
COMPUTATIONAL MODELLING OF TURBULENT

MAGNETOHYDRODYNAMIC FLOWS

A THESIS

SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY (PHD)
IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

DEAN ROBERT WILSON

SCHOOL OF MECHANICAL, AEROSPACE AND CIVIL ENGINEERING

2016



2



CONTENTS

List of Figures 6

List of Tables 17

List of Publications 19

Abstract 23

Declaration 25

Copyright 27

Acknowledgements 29

Nomenclature 31

1 Introduction 37
1.1 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.2 Some basic MHD principles . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3 Computational fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . 41
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.5 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 Literature review 45
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Closed channel flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.1 Uniform magnetic fields . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2 Non-uniform magnetic fields . . . . . . . . . . . . . . . . . . . . 57

2.3 Rayleigh-Bènard convection . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.1 Vertical magnetic field . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.2 Horizontal magnetic field . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Convection in other configurations . . . . . . . . . . . . . . . . . . . . . 69
2.4.1 Subject to a magnetic field and rotation . . . . . . . . . . . . . . 69

3



CONTENTS

2.4.2 Convection with a horizontal temperature gradient . . . . . . . . 69

2.5 Selected further applications . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5.1 The magnetic dynamo . . . . . . . . . . . . . . . . . . . . . . . 72

2.5.2 Targeted drug delivery . . . . . . . . . . . . . . . . . . . . . . . 74

2.5.3 Material processing . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.4 Electromagnetic flow control . . . . . . . . . . . . . . . . . . . . 76

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Governing equations 81
3.1 Hydrodynamics and heat transfer . . . . . . . . . . . . . . . . . . . . . . 82

3.1.1 Navier-Stokes equation . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.2 Reynolds averaging . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.3 Buoyancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.2 Ohm’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.3 Lorentz force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.4 Relativistic considerations . . . . . . . . . . . . . . . . . . . . . 89

3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3.1 Transport equation for B . . . . . . . . . . . . . . . . . . . . . . 92

3.3.2 Low Rem approximation . . . . . . . . . . . . . . . . . . . . . . 93

3.3.3 Statement of equations . . . . . . . . . . . . . . . . . . . . . . . 95

4 Turbulence modelling 97
4.1 Characteristics of turbulent flows . . . . . . . . . . . . . . . . . . . . . . 98

4.1.1 Spectral view of turbulence and the energy cascade . . . . . . . . 98

4.1.2 MHD turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Overview of solution strategies . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.1 Direct Numerical Simulation . . . . . . . . . . . . . . . . . . . . 104

4.2.2 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.3 Solution of the Reynolds-averaged Navier-Stokes equation . . . . 105

4.3 Stress-transport models . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.1 Basic second-moment closure . . . . . . . . . . . . . . . . . . . 109
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ABSTRACT
COMPUTATIONAL MODELLING OF TURBULENT

MAGNETOHYDRODYNAMIC FLOWS

The study of magnetohydrodynamics unifies the fields of fluid mechanics and electrody-
namics to describe the interactions between magnetic fields and electrically conducting
fluids. Flows described by magnetohydrodynamics form a significant aspect in a wide
range of engineering applications, from the liquid metal blankets designed to surround
and remove heat from nuclear fusion reactors, to the delivery and guidance of nanoparti-
cles in magnetic targeted drug delivery. The ability to optimize these, and other, processes
is increasingly reliant on the accuracy and stability of the numerical models used to pre-
dict such flows. This thesis addresses this by providing a detailed assessment on the per-
formance of two electromagnetically extended Reynolds-averaged Navier-Stokes models
through computations of a number of electromagnetically influenced simple channel and
Rayleigh-Bènard convective flows.

The models tested were the low-Re k − ε linear eddy-viscosity model of Launder and
Sharma (1974), with electromagnetic modifications as proposed by Kenjereš and Han-
jalić (2000), and the low-Re stress-transport model of Hanjalić and Jakirlić (1993), with
electromagnetic modifications as proposed by Kenjereš and Hanjalić (2004). First, a
one-dimensional fully-developed turbulent channel flow was considered over a range of
Reynolds and Hartmann numbers with a magnetic field applied in both wall-normal and
streamwise directions. Results showed that contributions from the electromagnetic modi-
fications were modest and, whilst both models inherently captured some of the reduction
in mean strain that a wall-normal field imposed, results from the stress-transport model
were consistently superior for both magnetic field directions. Then, three-dimensional
time-dependent Rayleigh-Bènard convection was considered for two different Prandtl
numbers, two different magnetic field directions and over a range of Hartmann numbers.
Results revealed that, at sufficiently high magnetic field strengths, a dramatic reorganiza-
tion of the flow structure is predicted to occur. The vertical magnetic field led to a larger
number of thinner, more cylindrical plumes whilst the horizontal magnetic field caused
a striking realignment of the roll cells’ axes with the magnetic field lines. This was in
agreement with both existing numerical simulations and physical intuition.

The superior performance of the modified stress-transport model in both flows was at-
tributed to both its ability to provide better representation of stress generation and other
processes, and its ability to accommodate the electromagnetic modifications in a more
natural, and exact, fashion. The results demonstrate the capabilities of the stress-transport
approach in modelling MHD flows that are relevant to industry and offer potential for
those wishing to control flow structure or levels of turbulence without recourse to me-
chanical means.

Dean Robert Wilson
DOCTOR OF PHILOSOPHY (PHD)

2016
THE UNIVERSITY OF MANCHESTER
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NOMENCLATURE

A Lumley’s two-component stress (‘flatness’) parameter,A = 1−9
8

(A2 − A3)

A2 second invariant of stress anisotropy, A2 = aijaji

A3 third invariant of stress anisotropy, A3 = aijajkaki

Aij mean velocity gradient tensor, Aij = ∂Ui/∂xj

aij Reynolds-stress anisotropy tensor, aij = uiuj/k − 2
3
δij

B0 characteristic magnetic flux density

Bi, B magnetic flux density

c speed of light

cµ coefficient in eddy-viscosity formula

Dk total diffusion of k

Dij total diffusion of uiuj

Dνij molecular diffusion of uiuj

Dpij turbulent diffusion of uiuj by pressure fluctuations

Dtij turbulent diffusion of uiuj by velocity fluctuations

E integration constant in log-law

E two-component-limit parameter for dissipation tensor,E = 1−9
8

(E2 − E3)

E2 second invariant of eij , E2 = eijeji

E3 third invariant of eij , E3 = eijejkeki

Ei, E electric field
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NOMENCLATURE

ei fluctuating electric field

eij stress dissipation-rate anisotropy tensor, eij = εij/ε− 2
3
δij

F̃i, Fi, fi instantaneous, mean and fluctuating body force in index notation

Fk production of k due to all body forces

Fij production of uiuj from all body forces

F bij direct buoyant contribution to uiuj budget

fµ near-wall damping term in eddy-viscosity formula

fw wall damping function

g acceleration due to gravity

gi, g gravitational vector

I electric current

Ji, J electric current density

k turbulent kinetic energy, k = 1
2
uiui

kα thermal conductivity

L characteristic length scale

ni, n wall-normal unit vector

P̃i, Pi, pi instantaneous, mean and fluctuating pressure

Pk production of k due to mean velocity gradients

Pij stress production due to mean strain

Q Q-criterion of Hunt et al. (1988), Q = 1
2

(ΩijΩij − SijSij)

Q charge (only in Chapter 3)

Sij mean rate of strain tensor, Sij = 1
2

(∂Ui/∂xj + ∂Uj/∂xi)

S surface area vector

t time

U ,V ,W Cartesian components of mean velocity

Ũi, Ui, ui instantaneous, mean and fluctuating velocity vector in index notation
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NOMENCLATURE

U velocity vector

U∗ mean velocity in log-law, U∗ = ρU
√
k/τw

U+ mean velocity non-dimensionalized with friction velocity, U+ = U/Uτ

U0 characteristic velocity scale

Uτ friction velocity,
√
τw/ρ

Ub bulk velocity

uiuj Reynolds stress tensor

uiθ turbulent heat flux

V volume

Wb buoyant velocity scale, Wb =
√
gβ∆ΘL

x, y, z cartesian coordinates

xi, x cartesian coordinates in index and vector notation

y wall distance

y+ non-dimensionalized wall distance, y+ = Uτy/ν

y+
ν non-dimensional thickness of viscous sub-layer

α thermal diffusivity

β volumetric thermal expansion coefficient

Γ generic diffusivity of general variable

δ channel half-width

δij Kronecker delta unit symbol

ε dissipation rate of the turbulent kinetic energy, k

ε̃ ‘quasi-homogeneous’ dissipation rate of k

εij stress dissipation rate tensor

εijk Levi-Civita third rank alternating

ε0 permittivity of free space
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η magnetic diffusivity, η = (µ0σ)−1

Θ̃, Θ, θ instantaneous, mean and fluctuating temperature

Θ0 reference or characteristic temperature

κ von Karman constant in log-law, κ ≈ 0.41

µ molecular viscosity

µt turbulent (eddy) viscosity

µ0 permeability of free space, defined as µ0 = 4π × 10−7 N A−2

ν kinematic molecular viscosity

ρ fluid density

ρ0 reference fluid density

ρq charge density

Φij pressure-strain correlation in the uiuj equation

σ electrical conductivity

σk turbulent Prandtl number

τw wall shear stress

τij viscous stress tensor

φ̃, φ, φ′ instantaneous, mean and fluctuating electric potential

Φg gravitational potential

ψ̃, Ψ, ψ general variable: instantaneous, mean and fluctuation

Ωij mean rate of rotation tensor, Ωij = 1
2

(∂Ui/∂xj − ∂Uj/∂xi)
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NOMENCLATURE

Acronymns

CDS Central Differencing Scheme

CFD Computational fluid dynamics

DNS Direct Numerical Simulation

EMF Electromotive force

FVM Finite Volume Method

GGDH Generalized Gradient Diffusion Hypothesis

IP Isotropization of Production

LES Large Eddy Simulation

LEVM Linear Eddy Viscosity model

MHD Magnetohydrodyanmics

QUICK Quadratic Upstream Interpolation for Convection Kinematics

RANS Reynolds-averaged Navier-Stokes

RSM Reynolds stress model

SIMPLE Semi-Implicit Method for Pressure-Linkage Equations

UMIST Upstream Monotonic Interpolation for Scalar

Dimensionless Numbers

Ha Hartmann number Ha = B0L

√
σ

µ

N Interaction parameter N =
σB2

0L

ρU0

Pr Prandtl number Pr =
ν

α

Ra Rayleigh number Ra =
gβ∆ΘL3

να

Re Reynolds number Re =
ρU0L

µ

Rem magnetic Reynolds number Rem =
U0L

η

Reτ Reynolds number based on friction
velocity

Reτ =
UτL

ν
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CHAPTER

ONE

INTRODUCTION

Magnetohydrodynamics (MHD) is the study of the dynamics between electrically con-
ducting fluids and magnetic fields. It unifies the fields of electrodynamics and fluid me-
chanics to describe the concurrent effects of both the magnetic field on the fluid flow, and
the fluid flow on the magnetic field. These flows form a significant aspect in many engi-
neering applications, from large scale astrophysical and geophysical processes, including,
for example, the generation of the Earth’s magnetic field through turbulent motions in its
core, to energy generation, where magnetic plasma confinement is hoped to lead to con-
trolled nuclear fusion. This chapter begins in Section 1.1 by providing a brief history of
the topic alongside an introduction to some of the basic phenomena of MHD flows in
Section 1.2. Following this, Section 1.3 introduces the modelling approach employed in
this thesis and the range of cases to which it has been applied. Finally, Section 1.4 states
the main objectives of the current work and Section 1.5 closes the chapter by providing
an outline for the rest of the thesis.
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1.1 A brief history

Magnetohydrodynamics arguably has its roots in the early 19th century, when Michael Fara-
day (1832) noted an electrically conducting material experienced an electromotive force
(EMF) when it moved in the presence of a magnetic field. Noting that seawater is weakly
conductive, he supposed that the motion of a large body of water through the Earths mag-
netic field should generate a measurable electric current. Unfortunately, his efforts to
measure this, which included running a length of copper wire across the River Thames at
Waterloo bridge, were not successful, but he remarked that a larger body of water, like
the English Channel, should provide a more measurable effect. Fortunately for Faraday,
gratification came via a conversation with C. Wollaston in 1851, who had asked Faraday
to explain why he measured an EMF, in phase with tidal movements, in a submarine cable
across the English Channel. Wollaston recalled Faraday’s excitement (Wollaston, 1881)
when, after showing his data, Faraday exclaimed “Oh beautiful, beautiful” and promptly
showed Wollaston the book predicting its effect 20 years earlier.

Despite these early advances by Faraday, it was not until the late 1930’s and early 1940’s
that interest in MHD began to significantly progress. Julius Hartmann, a Danish engineer,
invented the electromagnetic pump in 1918 but could not explain why it was so inefficient.
He later undertook some of the first systematic theoretical and experimental studies of
how the flow of mercury was affected by the presence of a magnetic field (Hartmann and
Lazarus, 1937). He termed this the study of “Hg-dynamics”; a name that evidently did not
stick, but his work endowed engineers with both the first real insights into how magnetic
fields would affect velocity distributions and the first detailed sets of experimental data.

Perhaps the most prominent landmark in MHD, however, was the suggestion by Hannes
Alfvén in a 1942 Nature publication that the interplay between electromagnetic fields and
an electrically conducting plasma would lead to “electromagnetic-hydromagnetic” or, as
he would later call them, “magnetohydrodynamic” waves. These waves, subsequently
confirmed by experiments and which now bear his name, led to periods of intense re-
search into the effects of magnetic fields in plasma physics and astrophysics. Efforts to
harness nuclear fusion as a means of power production then began after World War II
and designs centered on utilizing magnetic fields to control and confine plasma within a
toroidal shaped vessel (known as a Tokamak). The intense heat which was expected to be
generated by fusion reactions generated further engineering challenges for MHD. Liquid
lithium is a primary candidate for use as a coolant, since it can function to both remove
heat and breed tritium (a fuel component), but the motion of this, as an electrically con-
ducting fluid, within the vicinity of the reactor would be heavy influenced by the intense
magnetic field required for plasma confinement. Research into these concepts and issues
has only intensified since.
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It was not long until other areas picked up on the intriguing effects that a magnetic field
could bring. The 1980’s saw magnetic fields beginning to be used in the processing of
metals. Indeed, materials processing still today forms one of the main engineering ap-
plications of MHD. Metallic materials are regularly stirred, levitated and heated using
magnetic fields as metallurgists seek ways to increase purity, improve properties and in-
flate commercial revenues (Davidson, 1999). The mere ability to control conducting flows
via non-mechanical means, whether it be to induce a flow that was not present prior or to
damp a flow which is present but not desired, offers great potential across a wide range
of engineering devices and concepts. Research today focuses not just on the optimiza-
tion of existing techniques and improvement of prediction tools, but also in more novel
application areas, including targeted drug delivery and electromagnetic flow control.

1.2 Some basic MHD principles

Before delving into the thesis proper it will be prudent to highlight some of the interac-
tions which form the backbone of engineering MHD. As Faraday has already highlighted
above, basic MHD phenomena arises from the relative motion, spatial or temporal, be-
tween an electrically conducting fluid and a magnetic field. Once this is established, then
an electromotive force is generated which, provided a suitable path exists, will cause a
flow of electric current. Once there is a flow of current, there are two observable conse-
quences;

I An additional magnetic field appears, associated with the induced currents, which
serves to perturb the original (or source) magnetic field.

II An electromagnetic force appears (the Lorentz force), which results from an interac-
tion between the induced currents and the total magnetic field (original plus induced).
This serves to perturb the original motion which generated the currents.

Thus, there is clearly some mutual interaction between the fluid velocity and the elec-
tromagnetic field. The motion of the fluid affects the magnetic field (through I) and the
magnetic field affects the motion of the fluid (through II). The first effect will be familiar
to those who attempted to measure the magnetic field generated by a current carrying wire
in school; charges in motion will produce a magnetic field. The second is a consequence
of the fact that a charged particle which moves with respect to an electromagnetic field
experiences a force. This force is directed perpendicular to both the motion and the di-
rection of the magnetic field. To help illustrate the interplay between these two fields,
consider the following example adapted from Roberts (1967a).

The mechanism depicted in Figure 1.1 is called a homopolar dynamo and was originally
conceived by Faraday. It comprises a solid conducting disk which is free to rotate about
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CHAPTER 1. INTRODUCTION

Figure 1.1: The homopolar dynamo. From Roberts (1967a).

an axle (AA′). A magnetic field B0 is applied such that it cuts the plane of the disk
everywhere. If a torque is applied to the axle, such that the disk moves with an angular
velocity Ω, then free charges will move with the disk, with velocity u in a direction
as shown in Figure 1.1a. Since they are moving with respect to a stationary magnetic
field, they experience the Lorentz force. This is given by u×B0 and is directed towards
the periphery of the disk P . Positive charges will thus begin to accumulate around the
periphery of the disk, negative charges will accumulate at N (and along the axle AA′),
and the result is the existence of a potential difference.

If the circuit is completed by adding a stationary wire connected to the disk and axle
via sliding brushes, as in Figure 1.1b, then the potential difference will cause an electric
current I to flow. This current will, in accordance with Ampere’s law, produce its own
magnetic field in a direction given by the right hand screw rule. This is indicated by b. If
the wire is then rearranged such that it forms a loop about the disk, like in Figure 1.1c, the
direction of the magnetic field b is such that the total magnetic field cutting the plane of
the disk is nowB = B0 +b. Thus the motion u has caused an additional magnetic field b
to appear which perturbed our original magnetic fieldB0. Evidently the magnitude of the
generated magnetic field will depend on the magnitude of the current, which will depend
on the angular velocity of the disc. This was the first of the two observable consequences
highlighted earlier.

The second observable consequence, the effect of the fieldB on the motion u, is seen by
noting that within the disk, the flow of current is directed radially away from the axis of
rotation. This current, denoted by the current density j in Figure 1.1c, will also interact
with the (total) magnetic fieldB to create a Lorentz force. The direction of this, given by
the cross product between j and B, is clearly in opposition to the motion of the disk u.
Thus the magnetic field has perturbed the original motion and, in this case, a torque must
be applied to operate the disk.

Admittedly, the homopolar dynamo can only go so far in providing true insight into the
kinds of MHD flows which are commonly encountered in engineering applications. This
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is largely since its ‘fluid’ is a solid disk with only one degree of freedom. It does, however,
provide a hint at the kind of complexity that can arise from relatively simple motion. Here,
by just connecting the right sections of a metal disc rotating in a magnetic field, both an
additional magnetic field and a force which modified the original motion applied to the
disk, were generated. For it to be a true example of an MHD flow, one needs to replace
the solid disk with an electrically conducting fluid. This change brings with it all the
challenges of describing just the fluid flow; phenomena such as buoyancy and turbulence
for example. How one can incorporate all these interactions together and provide means
to supply useful engineering information is the main subject of this thesis.

1.3 Computational fluid dynamics

The study of fluid dynamics, and magnetohydrodynamics by extension, usually takes one
of three approaches; physical experiments, analytical solutions, or numerical methods. It
is important to state outright that these methods are (or should be) synergistic; ideally,
one approach alone should not suffice.

Experimental methods, as perhaps the foundation of the scientific method, are undoubt-
edly invaluable. The nature of the fluids involved in MHD however, places unfortunate
constraints on our ability to experiment with them. The most obvious electrically con-
ducting fluids are liquid metals but these are either opaque, making internal visualizations
difficult, or hostile to humans or other materials (mercury and sodium come to mind).
Salt solutions do possess some level of electrical conductivity but it is usually so small
that magnet systems become prohibitively expensive. These hurdles are in addition to the
usual ones associated with undertaking experiments; the procurement and maintenance of
equipment can be difficult and expensive. This is not to say experimental activity in MHD
is non-existent and Chapter 2 will provide some insight into those which hold relevance
to this thesis.

The other two approaches both begin with consideration of the mathematical equations
that govern the problem at hand. Owing to the non-linear nature of the Navier-Stokes
equations, the use of analytical methods to provide core engineering information, such
as velocity or temperature distributions is, unfortunately, limited to only a few very sim-
ple types of flows. Most flows of industrial or environmental significance are invariably
turbulent, involve further interactions from various body forces and usually present them-
selves in irregular and complex geometries. As a result, the use of numerical methods has
significantly grown in popularity since their development during the 1950’s and 1960’s.

Computational Fluid Dynamics (CFD) offers, in principle, many advantages over exper-
imental methods. Applied correctly, they can provide flexibility, are relatively cheap to
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perform, provide access to the complete flow field, and allow one to easily undertake
parametric studies, where the influence of flow or geometrical parameters can be varied
systematically. Indeed this flexibility means, for some flow problems at least, that CFD
may be the only realistic means by which they can be investigated. In addition, the expo-
nential advancement in computational power over the last 50 years has helped accelerate
and broaden the use of CFD. General purpose CFD codes are thus now very accessible1

and a wealth of open-source and commercial packages are available.

There are a variety of modelling approaches which have been developed in CFD. A more
detailed discussion on their merits will be saved for Section 4.2, but the most com-
mon modelling approach used in industry, and the approach taken in this thesis, is the
Reynolds-averaged Navier-Stokes (RANS) approach. This solves an averaged form of
the governing equations and uses mathematical models to incorporate the effects of turbu-
lence on the mean flow. A hierarchy of modelling strategies are available (see, for exam-
ple, Wilcox, 1998, and Hanjalic and Launder, 2011, for a detailed survey) and those under
consideration in this thesis, the linear eddy-viscosity and stress-transport approaches, are
discussed further in Chapter 4.

To include effects of an electromagnetic nature, such as those highlighted earlier in Sec-
tion 1.2, these approaches are extended by the inclusion of additional terms. This thesis
will address the ability and performance of these extended models by applying them to a
series of test cases. The test cases are selected in order to cover a wide variety of phys-
ical phenomena and as wide range of flow parameters as possible. The first set of cases
concerns the turbulent flow of an electrically conducting fluid down a channel bound by
electrically insulating walls of infinite length. A uniform magnetic field is applied in a
direction both parallel, and perpendicular, to the flow. The simplicity of the geometry
and wealth of literature on ordinary fully-developed channel flows provides a means to
measure the performance of models in relative isolation from other, less understood, flow
phenomena.

The second set of cases investigate the effect of a magnetic field on three-dimensional,
time-dependent, turbulent Rayleigh-Bènard convection. This represents a significant in-
crease in complexity over the previous cases and aims to address how the models respond
to the mutual effects of the buoyant and electromagnetic forces. Such a flow configuration
may be found in materials processing, where metallic materials are subjected to both heat
transfer and magnetic fields.

1.4 Objectives

The fundamental aim of this research is to explore the extent to which the Reynolds-
averaged Navier-Stokes approach can reproduce the reported effects of buoyant and elec-

1In that you can download Code_Saturne or OpenFOAM readily from the internet. Being able to
actually use the codes to produce something useful is, of course, a whole different matter!
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tromagnetic forces on a series of increasingly complex test cases. The results, and sub-
sequent analysis, should contribute to the general understanding of complex turbulence
multiphysics flows and provide recommendations on how best to incorporate the effects
of these body forces. Specific objectives for the thesis are set out below:

• To introduce and implement electromagnetic modifications to existing engineer-
ing type turbulence models, as identified in the literature, into the in-house finite-
volume code STREAM.

• To apply these models to two classes of flow as described in Section 1.3. Qualitative
and quantitative comparisons will be made with existing results where available.

• To identify the strengths and weaknesses of the tested models and identify areas for
potential model development.

1.5 Outline of thesis

Chapter 2 begins with a survey of the current state of the art in MHD. It aims to pro-
vide both a better understanding of the physical phenomena surrounding MHD flows
and a review of works which are relevant to the cases under consideration in this the-
sis. Chapter 3 details the equations which govern the evolution of MHD flows and ad-
dresses any simplifications which have been applied in this work. Chapter 4 looks at
turbulence and provides details on the modelling approaches and specific models which
have been applied. The extensions of these models to account for electromagnetic and
buoyant forces is also provided. In Chapter 5 the numerical methods employed in this
thesis are introduced and details are provided on the specific numerical code which was
used. Modifications to the code, to account for the effects investigated here, are also
provided. Chapter 6 presents the results of the first series of test cases which comprise
one-dimensional and two-dimensional fully developed channel flows which are subjected
to magnetic fields of different strengths and orientations. Then, Chapter 7 discusses the
results of time-dependent simulations of magnetic Rayleigh-Bènard convection. Finally,
Chapter 8 concludes the thesis and provides suggestions for further study.
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CHAPTER

TWO

LITERATURE REVIEW

The objective of this chapter is to give an overview of the current state of the art in Mag-
netohydrodynamics and provide a summary of the phenomenology that can be observed
in the flows considered in this thesis. Some attention is also paid to flows that, whilst
not the main focus of this thesis, do provide valuable insight into the kinds of interac-
tions and engineering applications that the presence of a magnetic field can bring. After
a brief introduction in Section 2.1, Section 2.2 looks at both one-dimensional and two-
dimensional fully developed channel flows and uses these to highlight some of the key
MHD effects which feature throughout this thesis. Then, Section 2.3 first gives a brief
survey of works on non-magnetic Rayleigh-Bènard convection before looking at litera-
ture dealing with the effects of both a vertical and horizontal magnetic field. Following
this, Section 2.4 looks at a few examples of other electromagnetically influenced convec-
tive flows whilst Section 2.5 looks at some specific engineering applications, including
magnetic dynamos, targeted drug delivery and materials processing. Finally, Section 2.6
provides some remarks that conclude the chapter.
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2.1 Introduction

As highlighted in Chapter 1, the range of flows which are covered by MHD is large. It is
just as readily applied to the interactions between the solar wind and the Earth’s magnetic
field as it is to the magnetic realignment of grain boundaries in crystal growth applications.
For these two examples in particular, not only are the characteristic length and velocity
scales vastly different, there is likely to be great difference in electric conductivity and
characteristic magnetic field strength as well. Much like in regular hydrodynamics how-
ever, the value of certain dimensionless quantities helps classify the behaviour of these
systems. One of these, which will better allow us to classify MHD flows in particular, is
the magnetic Reynolds number;

Rem =
U0L

η
= µ0σU0L (2.1.1)

where η = (µ0σ)−1 is the magnetic diffusivity, µ0 is the permeability of free space, σ
is the electrical conductivity, and U0 and L represent characteristic velocity and length
scales respectively. A more mathematical derivation is provided later in Chapter 3 but,
physically, it represents the ratio between advection and diffusion of the magnetic field.
This, in effect, provides a measure of the relative importance of the two observable effects
discussed in Section 1.2.

For a situation in which Rem � 1 (as η → 0) then diffusion becomes insignificant over
the length scale L and the magnetic field lines will advect with the flow; that is, since they
do not diffuse, they appear to be frozen into the fluid as the fluid moves. This is usually
the case in astrophysics, where the length scales involved are enormous. Here, the effect
of the fluid motion on the magnetic field far outweighs the effect of the magnetic field
back onto the fluid (effect I) . The opposite of this, when the magnetic field influences the
fluid velocity but the fluid velocity does not significantly perturb the magnetic field (effect
II), is obtained when Rem � 1. Most laboratory experiments or industrial processes fall
into this category. For example, if a flow of mercury was placed in a channel with a
characteristic length of L ∼ 0.1 m and a velocity such that 0.01 m s−1 < U < 1 m s−1,
then given that mercury has a conductivity of σ ≈ 106 Ω−1m−1 (and hence a magnetic
diffusivity of η ≈ 1 m2 s−1, given that the permeability of free space is defined as µ0 =

4π × 10−7 N A−2), the magnetic Reynolds number would be 0.001 < Rem < 0.1.

The literature in MHD is broadly split into two, following the above two flow regimes.
For this thesis, the main focus will be on the latter regime (Rem � 1) since it is more
applicable to engineering and industrial type applications. In addition, restricting attention
to this class of flows allows some simplification of the governing equations to be made.
These will be formalized in Chapter 3.

46



2.2. CLOSED CHANNEL FLOW

2.2 Closed channel flow

As far as choosing a flow configuration to begin an investigation into the fundamental
phenomena of magnetohydrodynamics, a flow of conducting fluid down a channel is fairly
ideal. Electromagnetic influence can be investigated through the imposition of magnetic
fields and the large wealth of knowledge accumulated for flows of non-conducting fluid,
combined with their geometric simplicity, will help to expose the various electromagnetic
effects. As with ordinary hydrodynamic channel flows, the non-dimensional Reynolds
number quantifies the relative importance of inertial forces and viscous forces;

Re =
ρU0L

µ
(2.2.1)

where ρ and µ are the fluid density and viscosity respectively, U0 is a characteristic ve-
locity scale and L represents a characteristic length scale. If the characteristic velocity is
instead chosen to be the friction velocity Uτ , which is related to the wall shear stress τw by
Uτ =

√
τw/ρ, then one arrives at another commonly used form of the Reynolds number;

Reτ =
UτL

ν
(2.2.2)

If the fluid is electrically conducting, the addition of a magnetic field will introduce the
Lorentz force. Two non-dimensional parameters are typically used in the literature to
describe the relative importance of this to the viscous forces and the inertial forces; the
Hartmann number, Ha, and interaction parameter1, N , respectively;

Ha = B0L

√
σ

µ
, N =

σB2
0L

ρU0

=
Ha2

Re
(2.2.3)

where σ is the electrical conductivity, and B0 is the characteristic magnetic field strength.
Some sources prefer to use the Chandrasekhar number, Q, which is simply the square
of the Hartmann number; Q = Ha2. For consistency, the Hartmann number is used
throughout this thesis.

2.2.1 Uniform magnetic fields

To begin, consider a steady laminar flow of an electrically conductive fluid through an
infinitely long rectangular duct such as the one shown in Figure 2.1. Here, the flow is
driven by a streamwise pressure gradient and a magnetic field of strength B0 has also
been imposed in the y direction. If the side walls (coloured grey in the figure) are placed
sufficiently far apart (b� a), then their viscous effects will not extend to the centre of the
channel and the flow reduces to one-dimensional Poiseuille flow. In the hydromagnetic

1Some texts refer to this as the Stuart number.
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Figure 2.1: Duct flow of electrically conducting fluid through an imposed magnetic field,
B0.

case (B0 = 0), the solution of the problem produces the well-known parabolic velocity
distribution in the y direction and the bulk velocity will be proportional to the applied
pressure gradient.

When B0 > 0, we arrive at the magnetohydrodynamic equivalent of Poiseuille flow:
Hartmann flow. Although, as with Poiseuille flow, the stipulation that b � a ensures
the side walls do not influence the flow in a hydrodynamic sense, as shall become clear
below, their electromagnetic influence is not, in general, negligible and will depend on
their electrical properties and whether or not they are connected by any external electrical
circuit.

Hartmann flow

The name “Hartmann flow” resulted from the extensive analytical and experimental in-
vestigations carried out by Hartmann (1937) and Hartmann and Lazarus (1937). This
sparked a wealth of literature on the subject (see, for example, Davidson (2001), Roberts
(1967a), Shercliff (1965) or Branover (1978) for a review) and, as a result, the qualitative
behaviour of these flows, in the laminar regime at least, is relatively well understood.

In this flow, the motion of the conducting fluid across the magnetic field lines induces
a current in the z direction (much like it did with the Homopolar dynamo example in
Section 1.2). This then interacts with the magnetic field to create a Lorentz force, directed
in opposition to the flow. This Lorentz force is linear in U , and thus tends to homogenize
the velocity profile. The problem was first solved analytically by Hartmann (1937) and
the resulting velocity profiles, scaled by bulk velocity, are reproduced in Figure 2.2a for
varying magnetic field strengths (Ha). The Lorentz force can be seen to cause both a
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(a) (b)

Figure 2.2: Schematic representation of Hartmann flow with (a) velocity profiles superim-
posed, given analytically in Hartmann (1937), for a series of Hartmann numbers to scale
and (b) the current closure paths in a channel of rectangular cross-section.

reduction in centreline velocity and boundary layer thickness. These thin boundary layers
are known as Hartmann layers. They form along walls normal to the magnetic field,
which are thus typically called Hartmann walls, and their thickness scales as O(Ha−1).
The development and stability of these layers has been extensively researched (see, for
example, Lingwood and Alboussière (1999), Krasnov et al. (2004), Moreau et al. (2007)
and Roberts (1967b)).

The balance of forces in the channel however, is not as transparent as it might seem.
Hartmann flow, as an idealization of a steady two-dimensional flow, is realized from the
stipulation that b � a. Note though, that the direction of the induced current is in the
z direction. What happens to this current then, will depend on the electrical properties
of the side walls and the existence of any external electrical circuit. The two extremes,
having walls either perfectly insulating or perfectly conducting1, will both be considered
in turn.

If the side walls are perfectly insulating, then the conservation of charge means the net
current carried across the duct must be zero. The only option is for the current to form
closed loops within the fluid. Indeed, as the current moves charges across the flow (in
the +z direction), the resulting charge separation created between the side walls sets up
an electric field, E0 say, which turns them back towards the other wall. These return
currents, taking the path of least resistance, will travel in the Hartmann layers, where the
flow velocity (and hence induced current) falls to zero. These current loops are shown
schematically in Figure 2.2b. In the Hartmann layers then, the current flows in the neg-

ative z direction and the Lorentz force actually accelerates the flow. Additionally, since
the net current in a given duct cross section must be zero, the net Lorentz force acting on

1That is, their conductivity is infinite.
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the flow must also be zero. Thus, for an insulating duct in which the mass flow rate is kept
constant, the Lorentz force can only modify the pressure gradient indirectly, by acting to
increase the viscous forces in the boundary layer.

If the side walls are perfectly conducting, then the current distribution will be determined
by the state of any electrical circuit which exists between the side walls (represented by
the device “D” in Figure 2.1). If the device consists of a wire with zero resistance, then the
currents return through this and no electric fieldE0 will be created between the side walls.
In the fluid, the current flows, unopposed, entirely in the positive z direction and the net
current, and hence net Lorentz force, across the duct cross section is no longer zero1. In
addition, the current density across the flow will be higher2 (since it is unopposed) and
this leads to a stronger Lorentz force which now opposes the velocity across the entire
channel. The Hartmann layers still form, since continuity of the velocity ensures it must
increase in the near-wall region to compensate the decelerating effect of the Lorentz force
in the channel centre. The pressure gradient now balances both the Lorentz force and the
viscous forces.

Actually, it should be noted that in both of the above cases, for a given Ha, the shape of
the velocity profile (given in Figure 2.2a) is identical. The existence of an electric field
E0 in the spanwise direction, which depends on electrical configuration of the side walls
and external circuit, only serves to change the relationship between the mean velocity and
the pressure gradient3. Thus, one can modify the mass flow rate in the channel simply
by changing the electric field across the duct. This is exploited in a range of simple
MHD devices. If the device supplies electric current to the fluid (enough to overcome
that which is induced by the flow) then it can create bulk Lorentz forces which accelerate
the flow and the device represents a pump. If the device consumes electrical energy,
then the Lorentz force opposing the flow increases and an increase in pressure gradient is
required to maintain a constant mass flow rate and power the device. A third option, is to
simply connect a voltmeter between the side walls and measure the electric field which
is induced; the mean velocity will be proportional to the electric field and the device
functions as a flow meter. A more extensive overview of such devices is provided by
Sutton and Sherman (2006).

Ducts of finite aspect ratio

In the previous section it was noted that although the viscous effects of the side walls
could be ignored if b� a, some consideration needed to be paid to their electromagnetic
effects. Here, ducts where b ∼ a are considered and the effect of the magnetic field on

1The integral of the current around the entire path (fluid and external device) is still zero of course.
2If compared with insulating walls for the same mass flow rate.
3Proof of this is provided in Subsection 6.3.1.

50



2.2. CLOSED CHANNEL FLOW

the velocity profiles in the spanwise direction is investigated. As one might envisage, the
relative conductivities of the four walls will influence the current paths and the distribution
of the Lorentz force.

In a fully insulated duct, it was observed previously that the electric current is turned
along these walls and travels back across the duct in the Hartmann layers. Along these
side walls then, the current must have a non-zero component in the y direction. Since this
is parallel to the magnetic field, the Lorentz force is not as active and, as Shercliff (1953)
showed, the boundary layers along these walls are thicker and scale as O(Ha−1/2). They
are termed Shercliff layers and are shown schematically in Figure 2.2b.

Solutions in a fully conducting duct have been obtained by Chang and Lundgren (1961).
Here the conducting walls provide the return path for the current and the situation is much
like in the previous section when the perfectly conducting side walls were connected
with a wire of zero resistance. The Lorentz force is much stronger than in the case with
insulated walls but, since it does not change the shape of the velocity profile in the y
direction, it only serves to modify the pressure gradient. In the z direction, normal to
the side walls, both Hunt and Stewartson (1965) and Lundgren et al. (1961) noted that
for high Hartmann numbers there was a small velocity peak which occurred towards the
walls. This is of the same order as the velocity in the core and results from some slight
curvature in the current paths as they enter the wall. Since here the current returns through
the Hartmann walls, rather than some idealized external circuit, the current must turn to
travel down through the side walls. This turning extends slightly into the fluid, resulting
in a slight decrease in Lorentz force and a corresponding increase in velocity.

The final combination of wall conductivities which is worth mentioning, is that obtained
when the Hartmann walls are perfectly conducting and the side walls are perfectly insu-
lating. This case was also investigated by Hunt (1965) and Hunt and Stewartson (1965)
and leads to an intriguing velocity distribution in the direction normal to the side walls
(z). Since the side walls are perfectly insulating, the current generated in the centre of
the channel turns as it reaches the side walls and travels towards, and into, the Hartmann
walls. Since the Hartmann walls provide the path of least (well, exactly zero) resistance,
no current will travel back across the channel in the Hartmann layers. There are two con-
sequences of this. The first, is that since the current turns along the side walls, towards
a direction parallel with the magnetic field, the Lorentz force vanishes in the side layers.
The second, is due to the path of the currents being in the Hartmann walls rather than the
Hartmann layers. As a result, the net current within the fluid is not zero, and the Lorentz
force in the core of the channel is much stronger than in the case when the Hartmann
walls are insulating. This leads to the formation of the so-called M-shaped velocity pro-
files where two large velocity peaks, of order O(Ha), are produced in the side layers.
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(a)

(b) (c)

Figure 2.3: Velocity profiles obtained by Sterl (1990) for the fully-developed two-
dimensional flow of conducting fluid down a duct of square cross-section with different
wall conductivities: (a) all walls insulating at Ha = 100 (b) conducting Hartmann walls
with insulating side walls at Ha = 100, and (c) the same but at Ha = 1000.

Numerical results for a selection of the flows described above, at Hartmann numbers up to
1000, have been obtained by Sterl (1990). Velocity profiles are presented in Figure 2.3 in
the form of a three-dimensional surface above the cross-section of the duct. When all the
walls are fully insulating, Figure 2.3(a) demonstrates the flattening of the velocity profile
in the core and both the Hartmann and side layers are readily identified. For the case
where the Hartmann walls are conducting and the side walls are insulating Figures 2.3(b)
and 2.3(c) show the quite striking formation of the side wall jets. As the Hartmann number
increases the magnitude of the peaks increases at the expense of the velocity in the core.

The preceding discussion has focused on MHD flows in the laminar regime, with the
intention of highlighting the variety of ways in which the Lorentz force can transform the
flow. Now the effect of the magnetic field on the turbulence will be considered in more
detail.
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Magnetic damping

Returning to the investigations of Hartmann and Lazarus (1937), one of the other major
observations was that an applied magnetic field could reduce turbulence levels within a
turbulent flow, even to the extent that the flow would relaminarize. Hartmann determined
the state of the flow by measuring the pressure drop across the test section and comparing
the result with theoretical values for purely laminar flow. What he found was that as
the magnetic field strength was increased over a turbulent flow, the pressure gradient
across the flow initially decreased before then rapidly rising after the flow transitioned to
a laminar regime. He thus reasoned that the initial decrease was due to the damping effect
of the magnetic field on the turbulent fluctuations, whilst the latter increase was due to
the effect of the bulk Lorentz force, which served to brake the flow. This suggests that the
magnetic field can modify the turbulence directly, by damping velocity fluctuations, and
somewhat indirectly, by changing the mean velocity profiles. Hartmann noted however,
that separating these effects was not trivial.

Later experiments by Murgatroyd (1953) largely confirmed the above results and further
showed that it was possible to obtain laminar flow at Reynolds numbers up toRe = 105 so
long as the Hartmann number was such that Re/Ha < 900. Reed and Lykoudis (1978)
obtained experimental measurements of the turbulent shear stress in a flow of mercury
through a wall-normal magnetic field. They noted that the magnetic field tends to suppress
the turbulent shear stress more effectively than the individual velocity fluctuations that
comprise it.

Given the general tendency for the magnetic field to damp and oppose fluid motion in
the examples discussed so far, the observation that it can directly damp out turbulent
fluctuations is not particularly surprising. In the absence of magnetic fields, turbulent
energy is eventually dissipated as heat by molecular action. The addition of the magnetic
field invites a further dissipation mechanism which is termed Ohmic or Joule dissipation
(Davidson, 2001). Physically, this arises from the presence of electric currents in the flow
which cause Ohmic heating.

Several theoretical and experimental studies have addressed the implications of Joule dis-
sipation on the structure of the turbulence. Moffatt (1967) examined the decay of initially
isotropic turbulence in a strong magnetic field and found that the turbulence became in-
creasingly two-dimensional in the sense that it was independent of the direction parallel to
the magnetic field1. This was confirmed to some extent by the experiments of Kolesnikov
and Tsinober (1974) and Alemany et al. (1979) which looked at the decay of grid gener-
ated turbulence in the presence of a magnetic field. More detailed numerical studies of

1That is, the velocity fluctuations were found to not vary, or vary slowly, in the direction of the magnetic
field.
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the same (Hossain, 1991; Schumann, 1976; Zikanov and Thess, 1998) agreed with these
findings but noted that a purely two-dimensional state was generally not achieved.

Explanations for this transition were provided by Sommeria and Moreau (1982), who
argued that an electromagnetic diffusion-like process caused vorticity to diffuse in a di-
rection parallel to the magnetic field, leading to turbulent eddies which are elongated in
that direction. Davidson (1995, 1997), however, provided a more rigorous explanation.
He argued that the propagation of vorticity along the magnetic field lines was a direct
consequence of the need for the fluid to conserve angular momentum despite a continual
decline in kinetic energy, courtesy of Joule dissipation. Since the details provide useful
insight into the more general evolution of vortices in MHD flows, they are offered here.

Consider an inviscid fluid which is vigorously stirred before being left to itself in a large
electrically insulated sphere. The radius of the sphere is taken such that it is much larger
than any integral length scale associated with the flow1 and a uniform magnetic field is
applied. Clearly the velocity fluctuations associated with the isotropic turbulence will
interact with the magnetic field to induce currents. The resulting Joule dissipation will
ensure that the kinetic energy of the flow decreases monotonically. Note also, that since
the sphere is electrically insulating, the net current within the sphere will be zero since the
current paths must necessarily form closed loops. If the net current is zero, the net Lorentz
force must also be zero and, since this is confined to the plane normal to the magnetic
field, it cannot provide any net torque to the fluid in that direction. Consequently, the
component of angular momentum parallel to the magnetic field must be conserved.

This presents somewhat of a conundrum. Conservation of angular momentum implies the
flow cannot come to rest. Yet so long as Joule dissipation is finite, the kinetic energy of
the fluid must continue to fall. The only way to satisfy these requirements is for the flow
to evolve in such as way as to reduce the current density, and hence Joule dissipation, to
zero. Davidson (1995) shows that this occurs when the velocity becomes independent of
the direction parallel to the magnetic field. It follows then, that the flow must evolve into
one which is strictly two-dimensional and which contains vortices elongated and stretched
along the direction of the magnetic field lines. Obviously any real flow is viscous and this
stretching will thus be accompanied by viscous dissipation.

Since the above argument can also be applied to isolated vortices, which are such funda-
mental structures in fluid flows, it can be used to provide guidance on how many different
types of MHD flows will evolve. Indeed, this point will be revisited in Section 2.3 as it
serves to explain phenomena which arise when magnetic fields are applied to convective
flows. To now close this subsection on channel flows with uniform magnetic fields, a brief
summary of more recent numerical works is provided.

