34 research outputs found

    Strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection without thermal diffusion

    Get PDF
    We are concerned with the Cauchy problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in R2\mathbb{R}^2. We show that there exists a unique local strong solution provided the initial density, the magnetic field, and the initial temperature decrease at infinity sufficiently quickly. In particular, the initial data can be arbitrarily large and the initial density may contain vacuum states

    Stability near hydrostatic equilibrium in fluid mechanics

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Matemáticas. Fecha de lectura: 29-03-201

    EQUADIFF 15

    Get PDF
    Equadiff 15 – Conference on Differential Equations and Their Applications – is an international conference in the world famous series Equadiff running since 70 years ago. This booklet contains conference materials related with the 15th Equadiff conference in the Czech and Slovak series, which was held in Brno in July 2022. It includes also a brief history of the East and West branches of Equadiff, abstracts of the plenary and invited talks, a detailed program of the conference, the list of participants, and portraits of four Czech and Slovak outstanding mathematicians

    Advanced Fluid Dynamics

    Get PDF
    This book provides a broad range of topics on fluid dynamics for advanced scientists and professional researchers. The text helps readers develop their own skills to analyze fluid dynamics phenomena encountered in professional engineering by reviewing diverse informative chapters herein

    Mathematical Modelling of Energy Systems and Fluid Machinery

    Get PDF
    The ongoing digitalization of the energy sector, which will make a large amount of data available, should not be viewed as a passive ICT application for energy technology or a threat to thermodynamics and fluid dynamics, in the light of the competition triggered by data mining and machine learning techniques. These new technologies must be posed on solid bases for the representation of energy systems and fluid machinery. Therefore, mathematical modelling is still relevant and its importance cannot be underestimated. The aim of this Special Issue was to collect contributions about mathematical modelling of energy systems and fluid machinery in order to build and consolidate the base of this knowledge

    THERMAL LATTICE BOLTZMANN TWO-PHASE FLOW MODEL FOR FLUID DYNAMICS

    Get PDF
    This dissertation presents a systematic development of a new thermal lattice Boltzmann multiphase model. Unlike conventional CFD methods, the lattice Boltzmann equation (LBE) method is based on microscopic models and mesoscopic kinetic equations in which the collective behavior of the particles in a system is used to simulate the continuum mechanics of the system. Due to this kinetic nature, the LBE method has been found to be particularly useful in applications involving interfacial dynamics and complex boundaries, e.g. multiphase or multicomponent flows. First, the methodology and general concepts of the LBE method are introduced. Following this introduction, an accurate mass conserving wall boundary condition for the LBE method is proposed together with benchmark test results. Next, the widely used Shan and Chen (SC) single component two-phase flow model is presented, as well as improvements to that model. In this model, by incorporating fluid-fluid interaction, phase separation and interfacial dynamics can be properly captured. Sharp interfaces between phases can be easily obtained without any additional numerical treatment. In order to achieve flexibility for the surface tension term, an additional force term which represents the contribution of surface tension is incorporated into the fluid-fluid interaction force term. The validity of this treatment is verified by our simulation results. Different equations of state are also incorporated into this model to compare their behavior. Finally, based on the SC model, a new and generalized lattice Boltzmann model for simulating thermal two-phase flow is described. In this model, the SC model is used to simulate the fluid dynamics. The temperature field is simulated using the passive-scalar approach, i.e. through modeling the density field of an extra component, which evolves according to the advection-diffusion equation. By coupling the fluid dynamics and temperature field through a suitably defined body force term, the thermal two-phase lattice Boltzmann model is obtained. Our simulation results show that different equations of state, variable wettability, gravity and buoyancy effects, and relatively high Rayleigh numbers can be readily simulated by this new model. Lastly, the accomplishments of this study are summarized and future perspectives are provided
    corecore