662 research outputs found

    Accelerating 128-bit Floating-Point Matrix Multiplication on FPGAs

    Full text link
    General Matrix Multiplication (GEMM) is a fundamental operation widely used in scientific computations. Its performance and accuracy significantly impact the performance and accuracy of applications that depend on it. One such application is semidefinite programming (SDP), and it often requires binary128 or higher precision arithmetic to solve problems involving SDP stably. However, only some processors support binary128 arithmetic, which makes SDP solvers generally slow. In this study, we focused on accelerating GEMM with binary128 arithmetic on field-programmable gate arrays (FPGAs) to enable the flexible design of accelerators for the desired computations. Our binary128 GEMM designs on a recent high-performance FPGA achieved approximately 90GFlops, 147x faster than the computation executed on a recent CPU with 20 threads for large matrices. Using our binary128 GEMM design on the FPGA, we successfully accelerated two numerical applications: LU decomposition and SDP problems, for the first time.Comment: 12 pages, 8 figure

    Algorithm Architecture Co-design for Dense and Sparse Matrix Computations

    Get PDF
    abstract: With the end of Dennard scaling and Moore's law, architects have moved towards heterogeneous designs consisting of specialized cores to achieve higher performance and energy efficiency for a target application domain. Applications of linear algebra are ubiquitous in the field of scientific computing, machine learning, statistics, etc. with matrix computations being fundamental to these linear algebra based solutions. Design of multiple dense (or sparse) matrix computation routines on the same platform is quite challenging. Added to the complexity is the fact that dense and sparse matrix computations have large differences in their storage and access patterns and are difficult to optimize on the same architecture. This thesis addresses this challenge and introduces a reconfigurable accelerator that supports both dense and sparse matrix computations efficiently. The reconfigurable architecture has been optimized to execute the following linear algebra routines: GEMV (Dense General Matrix Vector Multiplication), GEMM (Dense General Matrix Matrix Multiplication), TRSM (Triangular Matrix Solver), LU Decomposition, Matrix Inverse, SpMV (Sparse Matrix Vector Multiplication), SpMM (Sparse Matrix Matrix Multiplication). It is a multicore architecture where each core consists of a 2D array of processing elements (PE). The 2D array of PEs is of size 4x4 and is scheduled to perform 4x4 sized matrix updates efficiently. A sequence of such updates is used to solve a larger problem inside a core. A novel partitioned block compressed sparse data structure (PBCSC/PBCSR) is used to perform sparse kernel updates. Scalable partitioning and mapping schemes are presented that map input matrices of any given size to the multicore architecture. Design trade-offs related to the PE array dimension, size of local memory inside a core and the bandwidth between on-chip memories and the cores have been presented. An optimal core configuration is developed from this analysis. Synthesis results using a 7nm PDK show that the proposed accelerator can achieve a performance of upto 32 GOPS using a single core.Dissertation/ThesisMasters Thesis Computer Engineering 201

    On the acceleration of wavefront applications using distributed many-core architectures

    Get PDF
    In this paper we investigate the use of distributed graphics processing unit (GPU)-based architectures to accelerate pipelined wavefront applications—a ubiquitous class of parallel algorithms used for the solution of a number of scientific and engineering applications. Specifically, we employ a recently developed port of the LU solver (from the NAS Parallel Benchmark suite) to investigate the performance of these algorithms on high-performance computing solutions from NVIDIA (Tesla C1060 and C2050) as well as on traditional clusters (AMD/InfiniBand and IBM BlueGene/P). Benchmark results are presented for problem classes A to C and a recently developed performance model is used to provide projections for problem classes D and E, the latter of which represents a billion-cell problem. Our results demonstrate that while the theoretical performance of GPU solutions will far exceed those of many traditional technologies, the sustained application performance is currently comparable for scientific wavefront applications. Finally, a breakdown of the GPU solution is conducted, exposing PCIe overheads and decomposition constraints. A new k-blocking strategy is proposed to improve the future performance of this class of algorithm on GPU-based architectures

    High Performance Reconfigurable Computing for Linear Algebra: Design and Performance Analysis

    Get PDF
    Field Programmable Gate Arrays (FPGAs) enable powerful performance acceleration for scientific computations because of their intrinsic parallelism, pipeline ability, and flexible architecture. This dissertation explores the computational power of FPGAs for an important scientific application: linear algebra. First of all, optimized linear algebra subroutines are presented based on enhancements to both algorithms and hardware architectures. Compared to microprocessors, these routines achieve significant speedup. Second, computing with mixed-precision data on FPGAs is proposed for higher performance. Experimental analysis shows that mixed-precision algorithms on FPGAs can achieve the high performance of using lower-precision data while keeping higher-precision accuracy for finding solutions of linear equations. Third, an execution time model is built for reconfigurable computers (RC), which plays an important role in performance analysis and optimal resource utilization of FPGAs. The accuracy and efficiency of parallel computing performance models often depend on mean maximum computations. Despite significant prior work, there have been no sufficient mathematical tools for this important calculation. This work presents an Effective Mean Maximum Approximation method, which is more general, accurate, and efficient than previous methods. Together, these research results help address how to make linear algebra applications perform better on high performance reconfigurable computing architectures
    corecore