1large enough that the timescale of any viscous effects from the boundary is much larger than any
timescale associated with processes in the flow.
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Numerical simulations of fully turbulent MHD channel flows

In the time since Hartmann, computational power has improved vastly and a number of
numerical studies have tackled the problem of fully turbulent MHD channel flow. Lee and
Choi (2001) presented a DNS study of a turbulent MHD channel flow (Re = 4000) in
which a moderate magnetic field (17 ≤ Ha ≤ 42) was applied in each of the orthogonal
directions and the walls were electrically insulating. They found that in the case of a
wall-normal or spanwise magnetic field all turbulent intensities decreased significantly
and that in all cases the turbulent structures were elongated in the direction of the applied
field. They additionally showed that this elongation is associated with a rapid decrease of
Joule dissipation. This was in agreement with a later study by Krasnov et al. (2008), who
also noted reductions in skin friction except when a wall-normal magnetic field exceeded a
certain value. Here, as also reported by Satake et al. (2002) and Chaudhary et al. (2010) in
similar studies, the increase in drag due to the thinning Hartmann layers (i.e. the Lorentz
force) exceeded the drag reduction due to turbulence suppression.

A recent DNS study by Krasnov et al. (2012) for flow down an insulated rectangular duct
was reported for Re = 105 and 0 ≤ Ha ≤ 300. A snapshot of the instantaneous velocity
field is reproduced in Figure 2.4 which clearly demonstrates the laminarization effect of
the magnetic field. At Ha = 100 the core develops a sizeable laminar region, which
extends into the Hartmann layers (top and bottom walls) at Ha = 200. At Ha = 300

the turbulent side layers become much thinner and further analysis revealed two distinct
zones. Very close to the side walls was a layer dominated by small-scale structures with-
out any observed anisotropy. In between the laminar core and this small layer, however,
was a zone dominated by large vortices with axes approximately aligned with the mag-
netic field. Generally, the average velocity fluctuations are reduced for all Hartmann
numbers considered. An exception was noted near the Hartmann walls for Ha = 100,
where stronger mean shear increased turbulent production. Excluding this exception, the
findings corroborate those of earlier studies and show excellent agreement with an LES
study in the same parameter range by Kobayashi (2008).

A selection of further DNS studies, which provide data useful for model validation, can
also be found in the literature. The DNS database of Noguchi et al. (2004) openly provides
results for a variety of low-Re one-dimensional channel flows including those with an
applied wall-normal and longitudinal magnetic field. Data from this database will be
used to provide comparisons in Chapter 6. Data at higher Reynolds numbers (1120 ≤
Reτ ≤ 1194) and higher magnetic fields (0 ≤ Ha ≤ 32.5) has been obtained in a study
by Satake et al. (2006), who investigated the effect of a wall-normal magnetic field on
turbulent Hartmann flow. They found that large scale turbulent structures were reduced in
the centre of the channel.

It is evident thus far that the applications of a magnetic field can induce significant
anisotropy in the turbulent stresses. Whilst approaches such as DNS, which resolve the
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(a) Ha = 0 (b) Ha = 100

(c) Ha = 200 (d) Ha = 300

Figure 2.4: Instantaneous distributions of streamwise velocity plotted on a cross-section
through an insulating channel and subjected to a uniform vertical magnetic field; Re =
105. Contour levels are the same in all plots ranging from 0 (blue) to 1.25 (red). The very
sharp velocity gradients at the walls render the boundary layers almost invisible. From
Krasnov et al. (2012).

full spectrum of length scales, will inherently capture this, the linear eddy-viscosity class
of model within the RANS approach will not directly1. Despite this, Ji and Gardner (1997)
showed that inclusion of additional electromagnetic sink terms in the equations for turbu-
lent kinetic energy, and its dissipation, could qualitatively reproduce the damping effect
of a magnetic field on turbulent pipe flow. The additional terms, however, made use of a
bulk parameter (the interaction parameter, N ) to correctly scale the damping; a practice
not common or desirable in turbulence modelling because of the difficulty in evaluating
such a parameter in a more general flow configuration. Kenjereš and Hanjalić (2000)
removed this limitation by making use of a local interaction parameters, defined using

1the reasons for this will be further explored in Chapter 4.
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the local turbulent timescale. A priori testing of the model against the DNS database of
Noguchi et al. (2004) showed considerable improvement over the model by Ji and Gard-
ner (1997). Further, full, numerical simulations of a high-Re channel flow showed good
agreement with experimental data. The latter case considered the effects of the fluid enter-
ing and leaving a region with a magnetic field; something which will be discussed further
in the next section.

The second-moment approach to closure within the RANS framework does provide means
to account for anisotropic effects, but the literature on their use in electromagnetic flows
is limited. Widlund et al. (1998) transported an additional scalar parameter which con-
tained information on the dimensionality and anisotropy of the turbulence that was af-
fected specifically by electromagnetic effects. Application of the model to a case of de-
caying turbulence in the presence of a magnetic field showed good agreement with DNS
data. Kenjereš et al. (2004) extended the RANS second-moment approach to account for
the effects of magnetic fields in analogy with general practices for modelling effects of
body forces. The model was tested against a series of magnetic channel flows and showed
good agreement with experimental and LES data. Thus the approaches tested as part of
this thesis, described later in Chapter 4, are based on these forms.

Away from simple channels, the implications of magnetic fields have also been inves-
tigated in other classically studied flows, including expanding channels (Walker et al.,
1971, 1972; Walker and Ludford, 1974a,b, 1975), backwards facing steps (Abbassi and
Ben Nassrallah, 2007) and impinging jets (Lee et al., 2005).

2.2.2 Non-uniform magnetic fields

Although the flows reported in the previous section offer great insight, they are not en-
tirely realistic of many applications. Most MHD flows in engineering applications will be
subject to magnetic field gradients, mainly due to physical restraints on the size of mag-
nets. Here attention is paid first to flows that enter through the fringe regions of uniform
magnetic fields and second to flows past localized highly non-uniform fields, which draw
similarities with bluff bodies. As shall become clear, these magnetic “fringe” regions can
have a dramatic effect on the development of the flow.

Fringing magnetic fields

Fringing magnetic fields, areas where the magnetic field strength increases over a short
distance, are common in industrial settings. Magnet systems are usually limited in size,
either by their sheer mass or by their cost, and this means that fluids will inevitably have
to pass into and out of regions where the magnetic field strength is non-zero. In addition,
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any real magnetic field is necessarily three-dimensional and thus a supposed “uniform“
magnetic field within the magnet system can only be idealised.

To illustrate the implications this has for the development of the flow, consider a two-
dimensional channel flow which is subjected to a uniform magnetic field over only part of
its length. The walls are assumed to be electrically insulated. As the flow enters the mag-
netic field region, the magnetic field strength obviously must rise from zero far upstream
of the magnet to some finite characteristic value within the centre of the magnet over
some distance. If this distance is small enough compared with the channel height, then a
stepwise change in magnetic field strength can be assumed. This is shown schematically
in Figure 2.5 where the magnet region is shaded grey. The magnetic field here is in the
positive z direction, or out of the page.

As the fluid passes into the magnetized region, the motion of the fluid will interact with
the magnetic field in the usual fashion to generate an electric current in the negative y
direction. Since the current must form closed loops, it closes outside of the magnetic
region where, although there is no EMF (sinceB = 0), there must exist an electric field to
drive the currents back across the channel. In the magnetic region, this current combines
with the magnetic field to induce a Lorentz force which strongly opposes the motion in
the centre of the channel, as illustrated in Figure 2.5. At the top and bottom of the current
loop the current flows parallel to the flow direction, but, since this is still perpendicular
to the magnetic field, Lorentz forces appear which are directed towards the centre of the
channel. This arrangement of the Lorentz force will lead to the generation of vorticity
in the top and bottom half of the channel, of opposing sign, as the flow passes into the
magnetized region. The result of all this is the formation of an M-shaped velocity profile,
with strong deceleration in the core and corresponding acceleration towards the walls.

After the flow has passed this region, the currents it generates are balanced by the electric
field since there is no path of lower resistance for them to traverse back across the channel
(unlike in the Hartmann flow case, where this was through the Hartmann layers). The
Lorentz force is thus inactive across the bulk of the magnetized region and viscous forces
begin to transform the flow back into its pre-magnetic state. As the flow then leaves the
magnetized section, current loops form in a similar fashion to that at the entrance but loop
in the opposite sense. The flow experiences the same arrangement of Lorentz forces and
is similarly distorted. If the length of the magnetized section is short, such that viscous
forces have not fully smeared out the original disturbances in the velocity profile, then the
effect will multiply and the magnitude of the wall jets increases.

The development of the velocity profile throughout the channel is shown schematically
in Figure 2.5. The effect starts noticeably forming for interactions parameters around
N = 0.2 and increases steadily with N . Velocity distributions in the plane parallel to the
magnetic field (x − z) are Hartmann like, becoming increasingly flatter as N increases
(Branover, 1978).
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Figure 2.5: Schematic diagram of a flow of conducting fluid through a region of non-zero
magnetic field strength. Note the formation of current loops at the entrance and exit to the
magnetized region, which generate strong decelerating Lorentz forces.

Figure 2.6: Conceptual structure of a flow of liquid metal through a small magnetized
region. Three distinct regions are identified. From Andreev et al. (2007).

The above flow pattern has been demonstrated in numerous experimental studies (An-
dreev et al., 2007; Bocheninskii et al., 1971; Sukoriansky et al., 1986). In the study by
Andreev et al. (2007) flow of a gallium based eutectic alloy was placed in an insulating
channel with only part of its length subjected to a uniform magnetic field. For a range of
Reynolds numbers (5× 102 ≤ Re ≤ 1.6× 104) and fixed Hartmann number (Ha = 400)

they report three distinct regions in the complex flow structure, reproduced in Figure 2.6.
In the first region, the turbulent suppression region, the intensity of velocity fluctuations
was reduced by 8-10 times that of the initial flow. In the second region, the vortical region,
the sharp increase in magnetic field strength deforms the velocity profile into an M-shape
with large wall jets flanking a stagnant central region. After the flow has left the magnetic
field, the velocity in the central region increases but the flow remains dominated by the
wall-jets which grow in width as the recovering turbulent fluctuations destabilise the flow.
This behaviour is in clear agreement with that described earlier in Figure 2.5.

Complementary 3D numerical simulations by Votyakov and Zienicke (2007) with the
same interaction parameters, though laminar, found excellent agreement with the results
by Andreev et al. (2007) adding that a swirling flow in the duct corners was responsible
for the redistribution of the velocity profile back into a parabolic one. Numerical simula-
tions in the turbulent realm (Re = 2× 105, Ha = 700) were carried out by Kenjereš and
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Figure 2.7: Velocity vectors, electric potential and turbulent viscosity distribution for
the flow of liquid metal through a rectangular duct with part of its length subjected to a
uniform magnetic field. From Kenjereš and Hanjalić (2000).

Hanjalić (2000) who used an electromagnetically modified k− ε model. Their results, re-
produced in Figure 2.7, showed successful reproduction of the M-shaped velocity profile
and offered improvements over an earlier model by Ji and Gardner (1997).

Magnetic Obstacles

It was seen in the previous section that the fringe regions at the entrance and exit to a mag-
netized section of a channel flow caused substantial modifications to the flow structure.
By reducing the magnetized section to a small localized area of the flow, this retardation
is spatially confined and can be better described as an obstruction or magnetic obstacle
(Cuevas et al., 2006b).

The idea of an obstruction in the flow naturally draws similarities with that of solid ob-
stacles. As one of the classical fluid dynamics cases, the latter has a long history of
intense investigation and the results are qualitatively well understood (see, for example,
Williamson, 1996). Whereas these flows are governed solely by the Reynolds number, the
additional parameter provided by the magnetic field allows for a far richer variety of flow
regimes. Votyakov et al. (2007) showed, through both 3D laminar numerical simulations
and complementary experiments, that the flow undergoes two bifurcations. The first oc-
curs when the interaction parameter exceeds some critical value and leads to the formation
of a vortex pair inside the magnetic obstacle. The second, which has a greater dependence
on the Reynolds number, results in the formation of co-rotating attached vortices, analo-
gous to those trailing solid obstacles. This co-rotating nature ensures that a third pair of
interconnecting vortices are established and hence a complex six vortex pattern emerges
as illustrated in Figure 2.8.

Earlier 2D numerical results by Cuevas et al. (2006a,b) failed to predict this six-vortex
pattern, instead observing the unsteady generation of a single vortex pair which was even-
tually shed by inertially driven shear layers. This point was explored in detail in a series of
papers by Votyakov and Kassinos (2010) and Votyakov et al. (2008). Their 3D numerical
simulations, initially in the same parameter range as Cuevas et al., showed that the vortex
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Figure 2.8: Diagram demonstrating the similarity concepts between flow around a solid
obstacle (top) and a magnetic obstacle (bottom). Note the complex wake pattern trailing
the magnetic obstacle, formed of three vortex pairs. Originally from Votyakov et al.
(2008), adapted by Kenjereš et al. (2011).

structures were helical in nature and it was this secondary flow which stabilized the vor-
tices and allowed development of the six-vortex pattern. Upon increasing the Reynolds
number (Re = 900, Ha = 90) Votyakov and Kassinos (2009) observed the shedding
of the trailing vortices, leaving a four vortex pattern which was stabilized by Hartmann
layers present on the top and bottom walls.

Little work has been done to determine the nature of this unique structure when the flow
enters the turbulent domain. Votyakov and Kassinos (2010) postulate that at high Hart-
mann number, turbulence surrounding the core could destabilise the six-vortex structure.
A 3D numerical study by Kenjereš et al. (2011) at Re = 900, which demonstrated good
agreement with those earlier reported studies by Votyakov et al., reported turbulent bursts
in the wake of the flow. Although the turbulence was not sustained, the distribution of
turbulent stress was substantially altered as N increased.
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2.3 Rayleigh-Bènard convection

The previous section aimed to elucidate some of the basic physical phenomena which
arise when an electrically conducting fluid interacts with a magnetic field. Now that this
understanding is hopefully in place, this section aims to provide a review and discussion
on another major class of flow considered in this thesis; Rayleigh-Bènard convection.

Buoyant flows in general, and convective flows in particular, can exhibit quite complex
behaviour even when present in relatively simple geometries. A layer of fluid heated
from below will acquire an unstable density distribution due to the thermal expansion of
fluid at the base. If the fluid is subject to a gravitational field then these differences in
density will lead to buoyant forces. Hot, less dense, fluid rises whilst cool, denser, fluid
falls. If the fluid layer is confined between two horizontal plates, then these ‘plumes’
will impinge upon the opposing surface and induce horizontal motions. The end result is
the establishment of one or more convective cells and, depending on the strength of the
buoyant forces, these plumes can form quite complex, time-dependent, patterns.

This particular convective arrangement (when the fluid is heated from below) is termed
Rayleigh-Bènard convection after Rayleigh (1916), who studied the stability of such
flows. For motion to occur, the buoyant force must be sufficient to overcome the two
mechanisms which oppose it; viscous dissipation and thermal diffusion. This is embod-
ied and quantified by the non-dimensional Rayleigh number;

Ra =
gβ∆ΘL3

να
(2.3.1)

where g is acceleration due to gravity, α is the thermal diffusivity, β is the volumetric
thermal expansion coefficient, L is the depth of the fluid layer and ∆Θ is the temperature
difference between the top and bottom of the fluid.

Rayleigh (1916) calculated that for a fluid layer between two infinite horizontal parallel
plates, the critical Rayleigh number is Rac = 1073. After this is exceeded, motion begins
and convective cells are established. From here, a very diverse array of flow structures
can develop. Convective cells may form into quite ordered, or less ordered, patterns and
the flow in general may be steady state, exhibit oscillation, or become fully turbulent. The
specific regime that a flow will enter is determined, to a first approximation, by both the
Rayleigh number and the Prandtl number (Getling, 1998). The latter is given by;

Pr =
ν

α
(2.3.2)

Physically, the Prandtl number determines the relative sizes of the viscous and thermal
boundary layers close to the horizontal walls. The magnitudes of both these parameters
will contribute to the state of the system. Krishnamurti (1973) collated experimental

62



2.3. RAYLEIGH-BÈNARD CONVECTION

Figure 2.9: Regime diagram for Rayleigh-Bènard convection in the Ra − Pr parameter
space from Krishnamurti (1973). Experimental observations are represented by symbols
and solid lines mark the boundaries between identifiable regimes.

observations available at the time into a regime diagram, reproduced here in Figure 2.9.
For water (Pr ≈ 7), it can be seen that an increase in Ra above the critical value leads
to steady two-dimensional flow before transitioning to steady three-dimensional, time-
dependent three-dimensional and, finally, fully turbulent flow. A reduction in Prandtl
number tends to reduce the Rayleigh number at which these transitions occur. This has
implications for MHD type convection since the fluids involved are typically liquid metals
with Prandtl numbers of O(10−2).

There is considerable literature on non-magnetic Rayleigh-Bènard convection. For a re-
cent review of progress see, for example, Bodenschatz et al. (2000), Manneville (2006) or
Ahlers et al. (2009). Here, attention is paid to those studies which specifically investigate
the addition of magnetic fields.

2.3.1 Vertical magnetic field

From early theoretical (Chandrasekhar, 1952, 1954a) and experimental (Lehnert and Lit-
tle, 1957; Nakagawa, 1955) works it is known that, in general, the introduction of a
sufficiently strong vertical magnetic field1 delays the onset of convective motion. In par-
ticular Chandrasekhar (1952) concluded that the critical Rayleigh numbers increases as
Rac ∼ π2Ha2.

1Here, the vertical direction is taken to mean the direction aligned with the gravitation vector.
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Figure 2.10: Magnetic damping of a convective roll cell by Lorentz forces FL, resulting
from the interaction between a vertical magnetic field B and the current density j. From
Burr and Müller (2001).

The increase in critical Rayleigh number afforded by the magnetic field is readily ex-
plained. Figure 2.10 shows a schematic representation of a convective cell within a mag-
netic field. As the cell rotates, the horizontal motion across the magnetic field lines will
generate a current perpendicular to both. Since this motion is obviously in different di-
rections at the top and bottom of the cell, the currents form a loop along the length of the
cell as shown. The Lorentz force then acts to oppose this horizontal motion. Since a con-
vective cell cannot exist without recirculation, this stabilizes the fluid and increases the
critical Rayleigh number. The buoyant driving force must now overcome the combined
effects of viscous dissipation, thermal diffusion and Joule dissipation.

In fact, for an incompressible, inviscid, fluid of zero resistivity which is impressed with a
magnetic field in the direction of gravity, Chandrasekhar (1961) determined that velocity
gradients in the direction of the magnetic field are zero. This is exactly what was con-
cluded earlier (in Subsection 2.2.1) for the case of freely decaying isotropic turbulence
in a uniform magnetic field. There, it was noted that the result should also apply for an
isolated vortex. Since convection cells are, by definition, vortices it is not particularly sur-
prising that this particular phenomena is also prevalent in convective flows. The absence
of velocity gradients in the direction of the magnetic field is analogous to the Taylor-
Proudman theorem for rotating flows. This states that for a fluid which rotates steadily
with a sufficiently high angular velocity, velocity gradients parallel to the rotation axis
vanish.

As was noted in Section 1.3, the types of fluids which are typically electrically conducting
present several experimental difficulties. The most significant is the opaqueness of liquid
metals, which makes visualization of the internal motions difficult. This is particularly
problematic for convective flows, since often one of the main objectives is to determine the
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structure and patterns which form in the flow. Despite this, there are a few experimental
studies of note.

Cioni et al. (2000) applied a vertical magnetic field to a mercury layer confined in a ver-
tical cylinder for high Rayleigh numbers (Ra ≤ 3 × 109) and strong magnetic fields
(Ha < 2000). Their results demonstrated excellent agreement with the Rac ∼ π2Ha2

scaling law presented by Chandrasekhar (1952) and highlighted the development of a sta-
bly stratified interior with a significant reduction in heat transfer as the magnetic field
strength was increased. Similar results were obtained by Burr and Müller (2001) who
used a four-element temperature probe to provide measurements in an eutectic sodium-
potassium alloy (for 103 < Ra < 105 and 0 < Ha < 2500). They found that for
constant Rayleigh number an increase in the strength of the vertical magnetic field inhib-
ited convective motions, diminished heat transfer, and reduced the horizontal length scale
associated with the convective cells.

On the numerical side, it has been demonstrated that the RANS approach, run in unsteady
mode, can reproduce the large scale flow patterns and typical convective structures as-
sociated with ordinary Rayleigh-Bènard convection (Ammour et al., 2013; Kenjereš and
Hanjalić, 1999b). The literature on numerical studies with an applied magnetic field is,
however, a little more limited. Hanjalić and Kenjereš (2000, 2001, 2006) modelled unre-
solved motion using a k − ε − θ2 eddy-viscosity based closure model. They considered
the application of both a strong (Ha = 100) and weak (Ha = 20) vertical magnetic field
to Rayleigh-Bènard convection at Ra = 107. They successfully reproduced the major
structural features of the flow and obtained good agreement with Cioni et al. (2000) de-
spite differences in geometry. The magnetic field was shown to suppress both mean and
fluctuating horizontal motion and, for Ha = 100, to cause plume structures to become
more cylindrical and elongated in the direction of the magnetic field. In a separate paper
using the same approach, Kenjereš and Hanjalić (2004) increased the parameter range to
107 ≤ Ra ≤ 109 and 0 ≤ Ha ≤ 500 and found a vertical field greatly reduced the heat
transfer.

2.3.2 Horizontal magnetic field

Whilst the vertical magnetic field was seen to delay the onset of primary convective mo-
tion, a horizontal magnetic field does not. Fauve et al. (1981, 1984) showed that in this
case the convective pattern takes the form of stationary rolls aligned parallel to the mag-
netic field lines. Thus the critical Rayleigh number remains unchanged and the effect of
the field is to inhibit secondary, oscillatory, behaviour.

It is difficult to investigate this particular setup experimentally since the walls which
bound the fluid become influential and the solution of the problem will depend on their
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electrical properties. With a vertical magnetic field, the currents were seen to form tightly
closed loops within the convective cell itself. Here, since the convective rolls become
aligned with the magnetic field, downward motion between two counter-rotating cells
will produce a current which is directed towards the centre of the cell. In between the ad-
jacent counter-rotating cells, upward motion will produce a current also directed toward
the same centre (since the motion, and hence the current direction, is reversed). The only
way for these currents to close is to turn parallel to the magnetic field direction and travel
towards the Hartmann walls. Figure 2.11, from Burr and Müller (2002), illustrates this
schematically. As this current reaches the walls, it loops through the boundary layers and
back across the channel. For this reason, these walls are termed Hartmann walls since
they play a similar role to those in the channel flows considered in Section 2.2.

In the experimental study by Burr and Müller (2002) it was noted that the presence of these
Hartmann walls alters the dynamics of the flow (compared to the analyses by Fauve et al.
(1981, 1984) above) since they generated Lorentz forces within the boundary layers at the
side which generated larger viscous forces. That said, the transformation of the flow from
a three-dimensional convective pattern into a quasi-two-dimensional flow pattern where
the convective cells became increasingly aligned with the magnetic field lines was shown.
They also found a range of magnetic field intensities where enhanced heat transfer was
observed.

Andreev et al. (2003), who used a novel superconducting magnet setup to achieve similar
Hartmann numbers with less conductive but transparent electrolytes, confirmed the ex-
perimental results of Burr and Müller (2002) and showed that the increase in heat transfer
was due to the two-dimensionality of the flow.

A later experimental study by Yanagisawa et al. (2010) used ultrasonic velocimetry to
provide visualization of the flow patterns and suppression processes in a rectangular box
of Gallium subjected to an abrupt increase in the strength of a horizontal magnetic field
(0 < Ra < 3.5×105, 0 < Ha < 44). The oscillatory motion of the two-dimensional roll
structures was suppressed and accompanied by a reduction in temperature fluctuations as
shown in Figure 2.12.

Contrary to the above findings, numerical simulations by Kenjereš and Hanjalić (2004)
showed a horizontal magnetic field increasing in strength reduced heat transfer up until
the flow structure re-organized into a two-dimensional state. After this, it was unaffected.
Unfortunately there is a distinct lack of high quality DNS data for electromagnetically
influenced Rayleigh-Bènard convective flows and this prevents proper quantitative vali-
dation of these, and other, results.
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Figure 2.11: Schematic of two-dimensional structures which form when a horizontal mag-
netic field is applied to Rayleigh-Bènard convection. Left, geometry and flow pattern of
the cells and right, closure paths of the electric current. Adapted from Burr and Müller
(2001).
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Figure 2.12: A layer of Gallium heated from below is abruptly subjected to a horizontal
magnetic field: (a) time series of velocity as measured by ultrasonic Doppler velocime-
try and (b) temperature measurements from three thermistors. The white streaks in (a)
represent the boundaries between convective rolls. When the field strength is increased,
as indicated by (b), both oscillatory motions and temperature fluctuations are suppressed.
With subsequent removal of the field the oscillations begin to return. From Yanagisawa
et al. (2010).
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2.4 Convection in other configurations

Many actual processes involve more than just the Rayleigh-Bènard convective arrange-
ment discussed in the previous section. In this section, attention is given to some other
configurations, and force fields, which typically arise. First the implications of adding
system rotation, in addition to a magnetic field, are summarised before a brief look at the
effect of magnetic fields on cases where the applied heat flux is perpendicular to gravity
is provided.

2.4.1 Subject to a magnetic field and rotation

It was seen in the previous section that the Lorentz force tended to either inhibit pri-
mary convective motion (a vertical magnetic field) or inhibit secondary oscillations (a
horizontal magnetic field). When the whole system undergoes rotation the Coriolis force
becomes active and the simultaneous actions of this with the Lorentz force can yield some
intriguing results. This particular configuration has relevance to materials processing and
geophysical flows.

Investigations into the stability of such a system by Chandrasekhar (1954b, 1956) demon-
strated extremely complex and unexpected behaviour. Experimental work by Aurnou
and Olson (2001) measured heat transfer for a layer of liquid gallium (Pr = 0.023)

heated from below (Ra ≤ 3 × 104) in a tank subject to both a vertical magnetic field
(Ha = 25, 34.78), and system rotation. Their results indicate that the simultaneous ac-
tion of both forces does tend to inhibit convective motions.

A Numerical study by Varshney and Baig (2008b) looked at Rayleigh-Bènard convection
in an 8:8:1 electrically insulated rectangular cavity with an applied horizontal magnetic
field. Results, reproduced in Figure 2.13, without rotation showed good agreement with
Aurnou and Olson (2001) and reproduced the expected alignment of the two-dimensional
structures with the magnetic field. When rotation was added, the structures were initially
skewed before being broken up at higher angular velocities. Applying the same approach
but with a vertical field, Varshney and Baig (2008a) found that in general the velocity
fluctuations were reduced with increased Ha regardless of the rate of rotation. At the
highest rotation rate, an increase in Ha led to an increase in heat transfer.

2.4.2 Convection with a horizontal temperature gradient

In one crystal growth method, known as the Bridgman-Stockbarger technique, the melt is
contained within a crucible which is withdrawn horizontally from a furnace. This subjects
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(a) Ha = 1100, Ta = 0 (b) Ha = 1100, Ta = 2.5× 107

Figure 2.13: 3D and 2D visualizations of rotating magnetic Rayleigh-Bènard convection
subject to a magnetic field By, angular velocity Ωz and gravitational field −gz. From
top to bottom respectively: 3D flow structures, 2D flow structures in central xz plane,
isotherms showing 3D thermal structure and 2D thermal flow structures in central xz
plane. From Varshney and Baig (2008b).

the melt, and solidification front, to a horizontal temperature gradient which drives end
wall convection. The growth interface, whose stability is crucial in minimizing defects,
can be highly distorted by convection even though the maximum melt velocity may be
relatively low (Lan, n.d.). These distortions, which manifest as oscillations superimposed
upon the steady convective motions, are known to cause unwanted striations within the
crystal and early experiments by Hurle (1966) and Utech and Flemings (1966) showed
that they could be eliminated by the application of a magnetic field.

The growing demand for improved crystal quality by the semi-conductor industry, com-
bined with a more fundamental interest in these types of flows, has spurred a number
of further experimental and numerical studies, which focus on eliminating the unwanted
oscillatory convection. Ozoe and Okada (1989) present a numerical study in which they
applied a magnetic field in the three orthogonal directions to molten silicon (Pr = 0.054)

in a cubical cavity with differentially heated walls. They showed that the magnetic field
had a damping effect in all three directions but was most effective when applied parallel to
the direction of heat flux. As the field strength was increased, the magnitude of the main
circulation dramatically decreased and at the strongest field simulated, Ha = 500, es-
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sentially stopped altogether. These results were later reinforced by an experimental study
with liquid gallium (Pr = 0.024) where they state that a magnetic field parallel to either
gravity or the direction of heat flux was almost 10 times as effective in suppressing heat
transfer (Okada and Ozoe, 1992) as a field applied in the other directions.

An experimental study by Hof et al. (2003) investigated the damping effect for different
orientations of magnetic field at a relatively low Rayleigh number ofRa ∼ 722. For a ver-
tical field they found the steady convection decayed exponentially with Ha, and that heat
transport was almost purely by conduction at Ha ≈ 50. For a magnetic field transverse
to the flow, their results indicated it provided greater damping than that of a longitudinal
field, contradicting earlier results by Ozoe and Okada (1989). By way of an explanation,
they note that the aspect ratio of the container may be critical in determining the current
paths, and hence the spatial distribution of the Lorentz force (a conclusion noted also in
Subsection 2.3.2). A later paper by Hof et al. (2005) adds that the onset of oscillations
can be postponed using magnetic fields of approximately one order of magnitude below
that necessary to significantly damp the steady flow. Later studies (Battira and Bessaïh,
2008; Kolsi et al., 2007; Xu et al., 2006) have confirmed this general picture.

In contrast to the wealth of literature in the laminar regime, relatively little has been done
numerically in the fully turbulent regime. Kenjereš and Hanjalić (2004) present a numer-
ical study of side-heated transitional convection (Ra = 106) in a cubical cavity subjected
to magnetic fields in all three orthogonal directions using the same T-RANS approach as
Hanjalić and Kenjereš (2001) (a k − ε− θ2 model). Additional modelling to account for
molecular dissipation of heat flux was also included to bring preliminary ordinary hydro-
dynamic results in line with prior DNS by Kerr and Herring (2000). In agreement with
Ozoe and Okada (1989) and Okada and Ozoe (1992) they observed a magnetic field par-
allel to the heat flux was most effective at reducing convective heat transfer. Interestingly,
they also applied magnetic fields locally confined to only the boundary layers of the ther-
mally active walls where a strong reduction was again observed for the field parallel to
the heat flux and, over the range 0 ≤ Ha ≤ 140, was even more effective than a field
applied in the vertical direction over the whole domain.
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2.5 Selected further applications

As well as providing valuable insight into complex fluid mechanical interactions, magne-
tohydrodynamics has also found some more novel applications. The aim of many of these
studies is to probe the feasibility of new techniques utilizing MHD. This section reports
some of those studies in four areas, namely the magnetic dynamo, targeted drug delivery,
materials processing and electromagnetic flow control.

2.5.1 The magnetic dynamo

It is estimated that without a mechanism to constantly generate a celestial magnetic field,
the electromagnetic decay time of the Earth’s primordial field would only be 105 years1

(Roberts, 1967a). Since this is evidently not the case, the field must be continuously
replenished. As the most widely accepted theory, the magnetic dynamo describes the
process by which the kinetic energy of fluid motion is converted to magnetic energy. This
occurs when the magnetic Reynolds number reaches some critical value; the motion U

has a strong influence on the magnetic field B and the induced magnetic field b can no
longer be ignored as it was for the flows considered previously.

Early experiments focused on the use of rotation to induce a self-sustaining magnetic
field (Lowes and Wilkinson, 1963, 1968; Wilkinson, 1984). The principle was demon-
strated first using simple rotating cylinders, which produced both steady and oscillating
magnetic fields, before more complex geometry actually produced magnetic fields which
reversed polarity; something which the Earth’s magnetic field is known to do. Attempts at
numerical modelling initially suffered from a dearth of experimental validation data but
this changed in 1999 when two major experimental facilities were set up; one in Riga,
Latvia, and the other in Karlsruhe, Germany. The Riga dynamo (Figure 2.14), for exam-
ple, consists of three concentric tubes of approximately 3 m length. In the innermost tube,
a propeller drives a helical flow of liquid sodium towards the base. It then returns straight
back up through a coaxial tube and stays at rest in the third outermost tube. Once the
critical magnetic Reynolds number was reached (calculated at Rem = 17.7) two regimes
were identified: a kinematic regime, which is associated with exponential growth of the
magnetic field, and a dynamic or saturation regime, in which growth falls to zero as the
increasing Lorentz forces deform the velocity field. For a review of the history and re-
sults of both of these experiments see Gailitis et al. (2008, 2000, 2001a, 2002a, 2001b,
2002b,c, 2003, 2004), Müller and Stieglitz (2002), Müller et al. (2004, 2006), Sarkar and
Tilgner (2005), and Stieglitz and Müller (2001)

1A timescale for this can be estimated using τη = L2/η. The Earth’s outer core is estimated to have a
radius of 2300 km and a conductivity of σ ≈ 6× 105 Ω−1 m−1 (Merrill et al., 1998), then η ≈ 1.33 m2 s−1

and it follows that τη = 3.988× 1012 s = 1.263× 105 yrs.
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Figure 2.14: Cross section of the Riga dynamo facility; (1) Propeller, (2) Helical flow
region, (3) back-flow region, (4) sodium at rest and (5) thermal insulation. H1,. . . ,H8
represent Hall sensors. From Gailitis et al. (2001a)

Numerically modelling of the Riga dynamo is, with a Reynolds number ofRe ≈ 3.5×106,
presently outside the capabilities of DNS. Accordingly, attempts using a RANS approach
have been presented by Kenjereš et al. (2006). Due to difficulties in defining magnetic
boundary conditions for non-spherical geometries, they opted for a segregated approach
where a RANS model was used for the hydrodynamics and a finite-difference model was
used for the magnetic field. Preliminary simulations demonstrated good agreement with
existing experimental data and concluded that a k−ε turbulence model would suffice. The
results from full scale simulations showed the model improved prediction of magnetic
field growth rate and frequency over prior 1D and 2D models (Gailitis et al., 2004) but
they report the level of information it could provide, especially on the dynamics of the
self-excitation process, was restricted by the segregated implementation.

Later, Kenjereš and Hanjalić (2007) reported results from a hybrid approach where the
fluid flow and magnetic field variables are solved for simultaneously, but using RANS and
DNS methods respectively. Using the same extended k−ε model previously used to sim-
ulate magnetic Rayleigh-Bènard convection results, reproduced in Figure 2.15, demon-
strate they correctly reproduced both the helical fluid flow structure in the central tube
and the characteristic double-helix spatial distribution of the magnetic field. Magnetic
field distributions during both the self-excitation and saturation regimes demonstrated
good agreement with experimental data. Plots of the magnetic field strength show the
amplitude of oscillations are also well captured but the frequency was slightly under pre-
dicted. Suggestions for further work included a full Reynolds stress model to account for
the known anisotropy the magnetic field induces.
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(a) (b)

Figure 2.15: 3D snapshots of the typical swirling flow pattern inside the Riga dynamo
experiment from numerical simulations by Kenjereš and Hanjalić (2007): (a) Stream-
lines coloured by axial velocity (ms−1) and (b) magnetic flux lines coloured by the axial
magnetic field strength (T).

2.5.2 Targeted drug delivery

The more traditional drug delivery methods, such as intravenous or oral administration,
result in the drug entering the blood stream as a molecule. This non-specific systemic dis-
tribution is naturally very inefficient in the treatment of a wide range of diseases. In the
case of cancerous tumours, this results in the well-known side effects of chemotherapy as
the toxic drugs cannot differentiate between cancerous and healthy cells. One promising
method to overcome these issues is a form of targeted drug delivery in which the drug
is bound to a biocompatible magnetic nanoparticle before injection. Introduction of an
external magnetic field not only allows the particles to be directed to the site of interest
but, through magnetic excitation, can facilitate an active release mechanism. Beginning
life as contrast agents for MRI investigations, the use of magnetic nanoparticles in animal
studies has shown promising results. Several animal studies using this delivery method,
as highlighted by Jurgons et al. (2006) and Kenjereš (2008), demonstrated complete re-
mission in tumour-bearing rabbits whilst using only 20% of the regular dosage (Alexiou
et al., 2005, 2006). This short section briefly details some studies relating to the CFD
modelling of biofluids containing such particles. For more in-depth reviews, see Arruebo
et al. (2007), Dobson (2006), and Pankhurst et al. (2003).

Generating a mathematical model of a bio-fluid such as blood has inherent difficulties
owing to its dynamic composition and containment within elastic arteries (Ikbal et al.,
2009). For example, not only is blood known to exhibit non-Newtonian behaviour at low
shear rates (due to the agglutination of the red blood cells, Ku, 1997) but the application
of a magnetic field also increases its apparent viscosity (Haik et al., 2001). The electrical
conductivity and magnetic susceptibility (which measures the degree to which a material
responds to a magnetic field) similarly vary with both oxygenation and flow rate.
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Figure 2.16: Contours of the local pressure distribution along the wall of a realistic right-
coronary artery. Left is without and right is with a magnetic field originating from a wire
source 2 cm away from the artery, |B0| = 10T. Adapted from Kenjereš (2008).

A numerical study by Kenjereš (2008) looked at the effect of non-uniform magnetic fields
in realistic (i.e. based on patient data) stenotic arteries. Their simplified laminar model
regarded blood as a homogeneous, Newtonian substance and included effects of both
the Lorentz force and magnetization force as source terms in the momentum equation.
Maxwell’s equations were handled through solving a single equation for the electric po-
tential, and a non-uniform magnetic field was included by using the laws of Biot-Savart
and Ampére to obtain the field distribution around a series of infinitely long wires. As
highlighted by Figure 2.16, they demonstrated that the magnetic field induces significant
changes in both the local pressure distribution and secondary flow patterns. With the lat-
ter, the appearance of additional vortical structures close to the arterial wall downstream
of the stenosis was linked to the action of the magnetization force. Several other nu-
merical studies have similarly shown that a magnetic field can dramatically alter the flow
rate in both healthy and stenosed arteries (Grief and Richardson, 2005; Ikbal et al., 2009;
Sankar et al., 2011; Wang et al., 2008)

Magnetically targeted nanoparticles have also been proposed as a method to induce cell
apoptosis via localised hyperthermia. Since a sustained temperature of above 42 ◦C will
cause cell death, an alternating magnetic field could be used to actively heat nanoparticles
through the induced currents (Joule dissipation). A number of studies have investigated
this use (see the review by Moroz et al., 2002 for example) but most are medical based,
and to the author’s best knowledge, no CFD studies have been reported to date.

2.5.3 Material processing

An increasing demand for homogeneous metals in the aerospace industry fuelled a surge
in new electromagnetic based processing techniques during the late 1900’s. Since then,
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and apart from their use in crystal growth (briefly discussed in Subsection 2.4.2), mag-
netic fields have been routinely used to manipulate materials via stirring or damping and
through levitation or separation (Davidson, 1999). From a fluid dynamics perspective,
the modelling of these flows introduces significant difficulties. They involve solidifica-
tion fronts, free-surfaces, heat transfer (of all types) at low Prandtl number and are almost
invariably turbulent. Couple these features with a magnetic field, and they are then also
subject to Lorentz forces whose spatial distribution can be rather complex. In spite of
this the potential for improving materials’ characteristics has prompted many authors to
tackle these flows, and a short summary of relevant works is provided here. For a more
detailed overview, see Part B of Davidson (2001) and the review by Davidson (1999).

Defects in continuously cast steel slabs, both internal and external, are known to be
closely related to the flow of the molten steel in the mold. The cause of defects is usu-
ally unwanted turbulence from the submerged entry nozzle which continuously feeds the
mold. This turbulence disturbs the free surface allowing debris and gas bubbles to become
trapped (Davidson, 2001; Gillon, 2000). Since any motion of electrically conducting fluid
across magnetic field lines will induce an opposing Lorentz force, an imposed static mag-
netic field can be used to effectively damp the unwanted motion. This technique, called
electromagnetic braking (EMBR), was demonstrated by several authors to be very suc-
cessful. Idogawa et al. (1993) presented RANS based numerical simulations in which
turbulence was accounted for by use of a k − ε model. Their results show that the mag-
netic field dramatically reduces the velocity of the flow striking the faces of the mould.
Experiments with a mercury model demonstrated good agreement with the numerical
simulations, and subsequent inclusion of the technology at a working plant suggested that
the magnetic field reduced turbulent fluctuations to an extent which prevented the entrap-
ment of slag. Later studies, including a similar RANS based numerical study (Ha et al.,
2003) and LES study (Chaudhary et al., 2012), show good agreement.

Other uses of magnetic fields in the casting process include electromagnetic stirring. This
is achieved by applying a rotating magnetic field, generated much like that of an induction
motor. As highlighted by Toh and Takeuchi (2002), this has proved effective at suppress-
ing both the formation of CO bubbles and subsurface inclusions by homogenizing the
temperature and flow velocity in the vicinity of the meniscus. Away from casting, the use
of magnetic fields has also shown promise in areas such as magnetic separation (Mohanty
et al., 2011; Svoboda and Fujita, 2003), magnetic levitation (Tournier et al., 2001) and in
controlling diffusion flames (Gillon, 2000).

2.5.4 Electromagnetic flow control

The prospect of manipulating electrically conducting fluid by non-physical means has
led some efforts to develop control techniques for flows over hydrofoils and bluff bodies.
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Figure 2.17: 3D schematic of an actuator generating a streamwise Lorentz force. Note the
alternating arrangement of magnet poles and electrodes. From Posdziech and Grundmann
(2001).

Many of the techniques are aimed at minimizing flow separation and improving lift or drag
characteristics. One example comprises an alternating arrangement of opposing magnet
poles with opposing electrodes, as depicted in Figure 2.17, which generates a Lorentz
force in the streamwise direction.

Unlike ordinary MHD, where the Lorentz force is induced from the movement of the
fluid relative to a magnetic field, the induced currents here are negligible. Instead, the
electrodes are externally powered and provide the ability to induce Lorentz forces which
either accelerate or decelerate the flow in the region adjacent to the electrodes. This
application of MHD is usually termed electro-magnetohydrodynamics (EMHD) or elec-
tromagnetic flow control (EMFC).

Studies on hydrofoils and circular cylinders using the above type of arrangement have
demonstrated that this kind of control is indeed possible. Results from a numerical study
by Mutschke et al. (2006), reproduced in Figure 2.18, indicate that a sufficiently strong
steady Lorentz force is capable of completely preventing flow separation on a hydrofoil.
With oscillatory control, they also point out improved lift characteristics when the fre-
quency was in the region of the natural shedding frequency. These results are in agreement
with those investigating circular cylinders (Kim and Lee, 2000; Posdziech and Grund-
mann, 2001) who show that the Lorentz force prevents development of an inflectional ve-
locity profile through accelerating the fluid in the near-wall region and thus stabilizing the
flow. With postponement of flow separation a favourable pressure gradient is maintained
and pressure drag is reduced, but at the expense of increased frictional drag from greater
near-wall acceleration. Overall, the effect is a global reduction in drag but this depends
on the profile of the Lorentz force which is in turn determined by the specific actuator
arrangement. A further interesting result detailed by Kim and Lee (2000), and separately
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Figure 2.18: Snapshots of the flow around a PTL-4 hydrofoil at α = 30◦, Re = 500
showing streamtraces and contours of ux. Left side is without any control and right side
is with control. From Mutschke et al. (2006).

by Zhi-Hua et al. (2006), is the suppression of the well documented von Kármán vor-
tex street with a Lorentz force of sufficient magnitude. The latter study also numerically
demonstrated both open and closed loop control systems targeted at both manipulating
the wake field and achieving a total drag coefficient of zero.

