with multiple,

simultaneously active users, with different mobile devices and mobility pat-

terns, covering multiple floors, and the influence of access point location

uncertainty can be looked into. Furthermore, different ranging techniques

can be combined, e.g., RSS, AoA, and TDoA, to acquire a more robust and

accurate performance. Another interesting direction is to assess the impact

of walking behavior and human morphologies on the body shadowing com-

pensation models and to apply the approach on objects by adapting the

compensation models. Future work on the topic of radio map maintenance,
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is to experimentally verify the ability to recover from physical changes in the

environment and the effect of the proposed unsupervised learning technique

on measurement-based fingerprint databases. Although the map matching

algorithm has support for worldwide geographic data, it would be good to

evaluate the performance in different geographic areas to gain insight in

the effect of national road network patterns and topographies. Lastly, the

proposed cellular location tracking algorithm can be adapted and applied

to 4G LTE and 5G mobile networks, where further improvements are ex-

pected thanks to the more accurate timing information and the higher node

densities.
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