Significant attention has also been paid to turbulent wall bounded flows where existing
control strategies are mainly passive, e.g. the use of riblets or large-eddy-break-up de-
vices. These work by preventing the formation of coherent turbulent structures which
are known to contain the majority of the turbulent energy. Choi et al. (1994) used direct
numerical simulation to investigate the possibility of using an active control system to
modify and suppress these large coherent structures in a fully developed turbulent channel
flow (Re = 1800). Drag reductions of up to 25% were reported for control mechanisms
which actively counteracted velocity fluctuations in directions transverse to the wall. A
more realistic approach, where the feedback sensors were located on the wall rather than
the more optimal position of near-wall, yielded only a 6% reduction. The overall picture
however is still unclear. Direct numerical simulations by O’Sullivan and Biringen (1998)
report only a very modest reduction in mean drag of around 1% with localised reduc-
tions of 11%, whilst application of an oscillating spanwise Lorentz force by Berger et al.
(2000) gave a reduction in skin friction of around 40%. Experimental work by Breuer
et al. (2004) failed to reproduce the values of drag reduction achieved by Berger et al.,
reporting only a 10% reduction, but did note excellent agreement on the velocity profiles
induced by the actuators.

Although the application of Lorentz force actuators has been shown to have desirable
effects on fluid flow, many of the studies mentioned above report very low levels of elec-
trical to mechanical efficiency, with values in the region of 10−3 to 10−4. Since the mag-
nets used are of fixed strength, the magnitude of the Lorentz force can only be increased
through increased current density. The low conductivity of working fluids such as sea-
water make this very expensive. Improvements to actuator designs, which concentrate on
the inefficient spatial distribution of the Lorentz force, have reduced the total energy ex-
penditure by around 12% but no set-up currently offers true power savings (Spong et al.,
2005).
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2.6 Concluding remarks

Although less attention has been paid in the literature to MHD cases when compared with
their hydrodynamical counterparts, there evidently is still a wide range of areas which
has been covered, from a number of more fundamental studies in channel and convec-
tive flows to more specific, application based, studies which look at optimizing existing
engineering processes (drug delivery and materials processing).

It was seen that, generally, the imposition of a magnetic field over a flow of electrically
conducting fluid leads to the creation of Lorentz forces directed in opposition to the mo-
tion which caused them. These reduce velocity gradients parallel to the magnetic field
and suppress turbulence levels. In a simple one-dimensional channel flow arrangement,
where the magnetic field is directed normal to the channel walls, this leads to both re-
duced centreline velocities, smaller boundary layers and, for initially turbulent flows and
a magnetic field of sufficient strength, relaminarization. In two-dimensional duct flows,
the electrical properties of the walls are influential and, for one particular configuration,
it was seen to be possible to generate an ‘M-shaped’ velocity profile.

In Rayleigh-Bènard type convective flows, a magnetic field was seen to instigate quite
different changes in the convective flow structures depending on the direction in which it
was applied. A magnetic field applied in the vertical direction initially delayed the onset
of convection (by restricting horizontal motion), but at higher Rayleigh numbers produced
thinner roll cell structures which appeared elongated in the direction of the magnetic field.
With a horizontal magnetic field, the fundamental effect was the same (i.e. elongation of
roll cells in the direction of the magnetic field) but, since the magnetic field was now
directed perpendicular to the buoyant force, the resulting convective pattern consisted of
a series of long parallel roll cells whose axes were aligned with the magnetic field lines.

In addition to the two main classes of flow mentioned above there were other arrange-
ments which were discussed, including convective flows with different heating arrange-
ments and flows which were also subject to rotation. However, because of the fundamental
nature of the former cases, and their ability to test the performance of models in a range
of MHD interactions, whilst only requiring relatively simple geometry, they are the flow
types studied in most detail in this thesis.
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CHAPTER

THREE

GOVERNING EQUATIONS

This chapter aims to provide a mathematical description of magnetohydrodynamic flow
within the framework of the Reynolds Averaged Navier-Stokes approach. First, a review
of the equations governing ordinary fluid flow and heat transfer is presented in Section 3.1,
which includes the terms describing the only non-magnetic body force considered in this
research, buoyancy. Second, Section 3.2 introduces the equations of electrodynamics, in-
cluding the set of Maxwell’s equations with relevant simplifications, a version of Ohm’s
law applicable to moving media and the continuum version of the Lorentz force. Finally
the coupling between the fluid velocity and the electromagnetic field is detailed in Sec-
tion 3.3. Within this, consideration is given to simplifications applicable for the particular
class of flow considered in this research.

As is common in fluid dynamics, index tensor notion and the Einstein summation con-
vention is generally used, where a lone subscript, usually i, denotes one of the three
orthogonal directions and a repeated index, usually j, indicates summation over all values
of that index. This convention is briefly broken in the section on electromagnetism where
it is customary, and move convenient, to use vector notation.
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3.1 Hydrodynamics and heat transfer

The governing equations of incompressible fluid flow arise from the application of mass
conservation and momentum conservation (Newton’s second law) to an infinitesimal con-
trol volume containing fluid of constant density ρ. This yields the equations of continuity
and momentum respectively, given here in terms of the instantaneous velocity Ũi;

∂Ũi
∂xi

= 0 (3.1.1)

ρ

(
∂Ũi
∂t

+ Ũj
∂Ũi
∂xj

)
= −∂P̃

∂xi
+
∂τ̃ij
∂xj

+ F̃i (3.1.2)

where F̃i represents any additional body forces, P̃ is the fluid pressure, τ̃ij is the viscous
stress tensor and those quantities with a tilde are instantaneous. Equation (3.1.2) expresses
a balance between fluid momentum and the forces which can affect it. The forces, on the
RHS, arise due to changes in pressure, viscous stresses, and any other body forces (such
as buoyancy).

In incompressible flows, the conservation of energy can be expressed via a scalar transport
equation for the instantaneous temperature Θ̃;

∂Θ̃

∂t
+ Ũj

∂Θ̃

∂xj
=

∂

∂xj

[
α
∂Θ̃

∂xj

]
(3.1.3)

where α is the thermal diffusivity.

3.1.1 Navier-Stokes equation

By providing a relationship between the viscous stress tensor, τ̃ij , and the rate of increase
of strain in the fluid, the generalised momentum equation becomes the Navier-Stokes
equation. For a Newtonian fluid of viscosity µ, the relationship is;

τ̃ij = µ

(
∂Ũi
∂xj

+
∂Ũj
∂xi

)
(3.1.4)

Substitution of Equation (3.1.4) into Equation (3.1.2) gives the Navier-Stokes equation;

ρ

(
∂Ũi
∂t

+ Ũj
∂Ũi
∂xj

)
= −∂P̃

∂xi
+

∂

∂xj

[
µ

(
∂Ũi
∂xj

+
∂Ũj
∂xi

)]
+ F̃i (3.1.5)
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3.1.2 Reynolds averaging

Reynolds averaging is a concept introduced by Osborne Reynolds to aid mathematical
description of the random fluctuations exhibited by quantities in turbulent motion. It
recognises that any instantaneous variable, Φ̃(xi, t), can be expressed as the sum of an
average or mean value, Φ(xi), and fluctuation around that mean, φ(xi, t);

Φ̃(xi, t) = Φ(xi) + φ(xi, t) (3.1.6)

To obtain the mean value an averaging process is applied. The three most common types
are the time average, the phase average and the ensemble average (Wilcox, 1998). The
time average, for example, which is appropriate for statistically stationary turbulence, is
defined as;

Φ̃(xi, t) = Φ(xi) = lim
∆t→∞

1

∆t

∫ t+∆t

t

Φ̃(xi, t) dt (3.1.7)

where the overbar denotes a Reynolds averaged quantity and ∆t is a time interval larger
than the time scale associated with the slowest variations of Φ̃.

The ensemble average, the most general type of average (appropriate for time and space
dependant turbulence), can be understood as an average over N independent realizations
of the same event. Mathematically, this is written as;

Φ̃(xi, t) = Φ(xi) = lim
N→∞

1

N

N∑
n=1

Φ̃n(xi, t) (3.1.8)

where Φ̃n(xi, t) is the value of Φ̃(xi, t) on the nth repetition.

By definition, the average of the fluctuation about the mean is φ(xi, t) = 0. The average
of the product between two fluctuating quantities (such as, say, uv) need not be zero
however, since the fluctuations in the quantities may be correlated. Hence, for two general
instantaneous signals Φ̃ and Ψ̃, their averaged product becomes;

Φ̃Ψ̃ = (Φ + φ) (Ψ + ψ) = ΦΨ + Φψ + φΨ + φψ = ΦΨ + φψ (3.1.9)

Performing the decomposition on the instantaneous quantities in the continuity equa-
tion (3.1.1) and Navier-Stokes equation (3.1.5), and then averaging, results in a set of
equations governing the mean velocity and pressure field known as the Reynolds-averaged
Navier-Stokes (RANS) equations;

∂Ui
∂xi

= 0 (3.1.10)

ρ

(
∂Ui
∂t

+ Uj
∂Ui
∂xj

)
= −∂P

∂xi
+

∂

∂xj

[
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− ρuiuj

]
+ Fi (3.1.11)
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Similarly, the transport equation for the instantaneous temperature Θ̃, Equation (3.1.3),
transforms to;

∂Θ

∂t
+ Uj

∂Θ

∂xj
=

∂

∂xj

[
α
∂Θ

∂xj
− ujθ

]
(3.1.12)

The Reynolds averaging process has introduced an extra term, ρuiuj , into Equation (3.1.11)
for the mean momentum, called the Reynolds stress tensor, and a similar term, ujθ, into
the transport equation for the mean temperature, Equation (3.1.12), often called the tur-
bulent heat flux. These terms describe the effect of the turbulence on the mean flow and
must be defined in order to close the equations. Different closure methods for these terms
are discussed in Chapter 4.

3.1.3 Buoyancy

Buoyancy is a body force which arises when variations of density in a fluid are subject to
gravitational acceleration. The gravity field exerts a body force, ρgi, per unit volume. The
density variations are most commonly caused by thermal expansion of heated fluid.

When there are only modest variations in temperature, so that density variations may be
at most only 1%, the Boussinesq approximation may be used. In this it is assumed that
differences in density are small enough to be neglected in the inertial terms and only
become significant when multiplied by the gravitational acceleration. Density variations
can then be incorporated by assuming a linear dependence with temperature. Let ∆Θ̃ =

Θ̃−Θ0 and taking a Taylor series expansion;

ρ(Θ0 + ∆Θ̃) = ρ(Θ0) +
∂ρ

∂Θ̃
(∆Θ̃) +

1

2!

∂2ρ

∂Θ̃2
(∆Θ̃)2 + . . . (3.1.13)

where Θ0 is a suitably chosen reference temperature and ρ(Θ0) = ρ0 is the density at
that reference temperature. By neglecting quadratic terms and introducing the volumetric
expansion coefficient, β;

β = −1

ρ0

∂ρ

∂Θ̃
(3.1.14)

Equation (3.1.13) can be written as;

ρ = ρ0 − ρ0β(Θ̃−Θ0) (3.1.15)

The instantaneous buoyant body force, F̃ b
i , can then be written as;

F̃ b
i = ρgi = ρ0gi − ρ0giβ(Θ̃−Θ0) (3.1.16)

For uniform gravitational fields the term giρ0, which results from the constant reference
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density, can be re-written in terms of a gravitational potential Φg;

ρ0gi = −ρ0
∂Φg

∂xi
(3.1.17)

This can then be readily absorbed into the pressure gradient through use of a modified
pressure;

P ∗ = P + Φg (3.1.18)

which aids computational stability by reducing the size of source terms.

Performing a Reynolds decomposition on Equation (3.1.16) and averaging results in the
mean part of the buoyancy force;

F b
i = −ρ0

∂Φg

∂xi
− giβρ0 (Θ−Θ0) (3.1.19)

and the fluctuating part of the buoyancy force;

f bi = −ρ0giβθ (3.1.20)
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3.2 Electromagnetism

Classical electromagnetism is concerned with the interactions between charged particles
and the electromagnetic field. For the purposes of magnetohydrodynamics, the equations
of concern are Maxwell’s equations, the Lorentz force law and Ohm’s law. Attention here
is restricted to conducting, non-magnetic materials for which the electrical conductivity
is isotropic. For a more detailed treatment and derivation, the reader is directed to one of
many text books devoted to the subject, e.g. Griffiths (1999).

3.2.1 Maxwell’s equations

In 1873 James Clark Maxwell unified all previously unrelated observations in the fields of
electrodynamics and magnetism into a single set of partial differential equations. These
describe electric charges and electric currents as the sources of the electric and magnetic
fields respectively and provide a means to evaluated how they evolve in space and time.

Charge conservation

For applications involving continuous media, it is convenient to introduce the charge den-
sity, ρq, and the current density, J. For a distribution of discrete charges, qn, in an arbitrary
volume V, the charge density is defined as;∫

V

ρq dV =
∑
n

qn = Q → ρq =
dQ

dV
(3.2.1)

where Q is the total charge present within the volume V. The current density J is defined
as the current flow per unit cross-sectional area. Thus, if the total current through a surface
S is I , then;

I =

∫
S

J · dS (3.2.2)

where S is the area vector which has magnitude S and is positive in the direction of the
outward facing normal. Since charge is conserved, the net flow of current into a volume
element must produce an increase in the total charge within the volume. Thus;

−
∫
S

J · dS =
∂

∂t

∫
V
ρq dV =

∫
V

∂ρq
∂t

dV (3.2.3)

Using the divergence theorem;

−
∫
S

J · dS = −
∫

V
∇ · J dV (3.2.4)
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so that Equation (3.2.3) becomes;∫
V

(
∇ · J +

∂ρq
∂t

)
dV = 0 (3.2.5)

Since the integrand must hold for any arbitrary volume V, the conservation of charge can
be expressed as;

∂ρq
∂t

+ ∇ · J = 0 (3.2.6)

Maxwell-Faraday law

Michael Faraday concluded, from his experiments in the period 1831-32, that the elec-
tromagnetic force (EMF) induced in a closed circuit was equal to the rate of change of
magnetic flux which penetrates any closed surface spanning that circuit. Maxwell for-
malised this into a relationship between the magnetic field, B, and the electric field, E,
recited here in differential form;

∇× E = −∂B

∂t
(3.2.7)

Maxwell-Ampère law

The Maxwell-Ampère law relates the magnetic field to moving charges and time-varying
electric fields;

∇×B = µ0

[
J + ε0

∂E

∂t

]
(3.2.8)

where µ0 is the permeability of free space and ε0 is the permittivity of free space.

Gauss’s law

Gauss’s law relates the distribution of electric charge to the resulting electric field E;

∇ · E =
ρq
ε0

(3.2.9)

Divergence of B

Taking the divergence of Equation (3.2.7), it becomes apparent that;

∂

∂t
(∇ ·B) = 0 → ∇ ·B = const. (3.2.10)
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The divergence of the magnetic field is therefore constant. If it is assumed that the con-
stant is zero, then the magnetic field B becomes solenoidal; a picture that is consistent
with observation. If, in fact, ∇ · B 6= 0 then the resulting equation would take a form
equivalent to Gauss’s law for electric fields (Equation (3.2.9)). This would imply the exis-
tence of a magnetic charge density, which would lead to the idea the magnetic field arising
from a bar magnet, for example, was actually the result of two isolated poles which carried
opposing magnetic charges. Since magnetic monopoles have thus far eluded detection1,
it is reasonable to conclude that, in fact2;

∇ ·B = 0 (3.2.11)

3.2.2 Ohm’s law

Maxwell’s Equations (3.2.6) – (3.2.9) and Equation (3.2.11) provide nine constraints for
ten unknowns (in three dimensions). To close the system, a constitutive relationship is
employed which relates the electric field to the current density. This is Ohm’s law and the
generalised form, for a conductor of isotropic conductivity σ moving with a velocity U

relative to a magnetic field B, is;

J = σ (E + U×B) (3.2.12)

3.2.3 Lorentz force

A charged particle placed within an electromagnetic field experiences a force. This is
known as the Lorentz force, named after the dutch physicist Hendrik Lorentz3. It arises
from three fundamental interactions: that with the static electric field, that with a time
varying magnetic field, and that with the relative movement of a charge with respect to a
magnetic field. For a particle with charge q, the discrete Lorentz force, fL, is given by;

fL = qEs︸︷︷︸
Coloumb force

+ qEi︸︷︷︸
induced electric field

+ qU×B︸ ︷︷ ︸
magnetic force

(3.2.13)

where the induced electric field arises from a time varying magnetic field via Faraday’s
law (3.2.7). It is common to combine the two electric fields such that;

fL = q (E + U×B) (3.2.14)

1See Milton, 2006.
2That the base unit of a magnetic field appears to be a dipole, seems to emphasise the idea that the

source of the magnetic field is actually the movement of electric charge (as described by Amperés law),
rather than some additional intrinsic property of matter.

3Although named after Lorentz, it was actually first derived by Oliver Heaviside.
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For applications involving continuous media, it is beneficial to re-formulate the law in
terms of the charge density ρq. A small amount of charge δQ will experience a small
force δfL such that;

δfL = δQ (E + U×B) (3.2.15)

Dividing by a small volume δV, and taking the limit as δV→ 0;

lim
δV→0

δfL

δV
=
dfL

dV
=
dQ

dV
(E + U×B) (3.2.16)

Since dfL/dV is simply the force per unit volume, FL, and dQ/dV is the charge density
ρq (via Equation (3.2.1)), Equation (3.2.16) becomes;

FL = ρqE + ρq (U×B) (3.2.17)

Finally, since a charge density in motion is just a form of current, the second term on the
RHS of Equation (3.2.17) can be related to the current density as follows. Consider a
charge density ρq which sweeps out a differential area δA as it travels with velocity U . In
a time δt, the total charge that passes is equal to the total charge contained in the volume,
UδtδA. Hence;

δQ = ρqUδAδt → δQ

δt
= ρqUδA (3.2.18)

In the limit as δt→ 0 and δA→ 0;

dQ

dt
=

∫
A

ρqU dA (3.2.19)

In three-dimensions, this simply becomes;

dQ

dt
=

∫
A

ρqU · dA =

∫
A

J · dA = I (3.2.20)

where through the use of Equation (3.2.2) it becomes apparent that J = ρqU. Hence the
Lorentz force law becomes;

FL = ρqE + J×B (3.2.21)

3.2.4 Relativistic considerations

This research is only concerned with non-relativistic phenomena, that is, when the char-
acteristic velocity of the materials concerned is much less than the speed of light. With
this in mind, several terms in the preceding set of equations can be neglected through an
order of magnitude analysis (Roberts, 1967a; Shercliff, 1965).

If a variation in the flow has a time-scale denoted by τ and a length scale denoted by L,
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then from Faraday’s law (3.2.7);

O(∇× E)

O(∂B/∂t)
= O(1) → O(E)

O(B)
=
L

τ
(3.2.22)

which gives a relationship between the magnitudes of the electric and magnetic fields.
Now, taking the ratio between the LHS and the 2nd term on the RHS in Ampére’s
law (3.2.8);

O(ε0µ0∂E/∂t)

O(∇×B)
= ε0µ0

O(E)/τ

O(B)/L
≈ 1

c2

(
L

τ

)2

=
U2

0

c2
� 1 (3.2.23)

where U0 = L/τ is a typical velocity scale and c = 1/
√
ε0µO is the speed of light.

Thus the final term in the Maxwell-Ampère law, which Maxwell called the displacement
current, is negligible, and the form of the Maxwell-Ampere law (3.2.8) suitable for non-
relativistic MHD is;

∇×B = µ0J (3.2.24)

which was the form originally presented by Ampère. The omission of the displacement
current term also implies that the time dependent part of Equation (3.2.6) must also be
neglected, since taking the divergence of Equation (3.2.24);

∇ · (∇×B) = ∇ · µoJ = 0 → ∇ · J = 0 (3.2.25)

This condition on the current density, which is just a mathematical statement of Kirchoff’s
first law, ensures that any current in a conducting medium, bound by fully insulated sur-
faces, must form closed loops.

A similar analysis can be applied to the constituent terms of the Lorentz force. Firstly by
substituting in Equations (3.2.24) and (3.2.9) it is noted that the ratio of the terms on the
RHS of Equation (3.2.21) becomes;

ρeE

J×B
=

ε0(∇ · E)E

∇×B/µ0 ×B
(3.2.26)

Then by considering the order of magnitude;

O(ε0(∇ · E)E)

O(∇×B/µ0 ×B)
= ε0µ0

O(E2)

O(B2)
=

1

c2

(
L

τ

)2

=
U2

c2
� 1 (3.2.27)

Hence the electrostatic term in Equation (3.2.21) is insignificant when the velocities un-
der consideration are much less than the speed of light. The form of the Lorentz force
applicable in this research is thus;

FL = J×B (3.2.28)
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3.2.5 Summary

Taking into account the simplifications introduced in the previous section, a summary of
the equations of electromagnetism relevant to MHD is presented below.

Charge conservation, ∇ · J = 0 (3.2.29a)

Ampère’s law, ∇×B = µ0J (3.2.29b)

Faraday’s law, ∇× E = −∂B

∂t
(3.2.29c)

Solenoidal nature of B, ∇ ·B = 0 (3.2.29d)

Ohm’s law, J = σ (E + U×B) (3.2.29e)

Lorentz force, FL = J×B (3.2.29f)
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3.3 Magnetohydrodynamics

The previous two sections provide all the information required to build a mathematical
description of magnetohydrodynamic fluid flow. In essence, it is simply the coupling
between the Navier-Stokes equations and Maxwell’s equations. This is mathematically
described in the next few sections.

3.3.1 Transport equation for B

An equation governing the evolution of an instantaneous magnetic field B can be found
by first substituting Ampère’s law (3.2.29b) into Ohm’s law (3.2.29e);

∇×B

µ0σ
= E + U×B (3.3.1)

Taking the curl and substituting Faraday’s law (3.2.29c);

∇(∇ ·B)−∇2B

µ0σ
= −∂B

∂t
+ ∇× (U×B) (3.3.2)

where the general vector relationship ∇× (∇×A) = ∇ (∇ ·A)−∇2A has been used.
Then upon rearranging, and using the solenoidal nature of B;

∂B

∂t
= ∇× (U×B) +

1

µ0σ
∇2B (3.3.3)

This takes the form of a typical transport equation, where the final term on the RHS is
recognized as a diffusion type term and η = (µ0σ)−1 is the magnetic diffusivity. Taking
the ratio of the terms on the right hand side;

O (∇× (U×B))

O (η∇2B)
=
UL

η
= Rem (3.3.4)

where Rem is the magnetic Reynolds number. As explained in Section 2.1, the mag-
netic Reynolds number measures the relative importance of advection to diffusion of the
magnetic field.

Given a velocity field U, Equation (3.3.3) evidently governs the evolution of the magnetic
field B in time and space. One approach to couple the hydrodynamic and electromagnetic
equations would therefore be to solve Equation (3.3.3) (a vector equation) and use Am-
père’s law (3.2.29b) to compute the corresponding current density J. The Lorentz force
term in the momentum equation, J × B, is then fully defined. This requires, in 3D, an
extra three transport equations to be solved.
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This thesis is only concerned with cases where Rem � 1, however, as they constitute the
majority of MHD flows of engineering interest. As will become clear in the next section,
restricting attention to this class of flows allows some significant simplifications to the
governing equations.

3.3.2 Low Rem approximation

Frequently referred to as the inductionless approximation, the low Rem approximation is
applicable for flows in which Rem � 1. Physically, this amounts to stating the magnetic
field associated with the induced currents is negligible in comparison to any externally
applied or imposed magnetic field. This is usually the case when a flow is induced by
some external means and directed through a static magnetic field. It also applies in sit-
uations where the magnetic field travels or rotates uniformly and slowly, since through a
suitable change of reference frame (to that of the travelling magnetic field) the magnetic
field becomes static.

To obtain the simplifications afforded by the approximation, following Davidson (2001),
consider a case where Rem is low and an imposed magnetic field is steady. Let E0, J0

and B0 represent the fields would would exist if, at some point, U = 0. If e, j and b are
perturbations in those quantities as a result of a vanishingly small velocity field U then,
from the expressions in Equation (3.2.29);

∇× E0 = −∂B0

∂t
= 0 (3.3.5a)

∇× e = −∂b

∂t
(3.3.5b)

J0 = σE0 (3.3.5c)

j = σ (e + U×B0) (3.3.5d)

where the second order term u × b has been neglected from Equation (3.3.5d). Since,
from the earlier order of magnitude analysis in Equation (3.2.22), e ∼ Ub, the induced
electric field e can also be neglected in Equation (3.3.5d). Ohm’s law becomes;

J = J0 + j = σ (E0 + U×B0) (3.3.6)

From Equation (3.3.5a), E0 is irrotational and so it may be written as the gradient of
a scalar, −∇φ, where φ is the electrostatic potential. Ohm’s law (3.3.6) then finally
becomes;

J = σ (−∇φ+ U×B0) (3.3.7)

The leading order term in the Lorentz force is;

FL = J×B0 (3.3.8)
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To eliminate the current density, simply substituting Ohm’s law gives;

FL = σ (−∇φ+ U×B0)×B0 (3.3.9)

Provided therefore that a (steady) magnetic field is imposed the only unknown in Equa-
tion (3.3.9) is the electrostatic potential. Fortunately, the divergence free condition im-
posed on the current density (see Equation (3.2.25)) means that by taking the divergence
of Equation (3.3.7);

∇ · J = ∇ · σ (−∇φ+ U×B0) = 0

∇2φ = ∇ · (U×B0) (3.3.10)

one arrives at a Poisson type equation for φ involving the flow velocity and the magnetic
field, both known quantities. With this in mind, the solution of an MHD problem within
the low-Rem approximation requires only the specification of the imposed magnetic field,
the solution of one extra Poisson type equation and inclusion of the Lorentz force term
into the mean momentum equations.

To finish, the additional equations are expressed in the tensor index notion more common
to fluid dynamics. Taking the quantities in their instantaneous form and dropping the 0

subscript on the magnetic field vector, Equation (3.3.9) becomes;

F̃L
i = σ

(
−εijkB̃k

∂φ̃

∂xj
+ ŨjB̃iB̃j − ŨiB̃jB̃j

)
(3.3.11)

and Equation (3.3.10) becomes;

∂2φ̃

∂x2
i

=
∂

∂xi

(
εijkŨjB̃k

)
(3.3.12)

where εijk is the third rank Levi-Civita alternating tensor. Since the magnetic field is now
assumed fixed and constant, its turbulent fluctuations are zero by definition. A Reynolds
decomposition of both Equation (3.3.11) and Equation (3.3.12) therefore yields no fluctu-
ating second moments and, after averaging, the mean contribution is achieved by simply
dropping the tildes. The fluctuating part of Equation (3.3.11) becomes;

fLi = σ

(
−εijkBk

∂φ′

∂xj
+ ujBiBj − uiBjBj

)
(3.3.13)

where, in this case, the prime on φ indicates it is a fluctuating quantity.
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3.3.3 Statement of equations

The complete system of equations governing non-relativistic MHD flow under the low-
Rem approximation, subject to buoyancy and within the RANS framework consist of;

the continuity equation;
∂Ui
∂xi

= 0 (3.3.14)

the RANS equation, with the Lorentz and buoyancy force terms;

∂Ui
∂t

+ Uj
∂Ui
∂xj

=− 1

ρ

∂P ∗

∂xi
+

∂

∂xj

[
ν

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− ρuiuj

]
− giβ (Θ−Θ0)

+
σ

ρ

(
−εijkBk

∂φ

∂xj
+ UjBiBj − UiBjBj

)
(3.3.15)

where the pressure has been redefined as P ∗ = P + Φg;

the reduced energy equation for scalar temperature Θ;

∂Θ

∂t
+ Uj

∂Θ

∂xj
=

∂

∂xj

[
α
∂Θ

∂xj
− ujθ

]
(3.3.16)

and the Poisson equation for the electrostatic potential;

∂2φ

∂x2
i

=
∂

∂xi
(εijkUjBk) (3.3.17)

There are still two terms which remain to be addressed: ρuiuj and uiθ. These are dis-
cussed in the next chapter.
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CHAPTER

FOUR

TURBULENCE MODELLING

“I am an old man now, and when I die and go to heaven there are two matters on which
I hope for enlightenment. One is quantum electrodynamics, and the other is the

turbulent motion of fluids. And about the former I am rather optimistic”
Horace Lamb, 1932

Turbulence is a ubiquitous feature in fluid flow. Being able to properly account for it
in CFD simulations is thus an important challenge in engineering. This chapter opens in
Section 4.1 with a brief overview of turbulence as a phenomenon and includes the ways in
which it can be modified by a magnetic field. Section 4.2 then provides an overview of the
most common solution strategies employed within CFD. In perhaps unconventional fash-
ion, the more elaborate stress-transport approach is introduced first in Section 4.3 since
it provides a deeper understanding of the various processes by which turbulent stresses
are transported, diffused and dissipated. The more common eddy-viscosity approach then
naturally follows as a simplification in Section 4.4. Finally, Section 4.5 details some
approaches commonly used to model flows within the vicinity of a wall.
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4.1 Characteristics of turbulent flows

The majority of flows of engineering and environmental significance are turbulent. They
are characterized by fluid motions which, in both space and time, exhibit chaotic and
irregular behaviour. Mathematically, it is mainly the interactions between the non-linear
inertial terms and the viscous terms in the Navier-Stokes equations which cause the flow to
become unstable. Thus, the transition of a flow from laminar to turbulent flow is governed
largely by the Reynolds number. Osborne Reynolds famously demonstrated that a laminar
pipe flow would transition to turbulence somewhere in the range 2000 < Re < 4000, but
other factors, such as pipe roughness, the uniformity of the inlet flow and even the ambient
noise in the room of the experiment, were also influential.

Once a flow is turbulent, one of the most prominently observed features is increased
mixing. In contrast to laminar flows, where fluid tends to flow in a smooth, orderly,
fashion, the presence of large, swirling, eddying motions in turbulent flow leads to intense
and vigorous mixing. Aside from having implications for transported quantities, such
as heat or concentration, the turbulence also mixes the momentum of the fluid itself,
manifesting as an apparent stress (the Reynolds stresses). It is this “eddying motion”
which tends to most visibly characterize turbulent flows. These eddies are observed to
cover a wide range of time and length scales, from the largest, which are governed by the
geometry of the flow, to the smallest, which, as shall be discussed below, are responsible
for the eventual dissipation of turbulent energy.

4.1.1 Spectral view of turbulence and the energy cascade

The turbulent eddies within a flow serve to distribute energy across the range of length
scales that are found. The most widely accepted mechanism, originally put forward
by Richardson (1922), is that turbulent energy is captured from the mean flow through
engulfment by large-scale eddies. These eddies are then progressively broken down to
smaller eddies (taking a proportion of the captured energy with them) through a process
of inertially driven eddy stretching and distortion. This occurs until the scales of motion
are so small, and the velocity gradients so large, that the energy is dissipated as heat by
viscous action. The eddies that lie between the largest (responsible for energy capture)
and the smallest (responsible for energy dissipation) serve as energy carriers, transferring
energy down the spectrum of scales in a “cascading” fashion.

To quantify this cascading process somewhat, take k to be the turbulent kinetic energy
which is transferred and carried by the eddies throughout the cascade and ε to be the
rate at which k is dissipated due to the action of viscosity at the smallest scales. If the
turbulence is statistically steady, then ε must also equal the rate at which k is fed to the
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turbulence from the mean flow, otherwise there would be a net gain or loss in energy (and
a build up of eddies of a particular size). This led Kolmogorov (1941) to suppose that the
motion at the smallest scales, therefore, should only be dependant on the rate at which
they receive energy from the mean flow, ε, and ν, the viscosity. Dimensional arguments
then lead to the following velocity (v), length (η) and time (τ) scales;

v = (νε)1/4 , η =

(
ν3

ε

)1/4

, τ =
(ν
ε

)1/2

(4.1.1)

which are known as the Kolmogorov microscales and represent turbulent motion at the
finest scales.

Despite generally being associated with the fine-scale motion, ε is primarily determined
by the motion of the large scale eddies, since it is these which determine the rate at which
k is captured from the mean flow. If U and ` are velocity and length scales associated
with the large eddies, then these eddies will have energy of order U2 and a timescale of
τ` = `/U . The rate of energy transfer from the mean flow, therefore, can be expected to
scale as;

ε ∼ U2/τ` = U3/` (4.1.2)

Viscosity can be expected to play little part in the energy cascade, since a Reynolds num-
ber formed from U and `will be much greater than unity (for high bulk Reynolds numbers
at least). Once captured by the turbulence then, turbulent kinetic energy will transfer down
the cascade, unimpeded by viscosity, until the length scale of the motion becomes small
enough that viscous forces do become significant i.e. when the Reynolds number associ-
ated with the turbulent motions becomes of order one. The energy is then dissipated to
heat by the viscous forces. Since ε is fixed by the large scale motion, the size of the small
scales adjusts so as to ensure turbulent energy is dissipated at a rate that balances the rate
it is transferred from the mean flow (Hanjalic and Launder, 2011).

The range of scales within a particular flow can be estimated by combining Equation (4.1.1)
and Equation (4.1.2) to give

v

U
∼ Re−1/4,

η

`
∼ Re−3/4,

τ

τ`
∼ Re−1/2 (4.1.3)

where the Reynolds number is based on the large scale eddies Re = U`/ν. Evidently,
as Re increases, the scales of the finest motion become smaller compared with those of
the largest eddies. Kolmogorov argued that, because of this, at sufficiently high Reynolds
number the small scale motions are statistically isotropic. Anisotropy which is induced at
large scales by boundary conditions or body forces is lost as energy is transferred down
the spectrum.

The view of turbulence above as advanced by Kolmogorov (1941) and Richardson (1922),
amongst others, largely underpins a lot of the turbulence modelling approaches which are
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used within the RANS framework. As the next section shall discuss, the application of a
magnetic field, as something which is known to induce anisotropy, will clearly serve to
disrupt this view somewhat.

4.1.2 MHD turbulence

It was seen in Chapter 2 that the application of a magnetic field to initially isotropic freely
decaying turbulence resulted in a kind of transformation towards a two-dimensional,
and hence highly anisotropic, state. Clearly this has some implications for one of Kol-
mogorov’s hypotheses introduced in the previous section, which was that turbulence ex-
hibits local (small scale) isotropy at high Reynolds numbers. Davidson (1997) argued
that this transformation towards a two-dimensional state is a result of the need for the
flow to conserve angular momentum despite a continual reduction in kinetic energy due
to Joule dissipation. To provide more rigor to this, the problem is revisited here in more
mathematical detail.

Consider again a large electrically insulated sphere of radiusR and volume V. The sphere
contains an electrically conducting fluid of constant viscosity and it sits in a uniform
imposed magnetic field B. The instantaneous equation governing the motion of the fluid
is, from Equation (3.1.5), in vector notation;

ρ
DU

Dt
= −∇P + µ∇2U + J×B (4.1.4)

where the final term on the RHS is recognized as the Lorentz force. Taking the dot product
of Equation (4.1.4) with U yields;

D

Dt

[
1

2
ρU2

]
= −∇ · (PU) + µ∇2U ·U + (J×B) ·U (4.1.5)

which governs the evolution of the fluid’s kinetic energy, 1/2ρU2, in the system. The first
term on the RHS represents work done by pressure gradients. The remaining terms on the
RHS will be addressed in turn to help elicit some physical meaning. From Ohm’s law,
Equation (3.3.7);

U×B = − 1

σ
J +∇φ (4.1.6)

and the rate of working of the Lorentz force, the final term on the RHS of Equation (4.1.5),
can be rewritten as;

(J×B) ·U = J · (B×U) = −J · (U×B) = − 1

σ
J2 −∇ · (φJ) (4.1.7)

With the help of the vector identity ∇× (∇×A) = ∇ (∇ ·A)−∇2A, the viscous term
in Equation (4.1.4) can be rewritten as;

µ∇2U = −µ∇× (∇×U) = −µ∇× ω (4.1.8)
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where the continuity condition, ∇ ·U = 0, has been used and ω = ∇×U is the vorticity.
The corresponding viscous term in Equation (4.1.5) now becomes, with the vector identity
∇ · (A×B) = B · (∇×A)−A · (∇×B) and some manipulation;

µ∇2U ·U = −µU · (∇× ω) = µ∇ · (U× ω)− µω2 (4.1.9)

Collecting the terms, Equation (4.1.5) becomes;

D

Dt

[
1

2
ρU2

]
= −∇ · (PU) + µ∇ · (U× ω)−∇ · (φJ)− µω2 − 1

σ
J2 (4.1.10)

The advective part of the total derivative can be rewritten;

U ·∇
[

1

2
ρU2

]
= ∇ ·

[(
1

2
ρU2

)
U

]
(4.1.11)

Taking this to the RHS and gathering all the divergence terms together;

∂

∂t

[
1

2
ρU2

]
= ∇ ·

[
−
(
P +

1

2
ρU2

)
U + µ (U× ω)− φJ

]
− µω2 − 1

σ
J2 (4.1.12)

By integrating this over the volume of the sphere, and with help from the divergence theo-
rem and the impermeability (U · dS = 0) and insulating conditions (J · dS = 0) imposed
at the boundary of the sphere (S), the divergence term vanishes. Equation (4.1.12) then
becomes;

∂

∂t

∫
V

(
1

2
ρU2

)
dV = −µ

∫
V
ω2 dV− 1

σ

∫
V

J2 dV (4.1.13)

which can be seen to govern the evolution of the total kinetic energy within the system.
The dissipative mechanisms within the system now become clear. Since both terms inside
the integrands on the RHS are positive, they demonstrate that the kinetic energy of the
flow will fall monotonically in time if either ω or J are non-zero. Physically, the term
involving ω2 represents viscous dissipation and the term involving J2 represents Joule
dissipation.

Now, suppose that the fluid in the sphere is vigorously stirred, such that the turbulence
which is created is statistically homogeneous and isotropic, and then left to itself. In the
absence of magnetic fields, the current vanishes and the turbulence will be expected to
eventually decay (and the fluid come to rest) courtesy of the viscous dissipation term.

To better expose the effects of the magnetic field, take the fluid to be inviscid. Equa-
tion (4.1.13) becomes;

∂

∂t

∫
V

(
1

2
ρU2

)
dV = − 1

σ

∫
V

J2 dV (4.1.14)

Clearly, if the flow is initially turbulent, the fluctuating motions across the magnetic field
lines will induce a current J and this would be expected to lead to a continual decline in
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kinetic energy. However, as Davidson (1995) shows, one component of angular momen-
tum is conserved during this decay. To see why, take τL to be the torque induced by the
Lorentz force J×B;

τL = x× (J×B) (4.1.15)

where x is the displacement vector between the point at which the force acts and the point
where the torque is measured. Consider the component of torque parallel to B, given by;

τL ·B = [(x ·B) J− (x · J) B] ·B (4.1.16)

For the purposes of computing the torque, one only needs to consider the distance vector
perpendicular to the magnetic field, x⊥. Thus, Equation (4.1.16) becomes;

[(x⊥ ·B) J− (x⊥ · J) B] ·B = −B2 (x⊥ · J⊥) (4.1.17)

since, also, only the component of J parallel to x⊥ will contribute. The RHS can be
transformed by using Ji = ∇ · (xiJ) such that;

xiJi = xi∇ · (xiJ) = ∇ ·
(
x2
iJ
)
− xiJi

→ x⊥J⊥ =
1

2
∇ ·

(
x2
⊥J
)

(4.1.18)

Substituting this into Equation (4.1.17), the component of torque parallel to the magnetic
B is given by;

τL ·B = −B
2

2
∇ ·

(
x2
⊥J
)

(4.1.19)

Integrating this over the sphere;

− B2

2

∫
V
∇ ·

(
x2
⊥J
)

dV = −B
2

2

∫
S

x2
⊥J · dS = 0 (4.1.20)

since, as before, the insulating condition at the boundary ensures J · dS = 0. The global
torque, caused by the Lorentz force, parallel to B is thus zero. Since there are no viscous
forces, the component of angular momentum parallel to B;

H‖ =

∫
V

(x×U) dV (4.1.21)

must be conserved as the flow evolves. This presents a bit of a problem. If the flow
possesses some finite amount of H‖, then it cannot come to rest. The energy equation
(4.1.14), however, states that so long as the flow is moving, and generating a finite amount
of current, its kinetic energy must continue to fall. Consequently, it appears as though the
flow must somehow evolve to eliminate Joule dissipation whilst maintaining its angular
momentum. The generation of current is explicitly linked to the flow velocity by Ohm’s
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Figure 4.1: Initially homogeneous and isotropic turbulence (left) evolves into a two-
dimensional state (right) where vortices become aligned and stretched in the direction
of the magnetic field Davidson (2001).

law, in Equation (3.3.7). Taking the curl of this;

∇× J = σ (−∇φ+ U×B) = σ∇× (U×B) (4.1.22)

This can be simplified with the vector identity;

∇× (U×B) = U (∇ ·B)−U (∇ ·U) + (B ·∇) U− (U ·∇) B (4.1.23)

where since ∇ · B = 0, ∇ · U = 0 and the magnetic field B does not vary in space,
Equation (4.1.22) becomes;

∇× J = (B ·∇) U (4.1.24)

This, along with ∇ · J = 0, uniquely defines the vector field J. The interesting point
about Equation (4.1.24), and one which reveals how the flow evolves, is that the term on
the RHS vanishes if U exhibits no variation in the direction of the magnetic field B. Since
there are no external sources of current, one way for the flow to evolve into a state where
J = 0, as the preceding argument suggests it must, is for it to rearrange into a strictly two-
dimensional state independent of the direction of the magnetic field. The turbulent eddies
become elongated in the direction of the magnetic field and stretch out to become column
like. Figure 4.1 provides a schematic representation. As this transformation occurs, the
magnitude of the current, and hence Joule dissipation, decreases.

Contrary to Kolmogorov’s picture for non-MHD turbulence, the presence of a magnetic
field actually drives the flow towards a highly anisotropic state, stretching the eddies along
the magnetic field lines. Of course, in any real flow, the fluid will not be inviscid and thus
the stretching process will be accompanied by viscous dissipation, eventually coming to
rest.
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4.2 Overview of solution strategies

There are three broad strategies employed to numerically simulate fluid flows and they
have all received at least a mention thus far: Direct Numerical Simulation (DNS), Large
Eddy Simulation (LES) and solution of the Reynolds-averaged Navier-Stokes (RANS)
equation. Whatever approach one takes, the governing equations of the problem first
need to be discretized, over a mesh or grid of discrete points, before they can be subject
to numerical treatment. The size and resolution of this mesh will determine the range
of length scales which it becomes possible to reproduce. Any motion on a lengthscale
smaller than the smallest cell will not be captured and, similarly, the time step used in the
solution process must also be small enough to capture the fastest fluctuations in the flow.
The strategies discussed here are broadly split according to the range of length scales
which they attempt to resolve.

4.2.1 Direct Numerical Simulation

If one wishes to resolve the entire spectrum of length and time scales, then as a minimum
the mesh must be composed of cells whose size is smaller than the Kolmogorov length
scale and use a time step smaller than the Kolmogorov time scale for the flow in question.
If these constraints are satisfied then the solution can be considered a Direct Numerical

Simulation. The approach does not involve any modelling and, if done correctly, will
resolve the entirety of the energy spectrum. Solutions obtained this way provide a degree
of accuracy and a level of detail far beyond that which experimental methods can currently
provide but they are, however, very computationally expensive. So much so in fact1 that,
whilst DNS is useful for fundamental research, it is not generally suitable for use on
routine industrial (or even routine academic) computations.

4.2.2 Large Eddy Simulation

Large Eddy Simulation aims to reduce the large computational expenditure of DNS by
only attempting to resolve part of the energy spectrum. It achieves this by applying a
“filter” over the Navier-Stokes equations which removes motion on the smallest, unre-
solvable, scales. The large scale motion is fully resolved and the unresolved motion is
accounted for by a so called sub-grid-scale model. Since some proportion of the energy
spectrum is resolved, the sub-grid-scale models used are less crucial to the computed be-
haviour of the flow than in RANS and they can thus afford to be simpler in nature. Despite
the reduction in computational cost, however, LES still falls outside of the realm of most
industrial calculations.

1As an estimate, the number of mesh nodes required to resolve the complete spectrum increases as
N3 ∼ 4.4Re

9/4
t (Pope, 2000).
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4.2.3 Solution of the Reynolds-averaged Navier-Stokes equation

The final strategy, as already detailed in Chapter 3, solves the RANS form of the Navier-
Stokes equation. Since the equations are averaged, they can only provide the averaged
turbulent properties (such as the turbulent kinetic energy, k) at a point in space with no
information about how that energy is distributed across the spectrum. All of the effects
of the turbulent fluctuations are provided by the model through the Reynolds stress tensor
uiuj , which appears in the RANS equation. The challenge for the RANS approach then,
is to provide an accurate means of computing uiuj .

There are two main approaches to this. The first supposes that a relationship exists be-
tween the turbulent stresses and the mean strains through a turbulent or eddy-viscosity.
The eddy-viscosity itself is supplied by solving one or more equations for what essentially
are representative time and length scales for the present turbulence. The second, and more
elaborate, approach solves transport equations for each component of uiuj (the second-
moments). These are thus often referred to as stress-transport or Reynolds stress models
(RSM). The attraction of this over eddy-viscosity based approaches is that the terms de-
scribing stress production as a result of mean straining are exact and require no modelling.
The task is then to provide suitable models for those terms in the uiuj transport equation
that are unclosed. Closures for other transported quantities, such as temperature, can of-
ten be achieved in an analogous fashion. The RANS approach is the form of modelling
employed in this research and both the eddy-viscosity and stress-transport approaches dis-
cussed here have been used. The next few sections provide the rationale and mathematical
details behind the models used.
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4.3 Stress-transport models

In the stress-transport class of model, a transport equation for each component of the
Reynolds stresses uiuj is solved. Since the equations are for the second moments, this
approach is often referred to as second-moment closure. These can be derived by subtract-
ing the RANS equation (3.1.11) from the instantaneous Navier-Stokes equations (3.1.5)
to obtain a transport equation for the fluctuating velocity ui. Then;

Duiuj
Dt

= ui
Duj
Dt

+ uj
Dui
Dt

(4.3.1)

where the overbar indicates a Reynolds averaging operation and D/Dt represents the
material or Lagrangian derivative;

Duiuj
Dt

=
∂uiuj
∂t

+ Uk
∂uiuj
∂xk

(4.3.2)

Following this, one arrives at the Reynolds stress transport equation, written here in sym-
bolic form;

Duiuj
Dt

= Pij − εij + Φij −Dij + Fij (4.3.3)

where;

Pij = −
(
ujuk

∂Ui
∂xk

+ uiuk
∂Uj
∂xk

)
(4.3.4)

εij = 2ν
∂ui
∂xk

∂uj
∂xk

(4.3.5)

Φij =
p

ρ

(
∂uj
∂xi

+
∂ui
∂xj

)
(4.3.6)

Dij =
∂

∂xk

[
uiujuk +

p

ρ
(ujδik + uiδjk)− ν

∂

∂xk
(uiuj)

]
︸ ︷︷ ︸

Dtij+D
p
ij+Dνij

(4.3.7)

Fij =
1

ρ

∑
n

(
fni uj + fnj ui

)
(4.3.8)

The Pij term represents the production of uiuj by the action of mean strain. Since it only
contains contributions from the Reynolds stresses and the mean velocity gradients it is
exact and does not require modelling.

The Fij term represents the sum of contributions to the uiuj budget from n fluctuating
body forces denoted by fni . For buoyancy, substitution of the fluctuating buoyancy force,
Equation (3.1.20), into Equation (4.3.8) gives;

F bij = −ρβ
(
uiθgj + ujθgi

)
(4.3.9)
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A model for the unknown correlation between the fluctuating velocity and the fluctuat-
ing temperature, uiθ, is already required since it appeared in the equation for the mean
temperature (Equation (3.1.12)).

For electromagnetic interactions, the fluctuating Lorentz force is recalled from Equa-
tion (3.3.13);

fLi = σ

(
−εiklBl

∂φ′

∂xk
+ ulBiBl − uiBlBl

)
(4.3.10)

The contribution to Fij becomes;

FLij =
σ

ρ

−εiklBluj
∂φ′

∂xk
− εjklBlui

∂φ′

∂xk︸ ︷︷ ︸
FL1
ij

+BiBkujuk +BjBkuiuk − 2B2
kuiuj︸ ︷︷ ︸

FL2
ij

 (4.3.11)

The second part of this term, FL2
ij , is exact and requires no additional effort. The FL1

ij

term, however, contains the correlation between the fluctuating velocity and the fluctuat-
ing gradient of the electrostatic potential and requires modelling. This is discussed later
in Subsection 4.3.2.

All of the other terms in the stress transport equation require modelling. The group of
terms represented by Dij are diffusive in character and contain contributions from the
triple moments of velocity, Dtij , pressure-velocity correlations, Dpij , and viscous effects,
Dνij . The latter would be expected to generally be negligible over most of a flow, except
perhaps within the viscous sublayer next to a solid wall. The Φij term contains the corre-
lation between the fluctuating pressure and fluctuating strain. Because of this, it is usually
called the pressure-strain or pressure-scrambling term. The importance of this term be-
comes clear when one considers its contribution to the turbulent kinetic energy, k. A
transport equation for k can be formed by simply taking half the trace of Equation (4.3.3),
since, by definition, k = ukuk/2. Thus, taking half the trace of Equation (4.3.6);

1

2
Φkk =

p

ρ

∂uk
∂xk

(4.3.12)

For incompressible flow, this is zero by continuity. Thus the Φij term makes no contri-
bution to the overall level of turbulent kinetic energy, and instead serves to redistribute
energy among the normal stress components. Much attention has been paid to the mod-
elling of Φij since it represents a physical process absent from those turbulence models
which rely heavily on a transport equation for k. Approaches to modelling this term are
considered in greater detail below.

107



CHAPTER 4. TURBULENCE MODELLING

Finally, the εij term represents the destruction of uiuj by viscous action. Although evi-
dently describing effects molecular in origin, the term cannot in general be neglected. In
a simple shear flow (one in which U1 is a function of x2 and U2 = U3 = 0), the production
term represents the continual extraction of turbulent energy from the mean flow. Since, as
described above, the Φij term does not change the overall level of turbulent kinetic energy
and diffusion only leads to a spatial reorganization of the energy, the only mechanism left
which can reduce the level of turbulent energy is dissipation.

Modelling the pressure-strain term

A Poisson equation for the fluctuating pressure can be obtained by taking the divergence
of the Navier-Stokes equation (3.1.5) and subtracting its mean part, Equation (3.1.11), to
give;

1

ρ

∂2p

∂x2
l

= −2
∂Ul
∂xm

∂um
∂xl

+
∂2

∂xl∂xm
(ρulum − ulum) +

∂fl
∂xl

(4.3.13)

where fl is a fluctuating body force. This can be formally integrated with the help of a
Green’s function to produce an expression for the fluctuating pressure, p. Multiplying
that by (∂ui/∂xj + ∂uj/∂xi) results in an expression for Φij , although solution of the
resulting integrals is difficult. Instead, most researchers have opted for a slightly more
heuristic approach. This begins with noting that Equation (4.3.13) suggests three distinct
types of interactions which will affect the pressure fluctuations: those involving the mean
rate of strain, those involving purely fluctuating quantities, and those associated with body
forces. Reflecting this, a suitable model for Φij would be;

Φij = Φ
(1)
ij + Φ

(2)
ij + Φ

(f)
ij + Φ

(w)
ij (4.3.14)

where the Φ
(1)
ij part is known as the slow pressure-strain term, representing interactions

which only depend on fluctuating quantities (the middle term on the RHS of Equation
(4.3.13)) and tend to return the stress field to an isotropic state. Φ(2)

ij , which corresponds to
the first term on the RHS of Equation (4.3.13), is known as the fast or rapid pressure-strain
term. The term so called because the presence of the mean velocity gradient ensures it will
respond immediately to a change in strain. It can be viewed as generally acting to return
the production tensor, Pij , to isotropy (Hanjalic and Launder, 2011). Φ(3)

ij , the third term
on the RHS of Equation (4.3.13) acts in a similar fashion to Φ

(2)
ij but reduces the anisotropy

in the stresses induced by applied body forces. Finally, the Φ
(w)
ij term, which does not

correspond to a particular process immediately identifiable in Equation (4.3.13), is often
called the wall-echo or wall-reflection term. This provides the necessary corrections to
Φij to account for the presence of a wall or free-surface.

Specific closure routes are now considered below, beginning with the ‘basic’ model of
Gibson and Launder (1978). Extensions to those models to account for low-Re and elec-
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tromagnetic effects are provided by the Hanjalić and Jakirlić model, which is detailed
after.

4.3.1 Basic second-moment closure

The basic second-moment closure model is formed from contributions by Rotta (1951),
Launder and Sharma (1974), Launder et al. (1975), Launder (1975) and Gibson and Laun-
der (1978). The model constants used here are those presented by Gibson and Launder
(1978). The slow pressure-strain term is modelled following Rotta (1951) as;

Φ
(1)
ij = −c1

ε

k

(
uiuj −

1

3
δijukuk

)
(4.3.15)

where c1 = 1.8. The term will act as a source or sink of uiuj directly in proportion to
its deviation from the isotropic state scaled by a turbulent time scale. It is based on the
notion that freely decaying anisotropic turbulence becomes more isotropic as it decays.

The rapid pressure-strain term follows the isotropization-of-production (IP) model of Naot
et al. (1970). This, in an analogous fashion to Rotta’s model of the slow term, tends
to redistribute the effects of an imposed mean strain by reducing the anisotropy of the
production tensor. It is given by;

Φ
(2)
ij = −c2

(
Pij −

1

3
δijPkk

)
(4.3.16)

where the value c2 is taken as 0.6.

Contributions from the fluctuating buoyancy force, should it exist, are included by adopt-
ing the IP strategy employed above (Launder, 1975);

Φ
(b)
ij = −cb3

(
F bij −

1

3
δijF bkk

)
(4.3.17)

where the constant cb3 = 0.6.

For the wall-reflection term, it is known from experiments that the main effect of a wall
on uiuj is to dampen the level of the stress component normal to the wall (Hanjalic and
Launder, 2011). Physically, this arises due to the “blocking” effect of the wall; velocity
fluctuations must diminish more quickly in the wall-normal direction, partly because of
the continuity constraint. As such, and in contrast to the other terms within Φij , the wall
tends to preferentially promote anisotropy in uiuj . The Φ

(w)
ij term is split into three parts:

one associated with the slow part, one associated with the fast part and one associated
with the body-force induced part of the pressure-strain term;

Φ
(w)
ij = Φ

(w,1)
ij + Φ

(w,2)
ij + Φ

(w,f)
ij (4.3.18)
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A model for Φ(w,1)
ij was developed by Shir (1973);

Φ
(w,1)
ij = cw1

ε

k

(
ukulnlnkδij −

3

2
uiuknjnk −

3

2
ujuknink

)
fw (4.3.19)

where ni is the ith component of the wall-normal vector, cw1 = 0.5 and fw is an empirical
function that varies from unity at the wall to zero far enough away;

fw =
k3/2

2.5εy
(4.3.20)

where y is the distance normal from the wall. The second part to the wall correction is
modelled as per Gibson and Launder (1978);

Φ
(w,2)
ij = cw2

(
Φ

(2)
kl nlnkδij −

3

2
Φ

(2)
ik njnk −

3

2
Φ

(2)
jk nink

)
fw (4.3.21)

As noted above, it was necessary to include a wall-reflection correction when using the
IP model of Naot et al. (1970) to ensure that the stress component normal to the wall
was sufficiently damped. For buoyancy however, this correction is not generally applied
to Φ

(b)
ij in the literature. Hanjalic and Launder (2011) suggests that this is purely due

to better agreement being achieved without it. A correction has been applied, however,
for the contribution to the pressure-strain term from electromagnetic interactions. This is
detailed later in Subsection 4.3.2.

The approach taken for the dissipation rate tensor, εij , begins by noting that dissipation
occurs at the smallest scales of motion, since this is where fluctuating velocity gradients
are steepest. As such, and invoking the local isotropy hypothesis of Kolmogorov (1941)
as discussed in Section 4.1, the contributions to εij are assumed to be isotropic. The
natural approach, therefore, is to express εij as proportional to its contraction;

εij =
2

3
εδij (4.3.22)

where ε is the scalar dissipation rate;

ε = ν
∂ui
∂xj

∂ui
∂xj

(4.3.23)

The assumption that the dissipation is isotropic is generally valid for high-Re flows. The
scalar dissipation rate is obtained via a transport equation very similar in form to that used
in the two-equation eddy-viscosity models considered later. The main difference is in the
utilization of the full second-moment forms of the production terms, Pij .

Dε

Dt
=

∂

∂xk

[(
νδkl + cε

k

ε
ukul

)
∂ε

∂xl

]
+

1

2
cε1

ε

k
Pkk − cε2

ε2

k
+ Fε (4.3.24)
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where the constants are given as cε = 0.18, cε1 = 1.44 and cε2 = 1.92, and FLε contains
contributions from body forces.

For the diffusion terms, there are three parts to consider: the triple-moments, the pressure-
velocity correlations and the viscous contribution. For the triple-moments, the generalized

gradient diffusion hypothesis (GGDH) of Daly and Harlow (1970) is used, where the flux
of some quantity ψ is approximated as;

ukψ ∝ −
k

ε
ukul

∂ψ

∂xl
(4.3.25)

Setting ψ = uiuj gives;

uiujuk = −cs
k

ε
ukul

∂uiuj
∂xl

(4.3.26)

The constant cs is taken as 0.2. The pressure part of the diffusion term is often assumed
to be negligible and the viscous part does not require modelling. Thus the inclusion of
Equation (4.3.26) completes the model.

4.3.2 Hanjalić and Jakirlić low-Re model

The Hanjalić and Jakirlić model aims to extend the applicability of the basic second-
moment closure to those flows with significant low-Re and wall-proximity effects. It was
proposed in a series of papers by Hanjalić and Jakirlić (1993), Hanjalić et al. (1994) and
Jakirlić and Hanjalić (1995).

The model introduces a low-Re number version of the ε transport equation and makes
the various coefficients in the uiuj equation functions of Ret = k2/νε, the turbulent
Reynolds number, and the invariants of the stress and dissipation rate tensors. This, in
principle, allows the effects of anisotropy on the stress bearing and dissipative scales to
be accounted for separately.

The linear pressure-strain terms of the basic model are adopted for the slow, rapid and wall
reflection terms, Equations (4.3.15), (4.3.16), (4.3.19) and (4.3.21) respectively, where the
coefficients are defined as;

c1 = C + A0.5E2 , C = 2.5Af 0.25
A fRet , fA = min [A2, 0.6]

fRet = min

[(
Ret
150

)1.5

, 1

]
, fw = min

[
k1.5

2.5εyn
, 1.4

]
c2 = 0.8A0.5 , cw1 = max [1− 0.7C, 0.3] , cw2 = min [A, 0.3] (4.3.27)
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where;

A ≡ 1− 9

8
(A2 − A3) , E ≡ 1− 9

8
(E2 − E3) (4.3.28)

A2 ≡ aijaij , A3 ≡ aijajkaki , E2 ≡ eijeij , E3 ≡ eijejkeki (4.3.29)

and;
aij =

uiuj
k
− 2

3
δij , eij =

εij
ε
− 2

3
δij (4.3.30)

The model for εij is given by;

εij = fsε
∗
ij + (1− fs)

2

3
δijε (4.3.31)

where;

ε∗ij =
ε

k

uiuj + (uiuknjnk + ujuknink + ukulnknlninj) fd

1 + 3
2

upuq
k
npnqfd

(4.3.32)

and;
fs = 1− A0.5E2 , fd = (1 + 0.1Ret)

−1 (4.3.33)

The transport equation for the rate of dissipation, ε, is given by;

Dε

Dt
=

∂

∂xk

[(
νδkl + cε

k

ε
ukul

)
∂ε

∂xj

]
+

1

2
cε1

ε

k
Pkk − cε2fεε̃

ε

k
+ Sε + Fε (4.3.34)

where Fε contains contributions from body forces. The function fε and the additional
source term Sε are given by;

fε = 1−
(
cε2 − 1.4

cε2

)
exp

(
Ret
6

)2

(4.3.35)

Sε = 0.25ν
k

ε
ujuk

∂2Ui
∂xj∂xl

∂2Ui
∂xk∂xl

(4.3.36)

and;

ε̃ = ε− 2ν

(
∂k0.5

∂xi

)2

(4.3.37)

is the so-called ‘quasi-homogeneous’ dissipation rate of k.

Incorporating electromagnetic effects

To account for electromagnetic effects, Kenjereš and Hanjalić (2000) and Kenjereš et al.
(2004) present modifications to the above model via the inclusion of additional terms in
the transport equations for uiuj and ε. Specifically, the incorporation of the fluctuating
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Lorentz force in the derivation of the stress transport equation leads to two main sources of
influence. A direct effect is seen through the presence of an additional source term, given
by Equation (4.3.11), and an indirect effect is seen from the corresponding additional term
in the Poisson equation for the fluctuating pressure, as seen in Equation (4.3.13).

The source term in the uiuj equation is comprised of two parts, FL1
ij and FL2

ij , with only
the former requiring closure. In that, the only unknown quantity is the correlation between
the fluctuating electric and the fluctuating velocity field;

ui
∂φ′

∂xj
= uiej (4.3.38)

where ei is the fluctuating electric field. Little to no attention has been paid to this term in
the literature and Kenjereš and Hanjalić (2000, 2004) propose the following relation;

ui
∂φ′

∂xj
= CλεjklBluiuk (4.3.39)

where the constant Cλ = 0.6 was evaluated a priori from existing DNS data (Noguchi
et al., 2004) of a channel flow exposed to a wall normal magnetic field. Unfortunately,
they do not elaborate on the reasoning behind the model and instead remark that it is only
a first order approximation. A possible physical explanation of the model is proposed
here as follows. According to the fluctuating form of Ohm’s law, j = σ (e + u×B), a
fluctuating electric field u × B will be induced by the fluctuating velocity. Since from
Equation (3.2.25) the divergence of the fluctuating current must be zero, an electric field
e appears which is in resistance to the source u × B. When the induced field and the
resistant field are balanced, the charges are still, and the system reaches a steady state.
Hence it can be assumed that the resistant field is proportional to the induced field, which
leads to e = −Cλu×B.

Substitution of Equation (4.3.39) into the first term, FL1
ij , results in the final form of FLij

FLij =
σ

ρ
(1− Cλ)

(
BiBkujuk +BjBkuiuk − 2B2

kuiuj
)

(4.3.40)

For the indirect effects, Kenjereš et al. (2004) modify the pressure strain term with an
additional isotropization of production type model;

Φ
(L)
ij = −c4

(
FLij −

1

3
FLkkδij

)
(4.3.41)

and a wall reflection modification in analogy with that of Gibson and Launder (1978);

Φ
(w,L)
ij = cw4 fw

(
Φ

(L)
kmLnknmδij −

3

2
Φ

(L)
ik nknj −

3

2
Φ

(L)
kj nkni

)
(4.3.42)
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where the function fw is as per Equation (4.3.33). The coefficients are given by c4 =

0.6A0.5 and cw4 = 1.2.

The electromagnetic contributions to the exact ε equation can be derived using the conven-
tional approach (by taking moments of the instantaneous momentum transport equation
with the instantaneous body force);

FLε = FL1
ε + FL2

ε (4.3.43)

FL1
ε = −2νσ

ρ
εijk

(
∂Bk

∂xl

∂ui
∂xl

∂φ

∂xj
+Bk

∂ui
∂xl

∂2φ

∂xl∂xj

)

FL2
ε =

2νσ

ρ

(
Bk
∂Bi

∂xl
uk
∂ui
∂xl

+BiBk
∂ui
∂xl

∂uk
∂xl

+Bi
∂Bk

∂xl
uk
∂ui
∂xl

− B2
k

(
∂ui
∂xl

)2

− 2Bk
∂Bk

∂xl
ui
∂ui
∂xl

)
(4.3.44)

This, evidently, is not much use. Quite apart from not containing a single closed term,
the transport equation solved for ε bears little resemblance to its exact counterpart so it
would be illogical to attempt to use it do derive a model here. As such, Kenjereš et al.
(2004) took an approach analogous to that used in modelling ε transport in two-equation
LEVM’s. The dissipation rate generation is supposed to be linearly related to the source
term present in the transport equation for the turbulent kinetic energy, i.e.

SLε = cε4
1

2

ε

k
FLii (4.3.45)

where the coefficient cε4 is evaluated as;

cε4 = 6.5 min [A2, 0.25] (4.3.46)

In later (those in Chapter 6 and Chapter 7) calculations involving the Hanjalić and Jakir-
lić stress-transport model, references to an electromagnetically modified version refer to
the model discussed in this section with the electromagnetic modifications by Kenjereš
et al. (2004) discussed above. The unmodified version version refers to just the Hanjalić
and Jakirlić low-Re stress-transport equation without these additional electromagnetic
modifications.

4.3.3 Scalar transport

Whilst the previous few sections have provided a means to model the Reynolds stresses,
uiuj , the turbulent heat flux, uiθ, still requires closure. An approach consistent with full
second-moment closure would be to transport the quantity uiθ itself. This equation can
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be obtained by multiplying the equation for the fluctuating scalar temperature θ by ui and
then adding that to the equation for ui (3.1.5) multiplied by θ, and then averaging. The
resulting equation takes the symbolic form;

Duiθ

Dt
= Piθ + Fiθ + Φiθ − εiθ +Diθ (4.3.47)

where the use of similar notation to that used in the equation for uiuj , Equation (4.3.3),
implies terms of similar character. The first two of these terms comprise production by
mean gradients and body forces respectively;

Piθ = −
(
uiuj

∂Θ

∂xj
+ ujθ

∂Ui
∂xj

)
(4.3.48)

Fiθ =
1

ρ

∑
n

θfni =
1

ρ

(
f bi θ + fLi θ

)
(4.3.49)

Thus, gradients in both mean temperature and velocity will lead to production of uiθ,
as will the fluctuating buoyant, f bi , and Lorentz, fLi , forces if present. By substituting
the fluctuating buoyant force from Equation (3.1.20), the buoyant contribution to Equa-
tion (4.3.49) becomes;

F biθ = −giβθ2 (4.3.50)

where θ2 is the mean-square scalar variance. This holds a similar role in characterizing
a scalar field that k does for the velocity field. Insight into this can, as usual, be gleaned
from the exact form of its transport equation (Hanjalic and Launder, 2011);

Dθ2

Dt
= −2uiθ

∂Θ

∂xj
− 2α

∂θ

∂xj

∂θ

∂xj
+

∂

∂xj

(
α
∂θ2

∂xj
− θ2uj

)
(4.3.51)

The character of the terms is familiar. In order from left to right: production by mean
scalar gradients, destruction by molecular action and diffusion. Thus generation of θ2 is
solely by mean gradients in Θ.

The contribution from the fluctuating Lorentz force to the uiθ equation is;

FLiθ =
σ

ρ

(
−εijkBkθ

∂φ′

∂xj
− ukθBiBk − uiθBkBk

)
(4.3.52)

which contains the unknown correlation between the fluctuating scalar and the fluctuating
electric field.

The remaining terms in Equation (4.3.47), ‘pressure scrambling’ of the scalar field (Φiθ),
dissipation (εiθ) and diffusion (Diθ), all require approximation.

Full second moment closure of uiθ thus requires, in three-dimensions, the solution of
at least three additional transport equations and further treatment for the unknown terms
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making the resulting model cumbersome. A simple method of obtaining a model for uiθ,
is to apply the GGDH, given by Equation (4.3.25), as was done for the triple-moments (in
Equation (4.3.25)). This gives;

uiθ = −cθ
k

ε
uiuj

∂Θ

∂xj
(4.3.53)

where the coefficient cθ is taken to be 0.22. Clearly this takes similar form to the first
term on the RHS in Equation (4.3.48). Since this thesis is concerned primarily with
the incorporation of magnetic effects in the Reynolds stress and mean momentum fields,
rather than in the thermal fields, the GGDH is a sensible first approximation for use in the
flows considered in this thesis. In addition, the form for the GGDH contains the Reynolds
stresses which do contain electromagnetic modifications and thus should provide at least
some, albeit indirect, response.
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4.4 Linear eddy-viscosity models

Whilst the second-moment route to closure discussed in the previous section clearly offers
great capacity for modelling a diverse arrays of flows, including those subjected to com-
plex strain fields and body forces (due, in part, to the presence of exact production and
body force terms in the transport equations for the stresses themselves), such approaches
do elicit greater computational expenditure when compared with one or two equation
eddy-viscosity based models. Couple this with the greater understanding that is required
to be in a position to properly handle and compute with such schemes, then it is perhaps
not surprising that the uptake of these more advanced schemes within industry has been
slow.

Two-equation eddy-viscosity models thus remain the workhorse for routine industrial
computations and it is relevant to address how this class of model responds to the in-
clusion of the various body forces considered in this thesis.

4.4.1 Boussinesq eddy-viscosity approximation

It can be seen from Equation (3.1.11) that the Reynolds stresses, quite like the name
implies, appear as an apparent stress on the mean flow field. Boussinesq (1877) supposed
that the Reynolds stresses might therefore be linearly proportional to the mean strains by
a turbulent, or eddy, viscosity µt;

ρuiuj =
2

3
ρkδij − µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(4.4.1)

Different classes of linear eddy viscosity model (LEVM) exist, differing mainly on the
employed definition of µt. Since, on dimensional grounds, µt must have the same di-
mensions as µ, it can be expressed as some combination of a length scale, a time scale
and density. In zero and one equation LEVM’s, such as Prandtl’s mixing-length model,
the length scale is prescribed algebraically. This restricts the applicability of the mod-
els, since complex geometries make assigning a relationship for the lengthscale difficult.
For the time scale, one equation models generally solve a transport equation for k, the
turbulent kinetic energy. Then the turbulent viscosity takes the form;

µt = ρcµk
1/2lµ (4.4.2)

where cµ is a constant and lµ is the lengthscale, usually prescribed as increasing linearly
with distance from a wall.

To overcome this limitation, a second variable can be solved for in order to provide a
lengthscale. These two-equation models thus require no prior knowledge of the turbulent
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structure and are complete in the sense that they do not require any flow-dependant spec-
ifications. The choice of variable to provide a lengthscale remains the subject of debate
within the turbulence modelling community. The most common choice, and the route
taken in this thesis, is to use the dissipation rate of k, ε. A suitable lengthscale is then;

lε =
k3/2

ε
(4.4.3)

4.4.2 The k − ε model

Perhaps the most widely adopted of the two equation models, the k−εmodel solves trans-
port equations for the turbulent kinetic energy, k, and the dissipation rate of that energy, ε.
It was originally proposed by Jones and Launder (1972) with several improvements later
presented by Launder and Sharma (1974) and Launder and Spalding (1974).

An exact transport equation for k, as noted briefly Section 4.3, can be conveniently formed
by taking one half the trace of the transport equation for uiuj (4.3.3);

Dk

Dt
=

∂

∂xj

[
ν
∂k

∂xj
− puj

ρ
− uj k̃

]
︸ ︷︷ ︸

Dk

−uiuj
∂Ui
∂xj︸ ︷︷ ︸
Pk

− ν ∂ui
∂xj

∂ui
∂xj︸ ︷︷ ︸

ε

+Fk (4.4.4)

where k̃ = uiui/2 is the instantaneous turbulent kinetic energy. The character of the terms
can readily be recognised;Dk represents the diffusion of k due to viscosity and turbulence
(pressure-velocity and fluctuating velocity interactions), Pk represents the production of
k due to mean strain, ε represents the dissipation of k by viscous action and Fk represents
any contributions from fluctuating body forces.

Since ε is to be provided by its own transport equation, the only unknown in Equa-
tion (4.4.4) is part of diffusive term Dk. The contribution to this from turbulent inter-
actions is modelled as a gradient diffusion process, so the diffusion term becomes;

Dk =
∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
(4.4.5)

where σk is referred to as the turbulent Prandtl number.

An exact transport equation for ε can also be derived, by taking suitable moments of the
instantaneous Navier-Stokes equations. The result however, in not particularly enlight-
ening and contains many unclosed terms, which require modelling. The form employed,
therefore, is guided by dimensional analysis, physical intuition and DNS or experimental
data.

Before the modelled transport equations are presented, however, it is worth noting that
there are two forms which can be employed and the choice depends on the Reynolds
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number of the flow. At high Reynolds numbers, mesh requirements in the near-wall re-
gion, where the large velocity gradients are large, can be demanding. To avoid the need
to integrate the equations right up to the wall, wall-functions can be used which relate
the wall shear stress to local quantities at the near wall node. These are discussed further
in Section 4.5. At lower Reynolds numbers the methodology behind the wall-function
approach is not valid, and modifications to the transport equations are required to allow
the k − ε model to be integrated right through the viscous sublayer.

The modelled transport equations for k and ε can be expressed, in both high and low Re

form, as;
Dk

Dt
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − ε+D + Fk (4.4.6)

Dε

Dt
=

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ cε1f1

ε

k
Pk − cε2f2ρ

ε2

k
+ Eε + Fε (4.4.7)

where the terms f1, f2, D and Eε represent the near-wall damping modifications required
for low-Re flows. σk, σε, cε1 and cε2 are model constants. The Fk and Fε terms represent
contributions from body forces. The eddy-viscosity takes the form;

νt = cµfµ
k2

ε
(4.4.8)

where cµ is a constant and fµ is a near-wall damping term. The production term, Pk is
exact;

Pk = −uiuj
∂Ui
∂xj

(4.4.9)

One disadvantage to transporting ε directly is that ε itself does not vanish at the wall1. To
overcome this, Jones and Launder (1972) used the following wall condition for ε;

εw = 2ν

(
∂k1/2

∂x2

)2
∣∣∣∣∣
w

(4.4.10)

where x2 denotes the direction normal to the wall. This prompted them to introduce a new
variable, the so-called ‘homogeneous’ dissipation rate, ε̃, which has already seen use in
the Hanjalić and Jakirlić stress-transport variant of the ε equation (see Equation (4.3.37));

ε̃ = ε− 2ν

(
∂k1/2

∂x2

)2

(4.4.11)

This conveniently goes to zero at the wall. Some approaches therefore transport ε̃ instead

1From its definition, ε = 2ν(∂ui/∂xj)2. If the wall itself lies in the plane x1, x3 at x2 = 0, then since
ui = 0 for all x1, x3 those gradients in the plane of the wall vanish. The ∂u2/∂x2 gradient is therefore zero
by continuity, leaving

ε = 2ν

[(
∂u1
∂x2

)2

+

(
∂u3
∂x2

)2
]
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of ε and set the D term in the k transport equation to account for the different near-wall
variation. The low-Re Launder-Sharma model employed in this research, for example,
takes ε = ε̃+D with;

D = 2ν

(
∂k1/2

∂x2

)2

(4.4.12)

A summary of these modifications proposed in some of the literature, along with the
various closure coefficients, are presented in Table 4.1.

For flows affected by buoyancy, taking one half the trace of F bij , Equation (4.3.9), gives
the buoyant contribution to the turbulent kinetic energy;

F bk = −ρβgiuiθ (4.4.13)

where uiθ is the turbulent heat flux, discussed further in Subsection 4.4.4.

4.4.3 Electromagnetic extensions

The exact expressions for the additional electromagnetic source terms, FLk and FLε , are
obtained using the conventional approach. Taking one half the trace of Equation (4.3.11),
one arrives at the source term for the k equation;

FLk =
σ

ρ

εijkBkui
∂φ

∂xj︸ ︷︷ ︸
FL1
k

+BiBkuiuk − 2kB2
k︸ ︷︷ ︸

FL2
k

 (4.4.14)

As with the FLij source term for the stress transport equations, the only unknown correla-
tion is between the fluctuating velocity and the fluctuating electric field. Substitution of
the model for uiej proposed earlier by Kenjereš and Hanjalić (2000) in Equation (4.3.39)
into Equation (4.4.14) gives;

FLk =
σ

ρ
(1− Cλ)

(
BiBjuiuj − 2kB2

k

)
(4.4.15)

This model, however, does not seem to have been adopted in the literature, presumably
because it depends on an accurate representation of all individual Reynold stresses; some-
thing which turbulence models based on the linear eddy-viscosity concept are known to
be lacking. This particular dependence on the individual components of the Reynolds
stresses is not particularly surprising. It was seen in Subsection 4.1.2 that a major effect
of an applied magnetic field was to induce anisotropy in the turbulence through preferen-
tial alignment. This, and other weaknesses of the LEVM approach, are further discussed
in Subsection 4.4.5.
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For Fε, as discussed in Subsection 4.3.2, the form of Fε does not provide any real insight
and is thus generally forsaken. Some models for Fk and Fε that have been proposed in
the literature are discussed in the paragraph below.

Ji and Gardner model

Ji and Gardner (1997) proposed additional terms in both the k and ε transport equations
as well as an additional damping function fL in the relationship for the eddy-viscosity.
The terms were derived by considering a channel flow of conducting fluid subjected to a
wall-normal magnetic field. Since in this configuration, the Lorentz force acts to damp the
fluid motion, they relate the time rate of change of fluid momentum to the force imposed
by the (transverse) magnetic field;

ρ
dU⊥
dt

= −σU⊥B2
0 (4.4.16)

where the subscript ⊥ means the velocity component perpendicular to the magnetic field.
The solution to this equation is;

U(t) = U0 exp (−t/tm) (4.4.17)

where tm = ρ/σB2
0 is the characteristic magnetic braking time. The ratio of this to the

characteristic eddy turnover time, tτ = k/ε, for the largest energy containing eddies gives;

tτ
tm

=
σB2

0

ρ

(
k

ε

)
large

=
σB2

0

ρ

L

U
= N (4.4.18)

where N is recognised as the non-dimensional interaction parameter. Hence they postu-
late that the average decay of turbulent kinetic energy is proportional to e−N . From this,
the additional source terms in the k and ε equations are proposed as;

FLk = −σ
ρ
B2

0kc
L
1 exp (−cL2N) (4.4.19)

FLε = −σ
ρ
B2

0εc
L
1 exp (−cL2N) (4.4.20)

where the model coefficients cL1 = 0.05 and cL2 = 0.9 are proposed. The additional
damping term in the eddy-viscosity formulation was given as;

νt = cµfµ
k2

ε
exp (−cL2N) = cµfµ

k2

ε
fL (4.4.21)

Ji and Gardner applied the model to a turbulent pipe flow subjected to a transverse mag-
netic field over a range of Reynolds (16000 ≤ Re ≤ 106) and Hartmann numbers
(0 ≤ Ha ≤ 375). They found the model qualitatively predicted the correct effect
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(i.e. a reduction in turbulent kinetic energy as the Hartmann numbers increases) but only
achieved reasonable quantitative agreement with the experiments of Gardner and Lyk-
oudis (1971). Though this was encouraging, and certainly demonstrated potential, there
are some apparent deficiencies in the model. Firstly, the use of a bulk flow parameter, N ,
as the basis for a damping function limits the applicability of the model to configurations
in which it is possible to defined an integral value of N . This would be relatively sim-
ple in geometries such as channels or pipes subjected to homogeneous magnetic fields,
but not as straightforward in more complex flows. Secondly, as pointed out by Kenjereš
and Hanjalić (2000), direct damping of the eddy-viscosity through an additional function
lacks physical justification, since if the source terms in the k and ε transport equations are
adequately modelled the eddy-viscosity should adjust accordingly.

Kenjereš and Hanjalić model

Kenjereš and Hanjalić (2000) proposed improvements to the model by Ji and Gardner
which centered on removing the use of the bulk flow interaction parameter, N , to define
the magnitude of electromagnetic damping. They suggest replacing N with a local inter-
action parameter, defined using the usual local turbulent timescale τ = k/ε (something Ji
and Gardner had already suggested). This led to the following source terms for the k and
ε model equations respectively;

FLk = −σ
ρ
B2

0k exp

(
−cL1

σ

ρ
B2

0

k

ε

)
(4.4.22)

FLε = −σ
ρ
B2

0ε exp

(
−cL1

σ

ρ
B2

0

k

ε

)
(4.4.23)

This reduced the number of model coefficients to one, cL1 = 0.025, which was tuned
using the DNS database of Noguchi et al. (2004). Kenjereš and Hanjalić (2000) tested the
terms a priori against the same database. The results, presented in Figure 4.2 show the
terms (denoted NEW) offer significant improvements over the model by Ji and Gardner
(denoted JG), which, as it turned out, heavily underestimated the magnitude of the source
terms in both the k and ε equations.

In later calculations involving the Launder-Sharma k − ε model (those in Chapter 6 and
Chapter 7), references to an electromagnetically modified version refer to the low-Re k−ε
model discussed in Subsection 4.4.2 with the addition of the two terms, Equations (4.4.22)
and (4.4.23), above. The unmodified version refers to just the model as described in
Subsection 4.4.2.

4.4.4 Scalar transport

In the stress transport approach, the GGDH was used to provide a model for the turbulent
heat fluxes, uiθ. Sensitizing the fluxes to the individual Reynolds stresses (as the GGDH
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Figure 4.2: Plane channel flow subjected to a wall-normal magnetic field (Hartmann
flow). Contributions Fk (SkM , top) and Fε (SεM , bottom) to budgets for k and ε equa-
tions respectively. Symbols are DNS data from Noguchi et al. (2004) and contain the full
term SM alongside the individual contributions to constituent terms SM1 and SM2 as per
the DNS results. Terms involving the fluctuating velocity electric field correlations are in
SM1 with the remainder in SM2 (for ε, this split is given in Equation (4.3.43)).

does), however, requires an accurate prediction of the Reynolds stresses themselves. As
further discussed in Subsection 4.4.5, the reliance of the linear eddy-viscosity approach
on a linear stress-strain relationship reduces somewhat ones capability to accurately rep-
resent the Reynolds stresses in flows with prevailing anisotropy. Thus, here, an approach
analogous to the linear eddy-viscosity form is taken, where the turbulent flux is supposed
to be linearly related to the mean gradient. This "eddy-diffusivity" model takes the form;

uiθ = − νt
σα

∂Θ

∂xi
(4.4.24)

where σα is the turbulent Prandtl number, here taken as σα = 0.9.
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4.4.5 Weaknesses

Despite their wide adoption in industry, LEVM do have significant weaknesses when
applied to specific flows. For flows in simple shear, where the only significant velocity
gradient is in the wall-normal direction and the state of turbulence is said to be near local
equilibrium (where Pk ∼ ε), the k − ε model has been tuned (through the cµ coefficient)
to correctly reproduce the distribution of the shear stress uv. For the normal stresses
however, expansion of the Boussinesq stress-strain relationship, from Equation (4.4.1),
reveals it returns identical values for flows in simple shear;

uu = vv = ww =
2

3
k (4.4.25)

It is generally well known (see the DNS data from Kim et al. (1987), for example) that
the normal stresses demonstrate anisotropy even in plane channel flows, and particularly
in the near-wall region. This will pose a problem when attempting to model body forces
which generally tend to promote anisotropy in the stress tensor through preferential align-
ment. Indeed, for the majority of flows explored in Chapter 2, this was one of the primary
effects of the magnetic field. Velocity gradients parallel to the magnetic field were de-
stroyed and this, in some cases, caused the flow to become two-dimensional in the sense
that it was independent of the direction of the magnetic field. Evidently a model that, a
priori, cannot accurately represent stress anisotropy might have some difficulties in repro-
ducing flows in which magnetic effects become dominant.

That said, they can, of course, represent the general reduction in turbulent kinetic energy
that the magnetic field induces. The form of the damping terms proposed by Kenjereš
and Hanjalić (2000), see Equations (4.4.22) and (4.4.23), means they will always repre-
sent a sink of k and ε. This, however, does not take into account the reduction in Joule
dissipation which is associated with increasing anisotropy (i.e. the flow evolves so as to
minimize Joule dissipation, as per Subsection 4.1.2).

The poor performance of the LEVM approach, when it comes to correctly reproducing
the normal stresses, also has consequences for the modelling of other unknown quantities
that require closure within the context of a RANS approach. For example, it was seen
in Subsection 4.3.3 that one of the production terms in the exact transport equation for
uiθ contains the Reynolds stresses. Thus, without correct representation of the normal
components of these, ones ability to provide accurate predictions of uiθ in flows with
strong anisotropy also diminishes a priori. In flows which require uiθ, such as those
affected by buoyancy, this often leads to the adoption of the simple eddy-diffusivity model
for uiθ despite it also having well known deficiencies. This, as per Equation (4.4.24), will
result in a contribution to the turbulent kinetic energy equation of the form;

F bk = ρβgi
νt
Prt

∂Θ

∂xi
(4.4.26)
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Thus, only temperature gradients which are aligned with the gravitational vector will
contribute. For the systems discussed in Subsection 2.4.2, where gravity was directed
vertically and the dominant temperature gradient was in either horizontal direction, the
above expression for F bk would underestimate the contribution of the fluctuating buoyant
force to the turbulent kinetic energy since only the weaker vertical temperature gradient
would contribute. Use of the GGDH in this scenario, though at least providing some con-
tributions from the other temperature gradients, does not guarantee improvement since it
depends on an accurate representation of all the Reynolds stresses. Some modified forms
of the GGDH have been seen success when used in conjunction with an LEVM, however.
Ince and Launder (1989), for example, demonstrated good agreement with experiments
in buoyancy driven flows within rectangular cavities by sensitizing the cθ coefficient in
the GGDH (Equation (4.3.53)) to cµ (Equation (4.4.8)).
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4.5 Wall functions

It was mentioned in Subsection 4.4.2 that wall-functions can be used to model the near-
wall velocity profile when the Reynolds number is high. The presence of a wall in a
particular flow, and specifically the presence of the no-slip condition on the velocity, en-
sures that viscous effects will always be influential in the region just adjacent to the wall,
regardless of how high the Reynolds number of the bulk flow is. The shape of the veloc-
ity profile in wall-bounded flows has received significant attention in the literature, and
Figure 4.3 provides typical variation throughout the various “layers”.

As the Reynolds number increases, velocity gradients become steeper and the thickness
of the viscous sub-layer decreases. To completely resolve this layer, using a low-Re
LEVM for example, would thus requires a sufficiently high number of mesh points and
this can become prohibitively expensive quite quickly. The wall-function approach aims
to remove this requirement by providing a algebraic relationship between variables at the
wall and variables at the first computational node adjacent to the wall.

The most well-known wall-function for the mean momentum equation is based on the
law of the wall. If the turbulence in the vicinity of the wall is assumed to be in local
equilibrium (Pk ≈ ε), and the mean velocity is a function only of the distance y from
the wall, then this leads to the universal law of the wall, which supposes that the velocity
profile outside of the “buffer zone” can be represented by a logarithmic distribution;

U+ =
1

κ
ln
(
Ey+

)
(4.5.1)

where κ ≈ 0.41 is the von Karman constant, E ≈ 8.4 and;

U+ =
U√
τw/ρ

(4.5.2)

y+ =
y
√
τw/ρ

ν
(4.5.3)

In the very near-wall part of the viscous sublayer, where viscous effects are dominant
and the flow laminar, the relationship between the velocity and distance from the wall is
linear; U+ = y+. In practice, the relationship used depends on the location of the first
computational node. Thus the velocity profile varies as;

U+ =

 1
κ

ln (Ey+) , y+ > y+
ν

y+, y+ < y+
ν

(4.5.4)

where y+
ν represents the dimensionless thickness of the viscous sub-layer. Figure 4.3

plots Equation (4.5.4) along with DNS data for a plane channel flow. Clearly, the linear
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Figure 4.3: Velocity distribution and the characteristic flow regions in a constant pressure
boundary layer. Red solid lines are DNS data of Sillero et al. (2013) at Reτ = 2000 with
standard wall-functions shown with dashed lines.

variation is accurate up to around y+ ≈ 5 with the logarithmic profile being appropriate
for y+ & 30.

Providing these relationships about the behaviour of the flow in the near-wall region re-
moves the requirement to fully resolve them and thus reduces computation expenditure.
Using these relationships, terms representing other quantities required to calculate the
flow variables in the near-wall cell, such as the wall shear-stress and the wall-normal
velocity gradient, can be formed.

The wall shear stress can be calculated from the value of U and y+ at the near wall
node by substituting Equations (4.5.2) and (4.5.3) into Equation (4.5.1). Since in the
fully turbulent outer layer, molecular dissipation is negligible, the shear stress uv can be
approximated as being equal to the wall shear stress. An expression for the turbulent
viscosity can then be provided by;

νt =
τw/ρ

∂U/∂y
= κy

√
τw/ρ (4.5.5)

This however returns zero when the wall shear stress becomes zero. A widely used im-
provement is obtained by using kν , the value of k at the edge of the viscous sublayer, for
a velocity scale;

U∗ =
1

κ∗
ln (E∗y∗) (4.5.6)
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where;

U∗ =
U
√
kν

(τw/ρ)
(4.5.7)

y∗ =
y
√
kν
ν

(4.5.8)

where κ∗ = c
1/4
µ κ and E∗ = c

1/4
µ E. In practice, kν is usually obtained by assuming k is

constant across the fully turbulent part of the near-wall region. Then, kP , the value of k
at the near-wall node can be used. The wall shear stress becomes;

τw
ρ

=
κ∗UPkP

ln (E∗y∗P )
(4.5.9)

The turbulent viscosity, obtained in a similar fashion to Equation (4.5.5), is given by;

νt = κ∗yP
√
kP (4.5.10)

The value of kP is obtained from solution of its transport equation. Values of the Pk and ε
terms, however, can vary quite drastically across the near-wall cell, so evaluating them at
the cell-centre would lead to inaccuracies. Instead, cell-averaged values of Pk and ε are
formed by directly integrating across the near-wall layer;

Pk =
1

yn

∫ yn

0

Pk dy =
1

yn

∫ yn

0

−uv∂U
∂y

dy (4.5.11)

ε =
1

yn

∫ yn

0

ε dy (4.5.12)

where yn is the thickness of the near-wall cell. The velocity gradient can be evaluated by
taking the derivative of Equation (4.5.6);

∂U

∂y
=

τw

ρκ∗y
√
kP

(4.5.13)

To evaluate the integral in Equation (4.5.11), the assumption is made that over the fully
turbulent part of the near-wall region (yν ≤ y ≤ yn) the turbulent shear stress, uv, is
constant and equal to the wall shear stress, τw, whilst inside the viscous sublayer (0 ≤
y ≤ yν) it vanishes. Then Equation (4.5.11) becomes;

Pk =
1

yn

∫ yn

yν

τw
τw

ρκ∗
√
kP

1

y
dy =

τ 2
w

ρκ∗yn
√
kP

ln

(
yn
yν

)
(4.5.14)

The sublayer thickness, yν , is obtained by assuming that it extends to a fixed non-dimensional
distance into the flow y∗ν , where;

y∗ν =
yν
√
kν

ν
(4.5.15)

For the cell averaged value of ε, it is assumed that ε is constant inside the viscous sublayer
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(0 ≤ y ≤ yν);

ε =
2νkP
y2
ν

(4.5.16)

and varies linearly in the fully turbulent region (yν ≤ y ≤ yn);

ε =
k

3/2
P

cly
(4.5.17)

where cl = κ∗c−1
µ . The cell-averaged formulation, Equation (4.5.12), is then given by;

ε =
1

yn

[∫ yν

0

2νkP
y2
ν

dy +

∫ yn

yν

k
3/2
P

cly
dy

]

=
1

yn

[
2νkP
yν

+
k

3/2
P

cl
ln

(
yn
yν

)]
(4.5.18)
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CHAPTER

FIVE

NUMERICAL IMPLEMENTATION

In this chapter the numerical implementation of the governing equations used in the re-
search is detailed. First, Section 5.1 introduces the in-house FORTRAN based numerical
solver, STREAM. Then, in Section 5.2, the finite-volume method is briefly discussed,
with details of the convective, diffusive and temporal discretization schemes included.
The pressure-velocity linkage is then presented in Section 5.3 before the Rhie and Chow
momentum interpolation method used and modified for calculating the mass flux is de-
tailed in Section 5.4. Finally, the chapter closes in Section 5.6 with a brief description of
the various boundary conditions implemented for the cases computed in this thesis.
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5.1 STREAM code

The flows reported in this thesis have been computed using an extended version of the
STREAM code (Lien and Leschziner, 1994a), which is a fully elliptic 3D finite volume
solver capable of handling multi-block structured non-orthogonal meshes. It uses a col-
located grid arrangement where all variables are stored at the cell centres and a Rhie and
Chow interpolation scheme to obtain velocities at cell faces. Time dependence is handled
by either a fully implicit or Crank-Nicolson scheme. The convective terms are treated
with either the QUICK, UPWIND or UMIST schemes and both standard and advanced
wall functions are available. A degree of parallelism is built-in using the standardized
Message Passing Interface (MPI). The details of the implementation are discussed in the
following sections.
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5.2 Finite volume method

In the finite volume method (FVM) the solution domain is divided into a finite number of
control volumes. Steady-state transport of a general variable, ϕ, is governed by;

∂ (ρUjϕ)

∂xj
=

∂

∂xj

(
Γ
∂ϕ

∂xj

)
+ Sϕ (5.2.1)

where Γ is the diffusivity of ϕ and Sϕ represents any sources or sinks.

Formal integration of Equation (5.2.1) is carried out over a control volume, such as that
shown in Figure 5.1. To simplify the explanation of how the FVM works, the cells con-
sidered are purely rectangular, although the code employed does contain the extensions
necessary for non-orthogonal meshes. Here the control volume with node P at its centre is
bounded by faces to the north (n), south (s), east (e) and west (w). For a one-dimensional
problem along the west-east direction, this integration leads to;∫ e

w

∂ (ρUϕ)

∂x
dx =

∫ e

w

∂

∂x

(
Γϕ
∂ϕ

∂x

)
dx+

∫
V

Sϕ dV (5.2.2)

which becomes;

[ρUA]e ϕe − [ρUA]w ϕw =

[
ΓA

∂ϕ

∂x

]
e

−
[
ΓA

∂ϕ

∂x

]
w

+ Sϕ∆V (5.2.3)

where [ρUA]e = Fe is the mass flux through face e and the source term integral has been
approximated by taking the average value of Sϕ over the control volume ∆V.

5.2.1 Diffusion terms

The diffusive fluxes are treated using the Central Differencing Scheme (CDS) which is
second-order accurate. For Equation (5.2.3), this approximates the face values of the
diffusion fluxes as; [

ΓA
∂ϕ

∂x

]
e

= ΓeAe

(
ϕE − ϕP

∆xPE

)
(5.2.4)[

ΓA
∂ϕ

∂x

]
w

= ΓwAw

(
ϕP − ϕW

∆xWP

)
(5.2.5)

where ∆xPE , for example, represents the distance between nodes P and E. The diffusiv-
ities are interpolated to the cell faces;

Γw = (1− fW ) ΓW + fWΓP , fW =
∆xWw

∆xWw + ∆xwP
(5.2.6)

Γe = (1− fP ) ΓP + fPΓE, fP =
∆xPe

∆xPe + ∆xeE
(5.2.7)
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Figure 5.1: Typical finite volume cell.

where the interpolation factors fW and fP account for non-uniform grids. The diffusion
coefficients can then be written as;

De =
ΓeAe
∆xPE

(5.2.8)

Dw =
ΓwAw
∆xWP

(5.2.9)

5.2.2 Convection terms

STREAM has three differencing schemes available for the convective terms. These are
UPWIND, QUICK (Quadratic Upstream Interpolation for Convection Kinematics) and
UMIST (Upstream Monotonic Interpolation for Scalar Transport). These schemes ap-
proximate the value of ϕ at the cell face. The calculation of the mass fluxes is detailed
later in Section 5.4 and they are assumed as known here.

UPWIND scheme

The upwind scheme aims to take account of the prevailing flow direction when approxi-
mating the face values of ϕ. For example, with a given mass flux, Fe, through the face e,
the velocity at the east face is given by;

ϕe =

ϕP , Fe > 0

ϕE, Fe < 0
(5.2.10)
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The scheme is only first order accurate, but is stable and bounded. It tends to induce
numerical diffusion when the flow is not aligned with the grid and with flows at a high
Reynolds number, which can lead to fairly large inaccuracies, unless an extremely fine
mesh is employed (Versteeg and Malalasekra, 1996).

QUICK scheme

The QUICK scheme is a third-order accurate upwind weighted scheme developed by
Leonard (1979). It fits a quadratic function through two nodes upstream and one down-
stream of the face required. For a uniform grid, this gives;

ϕw =

ϕW + 1
2

(ϕP − ϕW )− 1
8

(ϕP − 2ϕW + ϕWW ) , Fw > 0

ϕP + 1
2

(ϕW − ϕP )− 1
8

(ϕW − 2ϕP + ϕE) , Fw < 0
(5.2.11)

Although more accurate than the UPWIND scheme, the quadratic nature of the interpo-
lation can produce unbounded values. This can lead to local oscillations and unphysical
solutions, especially where there are sharp changes in the value of the variable.

UMIST

The UMIST scheme was proposed by Lien and Leschziner (1994b) and is designed to
eliminate the oscillations caused by the QUICK scheme by forcing the quadratic function
to give bounded values. For Fe > 0 it is of the form;

ϕe = ϕP +
1

2
ψ(r) (ϕE − ϕp) (5.2.12)

where ψ is a function of r = (ϕP − ϕW ) / (ϕE − ϕP ). Specifically;

ψ(r) = max

[
0, min

(
2r,

1 + 3r

4
,
3 + r

4
, 2

)]
(5.2.13)

The UMIST scheme is second-order accurate and more numerically stable when com-
pared with the QUICK scheme, although the calculation of the function ψ can increase
computation time. It does not produce oscillations and shows far less numerical diffusion
when compared to the UPWIND scheme (Versteeg and Malalasekra, 1996).

5.2.3 Discretized equation

Using the UPWIND scheme for the convective terms and the CDS scheme for diffusive
terms, the discretization of the Equation (5.2.3) results in the linear equation;

aPϕP = aEϕE + aEϕW + Sϕ∆V (5.2.14)
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The source term is usually linearized for stability;

Sϕ∆V = SU + SPϕP (5.2.15)

and SP absorbed into the coefficient aP , so that Equation (5.2.14) becomes;

aPϕP = aEϕE + aEϕW + SU (5.2.16)

where the coefficients are defined as;

aW = Dw + max(Fw, 0) (5.2.17)

aE = De + max(0,−Fe) (5.2.18)

aP = aE + aW − SP + (Fe − Fw) (5.2.19)

The last term on the RHS of Equation (5.2.19) is the mass imbalance in the control vol-
ume. When continuity is satisfied this will vanish, and hence the term is not included in
the final discretized equation. Equation (5.2.16) can be generalized to;

aPϕP =
∑
nb

anbϕnb + SU (5.2.20)

where nb represents the neighbouring nodes involved in the discretization and aP is de-
fined as;

aP =
∑
nb

anb − Sp (5.2.21)

5.2.4 Temporal discretization

For unsteady flows, the time dependant term ∂ϕ/∂t is not omitted from Equation (5.2.1)
and integration is additionally performed over a finite time step ∆t. By assuming that the
value of ϕ at the node provides an adequate approximation for the whole control volume,
the time derivative integrates as;∫

CV

[∫ t+∆t

t

∂ (ρϕ)

∂t

]
dV = ρ

(
ϕ− ϕ0

)
∆V (5.2.22)

where the superscript 0 represents the value of ϕ at the previous time step. For a one-
dimensional diffusion problem, where the CDS is used to approximate the fluxes, the
integrated transport equation becomes;

ρ
(
ϕP − ϕ0

P

)
∆V =

∫ t+∆t

t

[(
ΓeAe

ϕE − ϕP
∆xPE

)
−
(

ΓwAw
ϕP − ϕW

∆xWP

)]
dt (5.2.23)

To carry out the time integration on the right hand side of this equation, a decision needs
to be made regarding the variation of ϕ with time. Either the values of ϕ at time t, at time
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t + ∆t, or some percentage inbetween can be used for the current time step. Introducing
a weighting parameter χ, this can be conveniently expressed as;∫ t+∆t

t

ϕN dt =
[
χϕN + (1− χ)ϕ0

N

]
∆t (5.2.24)

where N represents a particular node. By substituting this expression for ϕP , ϕW and ϕE
in Equation (5.2.23) the integration can be carried out. For χ = 1, the value of ϕ at the
next time step is dependent on the values of its neighbouring nodes at the new time step.
This is, therefore, a fully implicit scheme which is unconditionally stable for any size of
time step but is only first order accurate. To ensure accuracy, small time steps are needed.
Setting χ = 0.5 gives the Crank-Nicolson scheme. This includes contributions from both
time steps when solving the system of equations and thus is also implicit, but is second
order accurate. The Crank-Nicolson scheme has been adopted in this thesis for the cases
that are time-dependent.
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5.3 Pressure-velocity coupling

In the discretized momentum equations, the pressure appears as a source term. Solution
of this system of equations for the velocities U , V and W is thus possible provided that
the pressure field is known. This is seldom the case and the pressure does not appear
explicitly in the only other hydrodynamic equation available, continuity. To provide a
means to solve for both the velocity and pressure fields an iterative scheme is used which
adjusts the pressure field until the corresponding velocity field satisfies continuity. The
particular scheme employed in STREAM is called SIMPLE ("Semi-Implicit Method for
Pressure-Linkage Equations") and a summary of the algorithm follows (Patankar, 1980).

Consider a two-dimensional flow. Excluding other sources, the discretized momentum
equation for UP can be written as;

aPUP =
∑
nb

anbUnb + (Pw − Pe) ∆y (5.3.1)

where, as before, the lower case subscripts w and e represent face values. The equation
is first solved by using a guessed pressure field, P ∗. The velocity field resulting from the
guessed pressure field is denoted by U∗, and obtained from the discretized equation as;

aPU
∗
P =

∑
nb

anbU
∗
nb + (P ∗w − P ∗e ) ∆y (5.3.2)

It is unlikely that this velocity field will satisfy continuity. To obtain values which do,
corrections are added to the velocity and pressures fields such that;

U = U∗ + U
′

(5.3.3)

P = P ∗ + P
′

(5.3.4)

where U ′ and P ′ are the necessary corrections. The equation linking the velocity and
pressure corrections is obtained by subtracting Equation (5.3.2) from Equation (5.3.1);

U
′

P =
1

aP

∑
nb

anbU
′

nb +
∆y

aP

(
P

′

w − P
′

e

)
(5.3.5)

As a first approximation, the SIMPLE scheme neglects the first term on the RHS, involv-
ing the velocity corrections from neighboring nodes. The corrected velocity field U is
then linked to the pressure corrections by;

UP = U∗P +
∆y

aP

(
P

′

w − P
′

e

)
(5.3.6)

The discretized continuity equation can be written as;

(ρUA)e − (ρUA)w + (ρV A)n − (ρV A)s = 0 (5.3.7)
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5.3. PRESSURE-VELOCITY COUPLING

Expressions for the corrected velocities through the cell faces can be obtained in a similar
fashion to that for UP . By substituting these into Equation (5.3.7) and rearranging, an
expression for the pressure corrections is given as;

aPP
′

P =
∑
nb

anbP
′

nb + Sm (5.3.8)

where Sm = (ρU∗A)e− (ρU∗A)w + (ρV ∗A)n− (ρV ∗A)s represents the mass imbalance
in the cell. The mass fluxes at the cell faces are found using Rhie and Chow interpola-
tion, which is discussed in Section 5.4. Equation (5.3.8) is solved over the flow domain,
and the resulting pressure corrections P ′ are added to the guessed pressure P ∗ to obtain
the corrected nodal pressure P . The corrected velocity values are obtained from Equa-
tion (5.3.6), where linear interpolation is used to obtain the face values of the pressure
correction. That is;

P
′

w = (1− fW )PW
′ + fWP

′

P (5.3.9)

where fW is an interpolation factor, as previously defined in Equation (5.2.7).

The sequence of operations for a CFD solver employing the SIMPLE algorithm can be
summarised as;

1. Guess the pressure P ∗ and velocity fields U∗i .

2. Solve the discretized momentum equations (5.3.2).

3. Solve the pressure correction equation (5.3.8).

4. Correct the pressure and velocity fields using equations (5.3.4) and (5.3.6) respec-
tively.

5. Solve any other discretized transport equations and repeat the procedure until the
solution has converged.

139



CHAPTER 5. NUMERICAL IMPLEMENTATION

5.4 Calculation of mass flux

The solution procedures outlined in the previous sections require values of the mass flux,
F = (ρUA), at the cell faces. With a collocated grid arrangement, the discretization of
the pressure gradient source term results in an expression involving the face values of
pressure; ∫

CV

−∂P
∂x

dxdydz = − (Pe − Pw)AP (5.4.1)

where AP is the area at node P whose normal is in the x direction. With a uniform grid,
using linear interpolation to obtain the face values of pressure results in the elimination of
the pressure at node P . For example;

(Pw − Pe) =
PW + PP

2
− PP + PE

2
=
PW − PE

2
(5.4.2)

The absence of the nodal value at P reduces the strength of the coupling between nodal
values of velocity and pressure. This can lead to ‘checkerboard’ oscillations, where al-
ternating values of nodal pressure interpolate to uniform values at the cell faces. This
can be corrected by using a staggered grid arrangement, whereby scalar variables, such
as pressure, temperature etc., are stored at the usual nodal values, but the velocities are
calculated on a control volume centered around the cell vertices. The downside to this
approach is that it becomes difficult to implement, since two sets of control volumes need
to be defined and linked. For curvilinear or unstructured grids, this becomes very cum-
bersome.

To solve this issue, Rhie and Chow (1983) proposed a momentum interpolation method
for collocated grids which eliminated the checkerboard problem. The method is detailed
here with an additional modification, introduced as part of the present work, to explicitly
take account for flows subject to buoyancy.

Consider the U momentum equation which has been discretized over the control volume
centered around node P in Figure 5.2 and where the pressure source term has been ex-

W P E EEeeew

Figure 5.2: One-dimensional control volume arrangement.
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cluded from the general source term SU ;

aPUP =
∑
nb

anbUnb

∣∣∣∣∣
P

− AP (Pe − Pw) + SU |P (5.4.3)

The terms on the RHS are evaluated such that node P is the central node, i.e. in the
summation nb represents the neighbouring nodes for node P . The area AP is the cross-
sectional area at P whose normal is in the x direction. For buoyancy affected flows, the
buoyant contribution to the source term SU at node P is1;

SU |P =
[
SU
]
P

∆VP = − [ρgxβ (Θ−Θ0)]P ∆VP = −ρgxβP (ΘP −Θ0) ∆VP

(5.4.4)
Then, substituting Equation (5.4.4) into Equation (5.4.3) and dividing by aP ;

UP =
1

aP

∑
nb

anbUnb

∣∣∣∣∣
P

− AP
aP

(Pe − Pw) +
ρgxβP
aP

(Θ0 −ΘP ) ∆VP (5.4.5)

A similar expression can be formed by taking node E to be the central node;

UE =
1

aE

∑
nb

anbUnb

∣∣∣∣∣
E

− AE
aE

(Pee − Pe) +
ρgxβE
aE

(Θ0 −ΘE) ∆VE (5.4.6)

Since the finite volume method ensures global conservation, a similar expression must
also hold for the velocity at face e;

Ue =
1

ae

∑
nb

anbUnb

∣∣∣∣∣
e

− Ae
ae

(PE − PP ) +
ρgxβe
ae

(Θ0 −Θe) ∆Ve (5.4.7)

where, conveniently, the pressures in the source term are now nodal values. The Rhie and
Chow interpolation method uses Equations (5.4.5) and (5.4.6) to approximate a solution
for Equation (5.4.7), and hence obtain the value for Ue. Using linear interpolation, the
first term on the RHS of Equation (5.4.7) can be expressed as;

1

ae

∑
nb

anbUnb

∣∣∣∣∣
e

= (1− fP )
1

aP

∑
nb

anbUnb

∣∣∣∣∣
P

+ fP
1

aE

∑
nb

anbUnb

∣∣∣∣∣
E

(5.4.8)

where fP is an interpolation factor, defined earlier in Equation (5.2.7) to account for non-
uniform grids. The terms on the RHS can be obtained by rearranging Equations (5.4.5)

1see Subsection 3.1.3
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and (5.4.6) respectively. Equation (5.4.8) then becomes;

1

ae

∑
nb

anbUnb

∣∣∣∣∣
e

= (1− fP )

[
UP +

AP
aP

(Pe − Pw)− ρgxβP
aP

(Θ0 −ΘP ) ∆VP

]
+

fP

[
UE +

AE
aE

(Pee + Pe)−
ρgxβE
aE

(Θ0 −ΘE) ∆VE

]
(5.4.9)

The values of pressure at the faces are interpolated from neighbouring nodes as;

Pee = (1− fE)PE + fEPEE (5.4.10)

Pe = (1− fP )PP + fPPE (5.4.11)

Pw = (1− fW )PW + fWPP (5.4.12)

The remaining two terms in Equation (5.4.7) can be expressed in a similar fashion by
interpolating the individual quantities involved. Areas and volumes are handled by taking
an average. Thus with;

1

ae
= (1− fP )

1

aP
+ fP

1

aE
(5.4.13)

Θe = (1− fP ) ΘP + fPΘE (5.4.14)

βe = (1− fP ) βP + fPβE (5.4.15)

Ve =
VP + VE

2
(5.4.16)

the second term on the RHS of Equation (5.4.7) becomes;

− Ae
ae

(PE − PP ) = −
[

1− fP
aP

+
fP
aE

]
Ae (PE − PP ) (5.4.17)

and the third term becomes;

ρgxβe
ae

(Θ0 −Θe) ∆Ve = ρgx

[
1− fP
aP

+
fP
aE

]
[(1− fP ) βP + fPβE]×

[Θ0 − (1− fP ) ΘP − fPΘE]
VP + VE

2
(5.4.18)

Finally, substituting Equations (5.4.18), (5.4.17) and (5.4.9) into Equation (5.4.7) results
in an expression for Ue. For a uniform grid, the interpolation factors fP = fW = fE = 0.5
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and the expression simplifies to;

Ue =
1

2
(UP + UE)︸ ︷︷ ︸

linear interpolation

+
1

4

[
DPAP (PE − PW )− 2DeAe (PE − PP ) +DEAE (PEE − PP )

]
︸ ︷︷ ︸

pressure smoothing

− ρgx
2

[
DPβPVP (Θ0 −ΘP ) +DEβEVE (Θ0 −ΘE)

−2DeβeVe (Θ0 − 0.5 (ΘP + ΘE))

]
︸ ︷︷ ︸

buoyant correction

(5.4.19)

where;

DP =
1

aP
, DE =

1

aE
, De =

1

2

[
1

aP
+

1

aE

]
,

AP =
Aw + Ae

2
, AE =

Ae + Aee
2

(5.4.20)

The final expression for the face velocity Ue, in Equation (5.4.19), can be seen to consist
of three parts; a linear interpolation part, a pressure smoothing part and a correction due
to the presence of the buoyant force. Crucially, the pressure smoothing term includes a
contribution from the pressure at node P , which enforces strong coupling between the
velocity and pressure. The buoyancy correction ensures that any contribution to the mass
flux from gravitational interactions is included in the interpolation. All other face veloci-
ties are calculated in a similar fashion.
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5.5 Poisson equation for electric potential

As discussed earlier in Subsection 3.3.2, the validity of the lowRem approximation means
that Maxwell’s equations reduce to a single extra Poisson equation for the electric poten-
tial, φ. To detail its implementation into STREAM, the equation itself, Equation (3.3.17),
is first recalled;

∂2φ

∂x2
i

=
∂

∂xi
(εijkUjBk) (5.5.1)

One way to implement this equation within the context of a finite volume solver, is to
recognise that it holds similar form to a generic scalar transport equation with zero con-
vective flux and one source term. For example, recalling the generic scalar transport
equation from Equation (5.2.1);

∂ (ρUjφ)

∂xj
=

∂

∂xj

(
Γ
∂φ

∂xj

)
+ Sφ (5.5.2)

By setting the diffusivity to unity, specifying zero mass flux (to remove the convective
part) and setting the source term, Sφ, such that;

Sφ = − ∂

∂xi
(εijkUjBk) (5.5.3)

one arrives back at Equation (5.5.1). As velocity values are updated by the solver, values
of φ are calculated by solution of this equation. Gradients of φ, which enter into the
Lorentz force term (as per Equation (3.3.11)), can be calculated in the same manner as
those for other variables.
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5.6 Boundary conditions

As summarised in Section 1.3, there are two main classes of flows investigated as part
of this thesis and each will require different types of boundary conditions. This section
primarily discusses how the types of boundary conditions are implemented in STREAM,
and specific conditions for each case will be stated and discussed in their respective results
chapter.

5.6.1 Wall

All of the cases considered involve walls in some capacity. As explained in Section 4.5,
the approach to implementing boundary conditions at the wall depends on the mesh em-
ployed and whether the flow is laminar or turbulent. If the flow is fully laminar or the
near-wall node is placed such that it lies within the viscous sub-layer (typically requiring
y+ ≤ 5), then the near-wall flow itself will be laminar. If the flow is fully turbulent and
the near-wall node lies outside of the viscous sublayer, but within the logarithmic region,
wall-functions can be employed.

Velocity field

The no-slip condition (Ui = 0) is applied to nodes lying on the wall. For the near-wall
node, the coefficient linking that node to the wall node is set to zero and the wall-shear
stress, τw, is computed and enters the discretized momentum equation as a source term;

(SU)P = Fτ (5.6.1)

where Fτ is the shear force acting on the near-wall cell P .

Fτ = −τwAw (5.6.2)

where Aw is the area of the wall in the near-wall cell. If the flow at the near-wall node is
laminar (and the wall itself is stationary), then the wall shear stress is obtained from;

τw = µ
∂U

∂y

∣∣∣∣
w

= µP
UP
yP

(5.6.3)

where UP is the velocity at the near-wall node and yP is the distance from the near-wall
node to the wall. If the flow at the near-wall node is turbulent, then the wall-shear stress
is obtained with a wall-function;

τw =
ρκ∗UPkP
ln (E∗y∗P )

(5.6.4)
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which is as per Equation (4.5.9) and the meaning of the individual quantities are as de-
scribed in Section 4.5.

Turbulence

Since the no-slip condition must hold for all the velocities, fluctuating components in-
cluded, all Reynolds stresses are zero on the wall. Thus, the turbulent kinetic energy, k,
is set to zero on the wall. At the near-wall node, cell-averaged values of dissipation, ε,
and production, Pk , are used in the transport equation for k as per Equations (4.5.18) and
(4.5.14) respectively.

For the ε equation, the condition at the wall depends on the approach used. For approaches
which solve an equation for the homogeneous part of the dissipation rate, ε̃, such as the
low-Re Launder-Sharma k − ε model used in this research, the value of ε̃ is zero on the
wall. The coefficient linking the wall node to the near-wall fluid node is set to zero and
the equivalent flux enters the discretized equation as a source term.

For approaches which solve for ε directly, such as the low-Re Hanjalić and Jakirlić model
used in this research, the value at the near-wall node is set as per Equation (4.5.17);

ε =
2νkP
y2
P

(5.6.5)

For stress-transport approaches that are used with wall functions, the values of the Reynolds
stresses at the near-wall node are related to k by fixed ratios. In co-ordinates aligned with
the wall these are;

u2
1

k
= 1.098,

u2
2

k
= 0.248,

u2
3

k
= 0.654,

u1u2

k
= −0.255 (5.6.6)

where u2 is directed normal to the wall and the value of k at the near-wall node is obtained
through solution of its transport equation (4.4.6). For computational convenience the
equation is solved globally, even though values of k are only required at the near-wall
node. Away from the wall, k is obtained directly from the Reynolds stresses as k =

0.5uiui.

Thermal field

For the thermal field, either the temperature, Θ, or the heat flux, q, can be prescribed at
the wall. In similar fashion to the velocity field, the approach used depends on the state
of the fluid at the near-wall node. For the cases computed in this thesis, however, the
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thermal field is only solved in cases where a fixed temperature is specified and where the
near-wall region can be regarded as laminar (i.e. a low-Re approach).

For a prescribed temperature, the wall node is set to the wall temperature, Θw, and the
required heat flux into the domain is computed as;

qw = −kα
∂Θ

∂y

∣∣∣∣
w

= −kα
ΘP −Θw

yP
(5.6.7)

where kα = αρcp is the thermal conductivity. As before, the coefficient linking node P
with the wall node is set to zero and the corresponding heat flux is added to the discretized
equation for Θ as a source term;

(SU)P = qwAw (5.6.8)

Pressure

Since STREAM uses a collocated grid, a boundary condition for the pressure needs to be
specified. Typically this is of the form;

∂P

∂y
= 0 (5.6.9)

where y represents the direction normal to the wall. As seen in Subsection 3.1.3, the
addition of the buoyancy force into the momentum equation resulted in a redefinition of
the pressure, where the gravitational potential was included in the modified pressure, P ∗,
which is what is stored in the “pressure” variable in the solver. To ensure a consistent
approach, the correct boundary condition for the pressure is then;

∂P ∗

∂y
=

∂

∂y

(
P + ρu2

n − ρgnβP (Θ0 −ΘP ) yP

)
= 0 (5.6.10)

where the subscript n indicates resolution of the quantity into its wall normal value, and
yP is the distance from the near-wall node to the wall. The addition of the buoyant con-
tribution to Equation (5.6.10) has been made as part of the present work.

Electric potential

The condition for the electric potential, φ, depends upon the electrical properties of the
wall. For perfectly electrically insulated walls, the electric current normal to the wall, Jn,
is zero. The equivalent condition for the electric potential can be obtained by taking the
dot product of Ohm’s law, Equation (3.3.7), with n, an inward unit vector normal to the
boundary;

J · n = Jn = σ
∂φ

∂n
+ σn · (U×B) (5.6.11)
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At the wall U = 0, so specifying Jn = 0 leads to a Neumann condition on the electric
potential;

∂φ

∂n
= 0 (5.6.12)

For a perfectly conducting wall, the electric potential at the wall is uniform since differ-
ences in potential cannot exist. The value of φ can then be set to zero without loss of
generality.

5.6.2 Periodicity

If the flow is periodic then the flow exiting the domain is mapped to the flow entering the
domain. For the periodic fully developed channel flows considered in this thesis all vari-
ables except pressure are periodic in the streamwise direction. It is the pressure gradient
which is periodic and this is fixed in order to drive the flow.

5.6.3 Symmetry

The conditions at a symmetry boundary require zero flow across the boundary and zero
scalar flux across the boundary. Thus the velocity normal to the boundary is set to zero
and a Neumann condition is applied to all other variables;

∂ϕ

∂n
= 0 (5.6.13)
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CHAPTER

SIX

FULLY DEVELOPED CHANNEL FLOWS

In this chapter, numerical results from a series of fully developed channel and duct flows
are presented. The objective is to provide, for some flows with only simple shear, a de-
tailed assessment of how the electromagnetically extended turbulence models discussed
in Chapter 4 respond to the application of a magnetic field of varying direction and in-
tensity. Two main types of flow are considered. The first is a one-dimensional fully
developed channel flow where a magnetic field is applied in either the wall-normal or
streamwise direction. The second is fully developed two-dimensional duct flow where
the effect of varying the electrical properties of the four walls is investigated.

A description of the considered cases, with details on the mesh and boundary conditions,
is provided in Section 6.1 and Section 6.2 details the specific numerical formulation em-
ployed. Then, Section 6.3 and Section 6.4 present the main results sections of the chapter
and consider laminar and turbulent flows respectively. For the former, a wall-normal mag-
netic field is first applied to one-dimensional, fully-developed, channel flow and a solution
is obtained analytically. As a validation exercise, the analytical solutions are compared
with numerical results computed with STREAM. Then, a wall-normal magnetic field is
applied to the two-dimensional duct flows and results are computed for walls of differ-
ing electrical conductivity. For the latter, non-magnetic flows are first computed in the
one-dimensional, fully-developed channel flow and compared against DNS data in order
to both validate the numerical solver, and provide a benchmark against which to compare
the magnetic cases. Then, a magnetic field is applied in the wall-normal and streamwise
directions. Results are computed for a series of Reynolds and Hartmann numbers, and are
compared with existing DNS datasets. Finally, Section 6.5 concludes the chapter by sum-
marising the key findings. A selection of results from this chapter have been published in
Wilson et al. (2014, 2015).
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6.1 Case description

The case considered is that of a fully-developed channel flow of incompressible, elec-
trically conducting fluid subjected to a magnetic field of varying direction and intensity.
Two geometric configurations are considered.

For the first, the channel is assumed to be infinitely long in the streamwise and spanwise
directions. This reduces to a one-dimensional problem, where the only variation in the
flow is in the wall normal direction. Both a wall-normal (i.e. Hartmann flow) and a
streamwise magnetic field of varying intensity are applied and flows in the laminar and
turbulent regime are considered. Laminar flows with a wall-normal magnetic field are
compared against the analytical solution, a development of which is provided. These
primarily serve to validate the implementation of the electromagnetic effects in STREAM.
Following this, turbulent flows, for both orientations of magnetic field, are compared
against available DNS data. The Launder Sharma low-Re eddy-viscosity and the Hanjalić
and Jakirlić low-Re stress transport models, as described in Chapter 4, are tested both
with and without electromagnetic modifications. A summary of the parameter ranges
considered is provided in the relevant results section.

For the second configuration, the channel remains infinitely long but is now bounded by
additional walls normal to the spanwise direction. The aspect ratio of the duct is unity
and the conductivity of the walls is varied systematically. The effect of wall-conductivity
was explored briefly in Subsection 2.2.1 and the primary objective here is to confirm that
some of the phenomena discussed there can be correctly reproduced by STREAM. As
such, only laminar flows are considered.

With fully developed channel flows, there are two ways in which one can drive the flow.
The first is by directly fixing the streamwise pressure gradient (either by setting it as a
source term in the momentum equation or by setting the pressure at the two periodic faces
accordingly). Once a fully developed solution has been obtained, the streamwise pressure
gradient will balance the cross-stream shear-stress gradient and the Lorentz force (if it
exists). Flows specified in this manner are most conveniently quantified using a Reynolds
number based on the friction velocity Uτ =

√
τw/ρ, where τw is the wall-shear stress,

and the channel half-width δ;

Reτ =
Uτδ

ν
(6.1.1)

The second way is to actively modify the streamwise pressure gradient such that the mass
flow rate through the channel remains constant. The streamwise pressure gradient (and
thus the wall-shear stress) then forms part of the solution. Flows specified in this manner
are most conveniently quantified using a Reynolds number based on the bulk velocity Ub;

Re =
Ubδ

ν
(6.1.2)
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Both methods are employed here, the most appropriate one being guided by the method
used to solve the DNS used for comparisons. The magnetic field strength is quantified
using the Hartmann number;

Ha = B0δ

√
σ

ν
(6.1.3)

where B0 is the characteristic magnetic field strength.

The governing equations to be solved consist of continuity, Equation (3.3.14), momentum
with the Lorentz force term, Equation (3.3.15), and the Poisson equation for the electric
potential, Equation (3.3.17). Buoyancy is not considered here, although the effect of a
magnetic field on the passive transport of a scalar (temperature) is considered in Subsec-
tion 6.4.2. As interest only lies with the fully-developed state, a small slice of the channel
is computed with periodic boundary conditions employed in the streamwise direction.
The geometries and typical meshes for both sub-cases are presented in the following two
sections.

6.1.1 One-dimensional fully developed channel flow

Figure 6.1 provides a schematic of the channel which illustrates the orientation of the axis,
the direction of the magnetic field and the channel height. The flow is in the positive x
direction and the magnetic field applied in either the positive y or positive x direction. The
top and bottom boundaries are specified as electrically insulating walls where, in addition
to the no-slip condition on the velocity, the electric current normal to the wall, Jn, is zero.

For the computational mesh, the streamwise periodicity of the flow allows a relatively
small number of control volumes (∼ 10) to be used in that direction. Since low-Re
models are employed, a high number of nodes was employed in the wall normal direction.
A mesh was generated for eachReτ considered to ensure that the position of the first node
satisfies y+ ≤ 1. This ensures the validity of the low-Re approach and that the equations
are solved right into the near-wall viscous sublayer. The cell spacing in this direction was
computed using a geometric series expansion to cluster the nodes towards the walls. A
typical mesh is superimposed over the schematic in Figure 6.1.

6.1.2 Two-dimensional fully developed duct flow

For the two-dimensional fully developed duct flows, a small slice of an infinitely long
square duct is modelled as illustrated in Figure 6.2. Periodicity is employed in the stream-
wise direction and, since walls of differing electrical conductivity are investigated, the
walls have been labelled as “Side walls” (for those parallel to the magnetic field) and
“Hartmann walls” (for those normal to the magnetic field) for ease of reference. The

151



CHAPTER 6. FULLY DEVELOPED CHANNEL FLOWS
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Figure 6.1: Geometry and typical low-Re mesh for one-dimensional fully developed
channel flow cases.
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Figure 6.2: Geometry and typical mesh for two-dimensional fully developed duct flow
cases.

applied streamwise pressure gradient is such that the flow is in the positive x direction
and a magnetic field is applied in the positive y direction. Although the flow is laminar,
the types of phenomena expected to arise (wall jets, for example, as described in Subsec-
tion 2.2.1) mean that nodes have been clustered towards to the walls to aid resolution of
steep velocity gradients.
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6.2 Numerical formulation

All computations have been carried out using a version of the in-house 2D/3D finite-
volume flow solver STREAM which has been extended to include the electromagnetic
modifications discussed in Chapters 3 and 4. Convective terms in the momentum equa-
tions are treated with the bounded high-order UMIST scheme of Lien and Leschziner
(1994b) whilst those in the turbulence equations use the first order UPWIND scheme.
The steady state computations ran until the solution residuals were at least O(10−6) and
any variation in the streamwise direction eliminated.
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6.3 Laminar flows

The solution of some relatively simple laminar flows provides an ideal means to both
validate the implementation of the additional, mean, electromagnetic effects in the solver
and demonstrate that the code is capable of reproducing some of the phenomena explored
as part of Section 2.2. First, one-dimensional fully developed Hartmann flow is solved
analytically and the results are compared with laminar numerical calculations obtained
with the solver STREAM over a range of magnetic field strengths. Then, the solver is used
to compute some flows through the two-dimensional duct described in Subsection 6.1.2.
Results are compared with those described earlier in Section 2.2.

6.3.1 Analytical Hartmann flow

Hartmann flow describes a fully developed channel flow of an electrically conducting
fluid which is subjected to a uniform wall-normal magnetic field. It was explored in
detail as part of Section 2.2. Here, if attention is restricted to one-dimensional laminar
flow, an analytical solution of the governing equations may be found. The momentum
equation (3.3.15), rewritten here in vector notation, reduces to;

0 = −∇P + µ∇2U + J×B (6.3.1)

where the Lorentz force, the final term on the RHS, is as per Equation (3.2.28). The
Lorentz force, with the help of Ohm’s law, Equation (3.2.12), becomes;

J×B = σ (E + U×B)×B (6.3.2)

The x-component of Equation (6.3.1), given that given that U = (U, 0, 0) and B =

(0, B0, 0), reduces to;

0 = −∂P
∂x

+ µ
∂2U

∂y2
− σ

ρ
B0 (Ez + UB0) (6.3.3)

Equation (6.3.3) can be non-dimensionalized through a choice of suitable scales. The
channel half-width, δ, is chosen as a length scale and B0 is chosen as the magnetic field
scale. For the velocity scale, one can use either the bulk velocity, Ub, or the friction
velocity Uτ =

√
τw/ρ. Choosing the bulk velocity, the variables in Equation (6.3.3) can

be non-dimensionalized as;

x∗ =
x

δ
, y∗ =

y

δ
, U∗ =

U

Ub
, B∗ =

B0

B0

= 1, E∗ =
Ez
UbB0

, P ∗ =
P

ρU2
b

(6.3.4)
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and the resulting non-dimensional equation of motion is given by;

∂P ∗

∂x∗
=

1

Re

∂2U∗

∂y∗2
− Ha2

Re
(E∗z + U∗) (6.3.5)

Since the magnetic field, B, is constant, the electric field must be curl free (as per Equa-
tion (3.3.5a)) and can thus be represented by the gradient of the non-dimensional electro-
static potential,∇φ∗. The Poisson equation for the electrostatic potential, Equation (3.3.17),
then reduces to;

∇2φ∗ = 0 (6.3.6)

which implies that;
∇φ∗ = const. = −E∗z (6.3.7)

and thus the electric field component, E∗z , is constant across the channel. Equation (6.3.5)
is then a 2nd-order linear differential equation of the form;

∂2U∗

∂y∗2
− C2U∗ = D (6.3.8)

where C and D are the constants;

C = Ha, D = Re
∂P ∗

∂x∗
+Ha2E∗z (6.3.9)

This can be solved to give the non-dimensional velocity profile;

U∗(y∗) =

(
− Re

Ha2

∂P ∗

∂x∗
− E∗z

)[
1− cosh (Ha · y∗)

cosh (Ha)

]
(6.3.10)

The role of the electric field, E∗z , now becomes more apparent. Since it does not vary with
position, it plays a similar role to the pressure gradient in that it forms part of the “driving
force” which balances the wall shear stress. Neither the pressure gradient nor the electric
field can modify the shape of the velocity profile but if, say, the flow is driven by a fixed
pressure gradient, then the resulting mass flow rate will depend upon both the value of
the pressure gradient and the electric field which exists. Whether or not an electric field
exists will depend on the electrical properties of the walls normal to the z direction (not

the walls normal to the y direction) and whether or not these walls are connected with any
electrical device. This was explored in Subsection 2.2.1 and Equation (6.3.10) provides
some mathematical justification to that discussion.

The “driving force” in the channel, can be related to the bulk velocity through;

Ub =
1

2δ

∫ δ

−δ
U(y) dy (6.3.11)
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Figure 6.3: Fully developed channel flow under a wall-normal magnetic field. Analytic
velocity profiles for varyingHa with a fixed mass flow rate, as given by Equation (6.3.14)
for Ha > 0 and Equation (6.3.15) for Ha = 0.

which, non-dimensionalized, becomes;

1 =
1

2

∫ 1

−1

U∗(y) dy∗ (6.3.12)

By integrating Equation (6.3.10) across the channel, Equation (6.3.12) becomes;

−
(
Re

Ha2

∂P ∗

∂x∗
+ E∗z

)
=

[
1− sinh (Ha)

Ha cosh (Ha)

]−1

(6.3.13)

Substitution of this into Equation (6.3.10) and dividing by the bulk velocity gives the
non-dimensional velocity profile for Hartmann flow with varying Ha;

U∗(y∗) =
Ha cosh (Ha)−Ha cosh (Ha · y∗)

Ha cosh (Ha)− sinh (Ha)
(6.3.14)

This is plotted for a selection of Ha > 0 in Figure 6.3 along with the analytical profile
for non-magnetic channel flow (Ha = 0), given by;

U∗(y∗) =
3

2

(
1− y∗2

)
(6.3.15)

For a fixed mass flow rate the primary effect of the wall normal magnetic field is to elim-
inate the velocity gradients in the centre of the channel. This reduces both the centerline
velocity and boundary layer thickness.

To verify the implementation of the mean magnetic forcing in the STREAM code, laminar
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simulations for Reτ = 150 and a selection of Ha were obtained. To compare these with
the analytical solutions, it is convenient to first rescale the equation of motion using the
friction velocity, Uτ ;

U+(y∗) =

(
−Reτ
Ha2

∂P+

∂x∗
− E+

z

)[
1− cosh (Ha · y∗)

cosh (Ha)

]
(6.3.16)

where the affected variables in Equation (6.3.4) are redefined as;

U+ =
U

Uτ
, E+

z =
Ez
UτB0

, P+ =
P

ρU2
τ

(6.3.17)

The pressure gradient and electric field can be related to the wall shear stress by first
taking the derivative of Equation (6.3.16) to give an equation for the non-dimensional
viscous shear stress;

τ+(y∗) =
1

Reτ

∂U+

∂y∗
=
Ha

Reτ

(
−Reτ
Ha2

∂P+

∂x∗
− E+

z

)[
− sinh(Ha · y∗)

cosh(Ha)

]
(6.3.18)

The wall shear stress is then given by;

τ+(1) = τ+
w =

Ha

Reτ

(
−Reτ
Ha2

∂P ∗

∂x∗
− E+

z

)
[− tanh (Ha)] (6.3.19)

Since the shear stress is non-dimensionalized using the friction velocity, the non-dimensional
wall shear stress is unity and the non-dimensional “driving force” can be expressed as;(

−Reτ
Ha2

∂P ∗

∂x∗
− E+

z

)
= − Reτ

Ha tanh (Ha)
(6.3.20)

Substitution of Equation (6.3.20) into Equation (6.3.16) results in an expression describ-
ing the velocity profile for a given Reτ and Ha;

U+(y∗) =
Reτ

Ha tanh(Ha)

[
1− cosh (Ha · y∗)

cosh (Ha)

]
(6.3.21)

Figure 6.4 compares profiles obtained with Equation (6.3.21) to the solutions given by
STREAM for Reτ = 150 and a range of Ha. As can be seen, the numerical results are
essentially identical to the exact solution as would be expected.

6.3.2 Two-dimensional fully developed square duct flow

Unlike the one-dimensional fully developed flows discussed in the previous section, the
two-dimensional duct flows considered here allow the effects of the bounding side walls
to be investigated. As was previously discussed in Subsection 2.2.1 the electrical proper-
ties of these, and the Hartmann walls, has a direct effect on the distribution of electrical
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Figure 6.4: Non-dimensional velocity profiles for Hartmann flow at Reτ = 150 for var-
ious Ha. Analytic solutions (symbols) are given by Equation (6.3.21) and laminar com-
putations represented by the solid lines.

current within the domain and this will modify the velocity profile through changes to
the distribution of the Lorentz force. These effects are investigated systematically, by ex-
amining three different combinations of wall conductivity for the bounding walls. First,
a fully insulated duct is considered, followed by a fully conducting duct, and then, with
reference to Figure 6.2, a duct with insulating side walls and conducting Hartmann walls
is investigated. In all cases, the flow is driven by a fixed streamwise pressure gradient
such that Reτ = 150 and a magnetic field is applied in the positive y direction.

Fully insulating walls

In a fully insulated duct, it was observed in Subsection 2.2.1 that since the electric current
must form closed loops, it has to turn along the side walls and travel back across the
duct within the Hartmann layers. This causes a Lorentz force which opposes the flow in
the core of the channel, flattening the velocity profile, and accelerates the flow next to
the Hartmann walls, decreasing the boundary layer thickness. This is clearly shown in
Figure 6.5, where the resulting velocity profile is presented alongside the current paths
within the duct for a strong magnetic field (Ha = 100). Along the side walls (z∗ ± 1),
the current travels in the same direction as the magnetic field and, without an accelerating
Lorentz force, results in a boundary layer thicker than that seen along the Hartmann walls.
These results demonstrate good agreement with numerical computations by Sterl (1990)
presented in Figure 6.6.
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Figure 6.5: Fully developed laminar flow of conducting fluid through a square duct with
all walls perfectly insulating and a magnetic field applied in the y direction. (a) Non-
dimensional velocity (U∗) distribution and (b) electric current paths forHa = 100;Reτ =
150.

Figure 6.6: Velocity profiles obtained by Sterl (1990) for the fully-developed two-
dimensional flow of conducting fluid down a duct of square cross-section with all walls
insulating. Repeated from Figure 2.3(a).
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Figure 6.7: Fully developed laminar flow of conducting fluid through a square duct
with all walls perfectly insulating and a magnetic field applied in the y direction. Non-
dimensional velocity profiles (U∗) along the two centrelines, (a) z∗ = 0 and (b) y∗ = 0,
for varying Ha; Reτ = 150.

The above flow picture is confirmed by Figure 6.7 where velocity profiles along both
centrelines are presented for Ha = 0, 10, 100. Along the y direction, the profiles exhibit
similar behaviour as that seen for Hartmann flow, shown previously in Figure 6.3 (since
without the sidewalls the flow is identical to Hartmann flow). Along the z direction the
thicker boundary layers are evident. An analytical solution by Shercliff (1953) shows that
the thickness of these side layers isO(Ha1/2) compared withO(Ha−1) for the Hartmann
layers.

Fully conducting walls

If all the walls are perfectly conducting, then the current does not need to return across the
duct through the Hartmann layers. Rather, it can return through the walls where it encoun-
ters zero resistance. Figure 6.8 shows the resulting velocity profile and electric current
paths for Ha = 100. The current travels almost purely in the z direction, parallel to the
Hartmann walls. Note, however, that as the current reaches the side walls, it turns slightly
towards the Hartmann walls. This change of direction reduces slightly the component of
current perpendicular to the magnetic field, leading to a reduction in the strength of the
Lorentz force. This results in a local velocity maximum, which can be clearly seen in
Figure 6.8(a).

Velocity profiles, shown in Figure 6.9, indicate that this maximum only becomes signif-
icant for at least Ha > 10 and grows as the Hartmann number increases. The velocity
distribution in the y direction appears relatively unaffected. This is consistent with the
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Figure 6.8: Fully developed laminar flow of conducting fluid through a square duct with
all walls perfectly conducting and a magnetic field applied in the y direction. (a) Non-
dimensional velocity (U∗) distribution and (b) electric current paths forHa = 100;Reτ =
150.
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Figure 6.9: Fully developed laminar flow of conducting fluid through a square duct with
all walls perfectly conducting and a magnetic field applied in the y direction. Non-
dimensional velocity profiles (U∗) along the two centrelines, (a) z = 0 and (b) y = 0, for
varying Ha; Reτ = 150.
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Figure 6.10: Fully developed laminar flow of conducting fluid through a square duct
with a magnetic field applied in the y direction. Comparison of non-dimensional velocity
profiles (U∗) along the two centrelines, (a) z = 0 and (b) y = 0, for a duct with all
insulating or all conducting walls; Ha = 100, Reτ = 150.

conclusions drawn from the analytical exploration in Subsection 6.3.1, which noted that
the presence of an electric field in the z direction could only modify the mass flow rate (or
streamwise pressure gradient) through the duct and not the shape of the velocity profile
(here, unlike the case with fully insulating walls, there is no electric field in the z direction
since the current does not need to return across the duct). To emphasise this point, Fig-
ure 6.10 compares velocity profiles along both centre lines for conducting and insulating
walls with Ha = 100. The profiles have been normalized with the friction velocity to
highlight the differences in mass flow rate the presence of an electric field can bring. In
this case, with fully conducting walls, the resulting Lorentz force is much stronger and
this results in a smaller mass flow rate for a given streamwise pressure gradient.

Fully conducting Hartmann walls, insulating side walls

The final configuration of wall conductivities considered is that where the Hartmann walls
are perfectly conducting and the side walls perfectly insulating. Here, the currents gen-
erated in the core cannot travel inside the side walls and, like in the fully insulating case,
turn towards the Hartmann walls. Unlike in the fully insulating case, however, the cur-
rents here travel within the Hartmann walls themselves. This has quite a dramatic effect
on the velocity distribution in the duct as Figure 6.11 shows.

With fully conducting walls, a slight reduction in the component of current perpendicular
to the magnetic field was seen to lead to a local velocity maximum. Here, the insulating
side walls force the current to turn and thus the component perpendicular to the magnetic
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Figure 6.11: Fully developed laminar flow of conducting fluid through a square duct
with perfectly conducting Hartmann walls (z∗ = ±1), perfectly insulating side walls
(y∗ = ±1) and a magnetic field applied in the y direction. (a) Non-dimensional velocity
(U∗) distribution and (b) electric current paths for Ha = 100; Reτ = 150.

field is substantially reduced. This leads to the formation of two opposing near-wall jets
with a corresponding decrease in velocity in the core. Velocity profiles for increasing
Ha are plotting along both duct centrelines in Figure 6.12. Along the z direction, the
velocity distribution is frequently termed M-shaped and for sufficiently strong magnetic
fields (here, additional simulations at Ha = 200 were performed to investigate this),
the velocity in the core can actually reverse. These results are in good agreement with
numerical predictions by Sterl (1990), presented in Figure 6.13.
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Figure 6.12: Fully developed laminar flow of conducting fluid through a square duct with
with perfectly conducting Hartmann walls (z∗ = ±1), perfectly insulating side walls
(y∗ = ±1) and a magnetic field applied in the y direction. Non-dimensional velocity
profiles (U∗) along the two centrelines, (a) z = 0 and (b) y = 0, for varying Ha; Reτ =
150.

(a) (b)

Figure 6.13: Velocity profiles obtained by Sterl (1990) for the fully-developed two-
dimensional flow of conducting fluid down a duct of square cross-section with conducting
Hartmann walls and insulating side walls for (a)Ha = 100 and (b)Ha = 1000. Repeated
from Figure 2.3 for convenience.
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6.4 Turbulent flows

This section presents the results of a series of one-dimensional turbulent fully-developed
channel flows. Initially, only flows in the absence of a magnetic field are considered,
since this provides a means to validate the turbulence models within the numerical solver
STREAM. Then the magnetic field is activated and considered for two different orien-
tations (wall-normal and streamwise) and over a range of field strengths. Finally, the
addition of a passive scalar (here, the temperature) is considered only for a wall-normal
magnetic field. The geometry considered is as per Figure 6.1 and all results are compared
against DNS data from a selection of sources.

6.4.1 Non-magnetic fully developed one-dimensional channel flow

The range of Reτ considered, the mesh resolution and the source for the DNS data used
are provided in Table 6.1. In what follows the unmodified Launder and Sharma (1974)
model is referred to by the abbreviation LS and the unmodified Hanjalić and Jakirlić
model is referred to by the abbreviation HJ.

Mean velocity profiles normalized by the friction velocity are shown in Figure 6.14. In
general the results obtained with the LS model are in good agreement with the DNS
data across the range of Reτ . At the lowest Reτ it slightly under predicts turbulence
levels within the log-law region but this improves at higher Reτ . Excellent agreement is
achieved by all models in the viscous sublayer (y+ < 5) when compared with the DNS.
This is not particularly surprising however, since the streamwise pressure gradient (which
is fixed) is directly related to wall shear stress and, as such, fixes the velocity gradient
at the wall. Outside of the near-wall region (y+ ≥ 5), the RSM model departs from
the DNS data and shows a significant under prediction in the mass flow rate through the
channel. This equates to the HJ model over predicting the level of turbulence throughout
the channel (since this opposes the streamwise pressure gradient, reducing the mass flow
rate achievable) and this suggests an insufficient amount of near-wall damping.

Curiously, results for a wide range of flow configurations (including channel flows), pre-
sented in Hanjalić et al. (1997), using the model did not show the discrepancy noted above.

Reτ Nx ×Ny DNS data ref.

150 10× 200 Noguchi et al. (2004)
590 10× 250 Moser et al. (1999)
950 10× 250

Álamo et al. (2004)
2000 10× 260

Table 6.1: Summary of RANS simulations performed for non-magnetic one-dimensional
fully developed channel flow.
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Figure 6.14: Non-dimensional velocity profiles for fully developed non-magnetic channel
flow with increasing Reτ . Comparisons between Launder and Sharma (1974) low-Re
k − ε EVM (LS), Hanjalić and Jakirlić low-Re RSM (HJ) and DNS data (see Table 6.1).

Despite careful and extensive checks for errors with the implementation of the model in
STREAM, no errors were found and the form of the model implemented matches that pre-
sented in Kenjereš et al. (2004). Qualitatively, all velocity profiles clearly show features
typically expected from a channel flow. The linear near-wall sublayer and low-law region
are clearly reproduced by all models with size of the log-law region increasing with Reτ .

Figure 6.15 shows profiles of the non-dimensional turbulent shear stress uv+. Agreement
with the DNS is good for both the models over all Reτ considered. There are some
noticeable differences in the near-wall region (y+ < 30) forReτ = 150, where the overall
contribution of the turbulent shear stress to the total shear stress is under predicted by the
LS model and over predicted by the HJ model. This agrees with the earlier observations
drawn from the velocity profiles in Figure 6.14. As the Reynolds number is increased the
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Figure 6.15: Fully developed non-magnetic channel flow: non-dimensional shear-stress
(uv+) profiles for increasing Reτ . Comparisons between Launder and Sharma (1974)
low-Re k − ε EVM (LS), Hanjalić and Jakirlić low-Re RSM (HJ) and DNS data (see
Table 6.1).

contribution from the viscous stresses decreases, as one would expect, and the turbulent
shear stress dominates. The uv+ profile at Reτ = 2000, shown in Figure 6.15(d) has been
plotted against a logarithmic scale to highlight the subtle differences in uv+ reported by
the models. These correlate with the differences in mass flow seen in the velocity profiles.

Comparisons of the turbulent kinetic energy (k+) profiles across the channel are provided
in Figure 6.16. The inability of the LS model to reproduce the near-wall peak values is
well known, with the HJ model offering much improved predictions (due, in part, to better
representation the normal stresses which comprise k). Figure 6.17 shows the distribution
of the normal stresses across the channel for the HJ model. The LS model is not shown
since, for the simple shear flow considered here, the stress-strain relationship will always
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Figure 6.16: Fully developed non-magnetic channel flow: non-dimensional turbulent ki-
netic energy (k+) profiles for increasingReτ . Comparisons between Launder and Sharma
(1974) low-Re k − ε EVM (LS), Hanjalić and Jakirlić low-Re RSM (HJ) and DNS data
(see Table 6.1).

return isotropic normal stresses (equal to 2/3k). The agreement is generally good and the
HJ model predicts the correct distribution of anisotropy across the channel.

Despite the discrepancies seen in the mass flow reported by the two turbulence models,
the results are in agreement with physical intuition and show good qualitative (and in
most cases quantitative) agreement with the DNS data. As such, the implementation of
the models in the solver is believed to be correct.
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Figure 6.17: Fully developed non-magnetic channel flow: non-dimensional normal stress
profiles for increasing Reτ . Comparisons between Hanjalić and Jakirlić low-Re RSM
(HJ) and DNS data (see Table 6.1).
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6.4.2 Hartmann flow

Solutions for turbulent Hartmann flow at a range of Reτ and Ha are presented here with
the aim of comparing the performance of the Launder and Sharma (1974) low-Re k−ε and
the low-Re Hanjalić and Jakirlić RSM against DNS data. Both the electromagnetically
modified and the unmodified versions of the turbulence models are compared; in the case
of the latter, the magnetic field can only affect the turbulence through deforming the mean
rate of strain. In what follows the standard and electromagnetically modified Launder and
Sharma (1974) models are referred to as the LS and LSM model respectively. Similarly,
the standard and electromagnetically modified Hanjalić and Jakirlić models are referred
to as the HJ and HJM model respectively.

The geometry considered is as per Figure 6.1 where only a wall-normal magnetic field
(Hartmann flow) is examined. The parameter ranges considered are Ha = 0, 4, 6, 8 at a
relatively low Reynolds number of Reτ = 150, for which comparisons are made against
DNS data from Noguchi et al. (2004) and Yamamoto et al. (2008), Ha = 0, 5, 10, 13.3 at
the moderate bulk Reynolds number of Re = 6000 (Reτ ≈ 325), for which comparisons
are made against DNS data by Dey and Zikanov (2012), and Ha = 0, 16.25, 32.5 at the
higher Reynolds numbers ofReτ = 1120, 1150, 1194 respectively, for which comparisons
are made against Satake et al. (2008). Table 6.2 provides a summary of this along with
details on the mesh resolution employed. Within the table, the interaction parameter,
N = Ha2/Reτ which is the ratio of the Lorentz forces to the inertial forces, is also listed
since it provides a means to compare magnetic field strengths across Reynolds numbers.

Performance of the eddy-viscosity approach

At low Reτ , profiles of Reynolds shear stress (uv+) in Figure 6.18 demonstrate that both
forms of the model respond qualitatively well to the increase in magnetic field strength.
The reduction in shear stress is slightly over-predicted by both at low Ha, with the damp-
ing type terms in the LSM model providing a small further reduction. At Ha = 6 how-
ever, the LSM modification predicts an excessive reduction, with a much lower peak value
and a laminar core region. At Ha = 8, both models correctly predict relaminarization of
the flow in line with the DNS data.

The above behaviour is confirmed from inspection of the corresponding velocity profiles,
presented in Figure 6.19. For Ha = 0, Figure 6.19 shows that the LS model overpredicts
the mass flow rate through the channel, making quantitative agreement with the DNS
relatively poor. This is a direct result of an under prediction of the near-wall turbulent
shear stress (as can be seen here for Ha = 0 in Figure 6.19 and as highlighted earlier
in Subsection 6.4.1) since, for a fixed streamwise pressure gradient, this will increase the
amount of mass predicted to flow through the channel. As the magnetic field strength
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Reτ Re Ha Nτ Nx ×Ny DNS data

150 2.3× 103 (c) 0 0 10× 200 Noguchi et al. (2004)
150 2.460× 103 (c) 4 0.1 10× 200 Noguchi et al. (2004)
150 2.460× 103 (c) 6 0.24 10× 200 Noguchi et al. (2004)
150 2.479× 103 (c) 8 0.42 10× 200 Yamamoto et al. (2008)

328.5 (c) 6000 0 0 10× 240

Dey and Zikanov (2012)
327.7 (c) 6000 5 0.07 10× 240
326.0 (c) 6000 10 0.3 10× 240
324.8 (c) 6000 13.3 0.5 10× 240

1120 2.3× 104 (c) 0 0 10× 250
Satake et al. (2008)1150 2.418× 104 (c) 16.25 0.23 10× 260

1194 2.461× 104 (c) 32.5 0.88 10× 260

Table 6.2: Summary of RANS simulations performed for turbulent Hartmann flow, where
Nτ = Ha2/Reτ . Values with a “(c)” are quantities computed as part of the simulation
and, since the computed value is model dependent, are only indicative here.
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Figure 6.18: Non-dimensional Reynolds shear stress profiles for fully developed channel
flow subjected to a wall-normal magnetic field at different Ha. Comparison between
LSM model (solid lines), LS model (dashed lines) and DNS (symbols) of Noguchi et al.
(2004) for Ha = 0, 4, 6 and Yamamoto et al. (2008) for Ha = 8; Reτ = 150.
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Figure 6.19: Non-dimensional mean velocity profiles for fully developed channel flow
subjected to a wall-normal magnetic field at different Ha. (a) Comparison between LSM
(solid lines) and LS (dashed lines) models across the full channel, and (b) comparison
within the log-law region between LSM (solid lines), LS (dashed lines) and DNS (sym-
bols) of Noguchi et al. (2004) for Ha = 0, 4, 6 and Yamamoto et al. (2008) for Ha = 8;
Reτ = 150.

increases however, the profiles do show the correct qualitative response. At the start of
the logarithmic region (between around y+ = 20 and y+ = 30) a correct mass flow rate
would result in better quantitative agreement. The laminar core predicted by the LSM
model at Ha = 6 is shown by the departure of the profile from typical log-law behaviour
and this is clearly not supported by the DNS data. The completely laminar flow predicted
at Ha = 8, which corresponds to Hartmann’s analytical solution presented earlier in
Subsection 6.3.1, gives excellent agreement as expected.

The reduction in turbulence levels as the magnetic field strength increases (as implied by
both the velocity profiles and turbulent shear stress profiles) is confirmed through exami-
nation of the turbulent kinetic energy k+ and its dissipation rate ε+, shown in Figure 6.20.
The inability of the LS model to reproduce the near-wall peak values in conventional
channel flow is well known but quantitative agreement in the core region of the channel
is better for Ha ≤ 6. Against the DNS data, it becomes clear that the LS model already
slightly overpredicts the reduction in turbulent kinetic energy afforded by the magnetic
field, with the LSM terms providing a substantial further reduction which increases with
Ha. The prediction of a laminar core at Ha = 6 with the LSM model is clearly shown.
For the LS model, the only mechanism which would reduce turbulence levels would be
a reduction in the mean wall-normal velocity gradient, which would lead to a reduction
in the production term in the k equation. As demonstrated with the laminar flows in Sec-
tion 6.3, the mean Lorentz force tends to reduce velocity gradients in the centre of the
channel and hence this is something that would be expected to be well represented by
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Figure 6.20: Profiles of non-dimensional (a) turbulent kinetic energy and (b) dissipation
of turbulent kinetic energy for fully developed channel flow subjected to a wall-normal
magnetic field at different Ha. Comparison between LSM (solid lines), LS (dashed lines)
and DNS (symbols) of Noguchi et al. (2004); Reτ = 150.

the unmodified turbulence models. Apart from the laminar predictions for Ha = 6 af-
ter y+ = 100, agreement for ε+ is generally good from y+ > 50. Within the near-wall
region agreement is worse, but the inability of the LS model in accurately predicting ε
here in non-magnetic channel flow is also well documented (see, for example, Craft et al.
(2010)). Despite this known deficiency in the LS model, the accuracy and resolution of the
DNS data provided by Noguchi et al. (2004) (with which comparisons are made) is not, of
course, above scrutiny. This is especially important in comparisons of ε since it comprises
the smallest, and therefore most difficult to resolve, scales of motion. However, their so-
lution was achieved using a commonly used high-order spectral method (Chebyshev-tau)
and an assessment of the statistics provided in the dataset (including those not presented
here) did not arouse any suspicion regarding the accuracy and suitability of the data.

The DNS results at Re = 6000, presented by Dey and Zikanov (2012), were computed
by fixing the mass flow rate through the channel, rather than the streamwise pressure gra-
dient as was the case with the previous set of DNS data (at Reτ = 150). To enable easier
comparison, the numerical computations were also performed by fixing the mass flow
rate. The streamwise pressure gradient now comes out as part of the solution and, since it
balances the wall stress, will appear here as quantitative differences in the magnitude of
the contribution of the turbulent shear stress across the channel. It is known from the ear-
lier analytical explorations (in Subsection 6.3.1) that the mean Lorentz force acts directly
to reduce the centreline velocity, and this reduction increases with Ha. This is accom-
panied by a corresponding velocity increase in the region adjacent to the boundary layer.
As the magnetic field strength increases, Figure 6.21 demonstrates this general effect and
shows the LS model predicts a more gradual shift away from the neutral state, towards the
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Figure 6.21: Non-dimensional mean velocity profiles for fully developed channel flow
subjected to a wall-normal magnetic field at different Ha. (a) Comparison between LSM
(solid lines) and LS (dashed lines) models across the full channel, and (b) a blow up of
(a) with comparisons between LSM (solid lines), LS (dashed lines) and DNS (symbols)
of Dey and Zikanov (2012). The crosses are the analytical solution of Equation (6.3.14)
for Ha = 13.3; Re = 6000 (Reτ ≈ 325).

(laminar) Hartmann solution, than the LSM model. The latter model does show the same
qualitative trend, but the change is much smaller across 0 < Ha < 10 before jumping,
at Ha = 13.3, to an entirely laminar solution, as evidenced by the excellent agreement
with the analytical solution of Equation (6.3.14) (added to Figure 6.21(b)). This, however,
contradicts the DNS results which indicate the flow remains turbulent.

The above observations are supported by Figure 6.22 which presents profiles of uv∗ and
k∗. The DNS data shows that an increase in Ha causes an overall reduction in both of
these quantities across the channel, and the response of both the LS and LSM models can
be seen to be qualitatively correct. As was seen earlier at the lower Reτ = 150 (Fig-
ures 6.18 and 6.20(a)), the modifications to the k and ε equations as part of the LSM
model again provide a further, unnecessary, reduction which reduces quantitative agree-
ment. At the strongest magnetic field considered (Ha = 13.3), both k∗ and uv∗ profiles
indicate the LS model predicts a laminar core region which contradicts the DNS data.
From the results at Ha = 0, it is clear that the LS model under-predicts the contribution
of the turbulent shear stress to the total shear stress across the channel. This is consistent
with earlier observations for both ordinary channel flow, in Subsection 6.4.1, and for the
magnetic results obtained at the lower Reτ = 150. Given the quantitative differences
shown between the profiles in Figure 6.22(a) it appears as though, even if this deficiency
in the LS model was corrected, the electromagnetic contributions would still provide an
incorrect reduction which may worsen quantitative agreement. The results obtained at the
lower Reτ = 150, where the wall shear stress has been matched, are consistent with this
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Figure 6.22: Profiles of non-dimensional (a) Reynolds shear stress and (b) turbulent ki-
netic energy for fully developed channel flow subjected to a wall-normal magnetic field
at different Ha. Comparison between LSM (solid lines), LS (dashed lines) and DNS
(symbols) of Dey and Zikanov (2012); Re = 6000 (Reτ ≈ 325).

observation.

For the higher Reτ cases, where the flow is solved by fixing the streamwise pressure
gradient, velocity profiles presented in Figure 6.23 again show some differences between
the RANS and the DNS in terms of mass flow rate, but do show that the LSM model
broadly reproduces the correct qualitative effect. The DNS reports a smaller logarithmic
region for the strongest magnetic field (Ha = 32.5), and this is shown to some degree
by both the models. At this field strength, the LSM model, however, produces a velocity
profile which becomes abruptly flatter in the centre of the channel. Profiles of uv+ and k+,
shown in Figure 6.24, demonstrate that this is due to the premature laminarization of the
channel core by the additional electromagnetic damping terms in the k and ε equations.

Figure 6.24(a) shows that for Ha = 32.5, the LS model actually provides superior pre-
dictions of uv, with the flow remaining turbulent in line with the DNS data. Compared
with the lower Reynolds number cases (primarily Reτ = 150) the magnetic field can be
seen to not only cause an overall reduction in the turbulent shear stress across the channel,
but to increasingly deform the gradient of it as well. This effect is correctly picked up by
the LS model which implies it is almost entirely due to the change in mean strain, rather
than the direct damping of the turbulent kinetic energy which the LSM model attempts
to incorporate. Predictions of k for this magnetic field strength, shown in Figure 6.24(b),
demonstrate that these additional terms do indeed reduce quantitative agreement.

In addition to the effect of the magnetic field on the primary flow variables, Satake et
al. (2008) provided profiles of the non-dimensional temperature across the channel for
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Figure 6.23: Non-dimensional mean velocity profiles for fully developed channel flow
subjected to a wall-normal magnetic field at different Ha. (a) comparison between LSM
(solid lines) and LS (dashed lines) models across the full channel, and (b) comparison
between LSM (solid lines), LS (dashed lines) and DNS (symbols) of Satake et al. (2008)
within the log-law region; Reτ ≈ 1150.
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Figure 6.24: Profiles of non-dimensional (a) Reynolds shear stress and (b) turbulent ki-
netic energy for fully developed channel flow subjected to a wall-normal magnetic field
at different Ha. Comparison between LSM (solid lines), LS (dashed lines) and DNS
(symbols) of Satake et al. (2008); Reτ ≈ 1150.
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Figure 6.25: Non-dimensional mean temperature profiles for fully developed channel
flow subjected to a wall-normal magnetic field at different Ha. Comparison between
LSM model (solid lines), LS model (dashed lines) and DNS (symbols) of Satake et al.
(2008); Reτ ≈ 1150, Pr = 0.06.

Pr = 0.06. It was treated as a passive scalar, and thus has no influence on the dynamic
fields. Figure 6.25 provides comparisons between their DNS data and predictions by the
LS and LSM models, where both provide the correct qualitative response. At Ha = 32.5,
and contrary to the general picture painted above, the LSM model actually provides better
agreement against the DNS.

In the case described above, both the wall and reference temperature are fixed. Thus
the higher Θ+, shown in Figure 6.25, indicates that the magnetic field increases the wall
heat flux. Whilst the magnetic field might actually be expected to reduce heat transfer,
since the reduction in turbulence that it clearly causes in this case will suppress turbulent
mixing (i.e. reduce uiθ), the low Prandtl number used here means that changes to the near-
wall mean velocity profile might be expected to be more influential (since the molecular
affected thermal layer is much larger than its viscous counterpart). From the velocity
profiles in Figure 6.23, it is clear that near-wall velocities do increase as the magnetic
field strength increases and this would lead to higher convective heat transfer, and higher
values of Θ+.

Performance of the stress-transport approach

The results from the previous section, which investigated the performance of an elec-
tromagnetically extended eddy-viscosity model, showed that for a simple channel flow
subjected to a wall normal magnetic field, where the primary effect of the mean Lorentz
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force is to destroy the wall normal velocity gradient, the additional source terms in the k
and ε equations provided generally unnecessary reductions to the turbulence levels within
the channel. There are two main reasons for this. The first is that changes to the wall-
normal velocity gradient are readily captured by the production term in the k equation
(which is exact) and thus the LS model, without any modification, is able to capture the
correct effect, often with surprisingly good quantitative agreement. Second, the form of
the additional source terms, as exponential damping functions tied to the local turbulent
time-scale, means they can only indirectly take account of the directionality associated
with the magnetic field.

With the stress-transport approach, it was seen in Subsection 4.3.2 that inclusion of the
fluctuating Lorentz force in the derivation of the uiuj transport equation produced a source
term which comprised two main parts. Only one of these required modelling, and the
model used here retains only that exact part, multiplied by a constant. The form of the
term, given in Equation (4.3.40), contains contributions from the Reynolds stresses and
thus, at least in principle, should be able to take some account of the current state of the
stress field.

Figure 6.26 presents profiles of the Reynolds stresses (uv+ and the three normal stresses)
at the lower Reτ = 150. As before, the DNS results show that the primary effect of the
magnetic field is to reduce the magnitude of all the stress components (though not by
equal amounts) and both forms of the RSM can be seen to give good qualitative agree-
ment. For the shear stress uv+, quantitative agreement is good for Ha = 0, with a slight
overprediction below y+ ≈ 20 at Ha = 4 and more significant overprediction at Ha = 6

with a noticeable misplaced peak. Similar misplaced peaks are also seen at this Hartmann
number in the profiles of the wall-normal (vv+) and spanwise (ww+) normal stresses,
where the DNS indicates the peaks shift slightly towards the centre of the channel; some-
thing which, in the case of ww+, the model does not reproduce, and predicts the reverse
for in the case of vv+. For ww+, whilst quantitative agreement with the DNS is poor,
this can be seen to be predominantly due to an overprediction in the neutral state as the
predicted change in behaviour with increasing Ha is qualitatively correct.

In the near-wall region there are some notable differences in the behaviour of the normal
stresses. The streamwise component uu+ appears much less affected by the magnetic field
than the other two components, which see significant changes. In general, the additional
electromagnetic terms provided by the HJM model appear to have an insignificant effect
at lower Ha for both uv+ and uu+ but do result in some, qualitatively correct, differences
in vv+ and ww+ at the higherHa. Both forms of the model correctly predict laminar flow
at Ha = 8 (not shown).

The mechanism by which these stress components are reduced can be deduced from the
considering the various terms in the uiuj transport equations. In a simple shear flow
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Figure 6.26: Non-dimensional Reynolds stress profiles for fully developed channel flow
subjected to wall-normal magnetic field at different Ha. Comparison between HJM
model (solid lines), HJ model (dashed lines) and DNS (symbols) of Noguchi et al. (2004);
Reτ = 150.

such as this the only non-zero production terms in the uiuj equation are those containing
the mean wall-normal velocity gradient ∂U/∂y. Thus, the production terms for both the
vv and ww equations will vanish and the primary contribution to the budgets for these
components is the pressure strain effect. This pulls turbulent energy from the dominant
uu component and redistributes it into the smaller vv and ww components in an attempt
to return the stress field to isotropy. In the RSM considered here, this is modelled through
the rapid part of the pressure-strain term (through the isotropization of production model
used for Φ(2)

ij , see Equation (4.3.41)). Thus, since the magnetic field causes a reduction
in uu through directly reducing the level of its production, this will result in less uu
available for redistribution and subsequently cause a reduction in levels of vv and ww. In
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Figure 6.27: Non-dimensional mean velocity profiles for fully developed channel flow
subjected to a wall-normal magnetic field at different Ha. (a) Comparison between HJM
(solid lines) and HJ (dashed lines) models across the full channel, and (b) comparison
within the log-law region between HJM (solid lines), HJ (dashed lines), LSM (dot dashed
lines) and DNS (symbols) of Noguchi et al. (2004) for Ha = 0, 4, 6 and Yamamoto et al.
(2008) for Ha = 8; Reτ = 150.

addition, a reduction in mean shear will also directly reduce the production term in the uv
equation (since it also contains ∂U/∂y). This, by reducing the magnitude of uv, will also
contribute directly to the reduction of the production term in uu (since it multiplies the
mean velocity gradient) and indirectly to the reduction of vv and ww (through a reduction
of the pressure-strain term).

The contributions from the additional electromagnetic terms, as far as the HJM model
goes, are relatively modest. That said, the modelled contributions to FLij can be readily
obtained via Equation (4.3.40) and for a wall-normal magnetic field are given in non-
dimensional form as;

FLuu = −2N (1− Cλ)uu+ (6.4.1a)

FLvv = 0 (6.4.1b)

FLww = −2N (1− Cλ)ww+ (6.4.1c)

FLuv = −N (1− Cλ)uv+ (6.4.1d)

It can be seen that the contribution in the direction of the magnetic field, FLvv, is zero and
this is regardless of the strain field which exists. The other components are attenuated
in proportion to themselves. Hence, it can be seen that the magnetic field acts on the
Reynolds stresses in a highly anisotropic fashion.

Figure 6.27 shows the corresponding velocity profiles along with a blow-up of the log-law
region. As the magnetic field strength is increased, the departure of the velocity profile
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Figure 6.28: Profiles of non-dimensional (a) turbulent kinetic energy and (b) dissipation
of turbulent kinetic energy for fully developed channel flow subjected to a wall-normal
magnetic field at different Ha. Comparison between HJM (solid lines), HJ (dashed lines)
and DNS (symbols) of Noguchi et al. (2004); Reτ = 150.

from typical log-law shape is qualitatively picked up by the HJM model and, taking into
account the under prediction in mass flow rate seen by the base HJ model at Ha = 0

(which was also noted in Subsection 6.4.1), the correct quantitative changes in the velocity
profile behaviour are predicted. Comparisons with the LSM model (dot dashed lines
in Figure 6.27(b)), show that the performance of the RSM is, taking into account the
differences in mass flow rate, significantly better and provides a much more accurate
representation of the deformation in the velocity profile that the Lorentz force creates.

Profiles of k+ and ε+ are provided in Figure 6.28. The electromagnetic modifications in
the HJM model have very little influence on the distribution of ε+, only providing a very
minor, albeit correct, reduction to the near-wall peak at Ha = 6. Beyond y+ = 50, both
forms of the RSM provide good agreement with the DNS data for Ha = 0, 4, though this
does not offer any substantial improvement over the EVM. Where the RSM does provide
improvement, is in the prediction of turbulent flow throughout the domain for Ha = 6

(which is correct, as indicated by the DNS). This is something that was not achieved with
the LSM model (see Figure 6.20(a), for example).

Further comparisons of model performance are provided in Figure 6.29 for the Ha = 6

case. The significant improvement afforded by the base RSM, in regards to k+ in par-
ticular, is not entirely surprising; a stress-transport type model should in many cases be
expected to provide better predictions of the stresses (and hence k) than an EVM, because
of the correct representation of generation and other processes. The additional electro-
magnetic terms in the LSM model, which provide a more ad-hoc form of damping than
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Figure 6.29: Performance of stress-transport and eddy-viscosity type models both with
(solid lines) and without (dashed lines) electromagnetic modifications for fully developed
channel flow subjected to a wall-normal magnetic field at Ha = 6. (a) profiles of non-
dimensional turbulent shear stress (uv+) and (b) profiles of non-dimensional turbulent
kinetic energy (k+). DNS data of Noguchi et al. (2004); Reτ = 150

those employed in the HJM model, significantly over predict the reduction in turbulence
levels and lead to premature relaminarization in the centre of the channel.

In the near-wall region, however, it can be seen that the eddy-viscosity based models offer
much better predictions of uv+ than the stress-transport models. This does not extend to
k+ and, as will be seen later, is only apparent in the very low Reynolds number case
considered here (Reτ = 150). Particularly good quantitative agreement is provided for
k+ by the HJM model outside the near-wall region, where the additional terms bring
centreline values of k+ down in line with the DNS data (although the near-wall peak
values are slightly under-estimated). Again, the small difference that the HJM model
provides over the HJ model suggests that the reduction in uv+ and k+ from the presence
of the magnetic field originates mainly from the deformed mean rate of strain, caused
by the Lorentz force term in the streamwise mean momentum equation, rather than any
substantial direct electromagnetic sink term in the transport equations for uiuj or ε.

To investigate this further, Figure 6.30 presents budgets of the k, uv and uu equations
and Figure 6.31 presents budgets of the vv and ww equations1, as obtained from the DNS
database of Noguchi et al. (2004), for Ha = 0 and Ha = 6. For the magnetic cases,
the total magnetic source term ’mhdtot’ and the two contributions towards it, ’mhd1’
and ’mhddiss’, have also been plotted for each equation. With the k equation, ’mhd1’
corresponds to FL1

k and ’mhddiss’ corresponds to FL2
k as defined in Equation (4.4.14).

1The rationale behind plotting k, uv and uu in the figure (as opposed to uu, vv, ww in one figure, as
may seem more conventional) is that the former all have non-zero production, and it is this which is the
subject of discussion.
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Figure 6.30: Budgets of terms in the k, uv and uu equations for (left) Ha = 0 and (right)
Ha = 6 as provided in the DNS database of Noguchi et al. (2004) for fully developed
channel flow at Reτ = 150 subjected to a wall-normal magnetic field.
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Figure 6.31: Budgets of terms in the vv and ww equations for (left) Ha = 0 and (right)
Ha = 6 as provided in the DNS database of Noguchi et al. (2004) for fully developed
channel flow at Reτ = 150 subjected to a wall-normal magnetic field.

For the terms in the Reynolds stress budgets, ’mhd1’ corresponds to FL1
ij and ’mhddiss’

corresponds to FL2
ij as defined in Equation (4.3.11).

In a simple shear flow such as this, where the only non-zero mean velocity gradient is in
the wall-normal direction, the production term (see equation 4.3.4) in the uiuj transport
equation will only be non-zero for the uu and uv components (and, by extension, for the
k equation). For the k, uu and uv equations then, the effect of the magnetic field on the
production term is clear. It primarily acts to reduce the production term (via a reduction
in mean velocity gradient) which is accompanied by a corresponding reduction in dissi-
pation. Even with this reduction, the production and dissipation terms still dominate over
the contribution from the magnetic source term. This confirms previous observations that
the mechanism by which the magnetic field acts to reduce turbulence in a simple shear
flow is through reduction in mean strain, rather than any substantial direct electromagnetic
effect on the turbulence itself.

The budgets for vv and ww (in Figure 6.31) illustrate that, in lieu of production, turbulent
energy indeed feeds into these components through the pressure-strain effect. As detailed
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Figure 6.32: Contributions from the additional electromagnetic source termsFLk (top) and
FLε (bottom) to the budgets of k and ε respectively for turbulent Hartmann flow at (left)
Ha = 4 and (right) Ha = 6. Comparisons between DNS (symbols) of Noguchi et al.
(2004) and numerical simulations (solid lines). For the DNS terms, ’mhdtot’ represents
the total contribution to the budget with ’mhd1’ representing the L1 contribution and
’mhddiss’ representing the L2 contribution as per Equations (4.3.43) and (4.4.14); Reτ =
150.

in Section 4.3, the Lorentz force will influence this process since the fluctuating Lorentz
force appears in the equation for the fluctuating pressure. Unfortunately, Noguchi et al. do
not provide details of this contribution to the overall pressure strain effect so its influence
cannot be assessed. What is apparent, is that the magnetic field significantly reduces the
contribution of the pressure strain term to the overall budget and this is due to the large
reduction seen in the magnitude of uu production. Note also that, as Equation (6.4.1)
shows, the contribution from the direct magnetic source terms to the vv equation, is zero.

Despite not forming a significant part of the Reynolds stress budgets, the data from the
DNS database provides values for the terms which the electromagnetic modifications are
attempting to emulate and thus this can be used to further assess their performance. Fig-
ure 6.32 presents the contributions of FLk and FLε to the budgets of k and ε respectively,
both from the DNS data and the modelled forms from the results of the RANS simula-
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Figure 6.33: Contributions from the additional electromagnetic source terms, from top to
bottom,FLuu,FLww andFLuv to their respective budgets for turbulent Hartmann flow at (left)
Ha = 4 and (right) Ha = 6. Comparisons between DNS (symbols) of Noguchi et al.
(2004) and numerical simulations (solid lines). For the DNS terms, ’mhdtot’ represents
the total contribution to the budget with ’mhd1’ representing the L1 contribution and
’mhddiss’ representing the L2 contribution as per Equation (4.3.11); Reτ = 150.
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tions.

The HJM model provides superior predictions for FLk for both Ha values, though this is
not particularly surprising, given that the HJM form of FLk still retains the majority of its
exact counterpart. At Ha = 6 the peak is slightly misplaced but agreement throughout
the central section of the channel is excellent. The LSM form of FLk , which was based
on an exponential damping term, still provides reasonable agreement at Ha = 4 (though
it under predicts the dip at y+ ≈ 20) but fails to respond adequately to the increase in
field strength at Ha = 6. Both models under predict the value of FLε across the channel
for Ha = 4, with the HJM model providing better quantitative agreement. With the
increase in magnetic field strength, the LSM fails to respond (as it did with FkL), but the
HJM provides good agreement. The heavy underestimation of FLε throughout the region
0 < y+ < 50 by the LSM model corresponds to the location of the near-wall peak in uv+

(see Figure 6.29) and, since in an LEVM uv ∝ k2/ε, an underestimated sink term for ε
would cause an over prediction of ε and hence an under prediction of uv.

Similar plots of the contributions to selected components of the Reynolds stress equations
have been presented in Figure 6.33. The HJM form of FLij can be seen to give generally
good agreement with the DNS data with the only real major discrepancy being an over-
prediction of the magnitude of FLuv between 0 < y+ < 100. Notably, all the terms act as
sinks across the channel, which is correctly reproduced by the HJM model.

Moving on to the moderate Reynolds number of Re = 6000 (Reτ ≈ 325), predictions
of uv and the three normal stresses are presented in Figure 6.34. Since, as described
before, the mass flow rate for the flows at this Reynolds number is fixed, differences in the
predicted streamwise pressure gradient required to drive the flow manifest as differences
in the wall-shear stress (and hence change the magnitude of the turbulent contribution
to the overall shear stress in the channel). Whilst the EVM’s tended to slightly under-
predict the streamwise pressure gradient, the RSM’s give a significant over prediction.
Taking into account this difference atHa = 0, both forms of the model predict the correct
qualitative effect (a reduction in all stress levels across the channel, though this is not by
equal amounts). The electromagnetic modifications in the HJM model only offer modest
changes which, although they increase with Ha, do not alter the shape of the profiles.

Velocity profiles for Re = 6000 are shown in Figure 6.35, where it can be seen that the
HJM offers essentially no difference over the HJ model. Given the modest changes that
the electromagnetic terms were seen to cause in the Reynolds stress profiles this is not
surprising. Figure 6.35(b) shows a blow up of the velocity profiles and adds results from
the LSM model (presented earlier) for comparison. The RSM does give better quantitative
agreement and predicts the change in the profile, as the Hartmann number increases, to
be more gradual, which is in line with the DNS data.
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Figure 6.34: Non-dimensional Reynolds stress profiles for channel flow subjected to wall-
normal magnetic field at different Ha. Comparison between HJM model (solid lines),
HJ model (dashed lines) and DNS (symbols) of Dey and Zikanov (2012); Re = 6000
(Reτ ≈ 325).

Further comparisons between the performance of the two approaches are provided in Fig-
ure 6.36 where profiles of uv∗ and k∗ have been plotted at Ha = 10 and for all models
tested. As previously discussed, since the different models predict different values of wall
shear stress it is difficult to provide a direct comparison of the electromagnetic contribu-
tions within the LSM and HJM models. Both modifications cause an additional reduction
in −uv∗, the one in the LSM model being much more significant, but since the LS model
predicts a much lower value of wall shear stress this only serves to reduce quantitative
agreement with the DNS further. A similar trend is apparent when considering the distri-
bution of k∗ in Figure 6.36(b). In the centre of the channel the LS model gives the best
agreement with the DNS data, but fails to capture the near-wall peak. The HJ and HJM
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Figure 6.35: Non-dimensional mean velocity profiles for fully developed channel flow
subjected to a wall-normal magnetic field at different Ha. (a) Comparison between HJM
(solid lines) and HJ (dashed lines) models across the full channel, and (b) a blow up of (a)
with comparisons between HJM (solid lines), HJ (dashed lines), LSM (dot-dashed lines)
and DNS (symbols) of Dey and Zikanov (2012); Re = 6000 (Reτ ≈ 325).

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

−1 −0.8 −0.6 −0.4 −0.2 0

Ha = 10

LSM

LS

HJM

HJ

-uv∗

y∗

LS
LSM

HJ
HJM
DNS

(a)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

−1 −0.8 −0.6 −0.4 −0.2 0

Ha = 10

LS

LSM

HJ

HJM

k∗

y∗

LS
LSM

HJ
HJM
DNS

(b)

Figure 6.36: Performance of stress-transport and eddy-viscosity type models both with
(solid lines) and without (dashed lines) electromagnetic modifications for fully developed
channel flow subjected to a wall-normal magnetic field at Ha = 6. (a) profiles of non-
dimensional turbulent shear stress (uv+) and (b) profiles of non-dimensional turbulent
kinetic energy (k+). DNS data from Dey and Zikanov (2012); Re = 6000 (Reτ ≈ 325).
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Figure 6.37: Non-dimensional Reynolds stress profiles for fully developed channel flow
subjected to wall-normal magnetic field at different Ha. Comparison between HJM
model (solid lines), HJ model (dashed lines) and DNS (symbols) of Satake et al. (2008);
Reτ ≈ 1150.

models do much better in this regard, but over predict the value of k across the channel.

For the highest Reynolds number considered (Reτ ≈ 1150) Figure 6.37 presents profiles
of the turbulent shear stress and three normal stresses. These again illustrate the general
effect of the magnetic field is to reduce the level of turbulence but, in addition to this
general reduction, the Lorentz force clearly causes significant deformation in the gradients
of the stress components outside the near-wall region. This was seen before in the lower
Re cases, at the higher Ha (see Figure 6.26(a) and Figure 6.34(a), for example) but is
much more significant at the higher values of Reτ and Ha considered here.

The addition of the Lorentz force to the governing equation means it now forms a signif-
icant part of the overall forcing (Lorentz force + viscous stress + turbulent shear stress)
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which opposes the pressure gradient driving the flow. The strength of this “magnetic
stress” can be quantified by inspection of the non-dimensional form of the equation of
motion. For the case here, where no electric field exists (because the simulation is one-
dimensional), the RANS equivalent of Equation (6.3.5) is given by;

∂P ∗

∂x∗
=

∂

∂y∗

(
1

Re

∂U+

∂y∗
− uv+

)
− Ha2

Re
U+ (6.4.2)

where the velocity has been rescaled with the friction velocity. This can be recast as;

∂P ∗

∂x∗
=
∂τ+

∂y∗
(6.4.3)

where τ+ is the total shear stress;

τ+ =
1

Reτ

∂U+

∂y∗︸ ︷︷ ︸
viscous

− uv+︸︷︷︸
turbulent

−Nτ

∫ +1

−1

U+ dy∗︸ ︷︷ ︸
magnetic

(6.4.4)

and Nτ = Ha2/Reτ is the magnetic interaction parameter. Thus, as Nτ increases, the
magnetic contribution to the total shear stress increases at the expense of the turbulent
contribution (since the viscous contribution is negligible outside the near-wall sublayer).

Figure 6.37 shows that this is correctly picked up by both forms of the RSM, where
at Ha = 32.5 agreement with the DNS is excellent and the additional electromagnetic
terms provide small, but useful, contributions. The small magnitude of these contributions
is consistent with earlier observations that the primary influence of the magnetic field in
these flows is to destroy mean velocity gradients; something which is well represented in
RSM type models.

The velocity profiles presented in Figure 6.38 again show some inconsistencies between
the models in terms of predicted mass flow rates, but the qualitative effects are generally
well reproduced. The smaller logarithmic region predicted at the strongest magnetic field
is in agreement with the DNS data. Comparisons with the LSM model, presented in Fig-
ure 6.38(b), show that the RSM approach provides better prediction of the change in the
velocity profile that an increase in magnetic field strength, from Ha = 0 to Ha = 32.5,
brings. For Ha = 32.5 this is mostly since the RSM predicts turbulent flow throughout
the channel. Curiously, the profile predicted by the HJM model at the intermediate mag-
netic field strength, for which DNS data was not available, offers no change in centreline
velocity from the non-magnetic case.

Further comparisons between all the considered models are provided in Figure 6.39,
where profiles of uv+ and k+ are presented at the highest Ha. All except the LSM model
perform well, with the HJM model providing the best quantitative agreement. The per-
formance of the LSM is particularly poor, signifying that the additional damping terms
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Figure 6.38: Non-dimensional mean velocity profiles for fully developed channel flow
subjected to a wall-normal magnetic field at different Ha. (a) Comparison between HJM
(solid lines) and HJ (dashed lines) models across the full channel, and (b) comparison
within the log-law region between HJM (solid lines), HJ (dashed lines), LSM (dot dashed
lines) and DNS (symbols) of Satake et al. (2008); Reτ ≈ 1150.
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Figure 6.39: Performance of stress-transport and eddy-viscosity type models both with
(solid lines) and without (dashed lines) electromagnetic modifications for fully developed
channel flow subjected to a wall-normal magnetic field at Ha = 6. (a) profiles of non-
dimensional turbulent shear stress (uv+) and (b) profiles of non-dimensional turbulent
kinetic energy (k+); Reτ ≈ 1150.
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Figure 6.40: Non-dimensional mean temperature profiles for fully developed channel
flow subjected to a wall-normal magnetic field at different Ha. Comparison between
HJM model (solid lines), HJ model (dashed lines) and DNS (symbols) of Satake et al.
(2008); Reτ ≈ 1150, Pr = 0.06.

provide an overly excessive reduction to values of k away from areas with strong produc-
tion.

Finally, Figure 6.40 shows the response of the non-dimensional temperature profiles to
an increase in magnetic field strength. Both the HJ and HJM provide the correct qual-
itative response, but the HJ model provides better agreement at Ha = 32.5. Although
the additional magnetic terms in the HJM model had only a relatively minor effect on the
Reynolds stresses, the resultant effect of these changes on the turbulent heat fluxes (via
the GGDH approximation of Equation (4.4.24)) lead to a noticeable impact on the mean
temperature profile.
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6.4.3 Streamwise magnetic field

The alignment of the magnetic field vector with the fluid velocity vector means that the
mean streamwise Lorentz force is zero (since U×B must vanish). This eliminates what
was established to be the primary mechanism by which the wall-normal magnetic field re-
duced turbulence levels in the flow (by reducing the mean wall-normal velocity gradient).
Here, the streamwise magnetic field can only interact with the turbulence through the
fluctuating Lorentz force. This has to be provided by the additional modelled sink terms
in the turbulence equations (LSM and HJM) and the unmodified models will provide no
change from the neutral state.

The geometry considered remains as per Figure 6.1. The parameter range considered is
Ha = 0, 6, 20 at the relatively low Reynolds number of Reτ = 150 where comparisons
are made against DNS data from Noguchi et al. (2004). Table 6.3 provides a summary of
the cases computed.

Velocity profiles for theReτ = 150 case are presented in Figure 6.41, where the DNS data
indicates the magnetic field tends to push the profile away from the log-law. For low Ha,
and differences in mass flow rate aside, this trend is captured, though quite overpredicted,
by the LSM model. The response from the HJM model, from Ha = 0 to Ha = 6,
is quantitatively much closer to what the DNS demonstrates. Both models, however,
incorrectly return laminar flow for the highest strength magnetic field considered.

Figure 6.42 presents profiles of uv+ and the three normal stresses. Comparisons with the
LSM model are only provided for the shear stress1 uv+. The effect of the magnetic field
on uv, as per the DNS data, is essentially insignificant for all Ha considered. Both the
LSM and HJM models give good agreement beyond y+ = 25, with a slight reduction in
peak value predicted at Ha = 6 by the LSM model, but differ in the near-wall region.

For the normal stresses, whilst ww+ and vv+ are reduced, an increase in the near-wall
peak of the streamwise normal stress uu+ is observed as the magnetic field strength in-
creases. This behaviour has also been reported in other DNS studies (Lee and Choi,

Reτ Re Ha Nx ×Ny DNS data

150 2.3× 103 (c) 0 10× 200
Noguchi et al. (2004)150 2.460× 103 (c) 6 10× 200

150 2.460× 103 (c) 20 10× 200

Table 6.3: Summary of RANS simulations performed for turbulent fully developed chan-
nel flow subjected to a streamwise magnetic field. Values with a “(c)” are quantities
computed as part of the simulation and, since the computed value is model dependent, are
only indicative here.

1Since, as previously mentioned, the LEVM approach will always return a value of 2/3k for the normal
stresses in simple shear flow
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Figure 6.41: Non-dimensional mean velocity profiles for fully developed channel flow
subjected to a streamwise magnetic field at different Ha. (a) Comparison between HJM
(solid lines) and LSM (dot-dashed lines) models across the full channel, and (b) compar-
ison within the log-law region of the same with DNS data (symbols) of Noguchi et al.
(2004); Reτ = 150.

2001, for example) and is discussed further below. For the moderate Hartmann number
(Ha = 6) the HJM model correctly picks up this effect and gives generally good agree-
ment for all the normal stress components (though values at Ha = 0 are under predicted).
Numerical results for Ha = 20 are absent since, as mentioned above, both models pre-
dict entirely laminar flow contrary to the DNS data. With a strong enough streamwise
magnetic field, and given the trends displayed here, the flow would be expected to even-
tually laminarize at some Hartmann number (Ha > 20) but without further DNS data it
is difficult to suggest how premature the predicted relaminarization by the models is.

The profiles of turbulent kinetic energy k+ and its dissipation rate ε+, which are shown
in Figure 6.43, show that whilst an increase in magnetic field strength provides a modest
reduction in k in the channel centre, the near wall peak shows a notable increase. Thus, the
earlier decrease observed in both vv and ww (Figure 6.42) is countered, and exceeded, by
the increase observed in uu. Here, the LSM model gives qualitatively the wrong response,
predicting a decrease in the value of k throughout the channel. Again, this is due to the
form of the addition source terms in the LSM model, as they are unable to take account
of any anisotropy in either the turbulent stress field or the fluctuating Lorentz force. The
HJM model does correctly predict an increase, and this does serve to demonstrate the
capabilities of the stress transport approach.

To investigate the increase observed in the peak values of uu, and hence k, budgets of the
terms within the equations for k, uv and uu are plotted in Figure 6.44 and budgets for
the terms with the equations for vv and ww are plotted in Figure 6.45. As before, for the
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Figure 6.42: Non-dimensional Reynolds stress profiles for fully developed channel flow
subjected to streamwise magnetic field at different Ha. Comparison between HJM (solid
lines), LSM (dot-dashed lines) models and DNS data (symbols) of Noguchi et al. (2004).
Note that only numerical predictions of uv are presented for the LSM model; Reτ = 150.

magnetic cases, the individual contributions (’mhd1’ and ’mhddiss’) to the total magnetic
source term (’mhdtot’) have been added1.

From the budgets of k, uv and uu in Figure 6.44 the effect of the streamwise magnetic
field, in direct contrast to the wall-normal magnetic field, is to actually increase the mag-
nitude of the production term for these equations. The only non-zero contribution to these
production terms will, as before, be those involving the wall-normal velocity gradient,
∂U/∂y. For k, this term (Pk from Equation (4.4.9)) is multiplied by uv and since Fig-

1As a reminder, ’mhd1’ corresponds to FL1k and ’mhddiss’ corresponds to FL2k (as defined in Equa-
tion (4.4.14)) for terms in the k equation. For the terms in the Reynolds stress budgets, ’mhd1’ corresponds
to FL1ij and ’mhddiss’ corresponds to FL2ij as defined in Equation (4.3.11).
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Figure 6.43: Velocity profiles at Reτ = 150 for varying Ha showing (a) the full channel
half-width and (b) a blow up of the region 20 < y+ < 150. Solid lines are the LSM
model, dashed lines are the LS model and symbols represent DNS data as per Table 6.2

ure 6.42 indicates no significant change to this, the increase in production must arise from
an increase in the velocity gradient. Similar arguments can also be made for P12 (multi-
plied by vv1) and P11 (multiplied again with uv). The direct magnetic contributions do
not appear significant in the k equation but, curiously, those in the uv equations contribute
positively to the budget of −uv. The dominant sink in this, the pressure strain term, also
increases in line with the increase in production.

For the vv and ww equations, the magnetic field causes reductions to the contributions
from the pressure strain and dissipation terms. In addition, the direct magnetic sink term,
whilst negligible close to the wall, is influential past y+ ≈ 25. Note that, compared
with the budgets for the wall-normal magnetic field (in Figure 6.30 and Figure 6.31), the
constituent terms within FLij are far more significant, though this is predominantly due to
the difference in Hartmann number between the two magnetic field orientations.

The performance of the LSM and HJM models in reproducing the direct magnetic source
term is again assessed through comparisons with the DNS budget data. Data is shown for
both Ha = 6 and Ha = 20 but, unfortunately, since both models returned laminar flow
at the higher field strength a direct comparison is not possible. The plots have been left
to give a clearer indication (than that in Figure 6.44 and Figure 6.31) of how the terms
vary with Ha. For the FLk and FLε terms, shown in Figure 6.46, the LSM model grossly
over predicts the (negative) magnitude of the term and this leads to a corresponding over
prediction in the FLε term with a significantly large negative peak. With the level of over
prediction seen here at Ha = 6, it is easy to see why the model predicted laminar flow at

1Although Figure 6.42 indicates the magnetic field causes a quite significant reduction in the peak value
of vv, the reduction at the location of the peak in P12 (at y+ ≈ 18) is more modest.
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Figure 6.44: Budgets of terms in the k, uv and uu equations for (left) Ha = 0 and (right)
Ha = 20 as provided in the DNS database of Noguchi et al. (2004) for fully developed
channel flow at Reτ = 150 subjected to a streamwise magnetic field.
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Figure 6.45: Budgets of terms in the vv and ww equations for (left) Ha = 0 and (right)
Ha = 20 as provided in the DNS database of Noguchi et al. (2004) for fully developed
channel flow at Reτ = 150 subjected to a streamwise magnetic field.

Ha = 20. The HJM model does perform better but does also over estimate the magnitude
of both terms.

With the FLvv and FLww terms1, the HJM model provides adequate results though, as can
be inferred from the FLk contribution, the magnitude of both terms is over estimated. For
the FLuv contribution, the HJM model provides qualitatively incorrect results, as it predicts
values opposite in sign to the DNS. The expression for FLuv, given this particular magnetic
field vector, can be obtained from expansion of Equation (4.3.40);

FLuv =
σ

ρ
(1− Cλ)

(
−2B2

xuv
)

(6.4.5)

whilst, for comparison, the expression with an applied wall-normal magnetic field is given
by;

FLuv =
σ

ρ
(1− Cλ)

(
−2B2

yuv
)

(6.4.6)

1Note that for the streamwise magnetic field, the FLuu contribution will vanish, much like the FLvv
contribution did for the wall-normal magnetic field.
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Figure 6.46: Contributions from the additional electromagnetic source terms FLk (top)
and FLε (bottom) to the budgets of k and ε respectively for turbulent Hartmann flow at
(left) Ha = 4 and (right) Ha = 6. Comparisons between DNS (symbols) of Noguchi
et al. (2004) and numerical simulations (solid lines). For the DNS terms, ’mhdtot’ rep-
resents the total contribution to the budget with ’mhd1’ representing the L1 contribution
and ’mhddiss’ representing the L2 contribution as per Equations (4.3.43) and (4.4.14)
respectively; Reτ = 150.

that is, they are of equivalent form. Since the values of uv throughout the first half of the
channel are negative, and B2

i must be positive, FLuv will always be positive (and hence
−FLuv always negative), for Cλ > 0 (which is the case here). Since the term, as detailed
earlier in Subsection 4.3.2, only uses the exact part (FL2

ij ) of the full expression for FLij
(as presented in Equation (4.3.11)), this deficiency arises from an inadequate model for
FL1
ij .

The above observations suggest that at the higher magnetic field strength (Ha = 20)

the incorrect sign for the source term in the uv equation could have contributed to the
laminarization of the flow with the HJM model. uv itself forms part of both the production
term in the uu equation and the pressure strain source terms in the vv and ww equations,
and hence a significant overprediction of am (incorrect) uv sink may reduces levels such
that turbulence can not longer be sustained. Despite this, quantitative predictions with the
HJM model at Ha = 6 were satisfactory and predicted the correct qualitative behaviour.
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Figure 6.47: Contributions from the additional electromagnetic source terms, from top to
bottom,FLuu,FLww andFLuv to their respective budgets for turbulent Hartmann flow at (left)
Ha = 4 and (right) Ha = 6. Comparisons between DNS (symbols) of Noguchi et al.
(2004) and numerical simulations (solid lines). For the DNS terms, ’mhdtot’ represents
the total contribution to the budget with ’mhd1’ representing the L1 contribution and
’mhddiss’ representing the L2 contribution as per Equation (4.3.11); Reτ = 150.
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6.5 Conclusion

The objective of this chapter was to first provide confidence in the ability of the numer-
ical solver STREAM in predicting some elementary magnetically influenced flows, and
second to provide a detailed assessment of how the electromagnetically extended turbu-
lence models, discussed in Chapter 4, respond to the application of a magnetic field in a
one-dimensional fully developed turbulent channel flow.

To validate the implementation of the electromagnetic terms in STREAM a series of lam-
inar flow calculations was presented. For fully developed one-dimensional channel flow
subjected to a wall-normal magnetic field, results showed excellent agreement with the
analytical solution; a development and description of which was provided. Laminar com-
putations for flow through an infinitely long square duct verified phenomena discussed
earlier in Chapter 2, which detailed how the electrical properties of the four bounding
walls can have a significant effect on the distribution of velocity and electrical current
across the duct. The results showed that STREAM was capable of correctly of reproduc-
ing some key features of the flows, such as the presence of wall bounded jets in a duct
where the Hartmann walls are conducting and the side walls are insulating, which were
consistent with physical arguments and results presented by Sterl (1990).

To provide a benchmark against which to compare the magnetic cases, one-dimensional
fully developed turbulent channel flows are computed for a series of Reynolds numbers
(150 ≤ Reτ ≤ 2000). Whilst the Hanjalić and Jakirlić RSM was seen to over predict the
level of uv in the near-wall region, in contrast to the under prediction seen by the Launder-
Sharma EVM, the models correctly reproduced the well known features of channel flows
and showed good quantitative agreement with the available DNS data.

A wall-normal magnetic field was then imposed, and a series of turbulent flows com-
puted over a range of Reynolds (150 ≤ Reτ ≤ 1194) and Hartmann (0 ≤ Ha ≤ 32.5)

numbers. The results showed that, with an increase in magnetic field strength, the electro-
magnetically modified Launder-Sharma model consistently over estimated the reduction
in turbulence that the DNS results showed. This led to premature laminarization of the
flow initially in the core of the channel but, for sufficiently strong magnetic fields, also
across the entire channel width. In most cases, the unmodified version of the model ac-
tually provided more accurate predictions. Whilst the additional source term in the k
equation gave reasonable quantitative agreement with the DNS, the sink term in the ε
equation was consistently under predicted. This led to an over estimation of ε and hence
an over estimation in the reduction of uv.

The Hanjalić and Jakirlić RSM model consistently provided better results and kept the
flow turbulent across the entire range of Ha considered. The electromagnetic modifi-
cations, however, were seen to make only modest adjustments to the primary variables
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and any lack of quantitative agreement with DNS data could more easily be attributed to
inaccuracies in the unmodified model i.e. deficiencies noted at Ha = 0. That said, nu-
merical predictions of the additional electromagnetic source terms in the uiuj equations
gave generally good agreement with the DNS data.

The physical mechanism behind the reduction in turbulence levels that the wall-normal
magnetic field brings was explained with reference to budgets of the uiuj and k equations
as provided by the DNS. The most significant effect was a reduction in the mean wall-
normal velocity gradient brought on by the presence of a mean decelerating streamwise
Lorentz force. This served to directly reduce the magnitude of the non-zero production
terms in the Reynolds stress equations and hence reduce levels of all stress components
(uv and uu through a direct reduction in production, and vv and ww via reduced redis-
tribution i.e. pressure strain), and thus k, across the channel. Given this, and since the
production terms in the uiuj and k equations are treated exactly, it is not surprising that the
unmodified versions of both the RSM and EVM were able to provide qualitatively (and in
some cases, quantitatively) accurate predictions of the effect of a wall-normal magnetic
field on the flow.

Following the application of a wall-normal magnetic field, a streamwise magnetic field
was applied and numerical simulations were performed, with both turbulence models, for
Reτ = 150 and 0 ≤ Ha ≤ 20. The change in magnetic field orientation resulted in
a vanishing streamwise mean Lorentz force and thus the elimination of what was seen
to be the primary turbulence reduction mechanism by the wall-normal magnetic field; a
reduction in turbulent stress production caused by the destruction of mean wall-normal
velocity gradients via the Lorentz force. Thus, the magnetic field can only affect the
mean flow by augmenting the Reynolds stresses through the fluctuating part of the Lorentz
force. The unmodified turbulence models were not tested since they would not predict any
change from the neutral state.

The results showed that observed change in the velocity profile as the magnetic field
strength was increased (from Ha = 0 to Ha = 6) was best predicted by the RSM.
Both models, however, returned laminar flow at the highest Hartmann number considered,
Ha = 20. The DNS data showed that whilst vv and ww were reduced, the values of the
near-wall peak in uu and k were actually increased. This was correctly picked up by the
RSM, whilst the EVM predicted a reduction (albeit slight) in k. At Ha = 6, comparisons
between the values of the additional source terms in the k and ε equations with the DNS
data showed that the EVM grossly over predicted the magnitudes of both (sink) terms,
revealing the reason for the premature laminarization at Ha = 20. This deficiency in the
EVM was attributed to the ad-hoc form of the additional source terms, which were unable
to take account of the change in magnetic field direction.

A notable deficiency with the RSM was the prediction of a sink term in the budget for
−uv when the DNS clearly indicated the term should have been a source. Since contin-
ued reduction, and the eventual elimination, of uv will cause the flow to laminarize, this
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inaccuracy was posited to have contributed to the prediction of laminar flow at Ha = 20.
Since the mathematical form of the term uses only the exact part of the full expression for
FLij , this deficiency must arise from an inadequate model for the modelled part of FLij .

In summary, the superior performance of the RSM over the EVM in these magnetic chan-
nel flows can be attributed to both its ability to provide better representation of stress
generation and other physical processes, and its ability to accommodate the electromag-
netic modifications in a more natural (and exact) fashion.
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CHAPTER

SEVEN

MAGNETIC RAYLEIGH-BÈNARD CONVECTION

In this chapter, numerical results from a series of three-dimensional time-dependant turbu-
lent Rayleigh-Bènard convection flows are presented. The objective is to provide insight
into how, for some more complex flows, the electromagnetically extended turbulence
models discussed in Chapter 4 predict the flow to behave when a magnetic field is applied
over a range of field intensities and directions.

The chapter begins in Section 7.1 with a detailed description of the case and Section 7.2
follows with information on the mesh and the boundary conditions employed. Section 7.3
provides details on identifying coherent structures in convective flows and Section 7.4
presents results for non-magnetic Rayleigh-Bènard convection, with comparisons made
against existing DNS data for the purposes of code validation. Section 7.5 then looks at
results obtained at the moderate Prandtl number of Pr = 0.71 where both a vertically
and horizontally oriented magnetic field are investigated. For the vertical magnetic field,
a reduction in Prandtl number is considered in Section 7.6. Finally, Section 7.7 concludes
the chapter by providing a summary of the key findings.

Unfortunately no suitable DNS data exists for magnetic Rayleigh-Bènard convection
(with the exception of Yanagisawa et al. (2015), which appeared just as this work was
completed) but comparisons are made with a series of existing RANS results, obtained
with the EVM approach, published by Hanjalić and Kenjereš (2000, 2001, 2006) and
Kenjereš and Hanjalić (2004) and assessed by physical intuition. A selection of results
from this Chapter have been published in Wilson et al. (2014, 2015).
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7.1 Case description

As described earlier in Section 2.3, Rayleigh-Bènard convection is a type of natural con-
vection which occurs when a horizontal layer of fluid is heated from below. Thermal
expansion of the fluid adjacent to the heated surface generates an unstable density distri-
bution which, in a gravitational field, will lead to buoyant forces. If these are sufficient
to overcome the dissipative mechanisms of heat transfer (conduction) and viscosity then
vertical fluid motion will result. For fluid which is bound between two horizontal solid
surfaces, the impingement of fluid plumes will generate horizontal motion and a series of
convective roll cells can become established. As before, the ratio of the buoyant “driving
force” to the dissipation mechanisms of heat and viscosity is given by the non-dimensional
Rayleigh number;

Ra =
gβ∆ΘL3

z

να
(7.1.1)

where Lz is the distance between the two plates. The state of the system is additionally
described by the Prandtl number, which controls the relative sizes of the thermal and
momentum boundary layers;

Pr =
ν

α
(7.1.2)

The addition of a uniform magnetic field causes the appearance of Lorentz forces which,
typically, will oppose both mean and fluctuating fluid motion. It was seen in both Sec-
tion 2.3 and Subsection 4.1.2 that this can have quite an effect on the vortical flow struc-
tures which comprise Rayleigh-Bènard convection. In the direction of the magnetic field,
velocity gradients were significantly reduced and this, as a result, tended to align the
axes of the vortices with the magnetic field lines. The emerging flow structure will
thus depend on the mutual orientation and strength of the buoyant and Lorentz forces.
For the latter, this is quantified, as before, by the non-dimensional Hartmann number,
Ha = B0Lz

√
σ/µ.

To investigate the above effects, and the extent to which the numerical models can re-
produce them, computations of Rayleigh-Bènard convection are carried out between two
infinite horizontal flat plates. Since the plates are horizontally infinite, the vertical dis-
tance between them will govern the typical size of the expected flow structures (for the
non-magnetic cases at least). To represent the problem numerically an 8:8:1 aspect ratio
rectangular cavity is used as shown in Figure 7.1. Symmetry boundary conditions are
imposed at the sides by setting the velocity normal to the boundary to zero and imposing
Neumann conditions on all other variables (except pressure). Since symmetry boundaries
do not allow mass to pass through them, the lateral dimensions of the domain will in-
evitably have some influence on the number and characteristic size of the roll cells which
can develop. However, choosing a large width to depth ratio (8) should help to reduce
this influence. The upper and lower surfaces are taken as electrically insulating walls and
their temperatures, Θt and Θb, respectively, are constant and set such that Θb > Θt.
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Figure 7.1: Geometry for Rayleigh-Bènard convection cases.

Since motion arising from natural convection is typically unsteady, the numerical solver
STREAM is switched to time-dependant mode and the ensemble averaged form (see
Subsection 3.1.2) of the governing equations are solved. The letter U (for unsteady) is
typically prepended to the acronym RANS to signify this. The equation set comprises
continuity, Equation (3.3.14), momentum with the Lorentz and buoyancy force terms,
Equation (3.3.15), the Poisson equation for the electric potential, Equation (3.3.12), and
the scalar transport equation for the mean temperature, Equation (3.1.12). For the tur-
bulence, the investigation aims to provide some comparisons between the performance
of the eddy-viscosity and stress-transport models detailed in Chapter 4 with a slight fo-
cus on the stress-transport model, since the results obtained in Chapter 6 showed it to be
generally superior.

The low-Re Launder and Sharma (1974) k− ε model, both with (LSM) and without (LS)
the additional electromagnetic terms provided by Kenjereš and Hanjalić (2000), is tested
where the eddy-diffusivity model, described in Subsection 4.4.4, provides the turbulent
heat flux. With the Hanjalić and Jakirlić stress-transport model, only the electromag-
netically extended version (HJM) is tested. The form of the additional modelled terms
within this are based on their exact counterparts (unlike the terms proposed for the k − ε
model), so omission of them lacks physical justification. The GGDH model described in
Subsection 4.3.3 provides the turbulent heat flux.

The Rayleigh number considered here, Ra = 107, is well within the turbulent regime
for the non-magnetic case and both a wall-normal (vertical) and wall-parallel (horizontal)
magnetic field are applied with field strengths considered in the range 0 < Ha < 200.
For the vertical magnetic field, two Prandtl numbers are considered. The first, Pr =

0.71, allows comparisons to be made with other URANS results presented by Hanjalić
and Kenjereš whilst the second, Pr = 0.01, is, in most cases, much more physically
relevant since the most common electrically conducting fluids are liquid metals. With
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the horizontal magnetic field, only the more moderate Prandtl number (Pr = 0.71) is
considered. A summary of the cases computed is provided in Table 7.1.

As the case is time-dependant it requires the specification of initial conditions. Here, the
fluid is supposed to be in an initially quiescent state (U = 0, V = 0,W = 0) with the
thermal conditions given by a temperature distribution decreasing linearly from Θ = Θb at
the bottom wall to Θ = Θt at the top wall. A reference temperature of Θ0 = (Θt + Θb) /2

is taken and the pressure field is set to zero. In the two-equation eddy-viscosity approach,
initial conditions for the k and ε equations are calculated from the relationships provided
by Versteeg and Malalasekra (1996);

k =
2

3
(WbI)2 (7.1.3)

ε = c3/4
µ

k3/2

`
(7.1.4)

` = 0.07Lz (7.1.5)

where the buoyant reference velocity Wb is,

Wb =
√
gβ∆ΘLz (7.1.6)

and the turbulent intensity, I is 0.2. In the stress transport approach, values of k and ε are
computed as above and the normal stresses are all set equal to 2/3k.

The temperature in the domain is non-dimensionalized using the upper and lower surface
temperatures;

Θ∗ =
Θ−Θt

Θb −Θt

(7.1.7)

so that the Θ∗ takes a value of 1 on the hot surface and 0 on the cold surface.
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Ra Ha Pr B Models tested

107 0 0.71 LS HJ

107 20

0.71 B ‖ z

LS LSM HJM
107 50 LSM HJM
107 100 LS LSM HJM
107 200 LSM HJM
107 400 HJM
107 800 HJM

107 20

0.71 B ‖ x

HJM
107 50 HJM
107 100 HJM
107 200 HJM
107 400 HJM
107 800 HJM

107 0 0.01 HJ

107 20

0.01 B ‖ z

HJM
107 50 HJM
107 100 HJM
107 200 HJM
107 400 HJM
107 800 HJM

Table 7.1: Summary of URANS simulations performed for magnetic Rayleigh-Bénard
convection. For the models tested, LS represents the low-Re Launder Sharma k−εmodel
and HJ represents the low-Re Hanjalić and Jakirlić stress transport model. An appended
“M” indications the inclusion of electromagnetic modifications as detailed in Chapter 4.
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7.2 Numerical method and computational mesh

The roll cell formations typical of Rayleigh-Bènard convection can be considered as a
form of large-scale deterministic coherent motion which is in addition to the small-scale
stochastic motions traditionally thought to comprise the turbulence. This separation of
scales invites the possibility to apply the RANS approach in unsteady mode and it has
been well-established that this can provide resolution of these cell structures (see Kenjereš
and Hanjalić (1999b), for example). To do this, if one assumes that the scale of these
large structures is distinct in spectral space to the rest of the turbulence, then it becomes
permissible to decompose an instantaneous variable Ψ̃(xi, t) into a time mean Ψ(xi), a
stochastic ψ(xi, t) component, and a deterministic Ψ̂(xi, t);

Ψ̃(xi, t) = Ψ(xi) + Ψ̂(xi, t) + ψ(xi, t) = 〈Ψ〉 (xi, t) + ψ(xi, t) (7.2.1)

where the quantity in angled brackets represents the ensemble average. The second mo-
ment of two arbitrary variables Ψ and Φ becomes;

Ψ̃Φ̃ = Ψ Φ + Ψ̂Φ̂ + ψφ = 〈Ψ〉 〈Φ〉+ ψφ (7.2.2)

where ψφ is the modelled contribution, Ψ̂Φ̂ is the deterministic or ‘resolved’ contribution
and 〈Ψ〉 〈Φ〉 = Ψ Φ + Ψ̂Φ̂ = Ψ Φ + Ψ̂Φ̂. Separating the contributions to the second
moments as such allows one to assess the relative importance of the turbulence model in
reproducing the flow patterns seen.

To solve the problem as unsteady, the time-dependent three-dimensional version of STREAM
is employed. Other details are as described earlier in Section 6.2. A time scale for the
convective motion, in the absence of a magnetic field, can be formed from the buoyant
velocity scale Wb, defined in Equation (7.1.6), and the height of the domain Lz. In one
convective rotation the fluid can be expected to traverse this length roughly twice, hence;

τb =
2Lz√

gβ∆ΘLz
(7.2.3)

Using this time-scale, Hanjalić and Kenjereš (2000) arrived at a non-dimensional time-
step of;

∆t
√
gβ∆Θ/Lz = 0.02 (7.2.4)

which equates to resolving this typical cell motion in 100 time-steps. It can be inferred
from the channel flow results presented in Chapter 6, where the application of a mag-
netic field was seen to generally oppose motion (mean and fluctuating) across the field
lines, that a magnetic field here would generally cause the time-scale of the motion to
increase. Thus, this time-step provides an upper bound and has been taken for all cases
computed. For temporal discretization, the Crank-Nicolson scheme was used as detailed
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in Subsection 5.2.4 and the computations were run until long-term time averaged statistics
remained stationary.

Both of the turbulence models used to compute this case are low Reynolds number models
and thus the near-wall node resolution must be such that the non-dimensional wall dis-
tance (z+ here) is less than unity. The mesh employed has a resolution of 80× 80× 100

nodes and was generated using the author’s own code. The nodes are distributed uni-
formly in the horizontal directions and clustered towards the walls, using geometric pro-
gression, in the vertical direction. In addition, to enable the STREAM solver to be run in
parallel mode, the mesh was split into 16 blocks arranged in a 4×4 fashion. The speed up
gained by the ability to run the code in parallel largely offsets the increased time arising
from using a low-Re approach. Figure 7.2 provides illustrations of the mesh, showing
both the multiblock arrangement and the node distributions in the x− y and x− z planes.
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Figure 7.2: Mesh employed for computing Rayleigh-Bènard convection cases showing
(a) 3D view of multi-block arrangement, (b) node resolution in the x − y plane and (c)
node resolution in the x− z plane. The mesh has a resolution of 80× 80× 100.
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7.3. IDENTIFICATION OF COHERENT STRUCTURES

7.3 Identification of coherent structures

A distinct feature of Rayleigh-Bènard convection is the persistence of large scale coher-
ent flow structures despite the high turbulence levels achieved at high Rayleigh numbers
(Chu and Goldstein, 1973; Grötzbach, 1982; Theerthan and Arakeri, 1994). The time-
dependent, three-dimensional, chaotic nature of the turbulence associated with these mo-
tions, however, makes the task of identifying and visualizing the flow structures quite
challenging.

The more orthodox visualization methods involve viewing velocity streamlines, contours,
vector plots, and isosurfaces of temperature in one given instantaneous realization. Whilst
these clearly provide useful information in most cases, and are employed here, several au-
thors have proposed other, more elaborate, methods by which to identify such structures.
Most of these centre around associating ‘coherent structures’ with vortical motion and
typically make use of the eigenvalues and eigenvectors of the velocity gradient tensor,
Aij;

Aij =
∂Ui
∂xj

(7.3.1)

The second of the three invariants of Aij was used by Hunt et al. (1988) to define the
so-called Q-criterion;

Q =
1

2
(ΩijΩij − SijSij) (7.3.2)

where Sij and Ωij are the symmetric (mean rate of strain) and anti-symmetric (mean rate
of rotation) parts of Aij respectively;

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
, Ωij =

1

2

(
∂Ui
∂xj
− ∂Uj
∂xi

)
(7.3.3)

The Q criterion thus describes the balance between the moduli of the shear strain rate
tensor and rate of rotation tensor. In regions where Q is negative, the strain rate presides
over the rate of rotation. For regions of positive Q, rotation is the dominant form of
motion and it is these areas that Hunt et al. (1988) define as areas containing a coherent
vortex. The Q-criterion will thus be used in the results section of this chapter to provide
visualization of the coherent structures.

Further details on methods to identify coherent structures in Rayleigh-Bènard convection
can be found in Kenjereš and Hanjalić (1999a).
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7.4 Non-magnetic Rayleigh-Bènard convection

As a validation exercise, computations were first performed at the lower Rayleigh number
of Ra = 6.3×105 to compare against the DNS results of Wörner (1994). Long-term time
averaged temperature profiles in the vertical plane, presented in Figure 7.3, show excellent
agreement with the DNS data.

Both turbulence models tested returned zero contribution to the modelled turbulence and
hence they predict identical long-term time averaged temperature profiles. Since the DNS
data indicates that the flow does demonstrate a small amount of turbulence, it is likely that
the Rayleigh number of this particular flow is too low for the models to sustain what may
be a rather low level of turbulence. The close agreement between the URANS simulations
and the DNS supports the conclusion that the turbulence levels should be quite low, and
not particularly important, in this case.

The profiles exhibit a uniform core region, which results from the mixing of the fluid
by convective and turbulent motion, flanked by thermal boundary layers. The profiles
are characteristic of Rayleigh-Bènard convection and this, together with the excellent
agreement with the DNS data, provide confidence in the solver and case set-up.
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Pr = 0.71
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DNS

Figure 7.3: Long-term time averaged vertical non-dimensional temperature profiles in
non-magnetic Rayleigh-Bènard convection at Ra = 6.3 × 105 and Pr = 0.71. Compar-
isons of the LS and HJ models with the DNS results from Wörner (1994). Both models
return identical profiles, and hence only the last plotted (the line for the HJ model) is
visible.
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7.5 Moderate Prandtl number: Pr = 0.71

Results are presented here for magnetic Rayleigh-Bènard convection at the moderate
Prandtl number of Pr = 0.71. Both a vertical and horizontally oriented magnetic field
are considered and each of these will, in a similar fashion to the effects seen in Chapter 6,
influence the flow in different ways. In both cases, only motion across the magnetic field
lines will generate a Lorentz force. For the vertical magnetic field, where the gravitational
vector is parallel to the magnetic field lines, this will initially oppose the onset of convec-
tive motion (since roll cells cannot exist without horizontal motion) and, after convection
has commenced, will tend to change the horizontal lengthscale of the rolls cells (through
the action of the Lorentz force). For the horizontal magnetic field, the Lorentz force is
active in the vertical and other horizontal direction. From the earlier discussion in Sec-
tion 2.3 and Subsection 4.1.2, it was seen that the magnetic field tends to elongate vortices
along the direction of the magnetic field lines by selectively destroying all velocity gradi-
ents in that direction. Since convection cells are simply just arrangements of vortices, it is
expected that whatever cell structures exist in the plane normal to the magnetic field will
elongate across the domain.

7.5.1 Influence on the mean flow

Figure 7.4 shows the effect of both a vertical and horizontal magnetic field on the long-
term time averaged temperature in the wall-normal direction where, for the vertical mag-
netic field, comparisons are made between the HJM and LSM models. Generally, a low
strength magnetic field (Ha = 20), has little effect when in the vertical direction and pro-
vides slight, but noticeable, deformation in the temperature profile when in the horizontal
direction. As the field strength increases, the temperature profiles continue to deform and,
up to around Ha = 200, show a continuing elongation of the uniform core region and a
thinning of the thermal boundary layers. The HJM predicts this transition, for both field
directions, to be more gradual than that shown by the LSM model. With the latter, very
little deformation is seen at Ha = 20 and, after that, little difference is seen between
Ha = 50, 100 and 200. Simulations were not performed for Ha > 200 with the LSM
model since, as will be discussed later, by this field strength both models return zero con-
tribution to the modelled turbulence and thus would report the same temperature profiles
(as they did with the non-magnetic Rayleigh-Bènard convection in Section 7.4).

With the horizontal magnetic field, this deformation of the temperature profile is accom-
panied by a clear gradual thickening of the thermal boundary layers, in additional to the
extension of the near-wall linear change in temperature. After Ha = 200 the HJM model
predicts, for both magnetic field directions, a significant inversion in the temperature pro-
file and, for the highest magnetic field strength, an increase in the size of the thermal
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boundary layers beyond that seen in the neutral state. These results are qualitatively con-
sistent with those by Hanjalić and Kenjereš (2000) and Kenjereš and Hanjalić (1999b,
2004) who used a three equation k − ε − θ2 eddy-viscosity model (with the electro-
magnetic extensions described in Section 4.4) though they report the deformation in the
temperature profile to be more significant at lower Ha.

7.5.2 Influence on the turbulence

In non-magnetic convection an extension to the uniform core region is usually brought
about by an increase in Rayleigh number, since the higher level of associated turbulence
leads to increased mixing. From the earlier results presented in Chapter 6, however, it was
seen that the magnetic field generally acts to reduce turbulence throughout the flow and
the strength of this effect increases with Ha. Profiles of the contributions to the turbulent
kinetic energy, in Figure 7.5 for a horizontal magnetic field and a selection of Ha, show
that this is indeed the case here. As the Hartmann number increases, both resolved and
modelled contributions fall fairly uniformly across the channel. A curious exception is the
prediction of an increase in the resolved contribution1 to the total turbulent kinetic energy
at Ha = 20 by the LSM model. For Ha ≥ 50, the magnetic field has reduced turbulence
to the extent that both models provide no contribution and only large scale deterministic
motion remains. In the neutral state, there are some clear differences between the models
in terms of contributions towards the total turbulence; the LSM predicts a much greater
(around twice) contribution from modelled k. Total turbulence levels predicted by the
models are comparable, and thus this is mostly considered to be due to the ability of the
stress transport model to provide a better representation of the normal stresses (and hence
k).

For the HJM model, profiles of the long-term time averaged normal stresses are provided
in Figure 7.6 for the vertical magnetic field and in Figure 7.7 for the horizontal magnetic
field. In the neutral state, the modelled contribution to the normal stresses is uniform
across the channel with slightly reduced values of ww compared to the two horizontal
components. The distribution of the resolved contributions follows what one would ex-
pected from a flow comprising a series of transient convective roll cells between two
horizontal walls; large peaks in the horizontal components towards the walls where pre-
dominantly (correlated) horizontal motion occurs (at the tops and bottoms of the roll cells)
together with large values of the vertical component in the central region, where motion
is predominantly vertical.

At the lowest magnetic field strength considered (Ha = 20), both orientations of the
magnetic field can be seen to suppress all normal stress components uniformly across the

1Though the scale of the plot makes this difficult to see, the modelled contribution to k in the centre
falls by around 9%.
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flow and by Ha = 50, as the turbulent kinetic energy profiles showed earlier, the mod-
elled contributions to all stresses vanish. Beyond Ha = 50, the different orientations
have significantly different effects on the anisotropy in the flow. The vertical magnetic
field appears to have only a small effect; the reduction in the vertical component appears
to be more gradual compared to both horizontal components (these are equal due to ho-
mogeneity between those directions). The horizontal magnetic field, however, generates
significantly increased levels of anisotropy between the horizontal components with V̂ V̂
demonstrating peak levels higher than those seen in the neutral state. This is despite an
active Lorentz force in that direction. The mean Lorentz force only vanishes in the direc-
tion of the magnetic field and the component aligned with that sees a reduction consistent
with that seen in ŴŴ . Exactly why this occurs will be fully explained below, but it is a
direct consequence of how the magnetic field affects the structure of the convection cells
within the flow.

Long-term time averaged profiles of the vertical component of the turbulent heat flux
are shown in Figure 7.8 for a selection of Ha and both magnetic fields, where again the
contributions from both the resolved large-scale motion and the turbulence model have
been provided. In a small selection of the plots, the orange dashed lines provide profiles of
the modelled contribution as computed by the LSM. At Ha = 0, and for the HJM model,
the modelled part forms the main contribution in the near-wall regions with a peak that
has a magnitude around 50% of the total seen in the channel centre. This contrasts with
the modelled contribution as predicted by the LSM which predicts significantly higher
peaks which have a much wider base1. Both heat flux models return very small values in
the central section, with the LSM actually returning negative values over a small region
(not shown), and the resolved contribution dominates.

The lowest magnetic field strength considered, in both directions, provides only a modest
reduction in the turbulent heat flux uniformly across the channel, but by Ha = 50 the
vertically orientated magnetic field has completely suppressed the modelled contribution.
For the same Hartmann number the horizontal magnetic field, however, only reduces wθ
levels to half those seen at Ha = 20. Since the temperature profiles in Figure 7.4 show no
discernible difference between the magnetic field directions at Ha = 50, increased levels
of uiθ must arise from increased levels of ww (since the term involving ww ∂Θ/∂z is, as
discussed in the next paragraph, effectively the only contributor to the vertical heat flux
in the GGDH formulation). Figure 7.7 confirms this to be the case.

Predictions of little to no wθ in the core region is, of course, due to the form of the mod-
els employed; both the eddy-diffusivity, Equation (4.4.24), and GGDH, Equation (4.3.53)
return values only in proportion to the mean temperature gradients. As Figure 7.4 shows,
these initially vanish over a large section of the core of the domain and ∂Θ/∂z actually

1Unfortunately, data was not collected for the resolved contribution and thus a full quantitative com-
parison is not possible.
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exhibits a change in sign as the magnetic field strength increases and the temperature pro-
file inverts across the core region. Whilst the GGDH would be expected, in principle,
to provide better predictions (since it sensitizes uiθ both to the Reynolds stress compo-
nents and other mean gradients) the lack of any long-term time averaged turbulent shear
stress and any horizontal mean temperature gradients means the only non-zero term in the
GGDH formulation is the one containing ww and ∂Θ/∂z. Other components of the heat
flux containing that temperature gradient are multiplied by the turbulent shear stresses
which also vanish. Thus, in practice, both the eddy-viscosity and GGDH formulations
reduce to similar forms in this flow (at least in terms of time-averaged quantities).

More advanced models for the heat flux have been proposed in the literature, including an
algebraic closure by Kenjereš and Hanjalić (1999b) which retains all the major production
terms in the uiθ equation. Though, as detailed earlier in Subsection 4.3.3, this would
capture some processes absent from the GGDH, results obtained here (with the GGDH)
are in good agreement with those presented by Hanjalić and Kenjereš (2000) and Kenjereš
and Hanjalić (1999b). In addition, the primary effect of the magnetic field is to suppress
the modelled contribution and by Ha = 50, this is completely absent. Results presented
by Hanjalić and Kenjereš (2000), who utilized a more advanced modelled form of uiθ,
showed the modelled contribution was completely suppressed by Ha = 100, though they
do not provide results between this and Ha = 20. Further exploration of this, and the
influence of the magnetic field on the thermal fields in general, is proposed as further
work in Chapter 8.

7.5.3 Influence on the flow structure

From the preceding, more quantitative, analysis it was seen that the general effect of
the magnetic field is to reduce turbulence levels across the channel and to deform or
even invert the mean temperature profile. Explanations for this behaviour can be found
through investigating the effect of both magnetic field directions on the coherent structures
identified within the flow.

Figures 7.9, 7.10 and 7.11 reveal that, depending on its orientation, the magnetic field
brings about strikingly different reorganisations of the thermal and dynamic structures
in the flow. In the neutral state, instantaneous realisations of the temperature contours
in the central horizontal (Figure 7.9) and vertical (Figure 7.10) planes demonstrate the
existence of a small number of thermal plumes which sparsely populate the domain. At
Ha = 50, both orientations of the magnetic field cause the plumes to break down into a
larger number of thinner, more cylindrical, plumes. Two effects contribute to this. The
first, in the case of the vertical magnetic field, is the direct action of the mean Lorentz
force which opposes motion in both horizontal directions and thus causes the plumes to
be ‘squeezed’ laterally. The second, which is applicable to both cases, is a reduction in
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horizontal turbulent mixing through suppression of the turbulent kinetic energy (clearly
shown in Figure 7.5).

Beyond Ha = 50, differences between the effects of the two magnetic field orienta-
tions become quite apparent. With the vertical magnetic field, the previously mentioned
breakdown in plume structures continues and by Ha = 800, the strongest magnetic field
strength considered, the plumes are substantially thinner that at Ha = 0 and are consider-
ably more ordered. The temperature isosurfaces in Figure 7.10, which are coloured by the
non-dimensional vertical velocity, show that the intensity of the vertical motion signifi-
cantly reduces between Ha = 50 and Ha = 800. As discussed previously, the tendency
of the Lorentz force to inhibit horizontal motion will, for sufficiently strong magnetic
fields, lead to a reduction in vertical motion via continuity. With the horizontal magnetic
field, the flow structures become increasingly aligned with the direction of the magnetic
field vector and byHa = 800, Figure 7.11 shows complete alignment with the axes of the
roll cells. The contrast between the streamline plots at Ha = 800 for both field directions
demonstrates that the mutual orientation between the buoyant and Lorentz forces is very
influential in the evolution of the flow.

To illustrate the transformation of the flow structure further, Figure 7.12 and Figure 7.13
provide instantaneous isosurfaces of theQ-criterion and non-dimensional vertical velocity
component W ∗ respectively. With the Q-criterion, a positive value has been chosen to
show regions where the rotation rate exceeds the strain rate. This corresponds to the
presence of a vortex. To provide a valid comparison, this value is kept constant across
all the cases presented. With the isosurfaces of velocity, regions of fluid connected by
a constant velocity provide some indication of coherency since there will, invariably, be
paths around a particular convection cell where this is true. The flow development and
structure illustrated by both figures is consistent with the trends and structural changes
described above. At the highest Hartmann number, the roll cells becomes quite clearly
aligned in the direction of their respective magnetic fields. This kind of alignment has
been predicted by other numerical simulations, including those by Varshney and Baig
(2008a) (which were discussed earlier in Section 2.4, see Figure 2.13) and more recent
DNS results by Yanagisawa et al. (2015). For the horizontal magnetic field, horizontal
motion of the roll cells is now primarily in the y direction with very little in the x-direction.
As a result, the primary velocity component associated with the roll cells in the near-wall
region will be V . Thus, the resolved V̂ V̂ normal stress component (as the one containing
the V V moment) might be expected to show larger values in this case than in those cases
where these structures do not align with the magnetic field. This would provide some
explanation for the significant increase in V̂ V̂ that was seen in Figure 7.7.

The alignment of the vortex structures (roll cells) with the magnetic field vector was
something discussed extensively in Chapter 2 and Subsection 4.1.2. It arises from a re-
quirement to conserve the component of angular momentum parallel to the magnetic field
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despite a continual reduction in the kinetic energy of the fluid through Joule dissipation.
As Subsection 4.1.2 demonstrated mathematically (for an inviscid fluid), the elimination
of Joule dissipation will occur when the velocity vector exhibits no variation in the di-
rection of the magnetic field (since this eliminates the generation of current). The results
presented here clearly demonstrate that this alignment has taken place. With Rayleigh-
Bènard convection, so long as the vertical buoyant force is sufficient to overcome viscous
dissipation the fluid will continue to move. The argument concerning angular momentum
is not restricted to any particular magnetic field direction and, as such, it can be applied in
both cases considered here. Elongation of the plume structures in the vertical direction, in
an attempt to minimize the vertical velocity gradients, is shown somewhat in Figure 7.10.

To reveal the effect of the magnetic field on the length of the plume structures in the ver-
tical direction, Figure 7.14 provides a side view of the Q-criterion, which takes the same
value as it did previously in Figure 7.12. At Ha = 100, both magnetic field directions
can be seen to modestly elongate these plumes towards the walls. This provides an ex-
planation as to why the magnetic field caused an extension in the uniform temperature
core region shown earlier in the mean temperature profiles (Figure 7.4). With the vertical
magnetic field, and to some extent with the horizontal magnetic field, the simultaneous
thinning and stretching of the thermal plumes in the vertical direction creates a coherent
‘channel’ which facilitates better heat transfer between the walls. This is in agreement
with the results presented by Hanjalić and Kenjereš (2000) and leads to the previously
observed thinning of the thermal boundary layers between 20 < Ha < 200.

Beyond Ha = 200, Figure 7.14 shows that the height of the plume structures begins to
reduce and at Ha = 800 the gap between the top of the tops of the structures and the
walls is notably larger than at Ha = 0 and Ha = 100.1 The fact the plumes penetrate
less into the boundary layers, combined with the observed reduction in resolved turbulent
fluctuations (and hence mixing) in the near-wall regions that the earlier quantitative com-
parisons suggested (Figure 7.6, for example), leads one to conclude that conductive heat
transfer from the walls into the fluid will increase in importance. This would explain the
previously noted thickening of the thermal boundary layers observed for both magnetic
field directions at Ha = 800.

The inversion in the temperature profiles at high Hartmann number, for the vertically
oriented magnetic field at least, can thus be considered the result of a combination of a
number of the above effects. First, a reduction in the resolved contribution to the turbu-
lence within the core region will reduce the extent to which hot and cold fluid is mixed.
Second, the formation of a coherent cylindrical channel enables hot fluid to reach the up-
per (or lower) half of the domain much more readily than it did before. Finally, since

1Note that the reference to a ‘gap‘ here is purely figurative. The Q-criterion only provides a represen-
tation of those regions for which rotational strain is dominant and changing the value of the isosurface will
produce different a representation. However, since the value of the isosurface here is constant across the
cases, the comparison is valid.
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the vertical length scale associated with the plume structures is reduced, and with it the
degree to which they penetrate the boundary layers, it leads to, on average, an increase
(or decrease) in temperature in the region just outside the thermal boundaries.

Finally, it is also worth noting that simulations performed without the additional elec-
tromagnetic terms in the eddy-viscosity formulation (i.e. the LS model) did not predict
such a significant structural reorganisation of the flow. Qualitative comparisons, provided
in Figure 7.15, clearly show the LS model predicts very little change from the neutral
state, even at Ha = 100. Hence, whilst in the analysis of the earlier channel flow cases
in Chapter 6 the additional electromagnetic terms were shown to either have little influ-
ence or over predict the damping of the turbulence, the reduction in turbulent energy they
provide here is essential in order to bring about the predicted structural reorganization.

221



CHAPTER 7. MAGNETIC RAYLEIGH-BÈNARD CONVECTION

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr = 0.71

B ‖ z

LSM

z

Lz

Θ∗

Ha = 0
Ha = 20
Ha = 50
Ha = 100
Ha = 200

(a)

0 0.2 0.4 0.6 0.8 1

Ha

Ha

B ‖ z
Pr = 0.71

HJM

Θ∗

Ha = 0
Ha = 20
Ha = 50
Ha = 100
Ha = 200
Ha = 400
Ha = 800

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Ha

Ha

B ‖ x
Pr = 0.71

HJM

z

Lz

Θ∗

Ha = 0
Ha = 20
Ha = 50
Ha = 100
Ha = 200
Ha = 400
Ha = 800

(c)

Figure 7.4: Long-term time averaged profiles of the non-dimensional temperature, Θ∗, in
magnetic Rayleigh-Bènard convection. For a vertically oriented magnetic field compar-
isons are made between the LSM (a) and HJM (b) models. (c) provides results with the
HJM model for a horizontally oriented magnetic field over a range of Hartmann numbers;
Ra = 107, Pr = 0.71.
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Figure 7.5: Long-term time averaged profiles of the contributions to the non-dimensional
turbulent kinetic energy, k∗, in Rayleigh-Bènard convection subjected to a vertical mag-
netic field. Comparisons between LSM (top) and HJM (bottom) models for selected Hart-
mann numbers; Ra = 107, Pr = 0.71, B ‖ Bz.
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Figure 7.6: Long-term time averaged profiles of the contributions to the non-dimensional
normal stresses, uu∗ (top), vv∗ (middle) and ww∗ (bottom), in Rayleigh-Bènard convec-
tion subjected to a vertical magnetic field at selected Hartmann numbers; Ra = 107,
Pr = 0.71, B ‖ Bz. Homogeneity between the horizontal directions means those com-
ponents are equal.
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Û Û

uu

0 0.02 0.04

HJM

B ‖ x
Pr = 0.71

Total

V̂ V̂

vv

0 0.02 0.04

HJM

B ‖ x
Pr = 0.71

Total

ŴŴ
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Figure 7.7: Long-term time averaged profiles of the contributions to the non-dimensional
normal stresses, uu∗ (top), vv∗ (middle) and ww∗ (bottom), in Rayleigh-Bènard convec-
tion subjected to a horizontal magnetic field at selected Hartmann numbers; Ra = 107,
Pr = 0.71, B ‖ Bx.
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Figure 7.8: Long-term time averaged profiles of the contributions to the non-dimensional
wall-normal heat flux in Rayleigh-Bènard convection subjected to a vertical (top) and
horizontal (bottom) magnetic field at selected Hartmann numbers. HJM model with addi-
tional selected profiles of the modelled contribution obtained with the LSM model (orange
dashed lines) at Ha = 0, 20 and with a vertical magnetic field. Ra = 107, Pr = 0.71.
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Figure 7.9: Effect of magnetic field strength and orientation on the instantaneous tempera-
ture distribution in the central x− y plane (z/Lz = 0.5). Comparisons between vertically
(left) and horizontally (right) oriented magnetic fields for increasing Ha. HJM model;
Ra = 107, Pr = 0.71.
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Figure 7.10: Effect of magnetic field strength and orientation on the instantaneous temper-
ature distribution in the central y − z plane (x/Lx = 0.5) and isosurfaces of temperature
(Θ∗ = 0.35, 0.65) coloured by the non-dimensional vertical velocity (−0.3 < W ∗ < 0.3).
Comparisons between a vertically (left) and horizontally (right) oriented magnetic field
for increasing Ha. HJM model; Ra = 107, Pr = 0.71.
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Figure 7.11: Instantaneous streamlines showing the changes in flow structure brought
about by the application of a vertical (left) and horizontal (right) magnetic field to
Rayleigh-Bènard convection for increasing Ha; Ra = 107, Pr = 0.71.
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Figure 7.12: Isosurface of Q-criterion (Q = 0.01) showing the changes in flow structure
brought about by the application of a vertical (left) and horizontal (right) magnetic field
for increasing Ha. HJM model; Ra = 107, Pr = 0.71.
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Figure 7.13: Isosurface of non-dimensional vertical velocity (W ∗ = 0.025) showing
the changes in flow structure brought about by the application of a vertical (left) and
horizontal (right) magnetic field for increasing Ha. HJM model; Ra = 107, Pr = 0.71.
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Figure 7.14: Side view, normal to the x − z plane, of the isosurface of Q-criterion (Q =
0.01) from Figure 7.12. Looking normal to the x − z plane and showing the effect of
a vertical (top) and horizontal (bottom) magnetic field on the degree to which the flow
structures penetrate the upper and lower boundary layers. HJM model; Ra = 107, Pr =
0.71.
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Figure 7.15: Effect of a vertically oriented magnetic field on the instantaneous tempera-
ture distribution in the central x− y plane (z/Lz = 0.5). Comparisons between LS (left)
and LSM (right) models for increasing Ha; Ra = 107, Pr = 0.71.
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7.6 Low Prandtl number: Pr = 0.01

In reality, only fluids with suitably high electrical conductivity will be affected by the
imposition of a magnetic field. Typically only liquid metals or selected molten salts will
fit this criteria and those types of fluids commonly have Prandtl numbers much less than 1.
Physically, for a given flow, this will produce thermal boundary layers much larger than
the viscous boundary layers and thus the influence of molecular thermal conduction can
extend quite significantly into the fully turbulent region of the flow.

Results presented here only consider the HJM model and application of a vertically ori-
ented magnetic field.

7.6.1 Influence on the mean flow

Figure 7.16 shows the long-term time averaged vertical temperature profiles with increas-
ing magnetic field strength. The thicker thermal boundary layers, which are a direct con-
sequence of the lower Prandtl number (since, for a fixed Rayleigh number, the thermal
diffusivity is higher), are clearly evident when compared with the higher Prandtl number
results in Figure 7.4. As the magnetic field is introduced, the lower Hartmann numbers
(Ha = 20 and Ha = 50) have little influence, and the deformation in the temperature
profile which was seen at the moderate Prandtl number does not occur until the higher
Hartmann numbers of Ha = 100 and Ha = 200. At the latter Hartmann number, the
extension to the uniform core region and reduction in the size of the thermal boundary
layers is significant. Beyond this, at Ha = 400, a reversal of this trend is observed and
the thermal boundary layers again begin to thicken, with the temperature profile moving
back towards that observed in the neutral state. At Ha = 800, the size of the thermal
boundary layers is considerably greater than those at Ha = 0 and the temperature profile
appears to move towards a purely conductive solution (i.e. a linear temperature profile).

Compared with the results for a moderate Prandtl number (Figure 7.4) similar changes in
the strength of the magnetic field here lead to quite different levels of deformation in the
temperature profiles. From Ha = 200 to Ha = 800 for example, the profile in the low
Prandtl number case has moved from one which exhibits the largest uniform core region
to the smallest, past that seen at Ha = 0. In the moderate Prandtl number case a similar
change in field strength only produced comparatively modest changes.

7.6.2 Influence on the turbulence

Unlike in the moderate Prandtl number cases, Figure 7.17 demonstrates that the magnetic
field tends to promote more of a change in the distribution of turbulent energy between
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the horizontal and vertical normal stresses. In the neutral state, the modelled contribu-
tions show some anisotropy in the core of the channel and the resolved contributions
show significant anisotropy in the near-wall regions (as they did for the moderate Prandtl
number). At Ha = 100, where significant changes were seen in the temperature profile,
the modelled contributions have been reduced right across the channel, with a reduction
in anisotropy in the core. The resolved contributions are also affected in an anisotropic
manner, with significant reduction seen in the horizontal components and some reduction
in the vertical component. By Ha = 200, the modelled contribution to all the normal
stresses is suppressed by the magnetic field. Notably, the near-wall peaks of the resolved
parts in the two horizontal components appear more pronounced and shift further towards
the walls. This indicates the convective cell structures penetrate further towards the walls,
something consistent with what was observed at the moderate Prandtl number (though at
a different Ha).

At Ha = 0, profiles of the vertical component of the turbulent heat flux, presented in
Figure 7.8, show peaks which extend further into the core region (again, a direct conse-
quence of the lower Prandtl number). As the magnetic field strength is increased, these
reduce fairly uniformly between Ha = 50 and Ha = 100 with complete suppression by
Ha = 200. The profiles of the resolved contributions become flatter and more uniform
with an increase in the magnetic field strength.

With an increase in magnetic field strength, both Prandtl number cases exhibit qualita-
tively similar behaviour (i.e. suppression of turbulence) but, for a given Hartmann num-
ber, the suppression of turbulence is much more effective at the moderate Prandtl number.
This is largely due to increased levels of turbulence present in the neutral case at the
lower Prandtl number. The magnitude of the turbulent heat flux contribution to the total
vertical component, for example, is around five times its value seen with the moderate
Prandtl number. One possible reason for this relates to the size of the thermal layers over
which the buoyant force is generated. As noted in the previous subsection, the thermal
boundary layers are much thicker in the lower Prandtl number case than they are in the
moderate Prandtl number case. Consequently, at the lower Prandtl number, the area over
which unstable motion is initiated (by the temperature gradients), thus producing turbu-
lence, is much larger, and might require higher magnetic forces in order to achieve levels
of turbulence suppression similar to that seen at the moderate Prandtl number.

7.6.3 Influence on the flow structure

Changes to the structural patterns, presented through several instantaneous realizations in
Figure 7.19 and Figure 7.20, show that the magnetic field brings about a similar reorga-
nization to that seen in the higher Prandtl number case with the vertical magnetic field,
but not until a much higher Hartmann number is reached. Comparisons at equivalent
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Hartmann numbers, Ha = 0 or Ha = 200 for example, show the lower Prandtl number
produces larger plume structures (again a direct consequence of increased thermal diffu-
sivity) and thus these require higher magnetic field strengths to reduce plumes sizes to
those seen at the moderate Prandtl number. Interestingly, at Ha = 400 these figures indi-
cate some connectivity between adjacent plume structures of similar temperature, where
long, thin structures have formed. By Ha = 800, the flow has reorganised significantly
and the long weak structures joining the main plumes at Ha = 400 have transformed into
long, thin, main sections that align with each other in an orderly alternating fashion. This
is a somewhat surprising result since, though the sudden change in temperature profiles
between Ha = 400 and Ha = 800 provided some indication of a significant change,
overall changes to the flow structures seemed initially consistent with that seen at the
moderate Prandtl number (albeit in a much more gradual fashion).

Figure 7.21, which presents instantaneous streamlines, highlights the very ordered nature
of the plumes. The most striking representations of these structures, however, can be
found in the isosurface plots of the Q-criterion and the non-dimensional vertical velocity
in Figure 7.22. At Ha = 400, the isosurface of W ∗ clearly shows some coherent connec-
tivity between the plume structures which was absent at lower Hartmann numbers, and at
Ha = 800 the Q-criterion shows very clear vortical structures aligned with each other.
Towards the corners of the domain, these structures change orientation and appear to be
more curved. This may suggest some influence of the symmetric boundary conditions
which, for structures considerably larger than what the domain was originally designed
for, may no longer be entirely appropriate.1

Leaving this discrepancy with the boundary conditions aside, one possible explanation
for the observed flow structures is as follows. In the moderate Prandtl number cases, the
highest magnetic field strength produced structures with significantly reduced lateral di-
mensions. A look back at the temperature contours in Figure 7.9, for the vertical magnetic
field atHa = 800, shows that some communication can be seen between plume structures
of similar temperature. If one was to assume the magnetic field would afford at least a
reduction in lateral lengthscale of similar order in the lower Prandtl number case, then the
increased thermal diffusivity of the fluid would tend to homogenize the small temperature
differences between adjacent plumes. Once joined, the plumes form much larger coherent
structures. If one aligned plume rises, then a plume of equal form would sink adjacent to
it leading to the formation of larger scale patterns such as that seen here.

It is important to note that animations from the time-series data collected in this case
showed that the pattern was not stationary, exhibiting slow changes in orientation as the

1That is, in the absence of magnetic fields and any other external influences, one would expect the
height of the domain to characterize the size of a typical plume in Rayleigh-Bènard convection. Then, an
8:8:1 aspect ratio domain allows several of these to be captured whilst ensuring the symmetry conditions at
the sides are far away enough so as to not significantly influence their development. Clearly, with structures
now which span nearly the width of the domain, symmetry conditions might not be entirely appropriate.
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long plumes occasionally split and rejoined with other plumes. The timescale of this
motion, though, was much larger than that observed at lower Hartmann numbers. From
Figure 7.20 it can be seen that although the structures at Ha = 800 are quite large, the
intensity of the vertical motions is dramatically reduced. The specific mechanism behind
the transformation seen here warrants suggestion for further work, which is made later in
Chapter 8.

Finally, Figure 7.23 provides a side view of theQ-criterion isosurface seen in Figure 7.22.
Clearly the vertical dimensions associated with the plume structures follow a similar trend
to that observed at the more moderate Prandtl number, though the extension towards the
walls occurs at the higher Hartmann number of Ha = 200. At Ha = 800, the magnetic
field confines the structures to the core region, allowing the thermal boundary layers to
thicken.

0 0.2 0.4 0.6 0.8 1

B ‖ z
Pr = 0.01

HJM

Θ∗

Ha = 0
Ha = 20
Ha = 50
Ha = 100
Ha = 200
Ha = 400
Ha = 800

Figure 7.16: Long-term time averaged profiles of the non-dimensional temperature, Θ∗ in
magnetic Rayleigh-Bènard convection. HJM model over a range of Hartmann numbers;
Ra = 107, Pr = 0.01, B ‖ z.
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Û Û
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Figure 7.17: Long-term time averaged profiles of the contributions to the non-dimensional
normal stresses, uu∗ (top), vv∗ (middle) and ww∗ (bottom), in magnetic Rayleigh-Bènard
convection at selected Hartmann numbers; Ra = 107, Pr = 0.01, B ‖ z.
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Figure 7.18: Long-term time averaged profiles of the contributions to the wall-normal heat
flux in magnetic Rayleigh-Bènard convection at selected Hartmann numbers; Ra = 107,
Pr = 0.01, B ‖ z.
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Figure 7.19: Effect of magnetic field strength and orientation on the instantaneous tem-
perature distribution in the central x − y plane (z/Lz = 0.5). HJM model; Ra = 107,
Pr = 0.01, B ‖ z.
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Figure 7.20: Effect of magnetic field strength and orientation on the instantaneous temper-
ature distribution in the central y − z plane (x/Lx = 0.5) and isosurfaces of temperature
(Θ∗ = 0.15, 0.85) coloured by the non-dimensional vertical velocity (−0.3 < W ∗ < 0.3).
HJM model; Ra = 107, Pr = 0.01 B ‖ z.
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Figure 7.21: Instantaneous streamlines showing the changes in flow structure brought
about by the application of a vertical magnetic field to Rayleigh-Bènard convection for
increasing Ha; Ra = 107, Pr = 0.01.
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Figure 7.22: Isosurface of Q-criterion (Q = 0.015) (left) and non-dimensional vertical
velocity (W ∗ = 0.025) (right) showing the changes in flow structure brought about by
the application of a vertical magnetic field for increasing Ha. HJM model; Ra = 107,
Pr = 0.01.

243



CHAPTER 7. MAGNETIC RAYLEIGH-BÈNARD CONVECTION

Figure 7.23: Side view, normal to the x − z plane, of the isosurface of Q-criterion (Q =
0.015) from Figure 7.22. Showing the effect of a vertical (top) and horizontal (bottom)
magnetic field on the degree to which the flow structures penetrate the upper and lower
boundary layers. HJM model; Ra = 107, Pr = 0.01.
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7.7 Conclusion

The objective of this chapter was, having provided a fairly detailed assessment of the
different electromagnetically modified turbulence models in the simple shear flows con-
sidered in Chapter 6, to apply and test the models in the more challenging case of three-
dimensional turbulent Rayleigh-Bènard convection.

First, to validate the time-dependant aspects and buoyant implementation within the nu-
merical solver STREAM, results were computed for non-magnetic Rayleigh-Bènard con-
vection at a Rayleigh number of Ra = 6.3 × 105 and Prandtl number of Pr = 0.71.
Despite both models returning no contribution to the modelled turbulence, the unsteady
RANS approach was able to resolve the large scale fluctuations and results were both in
excellent agreement with DNS data by Wörner (1994) and displayed behavior character-
istic of Rayleigh-Bènard convection.

Results were then presented for a higher Rayleigh number of Ra = 107, with a moderate
Prandtl number of Pr = 0.71, where horizontal and vertical magnetic fields were imposed
over a wide range of magnetic field strengths (0 ≤ Ha ≤ 800). Both orientations of the
magnetic field caused noticeable changes in the long-term time averaged wall-normal
temperature profiles across the domain, initially causing an extension of the uniform core
region (with associated thinning of the thermal boundary layers) before then producing
inversions in the temperature profiles at Ha > 200 with thermal boundary layers thicker
than those at Ha = 0. This was attributed to structural changes in the roll cells, which
reduced the extent to which they penetrate the thermal boundary layers. Though no DNS
data was available for comparisons, the HJM model was able to predict a more gradual
change in the temperature profile as the Hartmann increases when compared with the
LSM model.

The effect of the magnetic fields on the turbulence was to almost universally suppress
both modelled and resolved contributions across the channel. By Ha = 50, the ver-
tical magnetic field had suppressed modelled contributions to the turbulence from both
the HJM and LSM models. With a horizontal magnetic field, the modelled contribution
offered by the HJM model was non-zero, but small. At large magnetic field strengths
(Ha > 200), this orientation of the magnetic field was seen in generate a substantial
increase in the resolved contribution to the horizontal normal stress component perpen-
dicular to the magnetic field. This was attributed to changes in the flow structure which,
for large Hartmann numbers, were significant.

It was noted that both forms of the turbulent heat flux model employed would, in the
case of Rayleigh-Bènard convection, only return non-zero mean values when the mean
temperature gradient in the vertical direction was non-zero. This was due to the absence
of any long-term time averaged shear stress or gradients of temperature in the horizontal
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direction. Despite this, results were in agreement with those presented by Hanjalić and
Kenjereš (2000, 2001). Further investigations surrounding the influence of the magnetic
field on the thermal field are proposed in Chapter 8.

The most significant observations from the above cases were the striking reorganizations
of flow structure predicted and this was substantially dependant on the orientation of the
magnetic field. For a weak (Ha = 50) vertical magnetic field, and to some extent with
a horizontal magnetic field, lateral squeezing of the coherent structures and a general
reduction in turbulent mixing, both by the horizontally active Lorentz force, was seen to
cause the thermal plumes to break down into a larger number of thinner, more cylindrical,
plumes which more densely populated the domain. At higher Hartmann numbers the
lateral squeezing, and associated vertical stretching, of the plumes continued with the
vertical magnetic field but the horizontal magnetic field caused the roll cells to realign
themselves along the direction of the magnetic field lines. This alignment results from a
requirement for the flow to conserve the component of angular momentum parallel to the
magnetic field despite a continual removal of energy through Joule dissipation. Notably,
simulations performed with the LS model, without the additional electromagnetic terms,
did not predict any significant change in flow structure.

Results for the lower Prandtl number of Pr = 0.01, for which only the vertical mag-
netic field was considered, largely demonstrated similar behaviour to the moderate Prandtl
number case albeit with the presence of noticeably thicker thermal boundary layers. These
were seen to generate much larger plume structures in the non-magnetic case, and thus
higher magnetic field strengths were required to reduce them to sizes similar to those seen
at equivalent field strengths in the moderate Prandtl number case. A surprising result was
that at the highest magnetic field strength considered, the randomly distributed plume
structures present at lower magnetic field strengths appear to ‘join’ together and form
long coherent structures, aligned parallel to each other, which were seen to span nearly
the entire width of the domain.

In summary, the results presented here demonstrate the potential of the unsteady RANS
approach, and specifically the stress-transport approach, in reproducing flows affected by
complex interactions from both buoyant and Lorentz forces. The changes in flow structure
brought about by different magnetic field orientations have implications for controlling
both turbulence levels and the formation of coherent structures.
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CHAPTER

EIGHT

CONCLUSION AND FUTURE WORK

This chapter details the main conclusions and findings from the research carried out and
presented as part of this thesis. It begins in Section 8.1 with a reminder of the objectives
of the thesis and provides a brief synopsis of how the objectives were achieved. Then,
Section 8.2 and Section 8.3 summarise the main conclusions from the two major results
chapters in the thesis, Chapter 6 and Chapter 7 respectively. Finally, Section 8.4 identifies
several areas in which further work would help to advance this research further.
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8.1 Synopsis of research

The fundamental aim of this research, as stated in Section 1.4, was to explore the ex-
tent to which modelling approaches within the Reynolds-averaged Navier-Stokes (RANS)
framework can reproduce the reported effects of flows influenced by electromagnetic
forces. To achieve this fundamental aim, several objectives were set out. The first
was to identify and implement electromagnetic modifications to existing engineering type
RANS based turbulence models, as identified in the literature, within the numerical solver
STREAM. The second, was to apply these models to two main classes of flow, simple
channel flow and Rayleigh-Bènard convection, and provide an assessment of their perfor-
mance. Finally, the third was to identify the strengths and weaknesses of the models and
identify further areas for model development. What follows is a synopsis of how these
objectives were achieved in the thesis.

To identify existing electromagnetic modifications to RANS based turbulence models,
an extensive literature survey was carried out and presented in Chapter 2. The survey
identified a number of fundamental, and more engineering application based, studies
which served to fulfil several roles within the research. First, they helped elucidate the
main physical phenomena associated with magnetohydrodynamic interactions across a
range of different electromagnetically influenced flows, which included flows through
simple channels, Rayleigh-Bènard type convective flows and some other, less explored
flows, such as those surrounding targeted drug delivery and materials processing. Second,
they identified two electromagnetically extended RANS turbulence models, the low-Re
Launder-Sharma k− ε linear eddy viscosity model (LEVM) and the low-Re Hanjalić and
Jakirlić Reynolds stress model (RSM) with additional electromagnetic terms by Kenjereš
and Hanjalić (2000) and Kenjereš et al. (2004) respectively, which were suitable for im-
plementation and testing with the numerical solver STREAM. Finally, they provided sets
of Direct Numerical Simulation (DNS) data, primarily for simple channel flows subjected
to magnetic fields of varying strength and direction, through which the models could be
tested and assessed.

Chapter 3 and Chapter 4 then developed the necessary theoretical background concern-
ing magnetohydrodynamics and detailed how the identified electromagnetically extended
models fit within the context of both the eddy-viscosity and stress-transport approaches.
The implementation of these models, which included an additional equation for the elec-
trostatic potential and the specification of various source terms, within the STREAM
solver was then documented in Chapter 5.

To apply these models to the two main classes of flow identified within the literature
survey, a number of cases were numerically simulated, covering a wide range of hydro-
dynamic and magnetic flow parameters. With the simple channel flows, two main con-
figurations were investigated. The first was a one-dimensional, fully-developed, channel
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flow where a magnetic field was applied in either the wall-normal or streamwise direc-
tion. Both laminar and turbulent flows were considered, where the former provided the
means to validate the implementation within the STREAM solver and the latter provided
the means to assess the performance of the models tested against existing DNS data. The
second was a two-dimensional, fully-developed, duct flow where the effect of changing
the wall conductivity was investigated. The main findings and conclusions drawn from
these results are summarised in Section 8.2.

In the second, more complex, class of flow, time-dependent Rayleigh-Bènard convection
was simulated within a three-dimensional rectangular cavity. Two magnetic field direc-
tions and two Prandtl numbers were considered where, in addition to the electromagnetic
effects, buoyant effects were also influential. The results and conclusions drawn from
these cases are summarised in Section 8.4.

Identification of the strengths and weaknesses of the models was carried out through the
analysis and discussion of the results obtained in the above two main test cases. These are
provided in detail within the conclusions at the end of their respective chapters and are
further summarised in Section 8.2 and Section 8.4 below. From this, and the discussion
throughout the thesis in general, several areas for further work have been identified that
would be helping in bringing improvements to not just the models considered in this
thesis, but to the modelling of complex multiphysics flows in general.
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8.2 Fully developed channel flows

In Chapter 6, a series of one-dimensional and two-dimensional, laminar and fully tur-
bulent, electromagnetically influenced fully-developed channel flows were investigated.
The objective was to both provide confidence in the implementation of the electromag-
netic modifications within the numerical solver STREAM, and to contribute towards a
major objective of the thesis by providing a detailed assessment of how the employed
electromagnetically modified turbulence models respond to imposed magnetic fields of
varying direction and intensity.

The implementation of the electromagnetic modifications was validated, in the laminar
regime, through a series of one-dimensional and two-dimensional fully-developed chan-
nel flow calculations. Results in the former case demonstrated excellent agreement with
the developed analytical solution, and in the latter verified the code could predict a num-
ber of MHD phenomena discussed as part of Chapter 2, including the development of
near-wall jets at sufficient Hartmann numbers.

The implementation of the existing turbulence models in STREAM was validated in the
non-magnetic case with computations of one-dimensional fully-developed channel flows
over a range of Reynolds numbers (150 ≤ Reτ ≤ 2000). A slight overprediction of the
near-wall turbulent shear stress by the Hanjalić and Jakirlić RSM, which led to reduced
mass flow rates when compared to DNS data, was attributed to an unknown discrepancy
between the form of the model implemented in STREAM and that presented by Kenjereš
et al. (2004). Both models did, however, correctly reproduce the salient features of fully-
developed channel flow and showed generally good quantitative agreement with available
DNS data.

A detailed assessment of the performance of the electromagnetically modified Launder-
Sharma k − ε and Hanjalić and Jakirlić stress-transport models was presented through
a series of one-dimensional, turbulent, fully-developed channel flow calculations. In the
case with a wall-normal magnetic field, the modified Launder-Sharma model was seen to
consistently overestimate the direct suppression of turbulence afforded by the magnetic
field, leading to premature laminarization at the higher Hartmann numbers considered.
The response of the Hanjalić and Jakirlić RSM was much better, providing quantitative
changes in the velocity and Reynolds stress profiles which were more in line with the
DNS data than those of the Launder-Sharma model. The contributions from the addi-
tional electromagnetic terms in the Hanjalić and Jakirlić model, however, were shown to
be quite modest and the improved performance of the RSM was thus attributed to its abil-
ity to better represent changes to the production of the Reynolds stresses, and hence to
levels of turbulent kinetic energy. An analysis of the budgets of the uiuj and k equations,
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as provided by the DNS data, confirmed this assessment and revealed that the primary tur-
bulence suppression mechanism of the wall-normal magnetic field was to reduce turbulent
production by reducing mean strain.

In the case with a streamwise magnetic field, the mean flow was not subjected to a mean
Lorentz force and the effects of the magnetic field were thus only felt through changes to
the turbulence. Increases to the near-wall peak values of k and uu as the Hartmann number
increased were correctly represented by the modified RSM, whilst the modified EVM
predicted a decrease. Both models predicted laminar flow at the highest Hartmann number
considered, contrary to the DNS data. With the EVM, comparisons of the computed
additional source terms with budgets from DNS data showed that they grossly over predict
the magnitudes of both sinks and this was attributed to the ad-hoc nature of the terms,
which are unable to directly take account of the directionality associated with the magnetic
field. With the RSM, an inadequate model for the modelled part of the additional source
terms in the uiuj equations led to the prediction of a sink term in the uv budget, when
DNS data indicated the opposite.
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8.3 Magnetic Rayleigh-Bènard convection

In Chapter 7, results from a series of three-dimensional, time-dependent, Rayleigh-Bènard
convection flows were presented over a range of Hartmann numbers (0 ≤ Ha ≤ 800), for
two different Prandtl numbers (Pr = 0.71, Pr = 0.01) and for two different magnetic
field directions (horizontal, vertical). The objective was to assess the performance of the
two electromagnetically extended models in some more challenging flows, which also
included interactions from buoyant forces. Most attention was devoted to the RSM since
it proved superior in the previously computed fully-developed channel flow cases.

The implementation of the buoyant and time-dependent components of STREAM were
validated through computations of non-magnetic three-dimensional Rayleigh-Bènard con-
vection between two infinite horizontal flat plates. Both turbulence models could not
sustain the low level of turbulence predicted by the DNS data (at a relative low Ra =

6.3× 105), but long-term time averaged temperature profiles showed excellent agreement
and displayed behaviour characteristic of time-dependent Rayleigh-Bènard convection.

Results at the higher Rayleigh number of Ra = 107 showed that the application of suf-
ficiently strong magnetic fields, in both horizontal and vertical directions, led to substan-
tially different changes in the predicted flow structure, and caused noticeable changes to
the long-term time averaged statistics. In the moderate Prandtl number case, a vertical
magnetic field fully suppressed the modelled contribution to the turbulence by Ha = 50.
The subsequent reduction in mixing that this brought, together with a horizontally active
mean Lorentz force, laterally squeezed the thermal thermal plumes, breaking them down
into a larger number of thinner, more cylindrical, plumes which more densely populated
the domain and extended further into the thermal boundary layers. With a horizontally
orientated magnetic field, higher Hartmann numbers (Ha ≥ 400) were seen to cause the
roll cells to realign themselves along the direction of the magnetic field lines. This realign-
ment was attributed to a requirement for the flow to conserve the component of angular
momentum parallel to the magnetic field despite a continual removal of energy through
Joule dissipation. Notably, simulations with the standard Launder-Sharma model did not
predict any significant changes in flow structure. Thus, whilst the additional terms were
generally not required in the simple channel flows, they were instrumental in reproducing
the effects of the magnetic field in the more complex Rayleigh-Bènard cases.

In the lower Prandtl number cases, for which only a vertical magnetic field was con-
sidered, the results largely demonstrated similar behaviour to that seen at the moderate
Prandtl number case, with the notable exception that much higher magnetic field strengths
were required. This was attributed to the thicker thermal boundary layers (a direct con-
sequence of the lower Prandtl number) which generated much larger plume sizes in the
non-magnetic case. An unexpected observation was seen at the highest magnetic field
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strength considered, where the initially smaller plume structures (generated by the lat-
eral squeezing of the Lorentz force) appeared to organize into long parallel rolls which
spanned nearly the entire width of the domain.

The observed changes in the flow structure, brought about by the application of differ-
ent magnetic fields, was seen to be in agreement with existing numerical simulations
and physical reasoning. This demonstrated the potential of the unsteady RANS stress-
transport approach in reproducing flows affected by complex interactions from both buoy-
ant and Lorentz forces.
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8.4 Suggestions for further work

Although a significant number of investigations have been performed as part of the re-
search undertaken in this thesis, there are a number of areas which have arisen as being
suitable for further investigation. These are discussed in the next few subsections.

8.4.1 Further explorations of cases studied

In the Rayleigh-Bènard convection cases explored as part of Chapter 7, one of the more
unexpected results was the prediction that, at the lower Prandtl number, a strong magnetic
field caused the initially small plume structures to reorganize into a series of long adjacent
parallel structures which spanned almost the entire width of the domain. This raised
several points which would be suitable for further investigation.

Firstly, it was noted that once the lengthscale of the structures becomes a significant frac-
tion of the width of the domain (as is the case here), the boundary conditions employed
for this particular case, which are symmetry conditions, might no longer be appropriate.
Secondly, the physical mechanism behind the transformation (assuming it is not entirely
an artefact of the symmetry boundary conditions, which seems unlikely) was not entirely
obvious.

To address the above points, several further explorations, at some intermediate and higher
magnetic field strengths and using, for example, periodic boundary conditions, would be
useful in helping to determine why that particular flow pattern, if realistic, is occurring.

8.4.2 Improvements within the eddy-viscosity framework

It was concluded in Section 8.3 that whilst additional electromagnetic modifications to
the Launder-Sharma k − ε EVM were generally unhelpful in simple magnetic channel
flows, they appeared instrumental in bringing about changes in flow structure that were
predicted to occur by the more advanced RSM in Rayleigh-Bènard convection (and that
which were more in line with physical intuition).

Whilst there may be some specific areas which could be addressed, such as the prescrip-
tion of a correction to the modelled form of the electromagnetic source term in the ε
equation (Fε), which was seen to be heavily underestimated in the Hartmann flow cases,
the analysis of the fully-developed channel flow results revealed the reason for the poor
performance of the electromagnetically extended Launder-Sharma model was more its
inability to correctly capture the anisotropic effects of the magnetic field on the Reynolds
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stresses themselves. Without this additional information, it is difficult to see what whole-
sale improvements to the form of the terms proposed by Kenjereš and Hanjalić (2000)
one could suggest.

One possible route for improvement would be to employ a non-linear stress-strain rela-
tionship. These have been shown to offer better predictions of the stress anisotropy over a
range of different flows, including plane channel flows, transitional flows and impinging
jets (Craft et al., 1997). With better predictions of normal stresses, use of the more exact
form of the electromagnetic source term in the k equation, FLk , would be worthwhile, and
would hopefully allow the model to better capture the directional effects of the magnetic
field on the Reynolds stresses.

8.4.3 Improvements within the stress-transport framework

It was seen in Chapter 4 that the only unknown in the exact expression for FLij , the direct
contribution from the magnetic field to the Reynolds stress transport equation, was the
correlation between the fluctuating velocity and the fluctuating electric potential. The
model for this, proposed by Kenjereš et al. (2004), implied that the two constituent terms
were proportional to each other and of opposite sign. This was seen to be generally the
case with the wall-normal magnetic field, but the application of a streamwise magnetic
field, detailed in Subsection 6.4.3, revealed that the model returned values of FLuv with an
incorrect sign.

Unfortunately, little is known about the correlation discussed above, and information on
its distribution in the low-Re channel flow cases was not readily presented by the group
who computed the DNS data (Noguchi et al., 2004). If the unprocessed data for these
cases, or other suitably identified cases, were to be obtained, then it would enable the
behaviour of that term to be properly assessed. This would hopefully reveal avenues
which could potentially bring improvements to the modelled form currently employed.

A further area for additional exploration within the stress-transport approach was dis-
cussed during the analysis of the Rayleigh-Bènard convection results in Section 7.5. It
was noted there that the use of the GGDH may under predict the turbulent contribution
to the heat flux since it does not fully take account of all the generation processes which
are present in the parent transport equation (see Subsection 4.3.3). These would also con-
tain contributions from the fluctuating Lorentz force. These could be included through
either full solution of the parent transport equation for uiθ, or use of a more advanced
algebraic closure such as that proposed by Kenjereš and Hanjalić (1999b) and may bring
improvements in those flows affected by buoyancy in addition to the Lorentz force.
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8.4.4 Production of experimental or DNS data

One major area which, if developed, would bring improvements to the modelling of flows
considered in this thesis (and is always welcomed by the turbulence modelling commu-
nity), is the production of reliable experimental or DNS data. The literature survey pre-
sented in Chapter 2, whilst clearly identifying a number of interesting electromagnetically
influenced flows, served to highlight the lack of detailed DNS or experimental data, espe-
cially in more complex flows, which could be used to develop and tune models.

Obviously, DNS of magnetic Rayleigh-Bènard cases would be immediately useful in val-
idating the results presented in this thesis, but DNS in which magnetic fields are applied
to other well-studied flows, such as backwards facing steps or impinging jets, would pro-
vide an array of results sufficient in depth to both further develop the electromagnetically
modified turbulence models discussed in this thesis and instigate the development of new
models.
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